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1. Introduction 
1.1 Carbon monoxide (CO) 
Carbon monoxide (CO) is a colorless, odorless, and tasteless gas which is slightly 

lighter than air; it is toxic to humans and animals when encountered in higher 

concentrations. CO consists of one carbon atom and one oxygen atom, connected by 

a triple bond. It is the simplest oxocarbon, and isoelectronic with the cyanide ion and 

molecular nitrogen [1]. 

CO is produced from the partial oxidation of carbon-containing compounds; it forms 

when there is not enough oxygen to produce carbon dioxide (CO2), such as when 

operating a stove or an internal combustion engine in an enclosed space [2]. In 

addition, a temperature-dependent equilibrium converts CO2 and C into CO 

(Boudouard equilibrium). 

Worldwide, the largest source of CO is natural in origin; photochemical reactions in 

the troposphere layer generate about 5 x 1012 kilograms per year [3]. Other natural 

sources of CO include volcanoes, forest fires, and other forms of combustion. 

The degradation process of hemoglobin which is shown in Scheme 1.1 represents 

the source of CO in biological systems. The catalytically active centers of hemoglobin 

are the iron-containing heme groups. Their degradation to biliverdin is accompanied 

by the liberation of CO in the presence of iron(II) cations. Biliverdin decomposes to 

bilirubin which is degraded to oxidized decomposition end products (so-called 

BOXes) [4, 5]. 

 CO is a highly toxic gas; it mainly causes pernicious effects in humans by combining 

with hemoglobin to form carboxyhemoglobin (HbCO) in the blood. This prevents 

oxygen binding to hemoglobin, reducing the oxygen-carrying capacity of the blood, 

leading to hypoxia and even death at the end [6]. Nevertheless, CO is increasingly 

being accepted as a cytoprotective and homeostatic molecule with important 

signalling capabilities in physiological and pathophysiological situations [7-12], and 

due to the high toxicity of CO if inhaled sophisticated strategies have to be developed 

in order to use these gaseous messenger molecules in cellular tissues. The most 

promising strategies include the use of carbonyl complexes of transition metals (CO-

releasing molecules, CORMs). 
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Scheme 1.1: Degradation of heme and liberation of CO in the presence of iron(II) cations during the 

formation of biliverdin. 

 

1.2 Carbonyl chemistry 
1.2.1 Metal carbonyl complexes 

Metal carbonyl complexes are compounds that contain carbon monoxide as a 

coordinated ligand. CO is a common ligand in transition metal chemistry and it is 

called carbonyl when it coordinates to the metal. Transition metal carbonyl 

complexes are among the longest known classes of organometallic compounds [13]. 

These complexes may be homoleptic (complexes consisting of a metal(0) center and 

carbon monoxide molecules such as Fe(CO)5), but more commonly metal carbonyl 

complexes are heteroleptic and contain diverse ligands [13]. 

To describe the bonding between a carbonyl ligand and a transition metal we have to 

explain at first the energy level diagram for CO (figure 1.1). The atomic orbitals (AO) 

of carbon and oxygen combine to form the molecular orbitals (MO) of CO. Carbonyl 

ligands can donate two electrons from the highest occupied molecular orbital 

(HOMO-σ*) and accept electrons from the electron rich metal in the lowest 

unoccupied molecular orbital (LUMO-π*). Due to the bonding of the carbonyl ligand 

to the metal, CO acts as a σ-donor and a π-accepter ligand (figure 1.2). Carbon 

monoxide donates electron density (HOMO-σ*) into a vacant metal d-orbital (figure1. 

2 (left)). This electron donation makes the metal more electron rich, and in order to 

compensate for this increased electron density, a filled metal d-orbital may interact 

with the empty LUMO- π* orbital on the carbonyl ligand, the so-called π-

backdonation (figure 1.2 (right)). The latter kind of binding requires that the metal has 

d-electrons. A relatively low oxidation state makes the backdonation of electron 

density favorable. As electrons from the metal fill the π-antibonding orbital of CO, 

they weaken the carbon-oxygen bond compared with free carbon monoxide, while 

the metal-carbon bond is strengthened [13]. 
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Fig 1.1: Energy-level diagram for CO can be refined by inclusion of s, p mixing. Crucial to the 

discussions on M-CO bonding properties are the frontier orbitals σ*(HOMO) and π*(LUMO). 

 

                σ-bond                                              π-backbond      

 

 

 

 

 
Fig 1.2: Bonding of carbonyl to a metal: σ-donor bonding (left) and π-acceptor bonding (right). 

 

Metal carbonyl complexes occur as neutral complexes, as positively charged metal 

carbonyl cations or as negatively charged metal carbonylate anions. An increase of 

negative charge leads to expansion, whereas an increase of positive charge results 

in contraction of the metal d-orbitals influencing the M(d)-CO(π*) overlap. Thus the 

strength of C-O and M-CO bonds depends on the back bonding into the antibonding 

CO(π*) orbital.  

M C O C OM

   empty
d or p-orbital

filled
sigma-orbital

  filled
d-orbital

  empty
pi-orbital
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The C-O bond becomes stronger and at the same time the M-CO bond becomes 

weaker in the positively charged metal carbonyl cations due to decreased π-

backdonation, and vice versa in negatively charged metal carbonylate anions. This 

fact means that the CO releasing properties become easier in the more positively 

charged metal carbonyl complexes [13]. These properties play an important role in 

the mechanisms of CO liberation from the metal carbonyl complexes. Therefore 

these mechanisms will be explained in detail in the later chapters. 

 

1.2.2 Preparation of metal carbonyl complexes 

Initially the synthesis of metal carbonyl complexes was carried out by Justus von 

Liebig in 1834. By passing CO over molten potassium, he prepared a substance 

having the empirical formula KCO, which he called Kohlenoxidkalium [14]. As 

demonstrated later, the compound was not a metal carbonyl, but the potassium salt 

of hexahydroxy benzene and the potassium salt of dihydroxy acetylene [15]. The 

synthesis of the first true metal carbonyl complex was performed by Paul 

Schützenberger in 1868 by passing chlorine and CO over platinum black yielding 

dicarbonyldichloroplatinum (Pt(CO)2Cl2) [16]. Nowadays the synthesis of metal 

carbonyl complexes is subject of intense organometallic research. A lot of procedures 

have been developed for the preparation of mononuclear metal carbonyl complexes 

as well as homo- and heterometallic carbonyl clusters [15]. Several methods for the 

preparation of metal carbonyl complexes are possible [13]. 

 Direct synthesis 

In this method the direct reaction of metal with CO leads to the formation of 

homoleptic metal carbonyls. Preparation of iron pentacarbonyl represents an 

example of this method, which can be prepared according to the following equation 1 

[17]. 

Fe + 5 CO                    Fe(CO)5 (100 bar, 175 °C)                            (1)  
 Reduction of metal salts  

Some metal carbonyl complexes are prepared by the reduction of metal halides in 

the presence of high pressure of CO gas. A variety of reducing agents are employed, 

including copper, aluminum, hydrogen, as well as metal alkyls such as triethylalane. 

One example of this method is the formation of chromium hexacarbonyl from 

anhydrous chromium(III) chloride with aluminum as a reducing agent, which is shown 

in the following equation 2 [17]. 
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CrCl3 + Al + 6 CO                  Cr(CO)6 + AlCl3                                    (2)  
 Photolysis and thermolysis 

Photolysis or thermolysis of mononuclear carbonyl complexes generate bi- and multi-

metallic carbonyls such as diironnonacarbonyl (Fe2(CO)9) as shown in the following 

equation 3 [18, 19]. 

 

Another example for this method is the thermal decomposition of triosmium 

dodecacarbonyl (Os3(CO)12) which provides higher-nuclear osmium carbonyl clusters 

such as Os4(CO)13, Os6(CO)18 up to Os8(CO)23  [20]. 

 Preparation of metal carbonyl cations and metal carbonylate anions 

The synthesis of ionic metal carbonyl complexes is possible by oxidation or reduction 

of the neutral complexes. Anionic metal carbonylates can be obtained for example 

via reduction of dinuclear complexes with sodium or sodium amalgam to give 

carbonylmetalate anions such as e.g. the reaction of dimanganese decacarbonyl with 

metallic sodium (equation 4) [21].                                           

  

 

The cationic hexacarbonyl salts of manganese, technetium and rhenium can be 

prepared from the carbonyl halides under CO pressure by reaction with a Lewis acid 

such as aluminum chloride as depicted in the following equation  5 [22]. 

 Mn(CO)5Cl + AlCl3 + CO                    [Mn(CO)6]+AlCl4-                     (5)  

1.2.3 Reaction of metal carbonyl complexes  
Metal carbonyl complexes are important precursors for the synthesis of other 

organometallic complexes. The main reactions include substitution of carbonyl by 

other Lewis basic ligands, oxidation or reduction reactions of the metal center, and 

reactions at the carbon monoxide ligand itself. 

 Substitution  

Substitution of CO ligands can be induced thermally or photochemically by donor 

ligands. The range of ligands is large and includes phosphanes, cyanide, nitrogen 

donors, and even ethers, especially chelating ones. Olefins, especially diolefins, are 

effective ligands that yield synthetically useful derivatives. Substitution at 18-electron 

 2 Fe(CO)5                 Fe2(CO)9 + CO                                                  (3)

Mn2(CO)10 + 2 Na                  2 Na+[Mn(CO)5]-                                  (4)



 
 

6 

complexes generally follows a dissociative mechanism, involving 16-electron 

intermediates as shown in Scheme 1.2 [13, 23]. 

 

 

Scheme 1.2: Carbonyl substitutions at 18 VE complexes proceed by a dissociative mechanism (D), 

via an intermediate of lower coordination number. 

Substitution of CO in chromiumhexacarbonyl by acetonitrile represents a good 

example of carbonyl substitutions at 18 VE complexes. As shown in the following 

equation 6 the acetonitrile ligand can then be replaced by other ligands under mild 

conditions, due to its labile bond to the metal [23]. 

 

             (6) 

 

Substitution in 17-electron complexes, which are rare, proceeds via associative 

mechanisms with a 19-electron intermediate (Scheme 1.3) [13]. 

 

 

Scheme 1.3: Carbonyl substitutions at 17 VE complexes proceed by associative mechanism (A), via 

an intermediate of higher coordination number. 

An example of 17 VE complex is V(CO)6 which reacts 1010 times faster than the 18 

VE complexes Cr(CO)6. The acceleration induced by the transition from 18 VE to a 

17 VE complex is utilized in electron-transfer (ET) catalysis. This principle was 

exploited by Kochi in 1983 for the case of ET catalysis, initiated by oxidation of 18 VE 

complexes and conversion into 17 VE complexes [24]. 

 

Cr(CO)6
CH3CN, heat

-3 CO
(CH3CN)3Cr(CO)3

C7H8

-3 CH3CN

Cr(CO)3

M(CO)n M(CO)nLslow fast M(CO)n-1L

17 VE 19 VE 17 VE
+L -CO

M(CO)n M(CO)n-1slow fast M(CO)n-1L
-CO +L

18 VE 16 VE 18 VE
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 Nucleophilic attack at CO  

The CO ligand is often susceptible to attack by nucleophiles. This fact is in 

agreement with quantum-chemical calculations which were made by Fenske in 1968. 

These calculations showed that the carbon atom in coordinated CO carries a larger 

positive charge than in free CO [13]. For example, the addition of alkyl lithium to 

metal carbonyls leads to formation of Fischer carbene complexes as shown in the 

following equation 7 [13]. 

 

(7) 

 

In the "Hieber base reaction", the CO ligand was attacked by the strong base OH-. As 

shown in the following equation 8 the initial addition product decomposes, 

presumably by β-elimination, to give carbonyl metalate [13]. 

 

                   (8) 

 

 

The nucleophilic attack at the carbonyl ligand could also lead to formation of Casey 

formyl complexes such as in the following equation 9 [13]. 

                      (9)         

 Oxidative decarbonylation  

The most famous example of this reaction is the halogenation of metal carbonyl 

complexes. Iron pentacarbonyl forms ferrous carbonyl halides as shown in the 

following equation 10 [13]. 

