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Abstract 
 

The assessment of tropical forest biomass is gaining increasing interest mainly for national 

resources planning, global carbon modeling, climate change research and mitigation 

activities, such as reducing emissions from deforestation and forest degradation and the 

role of conservation, sustainable management of forests and enhancement of forest carbon 

stocks in developing countries (REDD+). It is widely recognized that remote sensing 

provides the key source of data for updated, consistent and spatially explicit assessment of 

biomass and its dynamics, especially in large countries with limited accessibility. However, 

there is no agreement in the international community on what method should be used to 

reliably determine this parameter.  

 

This study investigates the capabilities and limitations of freely available optical satellite 

data at medium resolution to estimate aboveground biomass density of vegetation at 

national scales in the tropics, and compares this approach with existing methodologies to 

understand and quantify the sources of variability in the estimations. Uganda was chosen 

as a case-study because it presents a reliable national biomass reference dataset. 

 

As a result of this thesis, aboveground woody biomass for circa-2000 was mapped at 

national scale in Uganda at 30-m spatial resolution on the basis of Landsat ETM+ images, 

a national land cover dataset and field data using an object-oriented approach. A regression 

tree-based model (Random Forest) produced good results (cross-validated R² 0.81, RMSE 

13 Mg/ha) when trained with a sufficient number of field plots representative of the 

vegetation variability at national scale. The Random Forest model effectively captured 

non-linear relationships between satellite data and biomass density, and was able to use 

categorical data (land cover) in the regression to improve the results.  

 

This study demonstrated that in certain contexts Landsat data provide the capability to 

effectively spatialize field biomass measurements and produce accurate and detailed 

estimates of biomass distribution for all vegetation types at national scale. This approach 

tended to provide conservative biomass estimates and its limitations were mainly related to 

the saturation of the optical signal at high biomass density and to the cloud cover, which 

hindered the compilation of radiometrically consistent multi-temporal satellite datasets. For 

this reason, the Landsat mosaic created for Uganda with images acquired in the dry season 

during 1999 – 2003 did not contain phenological information useful for discriminating 

some vegetation types, such as deciduous formations. Fusion of satellite and land cover 

data improved model results because it combined the high spatial and thematic resolution 

of the Landsat data with the phenological information provided by the land cover data. 

However, to avoid error propagation, accurate, detailed and up-to-date land cover or other 

ancillary data are necessary.  

 

When compared with the reference biomass map of the Forest Department of Uganda, the 

map produced in this study presented higher agreement than other five regional/global 

biomass maps. Moreover, the comparative analysis showed strong disagreement between 

the products, with estimates of total aboveground biomass of Uganda ranging from 343 to 

2201 Tg and different spatial distribution patterns. Compared to the reference map based 

on country-specific field data and a national land cover dataset (estimating 468 Tg), maps 

based on biome-average biomass values, such as the Intergovernmental Panel on Climate 

Change default values, and global land cover datasets strongly overestimated biomass 

availability of Uganda (ranging from 578 to 2201 Tg), while maps based on satellite data 

and regression models provided conservative estimates (ranging from 343 to 443 Tg). The 
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comparison of the maps predictions with field data, upscaled to map resolution using land 

cover data, was in accordance with the above findings.  

This study also demonstrated that the biomass estimates were primarily driven by the 

biomass reference data while the type of spatial maps used for their stratification had a 

smaller, but not negligible, impact. The differences in format, resolution and biomass 

definition used by the maps, as well as the fact that some datasets were not independent 

from the reference data to which they were compared, were carefully considered in the 

interpretation of the results. 

 

The strong disagreement between existing products and the large impact of biomass 

reference data on the estimates indicated that the first, critical step to improve the accuracy 

of the biomass maps consists of the collection of accurate biomass field data for all 

relevant vegetation types. However, detailed and accurate spatial datasets are crucial to 

properly spatialize the field information and to obtain accurate estimates at specific 

locations. 
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Zusammenfassung 
 

Für die nationale Ressourcenplanung, globale Kohlenstoffmodellierung, 

Klimawandelforschung oder auch im Rahmen internationaler Aktivitäten zur 

Abschwächung der Klimawandels, wie z.B. REDD+ (Reducing Emissions from 

Deforestation and Forest Degradation and the Role of Conservation, Sustainable 

Management of Forests and Enhancement of Forest Carbon Stocks in Developing 

Countries), ist die Bewertung und Quantifizierung tropischer Waldbiomasse von 

zunehmender Relevanz. In diesem Zusammenhang gelten Fernerkundungsdaten als 

geeignete Grundlage, um eine aktuelle, konsistente und räumlich explizite Abschätzung 

von Biomasse und deren Dynamik zu erhalten. Allerdings bestehen derzeit noch keine 

internationalen Vereinbarungen und Abkommen, welche die Auswahl und Verwendung 

zuverlässiger Methoden zur Ableitung von Biomasse definieren.   

 

Die vorliegende Arbeit zeigt die Möglichkeiten und Limitationen frei verfügbarer, optisch 

moderat aufgelöster Satellitendaten zur Abschätzung oberirdischer Biomassendichte in den 

Tropen auf nationaler Ebene. Dabei ist insbesondere der Vergleich der entwickelten 

Methodik mit existierenden Ansätzen von Bedeutung, um die Variabilität bezüglich der 

Abschätzung von Biomasse quantifizieren zu können. Als Fallbeispiel für diese Arbeit 

wurde Uganda aufgrund seiner zuverlässigen und national vorliegenden 

Biomassereferenzdaten gewählt.  

 

Innerhalb dieser Arbeit wurde mittels eines objektorientierten Ansatzes für das Jahr 2000 

auf Grundlage von Landsat ETM+ Daten, einem nationalen Landbedeckungsdatensatz und 

Felddaten die oberirdische Holzbiomasse für Uganda mit einer räumlichen Auflösung von 

30 x 30 m kartiert. Unter Verwendung eines regressions-basierten Entscheidungsmodelles 

(Random Forest) und eines, die Vegetationsvariabilität ausreichend repräsentierenden, 

Trainingsdatensatzes, wurden gute Ergebnisse erreicht (kreuz-validiertes R² 0.81, RMSE 

13 Mg/ha). Das Random Forest Modell ermöglicht hierbei die Beschreibung des nicht-

linearen Zusammenhanges zwischen Satellitendaten und Biomassendichte und erlaubt 

darüber hinaus zur einer weiteren Verbesserung der Ergebnisse die Integration 

kategorischer Daten (z.B. Landbedeckung) in die Regression. 

 

Die vorliegende Studie demonstriert, dass im betrachteten Kontext Landsat-Daten für eine 

räumlich explizite Bestimmung der Biomassenverteilung für alle Vegetationstypen sowie 

deren Variabilität auf nationaler Ebene geeignet sind. Der verwendete Ansatz liefert eine 

konservative Abschätzung der Biomasse, wobei Limitationen hauptsächlich durch die 

Sättigung des optischen Signals in hohen Biomassedichten und der Wolkenbedeckung 

gegeben sind. So verhinderte insbesondere die Wolkenbedeckung die Erstellung von 

radiometrisch konsistenten, multi-temporalen Satellitendatensätzen. Aus diesem Grund 

war die Datengrundlage zur Erstellung des Landsat-Mosaikes für Uganda auf Szenen 

beschränkt, welche in den Trockenperioden zwischen 1999 – 2003 akquiriert wurden. 

Dementsprechend beinhaltete das Landsat-Mosaik keine phänologischen Informationen 

zur Unterscheidung der Vegetationstypen, wie z.B. sommergrüne Formationen. Durch die 

Fusionierung von Satelliten- und Landbedeckungsdaten konnten die räumlich und 

thematisch hochaufgelösten Landsat-Daten mit den phänologischen Informationen des 

nationalen Landbedeckungsdatensatzes für eine signifikante Verbesserung der 

Modellergebnisse kombiniert werden. Um die Fehlerfortpflanzung innerhalb des Modells 

zu minimieren,  besteht daher die Notwendigkeit der Verwendung akkurater, detaillierter 

und aktueller Landbedeckungsinformationen sowie zusätzlicher Referenzdaten.  
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Die vergleichende Analyse zeigt, dass die in dieser Arbeit erstellte Biomassenkarte im 

Vergleich zu fünf existierenden regionalen und globalen Biomasseprodukten eine höhere 

Übereinstimmung mit der Referenzbiomassenkarte des Waldministeriums (Forest 

Department) von Uganda aufweist. Weiterhin konnten deutliche Unstimmigkeiten 

zwischen den existierenden Produkten hinsichtlich der absoluten oberirdischen Biomasse 

(343 - 2201 Tg) sowie deren räumlichen Verteilungsmuster aufgezeigt werden. 

Vergleichend zu der auf Felddaten und dem nationalen Landbedeckungsdatensatz 

basierenden Referenzkarte, erfolgte eine deutliche Überschätzung der Biomasse (578 – 

2201 Tg) durch die Produkte, welche auf Durchschnittswerten von Biomen basieren (z.B. 

Standartwerte des Intergovernmental Panel on Climate Change; globale 

Landbedeckungsdatensätze). Produkte basierend auf Satellitendaten und 

Regressionsmodellen hingegen liefern eher konservative Schätzungen (343 – 443 Tg). 

Bestätigt werden diese Ergebnisse durch den Vergleich der verschiedenen Produkten mit 

Felddaten die mittels eines Landbedeckungsdatensatzes auf die entsprechende 

Kartenauflösung hochskaliert wurden.  

Die Studie zeigte weiterhin den grundlegenden Einfluss der Biomassereferenzdaten 

(Feldmessungen) auf die Biomasseschätzungen, während die Art der räumlichen Karte zur 

Stratifizierung (z.B. Landbedeckung, Biome) eine geringere, wenn auch nicht 

vernachlässigbare Relevanz hat. Die Unterschiede im Format, der Auflösung sowie der 

jeweiligen Biomassedefinitionen der verschiedenen Produkte wurden hierbei im gleichen 

Maße berücksichtigt wie auch die teilweise Abhängigkeit der Produkte zu den 

verwendeten Referenzdaten, mit denen die vergleichende Analyse durchgeführt wurde.   

 

Die deutliche Unstimmigkeiten zwischen existierenden Biomassenprodukten und der große 

Einfluss der Biomassereferenzwerte auf die Schätzung zeigen, dass die Erhebung von 

akkuraten Biomassereferenzen im Gelände für alle relevanten Vegetationstypen der 

zunächst kritischste Schritt zur Verbesserung der Genauigkeiten von Biomassekarten 

darstellt. Allerdings sind hierfür detaillierte und räumlich akkurate Datensätze notwendig, 

die sowohl die spezifische und effektive Lokalisierung der Feldmessungen als auch deren 

Regionalisierung ermöglichen.  
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1. Introduction 
 

1.1. Relevance of tropical forest biomass 

 

Vegetation biomass is a proxy for several ecosystems services, affects the local and 

regional climate and provides a variety of products such as timber, fuelwood and biofuel. 

Biomass is also relevant information for carbon cycle budgeting because it consists of 

approximately 50% carbon (Malhi et al., 2004). 

 

Large amount of biomass are stored in the tropics (Houghton, 2005). Within the climate 

change debate tropical forests are attracting increasing attention because of their role as 

carbon sink (Stephens et al., 2007; Malhi, 2010) and the large Greenhouse Gases (GHG) 

emissions associated with their disappearance (Houghton, 2007; Le Quéré et al., 2009). 

Therefore, assessment of the amounts and dynamics of biomass in the tropics is crucial for 

reducing uncertainties in global carbon modeling (Le Quéré et al., 2009; Houghton, 2005) 

as well for national planning in many tropical countries, where vegetation is a primary 

source of products and energy for local communities (Masera et al., 2006).  

 

Accurate biomass estimates are also required for the implementation of a reliable 

mechanism under the United Nations Framework Convention on Climate Change 

(UNFCCC) to reduce emissions from tropical deforestation and forest degradation below 

an historical reference level and for the conservation, sustainable management and 

enhancement of forest carbon stocks in developing countries (REDD+) through appropriate 

financial incentives or carbon markets (Gullison et al., 2007, UNFCCC, 2010). The 

implementation of such mechanism, currently under discussion by the UNFCCC, poses 

several challenges (e.g. political, economic, social) (Stickler et al., 2009) but first requires 

the accurate monitoring of the forest carbon stocks and their dynamics at national level 

(UNFCCC, 2009). While there is high interest in seeing such initiatives take form, 

monitoring forest biomass stocks and stock changes is identified as a key challenge for 

developing countries wishing to take part in the expected REDD+ mechanism (Herold & 

Skutsch, 2011). 

 

Currently, there are still large uncertainties associated with the amount and distribution of 

carbon stocks in the tropics (Waggoner, 2009; Houghton and Hackler, 2006). Monitoring 

and assessment of biomass resources is an expensive and time consuming task, 

complicated by the large extents and difficult accessibility of tropical forests. As a result, 

few developing countries have put in place an efficient monitoring system, and current 

biomass estimates for these countries are highly variable (Houghton et al., 2001; Houghton, 

2005; Gibbs et al., 2007).  

 

Given the relevance of tropical forest biomass for several applications and the high 

uncertainty of its distribution, this topic is currently a priority research area. 

It is widely recognized by the scientific community that remote sensing provides the key 

source of data for updated, consistent and spatially explicit assessment of biomass and its 

dynamics, especially in large countries with limited accessibility (Penman et al., 2003; 

Herold and Johns, 2007; De Fries et al., 2007; UNFCCC, 2008; GOFC GOLD, 2010) but 

there is no agreement on what method should be used to reliably determine this parameter 

(Goetz et al., 2009, Gibbs et al., 2007).  
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1.2. The role of sub-Saharan Africa 

 

Most research on tropical forest biomass carried out during the last years has focused on 

the Brazilian Amazon (Houghton et al., 2001; Lu, 2005; Saatchi et al., 2007; Stickler et al., 

2009; Li, 2010; Asner, 2010) and Southeast Asia (Foody et al., 2003; Field et al., 2008; 

Inoue et al., 2010; Kohler et al., 2010; Descloux et al., 2011) because in these regions 

large-scale deforestation activities caused major GHGs emissions. Instead, despite the 

African continent was identified as the most vulnerable to climate change and a priority 

region by the UNFCCC (2006), sub-Saharan Africa has been largely ignored in large-scale 

biomass assessment because the contribution of this region to global GHG emissions is 

relatively small (Malhi, 2010). In addition, assessing biomass in Africa is severely 

constrained by difficult access to forest areas due to scarce infrastructure and political 

instability. As a consequence, Sub-Saharan Africa is currently one of the regions with 

lowest availability of in-situ biomass data (Bombelli et al., 2009, Ciais et al., 2009) and 

with the highest uncertainty regarding the amount and distribution of carbon stocks 

(Houghton and Hackler, 2006). 

 

However, having the fastest population growth in the world and a rising economic growth 

rate, Africa’s share of global GHG emissions is expected to increase in the coming decades 

(Canadell et al., 2009). Since deforestation and forest degradation are already responsible 

for a substantial part of Africa’s greenhouse gas emissions (Houghton and Hackler, 2006; 

Bombelli et al., 2009), in the near future African forests will have a growing impact on 

climate change, or a large potential for its mitigation.  

 

In order to quantify such impact/potential, uncertainties on amount and distribution of 

carbon stocks in African tropical forests need to be significantly reduced. Such need has 

stimulated recent studies to focus on Sub-Saharan Africa and updated biomass estimates at 

regional scale have been recently produced (Henry, 2010; Baccini et al. 2008; Gibbs & 

Brown, 2007; Drigo, 2006). However, while these products can support global and 

regional carbon modeling, their resolution and accuracy are generally not sufficient for the 

implementation of activities at national level, such as REDD+ or monitoring bio-energy 

resources. For this reason, studies at country-scale are highly required. 

 

 

1.3. Uganda: a case study 

 

Within sub-Saharan Africa, Uganda is a country highly dynamic in terms of biomass stock 

and represents a case study of primary interest. The high economic and population growth 

experienced in the last 25 years has had a dramatic impact on the forestry resources, which 

have been reduced by agricultural expansion and growing demand for charcoal, fuelwood 

and timber (Drichi, 2003; FAO, 2003). Only between 1990 and 2005, the country’s total 

biomass stock decreased by 26% (FAO, 2006).  

 

Most importantly, Uganda is expected to experience continued rapid population and 

economic growth in the coming years, with associated smallholder agricultural expansion 

into forested areas and increasing demand for forest products that will likely accelerate 

deforestation (Kanabahita, 2001; FAO, 2003). With 66% of the total Aboveground 

Biomass (AGB) located outside of protected areas (Drichi, 2003) and insufficient 

incentives to pursue sustainable forest management (Kanabahita, 2001), Uganda is 

therefore highly relevant to REDD policies and biomass monitoring activities. 
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In addition, Uganda presents a long history of biomass assessment, supported by extensive 

biomass and land cover field measurements (Drichi, 2003). Since the availability of a 

reliable national biomass reference dataset is a key factor to successfully develop and test 

new methods for biomass retrieval, Uganda represented an optimal case study. 
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2. Scientific background 
 

2.1. Biomass and climate change 

 

Climate change is (almost) unanimously considered the most important environmental 

crisis of our time. The relevance of climate change is due to its major ecological impacts 

on natural environments and the tremendous social and economic consequences on human 

systems. Climate change is a consequence of the increase of the atmospheric concentration 

of GHGs compared to pre-industrial levels due to human activities, mainly burning of 

fossil fuels and land cover changes. Due to their radiative forcing, GHGs alter the energy 

balance of the climate and tend to warm the atmosphere. Warming of the climate is 

unequivocal, and there is very high confidence that the net effect of human activities is that 

of warming (IPCC, 2007). 

 

Carbon dioxide (CO2) is the most important anthropogenic GHG, accounting for almost 77% 

of global anthropogenic GHG emissions (IPCC, 2007). Atmospheric CO2 concentration 

increased of 36% (from 280 to 379 ppmv) between 1750 and 2005 and it continues to 

increase exponentially. Only between 1970 and 2004, CO2 emissions increased of 80%. 

Fossil fuel combustion and land use changes are the main sources of CO2, contributing 

respectively to 65% and 35% of global historical emissions since 1750 (IPCC, 2007).  

 

Within the land use sector, the vast majority of emissions are due to the alteration of global 

vegetation through deforestation and forest degradation.  

Plants absorb CO2 through photosynthesis and release it through respiration, 

decomposition and combustion. By storing almost as much C as the atmosphere and being 

the driver for the C accumulation in soils, terrestrial vegetation plays a critical role in the 

global C cycle and its changes are highly relevant for climate change (Figure 1). In 

addition, being the most dynamic component of the terrestrial C cycle, forest disturbances 

as logging or fires have a rapid impact on atmospheric CO2 concentration. 

 

Globally, vegetation is both a strong C sink and a relevant C source by sequestering about 

2.6 GtC and releasing about 1.6 GtC yearly during the 1990s (IPCC, 2007). The main 

source of CO2 emissions from the land use sector is tropical deforestation (Le Quéré et al., 

2009), contributing to 20% of global emissions during the 1990s (IPCC, 2007). 

Considering the rise of fossil fuel emissions of the last decade, the share of emissions from 

tropical forests has decreased but still remained substantial, accounting for 15% of global 

emissions during the period 2000 – 2005 (Malhi, 2010) and 12% in 2008 (van der Werf et 

al., 2009) without considering emissions from tropical peatlands. Tropical forests are also a 

strong C sink and almost counterbalance emissions from tropical deforestation, absorbing 

about 12% of global emissions during the period 2000 – 2005 (Malhi, 2010). It is 

important to notice that the net carbon balance of tropical forests varies considerably 

among the continents: tropical Asia appears to be a large C source, South America a 

moderate C sink and tropical Africa a large C sink (Malhi, 2010). 

 

Nonetheless the relevance of the land use sector on the global C budget, the land use C 

source has the largest uncertainties, with estimates of emissions ranging from 0.5 to 2.7 

GtC year
-1

 during the 1990s (IPCC, 2007). Most of the uncertainty is due to tropical 

deforestation (Le Quéré et al., 2009), which contribution to global emissions in 2008 

ranged between 6% and 17% (van der Werf et al., 2009). Similarly, changes in the C sink 
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are highly uncertain and reducing their uncertainties is crucial considering the significant 

impact of this sector on future atmospheric CO2 levels (Le Quéré et al., 2009). 

 

Since biomass of vegetation consists of approximately 50% carbon (Malhi et al., 2004), the 

amount of C stored in vegetation is directly related to their biomass density. 

Aboveground biomass is defined as the total amount of aboveground living organic matter 

in trees expressed in units of oven-dry weight (Brown, 1997). Biomass density represents 

the mass per unit area and is usually expressed as tons (Mg) per hectare, while total 

biomass of a certain region is obtained by multiplying its mean biomass density with the 

corresponding area.  

 

Carbon emissions from tropical forests depend on the area of forest change and the 

associated biomass loss. Consensus regarding the area affected by deforestation and 

degradation has yet to be reached (van der Werf et al., 2009), but the accuracy of the 

estimates increased during the last decades thanks to the use of satellite data, and 

operational forest monitoring systems are now a feasible goal for most developing 

countries (DeFries  et al., 2007). 

Instead, the amount of biomass stored in tropical forests and its distribution remains highly 

uncertain at regional and national level (DeFries et al., 2007; Houghton, 2005). Since 

assessing biomass stocks is as important as quantifying the rate of deforestation to reduce 

the error of estimated net fluxes of carbon (Houghton, 2005), improving the knowledge of 

tropical biomass distribution has become a crucial component to understand the role of 

tropical forests on the C cycle and their potential for mitigation and adaptation to climate 

change. 

 
 

 

Figure 1: The Carbon cycle (Source: NASA, Earth observatory, 

http://earthobservatory.nasa.gov/Features/CarbonCycle/carbon_cycle4.php) 
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2.2. The role of forest biomass in the UNFCCC and REDD+ 

 

2.2.1. The UNFCCC and the Kyoto Protocol 

 

The United Nations Framework Convention on Climate Change (UNFCCC) is an 

international environmental treaty produced during the United Nations Conference on 

Environment and Development (UNCED) held in Rio de Janeiro in 1992, also known as 

the "Earth Summit". The UNFCCC was conceived along with the Convention on 

Biological Diversity (CBD) and the United Nations Convention to Combat Desertification 

(UNCCD) but it quickly gained a role of primary importance regarding environmental 

issues and, compared to the other conventions, obtained stronger recognition and support 

from the international community.  

 

The UNFCCC is aimed at stabilizing GHG concentrations in the atmosphere at a level that 

would prevent dangerous anthropogenic interference with the climate system. All signatory 

countries are required to periodically report to the Convention an inventory of all 

anthropogenic GHG emissions from sources and removals from sinks, including 

information on deforestation and forest degradation at national scale. Reporting guidelines 

for national inventories of CO2 emissions and removals by land use sector were provided 

by the Intergovernmental Panel on Climate Change (IPCC) (IPCC 1996, 2006).  

 

While the UNFCCC is legally non-binding because it does not set mandatory limits on 

GHG emissions nor contain enforcement mechanisms, such aspects were introduced in 

1997 with the Kyoto Protocol. On the basis of the principle of “common but differentiated 

responsibilities”, the Kyoto Protocol requires 37 developed countries (industrialized 

countries and economies in transition, also called the “Annex I countries”) to reduce their 

collective GHG emissions by 5.2% with respect to the 1990 levels during the period 2008 - 

2012. Flexible mechanisms, as the Clean Development Mechanism (CDM), were included 

to allow Annex I countries to acquire emission credits in order to fulfill their reduction 

commitments. The Kyoto Protocol recognizes the relevance of forests in reducing GHG 

emissions (Article 3.3 and 3.4) but the accounting rules were highly controversial and 

ultimately tropical forests were excluded from the Protocol, apart for the afforestation and 

reforestation activities under the CDM. 

 

In the almost 20 years since the Earth Summit, the conditions of the natural resources have 

constantly deteriorated and, nonetheless the efforts led by the United Nations, the 

implementation of the conventions and their impact on the environment was limited by 

several challenges (Millennium Ecosystem Assessment, 2005). Moreover, while the rise of 

2°C in global temperatures above pre-industrial levels is widely considered as a limit to 

avoid serious effects of climate change, basing on the pledges for voluntary emissions 

reduction of the Copenhagen Accord and related projected emissions, the United Nations 

Environment Programme (UNEP) estimated changes in global mean temperature between 

2.5 to 5 °C relative to pre-industrial temperature levels until the end of the 21
st
 century 

(UNEP, 2010). Therefore, more efforts need to be done in the coming years to stabilize the 

GHG concentrations within levels that allow natural adaptation of the ecosystems, 

sustainable economic development and secure food production. 
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2.2.2. REDD+ 

 

During the last years, the recognition of the significant contribution of tropical 

deforestation to global GHG emissions has brought this topic at the center of the UNFCCC 

negotiations. The political and scientific communities recognized the importance of forests 

for both mitigating and adapting to climate change (IPCC, 2007). However, while an 

effective strategy against climate change must include tropical forests, according to the 

principle of “common but differentiated responsibilities" reducing deforestation in 

developing countries should not limit their development. 

 

A proposal to include financial incentives to reduce emissions from deforestation in 

developing countries (REDD) was presented during the 11
th

 Conference of the Parties 

(COP-11) of Montreal in 2005 and then included in the negotiation of the post-Kyoto 

agreement at the 2007 COP-13 in Bali (UNFCCC, 2008). During the following 

negotiations the issue of reducing emissions from deforestation and forest degradation in 

developing countries gained increasing consensus and was expanded to include also the 

role of conservation, sustainable management of forests and enhancement of forest carbon 

stocks in developing countries (REDD+). The discussions focused on social, economic, 

technical and methodological issues, as well as policy approaches and modes of 

compensation. During the 2009 COP-15 in Copenhagen there was an agreement at the 

methodological level on REDD+ (UNFCCC, 2009), followed in 2010 by commitments 

from several developed countries during the Oslo Climate and Forest Conference to 

provide consistent funds for supporting REDD+ policies and measures. Lastly, the policy 

and mechanisms for implementing REDD+ were specified and agreed during the 2010 

COP-16 in Cancun (UNFCCC 2010), assuring that the mechanism will be included in the 

post-Kyoto agreements. 

 

The methodological framework defined in the COP decisions indicates that developing 

countries wishing to take part in the REDD+ mechanism will have to monitor their forests 

and associated carbon stocks and stock changes. Specifically, the UNFCCC requires the 

establishment of national Monitoring, Reporting and Verification (MRV) systems and the 

use of the most recent IPCC Guidance and Guidelines to assess anthropogenic GHG 

emissions by sources and removals by sink in forest areas, forest carbon stocks and forest 

area changes. Using a combination of remote sensing and ground observations, MRV 

systems will need to report to the UNFCCC transparent, consistent and accurate estimates 

of forest carbon stocks and forest area change, and ultimately gain the confidence of 

international donors and carbon markets. 

 

Currently, while there is high interest in seeing the successful implementation of national-

level REDD+ programs, more work remains to be done to solve policy and scientific issues, 

such as addressing permanence, additionality, leakage or the development of reference 

emission levels. While the design of MRV systems is still under discussion (Herold and 

Skutsch, 2011), monitoring forest biomass at national scale remains one of the key steps 

for developing REDD+ activities, and a priority research topic for the scientific community. 

 

 

 

 

 



8 

 

2.3. Approaches for biomass retrieval 

 

The large disagreement among biomass estimates for tropical countries provided by 

different studies have stimulated a debate regarding what method should be used to 

reliably determine this parameter (Goetz et al., 2009, Gibbs et al., 2007). 

 

Traditionally, biomass stock of a certain area is estimated by multiplying the mean biomass 

density of each forest type with its extent, and by summing the corresponding products. 

Field data, usually acquired from the national forest inventory, are used to estimate the 

average biomass density of the forest types while their extent is derived from the cadastral 

system, based on field survey of land uses. By using summary statistics of land uses, 

statistically robust estimates of biomass stock can be obtained without the need to describe 

their spatial distribution. This “non-spatial” approach is widely applied in developed 

countries where cadastral systems are well-established and frequently updated but it is 

often not applicable in developing countries where land tenure and cadastral infrastructure 

are poorly developed and not regularly maintained. In tropical regions and particularly in 

sub-Saharan Africa most of the countries do not have the technical and financial capacities 

to assess land use area through field measurement, and national forest inventories are often 

rare and outdated. In such countries land use information are mainly obtained from indirect 

measurements using remotely sensed data, such as satellite images or aerial photos. 

Considering the costs and technical difficulties associated with the acquisition of aerial 

photos, satellite images are often the only viable solutions for large developing countries.  

 

While the use of remotely sensed spatial datasets requires sophisticated computer analysis 

and may introduce artifacts, this approach has the advantage to provide temporally 

consistent and spatially explicit estimates (maps) with complete coverage of the study area. 

Remote sensing data can be used to map land cover/use or to directly estimate biomass 

density (Goetz et al., 2009). In both cases, maps describing the spatial distribution of 

biomass density are produced. 

 

With regard to national greenhouse gases inventories under the UNFCCC, the Good 

Practice Guidance (GPG) of the Intergovernmental Panel on climate Change (IPCC) 

indicates that both strategies (spatial and non-spatial estimates of biomass density) fulfill 

the requirements for reporting emissions in the Land Use, Land Use Change and Forestry 

(LULUCF) sector. With regard to REDD+ there is a growing interest on spatially explicit 

biomass estimates because biomass density at specific locations, such as areas affected by 

deforestation, can be significantly different from average values (Houghton, 2005; GOFC 

GOLD, 2010). Therefore, high resolution biomass maps can better quantify emissions from 

forests with more (or less) than average biomass density where assuming average biomass 

values would underestimate (or overestimate) the corresponding emissions (Houghton, 

2005; Houghton and Hackler, 2006).  

 

The use of spatial datasets to complement and spatialize existing biomass ground 

measurements has become more frequent during the last years, when satellite data have 

been especially used for biomass assessment of large countries with high biomass 

variability and limited field data. For instance, MODIS data were used to estimate forest 

biomass throughout the Russian Federation (Houghton et al., 2007) and woody biomass 

across tropical Africa (Baccini et al., 2008). Remotely sensed land cover datasets as 

GLC2000 (Gibbs et al., 2007) and GlobCover (Henry, 2010) were the main predictors to 

map biomass distribution in sub-Saharan Africa. Similarly, the Africover land cover 

database was used by Drigo (2006) to assess wood resources for Eastern Africa. A 
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combination of MODIS, land cover and ancillary information was used to map forest 

biomass for the conterminous United States (Blackard et al., 2008) while a combination of 

metrics derived from optical (MODIS) and radar (JERS-1, QSCAT and SRTM) data were 

employed to estimated AGB distribution of the Amazon basin (Saatchi et al., 2007). 

 

 

2.4. Biomass field measurements 

 

There is unanimous consensus that field measurements are essential to estimate biomass 

density at specific locations and for calibrating and validating remote sensing models for 

large-area biomass mapping. Since the accuracy of remotely sensed biomass estimates 

ultimately depends on the accuracy of the reference field data, acquiring reliable ground 

measurements is crucial for large area biomass assessment. 

 

Aboveground biomass, as considered in this study, is defined as the total amount of 

aboveground living organic matter in trees expressed in units of oven-dry weight (Brown, 

1997). Biomass density represents the mass per unit area and is expressed as tons (Mg) per 

hectare, while total biomass of a certain region (Mg) is obtained by multiplying its mean 

biomass density with the corresponding area.  

 

Tree biomass can be accurately quantified on the ground by logging, oven-drying and 

weighing all tree components but, since this procedure is destructive and extremely time 

consuming, tree biomass is usually derived from plant parameters as diameter at breast 

height, tree height or wood density using allometric equations. Still, measuring plant 

parameters is a time consuming and expensive task that can be carried out only on a 

limited sample area. In addition, while biomass values derived from field measurements 

are often considered as “ground-truth”, these values are estimates, not without errors, of 

actual vegetation biomass. In fact, when biomass over a certain area is estimated from 

sample plots, there are several sources of errors, mainly incorrect tree measurements, 

inappropriate allometric model, insufficient plot size and scarce representativeness of the 

plots in a heterogeneous landscape (Chave et al., 2004). Uncertainties regarding wood 

density (or wood specific gravity), a species-specific coefficient representing the ratio of 

dry weight to green volume, are also relevant for biomass estimation (Chave et al., 2006). 

 

Among these factors, the most important source of error is related to the allometric model 

(Chave et al., 2004). Thus, the selection of an appropriate equation is crucial to reduce the 

uncertainty of the biomass estimates. While species and site-specific allometric 

relationships can provide accurate estimates of forest biomass, such equations are usually 

not available for tropical forests, where ecological variability and species richness is very 

high. In such contexts, reliable biomass estimates can be obtained using generalized 

allometric equations (i.e. equations applicable to all species) stratified by forest type or 

ecological region, which are based on large datasets and can provide robust estimates over 

large areas (Brown, 1997, Chave et al., 2005).  Similarly, while the amount of plant 

parameters that are input to the allometric model is proportional to the accuracy of the 

biomass estimate, measuring the height or identifying the species (to derive wood density) 

of every tree is very time consuming and often not possible in dense tropical forests due to 

the scarce visibility of the canopy or the large variability of tree species. However, since 

tree Diameter at Breast Height (DBH) is the most important predictor of tree biomass 

(Chave et al., 2005) and can explain alone a large part of its variation (up to 95% in 
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specific conditions) (Brown, 2002), reliable biomass estimates can also be obtained on the 

basis of the DBH only, which is an easy and time-effective measurement. 

 

Generalized allometric equation for the tropics available in the literature differ 

significantly regarding their representativeness and can provide very different biomass 

estimates for given plant parameters. For example, the comparison of 16 allometric models 

estimating AGB as function of DBH for different environmental conditions showed that 

the biomass estimates at tree level vary by several orders of magnitude (Figure 2) (Baccini 

et al., 2009). Therefore, the applicability of generic allometric equations to specific 

conditions must be critically evaluated, especially when the equation is applied in contexts 

not included in the sample plots used to develop or validate the allometric model (Brown, 

2002). This is especially relevant when generalized equations are applied to African forests 

because most of the published allometric models are based on field data collected in South 

America and Southeast Asia (Chave et al., 2005). 
 

 

 

Figure 2: Tree biomass for Diameter at Breast Height (DBH) according to 16 published allometric 

equations. The author, the ecozone and applicable diameter range for each equation are reported in 

the figure (from Baccini et al., 2009) 

 

 

2.5. Biomass retrieval from Remote Sensing 

 

Remote Sensing consists on obtaining information of an object, area or phenomenon using 

a device that is not in contact with the studied object, area or phenomenon (Lillesand et al., 

2008). Applied to Earth Observation, remote sensing consists on measuring properties of 

objects on the earth’s surface using data acquired from sensors located onboard of aircraft 

or satellites (Schowengerdt, 2007). Specifically, earth observation satellites acquire 

repeated and consistent spatial information on land surface characteristics and such 

information can be related to biophysical parameters, as aboveground biomass (AGB) 

density of vegetation. 
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Application of remote sensing to tropical forests is particularly challenging because of 

complex and variable forest structure (Nelson et al., 2000; Steininger, 2000; Lu, 2005) and 

difficulty obtaining high quality remote sensing data and corresponding ground data sets 

(Foody et al., 2003). Nonetheless, considering that extensive biomass field campaigns are 

costly and time consuming, remote sensing is the only source of data for biomass 

monitoring in large countries with scarce land use information and poor infrastructure 

(Herold and Johns, 2007; De Fries et al., 2007; GOFC GOLD, 2010). 

 

To this end, a number of methods have been proposed to map biomass distribution from 

satellite observations. These methods, reviewed by Boyd and Danson (2005), Lu (2006) 

and Goetz et al. (2009), are based on a direct or indirect approach depending if they relate 

the remotely sensed data to biomass density in a direct (mapping biomass stock) or indirect 

way (mapping forest cover and forest parameters). The direct approach derives AGB 

directly from the satellite data using classification techniques (as neural network or 

regression trees) that empirically relate the surface signal to AGB density. Linear 

regression or model inversion techniques are also employed, especially in combination 

with active remote sensing sensors (Saatchi et al., 2007; Mitchard et al., 2009). Differently, 

the indirect approach uses satellite observations to map vegetation attributes as tree density 

or forest type. In many cases satellite data are also combined with other spatial datasets, 

such as population density, climatic parameters or surface topography, to derive a thematic 

map with finer-grained strata used to stratify the field data. The biomass stock is then 

calculated by combining the area assessment of the different vegetation classes with their 

biomass stocks, which is obtained by averaging the corresponding field measurements 

(Goetz et al., 2009).  

 

In both approaches, remote sensing data are ultimately a mean to spatialize existing ground 

observations. In the direct approach ground data are needed to parameterize the model that 

relates the satellite signal to the biomass density while in the indirect approach the field 

observations are used to quantify the average biomass density of the vegetation strata. 

 

Currently, there is no agreement in the scientific community whether AGB can be 

effectively monitored by remote sensing with the direct approach. As a matter of fact, 

existing satellites cannot measure biomass directly but instead they detect vegetation 

parameters that are related to AGB as tree density, tree height or vegetation structure. As a 

consequence, the relation between the satellite signal and AGB is empirical and site-

specific, and the transferability over time and space of a model calibrated on a specific 

training dataset is limited (Foody et al., 2003).  

 

Nonetheless these limitations, there is growing interest on the direct approach because it 

can provide continuous biomass estimates describing the full range of biomass variability 

at a spatial resolution usually higher than the indirect approach. Conversely, the indirect 

approach can identify only a limited number of strata (i.e. biomass classes) and cannot 

explain the intra-class variability, which can be large when the strata do not reflect 

accurately the biomass distribution, resulting in large errors for areas that diverge from 

average conditions.  

 

For these reasons, space agencies are currently evaluating new satellite missions dedicated 

to direct biomass mapping, as BIOMASS from ESA (Le Toan et al., 2010). However, such 

advanced satellites are currently in the design stage and will not be operative in the near 

future, and alternative solutions must be found to quantify amount and dynamics of AGB 

in the tropical forests 
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2.5.1. Sensors: optical, radar or lidar? 

 

Remote sensing sensors measure the energy contained in the electromagnetic radiation (i.e. 

radiance, measured as watts per unit source area (m²), per unit solid angle (steradians, sr) 

and per unit wavelength (μm)) reflected or emitted by the Earth. Passive sensors (i.e. 

optical) measure the energy that is naturally reflected in the Visible, Near Infrared (NIR) 

and ShortWave Infrared (SWIR) spectral regions (from 0.4 μm to about 3 μm) or emitted 

in the Thermal Infrared (TIR) region (> 5 μm) while active sensors (i.e. lidar and radar) use 

an artificial source of radiation and measure the signal scattered back to the sensor in a 

wide range of wavelengths, from 0.7 μm to 1 m (Figure 3). At short wavelengths, active 

and passive sensors measure also the energy reflected or emitted from the atmosphere and 

clouds (Schowengerdt, 2007).  

 

 

Figure 3: Overview of the electromagnetic spectrum 

 

Scientific research carried out during the last decades has shown that existing satellite 

sensors, namely optical, radar and lidar, have potential to estimate biomass from space and 

that each sensor presents its specific capabilities and limitations.  

 

Optical data have been widely used for vegetation monitoring since the ‘70s and several 

studies have demonstrated the sensitivity of visible and shortwave infrared wavelengths to 

vegetation density and structure, which in turn are related to AGB (Gemmell, 1995; 

Steininger, 2000; Foody et al., 2003; Lu et al., 2004; Baccini et al., 2004; Lu et al., 2005). 

The limitations of optical systems are mainly related to the fact that the signal is affected 

by atmospheric conditions and that is sensitive to the leaf characteristics more than to the 

woody components of vegetation. As a result, optical data are more correlated to 

vegetation density than to its vertical structure, which causes their saturation in closed 

canopy forest (Gemmell, 1995). 

 

In comparison with optical sensors, radar presents the advantage of being an active sensor 

with a signal transparent to atmospheric moisture, thus radar acquisitions are not affected 

by cloud coverage or day/night cycles. Synthetic Aperture Radar (SAR) systems operating 

at large wavelengths (i.e. L-band, P-band) are suitable for biomass mapping because the 

microwaves penetrate into the forest canopy and interact directly with the woody elements 
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(stem, large branches), providing information on forest structural attributes including forest 

height and aboveground biomass  (Kasischke et al., 1997; Rosenqvist et al., 2003). 

However, as optical sensors, radar data also shows an asymptotic relationship with biomass 

due to the saturation of the signal at high biomass values. In addition, the radar signal is 

affected by topography and is highly sensitive to the moisture content of the target. 

 

LiDAR (Light Detection And Ranging) is an active sensor that uses laser pulses to directly 

detect vegetation height and structure. Because waveform LiDAR metrics can accurately 

characterize vertical forest structure and the interconnection of the latter with biomass 

(Drake et al. 2002; Lefsky et al. 2002), several studies have found a strong linear 

correlation between LiDAR data and AGB (Drake et al. 2002; Drake et al. 2003; Lefsky et 

al. 1999; Nelson et al. 1988). Moreover, LiDAR has shown no saturation effects at high 

biomass values (Drake et al., 2003; Sun et al., 2008) but, by operating at infrared 

wavelengths, the LiDAR signal is sensitive to cloud coverage. 

Recently, the use of LiDAR remote sensing in biomass estimation has increased (Koch 

2010). So far, most of the large-scale investigations have focused on sub-boreal forests 

(Boudreau et al. 2008; Nelson et al. 2009; Ranson et al. 2007) and few studies have applied 

airborne (Asner 2009; Drake et al. 2003) or spaceborne (Baccini et al. 2008; Lefsky et al. 

2005) LiDAR data in tropical areas. Airborne sensors provide highly accurate biomass 

estimates (Ni-Meister et al. 2010), but the associated large data volume and high costs 

usually limit their application to local scales. As an alternative, the Geoscience Laser 

Altimeter System (GLAS) sensor on board the Ice, Cloud and Elevation satellite (ICESAT) 

satellite has proven to be valuable for biomass and canopy height estimation over large 

areas (Lefsky 2010; Lefsky et al. 2005). However, GLAS acquires data with a sampling 

strategy, which not allows spatially continuous representation of biomass or canopy 

variability, and the large ground footprint is not optimal for vegetation analysis. In addition, 

due to the failure of the last of its three lasers, GLAS data acquisition ended in October 

2009 and ICESat ended its science mission in February 2010 

(http://icesat.gsfc.nasa.gov/icesat/index.php). 

 

By combining their different capabilities, the synergistic use of different sensors is 

expected to overcome most of their limitations. Ad example, GLAS data can be integrated 

with imaging optical systems to overcome the sampling coverage of the LiDAR system 

(Baccini et al. 2008; Goetz et al. 2010; Nelson et al. 2009). However, at present time the 

current acquisition strategies of radar and LiDAR satellites limit the compilation of multi-

sensor datasets over large areas. While spaceborne LiDAR data (i.e. GLAS) are acquired 

with a sampling strategy, radar satellites (e.g. ALOS) provide continuous coverage but 

multi-temporal global consistent datasets suitable for biomass mapping are still not 

available.  

 

The availability of radar and LiDAR data is expected to increase largely in the future 

thanks to the ongoing acquisition of the existing satellites (e.g. ALOS) and the launch of 

new satellites (e.g. ICESat II, BIOMASS, LIST, Tandem-X). Nonetheless, at present time 

optical satellites provide the largest archive of data in terms of spatial and temporal 

coverage (Cohen and Goward, 2004), with globally consistent datasets at resolution equal 

or lower than 30 m available free of charge (e.g. Landsat, MODIS) (Woodcock et al., 

2008). For this reason, optical data still provide the preferable data source for large scale 

vegetation analysis. 
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2.5.2. Optical Remote Sensing for biomass retrieval 

 

2.5.2.1. Physical basis: the spectral properties of vegetation  

 

Optical remote sensing uses the energy reflected by the earth’s surface in the visible, NIR 

and SWIR wavelengths to identify surface materials, as vegetation, soil or water. 

Specifically, each material is identified on the basis of its spectral signature, which 

describes its reflectance as a function of wavelength. While spectral signatures of most 

materials are available in spectral libraries, in practice there is not a perfect correspondence 

between a certain object type and a pre-defined spectral signature mainly because of 

natural variability of each material, atmospheric effects and coarse spectral quantization of 

the remote sensing system (Schowengerdt, 2007). 

 

Spectral properties of plants have been thoroughly studied since the 1960s. Using 

laboratory and field analysis, pioneer studies investigated the eco-physiological 

mechanisms related to leaf absorption, transmittance and reflectance of light at different 

wavelengths (Gates et al., 1965), the seasonal variation of leaf reflectance (Olson et al., 

1962; Gausman, 1974) and its correlation with leaf water content (Tucker, 1980). Spectral 

analysis showed that vegetation can be easily distinguished from other materials because 

plants have a specific spectral signature, characterized by low reflectance in the green and 

red wavelengths due to chlorophyll absorption, a sharp increase near 710 μm (also called 

red edge), high reflectance in the NIR due to chlorophyll reflectance and two dips in the 

SWIR due to the leaf water absorption.  

 

The spectral signature of vegetation is not constant among different plant communities but 

shows high variability according to leaf type, seasonality, growth stage, plant health and 

moisture content. For this reason, spectral analysis not only identifies presence of 

vegetation but can also provide additional information on species composition, stage, 

health or water content. However, when vegetation reflectance is measured from aircraft or 

satellites, more variability is due to the fact that reflectance at canopy level is significantly 

different from leaf reflectance. Moreover, most spaceborne sensors acquire data at a spatial 

resolution where the different spectra of several species and other materials present within 

the pixel, as soil and shadow, are mixed (Li and Strahler, 1992). As a consequence, the 

discrimination of physiognomy and species with optical data is problematic (Wulder and 

Franklin, 2003).  

 

Instead, optical sensors are strongly correlated with vegetation structural parameters. 

Specifically, optical spectral bands are highly sensitive to vegetation canopy cover because 

increasing vegetation density corresponds to higher foliage absorption, which causes a 

decrease in reflectance in the visible wavelengths, and especially in red channel (Wulder 

and Franklin, 2003). Retrieval of vegetation canopy height or biomass density is more 

complicated because these parameters cannot be directly measured with optical data but 

are indirectly correlated with canopy structural parameters that can be detected with optical 

sensors, as tree density, crown size, leaf area index, texture, canopy water content and 

shadow fractions (Gemmel, 1995; Phua and Saito, 2003; Wulder and Franklin, 2003; 

Zhang and Kodragunta, 2006).  

 

Being more related to the horizontal canopy characteristics than to its vertical structure, the 

optical signal presents a complex relation with vegetation biomass or vertical structural 

parameters, and tends to saturate in closed canopy forest. However, due to the variability 
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of canopy structural characteristics, optical data have shown sensitivity to AGB also in 

closed forests. Moving from monoplane to multi-layered forest, canopy reflectance 

properties change and so does biomass density (Lu et al., 2005). Spectral bands in the 

SWIR region have been found to be mostly correlated (with an inverse relationship) to 

volume and AGB because of their higher sensitivity and larger dynamic spectral range than 

other bands to canopy water content and amount of shadows in the canopy, which are 

directly correlated with AGB (Gemmel, 1995, Steininger, 2000, Baccini et al., 2004). 

Similarly, texture information becomes a useful biomass predictor in dense forests with 

articulated structure of the upper canopy (Lu, 2005). The correlation between detectable 

forest structural complexity and biomass saturates in mature forests after a certain 

threshold, which depends on forest characteristics but usually is around 150 – 200 Mg ha
-1

 

for tropical forests (Steininger, 2000; Lu, 2005). 

 

 

2.5.2.2. Image processing and variable selection 

 

Satellite measurements are affected by atmospheric, topographic and calibration influences. 

In order to extract reliable information on land surface characteristics from satellite data, it 

is first necessary to correct the spatial and spectral distortions present in the images. 

Distortions are eliminated (or, in most of the cases, reduced) through image processing 

procedures as image registration, topographic correction, radiometric normalization and 

atmospheric correction. 

 

Remote sensing imagery presents spatial distortions due to scanner characteristics, satellite 

orbital geometry, flight disturbances and topographic effects. Such geometric errors can be 

systematic or random, and can be corrected modeling the sources of distortion (for 

platform-induced distortion) or applying a polynomial correction based on Ground Control 

Points (GCP) with known location. In order to correct for topographic effects, the use of a 

Digital Elevation Model (DEM) is required (Schowengerdt, 2007). Geometric distortions 

are especially relevant when satellite data are related to other spatial data because large 

errors are introduced by misregistration of the datasets. In particular, high geolocation 

accuracy is required when satellite data are compared with other images (e.g. for change 

detection analysis) and/or when are related to ground observations (e.g. for biomass 

analysis).  

 

The spectral information contained in satellite images consists of Digital Numbers (DNs), 

which are values without physical meaning. Images acquired from different sensors or at 

different times cannot be directly compared because the DNs are affected by sensor and 

atmospheric characteristics. 

While earth remote sensing avoid spectral regions (e.g. 2.5 – 3 μm or 5 – 8 μm) where 

radiation is absorbed by atmospheric constituents as water vapor or carbon dioxide, 

radiation in the visible, NIR and SWIR spectral bands is scattered and absorbed by air 

molecules, aerosol and particulate during their path from the sun to the earth and again 

from the earth to the sensor (Schowengerdt, 2007). For this reason, the radiance at sensor 

does not correspond to the radiance at surface, and radiometric calibration procedures are 

required when using several images acquired under different atmospheric conditions. 

 

Specifically, inter-sensor data comparisons require only the sensor calibration, which 

consists on the conversion of image values (DNs) to at-sensor radiance using sensor 

calibration information. Instead, the comparison of satellite data acquired at different times 
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as well as the comparison of satellite data with laboratory or field reflectance data requires 

both the atmospheric correction, i.e. the conversion of at-sensor radiance to at-surface 

radiance using information on the view-path atmospheric conditions, and the solar and 

topographic corrections, i.e. the conversion of at-surface radiance to surface reflectance on 

the basis of solar irradiance, solar path transmittance and topographic data. 