                                                         (10) 
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 Disproportionation  

Disproportionation, also known as dismutation, is a specific type of redox reaction in 

which a species is simultaneously reduced and oxidized to form two different 

products. An example of this reaction is shown in the following equation 11 [13]. 

 
1.2.4 Coordination modes of carbonyl ligands in metal carbonyl complexes 

The carbonyl ligand shows various bonding modes in metal carbonyl complexes. The 

most prominent two modes are terminal and bridging carbonyl ligands which exist in 

metal carbonyl dimers and clusters [13]. In the most common bridging mode, the CO 

ligand bridges a pair of metals. This bonding mode is observed in the commonly 

available metal carbonyl complexes such as, Co2(CO)8, Fe2(CO)9, Fe3(CO)12, and 

Co4(CO)12. In certain oligo-nuclear clusters, CO bridges faces of three or even four 

metal atoms [23, 25]. The most important coordination modes of carbonyl ligands are 

shown in figure 1.3 which represent the symmetrical mode for the bridging carbonyl 

ligand [13]. 

 

 

 

 

 

 terminal      doubly bridging (μ)        triply bridging (μ3) 
 
Fig 1.3: Most important coordination modes of carbonyl ligands in mononuclear (left), bi-nuclear 

(middle), and tri-nuclear (right) metal carbonyl complexes. 

 

The bridging carbonyl ligand could also exhibit asymmetric coordination modes in 

oligo-nuclear metal carbonyl complexes. In these forms the carbonyl ligands act as 

four or six electron donors by σ/π-bridge coordination (figure 1.4). Here, also side-on 

coordination may occur, which has never been observed in mononuclear carbonyl 

complexes [13]. 
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3 Mn2(CO)10  +  12 py 120 °C
-10 CO

2 [Mn(py)6]+2  +  4 [Mn(CO)5]-                                   (11)
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Fig 1.4: Examples of σ/π-bridging carbonyl ligands. 

 

The bridging form M-C-O-M/ occurs very rarely and is subject to certain requisites 

with respect to the fragments M and M/. An example of this form is shown in Scheme 

1.4, in this complex we can consider the Cp2Ti+ species as Lewis acid and 

CpMo(CO)3
- species as Lewis base [13]. 

Cp2Ti(CO)2 +  CpMo(CO)3 THF
Ti

O
C

Mo

CO

CO

 
Scheme 1.4: The mixed-metal molybdenum-titanium complex exhibits the very rare coordination 

mode for bridging carbonyl ligands via the oxygen atom (μ-η2-CO). 

 

Preferred analytical techniques used to characterize metal carbonyl complexes 

include IR and 13C-NMR spectroscopy, and mass spectrometry. The most important 

technique for characterization of metal carbonyls is infrared spectroscopy [26]. The 

C-O vibration, typically denoted νCO, occurs at 2143 cm−1 for CO gas. The energies of 

the νCO band for the metal carbonyls correlate with the strengths of the carbon-

oxygen bonds, and are inversely correlated with the strength of the π-backbonding 

between the metals and the carbon atoms [13]. 

The number of vibrational modes of a metal carbonyl complex can be determined by 

group theory and the number of observable IR transitions can thus be predicted [27, 

28, 29]. For example, the CO ligands of octahedral complexes, e.g. Cr(CO)6, 

transform as a1g, eg, and t1u, but only the t1u mode (asymmetric stretching vibration of 

the apical carbonyl ligands) is IR-active. Thus, only a single νCO band is observed in 

the IR spectra of the octahedral metal hexacarbonyls. Spectra for complexes of lower 

symmetry are more complex. For example, the IR spectrum of Fe2(CO)9 displays CO 
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M
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M

O
C

M
M

bands at 2082, 2019, 1829 cm−1 [26]. The IR-active stretching frequencies for metal 

carbonyl complexes are found in the following region (figure 1.5) [13]. 

 
Fig 1.5: IR stretching frequencies for CO as free molecule, terminal ligand, doubly bridging ligand, and 

triply bridging ligand. 

 

1.3 Carbon monoxide (CO) releasing molecules (CORMs) 

1.3.1 CORMs in general 
Reactive oxygen species (ROS) play an important role in intra- and intermolecular 

communication processes. One of the most prominent examples is carbon monoxide 

(CO) which also represents an important signalling molecule. Furthermore, intense 

research efforts are related to CO as potentially valuable therapeutic agent and as 

pharmaceutical [7,11,12,30-39]. Many physiological effects are documented for 

controlled application of CO, such as anti-inflammatory effects, regulation of blood 

pressure, modulation of vascular smooth muscle tone, protection against ischemia 

and septic shock as well as hyperoxia. In addition CO suppresses organ graft 

rejection and arteriosclerotic lesions [9,40]. 

Due to the fact that CO is an extremely toxic gas volumetric dosing in therapeutic 

applications is very challenging. Therefore for conceivable applications CO-releasing 

molecules (CORMs) are needed as carriers to supply a definite amount of CO at a 

predetermined location. For that purpose, CORMs should fulfill specific requirements 

such as solubility in aqueous solutions, low toxicity of the CORMs and their 

degradation products, and CO release that can be triggered (e.g. via change of pH, 

ligand substitution, or light irradiation). As we mentioned before the most promising 

perspective is the use of metal carbonyl complexes as CO releasing molecules 

(CORMs). The most important CORMs up to now are water-insoluble [Mn2(CO)10] 

(CORM-1, CO-release light-dependent) and [Ru(µ-Cl)(CO)3]2 (CORM-2, CO-release 

via ligand substitution) as well as water-soluble [Ru(Cl)(CO)3{N(H2)CH2COO}] 

(CORM-3, CO release via ligand substitution), Na2[H3B-COO] (CORM-A1, CO-

                 Free  Terminal μ2-CO μ3-CO 

 
 
 
 
 
 νCO (cm-1)       2143          
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              1750-1850 

 
 
 
 
 
             1620-1730 
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release pH-controlled) [11,12], and [Mn(CO)3(tpm)]Br (CO-release light-dependent, 

tpm = tris(pyrazolyl)methane) [30,31]. 

For these metal carbonyl complexes the kinetic measurements are rather straight 

forward. The common test is based on the transformation of deoxy-myoglobin with 

CO to carboxy-myoglobin [41]. Therefore this myoglobin assay will be explained in 

detail in the later chapters. CO liberation from these complexes can be initiated by 

strategies: 

 

 Thermal dissociation 

In this mechanism the CO ligand can thermally dissociate from the metal complex 

while being replaced for instance by another ligand such as ether, water or 

phosphane [4]. 

 

 Photochemical substitution 

In this procedure the CO ligand is released from the metal complex by photochemical 

cleavage of the M-CO bonds often leading to a complete decomposition of the metal 

compounds [4]. 

In these two mechanisms, liberation of CO becomes easier if the carbonyl  ligand 

have high v(CO) stretching frequencies in the IR spectra because this fact indicates 

that the M-CO bond is weaker due to a lower back donation of charge from the metal 

to the π*(CO) ligand orbitals [4]. 

 

 Associatively supported substitution 
This mechanism can occur in coordinating solvents such as water and is not 

necessarily dependent on the strength of the M-CO bond. This kind of CO release 

might be strongly pH dependent, for example the release of carbon monoxide from 

CORM-A1 is a strongly pH dependent CO releasing process [11]. 

 

1.3.2 Some selected CORMs  
1.3.2.1 Molybdenum CORMs 

Some molybdenum carbonyl complexes were used as carbon monoxide releasing 

molecules. The compounds reported range from [Mo(CO)5Br]− [42,43]  to derivatives 

with a Mo(CO)3 fragment; for example, CORM-F4 and CORM-F10 [44], which  were 

synthesized as ligand substitution CORMs, are shown in figure 1.6. CORM-F10 
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represents one of the most rapid CO releasers reported to data; it also released more 

than one mole of CO per mole of metal.  

 
 

 
 

 

 

 
 
Fig 1.6: Structures of Mo-based CORMs (2-pyrone carbonyl complexes) [44]. 

 

The Romão group submitted many patents on molybdenum CORMs. Most of their 

work focused on molybdenum carbonyl derivatives for a wide range of medical 

applications, including inflammation, infection, and vasorelaxation [7,45]. These 

compounds are derivatives containing the Mo(CO)3 moiety with oxygen and nitrogen 

ligands (figure 1.7) [46,47]. 

Fig 1.7: Structures of CORMs investigated by the Romão group [46,47]. 

 

The formation of molybdenum tricarbonyl complexes with lithium isocyanoacetate 

ligands that had a small molecular size was described by the Beck group [48]. These 

complexes appeared to be soluble and stable in water under ambient conditions, 

therefore derivatives of isocyanoacetate ligands were explored for the formation of 

molybdenum carbonyl CORMs for the treatment of liver diseases [49]. Figure 1.8 

shows ALF794 as an example of these molybdenum CORMs, which is the first 

compound that delivers CO in a targeted manner to an organ in vivo with such a high 

level of specificity [49]. 
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Fig 1.8: Chemical structure of Mo(CO)3(CNC(CH3)2COOH)3 CORM-ALF794 [49]. 

 

1.3.2.2 Manganese CORMs 

Manganese carbonyl complexes have been already used as successful carbon 

monoxide releasing molecules by many groups such as of Motterlini, Mascharak, and 

Schatzschneider. Initially, a commercially available manganese carbonyl complex like 

dimanganesedecacarbonyl [Mn2(CO)10]  was studied that requires activation by light 

to release CO [50]. A series of manganese carbonyls were synthesized by the 

Motterlini group such as [Mn(CO)5Cl] and [Mn(CO)4(bpy)]+ (bpy = 2,2′-bipyridine). 

These CORMs have t1/2(37 °C) values of greater than 900 min for CO release [51]. 

Thereafter the same group discovered that compounds such as 

[Mn(CO)3X3Mn(CO)3]− (X = Cl, OAc) and [Mn(CO)4I2]− released CO much more 

rapidly [51]. 

Recently, many manganese carbonyls have been synthesized by Motterlini 

coworkers such as CORM-368, CORM-401, CORM-371, CORM-409, and CORM-

313 which are shown in figure 1.9 [51-53]. The nature of the Mn-CO bond in these 

CORMs was characterized by natural bond orbital (NBO) analysis. According to the 

NBO calculations, the charge transfer is the major source of Mn-CO bond 

stabilization for this series. On the basis of the nature of the experimental buffers, the 

nucleophilic attack of putative ligands (L’= HPO4
-2, H2PO4

-, H2O, and Cl-) at the 

vacant site of the metal was analyzed by ligand-exchange reaction energies (Scheme 

1.5). The analysis revealed that different L’-exchange reactions were spontaneous in 

all these CORMs. 
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Fig 1.9: Structures of CORMs investigated theoretically and by Motterlini and coworkers [53]. 
 

 
Scheme 1.5: Work strategy used to study CO releasing mechanisms in these CORMs series: (Step I) 

dissociation of an axial CO molecule (COax) cis to L from the Mn center, where L=donor atom of mono- 

or bidentate ligand groups, (Step II) attack of any putative ligand (L’) from the buffer solution at the Mn 

vacant site; (Step III) dissociation of an equatorial CO molecule (COeq), trans to L, from the Mn center. 

 

Photolysis has been employed for many manganese carbonyls. The Mascharak and 

Schatzschneider groups worked in this field and prepared many manganese CORMs 

that release CO on photolysis with light. Mascharak synthesized a series of 

manganese carbonyls with ligands that contain extended conjugation and electron-

rich donors (figure 1.10) [54,55]. These CORMs readily release CO upon exposure to 

visible light. In this work density functional theory (DFT) and time dependent DFT 

(TDDFT) studies indicate that low energy metal to ligand charge transfer (MLCT) 

transitions from Mn-CO bonding into ligand π*-orbitals lead to reduction of M-CO(π*) 

back-bonding and loss of CO from these photo CORMs [55]. 

Mn

COax

OCeq L
COax

LOCeq

Mn
OCeq L

COax

LOCeq

Mn

L'

OCeq L
COax

LOCeq

Mn

L'

OCeq L
COax

L

COax COeq

L' = HPO4
2-, H2PO4

-, H2O or Cl-

Step l Step ll Step lll



 
 

15 

NN
Mn

CO
OC

N

OC

NN
Mn

CO
CO

Br

OC

S

NN
Mn

CO
CO

N

OC

S

N
Mn

CO

N
NH

OC CO

NN
Mn

CO
OC

N

OC

 

   

 
 

 

 

  

 

 

 

 

 

Fig 1.10: Structures of CORMs investigated theoretically and experimentally by the Mascharak group 

[54,55]. 

 

Another important success in photo-manganese based CORMs was published by 

Schatzschneider and coworkers who realized a facial coordination of the tpm 

(tris(pyrazolyl)methane) ligand to the manganese tricarbonyl unit [56]. The molecular 

structure for this CORM is shown in figure 1.11.  

 

 
 
 
 
 
 

Fig 1.11: The molecular structure of [Mn(CO)3(tpm)]+, (tpm = tris(pyrazolyl)methane) [56]. 

 

Furthermore, Kunz and Schatzschneider reported on the synthesis and 

characterization of a series of manganese photo CORMs with different 

imidazolylphosphane ligands (figure 1.12) [57]. The substitution pattern of the 

imidazolylphosphane ligand was found to determine the number of CO molecules 

released. Whereas the compounds with the imidazol-2-ylphosphane liberate 

approximately 2 mol of CO per mol of complex, those with the imidazol-4-

ylphosphane release only 1 mol of CO per Mn(CO)3 unit. 
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Fig 1.12: Manganese complexes with different imidazolylphosphane ligands [57]. 

 

1.3.2.3 Rhenium CORMs 

A number of rhenium carbonyl complexes were synthesized as CORMs. The Kunz 

group prepared a series of rhenium photo CORMs which contain the Re(CO)3 moiety 

with imidazolylphosphane ligands (figure 1.13) [57].  
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Fig 1.13: Rhenium complexes used as photo-CORMs [57]. 

 

Another important rhenium CORM is the water soluble rhenium carbonyl complex 

[Re(bpy)(CO)3(thp)]+ (bpy = 2,2′-bipyridine, thp = tris(hydroxymethyl)phosphine) as 

shown in figure 1.14. This complex was prepared by the Ford group in 2012 [58] and 

is a very promising candidate as photo CORM with potential therapeutic applications. 
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Fig 1.14: Water soluble rhenium CORM investigated theoretically and experimentally by the Ford 

group [58]. 

 

Recently a family of 17-electron rhenium complexes containing the Re(CO)2- 

fragment has been described as ligand substitution rhenium CORMs by the Zobi 

group [59]. The reaction of [Et4N]2[ReBr4(CO)2] (ReCORM-1) with cyanocobalamin 

(B12) was presented to produce B12-Re(CO)2 derivatives as  pharmaceutically 

acceptable CORMs.  

 

1.3.2.4 Iron CORMs 
Iron-based carbon monoxide releasing complexes represent a promising target due 

to the fact that iron is a non toxic 3d metal whose concentration is easily regulated in 

biological systems because it is naturally present in the body and is a product of 

heme catabolism by heme oxygenase to produce CO [60]. Therefore it is not 

surprising that these compounds are under investigation for many years. [Fe(CO)5] 

represents the first commercially available photo-labile iron CORM [50]. 

Subsequently a series of irontricarbonyl complexes bearing a 2-pyrone ligand has 

been evaluated as ligand substitution  iron CORMs by the Motterlini group in 2006, 

these CORMs are shown in figure 1.15 [61-63].  
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Fig 1.15: Chemical structure of irontricarbonyl-2-pyrone complexes [63]. 

 

The difference in these complexes is the position of the substituents  in the 2-pyrone 

ring for example 4-bromo and 6-methyl in CORM-F3, 4-chloro and 6-methyl in 

CORM-F8, 4-chloro and 6-hydrogen in CORM-F7, and 4,6-dimethyl in CORM-F11. 

The rate of CO release from these CORMs is affected by the presence of a halogen 

substituent on the 2-pyrone ring [61]; for example a comparison of CORM-F3 and the 

CORM-F2 demonstrates the importance of the bromide substituent at the 4-position 

of 2-pyrone. CORM-F3 releases CO while CORM-F2 did not release any detectable 

amount of CO, this result is in agreement with the qualitative observation that in 

CDCl3 solution the CORM-F2 is more stable than CORM-F3 [63].  

A year later the same group identified a new group of carbon monoxide releasing 

molecules based on cyclopentadienyl iron carbonyls [64], as shown in figure 1.16. In 

this group of ligand substitution iron CORMs, the introduction of a substituent into the 

cyclopentadienyl ring can be used to control the rate of CO release; for example the 

introduction of an ester group into the cyclopentadienyl substituent of [(η-

C5H4CO2R)Fe(CO)2X] (X= Cl, Br, I) increases the rate of CO loss; this substituent 

withdraws electron density from the metal weakening the M-CO bond facilitating the 

CO release process. In addition, introduction of this ester group at the 

cyclopentadienyl ligand enhances water solubility of this CORM. 

 

O OMe

Br

Fe(CO)3

O OMe

Cl

O OMe

Me

O O

Cl

(OC)3Fe(OC)3Fe

(OC)3Fe

O OMe

H

Fe(CO)3

O O

Fe(CO)3

CORM-F3 CORM-F7 CORM-F2

CORM-F1CORM-F11CORM-F8



 
 

19 

 

Fe
OC CO

OC

Fe

CO2Me

OC CO
OC

Fe

CO2CH2OH

OC CO
OC

Fe

CH2CO2Me

OC CO
OC

Fe

CH2CH2CO2Me

OC CO
OC

Fe

CO2Me

OC Cl
OC

Fe

CO2Me

OC Br
OC

Fe

CO2Me

OC I
OC

Fe

CO2Me

OC NO3OC

Fe
OC Cl

OC

Fe
OC Br

OC

Fe
OC I

OC  

 

Fig 1.16: Structures of iron CORMs with cyclopentadienyl ligands [64]. 

 

In 2009 the Lynam group incorporated phosphite ligands into the coordination sphere 

of the iron metal in FeI2(CO)4 to produce iron CORMs which are shown in figure 1.17 

[65]. The incorporation of phosphite ligands in this ligand substitution CORMs could 

modulate the rapid CO release exhibited by FeI2(CO)4 [65]; thus the CO release from 

these CORMs  is slower than from FeI2(CO)4. 
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Fig 1.17: Structures of iron CORMs with phosphite ligands [65]. 

 

In 2010 a paper was published to investigate the effect of enhancement of the  π-

system on the rate of carbon monoxide release [64], using indenyl ligands as shown 

in figure 1.18 [66]. The authors expected that these ligand substitution CORMs with 

indenyl ligands would release CO faster than the corresponding cyclopentadienyl 

CORMs, however, only [Fe(η5-C9H7)(CO)3]+ liberates CO faster than the 
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corresponding cyclopentadienyl compound, an unexpected result in this publication 

[66]. 

Fe

COOC
OC

Fe

P(OMe)3
OC

OC

Fe

PPh3
OC

OC

Fe

NCMeOC
OC

Fe

P(OPh)3
OC

OC

Fe

PyOC
OC

Fe

PPh3
OC

OC

Fe

BrOC
OC

Fe

IOC
OC

Fe

PEt3
OC

OC

Fe

NOC
OC

N
 

Fig 1.18: Structures of iron CORMs with indenyl ligands [66]. 

 

A new iron carbonyl complex was reported in a communication in 2011 [67] as shown 

in figure 1.19. This compound exhibits exceptional stability in aqueous media due to 

its slow release of carbon monoxide. Furthermore, CO release can be triggered 

rapidly by UV light.  

 
 

 
 

 
 

Fig 1.19: Structures of iron CORM with multidentate pyridyl ligands [67]. 

 

 In the same year the Mascharak group investigated three new iron ligand 

substitution CORMs which had been synthesized from a designed polypyridine ligand 

[68]. These ligands are expected to stabilize Fe(II) centers and allow CO binding. 
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Figure 1.20 shows the chemical structures for these polypyridine ligands, the 

structurally related series for these CORMs being [(PaPy3)Fe(CO)] (ClO4), 

[(SBPy3)Fe(CO)](BF4)2, and [(Tpmen)Fe(CO)](ClO4)2 [68,69]. In the structurally 

related series, the design allowed to arrange carbonyl ligand trans to a carboxamido-

N (strong σ-donor), an imine-N (moderately π- accepting) and a tertiary amine-N 

(weak σ-donor) center, respectively. Strong CO stretching vibrations (νCO) at 1972, 

2010, and 2012 cm-1, respectively, confirm the presence of three bound CO ligands. 

The change from a strong σ-donating and negatively charged carboxamido-N donor 

in the first complex to a neutral (and moderately π-accepting) imine-N or weak 

tertiary-N donor in the second and third complexes, respectively, increases the νCO 

value from the first to the third complex as shown by IR spectroscopy. This increase 

in νCO values clearly demonstrates that as more electron density is pushed toward 

the Fe(II) center, it transfers part of the electron density to the antibonding orbital of 

the bound CO ligand trans to it (as is the case in the first complex). Such transfer 

strengthens the Fe-CO bond in the first complex more than the other two carbonyls 

and makes it slow CO-releasing [69]. 
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Fig 1.20: Chemical structures of pentadentate polypyridine ligands [69]. 
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Enzyme triggered carbon monoxide releasing molecules (ET-CORMs) represents a 

new concept in the CORMs field.  Amslinger and Schmalz introduced 

acyloxybutadiene- iron tricarbonyl complexes as enzyme-triggerd CO-releasing 

molecules ET-CORMs [77]. The idea resulted from an earlier observation that dienol-

iron tricarbonyl complexes like 4 are very labile and readily decompose already under 

slightly oxidative conditions (presumably via a 16-VE intermediate of type 5), such 

complexes could potentially act as CORMs, provided that they can be generated 

under physiological conditions from stable precursors. An appealing possibility would 

be the use of dienylester complexes of type 3, which are expected to be sufficiently 

stable. However, once such complexes have entered a cell they maybe cleaved by 

intracellular esterase. The oxidative decomposition of the resulting dienol-iron 

tricarbonyl complexes 4 would then be linked to the release of three molecules of CO 

(Scheme 1.6). To probe this concept, they first had to synthesize some potentially 

suitable acyloxydiene-iron tricarbonyl complexes, which were prepared from 

cyclohexenone( figure 1.21) [70]. 
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Scheme 1.6: Proposed mode of action of enzyme-triggered CO-releasing molecules (ET-CORMs) of 
type 3. 
 

 
 
 
 
 
 

Fig 1.21: Structures of the acyloxybutadiene iron tricarbonyl complexes [70]. 
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In the search for enzyme triggered CO-releasing molecules (ET-CORMs) with 

improved properties, the Schmalz group studied and reported phosphoryloxy-

substituted (cyclohexadiene)Fe(CO)3 complexes as the first potentially water soluble 

compounds as shown in figure 1.22 [71].  
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Fig 1.22: Structures of the phosphoryloxy-substituted (cyclohexadiene) iron tricarbonyl complexes [71-

73]. 

Recently, a new ligand substitution CORMs based on iron metal were reported 

(figure 1.23) [74]. In this study the information on the mechanism of CO release 

comes from calculations on the stability of the species involved in sequential CO loss 

from [Fe(CO)3Br(S2CNMe2)] and [Fe(CO)2(S2CNMe2)2]. The complexes of the type 

[Fe(CO)3X(S2CNR2)] liberate 2 mol of CO very rapidly and the final mole of CO is 

liberated more slowly. CO loss is much slower from [Fe(CO)2(S2CNR2)2] and is not 

observed from [Fe(CO)2(S2COEt)2]. [Fe(CO)3I(S2COCH2CH3)] is an exception, where 

only 0.4 mol of CO is released. It is probable that the electron-withdrawing ability of O 

results in stronger CO bonding and less electron density to stabilize the five-

coordinate intermediate. 