 

The complete radiometric calibration procedure is complex and requires data on 

atmospheric conditions at the time of satellite overpass that are usually not available and 

that are often substituted by default parameters or are extracted from the image itself, 

introducing uncertainty and errors in the calibration procedure. To avoid error 

accumulation, simple absolute or relative radiometric correction methods (or their 

integration) are recommended over more sophisticated approaches based on atmospheric 

modeling when independent atmospheric data at the time and location of the image 

acquisition are not available (Song et al., 2001; Schroeder et al., 2006; Schowengerdt, 

2007). In addition, since several applications do not require the precise quantification of 

surface reflectance while it is sufficient that the images to be compared are on the same 

relative scale, relative radiometric normalization procedures are preferred. Relative 

correction consists on the normalization (i.e. conversion to the same relative scale) of the 

DNs of a set of images to a reference image using different approaches, as histogram 

normalization or selection of pseudo-invariant features (Schott et al., 1988, Hall et al., 

1991). 

 

After calibration, the spectral information provided by the satellite data can be used in their 

original spectral space (i.e. the original bands) or can be redistributed into a new feature 

space. The new spectral spaces are created using linear and non-linear transformation of 

the original bands and do not add new information to the original data but may present 

some advantages for specific applications (Schowengerdt, 2007). 

Several spectral indices, such as the Normalized Difference Vegetation Index (NDVI) 

(Rouse et al., 1974) or the Tasseled Cap components (Kauth and Thomas, 1976), were 

developed to effectively derive vegetation biophysical parameters (e.g. canopy cover) from 

continuous spectral values. Vegetation indices have the capability to reduce the impact of 

variable environmental conditions as sun view angles, shadows, soil background or 

atmospheric conditions on the vegetation reflectance, and therefore can improve the 

correlation of the satellite signal with studied parameter (Lu, 2006).   

 

Vegetation indices have been widely used for biomass estimation. While some indices 

provided a significant contribution to biomass estimation in sites with complex vegetation 

structure, in most of the cases they were not better related to stand parameters than the 

original spectral bands (Foody et al., 2003; Lu et al., 2004). Similarly, image texture bands 

were found to provide additional information to the spectral bands only in some specific 

forest types (e.g. multi-layered forests) but did not provide relevant contribution in other 

conditions, especially in forests with simple structures. In addition, identifying texture 

metrics that are significantly correlated to AGB is difficult and varies greatly according to 

the site and image characteristics (Lu, 2005). Instead, some studies found that the inclusion 

of biophysical variables derived from the raw spectral bands substantially improved the 

accuracy of the biomass predictions. For example, Hall et al. (2006) included stand height 

and crown closure to increase the model results compared to those based only on the 

original bands in a case study in Canada, while Zheng et al. (2004) achieved higher 

accuracies using stand age as a predictor variable in a case study in Wisconsin (USA). 

However, most of these approaches suffer from the one-time one-space syndrome 

(Woodcock and Ozdogan, 2004), i.e. cannot be easily generalized to different conditions. 
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2.5.2.3. High and Low resolution sensors 

 

Space-borne optical data for land application are mainly acquired at high resolution (≤ 30 

m) and at moderate resolution (≥ 300 m). High resolution data have the advantage to 

provide spatial detail compatible with the size of vegetation units and biomass field 

observations but compiling a temporally and radiometrically consistent cloud-free dataset 

over large areas is not always possible. This issue is addressed by the large swath and 

frequent repeat cycle of moderate resolution sensors but retrieving AGB in mixed pixels is 

problematic, and the limited spatial detail misses the small-scale biomass variability (Lu, 

2006). In addition, it is often difficult to relate field data with satellite observations because 

of mismatch in measurement scale or resolution (Baccini et al., 2007).  

 

Very high resolution (VHR) data (≤ 5 m) provide detailed information on tree canopy and 

may be able to detect single tree crowns but at such resolution canopy and topography 

creates high spectral variability and shadows that cannot easily be related to AGB. In 

addition, SWIR bands, which are most important for biomass estimation, are not available 

at VHR, and creating consistent datasets over large area is not possible and/or very 

expensive. For this reasons, VHR data are mainly used as reference data to validate 

biomass predictions obtained with coarser resolution data (Lu, 2006). 

 

For these reasons, high resolution data such as Landsat, ASTER and SPOT data are usually 

employed for biomass analysis at local scales (Sader et al., 1989; Roy and Ravan, 1996; 

Fazakas et al., 1999; Foody et al., 2001; Phua and Saito, 2003; Zheng et al., 2004; Lu, 

2005; Muukkonen and Heiskanen, 2005; Labrecque et al., 2006; Hall et al., 2006; Zheng et 

al., 2007; Powell et al., 2010) while moderate to coarse resolution data (e.g. MODIS) are 

applied at regional scale (Dong et al., 2003, Baccini et al., 2004; Zhang and Kondragunta, 

2006; Saatchi et al., 2007; Blackard et al., 2008; Baccini et al., 2008). Some studies have 

integrated both high and moderate resolution data for sub-national analysis (Tomppo et al., 

2002; Muukkonen and Heiskanen, 2007). Instead, the capability of optical data to directly 

estimate AGB at high spatial resolution and at national scale in the tropics has not yet been 

satisfactorily investigated, and represents a primary research area. 

 

Among the available high resolution satellites, Landsat is the only instrument providing 

global coverage and a nearly 40 years of data record (Williams et al., 2006; Goward et al., 

2006). The revolutionary opening and free distribution of its archive (Woodcock et al., 

2008) greatly facilitates the use of Landsat data for large-area analysis of vegetation and its 

dynamics (Powell et al., 2010, Cohen et al., 2010). Most importantly, data acquired by this 

satellite are sensitive to vegetation structure (Gemmell, 1995) and their spatial resolution 

(30 m) is compatible with the size of vegetation stands and biomass field plots. In addition, 

considering the difficulties to acquire and process consistent datasets over large areas, 

Landsat resolution represents an optimal compromise between spatial detail and large area 

monitoring. For these reasons, Landsat data represent a preferable data source for high-

resolution and low-cost AGB analysis at national level for developing countries. 
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2.6. Modeling approaches 

 

2.6.1. Parametric models 

 

Parametric models assume a specific form of the probability distribution of the input data, 

usually the normal distribution, and a specific type of relation between the predictors and 

the response variable, usually the linear relation (Gotelli and Ellison, 2004). The most 

common parametric model for classification purposes (the maximum-likelihood) uses a 

probability model (normal distribution) to define the decision boundaries (Schowengerdt, 

2007). The most common parametric models for regression purposes assume a linear 

relationship between one and another variable (or set of variables). In some cases, 

logarithmic and exponential relations can be transformed to linear relationships using 

mathematical functions. Linear models include univariate regression, analysis of variance, 

generalized linear models, multivariate regression and principal component analysis.  

 

Linear models have been widely used to relate remote sensing measurements to 

biophysical parameters. A variation of linear regression called Reduced Major Axis 

regression (Larsson, 1993) was recently applied to predict forest parameters as percent 

cover (Schroeder et al, 2007) and basal area (Healey et al., 2006). With regard to biomass 

estimation, a review of the literature indicated that linear regression models have been used 

in several different contexts with variable results, but usually not achieving high model 

performance statistics. Multiple regression analysis is arguably the most common approach, 

especially for studies based on remote sensing data with medium spatial resolution, 

because of its capability to use simultaneously the information contained in several input 

bands (Lu, 2005). Multiple linear regression were used to estimate biomass from Landsat 

data in the tropics, such as in study areas in Brazil (Steininger, 2000; Lu, 2005), in 

Malaysia and Thailand (Foody et al., 2003), in India (Roy et al., 1996), as well as in 

temperate and boreal regions, such as in the USA (Zheng et al., 2004), Canada (Labreque 

et al., 2006) and Finland (Hame et al., 1997). 

 

Parametric models have also been commonly employed to estimate tree volume and 

biomass from active remote sensing sensors. For example, linear regression models were 

employed with radar data in the Amazon (Saatchi et al., 2007), in Africa (Mitchard et al., 

2009), in Australia (Austin et al., 2003), in the USA (Harrell et al., 1997), and in Sweden 

(Fransson et al., 2001) while linear regressions were employed with LiDAR data in Costa 

Rica (Drake et al., 2002; Nelson et al., 1997). 

 

 

2.6.2. Non-parametric models 

 

Several studies carried out during the last decade have shown that the assumptions of 

parametric models (e.g. linear relations, uncorrelated inputs) are usually not satisfied for 

the case of estimating biomass with remote sensing data, and instead demonstrated that the 

relation between the variables is not linear (Foody et al., 2001; Foody et al., 2003; Baccini 

et al., 2004; Muukkonen and Heiskanen, 2005; Li et al., 2010). For this reason, empirical 

non-parametric models, such as tree-based models, neural networks, K-nearest neighbors 

or support vector machines, have been increasingly used by the remote sensing community 

during the last years to relate biophysical measurements with remote sensing data (Fazakas 
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et al., 1999; Foody, 2003; Makela and Pekkarinen, 2004; Labrecque et al., 2006; Walker et 

al., 2007; Tomppo et al., 2009). Their strength (or weakness, from another point of view) 

compared to parametric models (e.g. linear regression) is that they do not assume any a-

priori statistical distribution of the input data nor any specific form in the relation (e.g. 

linear) between the predictors and the response variable. 

 

Tree-based models (Breiman, 1984) are simple yet robust and mature tools that have 

previously been successfully applied for biomass estimation using remote sensing data in 

different contexts (Baccini et al., 2004; Saatchi et al., 2007; Blackard et al., 2008; Baccini 

et al., 2008; Powell et al., 2010). These models can handle both continuous and categorical 

variables to predict continuous (regression trees) or categorical (classification trees) 

response variables. 

Tree-based models use binary splits to recursively partition the dataset in subsets (“nodes”) 

with progressively higher homogeneity with regard to the response variable, and then 

assign the mean value (regression trees) or the most frequent class (classification trees) of 

the response variable as the node prediction. In order to reduce model over-fitting, the 

algorithms usually employ cross-validation to identify the optimal tree size that perform 

best on independent data (Breiman, 1984; De’ath and Fabricius, 2000).  

Tree-based model performance has improved significantly with the application of 

ensemble methods. These methods generate several models using procedures such as 

bagging (Breiman, 1996) and boosting (Freund and Shapire, 1996) to resample with 

replacement from the training dataset and then aggregate the model results in predictions 

that have lower variance than those obtained from a single model. 

 

Random Forest (Breiman, 2001) is an extension of tree-based models that extends bagging 

(i.e. constructing each tree with a different bootstrap sample of the data) by splitting the 

nodes using the best among a random subset of predictors chosen at each node. This 

somehow counterintuitive random choice of predictors ultimately produces a model more 

robust against overfitting and improves prediction accuracy (Breiman, 2001; Liaw and 

Wiener, 2002). The algorithm, as implemented in the open source software R (R 

Development Core Team, 2009), produces statistics on model performance and predictor 

importance.  

 

Model performance is computed on the basis of a cross-validation approach. For each tree 

the algorithm makes predictions on the data not included in the bootstrap sample, called 

out-of-bag (OOB) data, and aggregates these predictions to compute the overall error rate 

that, in the case of regression trees, is expressed as the percent of variance explained (R²) 

and Root Mean Squared Error (RMSE). The OOB error rate is considered a reliable 

estimate of the actual model performance on independent data if the training data are not 

autocorrelated (De’ath and Fabricius, 2000; Liaw and Wiener, 2002).  

 

 

2.7. Comparison and validation of biomass datasets 

 

It is widely recognized that accuracy assessment is an essential component of any mapping 

activity (Card, 1982; Cihlar, 2000). Validation of remote sensing maps quantifies their 

quality, identifies their limitations and ultimately builds confidence in the user community 

on the capabilities of remote sensing data for specific applications. With regards to 

biomass estimates, information on uncertainty is also critical in the REDD+ context, and 

the UNFCCC requires the estimates of carbon emissions to be transparent, consistent and 
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as accurate as possible in order to reduce uncertainties, as far as national capacities and 

capabilities allow (UNFCCC, 2009). 

 

A proper validation of remote sensing estimates requires their comparison with accurate, 

independent and comparable ground observations. However, in the case of large-area 

biomass maps of tropical forests, accuracy assessment becomes a challenging task because 

of the lack of field validation datasets with comparable coverage and resolution. The 

limited validation of the biomass products is a critical issue that is somehow hindering 

their operational use for national assessment of biomass and C stocks. Since maps based on 

global or regional datasets may not be tailored to country specific circumstances, their 

applicability at national scales needs to be better understood with appropriate case-studies. 

 

Biomass density of tropical forests has a high level of spatial variability and assessing the 

uncertainty of its estimates requires a large number of sample points (GOFC GOLD, 2010). 

However, measuring biomass in the field is an expensive and time consuming task, and 

ground observations are usually scarce in comparison with the variability of this parameter 

over the study area. For this reason, in most cases the available field data are used to 

produce the biomass estimates and the validation phase is performed using a small 

independent subset of the reference data or applying statistical procedures, as cross-

validation or jack-knifing of the training data. However, such validation datasets are 

usually not sufficient to adequately represent the variability of the estimated parameter or 

are highly correlated with the training dataset. In addition, field data are usually affected by 

errors, and their quality has a large impact on the validation results: it has been 

demonstrated that even small errors in the reference data can introduce large errors in the 

accuracy assessment of the remote sensing products (Foody, 2010). Therefore, the quality 

of the accuracy assessment is influenced by the non-optimal sampling scheme, by errors in 

the ground data and by presence of spatial autocorrelation (Congalton, 1991; Friedl, et al., 

2000; Foody, 2002), while the differences in spatial resolution between the ground 

observations (field plots) and the map units (pixels or polygons) require up-scaling 

procedures that introduce assumptions and approximations (Baccini et al., 2007).  

 

All these issues affect the quality of the validation results and the understanding of the 

reliability of the biomass products, which in turn reduce the confidence of the international 

community in the biomass datasets and ultimately hinder their adoption for operational 

national assessment of biomass/carbon stocks or for legally binding agreements, as the 

UNFCCC post-Kyoto agreement. 

 

Spatial comparison of biomass products is an alternative approach to evaluate their 

reliability (Houghton et al., 2001). Clearly, comparing remote sensing products does not 

assess their accuracy but high level of agreement among several products likely reflects 

reliable predictions while low level of agreement identifies problematic areas (Herold et al., 

2008). 

Equally important, a spatially-explicit comparative analysis of maps based on different 

approaches reveals common trends and dissimilarities in the datasets, and these trends can 

be related to the input data and methodologies used by the maps. Additional analysis can 

isolate and quantify the effect of specific input layers on the biomass predictions. The 

relevance of this process relies on the fact that it deepens the understanding of the strengths 

and weaknesses of the compared approaches, quantifies the impact of the input data and 

methods on the maps estimates, and provides results that can ultimately be translated in 

recommendations for developing an operational biomass mapping methodology.  
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3. Research objectives 
 

3.1. Scientific needs 

 

Accurate, detailed and spatially consistent monitoring of biomass stock and its dynamics at 

national scale in tropical countries is necessary for natural resources management, carbon 

cycle budgeting and implementation of a REDD+ mechanism. Specifically, REDD-related 

climate change mitigation policies require reliable estimates of forest biomass in order to 

increase the confidence in the emission reduction estimates, and related carbon credits, due 

to activities reducing forest loss or forest degradation.  

The official figures on forest biomass stocks of developing countries provided by the 

national authorities and reported in the United Nations Food and Agriculture Organization 

(FAO) Forest Resource Assessment (FRA) reports are usually derived from forest 

inventory data that are designed for purposes other than biomass assessment and that are 

often incomplete or outdated. In addition, the biomass data are usually provided in an 

aggregated format (i.e. as national average values) that is not adequate for the above 

mentioned objectives, since forest biomass density presents a high spatial variability 

related to climate, soil and topographical variations as well as natural and human 

disturbance events, which usually occur at fine scales (Brown, 1997; Gaston et al., 1998). 

Moreover, due to the scarce transparency and poor validation procedures, the reliability of 

these figures has been questioned (Houghton, 2005; Gibbs et al., 2007). 

 

For these reasons, in the last years a number of spatially explicit biomass and carbon stock 

datasets with moderate resolution were produced using satellite and ancillary data for 

tropical regions (Drigo, 2006; Saatchi et al., 2007; Gibbs and Brown, 2007; Baccini et al., 

2008; Henry, 2010, Saatchi et al., 2011) or with global coverage (Gibbs, 2006; Reusch and 

Gibbs, 2008; Kindermann et al., 2008). However, the estimates provided by different 

datasets differ significantly for several tropical countries (Gibbs et al., 2007) and the 

resolution and accuracy provided by these products are not compatible with country-scale 

applications.  

 

Therefore, there is an urgent need to develop methods capable to estimate reliably biomass 

distribution. Besides accuracy, biomass estimates need to be provided in a coherent, 

consistent and transparent way. Moreover, regarding scale factors biomass estimates need 

to be provided at: 

 

 Spatial scales that are compatible with the areas affected by forest disturbance 

processes, i.e. at high spatial resolution 

 

 Temporal scales that are compatible with the timing of the forest disturbance events, 

i.e. at frequent and repeated temporal intervals 

 

 National scales, in order to be compatible with national management policies and 

REDD+ related carbon accounting procedures 
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3.2. Research questions and objectives 

 

Within this framework and in order to contribute to the need of better spatially-explicit 

biomass estimates, the overall goal of the present research was to explore, understand 

and quantify the capabilities and limitations of optical satellite data and ancillary 

information for producing detailed, accurate and spatially explicit AGB estimates at 

national scale in the tropics, to be used in support of national planning and REDD-related 

activities.  

 

Two main research objectives were identified: 

 

a) develop a methodology to retrieve aboveground biomass at country scale with 

medium spatial resolution (30 m) 

 

b) compare the novel methodology with alternative approaches and understand the 

main sources of variability in the estimates 

 

According to the rationale presented above, the research was carried out with Landsat data 

for the case study of Uganda and was aimed at producing a new biomass map for Uganda. 

Uganda was selected as a case-study because of the availability of an extensive biomass 

field dataset collected by the National Biomass Study program (Drichi, 2003), necessary 

for model training and validation. The comparison of different approaches was performed 

by comparing a set of available biomass/carbon stock maps for the area of Uganda. This 

analysis allowed to better understand the reliability of existing biomass datasets and the 

advantages and disadvantages of the novel method with respect to existing approaches. 

The availability of a high-quality reference dataset produced by the National Authority of 

Uganda allowed drawing reliable conclusions from the comparison analysis. 

 

The research questions underlying the first objective were the following:  

 

 Are freely available Landsat data sufficient to compile a consistent national dataset 

needed to derive biomass density? 

 Are, and to what extent, Landsat data sensitive to variation in biomass density of 

tropical vegetation? 

 What is the most appropriate modeling approach to retrieve biomass from satellite 

data? 

 Do, and to what extent, land cover data provide additional information useful for 

biomass estimation? 

 What are the capabilities and limitations of this approach? 

 

The research questions underlying the second objective were the following:  

 

 What is the accuracy and spatial similarity of the existing biomass datasets? 

 What are the causes of disagreement among the datasets? 

 What are the effects of different input data on the biomass predictions? 
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3.3. Methodology 

 

In accordance with the research objectives, the methodology employed in the present study 

consisted of two main components: 

 

a) Development of a novel methodology and its application to map aboveground 

biomass density of Uganda 

 

b) Comparison of existing biomass maps with a reference dataset  

 

The operational steps employed for each of the two methodological components are 

reported below and are graphically summarized in Figure 4. 

 

a) Development of a novel methodology and its application to map aboveground 

biomass density of Uganda 

o Review of existing literature on remote sensing applications for biomass 

retrieval  

o Collection, pre-processing and analysis of field, remote sensing and 

ancillary data for Uganda. A field campaign was carried out to integrate the 

existing field dataset, and different allometric models to derive biomass 

from field parameters were compared 

o Comparison of different modeling approaches and input variables, and 

selection of the most appropriate model and predictor variables to map 

biomass density of Uganda. Model statistics were also used to assess the 

accuracy of the biomass predictions 

o Critical evaluation of  the capabilities and limitations of the novel approach 

 

b) Comparison of existing biomass maps with a reference dataset  

o Selection, pre-processing and harmonization of a set of existing 

biomass/carbon maps for Uganda 

o Comparison of the biomass maps with a reference map and with selected 

field data to quantify the accuracy and spatial similarity of the biomass 

estimates. 

o Quantitative evaluation of the relative impact of the biomass reference data 

and spatial datasets on the biomass estimates 

o Critical evaluation of the sources of disagreement between the biomass 

datasets (i.e. input data, mapping approach) 

 

It is important to notice that, due to the availability of field data for a wide range of 

vegetation types (e.g. woodland, shrubland, savanna), the present study was not limited to 

forest biomass but included all woody formations. This is especially important in the dry 

and semi-dry tropics where non-forest vegetation types store substantial amounts of 

biomass because their low biomass density is counterbalanced by coverage over large areas.  

Throughout the study, the terms biomass and AGB refer to live woody aboveground 

biomass of vegetation. 
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Figure 4: Flowchart representing methodological and processing steps 

 

 

3.4. Outline of the thesis 

 

The thesis is organized in four main sections and consists of six chapters.  

 

The first section includes the introduction, the scientific background and the research 

objectives of this study. The introduction (Chapter 1) provides an overview of the topic, 

delineating the relevance of tropical forest biomass, the key role of sub-Saharan Africa in 

the global carbon cycle and the need of monitoring biomass in a highly dynamic country as 

Uganda. The scientific background (Chapter 2) summarizes the role of tropical biomass in 

the climate change context and reviews the relevant literature to provide an overview of 

existing approaches for biomass estimation, with focus on biomass retrieval through 

optical remote sensing and accuracy assessment of the biomass predictions. On the basis of 

this review, Chapter 3 (research objectives) describes the scientific needs and identifies the 

research gaps, which are used to delineate the research questions and objectives. The 

chapter provides also an overview of the methodology. 
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The second section (Chapter 4) addresses the first objective of this thesis, which is the 

retrieval of aboveground biomass of Uganda with Landsat and land cover data. This 

chapter describes the data and methods applied, the results obtained (e.g. the biomass map 

of Uganda), and provides a detailed discussion on the potential and limitations of the novel 

approach. 

 

The third section (Chapter 5) addresses the second objective of this thesis, that is the 

comparison of existing biomass maps (including the map produced in the previous section) 

using a number of spatial statistic metrics to quantify the maps agreement with a national 

reference dataset. Additional analyses are then used to understand the sources of 

disagreement among the maps and to identify the optimal input data for biomass estimation 

from field and remote sensing data. 

 

The fourth section (Chapter 6) reports the conclusions of this thesis, responds to the 

research questions raised in Chapter 3 and synthetizes the main findings of the two 

research topics, highlighting the innovative aspects of this study. This section also provides 

the recommendations for future research regarding biomass retrieval in the tropics at 

national scales using a combination of field and remote sensing data. 
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4. Retrieving a new biomass map of Uganda 
 

4.1. Study area 

 

4.1.1. Uganda and the National Biomass Study (NBS) 

 

Uganda, located along the equator in East Africa at the eastern border of the Congo basin, 

is a country very diverse in terms of vegetation types, ranging from the dense humid 

forests in the south-west to the dry savanna and shrublands in the north-east. 

Uganda lies mainly between 900 and 1500 m above sea level and presents a tropical 

climate with two rainy seasons in the South and one in the North. The total country area is 

equal to 241,551 Km², of which subsistence cropland is the most widespread land cover 

type (35%), followed by grassland (21%) and woodland (16%). Water bodies cover 15% 

of total area (Drichi, 2003). Vegetation is mainly represented by shrubland and grassland 

in the north-east (yearly precipitation 900 mm), woodlands in the north and west, and 

forest in the south and west (yearly precipitation 1500 mm) (Figure 5).  

 

 

Figure 5: The NBS Land Cover map of Uganda. Only the main land cover classes are displayed  

 

Uganda is one of the few African nations with a long term program aimed at the accurate 

assessment of biomass resources. In 1989, the government of Uganda established the 

National Biomass Study (NBS), a program aimed at the assessment of biomass resources 
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and their dynamics at national level using country-specific data and methodology. Using a 

nation-specific data and methodology, the NBS can be considered compliant with Tier 3 of 

the IPCC GPG Guidelines for estimating carbon stock changes on forest lands (IPCC, 

2006). 

 

The NBS of Uganda produced in 2003 a national biomass map based on the combination 

of an extensive biomass field campaign (over 5,000 plots), country-specific allometric 

equations and an ad-hoc land cover/use map (Drichi, 2003). The land cover map identified 

and stratified the 13 main land cover types by agro-ecological regions and biomass stock 

density classes, assessed through visual analysis of satellite images and extensive field 

validation. The biomass map was eventually produced by applying to each land cover 

stratum the average biomass density of the field plots located within the unit (Drichi, 2003).  

Given its high quality, the NBS represents an optimal reference dataset to better understand 

the capabilities of existing biomass or C maps and related methodologies for national level 

applications. 

 

The country biomass stock is estimated at 468 Tg of air-dry AGB, mainly located in 

tropical forests (29%) and woodlands (27%) (Drichi, 2003). Areas classified as cropland 

and grassland also store relevant amount of biomass (24% and 10%, respectively) because 

of the abundance of scattered trees (Drichi, 2003; FAO, 2003). 