 

Fe

SS

SS

OO

N
CH3

CH3

N

CH3

H3C

Fe

SS

SS

OO

NN

Fe

SS

SS

OO

NN

H2C
C
H2

O

CH2

H2
C

H2
C

H2C

O
C
H2

CH2

H2C
CH3

CH3

H2
C

H2
C

H3C

H3C
CH2

Fe

SS

SS

OO

NN

H2C
C
H2

CH2

H2
C

H2
C

H2C

C
H2

CH2

 



 
 

24 

 

Fe

SS

SS

OO

OO CH3

H2
C

H2
C

H3C

Fe

I
O

O

S

S

O

N
H3C

H3C

Fe

Br
O

O

S

S

O

N
H3C

H3C

Fe

Br
O

O

S

S

O

N
CH2H3C

H3C CH2

Fe

I
O

O

S

S

O

N
CH2H3C

H3C CH2

Fe

Br
O

O

S

S

O

N
CH2H2C

O
H2C CH2

Fe

I
O

O

S

S

O

O
H3C CH2

Fe

SS

SS

OO

NN

H2C
CH2

C
H2

H2
C

H2
C

C
H2

H2C
CH2

OH OH

OHHO

 
 
Fig 1.23: Structures of iron CORMs investigated experimentally and theoretically [74,75]. 

 

Very recently, the Motterlini group studied and reported the effects of newly 

synthesized CO-RMs containing an iron-allyl moiety by specifically analyzing the CO 

releasing properties in relation to their biochemical, biological and pharmacological 

parameters including solubility, cytotoxicity profile as well as vasodilatory and anti-

inflammatory activities in vitro [76]. The chemical structures for these ligand 

substitution CORMs are shown in figure 1.24. CORM-307, CORM-308 and CORM-

314 that are soluble in DMSO release CO with faster rate than CORM-319 which is 

soluble in water and liberates CO with a slower rate.  
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Fig 1.24: Structures of iron CORMs with allyl moiety [76]. 
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1.3.2.5 Ruthenium CORMs 

Photo-labile ruthenium carbonyl complexes represent an important target because 

these systems are often more air-stable and less labile than the other metal carbonyl 

complexes such as iron carbonyls. 

CORM-2 and CORM-3 which are shown in figure 1.25 represent the most important 

ruthenium carbonyls well-known as carbon monoxide releasing molecules [50,77]. 

 
 

 

 

 

Fig 1.25: Most important ruthenium CORMs up to now, CORM-2 [Ru2(CO)6Cl4] (left), and CORM-3 

[Ru(CO)3Cl-(glycinate)] (right), which was first synthesized as CORM by the Motterlini group. 

 

CORM-2 is a commercially available ruthenium carbonyl complex which firstly had 

been employed as carbon monoxide releasing molecule in 2002 by the Motterlini 

group [50]. Although CORM-2 acted as a very efficient substitution CORM, it is 

insoluble in water and only releases 0.9 mol of CO per mol CORM-2 to myoglobin 

[78]. In view of the fact that [Ru2(CO)6Cl4] represents an efficient CORM, emphasis 

was placed on literature compounds and their analogues containing the Ru(II)(CO)3 

fragment. Amino acids were used as one of the most substantial ligands with this 

fragment because they are naturally present in the body and should not cause 

toxicity problems [79].  

The most promising compound in this family is CORM-3 [Ru(CO)3Cl-(glycinate)] 

which was also synthesized by the Motterlini group in 2003. CORM-3 represents the 

first known air-stable and water-soluble carbon monoxide releasing molecule, with 

similarities to CORM-2; it releases CO by ligand substitution as inducing factor for the 

CO libration process [33,77]. This compound has become popular as a CORM to 

study the effect of CO on a wide range of biological systems, and approximately 100 

papers have appeared so far on its use.  
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1.3.2.6 Cobalt CORMs 

Several cobalt carbonyl complexes were synthesized as CORMs. Fairlamb and 

Motterlini reported a series of carbon monoxide releasing molecules based on μ2-

alkyne dicobalthexacarbonyl complexes in 2009, these complexes  are shown in 

figure 1.26  [41]. 
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Fig 1.26: μ2-Alkyne dicobalt(0)hexacarbonyl complexes investigated by Fairlamb and Motterlini [41]. 

 

The rationale for selecting these μ2-alkyne dicobalthexacarbonyl complexes was two-

fold: (i) 18-electron cobalt(0) carbonyl complexes possess labile CO ligands; [80] (ii) 
the alkyne ligand allows the electronic properties of the cobalt(0) center to be 

modulated, which may, in turn, allow control over the release rate. It is worthy of note 

that this class of compounds exhibit cytotoxicity towards leukaemia and tumour cells 

[81-85]. In addition, the first organometallic peptide conjugate was based on a 

cobalt(0) carbonyl-alkyne enkephalin derivative, which also exhibits toxicity against 

tumour cells [86]. 
 

1.3.2.7 Iridium CORMs 

Iridium carbonyl complexes represent a new family of compounds as potential carbon 

monoxide releasing molecules. On the basis of substitution, based on 

tetrachlorocarbonyliridate(III) derivatives as shown in figure 1.27 [87]. This quite 

simple moiety has shown to be robust enough to stabilize coordinated S-nitrosothiols, 

N-nitrosamines, and C-nitroso compounds [88-92]. At the same time, the chloride 

trans to the CO (or N(OR)) moiety is labile enough to be replaced by other ligands 
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[93]. These compounds are soluble in water and release CO under physiological 

conditions. 
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Fig 1.27: Structures of iridium-based CORMs investigated theoretically and experimentally [87]. 

 

The most interesting feature of these CORMs is the poor backdonation from the 

iridium center to the CO in favor to the CO releasing properties. This effect can be 

verified by the calculated population (NPA) of the CO moieties in each one of these 

complexes [87]. 
 

1.3.2.8 Non-transition-metal CORMs 

There is one group of non-transition-metal compounds which release carbon 

monoxide, namely Na[H3BCO2H] (CORM-A1) and Na[H3BCONR2] [94-96]. CORM-

A1 represents a water soluble CORM and does not contain a transition metal, in 

addition it liberates carbon monoxide at  a very slow rate under physiological 

conditions, which may be advantageous in the treatment of chronic conditions that 

require carbon monoxide to be delivered in a carefully controlled manner. The 

release of CO from CORM-A1 is both pH- and temperature-dependent; this was 

demonstrated by using a myoglobin assay and an amperometric carbon monoxide 

electrode [94]. Interestingly, the time required to completely release CO from CORM-

A1 gradually decreased by lowering the pH values [94]. 

The aqueous solutions of CORM-A1 are alkaline and very stable at room 

temperature, but in the presence of protons, the compound starts to decompose and 

to liberate carbon monoxide [97]. CORM-A1 is involved in two acid/base equilibria 

and loses CO as a result of the reaction with protons at physiological pH values as 

shown in Scheme 1.7. 
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Scheme 1.7: pH dependency of CO release from [H3BCO2H]-  (CORM-A1). 

 

After CORM-A1 a number of boranocarbamates [H3BCONR2]- were prepared from 

[H3BCO2H]- in 2010 [96] (figure 1.28). Since protonation of an amide in these 

compounds is more difficult than of the acid(-COOH) group in CORM-A1, these 

compounds release CO at a much slower rate than the parent compound and are 

therefore potential carbon monoxide releasing molecules for biological and medicinal 

application. 

 
Fig 1.28: Boranocarbamate derivatives of Na[H3BCO2H] [96]. 

 

The half lives of these boranocarbamate derivatives were calculated at different pH 

values [96]. They have the same results as CORM-A1, thus the half life time 

gradually decreased by lowering the pH values, but the half life values itself are 

higher than those of CORM-A1; the reason for this finding  is based on the fact that 
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an amide in these compounds is more challenging to protonate than of the carboxylic 

acid group in CORM-A1.  Scheme 1.8 shows the mechanism which has been 

proposed for the CO release from the boranocarbamate derivatives [96]. 
 

                                                                                                                                                                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Scheme 1.8: Proposed mechanisms of CO release from the boranocarbamate derivatives. Step (1): 

the amides of the compounds are protonated in a rapid, amide pKa-dependent equilibrium; step (2): 

the rate-limiting step for this mechanism is the elimination of the amine (k1) yielding H3BCO; step (3): 

H3BCO decomposes rapidly to release CO. 

 

1.4 Myoglobin assay 

The most important analytical question concerns quantification of the amount of 

carbon monoxide released by a CORM during mode of action. In comparable 

experiments with nitric oxide, NO-specific microelectrodes have been used for such 

quantitative measurements [98,99]. These are remarkably sensitive but are also 

notoriously difficult to use with good reproducibility. In this context, it is notable that 

the use of a CO electrode was reported several years ago [94] to be useful for 

monitoring CO release from a CORM. In addition, an electrochemical-based gas 

analyzer has been used for monitoring of exhaled CO from asthmatic and diabetic 

patients [100,101]. By far the most common analytical method used for this purpose 

is based on monitoring the conversion of a buffered aqueous solution of deoxy-

myoglobin to carboxy-myoglobin at a pH value of 7.4. This technique allows to 
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evaluate the potential release of CO from CORMs and the myoglobin acts as CO 

trapping agent in this assay (equation 12) [41]. 

        Mb  + CO Mb(CO)                                                                        (12) 

The CORMs are added as a solution in dimethylsulfoxide to a solution of buffered 

deoxy-myoglobin in water at 37°C (it was mentioned in the CORMs literature, that the 

final concentration of the CORM in the myoglobin buffered aqueous solution should 

range between 10-100 μmol/L), in the presence of sodium dithionite as reducing 

agent. Deoxy-myoglobin shows an absorption maximum at 560 nm, during the 

reaction with CO two absorption maxima at 540 and 578 nm are formed, whereas a 

decreasing intensity for the absorption at 560 nm is observed. At the same time the 

conversion of deoxy-myoglobin to carboxy-myoglobin shows five isosbestic points at 

504, 517, 551, 571, and 586 nm (figure 1.29). 

  

 

 

 

 

 

 

 

 

 
Fig 1.29: Absorption spectra of deoxy-myoglobin and carboxy-myoglobin in the range of 500-600 nm 

(phosphate buffer, pH 7.4, 37°C, [Mb] =100 μM). 

 

The UV/Vis spectral change in the Q band region after addition of [Mn(CO)3(tpm)]+, 

(tpm = tris(pyrazolyl)methane)  to deoxy-myoglobin solution and irradiation with light 

is an example of this myoglobin assay as depicted in figure 1.30 [56]. 
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Fig 1.30: UV/Vis spectral changes in the Q band region of myoglobin solution (75 mmol/L) with  

[Mn(CO)3(tpm)]+ (20 mmol/L) in 0.1 M phosphate buffer upon irradiation at 365 nm (t = 0 to 100 min). 
 