 

Monitoring activities from national and international organizations reported that the forest 

area of Uganda and related biomass stocks have been severely reduced during the last three 

decades as a consequence of the large population and economic growth, which has fuelled 

the request for new agricultural areas and forest products, such as charcoal, timber and 

fuelwood (Drichi, 2003; FAO, 2006). With the country’s growth being expected to 

continue in the coming years, the remaining forest resources of Uganda are in danger of 

further encroachment and degradation if proper forest practices and protection activities 

are not put in place in a timely manner (FAO, 2003). 

 

 

4.1.2. Budongo Forest Reserve 

 

Budongo Forest Reserve is located in the north-western part of Uganda, on the western 

edge of the Albertine rift valley, in the districts of Masindi and Hoima (geographic 

coordinates between 1° 35′-1° 55′ N and 31° 18′ – 31° 42′ E) (Figure 6). Budongo Forest 

Reserve was gazetted in 1932 and is the largest tropical forest reserve of Uganda, covering 

an area of about 82,500 ha. Budongo is considered a reserve of high importance for global 

biodiversity, ranking third in overall importance of Ugandan forests (Howard et al., 1997), 

and contains the largest and most valuable timber forests of Uganda (Howard, 1991). 

 

The climate is characterized by high temperatures, ranging from 23 to 32 degrees, and high 

rainfall, ranging from 1,400 to 1,500 mm annually and mainly concentrated in two rainy 

seasons occurring in April – May and October – November (Forest Department Uganda, 

1997).  

Located at medium altitude (1100 m mean elevation) in the transitional area between the 

rain forests of the Congo basin and the dry savannas of Eastern Africa, the vegetation of 

Budongo includes moist semi-deciduous high forest, woodlands and savanna grasslands. 

53% of the Reserve is covered by continuous tropical forest (including early successional 

forests, mixed forest, Cynometra forest and swamp forest) while the remaining part is 
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dominated by grassland and woodlands communities (Hamilton, 1984). The tropical high 

forest, dominated by mahogany species, presents lower species diversity compared to the 

Congo basin forest and its structure has been altered by mechanical logging, pit-sawing 

and selected poisoning of trees with arboricides (Plumptre, 1996). Instead, the woodlands 

are heavily affected by fire, originated from natural (lightening) and human (land clearing, 

hunting) causes. 

 

Due to past resettlements of people coming from other parts of the country and from Sudan 

and Congo, the local population consists on several agro-pastoral ethnic groups with 

heterogeneous culture, language and nationality, which main economic activity consists on 

agriculture (Langoya et al., 1998). The pressure of local communities on the forest 

(including hunting) has increased during the last years as a consequence of the population 

growth. 

 

 

 

Figure 6: Location (left) and Zonation map (right) of Budongo Forest Reserve, Uganda (source: 

Forestry Department of Uganda) 

 

 

4.2. Data and methods 

 

4.2.1. Landsat data 

 

The remote sensing dataset consisted a mosaic of 17 Landsat ETM+ images, format L1T, 

acquired in the period 1999 – 2003 during the dry season (December to March) when 

cloud coverage is at a minimum and spectral separability between trees and grass/shrub is 

at a maximum (Table 1, Figure 7, Figure 8). Landsat TM data were not employed because 

they were not available for the period of interest due to missing receiving station for 

central Africa (Goward et al., 2006). 
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The frequent cloud cover did not allow compiling a single phenologically consistent 

dataset for the whole country. Instead, the Landsat mosaic included 2 phenologically 

consistent sets of images, hereafter referred to as image “blocks”, which were used to 

develop two separate biomass models. The four images located in the South-Western part 

of the country form “Block 2” while all the other images form “Block 1” (Table 1). 

 

Table 1: Landsat acquisition date and image block number 

Path Row Date Image Block 

170 58 10-Jan-03 1 

170 59 10-Jan-03 1 

170 60 10-Jan-03 1 

171 57 17-Jan-03 1 

171 58 17-Jan-03 1 

171 59 17-Jan-03 1 

171 60 18-Feb-03 1 

172 57 6-Feb-02 1 

172 58 6-Feb-02 1 

172 59 6-Feb-02 1 

172 60 31-Dec-99 2 

172 61 31-Dec-99 2 

173 57 15-Jan-03 1 

173 58 15-Jan-03 1 

173 59 27-Mar-00 1 

173 60 31-Mar-03 2 

173 61 31-Mar-03 2 

 

 

 

 

Figure 7: Landsat Path and Row for Uganda. The underlined scenes were used as reference for the 

radiometric normalization of the neighboring scenes 
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Figure 8: Landsat ETM+ mosaic for Uganda for the year circa-2000 

 

 

4.2.1.1. Image pre-processing 

 

4.2.1.1.1. Image registration 

 

Landsat images were re-projected to a common reference system (UTM, WGS84, zone 

36N) and then co-registered. The Landsat L1T correction process utilizes both ground 

control points (GCP) and digital elevation models (DEM) to attain improved geodetic 

accuracy and a geometrically rectified product free from distortions (NASA, 2009). 

Therefore, image registration was a minor task, necessary only to correct for systematic 

shifts occurring in a few cases between neighboring images. 

 

 

4.2.1.1.2. Radiometric Correction 

 

For several remote sensing applications the accurate estimation of surface reflectance is not 

necessary while the radiometric consistency among different images is crucial to obtain 

consistent results when the same regression model is applied to the images. In the absence 

of independent atmospheric data at the time and location of the image acquisition, simple 

absolute or relative radiometric correction methods (or their integration) are recommended 

over more sophisticated approaches based on atmospheric modeling (Song et al., 2001; 

Schroeder et al., 2006; Schowengerdt, 2007). In order to identify the most appropriate 

approach to calibrate the Landsat images of Uganda, the performance of an absolute and a 

relative correction method was first evaluated over a representative pair of neighboring 

Landsat images, and the best correction method was applied to the complete dataset. 
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The absolute radiometric correction was performed using an empirical, image-based Dark 

Object Subtraction (DOS) approach, where the digital numbers (DNs) are converted to 

surface reflectance on the basis of atmospheric parameters derived from the image itself 

(Chavez, 1996; Song et al., 2001). The DOS method quantifies the upwelling path radiance 

on the basis of dark objects (e.g. deep clear water bodies, shadow of low reflectance 

objects) present in the image, and uses constant atmospheric transmittance values. In 

particular, the lowest DN in each spectral band with at least one thousand pixels is 

assumed to have 1% reflectance.  

The quality of the DOS output depends on the presence of appropriate dark objects, which 

may not always be present in each scene. For this reason, when more than one image in the 

Landsat mosaic was acquired on the same date under identical atmospheric conditions, the 

darkest objects present in any of these images were used. 

 

The relative radiometric calibration was performed among images located in the same 

image block. This procedure, also known as radiometric normalization, assumes a band-

specific linear relationship between the DNs of the same objects across time (i.e. different 

images). The linear equations, which are computed on the basis of radiometrically stable 

objects (Pseudo-Invariant Features, PIFs), transform the images to be calibrated as if they 

were acquired under the same atmospheric conditions and sensor characteristics of the 

reference image (Hall et al., 1991; Schott et al., 1988).  

 

The correction equations were computed by selecting stable PIFs for each spectral band 

located on the overlapping area of each pair of neighboring Landsat images. Since the 

equation coefficients may be affected by the nature of dark and bright objects available 

within the images, to obtain stable equations several PIFs covering the full range of 

brightness intensity (bright, medium and low) were first selected and then the ordinary 

least-square (OLS) method was used to identify a linear equation fitting the input data. The 

reference images were chosen on the basis of minimal path radiance (i.e. lower values for 

dark objects) and centralized position with respect to other scenes in order to minimize 

second-order calibration, which provides calibration of one image to a corrected image 

rather than to the reference image. 

 

The performances of the two correction approaches (absolute and relative) were evaluated 

on the basis of changes of the Jeffrey-Matusita (JM) index (Richards, 1993) for some 

testing PIFs on a pair of Landsat images before and after the correction.  

The JM index ranges from 0 to 2 and is inversely related to the multi-dimensional spectral 

similarity of the objects. In order to minimize changes due to seasonal (phenology) or 

permanent (land cover change) effects, two images acquired during the dry season, only 7 

days apart, were selected (Path 170 Row 58 and Path 171 Row 58). 53 polygons were 

identified on the overlapping area of the two images and the JM index was computed for 

each pair of polygons before and after the radiometric correction. The results showed that 

the average value of the JM index for all polygons was 1.70 before the correction. This 

parameter increased to 1.99 after the DOS correction while it decreased to 0.94 after the 

relative calibration (DN matching).  

The results suggested that the DOS reduced, instead of increasing, the spectral similarity 

between the two images, while the relative calibration successfully matched the images. 

Similar results have been observed in other studies (Schroder et al., 2006; Song et al., 

2001). The poorer performance of the DOS method may be due to the fact that the original 

images were already spectrally similar and the errors introduced by the DOS assumptions 

were larger than the atmospheric effects. As mentioned above, the DOS method is 
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dependent on the type of dark objects present in the images and does not correct for the 

view path transmittance, which may be relevant for ETM bands 4, 5 and 7 (Schowengerdt, 

2007). It was noted that, nonetheless the two images were acquired only 7 days apart, some 

testing polygons were already partially affected by phenological changes (e.g. start of 

greening), causing an increase of the standard deviation of the JM index after the relative 

calibration (from 0.27 to 0.47). 

 

Based on these results, a relative normalization of the Landsat images was performed 

within each image block and the calibrated images were used as input to the regression 

models. Since the images located on the same Path were often acquired on the same date 

(see Table 1), the normalization was mainly performed between different Paths. The 

images located on Path 172 were used as reference and the images on Path 171 and 173 

were normalized to the neighboring images on Path 172 while the images located on Path 

170 were normalized to the neighboring images on Path 171 (Figure 7).  

 

 

4.2.1.1.3. Image segmentation 

 

This analysis employed an H-resolution approach (or object-oriented approach) because 

the study elements in the ground scene (vegetation units uniform for biomass density class) 

were usually larger than the image resolution cell (30 m for Landsat) (Strahler et al., 1986).  

The segmentation algorithm employed for this study is a multiple-pass region-growing 

method based on Euclidean distance in n-dimensional space and a minimum region size 

(Woodcock and Harward, 1992). Since the segmentation algorithm was mainly sensitive to 

input bands and object size parameters, different inputs were tested to identify the 

combination maximizing the segments homogeneity: Landsat bands (band 3, 4, 5 and 7), 

Tasseled Cap components (Kauth and Thomas, 1976; Crist and Cicone, 1984) and Texture 

channels. Texture, computed as the local minimum variance using an adaptive-window 

approach (Woodcock and Ryherd, 1989), describes the variability of the pixels within a 

certain window. It has shown capability to improve segmentation performance if the 

objects present textural differences (Ryherd and Woodcock, 1996). Texture was computed 

for Landsat bands 3, 4 and 5 with a window size ranging from 3-by-3 to 9-by-9 pixels. 

 

The performance of the segmentation algorithm was evaluated for a test image (Path 172 

Row 59) using the segment variance (σ²segm) as an indicator of the segment spectral 

homogeneity.  

Areas affected by cloud and smoke were first masked because their extreme spectral values 

could significantly affect the computation of the mean segment variance. Second, the 

average variance of all m segments was computed for each Landsat band. Then, this value 

was standardized (i.e. divided) by the band variance (σ²band) to compensate for different 

DN dynamic ranges of each band. Finally, the standardized variances were averaged 

through all n bands to compute the mean standardized segment variance (MSSV). 
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Several different combinations of segmentation inputs were tested on the Landsat image 

Path 172 Row 59 to identify the combination producing the most spectrally homogeneous 

segments, according to the MSSV index.  

The results (Table 2) showed that the optimal combination of inputs was given by Landsat 

bands 3, 4, 5 and 7, while the Tasseled Cap components Brightness, Greeness, Wetness 

(BGW) minimized the standard deviation of the segment variance. In both cases, the 

addition of a texture band did not reduce the MSSV. Among possible texture bands tested 

on a representative subset of the image Path 172 Row 59, those computed from band 3 and 

using a larger window size (9-by-9) performed better than texture channels derived from 

bands 4 and 5 and smaller window sizes (Table 3). 

 

On the basis of these results, the 17 Landsat images were segmented using bands 3, 4, 5 

and 7, a maximum multi-dimensional spectral distance of 40 units, a maximum segment 

size for merging two adjacent regions of 500 pixels, and a minimum segment size of 20 

pixels (i.e. 1.8 ha). The minimum segment size determined the Minimum Mapping Unit 

(MMU) of the biomass map. 

The mean Landsat value for each band and the predominant NBS Land Cover class 

(according to a plurality rule) were computed for each segment and used as inputs to the 

biomass models. 

 

Table 2: MSSV and its Standard Deviation (SD) for selected segmentation inputs on image p172r59. 

Inputs are coded as follow: “b” indicates Landsat bands, “Tex” indicates the Landsat band input for 

texture, “w” is the texture window size 

INPUTS MSSV SD of MSSV 

b3457 0.1133 0.1316 

b3457Tex3w9 0.1142 0.1360 

b347 0.1157 0.1306 

BGW 0.1158 0.1279 

b345 0.1163 0.1346 

b347Tex3 0.1283 0.1484 

 

Table 3: MSSV for different window sizes and texture bands, using input Landsat bands 3, 4, 5 and 7 

on a representative subset of the image p172r59 

Window size MSSV Texture band MSSV 

Tex3w9 0.2110 Tex3w9 0.2110 

Tex3w7 0.2123 Tex4w9 0.2197 

Tex3w5 0.2138 Tex5w9 0.2266 

Tex3w3 0.2180 Tex7w9 0.2256 

 

 

4.2.1.1.4. Water and clouds mask 

 

Water bodies, clouds and their shadows were identified and masked before the biomass 

analysis. For this purpose, the images were first classified at pixel level using a Maximum 

Likelihood classifier trained on the basis of visually-identified training areas representative 

of each spectral class present in the Landsat mosaic. The classified images were then 

thematically aggregated into 4 classes (water, clouds, shadows and everything else) and 

spatially aggregated at segment level using a plurality rule (i.e. selecting the most frequent 

class within the segment).  
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The outcome was first manually edited to correct for minor classification errors and then 

used to mask water, clouds and shadows in the Landsat images. In the final biomass map, 

the biomass density of water was set to 0 Mg ha
-1 

while clouds and shadows were set to 

“No Data”. 

 

 

4.2.2. Land Cover data 

 

Two land cover datasets were used for the present analysis: the Africover Multipurpose 

Land Cover database for Uganda (www.africover.org) and the NBS Land Cover map 

(Figure 5) (Drichi, 2003). Both datasets provide a detailed land cover/use classification of 

Uganda for the year circa-2000, with the Africover map having higher thematic resolution 

(67 classes) and the NBS map having higher spatial resolution (Minimum Mapping Unit 

ranging from 1 to 50 ha, according to the class). 

The two datasets were pre-processed, which consisted in their re-projection to a common 

reference system (UTM, WGS84, Zone 36N), vector to raster conversion and legend 

reclassification.  

 

The NBS Land Cover map, given its higher spatial resolution, was used to identify the 

predominant land cover class of each Landsat segment, and this information was then used 

as a predictor in the biomass models. 

The Africover dataset, given its higher thematic detail, was used to identify the herbaceous 

wetlands, which were masked in the biomass models. Masking of herbaceous wetlands was 

necessary because preliminary analysis showed that this vegetation type received 

erroneous biomass estimates by the regression models as a consequence of its spectral 

similarity with tropical humid forests and the absence of specific training data. The 

wetlands were first identified by aggregating the Africover classes with dominance of 

herbaceous vegetation on permanently flooded land and then a constant biomass value, 

instead of the model predictions, was assigned to these areas. The woody biomass density 

of wetlands, mainly due to the presence of sparse trees, was computed as the average of the 

NBS biomass map within these areas and was set equal to 4 Mg ha
-1

. 

 

 

4.2.3. Field data 

 

4.2.3.1. The NBS field plots 

 

The NBS programme conducted an extensive field campaign aimed at measuring biomass 

density on a large number of samples representative of the biomass variability at national 

scale. The study employed a systematic sampling approach and identified about 5,000 plots 

throughout the country located on a systematic grid. In each plot, land cover characteristics 

and a number of plant parameters (e.g. species, diameter at breast height (DBH), height 

and crown width) were recorded for all trees with DBH ≥ 3 cm. The sampling intensity 

was not uniform throughout the country but it was weighted by population density, with 

higher intensity in more densely populated areas. Plot size was 50 x 50 m for all land cover 

types except plantations, where it was 20 x 20 m. The plots were systematically located 
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throughout the country at 5 x 10 Km distance and, at each grid intersection, clusters of 1 to 

5 plots were located at 300 m distance. The Northern part of the country was under-

sampled because of political instability and ongoing conflicts, while Forest Reserves were 

often not sampled because of difficult accessibility.  

Tree biomass was then derived from the plant parameters using country-specific allometric 

equations computed on the basis of destructive sampling of 3,477 trees (Drichi, 2003).  

 

A subset of the complete field dataset was made available for this study. The subset 

comprised 3510 biomass plots measured between 1995 and 2005 well distributed 

throughout the country, with the exception of the northern region (Figure 9). The analysis 

of the frequency distribution of the plot values per biomass class revealed that the field 

biomass dataset was severely skewed towards low values, with 50% of the field plots 

having biomass density lower than 8 Mg ha
-1

 and 90% of the plots having biomass density 

lower than 40 Mg ha
-1

 (Figure 10). While dense high tropical forest of Uganda can reach 

biomass density over 300 Mg ha
-1

 (Drichi, 2003), high-biomass forests were clearly under-

represented in the NBS field dataset because mainly located within Forest Reserves, which 

were under-sampled during the NBS sampling scheme because of their difficult 

accessibility 

. 

 

 

Figure 9: Location and year of acquisition of the NBS field plots, overimposed the Landsat scenes 
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Figure 10: Histogram of the available subset of NBS field plots (N= 3510) 

 

4.2.3.1.1. Selection of the NBS field plots 
 

4.2.3.1.1.1. Selection procedure 

 

The field data were provided in raw format, i.e. in form of plant parameters and related 

biomass for each tree, and plot coordinates were reported in different reference systems. 

Therefore, the plot data needed to be converted to plot air-dry biomass density and the plot 

coordinates were re-projected to a common reference system (UTM, WGS84, Zone 36N). 

 

Considering the temporal difference between the plot measurements and the image 

acquisition dates (up to 8 years) and possible image or plot geolocation errors, it was 

necessary to screen the field data to select only the plots representative of the satellite data. 

The temporal mismatch was heterogeneous: while in image Block 1 the field plots were 

measured before the Landsat acquisition dates, in image Block 2 some plots were 

measured before and other plots were measured after the satellite acquisition dates. 

Theoretically, the field biomass values could be updated to the image acquisition dates 

using vegetation growth models. However, due to the lack of information necessary to 

parameterize such models with sufficient accuracy to dry tropical vegetation types and to 

the specific local conditions, it was considered that the use of growth models would 

introduce large uncertainty, and therefore they were not employed.  

Most importantly, there were several other sources of temporal mismatch apart from the 

natural growth of vegetation, as changes due to fires or logging, as well as spatial 

mismatch due to geolocation errors. Such temporal and spatial mismatches required an 

accurate selection of the plot to be used in the biomass models. 

 

The plot selection was performed through visual analysis because, due to the many sources 

of mismatch between plots and images to be taken into account, several criteria needed to 

be applied, and an automatic system could not perform such complex operation in an 

efficient way. For example, the plots not completely located within one segment but 
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overlapping even marginally two or more segments should (theoretically) be discarded. 

However, applying such criterion using an automatic system would reduce dramatically the 

number of available plots, since as many as 64% of the selected plots would be discarded, 

and would not consider possible geolocation errors, eventually discarding several plots that 

could be used while retaining erroneous plots. Instead, the visual comparison of the plot 

biomass density with the satellite data allowed to better determine the plots to be discarded. 

In other words, nonetheless the visual selection approach introduces a level of subjectivity, 

which is unavoidable when using “expert knowledge”, it allowed to deal in the best 

possible way with the several sources of mismatch and to minimize the number of 

discarded plots.  

Specifically, after visual comparison with the segmented Landsat images, the plots 

associated with clouds or shadows, fire scars or heterogeneous image segments were 

removed.  

 

Heterogeneous segments were created due to the minimum segment size (20 pixels) (see 

section 4.2.1.1.3). There were 2 types of heterogeneous segments: (A) segments including 

a vegetation type that is naturally heterogeneous, as savanna woodland or scattered 

agriculture; (B) segments including two ecologically distinct vegetation types, as a small 

patch of forest (smaller than 20 pixels) surrounded by agricultural areas. Only the plots 

located within type-B heterogeneous segments were discarded because in such cases the 

plots may not be representative of the overall segments and their biomass density may not 

be related to the average segment spectral values. Instead, the plots located in type-A 

segments were retained because, due to the large area of the biomass plots (50 x 50 m), the 

plot biomass values were expected to adequately represent the biomass density of the 

heterogeneous segments.  

 

Plots not corresponding to the images because of co-registration mismatch (e.g. low-

biomass plot located inside a forest but near its edge) or land cover change such as 

deforestation (e.g. high-biomass plot located outside a forest but near its edge) were also 

removed. However, if the mismatch between the plot and the image was due to seasonal 

variability of the vegetation (e.g. deciduous vegetation), the plot was retained.  

It should be noted that the screening procedure could not remove errors related to field 

measurements and to use of allometric equations, which may be relevant and propagate 

through the analysis (Chave et al., 2004). 

 

 

4.2.3.1.1.2. Selection results 

 

After screening the 3,510 NBS field plots with the Landsat data according to the procedure 

presented above, 976 (27.8%) of the plots were discarded because associated with clouds 

or shadows (63 plots, 1.8%), fire scars (46 plots, 1.3%), heterogeneous image segments 

(211 plots, 6%) or because of co-registration mismatch and land cover change (656 plots, 

18.7%).  

The discarded plots were uniformly distributed throughout the country and among the 

Land Cover classes, with the number of discarded plots being between about 20% and 30% 

for most land cover classes (apart few exceptions due to the small number of plots in some 

land cover classes) (Table 4) and uniformly distributed compared to the original 

distribution of the plots, as it can be seen by comparing Figure 11 (Location of discarded 

field plots) with Figure 9 (Location of all available field plots). Cloud coverage in the 

Landsat mosaic was very small (<1% area) and was a minor cause for discarding plots 
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while most of the plots were discarded because of co-registration mismatch or land cover 

change occurred between the plot measurement and the image acquisition dates. 

 

Table 4: Number of available, selected and discarded NBS plots for each NBS land cover class 

  All plots Selected plots Discarded plots 

LC class N N N % 

Plantation 1 0 1 100% 

Forest closed 46 22 24 52% 

Forest degraded 43 30 13 30% 

Woodland 348 251 97 28% 

Shrubland 138 109 29 21% 

Grassland 613 474 139 23% 

Wetland 5 2 3 60% 

Subsistence Agricolture 2303 1638 665 29% 

Industrial Agricolture 6 4 2 33% 

Urban 7 4 3 43% 

Total 3510 2534 976 28% 

 

 

 

Figure 11: Location of discarded NBS field plots 

 

 

4.2.3.2. Field campaign in the Budongo Forest Reserve 

 

A field campaign aimed at measuring biomass density of vegetation was carried out in the 

Budongo Forest Reserve during November – December 2008 in collaboration with the 

Woods Hole Research Center (WHRC) (MA, USA). The Budongo dataset was then 

merged with the NBS dataset to obtain a field biomass reference database representative of 

the complete variability of biomass in Uganda. 

 

The Budongo field campaign acquired data for 112 field plots located along a north-south 

transect crossing the entire Forest Reserve (Figure 12). The plots were located in pre-
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defined locations and centered in correspondence of the center of the footprint of Lidar 

measurements acquired by the GLAS instrument on board the ICESAT satellite. The 

sampling scheme, designed by the WHRC according to their study on the relation between 

biomass density and Lidar metrics, allowed collecting data over a large vegetation gradient 

spanning from dense primary tropical forest to woodland and savannah ecosystems. In 

particular, the Budongo field campaign allowed the acquisition of a consistent number of 

biomass reference data in dense tropical forests, which were very poorly represented in the 

NBS dataset. 

 

The field plots were squared with an extent of 40 x 40 m and area of 0.16 ha. Considering 

the environmental conditions of the Budongo Forest Reserve, and specifically the large 

number of species and the scarce visibility of forest canopy due to the multi-layered forest 

structure and dense understorey, the species and the height of the trees located within the 

plots were not recorded and only the DBH of all living trees with diameter above 10 cm 

was measured. Information on plot geolocation, land cover, land use, disturbance history, 

topography, soil and water regime were also acquired. In addition, the heights of the three 

tallest trees within the plot were recorded for the lidar analysis. 

 

 

 

Figure 12: location of the field plots (yellow dots) measured in the Budongo Forest Reserve, 

overimposed a SPOT5 image and a Landsat ETM+ image in the background 

 

4.2.3.2.1. Selection of the allometric equation 

 

The most important source of error in the estimates of tropical forest biomass is related to 

the choice of the allometric model (Chave et al., 2004). In order to select the most 

appropriate model for the Budongo dataset, four generalized allometric regressions for 

tropical forests were tested using the NBS dataset. Specifically, the allometric equations 

presented by Chave et al. (2001) for rainforest (4.2), by Chambers et al. (2001) for moist 
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forest (4.3) and by Chave et al. (2005) for dry forest (4.4) and for moist forest (4.5) based 

on DBH (d) and wood density (ρ) were applied to the NBS field dataset.  

 

AGBChave2001 = exp(-2+2.42·ln(d))       (4.2) 

AGBChambers = exp(-0.37+0.333·ln(d)+0.933·ln(d)²-0.122·ln(d)³)  (4.3) 

AGBChave2005(dry) = ρ × exp(-0.667+1.784·ln(d)+0.207·ln(d)²-0.0281·ln(d)³) (4.4) 

AGBChave2005(moist) = ρ × exp(-1.499+2.148·ln(d)+0.207·ln(d)²-0.0281·ln(d)³) (4.5) 

 

The performance of the allometric models was assessed on the basis of the correlation of 

the biomass estimates with the NBS values. The NBS biomass values were considered as 

reference (i.e. most accurate estimates of the “real” tree biomass) because these values 

were computed on the basis of diameter at breast height (DBH), height (H), crown width 

(CR) using three size-dependent allometric equations specifically developed for Uganda, 

which accurately represent the allometric relations of the region. 

 

The NBS is a very large dataset composed of 259,943 trees with a wide range of tree sizes 

and with tree biomass ranging from 0.1 to about 50 Mg. However, since small trees were 

much more frequent than medium and large trees (99.9% of the trees were below 10 Mg) 

and since the results were heavily affected by rare trees with very high biomass (i.e. 

outliers), the trees with biomass higher than 10 Mg were excluded from the analysis. In 

addition, it was noted that most of Budongo plots were located in forest or woodland while 

most of the NBS plots were located outside forest (i.e. cropland, grassland or shrubland), 

where the allometric relationships are different from those of forest species. For this reason, 

the analysis was also performed selecting only for the NBS plots located in forest and 

woodland, separately. To do this, the NBS plots located in areas classified as forest or 

woodland according to the NBS Land Cover map were selected. To take into account the 

minimum mapping unit of the NBS map, only the plots with biomass density higher than 

65 and 13 Mg ha
-1

 were further selected for the forest and woodland datasets, respectively. 

These biomass thresholds were identified on the basis of the consideration that the 

Budongo field plots located within forests and woodlands presented a minimum biomass 

density of 65 and 13 Mg ha
-1

, respectively. This selection procedure identified 18,803 trees 

for the forest dataset and 51,889 trees for the woodland dataset. 

 

The Chave et al. (2005) equations require wood density as input parameter, but this 

information was not available for the Budongo dataset. While in the tropics wood density 

varies considerably at species level (from 0.25 to 1.1), its mean value over several species, 

different vegetation types and geographical areas has lower variability. It has been showed 

that when information on wood density at species level is not available, reliable biomass 

estimates can be obtained using wood density values at genus-level (Chave et al., 2004) 

and, in their absence, constant average values can also be used (Brown, 1997). In the case 

of Budongo, a constant wood density value was applied. 

In order to identify the most suitable wood density value for the Budongo dataset, the 

Chave et al. (2005) equation for dry forest was applied to the NBS dataset using different 

wood density values, and the value providing estimates more similar to the NBS was 

chosen. Values between 0.5 and 0.6 produced biomass estimates very similar to the NBS, 

with the optimal wood density being equal to 0.65 for forest areas, 0.54 for woodlands and 

0.54 for all plots (R² = 0.899). The appropriateness of these values was confirmed by the 

fact that they were very similar to the mean wood density value for all trees in the NBS 

dataset (0.57) and to the mean wood density for commons species in tropical Africa (0.58) 
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reported by Brown et al. (1997). In addition, 11 tree species that were occasionally 

recorded in Budongo presented a mean wood density equal to 0.62. On the basis of this 

analysis, the value of 0.54, which provided the highest correlation with the NBS dataset, 

was used as input parameter for the allometric equations. 

 

The four allometric equations presented above were applied to the NBS dataset and the 

biomass estimates were compared with the NBS values. The equation providing biomass 

estimates more similar to the NBS values was identified on the basis of the squared 

correlation coefficient (R
2
) and the Root Mean Square Error (RMSE). The results (Table 5, 

Figure 13) showed that the pan-tropical equation from Chave et al. (2005) for dry forest 

provided biomass estimates more correlated to the NBS values than any other equation for 

the three cases, i.e. considering all plots, only the forest plots and only the woodland plots. 

In addition, the distribution of the residuals (considered here as the difference between the 

estimates of one generic equation and the reference NBS values) for the Chave (2005) 

equation for dry forest (Figure 14) showed that the predictions for large trees had lower 

accuracy and tended to slightly underestimate biomass estimates, but were not heavily 

biased because they were almost equally distributed between positive and negative values. 

The results (Table 5) also showed that the other generic equations performed better when 

selecting only plots in forest areas than with the complete dataset, confirming the different 

allometry for trees outside forest.  

 

Table 5: results of the comparisons of the biomass estimates obtained with the NBS allometric 

equations and with four generic equations for all vegetation types (All plots), forest areas only (Forest 

plots) and woodlands only (Woodland plots) 

 All Plots Forest Plots Woodland Plots 

Equation R² RMSE R² RMSE R² RMSE 

Chave (2001) 0.438 184 0.796 210 0.650 95 

Chambers 0.240 214 0.681 262 0.150 147 

Chave (2005) Dry 0.899 78 0.920 131 0.906 49 

Chave (2005) Moist -0.140 262 0.534 317 0.232 140 

 

 

 

Figure 13: comparison of the biomass estimates obtained with the NBS allometric equations (x axis) 

and with four generic allometric equations (y axis), considering all plots. The biomass is computed for 

each tree and is reported in Kg. The black line is 1:1 
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Figure 14: distribution of the residuals obtained comparing the NBS values with the Chave (2005) dry 

values, considering all plots. The tree biomass is reported in Kg. 

  

The NBS dataset was also used to quantify the impact of the additional predictors. 

Specifically, the performances of the Chave et al. (2005) equations based on DBH, tree 

height (H) and wood density (ρ) for dry forest (4.6) and moist forest (4.7) were tested using 

the NBS dataset. Since the NBS provides the air-dry wood density while the above 

equations require the oven-dry wood density, the NBS air-dry coefficients were converted 

to oven-dry by multiplying them with the correction coefficient 0.872 (Chave et al., 2006). 

 

AGB Chave2005(dry) = exp(-2.187+0.916 · ln (ρ·DBH²·H))    (4.6) 

AGB Chave2005(moist) = exp(-2.977 + ln (ρ·DBH²·H))     (4.7) 

 

The results (Table 6, Figure 15) show that using three predictors (DBH, H and ρ) the two 

equations perform similarly and provide biomass estimates very similar (but systematically 

smaller) to the NBS values. Similar results were also achieved using two generic equations 

for tropical forests based on DBH, H and ρ (Brown et al., 1989). If tree height is not 

included as predictor, the Chave et al. (2005) equation for moist forest strongly 

overestimates tree biomass while the equation for dry forest provides more stable results. 

In addition, the equation for dry forest shows that decreasing the number of predictors 

increases the “spread” of the biomass estimates but reduces the systematic underestimation 

(bias) of biomass for large trees. Therefore, while tree height is a critical predictor for the 

Chave (2005) Moist equation and it is necessary to reliably apply this equation in Uganda, 

the Chave (2005) Dry equation provides reliable estimates also without this parameter.  

 

Table 6: results of the comparison of the biomass estimates obtained with the NBS allometric equations 

and two generic equations using different predictor variables: Diameter at Breast Height (DBH), tree 

height (H) and wood density (ρ) (left column); DBH and ρ only (center column); DBH only (right 

column) 

  DBH, H, ρ DBH, ρ DBH 

Equation R² RMSE R² RMSE R² RMSE 

Chave (2005) Dry 0.873 87 0.932 64 0.899 78 

Chave (2005) Moist 0.905 75 0.001 245 -0.14 262 
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Figure 15: comparison of the biomass estimates obtained with the NBS allometric equations (x axis) 

and with two generic allometric equations (y axis), using different predictor variables: Diameter at 

Breast Height (DBH), tree height (H) and wood density (ρ) (left graphs); DBH and ρ only (center 

graphs); DBH only (right graphs). The biomass is computed for each tree and is reported in Kg. The 

black line is 1:1 

 

 

4.2.3.2.2. Biomass field dataset in the Budongo Forest Reserve 

 

The analysis of the allometric equations showed that the equation published by Chave et al. 

(2005) for dry tropical forest based on DBH and with a constant wood density of 0.54 

provides biomass estimates comparable with those obtained from more sophisticated 

country-specific equations, as the NBS equations. Therefore, this allometric equation was 

used to convert the field measurements collected in Budongo to tree biomass. The plot 

biomass density was then computed dividing the sum of the biomass of each tree located 

within the same plot with the plot area.  

 

Woody aboveground biomass density at plot level in the Budongo Forest Reserve ranged 

between 0 and 489 Mg ha
-1

. The frequency distribution of the plot values per biomass class 

was bi-modal, with the two peaks corresponding to the biomass density of woodlands (< 

140 Mg ha
-1

) and of dense forest (> 220 Mg ha
-1

) (Figure 16). 
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Figure 16: frequency distribution of the biomass density values of the Budongo field plots (N = 112) 

 

 

4.2.3.3. The biomass field reference dataset for Uganda 

 

The field plots selected by the NBS dataset (section 4.2.3.1) were combined with the plots 

collected in the Budongo Forest Reserve (section 4.2.3.2) to form the biomass reference 

dataset of this study.  

Since the predictor variables (satellite and land cover data) were computed at the level of 

Landsat segments, when more than one field plot was located within the same Landsat 

segment their values were averaged and the mean biomass values per segment, instead of 

the original plot values, were input to the biomass models. On the basis of this procedure, 

the biomass reference dataset consisted of 2527 segments that were used to predict 

biomass density on the basis of satellite and ancillary data.  

The analysis of the training data (Figure 17) revealed that their distribution was severely 

skewed toward smaller biomass values. The high frequency of low-biomass field plots was 

a direct consequence of using systematic sampling in a country dominated by croplands 

and grasslands. Since the distribution of the training data somehow reflected the spectral 

variability of different biomass classes (i.e. in Uganda low-biomass areas are much more 

spectrally diverse than medium and high-biomass areas), the skewed distribution allowed 

for better estimates at low values. 
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Figure 17: Frequency distribution of selected training data (N = 2527) 

 

The biomass reference values were used as training data for two biomass models according 

to their location: the plots located within the image Block 1 were used to develop Model 1 

and the plots located within image Block 2 were used to develop Model 2. 

 

Given the scarcity of field plots in dense forests, all training data with biomass higher than 

100 Mg ha
-1

 were used in both models. This was necessary to provide each model with 

enough training data to adequately represent high-biomass classes. The use of training data 

derived from images that were not radiometrically calibrated was possible because of the 

distinct spectral signature of dense forests in comparison with that of lower biomass 

classes: dense forests presented much lower spectral values in the Short Wave Infrared 

(SWIR) bands than other vegetation types, and small variations in their values among 

uncalibrated images did not affect the capability of the models to effectively separate them 

from other vegetation types. 

 

In conclusion, the number of training data used as input to the two models was larger than 

the number of selected field plots for the following reasons: a) when more than one plot 

was located within the same Landsat segment, their average biomass density was used as 

an input value; b) the plots with biomass density higher than 100 Mg ha
-1 

were used by 

both models; c) in some cases the plots located on the overlapping area of two Landsat 

images acquired on different dates were used as training data for both images. 

As a result of this procedure, 1627 training data were used to develop Model 1 and 1140 

training data for Model 2. Considering the training data without duplicates, a total number 

of 2734 reference values were used to develop the two biomass models. 

 

 

4.2.4. Modeling approach 

 

On the basis of the literature review, a non-parametric modeling approach was considered 

the most appropriate method to estimate biomass density from remote sensing data. 

Specifically, this study employed Random Forest (Breiman, 2001), an extension of tree-
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based models that uses the ensemble method to estimates large number of models using 

different bootstrap samples of the data (see section 2.6.2) 

 

Random Forest applies a cross-validation approach to estimate model performance, using 

the predictions on the data not included in the bootstrap sample, called out-of-bag (OOB) 

data, to compute the model error rate. The OOB error rate is considered a reliable estimate 

of the model performance on independent data. To test this assumption, the prediction 

accuracy was assessed on randomly selected subsets (30%, 40% and 50%) of the original 

dataset held out before the model development. In addition, the effect of the skewed 

distribution of the input data (see Section 4.2.3.3) on the model RMSE was investigated by 

randomly selecting a uniformly distributed dataset. To account for some variability in the 

results obtained from a random selection of original data, model performance was 

calculated as the average of 50 runs on different random subsets. 

 

Random Forest can be fine-tuned by setting the model parameters, such as the total number 

of trees to grow (ntrees), the number of variables randomly sampled at each split (mtry) 

and the minimum size of the terminal nodes (nodesize) (Liaw, 2009). The model sensitivity 

to different values of ntrees (from 100 to 2000), mtry (from 1 to 5) and nodesize (from 1 to 

20) was evaluated by changing one parameter at each run. The analysis confirmed that the 

model performance was not very sensitive to the setting of these parameters (Liaw and 

Wiener, 2002) and that the optimal values for our training dataset (ntrees = 1000, mtry = 2, 

nodesize = 10) produced results very similar to those based on the default parameters 

computed by the algorithm (ntrees = 500, mtry = 2, nodesize = 5). 

 

To evaluate the contribution of the predictor land cover to biomass estimation, the 

performances of two models for each “block” of the Landsat mosaic were computed and 

compared: the first model was based only on Landsat data (the Landsat spectral bands 

excluding the panchromatic and the thermal channels) and the second model was based on 

Landsat and land cover data.  

Similarly, to evaluate the advantage of using an advanced regression tree model versus 

more traditional approaches, the performance of Random Forest (library randomForest in 

R)  was computed and compared with that of a conventional tree-based model (library 

rpart in R) and a stepwise multivariate linear regression model (library stats in R).  

Finally, the image Path 172 Row 59 was used to test if additional predictors derived from 

Landsat (texture bands) or topographic data (altitude, slope, aspect) improved the model 

performance.  

 

The analyses were always performed at segment level by computing the average value of 

each variable within the Landsat segments and by relating this value to the average 

biomass density of the plots located within the training segments.  

The percent variance explained (R²) and the RMSE were used to evaluate the model 

performance on the complete datasets. In addition, the relative RMSE (RMSEr), the Bias 

and the Coefficient of Variation (CV) were also computed to assess and compare the 

model performance for different biomass classes. These statistics were calculated as follow, 

where iŷ  was the predicted biomass on the ith plot, yi the observed biomass on the ith plot, 

y the mean biomass of n plots and ŷ  the mean predicted biomass of n plots: 
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4.3. Results 

 

4.3.1. Models results 

 

A biomass model was developed for each block of the Landsat mosaic (Model 1 and 

Model 2) and their performance was tested with and without land cover as a predictor.  

The results (Table 7) indicated that the four models achieved very similar results, 

explaining between 83% and 86% of the variance of the OOB data and presenting a RMSE 

between 13.9 and 16.9 Mg ha
-1

, depending on the model and predictors. Model 2, relative 

to the more humid part of the country, presented slightly larger errors at low biomass 

values because, due to higher rainfall, spectral reflectance of low-biomass vegetation types 

was more variable and hence more difficult to predict. On the other hand, model 

predictions at high values (≥ 100 Mg ha
-1

) were almost identical since the models shared 

the same input data.  

 

Statistics for the complete dataset (Model 1 + 2) were computed by merging predictions 

from the two models without replicates (i.e. considering input data ≥ 100 Mg ha
-1

 only 

once) in one dataset (Table 7, Figure 18). The performance for the complete dataset was 

slightly lower than that of individual models, with R
2
 between 78% and 81% and RMSE 

between 12.6 and 13.5 Mg ha
-1

, depending on the predictors.  

In all cases, the inclusion of land cover only slightly increased the overall model 

performance but improved biomass predictions, especially in deciduous formations where 

the model based only on Landsat data tended to underestimate biomass density (see Figure 

26). For this reason, land cover was included as a predictor variable in the biomass models.  

 

Regarding the variable importance, which was computed as the average increase of node 

purity (i.e. residual sum of squares) on the OOB data that results from including each 
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variable (Liaw, 2009), SWIR spectral bands and land cover provided the maximum 

contribution to the model predictions (Figure 19) because  they allowed effective 

separation between high and low biomass data. The important role of SWIR wavelengths 

in biomass prediction was consistent with previous studies (Steininger, 2000; Lu et al., 

2004; Baccini et al., 2004; Baccini et al., 2008). 

 

Table 7: Performance results on the OOB data of the Random Forest models with and without the 

predictor land cover (LC). Model 1 + 2 includes predictions from the two models without replicates. N 

is the number of input data 

  Landsat + LC Landsat 

 N R² RMSE R² RMSE 

Model 1 1627 0.847 13.9 0.826 14.8 

Model 2 1140 0.864 15.2 0.834 16.9 

Model 1 + 2 2734 0.811 12.6 0.781 13.5 

 

 

 

Figure 18: Predictions of all input data (Model 1 + 2) on OOB data without (left) and with (right) the 

predictor land cover (LC) 
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Figure 19: Variable Importance plots for Model 1 without (left) and with (right) the predictor land 

cover (LC). IncNodePurity represents the variable importance. The Variable Importance plot for 

Model 2 (not reported) showed the same ranking 

 

The percentage variance explained by the models (R
2
) was influenced by the range of the 

response variable, and the values reported above were positively affected by the large 

range of biomass values present in the training data.  

Considering the result from both models (Model 1 + 2), the R
2
 was 0.42 for biomass values 

ranging from 0 to 100 Mg ha
-1

 and 0.59 for values higher than 100 Mg ha
-1

. Model 

performance dropped severely for biomass values ≥ 175 Mg ha
-1

. This result likely reflects 

the small sample size (N = 16) but it may also be caused by the unequal distribution of the 

training data, which affected the construction of the tree-based model creating a larger 

number of nodes for low biomass values compared to those for medium and high values. 

Additional model statistics computed for each biomass class (Table 8, Table 9) showed 

that the absolute errors (RMSE) increased for higher biomass classes, but the relative 

errors (RMSEr) and the normalized dispersion of the predictions (CV) decreased. While 

the overall bias was very small, the model tended to underestimate biomass at high values. 

 

Considering that model residuals in the dataset tended to increase at higher biomass values, 

the predominance of low-biomass training data biased the estimate of the model RMSE, 

which was clearly over-optimistic for medium and high biomass predictions. By selecting 

a subset of training data with uniform frequency for each biomass class (N = 44 plots), the 

model RMSE increased to 63.7 Mg ha
-1

 (relative RMSE 36%), which is about an average 

value of this parameter for the full range of values.  

 

Table 8: Performance statistics for all data (Model 1 + 2) for biomass classes. Due to scarcity of high 

biomass values, all data > 200 Mg ha
-1

 were grouped in one class 

  Biomass range (Mg ha
-1

) 

  0 - 475 0 - 100 100 - 200 200 - 475 

N 2734 2699 21 14 

RMSE 12.6 10.2 41.5 88.8 

RMSEr 91% 92% 29% 27% 

Bias 0.4 0.6 1.6 -47.3 

CV 176% 91% 23% 16% 
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Table 9: Performance statistics for all data (Model 1 + 2) for biomass classes in the range 0 – 100 Mg 

ha-1 

  Biomass range (Mg ha
-1

) 

  0 - 25 25 - 50 50 - 75 75 - 100 

N 2388 249 50 12 

RMSE 7.6 18.8 30.9 27.2 

RMSEr 104% 55% 51% 32% 

Bias 2.6 -14.0 -17.6 -11.3 

CV 67% 57% 61% 42% 

 

 

In order to assess the reliability of the OOB error rate estimate, the performance of Model 

1 was also tested against independent datasets excluded from model development by 

randomly selecting 30% to 50% of original data. The results (Table 10) showed that the 

explained variance remained above 80% and was only slightly smaller to that of the OOB 

data. 

 

Finally, the capabilities of additional predictors derived from Landsat or topographic data 

to improve model performance were tested on the test-image Path 172 Row 59. 

Specifically, the mean values for each Landsat segment were computed for the metrics 

Altitude, Slope, Aspect and Texture. Texture was derived from Landsat bands 3, 4, 5, 7 

and computed as standard deviation of pixel values in a 3x3 adaptive window.  The 

standard deviation of texture values within each segment as well as spectral values from 

band 6 (thermal band) were included as explanatory variables.  

The performance of Random Forest, computed as an average of 50 model runs, remained 

stable (R² = 0.80, RMSE = 15 Mg ha
-1

) after the inclusion of the additional predictors. This 

result suggested that even though some of these newly added variables were modestly 

important (Figure 20), they did not contain any additional information for biomass 

estimation compared to Landsat and land cover, and therefore were not employed further. 

 

 

Figure 20: Variable Importance Plot for a model including the additional predictors for the image 

p172r59.  The number after “TEX” indicates the Landsat band used to compute the Texture, the suffix 

“_SD” indicates the standard deviation of the texture band 
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4.3.2. Model comparison 

 

The comparison of different modeling approaches showed that Random Forest performed 

better than a single regression tree: the variance explained by a single tree model on the 

independent dataset was between 14% and 17% lower than that of Random Forest (Table 

10). Another important difference between the two models was that the biomass 

predictions of a single regression tree were discrete, similar to those of a classification 

algorithm, while the predictions from Random Forest were continuous (see Figure 21).  

 

It is important to notice that, since the single regression trees are pruned to avoid 

overfitting, the number of final nodes was considerably smaller than that of Random Forest: 

for image Block 1 the single regression tree identified only nine biomass prediction values, 

whereas Random Forest provided almost continuous estimates. However, due to the 

predominance of low biomass data in our dataset (85% of the data were below 25 Mg ha
-1

), 

Random Forest did not achieve a lower RMSE than a single tree model (Table 10), 

showing that for very small biomass ranges the accuracy obtained with an appropriate 

number of discrete predictions (RPART identified 5 biomass classes smaller than 25 Mg 

ha
-1

) is comparable with that of continuous estimates. 

 

Table 10: Performance of Random Forest (RF) and a single Regression Tree (RPART) for different 

training and testing datasets from image Block 1. Predictors: Landsat bands (without LC) 

  Training Testing 

Model  RF RF RPART 

Dataset N R² RMSE N  R² RMSE R² RMSE 

30% Test 1139 0.824 14.6 488 0.826 14.7 0.709 10.0 

40% Test 976 0.825 15.1 651 0.812 14.5 0.683 12.4 

50% Test 814 0.809 15.5 813 0.813 15.1 0.672 14.6 

 

Linear models did not achieve satisfactory results when applied to this dataset. For 

example, a stepwise multivariate linear regression using the Landsat bands as predictors 

explained only 23% of the variance of the data in image Block 1 (RMSE 31 Mg ha
-1

, p 

value < 0.0001). However, such poor performance was biased downward by the skewed 

distribution of the training data: the variance explained by the linear model increased to 65% 

(RMSE 71.8 Mg ha
-1

, p value < 0.0001) using training data with equal frequency for each 

biomass class (N = 44 plots) (Table 11), and was 40% when the model was applied to 20% 

of independent data randomly sampled from the uniform training dataset. 

 

The dataset with uniform distribution for biomass class was used to compare the prediction 

capabilities of the three model types (Random Forest, single regression tree, stepwise 

multiple linear regression) using the training data, instead than on the OOB data (Table 11, 

Figure 21).  

Since regression trees do not perform as well as linear models in predicting strongly linear 

relationships (De’ath and Fabricius, 2000), the lower performance of linear models 

supported the assumption of a complex, non-linear relationship between biomass and 

remotely sensed data (Foody et al., 2003; Baccini et al., 2004; Muukkonen and Heiskanen, 

2005). 
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Table 11: Model performance on the training data (not on the OOB data) of the uniformly distributed 

dataset for Random Forest (RF), single Regression Tree (RPART), stepwise multiple linear regression 

(LM). Predictors: Landsat bands (without LC) 

Dataset Model N R² RMSE 

Uniform 
distribution 

RF 44 0.943 29.1 

RPART 44 0.803 53.8 

LM 44 0.651 71.8 

 

 

Figure 21: Model predictions for training data with uniform distribution per biomass class of (left to 

right): Random Forest, single regression tree, stepwise multiple linear regression. The black line is 1:1 

 

4.3.3. A new biomass map for Uganda 

 

Landsat and land cover data were used to predict AGB for each image segment using 

Random Forest. The biomass predictions were then mosaicked to create a map that 

represents the spatial distribution of live aboveground woody biomass density of Uganda 

for the year circa-2000 at Landsat resolution (Figure 23).  

According to this analysis, the aboveground biomass stock of Uganda was equal to 343 Tg. 

The biomass density ranged from 0 to 383 Mg ha
-1

 at the resolution of the Landsat 

segments; 1% of the total area (246,000 ha) was covered by clouds and shadows, and 

classified as “No Data”.  