The dissociation constant for carboxy-myoglobin is 37 nM and the changes in the 

absorption spectra are substantial owing to the strong, distal-ligand sensitive Soret 

and Q-bands, so the sensitivity of this method for detecting CO released into the 

medium is quite good [50]. A recent article by Atkin et al. very nicely summarizes the 

applications of this technique as well as the necessary purification procedures, etc. in 

order to ensure its accuracy [102]. However, since myoglobin is an oxygen sensor, 

this methodology is not compatible with photolyses in aerated media, so there is a 

need to develop quantitative methods that avoid that limitation. Another complication 

of the myoglobin assay for CO is that this protein is strongly colored in the near UV 

and visible regions of the spectrum and these absorbances may interfere with 

photochemical processes via inner filter effects if the myoglobin is present in the 

solution. In this context, Rimmer et al. [103] reported three analytical procedures for 

determining the quantity of CO released from photoCORMs that leave the spectrum 

of the photolysis solution unperturbed and that are compatible with studies in aerated 

media. Moreover Mclean et al. [104] descrided an oxy-hemoglobin as a convenient 

assay for CO release from CORMs Instead of myoglobin assay. 
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In our study we are interested to investigate photo- induced iron(II)-based CORMs 

with various groups of ligands; N/S ligands such as cysteamine and 2-

aminothiophenol in [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) and [Fe(CO)2(SC6H4-2-

NH2)2] (CORM-S2), respectively, and N/P ligands such as 2-

(diphenylphosphino)ethylamine and 2-(diphenylphosphino)aniline in [Fe(CO)(NC-

Me)(H2NCH2CH2PPh2)2]2+ (CORM-P1) and [Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2]2+ 

(CORM-P2) respectively. Furthermore we will report here the investigation of iron 

carbonyl complexes with different phosphorus-containing ligands such as trichloro 

phosphine in [Fe(CO)4(PCl3)] (CORM-P3), [Fe2(CO)6(PCl2)2] (CORM-P6), [(p-N,N-

dimethylaminophenyl)dichlorophosphine] in [Fe(CO)4(PCl2C6H4-p-NMe2)] (CORM-

P4), [(morpholino)dichlorophosphine] in [Fe(CO)4(PCl2N(CH2CH2)2O)] (CORM-P5), [ 

(p-trifluoromethylphenyl)dichlorophosphine]  in [Fe2(CO)6{PCl(C6H4-CF3)}2]  (CORM-

P7), and calciumbis(diphenylphosphanide) in [(thf)4Ca{Fe2(CO)6(μ-CO)(μ-PPh2)}2] 

(CORM-FC).  
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2. Results and discussion 

2.1 N/S-iron-based CORMs 

CORMs with medicinal applications have to meet certain preconditions. They and their 

degradation products must be non-toxic. Therefore we started our investigations with 

bidentate ligands with N- and S-donors such as cysteine. The iron(II) complexes 

[Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) and [Fe(CO)2(SC6H4-2-NH2)2] (CORM-S2) 

represent our examples of N/S containing CORMs. Iron complexes with biogenic 

ligands such as cysteine and isocysteine contain reversibly bound carbon monoxide 

[105,106]. Twenty years ago a systematic approach verified that iron(II) thiolates 

generally act as CO carriers with reversibly bound carbon monoxide [107] making these 

compounds ideal CORMs for medicinal and physiological applications. We focused our 

research on biogenic ligands derived from cysteamine (Scheme 2.1). 
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Scheme 2.1: Biogenic ligands derived from cysteamine. 
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2.1.1 Synthesis  

The complexes [Fe(CO)2(SCH2CH2NH2)2] (1) and [Fe(CO)2(SC6H4-2-NH2)2] (2) were 

prepared earlier from FeSO4 and the appropriate thiol in methanol in the presence of 

NEt3 in a CO atmosphere in poor yields (Scheme 2.2) [108].  
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Scheme 2.2: Synthesis of [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) and [Fe(CO)2(SC6H4-2-NH2)2] (CORM-

S2) starting from FeSO4. 

A similar procedure using KOH as a base was published for the synthesis of 2 in 43% 

yield [109] which crystallized as 2·THF with the THF molecule bridging the amino 

functionalities via hydrogen bridges. However, the bridging THF clamp does not 

influence the coordination pattern of iron(II) because in complexes of the type 

[Fe(CO)2(SR)2(en)] (en = ethylenediamine), the thiolate ligands also show a trans 

arrangement and the two carbonyl ligands a cis alignment. We have shown in 

physiological studies that THF-free 1 is an ideal CORM with a similar coordination 

sphere of the iron(II) center that releases CO upon irradiation with visible light. In 

addition, 2 was prepared from the reaction of bis(2-aminophenyl)disulfane with the 

[HFe(CO)4]
- anion [110].  Mechanistically, the first step was proposed as the addition of 

the Fe-H bond to the disulfane moiety to give intermediate [(OC)4Fe(SC6H4-2-NH2)]
- with 

the liberation of 2-aminothiophenol. The oxidative addition of another equivalent of 

disulfane to this iron(0) anion yielded [(OC)3Fe(SR)3]
-. Subsequent loss of a 2-

aminothiophenolate anion and one carbonyl molecule finally gave 2. 
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Ruthenium-based CORMs (e.g. CORM-2 and CORM-3) release CO upon ligand 

substitution. The orange-brown diamagnetic complex [Ru(CO)2(SC6H4-2-NH2)2] (4) was 

prepared in 30% yield by the reduction of RuCl3 with CO in ethanol and subsequent 

addition of 2-aminothiophenol [111]. The IR spectrum of 4 shows CO stretching 

vibrations at 2035 and 1970 cm-1. Iron and ruthenium complexes with comparable metal 

environments have been studied by Sellmann and coworkers [112-116] who showed 

that these complexes are thermally stable but release one CO ligand upon UV 

irradiation, which leads to subsequent ligand substitution. These compounds were 

prepared from the reaction of [(thf)Ru(CO)3Cl2] with the sodium salt of 1,2-bis(2-

mercaptoanilino)-ethane and 2,3-bis(2-mercaptoanilino)butane (Scheme 2.3) [112] and 

show coordination spheres similar to the related iron(II) compounds. 
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Scheme 2.3: Synthesis of a ruthenium complex with Ru(CO)2N2S2 coordination pattern. 
 

 

The promising properties of 1 and the possibility to activate the Sellmann complexes 

with UV light led to an expansion of our investigations with respect to photosensitive 

CORMs. We prepared and reported [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) (1) [126] 

and [Fe(CO)2(SC6H4-2-NH2)2] (CORM-S2) (2). The homologous Ru-based derivatives 

[Ru(CO)2(SCH2CH2NH2)2] (3) and [Ru(CO)2(SC6H4-2-NH2)2] (4) were also reported here  

[117] with good yields via the direct metalation of the appropriate thiol with iron 

carbonyls (Scheme 2.4) or via the oxidative addition of cystamine (H2N-CH2-CH2-S)2 to 

iron carbonyls (Scheme 2.5). These approaches ease the work up because gaseous 
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 byproducts are easily removed and no salt-like byproducts enforce purification by 

fractional crystallization. 
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Scheme 2.4: Synthesis of [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) and [Fe(CO)2(SC6H4-2-NH2)2] (CORM-

S2) as well as of the homologous ruthenium complexes [Ru(CO)2(SCH2CH2NH2)2] (3) and 

[Ru(CO)2(SC6H4-2-NH2)2] (4) starting from metal carbonyls. 
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Scheme 2.5: Synthesis of [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) and [Fe(CO)2(SC6H4-2-NH2)2] (CORM-

S2) starting from [Fe3(CO)12]. 

2.1.2 Molecular structures  

The molecular structures of [Fe(CO)2(SCH2CH2NH2)2] (1) [126] and  [Fe(CO)2(SC6H4-2-

NH2)2] (2) [117] are shown in figures 2.1 and 2.2 respectively. The N/S iron-based 

CORMs 1 and 2 form THF adducts through hydrogen bridges, and these adducts are 

displayed in figure 2.3. Although the environments of the iron(II) centers are very similar 

in CORM-S1 and CORM-S2, additional THF molecules show different coordination 

modes. In 2, the THF molecule occupies a bridging position between the two amino 
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 functionalities [108], whereas the THF molecule is only bound to one amino group in 1. 

The molecular structures of homologeous [Ru(CO)2(SCH2CH2NH2)2] (3) and 

[Ru(CO)2(SC6H4-2-NH2)2] (4) [117] are shown in figures 2.4 and 2.5, respectively,  

together with  representations of their adducts with solvent molecules. Complexes 1 

(CORM-S1) and 3 precipitate from THF with isotypic crystal structures, which both show 

a THF molecule bound to one of the amino functionalities. Complex 4 was recrystallized 

from N,N-dimethylformamide (DMF) and a DMF adduct formed during crystallization. 

Nevertheless, the adduct formation of 4 shows far-reaching similarities with that of 

CORM-S2. The coordination spheres of the metal centers in all these complexes are 

very similar with cis-arranged carbonyl ligands. Due to electrostatic repulsion, the 

thiolato anions show a trans-arrangement. Selected physical parameters are 

summarized in table 2.1. The structural parameters are very similar and the metal 

atoms have only a weak influence on the structural data. Due to the fact that the Ru-S 

and Ru-N bonds are longer than the corresponding Fe-S and Fe-N bonds of CORM-S1 

and CORM-S2, a small N···S distance (bite) of the chelate ligands leads to endocyclic 

S-Ru-N bond angles, which are smaller than the corresponding values of the iron 

compounds. 
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Fig 2.1: Molecular structure and numbering scheme of 1. The ellipsoids represent a probability of 50%. 

Selected bond lengths (pm): Fe-C5 176.9(2), Fe-C6 176.7(2), Fe-S1 230.53(6), Fe-S2 230.66(6), Fe-N1 

204.4(2), Fe-N2 204.4(2), C5-O1 114.7(2), C6-O2 114.9(2); selected bond angles [°]: C5-Fe-C6 

90.71(9), C5-Fe-S1 94.73(7), C5-Fe-S2 90.32(7), C5-Fe-N1 178.88(9), C5-Fe-N2 90.42(8), C6-Fe-S1 

88.48(7), C6-Fe-S2 96.43(7), C6-Fe-N1 89.83(8), C6-Fe-N2 177.64(8), S1-Fe-S2 172.92(2), S1-Fe-N1 

86.26(5), S1-Fe-N2 89.35(5), S2-Fe-N1 88.64(5), S2-Fe-N2 85.64(5). 
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Fig 2.2: Molecular structure and numbering scheme of 2. The ellipsoids represent a probability of 40%. 

Selected bond lengths (pm): Fe-C13 177.8(2), Fe-C14 178.1(2), Fe-S1 229.25(5), Fe-S2 229.40(5), Fe-

N1 204.16(18), Fe-N2 203.64(17), C13-O1 114.1(3), C14-O2 113.8(3); selected bond angles [°]: C13-

Fe-C14 88.31(10), C13-Fe-S1 89.67(7), C13-Fe-S2 94.12(7), C13-Fe-N1 91.13(9), C13-Fe-N2 

178.95(10), C14-Fe-S1 93.48(7), C14-Fe-S2 90.22(7), C14-Fe-N1 178.83(10), C14-Fe-N2 90.69(8), S1-

Fe-S2 174.78(2), S1-Fe-N1 85.49(5), S1-Fe-N2 90.07(5), S2-Fe-N1 90.85(5), S2-Fe-N2 86.20(5). 
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Fig 2.3: Structure models of [Fe(CO)2(SCH2CH2NH2)2]·THF (A) and [Fe(CO)2(SC6H4-2-NH2)2]·THF (B). 

The heavy atoms are shown with arbitrary radii, and H atoms are omitted for clarity. The THF molecules 

are bound by N-H···Othf hydrogen bridges. 
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Fig 2.4: Molecular structure and numbering scheme of 3 (A). The asymmetric unit contains two molecules 

but only one is displayed. H atoms are drawn with arbitrary radii. (B) The structure of 3·THF with the 

coordination of THF through a hydrogen bridge. Selected bond lengths [pm]: Ru1A-S1A 241.7(2), Ru1A-

S2A 240.7(1), Ru1A-N1A 216.8(4), Ru1A-N2A 217.2(4), Ru1A-C5A 186.1(6), Ru1A-C6A 187.1(6), C5A-

O1A 114.3(7), C6A-O2A 114.6(7); selected bond angles [°]: S1A-Ru1A-S2A 167.88(5), N1A-Ru1A-C5A 

178.6(2), N2A-Ru1A-C6A 178.2(2), S1A-Ru1A-N1A 83.6(1), S2A-Ru1A-N2A 84.0(1), S1A-Ru1A-N2A 

86.2(1), S2A-Ru1A-N1A 88.8(1), S1A-Ru1A-C5A 97.5(2), S2A-Ru1A-C5A 90.0(2), S1A-Ru1A-C6A 

94.9(2), S2A-Ru1A-C6A 94.7(2), C5A-Ru1A-C6A 89.2(2). 
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Fig 2.5: Molecular structure and numbering scheme of 4 (A; the ellipsoids represent a probability of 40%, 

and H atoms are shown with arbitrary radii) and the structure of 4·DMF (B; atoms drawn with arbitrary 

radii, H atoms omitted for clarity). Selected bond lengths [pm]: Ru1-S1 239.4(1), Ru1-S2 239.3(1), Ru1-

N1 214.9(4), Ru1-N2 215.5(4), Ru1-C13 186.7(5), Ru1-C14 187.6(5), C13-O1 114.2(6), C14-O2 

114.3(6); selected bond angles [°]: S1-Ru1-S2 168.54(5), N1-Ru1-C14 177.5(2), N2-Ru1-C13 178.7(2), 

S1-Ru1-N1 83.8(1), S2-Ru1-N2 83.4(1), S1-Ru1-N2 89.0(1), S2-Ru1-N1 87.4(1), S1-Ru1-C13 92.2(2), 

S2-Ru1-C14 94.2(2), S1-Ru1-C14 94.3(2), S2-Ru1-C13 95.5(2), C13-Ru1-C14 89.2(2). 
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Table 2.1: Comparison of physical data of the iron(II) complexes [Fe(CO)2(SCH2CH2NH2)2] (1, CORM-

S1)
 
and [Fe(CO)2(SC6H4-2-NH2)2] (2, CORM-S2) as well as the homologous Ru-based derivatives 

[Ru(CO)2(SCH2CH2NH2)2] (3) and [Ru(CO)2(SC6H4-2-NH2)2] (4) (average values for bond lengths [pm] 

and angles [deg.]). 

 
 

Compound 1  

(CORM-S1) 

2  

(CORM-S2) 

3 4 

M Fe Fe Ru Ru 

νas(CO) 2014 2035 2023 2044 

νs(CO) 1945 1976 1950 1989 

δ(13CO) 215.0 213.6 201.3 189.3 

M-CCO 176.8 178.0 186.6 187.2 

M-N 204.4 203.9 217.4 215.2 

M-S 230.6 229.3 241.2 239.4 

C-M-C 90.7 88.3 89.8 89.2 

S-M-S 172.9 174.8 168.5 168.5 

N-M-N 89.1 89.9 87.0 87.9 

S-M-Nendo 86.0 85.8 83.8 83.6 

S-M-Nexo 89.0 90.5 87.9 88.2 

S-M-C 92.5 91.9 94.1 94.1 

N-M-Ctrans 178.0 178.9 178.3 178.1 

N-M-Ccis 89.8 90.9 91.6 91.5 
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Larger differences with respect to the metal center and substitution pattern of the 

chelate base are evident for the CO stretching frequencies and the 13C chemical shifts 

of the carbonyl ligands in the IR and NMR spectra, respectively. Takács et al. [108] 

reported identical stretching frequencies of 2020 and 1963 cm-1 for 1 and 2 in methanol 

solution. Nujol suspensions of pure compounds, however, gave another picture, which 

is in agreement with the trend of the parameters of 3 and 4. The aromatic backbone of 

the chelate base leads to higher wavenumbers by 20 cm-1 for the asymmetric and ca. 30 

cm-1 for the symmetric stretching vibrations. In addition, substitution of iron(II) by 

ruthenium(II) causes a shift to higher wavenumbers. In agreement with the expectation 

that the anionic charge on the sulfur atom in 2 and 4 might be partially delocalized into 

the arene backbone, the π-backdonation from the metal center into the π*(CO) orbital is 

lower than in complexes with an aliphatic backbone. This situation leads to a shift of the 

13C NMR resonances to lower frequencies for the complexes with bidentate 2-

thiolatoaniline bases. 

The IR spectrum of DMF-free 4 [117] shows characteristic vibrations at 3243 and 3235 

cm-1 for the NH2 group and at 2044 and 1989 cm-1 in the carbonyl region. Upon 

formation of a DMF adduct, the NH2 vibrations shifted to lower wavenumbers and two 

bands at 2044 and 1963 cm-1 were observed in the carbonyl region (figure 2.6). 

Recrystallization of 4 from DMF yielded the DMF adduct, however, storage at room 

temperature led to partial loss of DMF and deterioration of the crystals. Due to the fixed 

geometry of the bidentate chelating ligands, the protons at the nitrogen atoms are 

chemically nonequivalent, which leads to significantly different chemical shifts in the 1H 

NMR spectra of 3.85 and 5.00 ppm for 3 and of 5.75 and 6.83 ppm for 4. 
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Fig 2.6: IR spectra of the carbonyl region of [Ru(CO)2(SC6H4-2-NH2)2] (4) [117]. The DMF-free compound 

exhibits IR absorption bands at 2044 and 1989 cm
-1

 (left panel), while the DMF adduct [Ru(CO)2(SC6H4-

2-NH2)2]·DMF (4·DMF) has bands at 2044 and 1963 cm
-1

 (right panel). Partial loss of DMF leads to an 

overlay of the spectra of both compounds (center panel). 

2.1.3 CO-release properties 

Light-triggered CORMs are useful therapeutic agents [7,118]. Therefore, CO release 

during irradiation with visible light in a buffer solution was studied with a myoglobin 

assay. For neither [Ru(CO)2(SCH2CH2NH2)2] (3) nor [Ru(CO)2(SC6H4-2-NH2)2] (4) [117], 

even at a concentration of 200 µM, we could observe release of CO upon irradiation 

with visible light from a cold light source (figure 2.7). Hence, these compounds cannot 

be used as photo-CORMs in the visible light domain. Sellmann and coworkers [110] 

have shown that only one CO molecule was liberated during irradiation with a mercury 

lamp in the presence of triphenylphosphane leading to the formation of complexes with 

one CO and one phosphane ligand bound to ruthenium. However, the use of UV-light 

from a mercury source for the activation of metal complexes is limited because of its 

phototoxicity ultimately damaging cells and tissues. 






 

Fig 2.7: Light dependence of CO release. Absorption spectra of [Ru(CO)2(SCH2CH2NH2)2] (left) and 

[Ru(CO)2(SC6H4-2-NH2)2] (right); compound without myoglobin (blue), myoglobin alone (organge), 

myoglobin saturated with CO (green), and myoglobin with the compound after irradiation with visible light 

(black). 

In contrast, 50 µM of iron-based [Fe(CO)2(SCH2CH2NH2)2] (1) was sufficient to almost 

fully convert 100 µM deoxy-myoglobin (96.5 ± 2.8%, n = 3)  upon irradiation with visible 

light (figure 2.8(left)). The same concentration of [Fe(CO)2(SC6H4-2-NH2)2] (2) only 

released 82.7 ± 6.3 µM of CO (n = 4), (figure 2.8(right)). 

 

Fig 2.8: Light dependence of CO release. Absorption spectra for the indicated compounds: compound without myoglobin (blue), myoglobin 

alone (organge), myoglobin saturated with CO (green), and myoglobin with the compound after irradiation with visible light (black). 

The time constant ( ) was derived from a single-exponential fit to the data shown in 

figure 2.9. The time course of CO release by [Fe(CO)2(SCH2CH2NH2)2] (1) was fitted  






reasonably well by a single exponential function with  = 26 ± 4 s (n = 4), which 

suggests that two molecules CO were released practically simultaneously upon the 

light-induced breakdown of CORM-S1 (figure 2.8 (left)). The CO release from 

[Fe(CO)2(SC6H4-2-NH2)2] (2),  = 43 ± 2 s (n = 6), was significantly (P < 0.05 based on 

a two-sided student’s (test) slower than for CORM-S1, but faster (P < 0.001) than the 

light-induced breakdown of CORM-S2 in the absence of myoglobin (: 71 ± 2 s, n = 4),  

indicative of a step-wise release of CO (figure 2.9 (right)). 

 

Fig 2.9: Absorbance at 540 nm: Compounds CORM-S1 and CORM-S2 were applied to myoglobin as 

indicated by the arrows, and the absorbance sharply increased upon irradiation of the samples with 

visible light. Continuous gray curves are single-exponential fits. On the right, opened data points (blue) 

show the absorbance of 2 alone, which was subtracted from the raw absorbance data (open symbols, 

gray) to yield the corrected increase in absorbance (open symbols, black), which indicates CO release. 

Data points are means ± SEM (n = 4-6). 
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As such a step-wise release of CO should result in at least transient occurrence of CO-

containing intermediates, IR spectrometry was used to follow the light-triggered 

degradation of these complexes. The IR spectroscopic monitoring during light-triggered 

degradation of CORM-S1 didn’t show any evidence of CO-containing intermediates, 

(figure 2.10 (top)). CORM-S1 shows two bands at 2014 and 1945 cm-1, during 

irradiation at 470 nm. These bands have a lower intensity without appearance of any 

new bands in this region, hence, there are no intermediates containing carbonyl ligands 

which formed during irradiation of CORM-S1. However, the degradation mechanism of 

CORM-S2 differs significantly, and CO containing intermediates were observed during 

the irradiation of CORM-S2 at 470 nm (figure 2.10 (bottom)). CORM-S2 shows two 

bands at 2035 and 1976 cm-1. Upon irradiation, another band at 1962 cm-1 appeared, 

indicative of a carbonyl-containing intermediate. This finding supports a one-step and 

step-wise release of carbon monoxide from CORM-S1and CORM-S2, respectively, 

during irradiation. Extended exposure to light led to further degradation of the carbonyl 

complexes, and the bands of CORM-S1, CORM-S2 and CORM-S2 immediate 

degradation product vanish to give numerous weak bands in the carbonyl region. 
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Fig 2.10: IR spectra of the carbonyl region of [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) (top panel, left), after 

2 min of irradiation no any new band can be recognized in the carbonyl region (center) (top). 

[Fe(CO)2(SC6H4-2-NH2)2] (CORM-S2) (bottom panel, left), after 2 min of irradiation another band at 1962 

cm
-1

 can be recognized (center) (bottom). After 30 min of irradiation complete degradation of CORM-S1 

and CORM-S2 occurred (right panel in both top and bottom) 
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2.2 N/P-iron-based CORMs 

In the course of our investigations on iron(II)-based CORMs we compared dicarbonyl-

bis(cysteaminato)iron(II) (CORM-S1) and dicarbonyl-bis(ortho-

aminothiophenolato)iron(II) (CORM-S2). In CORM-S2, a step-wise CO release was 

observed upon irradiation with visible light whereas both carbon monoxide molecules 

were liberated at the same time from CORM-S1 [117]. We intended to investigate an 

iron(II)-based photo-CORM with only one CO ligand coordinated to the metal atom in 

order to avoid interference between two CO-releasing steps as obviously detected for 

CORM-S2. In addition, an NMR probe should be introduced enabling the observation 

not only of CO release but also of the degradation of the metal complex. This procedure 

allows direct comparison of the analytical methodologies and at best validation of the 

myoglobin assay for photo-CORMs. Therefore, we investigated and reported complexes 

of N/P iron-based CORMs [Fe(CO)(NC-Me)(H2NCH2CH2PPh2)2]
2+ (CORM-P1) and 

[Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2]
2+ (CORM-P2), the counter anions being 

tetrafluoroborate, with the 31P nucleus being a very sensitive NMR probe [119].  

2.2.1 Synthesis  

The reactions of [Fe(H2O)6] [BF4]2 with aminoethyl-diphenylphosphane and 2-

(diphenylphosphino)aniline in acetonitrile solvent yielded the complexes trans-[Fe(NC-

Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5) [120] and trans-[Fe(NC-Me)2(H2NC6H4-2-PPh2)2] 

[BF4]2 (6). Exposing these complexes, dissolved in CH2Cl2, to a CO atmosphere led to 

substitution of one acetonitrile molecule by a carbon monoxide ligand under 

maintenance of the residual iron(II) environment, yielding [Fe(CO)(NC-

Me)(H2NCH2CH2PPh2)2] [BF4]2 (7, CORM-P1) and [Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2] 

[BF4]2 (8, CORM-P2) according to scheme 2.6. Substitution of the second acetonitrile 

did neither occur at longer reaction periods nor at higher carbon monoxide pressure or 

higher temperature. Therefore, very pure iron(II) complexes were easily obtained and 

isolated with high yields. Iron(II) complexes with two or three monoxide ligands usually 

show cis or facial arrangements of these molecules due to the strong trans-influence of 

carbon monoxide. Exceptions are described in mixed cyano/carbonyl iron(II) complexes 

[121] which can be explained by the isoelectronic nature of CO and CN-.  
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Scheme 2.6: Synthesis of acetonitrile complexes 5, 6, and the CO-releasing molecules 7 (CORM-P1), 8 

(CORM-P2), starting from [Fe(H2O)6] [BF4]2. Reaction conditions: a) 1. Reaction with aminoethyl-

diphenylphosphane in acetonitrile, 2. substitution of one acetonitrile by CO; b) 1. Reaction with 2-

diphenylphosphinoaniline in acetonitrile, 2. substitution of one acetonitrile by CO. 