 

The frequency distribution of predicted biomass was similar to that of the training data 

(Figure 22). The map indicated that most of the country presents low biomass density, but 

the contribution of these areas to the total AGB stock was important. Areas with biomass 

density lower than 25 Mg ha-1 cover about 87% of land area and store about half (53%) of 

total AGB stock. The remaining AGB (47%) is stored in medium and high biomass density 

areas covering less than 13% of land surface. Areas with medium biomass density (25 – 

100 Mg ha-1) cover about 10% of land area and store 25% of total stock, while areas with 

high biomass density (> 100 Mg ha-1) cover less than 3% of land area and store 22% of 

total stock. Low and medium biomass areas correspond to cropland, grassland, shrubland 

and woodland, while high biomass areas correspond to dense forests, mainly located within 

national parks and protected areas along the western border of the country. 
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Figure 22: Frequency distribution of the selected training data (N = 2527) and of the map predictions 

 

This estimate of the total stock of Uganda was 27% lower than the NBS value (468 Tg), 

suggesting that the presented approach provided conservative biomass predictions (see 

Section 4.4). The FAO (2006) indicated that the NBS figures are relative to 1992 and 

reported a decrease of AGB in forests of 50 Tg (from 294 to 244 Tg) between 1992 and 

2000. The NBS Report (Drichi, 2003) also indicated a decrease in biomass stock in areas 

outside forest during the second half of 1990’s, but did not provide updated figures for the 

year 2000. Under the conservative assumption that biomass outside forest remained 

constant, the reference value of total AGB stock of Uganda for the year 2000 would be 418 

Tg, reducing the difference with the estimate of this study to 18%. 

 

 

Figure 23: AGB density map of Uganda for the year circa-2000 



54 

 

4.4. Discussion 

 

The results of this study suggest that it is possible to produce spatially explicit biomass 

estimates at high resolution over large areas if adequate field data, satellite images and 

ancillary data are available. In Uganda, Landsat and land cover data were used to spatialize 

field biomass measurements and produce accurate (R
2
 0.81) and detailed (MMU 1.8 ha) 

estimates at national scale that may be used for national planning or REDD-related 

monitoring of forest biomass. Figure 25 shows the unprecedented spatial resolution 

attained with this approach in comparison with other published biomass maps. 

 

Using a non-parametric regression model was crucial to obtain these results. Random 

Forest was able to capture the complex, non-linear relationship between spectral data and 

AGB, but required training data representative of the spectral variability within each main 

biomass class.  

Training data must be screened because the model predictions, computed as mean values 

within each terminal node, are sensitive to outliers.  

Accurate selection of the satellite data and image pre-processing were equally important to 

remove noise from the regression. For example, selection of images acquired during the 

dry season helped to avoid confusion between evergreen woody and deciduous non-woody 

vegetation.  

 

Thanks to the large number of low-biomass field plots, it was possible to observe that the 

satellite signal varies largely in low-biomass vegetation types as savannah, subsistence 

agriculture and agroforestry. Therefore, it is crucial to collect training data for each 

spectral class to avoid biomass overestimation in these areas, as it was the case for 

wetlands where the high intensity of greenness confounded the model. 

 

Given the empirical nature of the model, it was not necessary to atmospherically correct 

and convert the remote sensing data to surface reflectance values, but it was necessary to 

radiometrically calibrate the satellite images to a common scale. While transferability over 

time and space of a model calibrated on a specific training dataset is limited (Foody et al., 

2003), the approach, rather than the algorithm, can be easily replicated when sufficient data 

are available. 

  

Landsat observations provided an effective way to spatialize field biomass measurements 

because the data acquired by this satellite are sensitive to vegetation structure and their 

spatial resolution is compatible with stand and plot size. 

It is well known that optical sensors are more sensitive to leaf characteristics than to the 

woody component of vegetation. As a result, optical data are more correlated to vegetation 

density than to its vertical structure, which leads to their saturation above certain biomass 

values. However, SWIR bands have sensitivity to canopy water content and shadow 

fraction, which tend to increase moving from open and monoplane to closed multi-layered 

forest canopies (Gemmell, 1995; Steininger, 2000). If, as was the case in our study area, 

these canopy parameters (water content and shadow fraction) at the resolution of image 

segments are associated with biomass density, a non-parametric model that exploits 

spectral variations of SWIR bands may also have satisfactory prediction capabilities in 

closed canopy forests, up to a certain biomass value. In addition, image segmentation had a 

positive effect on the model accuracy at extreme (very high and very low) values because 

reducing spatial resolution also reduced the variability of the parameter to estimate.  
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In the present study,  the models tended to saturate around 150 – 200 Mg ha
-1

. However, 

the number of high-biomass training data was too small to clearly identify the saturation 

threshold. 

 

Cloud cover severely limits the amount of satellite data available in the tropics. Cloud 

cover in the Landsat mosaic was less than 1% of land area, but cloud contamination can be 

expected to be a bigger issue for larger tropical regions located in areas with persistent 

cloud cover (e.g. Congo basin, South East Asia). Thanks to the opening of the Landsat 

archive and improved image processing techniques, cloud free and radiometrically 

consistent Landsat mosaic have been produced for large humid tropical areas, as in the 

Congo basin (Hansen et al., 2008), but the creation of consistent multi-temporal datasets 

remains challenging.  

For the case of Uganda, the Landsat mosaic did not contain multi-temporal information 

because cloud coverage hindered the compilation of a consistent multi-temporal dataset, 

which may be important for discriminating some vegetation types (e.g. seasonal or 

deciduous formations).  

It is likely that the use of land cover as a predictor increased the model performance 

because it provided information related to vegetation phenology missing in the Landsat 

mosaic. For example, the biomass map derived only from Landsat data (acquired in the dry 

season) tended to underestimate the biomass content of dry deciduous shrubland and 

woodland compared to the NBS values, while the inclusion of land cover provided more 

accurate estimates for these formations (Figure 26).  

On the other hand, errors and limitations of land cover data were propagated in the biomass 

map. For example, since in Uganda deforestation is mainly driven by small-scale local 

activities, it affects areas that are often smaller than the minimum mapping unit of the land 

cover map. As a result, the inclusion of land cover in the model caused biomass 

overestimation for small or partially deforested areas (Figure 27).  

 

The availability of land cover maps suitable for biomass mapping varies from country to 

country and may be a limitation in the application of this approach to other countries. 

However, besides the fact that national high resolution datasets are now being produced 

more frequently in tropical countries also thanks to coordinated international efforts, such 

as the FAO Global Land Cover Network that directly sustains a number of national and 

regional mapping activities, for the case of Uganda the model results obtained without land 

cover data were overall statistically similar to those including land cover data (Table 7). 

Hence, while land cover data improve model predictions (Figure 26), the presented 

approach is not strictly dependent on their availability. 

 

It is important to stress that Landsat data present higher spatial and thematic resolution 

compared to land cover data (Figure 24). The use of Landsat data allowed the computation 

of spatially detailed and continuous biomass estimates. Conversely, a biomass map based 

only on land cover data would assign the same average value to all spatial units belonging 

to the same class, reducing the map resolution and missing substantial spatial variability 

within the land cover polygons.  
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Figure 24: Comparison between land cover polygons (left) and image segments (right) for an 

heterogeneous area in Western Uganda. The image segments are able to identify vegetation units more 

homogeneous and with higher spatial resolution compared to land cover units 

 

In addition, using average biomass values for broad land cover classes can cause serious 

underestimation of emissions from deforestation when it occurs in forests with higher than 

average biomass density (Houghton, 2005; Houghton and Hackler, 2006). On the contrary, 

using average biomass values derived from traditional forest inventories, which are usually 

aimed at assessing the merchantable timber volume, may overestimate the total country 

stock because the field data are mainly collected in the most productive forests, while 

disturbed low-biomass forests are under-sampled as a consequence of their low economic 

value and the difficult accessibility due to the regrowth of dense understory developing 

after the disturbance. In such cases, the average biomass values derived from the 

inventories do not represent the overall class variability but are biased towards the high-

biomass forests. 

 

Considering the fact that model performance decreased when applied to a smaller biomass 

range (Table 8) and that the predictions from tree-based models tended to underestimate 

biomass at high values and overestimate at low values, the accuracy of biomass estimates 

at local scales may be lower than the overall model statistics suggest.  

In particular, saturation of the optical signal in closed canopy forests, model under-

prediction of high biomass values, acquisition of images during the dry season and missing 

predictions for areas affected by cloud coverage were the main factors that tended to 

reduce the accuracy of the predictions and were responsible for the lower estimates of total 

biomass stock compared to the NBS values. Even if in some cases estimates based only on 

land cover data were overly optimistic for the reasons mentioned above and the true values 

cannot be known, it is likely that the estimates produced in this study were somehow 

conservative because the factors that may bias the predictions downward were 

predominant compared to those that may bias the predictions upward. 

 

In conclusion, the significance of the presented approach is related to the fact that it can be 

applied to vegetation located in tropical and subtropical dry and semi-dry regions, which 

store relevant amounts of carbon. For example, the IPCC (2000) reports that carbon stored 

in vegetation of tropical savannah is comparable to the amounts stored in temperate forests, 

because the low biomass density of savannah ecosystems is counterbalanced by their large 

extents. Therefore, better monitoring methods can provide a significant contribution for a 

better understanding and for reducing the uncertainties of the global carbon cycle. 
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Figure 25: Comparison of biomass maps at different resolution for the test area indicated by the black frame in the map of Uganda. The biomass maps, from up-left 

clockwise, are derived from Landsat and LC data at 30 m pixel resolution (this study), from national LC data (adapted from Drichi, 2003), from LC data at 5 km 

resolution (Gibbs and Brown, 2007) and from MODIS data at 1 km resolution (Baccini et al., 2008) 
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Figure 26: example of biomass underestimation using only Landsat data as predictor for the test area indicated by the black frame in the map of Uganda. Biomass 

density of the woodlands (10 - 20 Mg ha
-1

) located in the east and south part of the Landsat image (upper-right) was underestimated by the model not including LC 

(lower-left), while the higher estimates (30 – 40 Mg ha
-1

) provided by the model including LC (lower-right) were in agreement with the field data 
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Figure 27: example of biomass overestimation using LC as predictor for the test area indicated by the black frame in the map of Uganda. Some deforested areas 

indicated by arrows in the Landsat image (upper-right) are classified as forest in the LC map, increasing the biomass estimates in the model including LC (lower-right) 

compared to the estimates based only on Landsat data (lower-left) 
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5. Comparison of existing biomass maps of Uganda 
 

5.1. Biomass datasets 

 
In order to better understand the reliability of existing biomass products and to compare the 

biomass map produced for Uganda (section 4.3.3) with published biomass datasets, the second 

part of this thesis consisted on the investigation of the similarity and accuracy of a set of biomass 

maps for the case study of Uganda. The analysis was aimed at understanding the causes of 

agreement and disagreement among the datasets and the effect of different input data and 

methodologies on the biomass predictions. In this chapter, the map produced in this thesis is 

referred to as the Avitabile map. 

 

Six biomass or C stock maps, namely the Avitabile, Baccini et al. (2008), Drigo (2006), Gibbs & 

Brown (2007), Henry (2010) and Reusch & Gibbs (2008) maps, were compared to the NBS 

biomass map (Drichi, 2003) for the area of Uganda (Table 12). While some maps were based on 

global and regional datasets, others were based on country-specific data. The datasets with 

resolution lower than 5 Km (i.e. Kindermann et al., 2008; Olson et al., 1985) were not included 

in the present comparison because were considered too coarse in comparison with the limited 

extent of the country. 

 

While it was not possible to define with certainty the most accurate map because the true 

biomass values cannot be known, the NBS biomass map was considered as reference because 

based on the largest number of nation-specific field data and a widely accepted methodology. 

Therefore, the similarity and accuracy of the maps were evaluated by comparing the biomass 

products to the NBS map and to a set of field data collected by the NBS.  

Specifically, the objectives of this comparative analysis were to use the NBS dataset to: (1) 

compare existing biomass datasets; (2) quantify their accuracy; (3) assess the effect of different 

input data and methodologies on the biomass estimates. 

 

5.1.1. Maps description 

 

The NBS map was not available for this study and was derived from the NBS Land Cover map 

(see section 4.2.2) by applying to each land cover stratum the average biomass density indicated 

in the NBS Report (Table 5.1 and 5.2 in Drichi, 2003). The land cover strata are defined on the 

basis of the land cover type, the ecological region and the biomass stock density class. Since the 

NBS Report did not provide a value for each class present in the map but reports the standard 

deviation per class, the biomass density of the missing strata was obtained from the map unit 

belonging to the same land cover type and ecozone but higher (lower) biomass density class by 

subtracting (summing) one standard deviation from (to) its value. Therefore, in this study the 

NBS biomass map does not refer to the map produced by the Uganda National Authority but to 

the slightly modified version obtained with the above procedure. 

 

The NBS biomass map was compared to five biomass/carbon datasets. A brief description of the 

input data and methodology used by each dataset is reported below and in Table 12. 

 

1) Avitabile (this thesis) derived AGB of Uganda from Landsat data acquired in the period 

1999 - 2003, the NBS national land cover map and a subset of the NBS field plots using 

an object-oriented approach and a regression tree based model.  
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2) Baccini et al. (2008) derived AGB of tropical Africa from a pixel-based best-quality 

mosaic of MODIS data acquired in the period 2000 - 2003 and forest inventories data 

using a regression tree model. Training data were also derived from the NBS biomass 

map of Uganda. 

 

3) Drigo (2006) derived AGB of Eastern Africa from the Africover national land cover 

datasets (www.africover.org), the FAO Global Ecological Zone (GEZ) map (FAO, 2001a) 

and biome average values derived from forest inventories. 

 

4) Gibbs & Brown (2007) derived AGB of tropical Africa using the Global Land Cover map 

for the year 2000 (GLC2000) (Mayaux et al., 2004) and the CIESIN (2005) population 

density dataset to update the Brown & Gaston (1996) dataset, which in turn estimated 

AGB for the year 1980 on the basis of vegetation, population, soil, climate and elevation 

datasets in combination with biome average values and forest inventories from Tropical 

Africa and South East Asia. 

 

5) Henry (2010) derived Aboveground Carbon (AGC) stock of sub-Saharan Africa from the 

Globcover 2005 land cover map (Arino et al., 2008), MODIS Vegetation Continuous 

Field (VCF) tree cover values (Hansen et al., 2003), climatic parameters, ecoregion maps 

and forest inventory data, using a Monte Carlo procedure to compute the mean AGC of 

each stratum from the field data.  

 

6) Reusch & Gibbs (2008) derived above- and below-ground carbon density at global scale 

using the GLC2000 map, the FAO GEZ map, a frontier forest map (Bryant et al., 1997) 

and the IPCC Tier 1 default carbon stock density values (IPCC, 2006). 

 

5.1.2. Mapping approaches 

 

The biomass datasets can be classified according to the approach used to relate satellite or other 

spatial data to ground observations. Goetz et al. (2009) identified three main approaches:  

a) the Stratify & Multiply (SM) approach, where satellite data are used to derive a thematic 

map (e.g. vegetation map, land cover map) and the field data located within each strata 

are averaged;  

b) the Combine & Assign (CA) approach, where satellite and other spatial datasets are 

integrated to derive a thematic map with finer-grained strata;  

c) the Direct Remote Sensing (DR) approach, where satellite data are directly converted to 

AGB using classification techniques (e.g. neural network, regression trees).  

 

Another possible approach, not considered in Goetz et al. (2009), is the Model approach, where 

satellite data are input to ecosystem models that predict a range of ecosystem parameters, 

including the standing biomass. According to this classification, the Baccini map is based on the 

DR approach whereas the Avitabile map is an extension of the DR approach (DR+) because it 

integrates satellite with LC data using a statistical model. Similarly, the Henry map is based on 

an extended CA approach (CA+) using a Monte Carlo procedure and satellite inputs in 

combination with categorical data (i.e. LC map) to obtain almost continuous biomass estimates. 

All other maps are mainly based on LC data but also employ additional datasets to identify strata 

with higher detail than the original LC map, and therefore follow the CA approach. 
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Table 12: Main characteristics of the biomass and C maps used for the comparative analysis. The spatial resolution of vector-based maps is given by a Variable 

Minimum Mapping Unit, which is class-specific. The spatial datasets used by the biomass/C maps included the Africover LC map, the Global Land Cover map for the 

year 2000 (GLC2000), the Globcover 2005 map, the FAO Global Ecological Zone (GEZ) map, the MODIS Vegetation Continuous Field (VCF) tree cover products, the 

CIESIN’s Gridded Population of the World dataset and the Frontier Forest map. The number of biomass classes of the maps with continuous values was calculated 

after their conversion to integer values (i.e. classes of 1 Mg ha
-1

 interval) 

Map Coverage Format Spatial resolution 
Number of 

classes Pool Variable 
Biomass 

data 
Spatial 

data 
Ancillary 

data 
Period Approach 

NBS Uganda Vector 4-50 ha 48 Aboveground Biomass 
NBS Field 

data 
NBS LC 

map 

NBS 
Ecozone 

map 

circa-
2000 

CA 

Avitabile Uganda Raster 30 x 30 m 376 Aboveground Biomass 
subset of 
NBS Field 

data 
Landsat None 

1999-
2003 

DR+ 

Baccini 
Tropical 
Africa 

Raster 1 x 1 Km 343 Aboveground Biomass Field data MODIS None 
2000-
2003 

DR 

Drigo 
Eastern 
Africa 

Vector 40-120 ha 143 Aboveground Biomass 
Biome 

average 
Africover FAO GEZ 

circa-
2000 

CA 

Gibbs & 
Brown 

Tropical 
Africa 

Raster 5 x 5 Km 176 
Above and 

belowground 
Biomass 

Biome 
average 

GLC2000 
CIESIN 

Population 
2000 CA 

Henry 
sub-

Saharan 
Africa 

Raster 300 x 300 m 346 Aboveground Carbon Field data Globcover 
FAO GEZ, 

MODIS VCF 
2005 CA+ 

Reusch 
& Gibbs 

Global Raster 1 x 1 Km 14 
Above and 

belowground 
Carbon 

IPCC Biome 
average 

GLC2000 
FAO GEZ, 

Frontier 
forest map 

2000 CA 
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5.2. Methods 

 

5.2.1. Analysis of biomass maps 

 

5.2.1.1. Map pre-processing 

 

Before the pair-wise comparison of each map with the NBS map, the datasets were standardized 

with regard to measurement variable, reference system, spatial coverage and spatial resolution. 

In order to investigate the effect of spatial resolution on the maps similarity, the datasets were 

also aggregated and compared at different resolutions (from 1 to 50 Km). Aggregation was 

performed through spatial averaging and resampling using the nearest neighbor method. 

 

AGB was used as common measurement unit. The Gibbs & Brown, Henry and Reusch & Gibbs 

maps presented different units and were converted to AGB using the conversion factors 

originally applied in the map: the maps reporting carbon densities were converted to biomass 

densities using a carbon ratio of 0.47 for the Reusch & Gibbs map and 0.50 in the Gibbs & 

Brown and Henry maps; the maps reporting total (above- and below-ground) biomass were 

converted to AGB using the root-to-shoot ratios for each ecological zone and life form provided 

by IPCC (2006) for the Reusch & Gibbs map and the ratios for each vegetation type reported by 

Gaston et al. (1998) for the Gibbs & Brown map. 

 

The maps, provided in different geographic systems, were projected to a common reference 

system before their comparison. Re-projection of a raster dataset inevitably causes deformation 

of its grid, which is corrected with the successive resampling that reduces the map geolocation 

accuracy. In order to minimize geolocation errors, which introduce artifacts when comparing 

maps, higher resolution datasets were re-projected to the reference system of the dataset at lower 

resolution. In addition, the maps were co-registered when their visual comparison indicated the 

presence of shifts between corresponding map features (e.g. water bodies, forest edges). 

 

The maps were then aggregated to a common resolution on the basis of the following procedures, 

depending on the nature (vector, raster) and native resolution of the datasets. 

When the maps to be compared were both raster-based, the dataset at higher resolution was 

aggregated and resampled to the grid and pixel size of the dataset at lower resolution.  

When the maps to be compared maps were both vector-based, the map with smaller Minimum 

Mapping Unit (MMU) (i.e. higher spatial detail) was first converted to high-resolution (30 m) 

raster and then aggregated within the polygons of the map with larger MMU. 

When the comparison was done between a vector-based and a raster-based map, a variable 

strategy was employed, depending on their relative resolution and based on the assumption that a 

vector polygon is mainly homogeneous with regard to the measurement variable (e.g. AGB) 

while a raster cell may correspond to a heterogeneous area. Hence, when a raster cell overlaps 

two or more polygons, its value should be compared to the area-weighted average of the polygon 

values. On these premises, when the raster-based map had a lower resolution than the vector-

based map, the latter was converted to high-resolution raster and then aggregated to the cell size 

and grid of the low-resolution raster. Instead, when the raster-based map had a higher resolution 

than the vector-based map, the raster was aggregated within the vector polygons and the 

comparison was performed at polygon level.  
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The reference NBS map, which was vector-based with a variable MMU ranging from 0.04 Km² 

for forests to 0.5 Km² for grasslands, was considered as having higher resolution than the raster 

maps with cell size ≥ 1 Km but lower resolution than the raster maps with cell size ≤ 300 m. 

 

 

5.2.1.2. Map comparison statistics 

 

The level of agreement of the biomass maps with the reference NBS map was assessed by 

comparing total and spatial distribution of the biomass estimates. Specifically, the comparison 

was performed on the basis of the following statistics:  

 Total biomass  

 Bias 

 Map histogram 

 Scatterplot 

 Fuzzy Numerical index 

 Fuzzy Numerical maps 

 Difference maps 

 Variograms 

 

The first three parameters are not spatially explicit while the other statistics measure the 

similarity of the biomass spatial distribution. Each statistic was computed at the map native 

resolution and, after aggregation through averaging, also at the following resolutions: 1 Km, 5 

Km, 10 Km, 20 Km, and 50 Km. 

 

The first statistic, total biomass, is the total AGB (Tg) within the country, obtained by summing 

the product of the biomass density of each map unit (pixel, polygon) with its area. The bias (Mg 

ha
-1

) is the difference between the mean biomass densities of two maps, where the mean 

densities were obtained by dividing the total biomass by the national land area. The map 

histograms represent the frequency distribution of the map values in biomass classes while the 

scatterplots visually represent the difference between corresponding map cells. The difference 

maps, obtained by subtracting corresponding map cells, provide the spatial distribution of the 

difference of the map estimates at pixel level. 

 

The Fuzzy Numerical (FN) index (van Vliet et al., 2009; Hagen-Zanker, 2006), equivalent to the 

Fuzzy Kappa statistic (Hagen-Zanker et al., 2005) for continuous data, measures the similarity of 

spatial patterns between two numerical raster maps, ranging between 0 (fully distinct) and 1 

(fully identical). The index is computed as the average of the numerical similarity s between 

each pair of corresponding cells (a and b) in the two maps, which in turn is computed cell-by-

cell as follow: 

 

s (a, b) = 
),max(

1
ba

ba 
   (5.1) 

 

where the cell values (a and b) are re-computed considering the neighboring cells within a 

specified window. Specifically, the cell values are re-computed as weighted average of a 4-by-4 

window, using an exponential decay function for the weights of the neighboring pixels. 

Sensitivity analysis showed that the absolute value of the index is sensitive to the algorithm 
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parameters (i.e. the window size and weighting function) but the relative agreement among the 

maps did not change using different algorithm values.  

By considering similarity between areas larger than single pixels, the FN index reduces the effect 

of co-registration errors between maps and focuses on the similarity between spatial patterns 

more than corresponding cells. The FN index provides a single measure of the maps’ overall 

agreement while the FN map represents the numerical similarity at pixel-level. These statistics 

were obtained using the open source software Map Comparison Kit v. 3.2 (www.riks.nl/mck). 

The current version of the FN index does not account for autocorrelation, causing lower 

agreement for maps with strong autocorrelation (Hagen-Zanker, 2009). 

 

Image variograms provide information on the spatial variation of the measurement variable in 

the image, with their behavior being related to the density, the size of the objects and the 

variance present in the scene (Woodcock et al., 1988a, 1988b). Variograms can be derived from 

data points (punctual variogram) or from images (regularized variogram).  

In this study, the variograms of the biomass maps were computed to represent and compare the 

spatial variation of areas with homogeneous biomass density (the “objects”) in the datasets. 

Since the variograms are sensitive to the spatial resolution of the dataset (Woodcock et al., 

1988a), the maps were converted to raster format at 1 Km resolution before the analysis and the 

Gibbs & Brown map was excluded because of its lower native resolution (5 Km).  

 

The map variograms were also compared with the punctual variogram derived from the NBS 

field plots to identify the map most able to maintain the spatial variation represented by the field 

data. 

The NBS plots were systematically located at 5 x 10 Km distance and, at each grid intersections, 

clusters of 1 to 5 plots were located at 300 m distance. Since the variogram analysis depends on 

the spatial distribution of the input data and the input data were irregularly distributed due to the 

cluster sampling strategy, the plot distribution was regularized by computing the average 

biomass density within each cluster and referring this value to the coordinates of the cluster 

center (or grid intersection). On the basis of this procedure, 1184 data points were originated 

from the original 3510 plots, and these data points at a constant 5 x 10 km distance were used to 

compute the NBS plot variogram.  

The plot distribution was not homogeneous throughout the country because the Northern part of 

Uganda and the Forest Reserves were under-sampled (see section 4.2.3.1). In addition, the 

variogram derived from the NBS plots presents a different spatial scale and coverage than the 1 

km biomass maps but, due to the systematic sampling strategy and the large number of data 

points, it provides the best available approximation of the biomass variability on the ground.  

The variograms were computed using the package gstat (Pebesma, 2004) of the open source 

software R (R Development Core Team, 2009). Water bodies were masked before the analysis. 

 

 

5.2.2. Integrating biomass maps with field data 

 

Comparing remote sensing products, as biomass maps, may reveal common trends and 

dissimilarities in the datasets but does not assess their accuracy. A proper validation requires the 

comparison of the remote sensing estimates with accurate, independent and comparable ground 

observations. However, suitable reference data comparable with medium-coarse resolution maps 

are usually not available and must be upscaled to match the spatial resolution of the remotely 

sensed data. 
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In this study, the biomass maps were compared with the NBS field data. Before the comparison 

with the biomass maps, the field plots were up-scaled to the resolution of the remote sensing 

datasets using the following procedure.  

For vector-based maps, the biomass density values of the plots located within each polygon were 

averaged.  

For raster-based maps, the field plots were upscaled to raster resolution using the NBS national 

land cover map. The upscaling procedure was based on the assumption that the plots were 

representative of the biomass density of the land cover polygon in which they were located. The 

procedure consisted on selecting the pixels where the field plots represented, through land cover 

polygons, at least 90% of the pixel area. Then, the plots located within each selected pixel were 

area-weighted averaged on the basis of the NBS land cover map (i.e. weighting the plots 

according to the fraction of the corresponding LC polygon area within each pixel). If, within a 

pixel, there was more than one plot inside the same polygon, the average plot biomass was used. 

The Avitabile and Henry maps were aggregated to 1 Km resolution before the analysis. 

The upscaled plot values were then compared with the estimates of the corresponding unit (pixel 

or polygon) of the biomass maps. Since categorical maps (i.e. maps based on the SM or CA 

approach) attribute an average value to the map units belonging to the same class, the averages 

of all upscaled field plots located within the same biomass class were also compared with the 

class value itself. 

Lastly, in order to test the assumption that 1 plot (area of 0.0025 Km²) may not be comparable 

with the larger map units (area of 1 Km² for most datasets), the comparison statistics were re-

computed selecting only the map units with at least 2 field plots.  

 

The reliability of this validation procedure depends on the accuracy of the reference dataset 

(Congalton, 1991). In order to use field data to validate large-scale biomass maps, biomass 

reference values at map resolution are estimated from the plant parameters measured at plot level. 

During this process, errors are originated from several sources, in particular from the use of 

allometric equations (Chave et al., 2004) and from the upscaling procedure (Baccini et al., 2007). 

In the present analysis, these errors were reduced using the NBS country-specific allometric 

equations (Drichi, 2003) and a large field dataset (3510 plots), upscaled on the basis of a high-

resolution map (the NBS land cover map). 

 

 

5.2.3. Analysis of biomass reference values and spatial data 

 

The biomass maps considered in this study were obtained by combining biomass reference 

values with spatial datasets.  

 

In order to separate and quantify the impact of these two components on the map estimates, the 

same set of biomass reference values was applied to different spatial maps, and vice-versa. 

Specifically, the most detailed biomass reference values (the NBS plots) and then the most 

general values (the IPCC Tier 1 values) were applied to the NBS LC map, to the GLC2000 map 

stratified by the FAO GEZ map (as in the Reusch & Gibbs map) and to the Globcover map 

stratified by the FAO GEZ map (as in the Henry map). The NBS plots were also applied to 

Landsat data in the Avitabile map.  

 

In order to apply the NBS reference data to other spatial datasets, the NBS field plots were 

averaged within each class of the spatial map, and then the average values were multiplied with 

the area extent of the corresponding class. Instead, in order to apply the IPCC Tier 1 values to 

the NBS land cover map, the NBS LC map needed to be harmonized with the IPCC Tier 1 
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classification scheme. To do this, the NBS LC map was first aggregated to the IPCC land cover 

classes (according to the reclassification scheme reported in Table 13) and then stratified by the 

GEZ ecozones. Eventually, the IPCC Tier 1 values were multiplied with the area extents of the 

corresponding classes.  

 

The biomass estimates of each map were also compared for forest and non-forest areas 

separately. In addition, the NBS biomass reference values for forest areas only were detailed 

compared with the reference values used by the other maps in order to identify the causes of 

disagreement. 

 

Table 13: Reclassification scheme used to convert the NBS land cover (LC) classes to the IPCC classes. 

NBS LC classes IPCC Classes 

  1 - Plantation Forest 
  2 - Plantation Forest 
  3 - Closed forest Forest 
  4 - Open forest Forest 
  5 - Woodland Forest 
  6 - Shrubland Shrub 
  7 - Grassland Grass 
  8 - Wetland Grass 
  9 - Small cropland Crop 
  10 - Large cropland Crop 
>10 - No Data No Data 

 

5.3. Results 

 

The comparison results are to be interpreted keeping in consideration that the Avitabile and 

Baccini maps were not independent from the reference data. Specifically, the Avitabile map used 

the NBS field plots and the NBS LC map to estimate biomass density while the Baccini map 

used the NBS biomass map to derive training data.  

On the other hand, the Drigo, Gibbs & Brown, Henry and Reusch & Gibbs maps were 

independent from the reference data and the comparison results represent an independent 

validation of their performance for the area of Uganda.  

However, the results were partially affected by differences in map formats and resolutions. For 

example, coarser maps, (e.g. Gibbs & Brown, Drigo) were favored in the comparison because 

the similarity between the datasets tended to increase at lower resolution (see Figure 31). 

 

 

5.3.1. Comparison of biomass maps 

 

5.3.1.1. Total aboveground biomass of Uganda 

 

The comparison of biomass stock of Uganda revealed strong disagreement between the remote 

sensing products, with estimates of total AGB ranging from 343 to 2201 Tg (Table 14, Figure 

28). The Baccini map provided the closest estimate (443 Tg) to the NBS reference value (468 Tg) 

while the Reusch & Gibbs map provided the most different value (2201 Tg).  

Estimates from maps based on the DR approach were conservative (i.e. negative bias) while 

maps based on the CA approach provided higher values than the NBS (i.e. positive bias).  
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The map histograms (Figure 29) showed large differences among the distribution of the biomass 

estimates, with the Avitabile, Baccini and NBS maps as well as the NBS field plots being 

concentrated at low values (< 100 Mg ha
-1

) and the Drigo, Gibbs & Brown, Henry and Reusch & 

Gibbs maps presenting higher frequencies at higher values.  

 

 

Figure 28: Comparison of the estimates of total AGB stock of Uganda 

 

 

Figure 29: Histograms of the biomass maps and NBS field plots. The histograms represents the frequency (i.e. 

number of occurrence) (y axis) for each AGB class (x axis). AGB is reported in Mg ha
-1

. The histograms are 

derived from maps aggregated at the resolution of the coarser map (5x5 Km) for consistent representation of 

frequency values 
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5.3.1.2. Other estimates of Uganda’s biomass 

 

Similar level of disagreement among AGB estimates of Uganda, as the tendency of maps based 

on biome average values and coarse spatial datasets to overestimate this parameter, was observed 

in Gibbs et al. (2007). This study estimated total above- and belowground C stock for several 

tropical countries combining four sets of biomass reference values with the GLC2000 map 

stratified by the FAO GEZ map. After converting the Gibbs et al. (2007) values for Uganda to 

AGB by applying a biomass conversion factor of 0.47 and the root-to-shoot ratio for rainforest 

(the most common ecozone of Uganda) of 0.37 (IPCC, 2006), the estimates were between 674 

and 1921 Tg, within the range found in the present comparison but consistently above the NBS 

reference value. Higher AGB values were obtained using root-to-shoot ratios for the other 

ecozones present in Uganda. 

 

High variability in the estimates of forest biomass was also noticed comparing the FAO Forest 

Resource Assessment (FRA) statistics for Uganda for the year 2000, which indicate 681 Tg in 

the FRA 2000 Report (FAO, 2001b) and only 244 Tg in the FRA 2005 Report (FAO, 2006). The 

difference, due to the adoption of the NBS data in the FRA 2005 Report, indicates the sensitivity 

of this parameter to the input data and methodology used to estimate it. It should be noted that 

the value reported in the FRA 2005 refers to forest AGB and is about half of the NBS value 

because in Uganda large amount of biomass are stored in areas outside forest land. 

 

Table 14: Total and mean AGB of Uganda for different biomass maps. The map bias is relative to the NBS 

value. The values for the maps indicated with the symbol (
a
) are derived from Gibbs et al. (2007) 

Map Total AGB (Tg) Mean AGB (Mg/ha) Bias (Mg/ha) 

Avitabile 343 14.2 -5.2 

Baccini 443 18.4 -1.0 

NBS 468 19.4 - 

Gibbs & Brown 579 24.0 4.6 

Drigo 1191 49.3 29.9 

Henry 1550 64.2 44.8 

Reusch & Gibbs 2201 91.1 71.7 

Houghton(1999)/DeFries et al. (2002)
a 

674 27.9 8.5 

Brown(1997)/Achard et al. (2002, 2004)
a 

744 30.8 11.4 

Olson et al.(1983)/Gibbs(2006)
a 

832 34.5 15.1 

IPCC(2006)
a 

1921 79.5 60.2 

 

 

5.3.1.3. Spatial distribution of biomass  

 

Differently from summary statistics (e.g. total biomass) where positive and negative differences 

may compensate each other, spatial comparison of the maps reveals their similarity at local level. 

Different but related information regarding the agreement of the biomass maps with the NBS 

reference map were provided by the scatterplots (Figure 30), the difference maps (Figure 32), the 

Fuzzy Numerical (FN) index (Figure 31), the Fuzzy Numerical maps (Figure 33) and the 

variograms (Figure 34). The results of the maps spatial comparisons (i.e. scatterplots, difference 

maps, Fuzzy Numerical maps) computed at variable resolution (1, 5, 10, 20 and 50 Km) are 

reported in Appendix A. 
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The scatterplots, difference maps and FN maps showed that the Reusch & Gibbs map strongly 

overestimated AGB distribution over most of the country and especially at low biomass values. 

The Gibbs & Brown map overestimated AGB in the northern part of Uganda and underestimated 

it in the south-eastern region. Conversely, both the Drigo and Henry maps overestimated AGB in 

the southern region and at high biomass values, and presented estimates similar to the NBS in the 

northern region. The spatial analysis of the Baccini map, which total AGB was very similar to 

the NBS value, revealed the presence of local differences, with overestimation in the western 

region counterbalanced by underestimation in the center-eastern region. The Avitabile map 

presented high spatial agreement with the NBS map and provided lower biomass densities over 

most of the country, with higher differences in the forest areas.  

The FN index confirmed these findings and showed that the spatial agreement between the maps 

usually increased at lower spatial resolution. 

 

 

Figure 30: Comparison of AGB values between the NBS and the other biomass maps. The comparison is 

performed at pixel level and the results are reported for the maps aggregated at 10 Km resolution for 

graphical reasons. The distance along the axis of the points to the 1:1 line represents the difference between 

the AGB estimates, in Mg ha
-1
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Figure 31: Fuzzy Numerical index, representing the mean similarity between the biomass maps and the NBS 

map computed at different spatial resolutions (from 1 to 50 Km) 

 

 

 

 

 



72 

 

 

 

 

Figure 32: NBS reference biomass map (left) and difference of AGB values between the biomass maps and the NBS map (right). The difference maps, obtained by 

subtracting the corresponding map pixels, indicate overestimation with positive values (in green) and underestimation with negative values (in brown) in comparison to 

the NBS map 
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Figure 33: Fuzzy Numerical maps, representing the spatial distribution of the numerical similarity (s) between the biomass maps and the NBS map, ranging from 0 

(fully distinct) to 1 (fully identical) 
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The comparison of variograms (Figure 34) indicated a large variability in the variance of the 

datasets. The field plot variogram was best approximated by the Avitabile and NBS variograms, 

suggesting that these two maps best maintained the biomass spatial variation represented by the 

field data. Instead, the other maps presented higher semivariance, indicating larger variations in 

biomass predictions compared to those observed from the field data at corresponding distances.  

 

Variogram behavior was related to the stratification approach employed by the maps and showed 

that maps based on coarse stratification layers and biome average values (i.e. Reusch & Gibbs, 

Drigo) could not capture the high biomass spatial variability represented by the field plots but 

mapped large homogeneous areas or few, distinct biomass classes. On the contrary, maps based 

on a regression approach or several detailed strata (i.e. Avitabile, NBS) identified small biomass 

areas with a continuum of values, representing more closely the spatial characteristics of the field 

data. The variogram of the Baccini map, based on a regression approach but with coarse 

resolution, showed an intermediate behavior while the Henry map, despite its higher resolution 

and large number of biomass classes, represented a biomass spatial variation not matching with 

that of the field plots. 

 

Figure 34: Variograms of the biomass maps and NBS field plots (left), with a zoom of the variograms for 

semivariance values between 0 and 2500 (right) 

 

5.3.1.4. Comparison of biomass stocks in forest and non-forest areas 

 

The AGB estimates of the biomass maps were also compared separately for forest and non-forest 

areas. Since the maps presented different mapping approaches and forest definitions (resulting in 

different distributions of forest areas), the NBS map was used to identify forest areas in all maps 

in order to obtain comparable results. Therefore, the forest and woodland areas in the NBS Land 

Cover map were aggregated to derive a forest mask that was applied to the other maps, and the 

biomass estimates for the areas classified as forest and as non-forest were compared separately.  

 

The results indicated that most of the difference between the biomass maps and the NBS values 

was located in areas classified as non-forest by the NBS (Table 15, Figure 35). With regards to 

the maps that overestimated total AGB of Uganda, the overestimation was mostly concentrated 

in areas outside forests (as classified by the NBS) and it was due to the combination of higher 
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biomass reference values for non-forest vegetation types with a larger mapping of forest areas. 

The larger extent of forest areas was due to different forest definitions and mapping 

methodologies (e.g. data sources, minimum mapping unit). The relative contribution of the two 

factors (different biomass reference values and forest mapping) to the overall difference could 

not be separated in this analysis. 

 

Table 15: Comparison of biomass estimates with the NBS values for all areas (left columns), forest areas only 

(center columns) and non-forest areas only (right columns). Forest areas were defined according to the NBS 

land cover map 

 
Total AGB Forest AGB Non – Forest AGB 

Map Tg 
Difference 

to NBS Tg 
% of Total 

AGB 
Difference 

to NBS Tg 
% of Total 

AGB 
Difference 

to NBS 

Avitabile 343 -27% 186 54% -29% 157 46% -25% 

NBS 468 - 260 56% - 208 44% - 

Baccini 443 -5% 242 55% -7% 201 45% -3% 

Gibbs&Brown 579 24% 216 37% -17% 363 63% 74% 

Drigo 1191 154% 548 46% 111% 643 54% 209% 

Henry 1550 231% 636 41% 144% 914 59% 339% 

Reusch&Gibbs 2234 377% 793 35% 205% 1441 65% 592% 

 

 

 

Figure 35: Biomass stock (Tg) in forest and non-forest areas for the biomass maps. Forest areas were defined 

according to the NBS land cover map 

 

 

5.3.1.5. Comparison of biomass density values in forest areas 

 

The biomass density values reported by the NBS in forest areas were usually lower than the 

corresponding values reported by most of the other maps. The average biomass density reported 

by the NBS for dense forests was equal to 223 Mg ha
-1

 while the corresponding value was equal 

to 310 Mg ha
-1

 for the Reusch & Gibbs map and 562 Mg ha
-1

 for the Drigo map. Similarly, the 

maximum NBS value for highly stocked dense forests was equal to 334 Mg ha
-1

 with the 
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maximum value at plot level equal to 523 Mg ha
-1

, while other studies (e.g. Mitchard et al., 2009) 

found higher values at forest and plot levels. 

 

The lower NBS values may be due to the fact that the objective of the NBS was to estimate 

biomass mainly for energy purposes (bioenergy) and therefore the study focused on the main 

accessible sources of biomass, under-sampling forest areas of difficult accessibility. Since forests 

located in accessible areas are likely to have lower biomass than remote forests, the NBS values 

for forests may be biased towards low values. On the other hand, the biomass density values of 

the NBS map are related to the map spatial resolution, which presented a minimum mapping unit 

of 4 ha for forests and 10 ha for woodlands. While biomass density in forests at plot resolution 

can reach very high values, this parameter usually decreases rapidly when computed on larger 

areas. Most importantly, the NBS map reports biomass density per land cover class. Therefore 

the value of 223 Mg ha
-1

 represents the average biomass density of the class “forest”, and higher-

than-average map units (mature, rich forests) should be compensated by lower-than-average 

units (degraded forests). Instead, the higher biomass values reported by other studies are likely to 

represent specific sites and may not represent the average forest conditions of Uganda. 

 

 

5.3.2. Comparison of maps with field data 

 

The comparison of the biomass maps with the field plots (Table 16) confirmed the large 

differences among the datasets.  

The error estimate was higher for the Reusch & Gibbs, Henry, Drigo and Gibbs & Brown maps, 

which presented a RMSE equal to 66.7, 62.2, 57.2 and 43.1 Mg ha
-1 

respectively. Since the 

reference field data were independent from these maps, the error estimates quantify the map 

accuracies for the area of Uganda. However, the RMSEs were reduced by the skewed 

distribution of the field data (Figure 17), which focused the comparison on low biomass areas 

where prediction errors tended to be smaller than those in high biomass areas. 

 

The other three maps, directly or indirectly related to the field data, presented lower error 

estimates. 

The RMSE of the Avitabile map aggregated at 1 Km resolution (17.7 Mg ha
-1

) was comparable 

with the value computed at the map’s native resolution using independent NBS field plots (15 

Mg ha
-1

) (see section 4.3.1). Similarly, the RMSE of the NBS map (24.1 Mg ha
-1

) was 

comparable with the mean standard deviation of the biomass strata (16.9 Mg ha
-1

) reported by 

Drichi (2003). Instead, the RMSE of the Baccini map for Uganda (24.7 Mg ha
-1

) was lower than 

the value reported by Baccini et al. (2008) for tropical Africa computed using independent 

reference data (50.5 Mg ha
-1

), possibly because in the present analysis the map was indirectly 

related to the reference data.  

 

When the comparison was performed selecting only the map units (pixels or polygons) with 2 or 

more field plots, there was only a small increase in the map accuracies, while the number of units 

available for the comparison decreased considerably (Table 16).When the comparison was 

performed for biomass classes (as defined in section 5.2.2) instead of map units, the RMSE was 

higher (Table 17), possibly because the aggregation in classes reduced the effect of the skewed 

distribution of the field data. 
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Table 16: Comparison of the biomass maps with the NBS field data. The comparison is performed using all 

map units with at least 1 field plot (“All plots”, left columns) and selecting only the map units with 2 or more 

field plots (“Plots ≥ 2”, right columns). N is the number of map units used for the comparison 

 All plots Plots ≥ 2 

Map N Bias (Mg/ha) RMSE (Mg/ha) N Bias (Mg/ha) RMSE (Mg/ha) 

Avitabile 850 -2.9 17.7 173 -1.7 13.6 

Baccini 888 -4.8 24.7 184 -7.5 23.5 

Drigo 985 39.3 57.2 664 38.8 54.0 

Gibbs&Brown 92 9.2 30.4 31 6.1 28.0 

Henry 878 51.1 62.2 183 57.1 69.9 

NBS 1129 1.1 24.1 693 0.9 19.5 

Reusch&Gibbs 778 35.5 66.7 160 31.5 65.1 

 

Table 17: Comparison of the biomass maps with the NBS field data by biomass classes. The comparison is 

performed using all map units with at least 1 field plot (“All plots”, left columns) and selecting only the map 

units with 2 or more field plots (“Plots ≥ 2”, right columns). N is the number of biomass classes with field 

plots for each map 

 All plots Plots ≥ 2 

Map N Bias (Mg/ha) RMSE (Mg/ha) N Bias (Mg/ha) RMSE (Mg/ha) 

Avitabile 52 -0.9 24.7 45 -0.9 20.0 

Baccini 75 26.7 45.0 56 14.5 31.5 

Drigo 94 47.7 64.5 90 45.5 61.5 

Gibbs&Brown 36 36.2 47.9 14 9.3 34.0 

Henry 163 75.4 88.5 130 67.4 79.6 

NBS 34 8.6 28.7 33 7.8 28.5 

Reusch&Gibbs 11 70.7 104.3 11 70.7 104.3 

 

 

5.3.3. Comparison of biomass reference values and spatial data 

 

The comparison of AGB estimates obtained using different combinations of the input data 

showed that applying different biomass reference values to the same spatial map caused very 

large variations in the biomass estimates (219 - 504%) (Table 18). On the contrary, using 

different spatial maps to stratify a set of biomass reference value caused much smaller variations 

(20 - 33%) (Table 19). However, the spatial datasets influenced the distribution of the estimates 

and, according to the FN index, the overall spatial agreement of the biomass maps with the NBS 

reference map decreased using global LC datasets instead of Landsat data or the NBS LC map 

(Table 19). 

 

Table 18: Total AGB using different combinations of spatial and biomass data. The table also reports the 

percentage difference of total AGB using different biomass reference data for each spatial dataset 

Spatial data Biomass data Total AGB (Tg) Difference (%) 

NBS LC 
NBS plots 468 - 

IPCC Tier1 1,492 219% 

GLC2000 + 
FAO GEZ 

NBS plots 377 - 

IPCC Tier1 2,234 493% 

GlobCover + 
FAO GEZ 

NBS plots 363 - 

IPCC Tier1 2,191 504% 
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Table 19: Total AGB using different combinations of biomass and spatial data. The values indicated with the 

symbol (
a
) and (

b
) are derived from Drichi (2003) and Avitabile (this thesis), respectively. The table also 

reports the percentage difference of total AGB using different spatial dataset for each biomass reference data 

and the Fuzzy Numerical index, which is computed by comparing each map with the NBS reference map 

(NBS plots + NBS LC) at 1 Km resolution 

Biomass data Spatial data Total AGB (Tg) Difference (%) Fuzzy Numerical 

NBS plots 

NBS LC 468
a
 - - 

GLC2000+FAO GEZ 377 -19.5% 0.568 

GlobCover+FAO GEZ 363 -22.5% 0.565 

Landsat 343
b
 -26.7% 0.608 

IPCC Tier1 

GLC2000+FAO GEZ 2,234 - 0.265 

GlobCover+FAO GEZ 2,191 -1.9% 0.292 

NBS LC 1,492 -33.2% 0.410 

 

 

The results also indicated that the use of the IPCC Tier 1 values in combination with different 

spatial maps always over-estimated AGB of Uganda (Table 18). The comparison of the biomass 

estimates separately per vegetation type revealed that most of the overestimation was due to the 

IPCC reference values for forest (ranging 115 – 310 Mg ha
-1

), which were significantly higher 

than the corresponding NBS values (ranging 35 – 223 Mg ha
-1

) and, when applied to the NBS 

LC map, estimated forest biomass to 1279 Tg while this was only 294 Tg according to the NBS 

(Table 20).  

 

In addition, the comparison of the LC maps revealed large differences among the datasets. 

Specifically, the GLC2000 mapped larger areas of forest and shrubland and smaller extents of 

grassland and agriculture in comparison to the NBS (Table 20). Therefore, by using the IPCC 

Tier 1 values in combination with the GLC2000 map (as in the Reusch & Gibbs map), the higher 

biomass reference values for forest and shrubland were applied to larger area coverage of these 

two classes, causing the strong overestimation of AGB stock found in the Reusch & Gibbs map. 

 

Table 20: Comparison of biomass and area statistics for the main LC classes of Uganda. For each LC class, 

the comparison is performed between the NBS and the IPCC Tier 1 biomass reference values (left column), 

between the total AGB estimates of Uganda obtained by applying the NBS and IPCC reference values to the 

NBS LC map (central column), and between the area mapped by the NBS LC and the GLC2000 maps (right 

column) 

 
AGB Ref. values 

(Mg/ha) 
Total AGB (Tg) 

Area                  
(Km² x 1000) 

LC class 
NBS 
Plots 

IPCC 
Tier1 

NBS Plots 
+ NBS LC 

IPCC Tier1 + 
NBS LC NBS LC GLC2000 

Forest 35 - 223 115 - 310 294 1279 49.3 67.3 

Shrubland 14 70 14 98 14.2 49.2 

Grassland 8 2 - 6 47 31 51.2 15.8 

Agricolture 11 10 112 84 84.7 70.7 
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5.4. Discussion 

 

The comparison of six biomass and C stock maps with the NBS reference dataset revealed large 

differences regarding estimates of total AGB of Uganda and its spatial distribution. These 

differences were related to the biomass reference data (biome average values versus field data), 

the spatial datasets (global versus national maps or satellite data) and the statistical approach 

(averaging versus regression models) employed by the maps.  