In solution solvent-separated ions are observed. The NMR parameters of the 

tetrafluoroborate anion of 5 and 6 are very similar and do not dependent on the cation, 

even though in the crystalline state N-H···F bridges are observed.  
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2.2.2 Molecular structures  

The cations trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2]
2+ (5) [120] (counterion [FeBr4]

2-) and 

trans-[Fe(NC-Me)2(H2NC6H4-2-PPh2)2]
2+ (6) (figure 2.11, counterions [BF4]

- not 

displayed for clarity reasons) show very similar geometries which deviate only slightly 

from C2v symmetry. The iron(II) centers are in distorted octahedral environments with 

the acetonitrile ligands trans to each other. The diphenylphosphanyl groups are cis-

arranged as are the amino groups. The difference between these cations is the more 

rigid benzo-backbone of the cation of 6 leading to smaller bites of the bidentate ligands 

and, hence, to slightly smaller P1-Fe1-N1 and P2-Fe1-N2 bond angles. The structural 

changes, however, are insignificant and even the P1-Fe1-P2 and N1-Fe1-N2 bond 

angles are very much alike. The nearly linear acetonitrile molecules show very short 

C≡N bond lengths. Whereas the more flexible ethylene backbone of trans-[Fe(NC-

Me)2(H2NCH2CH2PPh2)2]
2+ allows to align to steric necessities, the more rigid benzo unit 

of 6 suffers more severe distortions. Thus, the P1-C1-C2/6 and P2-C19-C20/24 angles 

differ by approximately 10° due to the bulky phenyl substituents at P1 and P2. For the 

small amino groups N1 and N2 the difference between proximal and distal N1-C6-C1/5 

and N2-C24-C19/23 angles is much smaller. Substitution of one acetonitrile ligand by a 

carbon monoxide reduces the symmetry of the cation and only the mirror plane 

containing the CO and NC-Me ligands is maintained. Figure 2.12 shows [Fe(CO)(NC-

Me)(H2NCH2CH2PPh2)2] [BF4]2 (7, CORM-P1) and figure 2.13 displays the molecular 

structure of [Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2] [BF4]2 (8, CORM-P2) clarifying also 

the stabilization by N-H···F hydrogen bridges to the tetrafluoroborate anions. 
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Fig 2.11: Molecular structure and numbering scheme of the cation trans-[Fe(NC-Me)2(H2NC6H4-2-

PPh2)2]
2+

 of 6. The ellipsoids represent a probability of 40%. H atoms with the exception of the amino 

groups are neglected for clarity reasons. Selected bond lengths (pm): Fe1-P1 223.72(5), Fe1-P2 

222.66(5), Fe1-N1 206.0(2), Fe1-N2 205.8(2), Fe1-N3 192.0(2), Fe1-N4 191.5(2), N1-C6 145.2(2), N2-

C24 145.7(2), N3-C37 114.1(2), N4-C39 114.0(2), P1-C1 182.1(2), P1-C7 182.8(2), P1-C13 182.4(2), P2-

C19 181.3(2), P2-C25 182.0(2), P2-C31 183.1(2); selected bond angles [°]: N3-Fe1-N4 175.99(6), P1-

Fe1-P2 104.62(2), N1-Fe1-N2 88.14(6), P1-Fe1-N1 83.25(4), P2-Fe1-N2 84.05(4). 
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Fig 2.12: Molecular structure and numbering scheme of the cation [Fe(CO)(NC-Me)(H2NCH2CH2PPh2)2]
2+

 

(7, CORM-P1) (top). The ellipsoids represent a probability of 40%, all C-bound H atoms are omitted for 

clarity reasons. At the bottom, dimer formation via a N-H···F network of [Fe(CO)(NC-

Me)(H2NCH2CH2PPh2)2] [BF4]2 is represented. Here arbitrary radii were chosen for all atoms. Selected 

bond lengths (pm): Fe1-P1 228.84(5), Fe1-P2 228.55(5), Fe1-N1 204.4(2), Fe1-N2 205.9(2), Fe1-N3 

194.7(2), Fe1-C29 176.4(2), C29-O1 114.4(2), N1-C1 148.5(2), N2-C15 149.0(2), N3-C30 114.1(3), P1-

C2 185.0(2), P1-C31 83.4(2), P1-C9 182.5(2), P2-C16 183.3(2), P2-C17 181.5(2), P2-C23 182.3(2); 

selected bond angles [°]: N3-Fe1-C29 178.11(8), P1-Fe1-P2 106.85(2), N1-Fe1-N2 86.00(7), P1-Fe1-N1 

83.32(5), P2-Fe1-N2 83.68(5), Fe1-C29-O1 178.5(2). 

 

                       

Fig 2.13: Molecular structure and numbering scheme of the cation [Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2]
2+

 

of  (8, CORM-P2) (top). The ellipsoids represent a probability of 40%. All C-bound hydrogen atoms are 
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neglected for clarity reasons. At the bottom, the structure of [Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2] [BF4]2 

(8, CORM-P2) is shown, displaying the formation of a contact ion pair via N-H···F bridges. The atoms are 

drawn with arbitrary radii. Selected bond lengths (pm): Fe1-P1 225.50(8), Fe1-P2 225.32(8), Fe1-N1 

206.3(2), Fe1-N2 206.0(2), Fe1-N3 195.6(2), Fe1-C37 176.9(3), C37-O1 114.3(4), N1-C6 145.9(4), N2-

C24 146.0(4), N3-C38 113.5(4), P1-C1 181.2(3), P1-C7 181.9(3), P1-C13 181.8(3), P2-C19 181.2(3), P2-

C25 182.0(3), P2-C31 182.6(3); selected bond angles [°]: N3-Fe1-C37 178.4(1), P1-Fe1-P2 103.79(3), 

N1-Fe1-N2 87.1(1), P1-Fe1-N1 84.32(7), P2-Fe1-N2 84.91(7), Fe1-C37-O1 178.6(3). 

 

The structural parameters are very similar with respect to the carbonyl fragment. The 

CO bond lengths and the Fe-C distances with average values of 114.4 and 176.7 pm, 

respectively, differ only within their estimated standard deviations. Also the Fe-C-O 
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angles of 178.6° for both cations deviate only insignificantly from linearity. The 

acetonitrile ligand experiences a significant Fe-N bond elongation due to the trans-

positioned CO molecule by approximately 4 pm as a consequence of a weakened π-

backdonation of electron density from the metal center to the π* orbitals of the nitrile 

group. This fact is in agreement with the IR spectroscopic findings. The effect on the 

C≡N bond lengths is much smaller and lies within the standard deviations. However, the 

presence of the CO ligand also leads to elongation of the Fe-P bonds by approximately 

2-3 pm. The tetrafluoroborate anions form hydrogen bridges to the amino groups of the 

cations. In the compounds 6 and 8 (CORM-P2) the benzo backbone fixes the nearly 

parallel alignment of the NH bonds of the amino groups. The BF4
--anions are able to 

form two intramolecular N-H···F bridges to the same cation. Contrary to this formation of 

a contact ion pair due to the flexibility of the ethylene backbone in 7 (CORM-P1), the 

tetrafluoroborate anions form N-H···F bridges to two different cations leading to the 

formation of a dimeric contact ion pair. 

The symmetric and asymmetric stretching frequencies of the carbon monoxide ligands 

of CORM-S1 (2014, 1945 cm-1 [117]) and CORM-S2 (2035, 1976 cm-1 [117]) are 

observed at significantly lower wave numbers than those of free carbon monoxide (2134 

cm-1 [122]). The iron(II) complexes CORM-P1 (C≡N: 2303, C≡O: 1985 cm-1) and 

CORM-P2 (C≡N: 2290, C≡O: 2001 cm-1) also show two bands, in this case due to 

acetonitrile (free gaseous acetonitrile 2268 cm-1) and carbon monoxide stretching 

vibrations. A shift of the C≡N stretching mode to higher wavenumbers upon coordination 

to Lewis acids represents a very common observation for such complexes [122,123] 

with acetonitrile acting as a π-donor [124]. The wavenumbers of the C≡N stretching 

modes of the CORMs 7 and 8 are significantly larger than observed for the 

bis(acetonitrile) iron(II) complexes 5 (2163 cm-1) and 6 (2207 cm-1) because CO is a 

strong π-acceptor supporting the π-donor ability of acetonitrile. 
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2.2.3 CO-release properties 

To infer about the mechanism of CO release we studied the light-triggered degradation 

of the CORMs by 31P NMR spectroscopy. For this purpose CORM-P1 7 and CORM-P2 

8 were dissolved in [D6]dimethylsulfoxide (DMSO) at a final concentration of 23 mM. As 

expected, both CORMs showed no degradation in the dark. In order to quantitatively 

record the degradation of CORM-P1, the phosphorus-containing reference compound 

tetraphenylphosphonium chloride [Ph4P Cl: δ(31P) = 23.2] was added. From this solution 

the degradation was observed in dependency of the irradiation duration (figure 2.14). 

The free ligand aminoethyl-diphenylphosphane was formed during CO release, and no 

other intermediates were detected by 31P{1H} NMR spectroscopy. 

 

Fig 2.14: Time-dependent degradation of 7 (CORM-P1) upon irradiation with visible light in a 23-mM 

solution of 7 in [D6]DMSO followed by 
31

P{
1
H} NMR spectroscopy. For quantification reasons Ph4P Cl was 

added as a reference compound. The continuous curve is the result of a single-exponential data fit with a 

time constant of 27 s. 

A different picture resulted from a [D3]acetonitrile solution of CORM-P1, again at 23 mM. 

Already in the dark a very slow decomposition was observed leading to a quantitative 

conversion to trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5) and carbon monoxide 

within two weeks. Irradiation of a freshly prepared solution of 7 in D3C-C≡N led to CO 

liberation and formation of 5. Therefore, initially no free ligand was observed. However, 

trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5) also degrades during irradiation but 

this breakup is slower than the decomposition of CORM-P1 (7). The 31P{1H} NMR 
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spectra of this degradation reaction is shown in figure 2.15, the interpretation is depicted 

in figure 2.16. Here it becomes obvious that there is an induction period for the 

appearance of H2NCH2CH2PPh2 due to the intermediate formation of 5. A control 

experiment verified that a solution of trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5) in 

[D3]acetonitrile is stable in the dark but that this complex degrades upon irradiation 

liberating free aminoethyl-diphenylphosphane.  
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Fig 2.15: 
31

P{
1
H} NMR spectra of the degradation of a 23-mM solution of CORM-P1 (7) in [D3]acetonitrile 

during irradiation with visible light. The bottom spectrum shows the resonance of pure CORM-P1 (t = 0 s, 

δ = 61.7). The spectra were recorded at the indicated times. During irradiation with light of 470 nm, the 

signals of trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5) (δ = 63.7) and free aminoethyl-

diphenylphosphane (δ = -21.0) appear. The resonance of starting 7 disappears and finally, also the 

acetonitrile complex 5 vanishes. Only the signal of free aminoethyl-diphenylphosphane can be recognized 

after 420 s (top spectrum). 
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Fig 2.16: Light-induced degradation of 7 (circles, CORM-P1) in a 23-mM [D3]acetonitrile solution. During 

the first 20 s, CO is substituted by acetonitrile yielding trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5, 

squares). Thereafter, the resonance of free aminoethyl-diphenylphosphane (triangles) is detected 

originating from light-triggered decomposition of complex 5. Competing formation of 5 from ligand 

substitution in 7 and light-induced decomposition of 5 implicate a rather constant concentration of 5 after 

approximately 60 min. Straight lines connect data points for clarity. 

We further assayed the properties of the compounds in aqueous solutions. CO release 

was quantified in a myoglobin-based assay by spectrophotometric measurement of the 

conversion of deoxymyoglobin (Mb) into the myoglobin-CO complex (Mb-CO). For 

measurements in the range of 500 to 600 nm a solution was prepared that contained 

equimolar (100 µM) amounts of deoxymyoglobin and either CORM-P1 or CORM-P2. 