 

The biomass reference data were responsible for most of the variability in the AGB estimates 

(Table 18). Maps based on biome average biomass values (i.e. Reusch & Gibbs) and averages 

from forest inventories acquired in several countries (i.e. Drigo, Gibbs & Brown) agreed less 

with the reference dataset than maps based on national forest inventory data, strongly 

overestimating the country’s AGB stock. This was due to the fact that biome average values, 

representative of large areas and broad vegetation types, were applied to areas of Uganda that 

diverge from the average biome conditions. For example, the IPCC Tier 1 value of 260 Mg ha
-1 

for AGB in forests in the tropical moist deciduous ecozone was not appropriate to the woodlands 

in northern Uganda, located in an area much drier and with lower tree density and dimension 

than in the average ecozone condition, where the NBS reference value was 35 Mg ha
-1

.  

In addition, while biomass density in mature forest and at specific locations can reach higher 

values than the average NBS values (e.g. Mitchard et al., 2009), applying default AGB values to 

1 Km resolution maps is not appropriate in a country like Uganda, which is characterized by a 

highly fragmented landscape.  

  

The applicability of the biomass reference values also depends on the definition of forest. In the 

case of the IPCC Tier 1 values, the biomass reference values for forests, ranging from 115 to 310 

Mg ha
-1

, were not always matching the definition of forest, which includes any area with more 

than 10% tree canopy cover and with tree height exceeding 5 m at maturity. Moreover, while the 

NBS identifies 3 main forest types (further stratified by biomass stocking class), the IPCC 

identifies only 1 forest class, which includes the NBS classes of closed forest, open forest and 

woodland (see Table 13). Therefore, forest areas at the lower end of the canopy cover range (e.g. 

10% – 40% cover) are likely to have lower biomass density values than the minimum Tier 1 

value (115 Mg ha
-1

). 

The use of biome average values tended to overestimate the total AGB of Uganda but in some 

cases their application to local level underestimated AGB density (Figure 32). Therefore, in 

terms of C assessment the use of average values would cause underestimation of emissions from 

deforestation occurring in forests with more than average biomass density (Houghton, 2005; 

Houghton and Hackler, 2006).  

 

Regarding the spatial datasets, maps based on global LC datasets agreed less with the reference 

data than maps based on national LC or satellite data. Global datasets represent the distribution 

of the main LC types at regional level using a limited number of classes and, as a consequence of 

the small thematic detail, the variability of a biophysical parameter as biomass within the LC 

classes is usually large. For example, in the GLC2000 dataset all areas dominated by trees (>40% 

cover) are classified as forest, but it can be expected that even after their stratification by 

ecological regions the biomass density within a forest type varies considerably according to tree 

size, tree density and specific conditions related to local climate and land use history. Instead, 

national LC maps identified different forest types that allowed reducing the variability in the 

AGB strata. Satellite data were also able to identify strata with low AGB variability and, in 

comparison with LC maps, presented the advantage of higher spatial resolution, higher thematic 

content (i.e. continuous values) and were not affected by ambiguities in class definition or 

propagation of LC errors in the biomass estimates.  
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Regarding the statistical approach, biomass estimates derived from averaging methods (CA 

approach) agreed less with the reference data than predictions based on regression models (DR 

approach). While this result was clearly affected by the fact that the Avitabile and the Baccini 

maps (DR approach) were not independent from the reference datasets, similar conclusions were 

reached by Goetz et al. (2009) on the basis of independent comparison data. Using LiDAR 

metrics closely related to AGB density, Goetz et al. showed that in central Africa the Baccini 

map (DR approach) had a narrower range of variability of LiDAR values within each AGB class 

and hence a smaller uncertainty for any AGB estimate than the Gibbs & Brown map (CA 

approach). 

 

It is important to note that these results are due to the input data employed by the CA maps (i.e. 

biome average values and coarse spatial maps) more than to the approach itself. Ultimately, the 

quality of a biomass map depends on the input data used to generate it. However, the factors 

reducing the map accuracy were strictly associated with the approach: for instance, the DR 

approach could hardly be applied using few average biomass values, and it employs satellite data 

that are certain to have higher spatial and thematic resolutions than any derived map. In addition, 

since all the map units belonging to the same class receive the same biomass value, the averaging 

approach cannot explain the intra-class variability, which can be large when the strata do not 

accurately reflect the biomass distribution. Instead, maps based on regression models provide 

continuous estimates that can describe the full range of biomass variability. Moreover, while the 

categorical data (such as LC) that are used to identify the strata can only represent the dominant 

class within a certain unit (unless there is no dominant class and the unit is defined as a 

“mosaic”), the continuous nature of remotely sensed surface reflectance accounts also for the 

minor components, but this capability is limited by the complexity of retrieving biomass from a 

mixed signal.  

Similarly, the capability of providing continuous estimates is limited when the magnitude of the 

error for continuous values is such that AGB estimates must be aggregated in classes to achieve 

satisfactorily accuracies. 

 

The comparative analysis also indicated that, while maps based on the CA approach tended to 

overestimate biomass density, maps based on the DR approach showed the tendency to 

underestimate biomass density. This effect was mainly a consequence of three factors related to 

the use of optical data and decision tree models in the DR approach (see section 4.4). 

First, the optical signal tends to saturate in closed canopy forests resulting in the tendency to 

underestimate areas with high biomass densities (i.e. above 150 - 200 Mg ha
-1

). Second, in order 

to minimize atmospheric effects (i.e. cloud coverage, haze) satellite images are often acquired 

during the dry season when deciduous vegetation is usually without leaves and may be 

confounded with low-vegetation areas. Third, by averaging the data within each terminal node, 

decision tree models intrinsically underestimate at high values (and overestimate at low values). 

As mentioned above, the differences between the approaches tends to reduce when the maps 

based on the CA approach identify several strata with high spatial and thematic resolution, and 

when the continuous AGB estimates provided by the DR approach are aggregated in classes to 

achieve satisfactorily accuracies. 

 

The differences among the maps were also affected by the lack of a common definition of AGB. 

Some maps (NBS and Avitabile) refer to air-dry biomass while others refer to oven-dry biomass 

(Henry, Reusch & Gibbs) or do not provide this information (Baccini, Drigo, Gibbs & Brown) 

Similarly, there are differences regarding the minimum diameter and the inclusion or exclusion 

of dead trees, non-woody plants (herbaceous plants, lianas) or non-woody components (foliage, 

seeds). Specifically, the choice of the minimum diameter may have a larger impact in low-
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biomass vegetation types, where small trees provide a higher contribution (in relative terms) to 

the total biomass compared to high-biomass forests. However, it is not obvious that the smaller 

classes of diameter always represent a larger proportion of the total biomass: in woodlands, for 

example, grazing and farming activities (if present) may significantly reduce the understorey 

vegetation and limit the contribution of smaller diameter classes to total biomass. Most 

importantly, considering that oven-dry biomass is equivalent to about 80% of air-dry biomass 

(Brown & Gaston, 1997) and that in some ecosystems tree biomass can represent more than 95% 

of the total AGB (Henry, 2010), the contribution of different AGB definition can only account 

for a limited portion of the large differences present among the maps.  

 

The comparison of the biomass maps with ground reference data confirmed the above findings 

but also demonstrated the difficulty to perform a consistent validation of remote sensing products. 

Compatible maps as well as an accurate, representative and comparable field dataset are required 

to obtain comparable and reliable estimates of map accuracy, but such datasets are usually not 

available. In the present analysis the validation results were affected by differences in the format 

(vector, raster), spatial resolution and biomass definition used by the maps, by the skewed 

distribution of the field data and, most importantly, by the fact that some datasets were not 

independent from the testing data. 

 

Lastly, this study demonstrates that the AGB estimates were primarily driven by the biomass 

reference values while the type of spatial datasets used for their stratification had a smaller, but 

not negligible, impact. The results highlight the importance of the applicability of biomass 

reference values to the study area but also indicate that the resolution and accuracy of the spatial 

data are still critical to obtain reliable AGB estimates at local level, which are necessary for land 

management or estimating emissions from deforestation at specific locations. 
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6. Conclusions 
 

6.1. Optical Remote Sensing for biomass retrieval 

 

Accurate, updated and detailed maps of AGB distribution in tropical countries are urgently 

required for several applications, as REDD+ implementation activities, global C modeling and 

national resource planning. This study responds to the research questions raised on Chapter 4 and 

shows that remote sensing data can provide an effective way to spatialize field biomass 

measurements, and that optical data at 30-m resolution (Landsat) in association with a regression 

tree model can estimate AGB at national level with good accuracy and high spatial resolution.  

 

The freely accessible Landsat archive allowed the compilation of a nationally consistent satellite 

dataset for the period circa-2000 but did not provide sufficient cloud-free images necessary for 

compiling consistent multi-date datasets (i.e. intra-annual datasets), necessary for a proper 

discrimination of seasonal or deciduous formations. Land cover data provided information 

related to vegetation phenology and their integration with satellite data moderately improved 

model results, but in certain cases affected negatively the predictions. For this reason, the use of 

ancillary information (as land cover) is recommended only when their accuracy, spatial detail 

and temporal resolution are comparable with those of remote sensing data. 

 

Landsat data, and particularly SWIR bands, showed sensitivity to canopy water content and 

shadow fraction, which were associated with biomass density and allowed to identify a relation 

between spectral response and variation on biomass density, up to a saturation point identified 

around 150 – 200 Mg ha
-1

. Since the relationship between spectral data and biomass was non-

linear, non-parametric regression models represented the most appropriate modeling approaches, 

and satisfactory results were obtained employing the Random Forest model in combination with 

carefully selected training data. 

 

In order to obtain reliable predictions, this approach required consistent satellite data, accurate 

field data for each biomass-related spectral class and appropriate ancillary information (e.g. land 

cover).  

In the case of Uganda, the accuracy of the biomass predictions tended to be reduced by the 

saturation of the optical signal in closed canopy forests, model under-prediction at high biomass 

values and over-prediction at low values, availability of cloud-free images only during the dry 

season and missing predictions for areas affected by cloud cover. 

 

For these reasons, the presented approach resulted to be particularly suited for countries with 

limited accessibility located in tropical and subtropical dry and semi-dry areas, where biomass 

density is usually below the saturation threshold of optical sensors and cloud cover is limited 

during the dry season. In such contexts, this methodology presents the capability to map 

spatially-detailed continuous biomass densities that, in comparison with conventional approaches 

mainly based on land cover classes, allow for more accurate estimates of carbon stocks and 

emissions from deforestation events, especially for changes occurring in forests with biomass 

densities substantially different from the average class values. 

 

The innovative aspects of this study were mainly related to the following aspects: 

 

 Relevance of the study area: while other studies have employed Landsat-type data for 

biomass mapping in various regions of the world, only few examples are available for 
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tropical African countries, nonetheless this region has the highest uncertainty regarding 

biomass stocks, and reducing such uncertainties is recognized as key for global carbon 

modeling (Houghton, 2005). 

  

 The application at national level is critical since this is the scale required by IPCC for 

REDD+ monitoring, reporting and verification. Specifically, issues that are not present in 

smaller-scale studies can arise at national level because countries often include different 

ecological regions and very diverse vegetation types in their national territories. In this 

context, Uganda is a very interesting case-study because it includes several distinct 

vegetation types, from dry lowland savannah to dense humid mountain forests. Therefore, the 

relevance of the study also consists on investigating the capabilities and critically evaluating 

the limitations of a remote sensing dataset (Landsat) for mapping biomass consistently over 

different ecological vegetation types.  

 

 The application to low-biomass areas and non-forest vegetation types is innovative, since 

most of existing studies are typically focused on forest areas. This is especially important in a  

country as Uganda, which is mainly covered by agriculture, savannah and woodland that 

store substantial amounts of biomass since their low biomass density is counterbalanced by 

coverage over large areas. 

 

 The careful analyses and comparison of the performance of different models (Random Forest, 

single regression tree, linear regression) and input variables (land cover, texture, topographic 

metrics) strengthen the understanding of their capabilities and create consensus on the most 

appropriate modeling approach for biomass estimation using remote sensing data.  

 

 

6.2. Comparison of biomass maps of Uganda 

 

In order to better understand the reliability of existing biomass and C stock products, six maps 

(including the biomass map produced in this thesis) were compared with a reference dataset for 

the case study of Uganda.  

The comparison revealed very large differences among the datasets and indicated that maps 

employing the CA approach in combination with biome average values (as the IPCC Tier 1 

values) and global LC datasets strongly overestimated the biomass stock of Uganda. Instead, 

more reliable estimates were obtained using country-specific field data (i.e. forest inventories) in 

combination with satellite data and/or national LC and ancillary information.  

 

Maps based on satellite data were able to provide continuous and spatially detailed biomass 

estimates. These maps tended towards conservative estimates mainly as a consequence of the 

processing techniques and the saturation of the satellite signal at high biomass values.  

The comparison with ground reference data confirmed these findings but the validation results 

were not entirely comparable as they were affected by several factors.  

The larger impact of biomass reference data than spatial maps on AGB estimates indicated that 

the first critical step to improve the accuracy of the biomass maps consists of the collection of 

accurate biomass field data for all relevant vegetation types. The collection of sufficient 

reference data is a critical issue that cannot be substituted with larger amount of remote sensing 

observations. However, detailed and accurate spatial datasets are crucial to obtain accurate 

estimates at specific locations and to correctly quantify emissions from deforestation, as required 

for REDD+ actions. The acquisition of field datasets comparable with the remote sensing 
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products as well as effective upscaling procedures are also necessary for the proper training and 

validation of satellite-based maps.  

 

The innovative aspects of this study were mainly related to the following aspects: 

 

 The spatially-explicit comparison of a number of biomass/carbon maps using a set of 

spatial statistics: several maps based on different data sources and approaches were 

recently published but, while previous studies noted the variability in the overall 

estimates at national levels (Gibbs et al., 2007), their spatial agreement was not evaluated 

before. 

 

 The validation of a set of biomass maps at national scale using an unprecedented field 

dataset: the applicability of regional maps to national scales is uncertain because their 

proper validation is limited by the scarcity of field datasets with comparable coverage. 

The NBS field dataset allowed the consistent and extensive validation of the maps for the 

area of Uganda. 

 

 The main sources of variability in the estimates were identified on the basis of specific 

simulations, which allowed quantifying separately the impact of biomass reference data 

and spatial datasets on the biomass estimates. 

 

 

6.3. Future research 

 

The need for better estimates of biomass stocks of tropical forests as well as the interest on 

remote sensing techniques capable to retrieve this parameter have increased tremendously during 

the last decade, stimulating a rapid development of this sector and the planning of dedicated 

satellite missions. With regard to the emerging topic of REDD+, the future research will have to 

respond to the challenges of designing national-scale systems capable to monitor, report and 

verify human-induced emissions in tropical forests in an accurate, consistent and transparent way.  

 

While the present study has demonstrated the capability of optical satellite data for detailed, 

consistent and accurate estimation of biomass density at national level in the tropics, it has also 

highlighted the limitations of this approach, as the saturation of the optical signal at high biomass 

values, the impact of clouds and atmospheric contamination on data availability and data 

analysis, the effect of phenological changes on biomass estimations, and the limited 

transferability of the model to datasets belonging to different temporal or spatial domains. Such 

limitations indicate existing gaps that need to be addressed by future research in order to produce 

accurate biomass estimates over large areas at high spatial and temporal resolutions. Similarly, 

the comparison of different biomass/carbon maps and field reference datasets has stressed the 

large inconsistencies among existing products and indicated the need to identify the most 

appropriate methodology and input data according to the context and the purpose of the analysis. 

In addition, while most of the focus is currently on quantifying existing biomass stocks, new 

approaches will be required to better understand the biomass dynamics, and it can be expected 

that the quantification of the biomass changes and related carbon emissions and removals due to 

forest loss, forest degradation and forest regrowth will become a major research topic in the 

coming years. 
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By providing a key source of data, remote sensing will play a growing role for biomass 

assessment. The availability of remote sensing data is expected to increase considerably in the 

near future with a number of new satellites scheduled to be launched in the coming years. These 

satellites will carry onboard both passive (optical) and active (radar, lidar) sensors and will 

acquire data with unprecedented spatial and temporal resolutions. Such wealth of data, including 

polarimetric repeat pass radar data, hyperspectral optical data and fullwave laser data, will allow 

for a more detailed and accurate retrieval of biophysical parameters of vegetation as biomass 

density, but will require advanced data processing techniques and appropriate modeling 

approaches. Specifically, since no single spaceborne instrument can directly measure biomass, 

the fusion of different data types is considered the most promising approach because such 

integration may overcome the limitations of the individual datasets. However, effective 

integration models and technologies have not been sufficiently developed yet and will likely 

represent a key research area in the coming years. Moreover, it will be of primary importance to 

develop robust methods applicable in different ecological contexts in order to overcome the 

limitations of one-time one-place methodologies and provide estimates that are consistent 

through time and space. 

 

Last (but not least), the acquisition of reliable reference datasets compatible with satellite-based 

products and their up-scaling to the resolution of the remote sensing datasets will be a key issue 

for the proper training and validation of spaceborne datasets. With new remote sensing based 

maps of forest parameters already produced over large areas, such as the global forest canopy 

height map (Lefsky, 2010) or the pan-tropical forest carbon stock map (Saatchi et al., 2011), 

methods capable to acquire reference datasets reliably and efficiently as well as appropriate up-

scaling and comparison techniques will be crucial to better understand the capabilities and 

limitations of such datasets, to develop better remote sensing products and ultimately obtain 

robust biomass estimates. 
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DOS  Dark Object Subtraction 

DR  Direct Remote sensing 

ESA   European Space Agency 

ETM+   Enhanced Thematic Mapper Plus 

FAO   The Food and Agriculture Organization of the United Nations 

FN  Fuzzy Numerical 

FRA  Forest Resource Assessment 

GCP  Ground Control Points 

GEZ  Global Ecological Zone 

GHG  Greenhouse gases 

GLAS  Geoscience Laser Altimeter System 

GLC2000 Global Land Cover map for the year 2000 

GPG   Good Practice Guidance 

GtC  Giga tons Carbon 

LC  Land Cover 

LiDAR Light Detection And Ranging 

LULUCF  Land Use, Land-Use Change and Forestry 

H   Height 

Ha   Hectare 

IPCC   Intergovernmental Panel on Climate Change 

ICESAT Ice, Cloud and Elevation satellite 

JERS  Japanese Earth Resources Satellite 

JM  Jeffrey-Matusita 

Kg   Kilogram 

Mg  Megagram 

MMU  Minimum Mapping Unit 

MODIS  Moderate Resolution Imaging Spectroradiometer 

MRV Monitoring, Reporting and Verification 

MSSV  Mean Standardized Segment Variance 

NBS  National Biomass Study 

NDVI Normalized Difference Vegetation Index 

NIR Near Infrared  

OLS Ordinary Least Square 
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OOB Out-Of-Bag 

R
2 

Squared correlation coefficient 

REDD+ Reducing emissions from deforestation and forest degradation and the role of 

conservation, sustainable management of forests and enhancement of forest 

carbon stocks in developing countries 

RMSE  Root Mean Square Error 

SAR  Synthetic Aperture Radar 

SD   Standard deviation 

SM  Stratify & Multiply 

SPOT   Satellite Pour l’Observation de la Terre 

SRTM  Shuttle Radar Topography Mission 

SWIR   ShortWave Infrared 

Tg  Teragram 

TIR  Thermal Infrared 

TM   Thematic Mapper 

UNFCCC  United Nations Framework on Climate Change 

UTM   Universal Transverse Mercator 

VCF  Vegetation Continuous Field 

WGS84  World Geodetic System 1984 

VHR  Very High Resolution 

WHRC Woods Hole Research Center 

ρ   Wood density 
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Appendix A  
Spatial comparison of biomass maps at variable spatial resolutions (5 - 50 Km) 
 

 
 

 
 
 



106 

 

 
 
 

 
 



107 

 

 
 

 

 
 



108 

 

 
 

 

 
 



109 

 

 
 

 

 
 

 

 

 

 



110 

 

 
 

 

 
 

 

 

 

 



111 

 

Selbständigkeitserklärung 

Hiermit erkläre ich, dass ich die vorgelegte Arbeit selbständig und unter Verwendung der 

angegeben Hilfsmittel und Quellen angefertigt habe. 

 

 

Jena, den 19.12.2011 

 

 

Valerio Avitabile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 

 

Curriculum Vitae 

Personal data 

Name:   Valerio Avitabile 

Nationality:  Italian 

Date of birth:  31 Jan 1975 

Place of birth:  Roma, Italy 

Marital status:  Single 

 

 

Education and Qualifications 

August 2010 - Currently  

Researcher at the Friedrich Schiller University (Jena, Germany) for the project ”Land Use and 

Climate Change Interactions in the Vu Gia Thu Bon River Basin, Central Vietnam” (LUCCI) 

 

September 2007 – May 2008 

Visiting Scholar at the Department of Geography of the Boston University (Boston, US) for 

training courses and research activities related to the PhD topic 

 

September – December 2006 

Visiting Scholar at the Woods Hole Research Center (Massachusetts, US) on the subject 

“Comparative analysis of approaches for biomass evaluation and mapping at a regional level”, 

funded by the Organization for Economic Co-operation and Development (OECD) (Paris, 

France) 

 

October 2003 – June 2004 

Visiting Scholar at the Dep. of Environmental Resource Management, University College 

Dublin (Ireland) on the subject “Research on carbon stock evaluation in soil and wood products 

in Ireland”, funded by the Italian Ministry of Foreign Affairs 

 

September 2002  

Member of the Italian Forest Professional Register 

   

December 2001  

Honours degree (5 years Diploma) in Forest Science, Tuscia University (Viterbo, Italy). 

Specialisation: Environment management. Mark: 110/110 cum laude 

   

July 1993   

Scientific High School Diploma. Liceo Scientifico “Talete” (Roma, Italy) 

 

 

Language and Computer Skills 

Languages    

Italian: mother tongue 

English: fluent (IELTS Certificate) 

 

Computer Knowledge   

ArcGIS, ArcINFO, Envi, R, Office, UNIX 

 



113 

 

Professional Experiences 

January 2007 – March 2010 

Research Fellow (Collaborator) at the Istituto Agronomico per l’Oltremare (Firenze, Italy) as 

Principal Investigator for the EU CarboAfrica project. 

 

October 2004 – September 2006 

Research Fellow at the Istituto Agronomico per l’Oltremare (Firenze, Italy) on the subject 

“Use of Land Cover data for the evaluation of carbon sequestration capability of terrestrial 

ecosystems” within the FAO/UNEP Global Land Cover Network initiative 

 

August – October 2004 

Technical consultant of the NGO Movimondo (Roma, Italy) for the “Mangochi Food Security 

and Land Care Project” in Malawi, Africa. Duties: Natural resource evaluation in the Namizimu 

Forest Reserve 

 

March  – June 2003 

Collaborator for the professional foresters and agriculturists office Agrifolia (Roma, Italy) 

 

 

Training Courses 

March – April 2006  

Advanced Course (36 hours) in Carbon and Greenhouse Gases in Agricultural and Forest 

Ecosystems, organized by the International Centre for Advanced Mediterranean Agronomic 

Studies, Spain 

 

September 2005  

Week course on Application of GIS in meteorology and  climatology, organized by the 

Institute of Biometeorology, National  Research Council, Firenze (Italy)  

 

September - October 2003  

Training course (60 hours) in Remote sensing and GIS, organized by AIT (Italian Remote 

Sensing Association) and IAO (Istituto Agronomico per l’Oltremare), Firenze (Italy) 

 

July – August 2003  

High training course (130 hours) in Rural Development in Tropical Areas, organized by 

Scuola Superiore Sant’Anna, Pisa (Italy)    

 

March 2003   

Week course in Environmental and Forest Certification, organized by Venetoagricoltura, 

Legnaro (PD – Italy)               

 

 

Publications 

Avitabile, V., Baccini, A., Friedl, M.A., & Schmullius, C., 2012. Capabilities and limitations of 

Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote 

Sensing of Environment, 117: 366–380 

 



114 

 

Avitabile, V., Herold, M., Henry, M., & Schmullius, C., 2011. Mapping biomass with remote 

sensing: a comparison of methods for the case study of Uganda. Carbon Balance and 

Management, 6, 7 

 

Avitabile V., 2006. The role of harvested wood products in the Kyoto Protocol. Sherwood – 

Foreste ed Alberi Oggi, 121 

 

Green C., Avitabile V., Byrne K., Farrell E.P., 2006. Reporting carbon stocks in harvested wood 

products: implications for Ireland. Biomass and Bioenergy, 30 (2006): 105-114 

 

Saiz G., Green C., Butterbach-Bahlb K., Kieseb R., Avitabile V., Farrell E.P., 2006 Seasonal and 

spatial variability of soil respiration in a Sitka spruce chronosequence. Plant and Soil, 287 

(2006): 161-176 

 

Avitabile V., Drigo R., Di Gregorio A., Sarfatti P., 2005. Use of land cover data for woody 

biomass stock estimates in Eastern and Central Africa. Proceedings of the conference AfricaGIS 

2005, 31 October – 4 November, CSIR International Conference Centre, Pretoria, South Africa 

 

Ciccarese L., Avitabile V., Brown S., Pettenella D., Schlamadinger B., 2003. Could forest 

mitigate climate change? Sherwood – Foreste ed Alberi Oggi, 94  

 

 

 

Jena, den 18.07.2012 

 

 

Valerio Avitabile 

 