Myoglobin was reduced with 0.1% sodium dithionite. Both CORMs showed no CO 

release in the dark but irradiation with white light for 10 minutes led to quantitative 

(figure 2.17 (left), CORM-P1) or incomplete (figure 2.17 (right), CORM-P2) carbon 

monoxide liberation.  
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Fig 2.17: Absorption spectra for 100 µM CORM-P1 (left) and CORM-P2 (right) irradiated with white light 

for 10 min in PBS + 0.1% sodium dithionite + 100 µM deoxymyoglobin (Mb) (black line). Absorption 

spectra for CO-free (gray line) and CO-saturated (red line) Mb are shown for comparison. Also indicated 

is the self-absorbance of CORM-P2, which precludes the use of this assay for quantitative CO release 

determination. 

However, monitoring of the CO release of CORM-P2 in this wavelength range, which 

requires a high concentration, was less accurate because of the self-absorbance of this 

complex. We therefore also investigated the light-dependent CO release at lower 

concentration (5 µM) in a spectral range covering the Soret peak (figure 2.18). The 

CORMs were irradiated for 10 min in a buffered solution, which contained 0.1% of 

sodium dithionite and a concentration of 10 µM deoxymyoglobin, and the spectra 

without and with irradiated CORMs were compared (figure 2.18 for irradiation with 420-

nm light). While stable in the dark, light completely released CO from CORM-P1. For 

the benzo derivative CORM-P2, however, the release was incomplete. A comparable 

observation was also valid for a comparison of [(OC)2Fe(SCH2CH2NH2)2] (CORM-S1) 

and [(OC)2Fe(SC6H4NH2)2] (CORM-S2) [117]. 
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Fig 2.18: Absorption spectra in the range of 380-450 nm for 5 µM of the indicated CORMs and 10 µM 

deoxymyoglobin upon 10-min irradiation with 420-nm light. For controls Mb with 5 µM CO (long dashes 

red line) and 100 µM CO (red line), as well as Mb with CORMs before irradiation (green line) are shown. 

Kinetics of CO release was monitored by measuring the change in absorbance at 

422 nm. When exposing the samples to light of 420, 470, or 520 nm, CO release 

followed a single-exponential time course (figure 2.19, A). The corresponding time 

constants strongly increased with the wavelength (figure 2.19, B). For CORM-P1, total 

release of the CO could be obtained for all wavelengths in the chosen experimental 

setting, while for CORM-P2 only a partial release was observed (figure 2.19, C). 
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Fig 2.19: Absorbance changes at 422 nm (∆A422) as a function of time for the indicated wavelengths. The 

arrows indicate addition of 5 µM CORM-P1 (left) or CORM-P2 (right) (A). Samples were illuminated 100 s 

later, as indicated by the horizontal bar. The instantaneous increase in absorbance upon addition of 

CORM-P2 originates from the absorbance of the CORM. (B, C) The time courses in (A) were fit with 

single-exponential functions and the resulting time constants (B) and the maximal absorbance changes 

(C) are shown for the indicated wavelengths. The bars labeled “CO” show the absorbance change 

obtained when adding 10 µM Mb to a solution containing 5 µM CO, i.e. they mark the maximal possible 

release of CO from the CORMs studied. All data shown are means ± SEM for n = 4-5. 

As it was reported for CORM-2 and CORM-3 that CO release is strongly facilitated by 

the reducing agent dithionite [104], we also performed experiments in which CO release 

was triggered by light in the absence of dithionite. Such experiments (figure 2.20) 

clearly showed that dithionite itself does not induce release of CO from the compounds 

studied, which is in agreement with the NMR experiments shown above. 
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Fig 2.20: CO release is not dependent on dithionite. CO release from CORM-P1 and CORM-P2 during 

10-min preincubation without Mb in the presence (“+”) or absence (“–“) of dithionite, with (open bars) or 

without (grey bars) illumination with white light. Spectra were taken right after preincubation and 

subsequent mixing of the samples with Mb/dithionite. Experimental conditions as in figure 2.17. Data are 

means ± SEM for n = 4-5. 

2.3 P-iron-based CORMs 

In already known studies on CORMs with iron(0) centers the CO releasing properties 

(such as half life time) are triggered by the ligands with changes of the ligand backbone 

leading to different half-lives [61,62,64,70,109,117,125-128]. Unfortunately, systematic 

studies to get relationships between structural and spectroscopic parameters and the 

CO releasing characteristics are quite scarce [64,65]. Scapens et al. tried to correlate 

the half-lives (t1/2) of cyclopentadienyl iron carbonyls with their spectroscopic and 

structural parameters, i.e. ν(CO), δ(13CO), δ(C17O) as well as r(Fe-C) [64]. For the 

spectroscopic parameter they found correlations within a series of compounds but not 

over all compounds. The correlation of the structural parameter r(Fe-C) with t1/2 is 

described as very poor due to the insufficient accuracy of both values.  

Based on these investigations we intended to prepare iron(0) based CORMs based on 

ligands with analogeous structural properties to investigate a possible relationship 

between the spectroscopic and structural parameters and the CO releasing behaviour. 
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2.3.1 Synthesis  

The reactions of substituted dichlorophosphanes with diiron nonacarbonyl yield the 

corresponding tetracarbonylchlorophosphanes as shown in Scheme 2.7. Analogeous 

systems were synthesized earlier by Lang et al. but based on hydrophobic ligands such 

as alkyl- and aryldichlorophosphanes [129]. With tetracarbonyl-

[trichlorophosphane]iron(0) (9, CORM-P3), tetracarbonyl[dichloro(p-N,N-dimethylamino-

phenyl)phosphine]iron(0)  (10, CORM-P4) [130], and tetracarbonyl[dichloro-

(morpholino)phosphane]iron(0) (11, CORM-P5) [130] we present three compounds 

which should be more hydrophilic. 

-CO
Cl2PR     +    Fe2(CO)9 Fe

OC

CO

OC

P

CO

Cl

Cl
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, ,Cl
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Scheme 2.7: Synthesis of CORM-P3 (9, R =Cl), CORM-P4 (10, R =C6H4-4-NMe2), and CORM-P5 (11, R 

=N(CH2CH2)2O. 

 

The dinuclear complexes [Fe2(CO)6(PCl2)2]  (12, CORM-P6), and [Fe2(CO)6{PCl(C6H4-

CF3)}2] (13, CORM-P7) were also prepared via the reaction of substituted 

dichloroarylphosphanes with diironnonacarbonyl (Scheme 2.8). 
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Scheme 2.8: Synthesis of [Fe2(CO)6(PCl2)2]  (12, CORM-P4), and [Fe2(CO)6{PCl(C6H4-CF3)}2] (13, 

CORM-P5) starting from diironnonacarbonyl.  

 

Complex [(thf)4Ca{Fe2(CO)6(�-CO)(�-PPh2)}2] (14, CORM-FC) was prepared by the 

reaction of [(thf)4Ca(PPh2)2] with excess of iron carbonyls Fe(CO)5, Fe2(CO)9, or 

Fe3(CO)12 according to the literature procedure [131] (Scheme 2.9). In the solid state, 

contact ion pairs were observed whereas in solution solvent-separated ions can be 

assumed. 
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Scheme 2.9: Synthesis of [(thf)4Ca{Fe2(CO)6(�-CO)(�-PPh2)}2] (14, CORM-FC) starting from 

diironnonacarbonyl.  
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2.3.2 Molecular structures  

We will divide these P-iron-based CORMs into two groups according to their molecular 

structures; the first group contains mono-iron carbonyl complexes such as CORM-P3, 

CORM-P4, and CORM-P5. The second group consists of dinuclear complexes of iron 

carbonyl dimers like CORM-P6 and CORM-P7 as well as iron clusters such as CORM-

FC.    

The IR frequencies of complexes 9 (CORM-P3), 10 (CORM-P4), and 11 (CORM-P5) 

are summarized in Table 2.2. All these complexes have lower CO vibrations (νCO) in 

comparison to iron pentacarbonyl (2014 and 2034 cm-1) [132 (a)]. This behavior results 

from the fact that the carbonyl ligand is a better π-acceptor compared to the phosphine 

ligands which comes along with an increased transfer of electron density from the metal 

center to the antibonding π*-orbitals of the CO ligands.  

 

Table 2.2: Comparison of IR wavenumbers [cm
-1

] data of the complexes 9 (CORM-P3), 10 (CORM-P4), 

and 11 (CORM-P5). 

 

The electron withdrawing effect of chlorine and morpholine is further reflected by a blue 

shift of the carbonyl IR frequencies of CORM-P3 and CORM-P5 compared to CORM-

P4. CORM-P4 and CORM-P5 contain 4 carbonyl and one dichlorophosphine ligands 

which are trigonal-bipyramidal arranged around the iron center. The Fe-CO bonds of 

CORM-P4 (1.787(4) Å - 1.802(3) Å) and CORM-P5  (1.797(5) Å - 1.807(5) Å) differs 

very slightly from the corresponding Fe-CO bonds in pentacarbonyl iron (1.79(4) Å) [132 

CORMs (9, CORM-P3) 

Fe

P

OC

CO

CO

CO

Cl

Cl
Cl

 

(10, CORM-P4) 

Fe

P

OC

CO

CO

CO

Cl

Cl
N

 

(11, CORM-P5) 

Fe

P

OC

CO

CO

CO

Cl

Cl
N O

 

ν (C-O) cm-1 2091 2111 2113 

 2081 2061 2071 

 2020 1997 2000 

 1998 1969 1966 

 1987 1953 1954 



68 

 

(b)], while C-O bonds of CORM-P4 (1.141(4) Å - 1.152(4) Å) and CORM-P5 (1.141(5) Å 

- 1.150(5) Å)   are elongated in comparison to iron pentacarbonyl (1.14(8) Å) [132 (b)]. 

This behavior results from the same fact that shifts CO vibrations (νCO) of these CORMs 

to lower wavenumbers than the CO vibrations (νCO) of iron pentacarbonyl. The Fe-P 

bond in CORM-P4 (2.1727(9) Å) and CORM-P5 (2.1652(12) Å) is stabilized compared 

to [Fe(CO)4P(C6H5)3] (2.244(1) Å) [133] and [Fe(CO)4P(C6H11)3] (2.2922(7) Å) [134] due 

to an increase of the π-acceptor character caused by the electronegativity of the two 

chlorine atoms.  

CORM-P3 contains two different types of carbonyl ligands which are in agreement with 

the CO stretching frequencies in the IR spectra, whereas only one resonance is 

observed in the 13C-NMR spectra. This result can be explained by the peusdorotation 

phenomenon. It is a kind of stereoisomerisation resulting in a structure that appears to 

have been produced by rotation of the entire initial molecule and is superposable on the 

initial one. Different positions are distinguished by substitution, including isotopic 

substitution. An important example of pseudorotation (Berry pseudorotation) is a 

polytopal rearrangement that provides an intramolecular mechanism for the 

isomerisation of trigonal bipyramidal compounds which is shown in Scheme 2.10. 
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Scheme 2.10: Berry pseudorotation of trigonal bipyramidal compounds, the five bonds to the central atom E 

being represented as e
1
, e

2
, e

3
, a

1
 and a

2
. Two equatorial bonds move apart and become apical bonds at 

the same time as the apical bonds move together to become equatorial.  

According to the fact that IR spectroscopy is faster than NMR spectroscopy, IR can 

detect the pseudorotation stereoisomerisation process in CORM-P3. Thus all CO 

stretching frequencies of CORM-P3 can be seen in IR spectra. However, we saw in 13C-

NMR spectra only one resonance due to the time scale in the NMR spectroscopy. 
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The complexes [Fe2(CO)6(PCl2)2]  (12, CORM-P6), and [Fe2(CO)6{PCl(C6H4-CF3)}2] (13, 

CORM-P7) were prepared as CORMs with high CO content. The molecular structure of 

complex 12 is shown in figure 2.21. 
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Fig 2.21: Molecular structure and numbering scheme of [Fe2(CO)6(PCl2)2]  (12, CORM-P6). The ellipsoids 

represent a probability of 40%. Selected bond lengths (pm): Fe1-C1 180.6(2), Fe1-C2 182.0(2), Fe1-C3 

181.8(2), Fe2-C4 183.1(2), Fe2-C5 180.2(2), Fe2-C6 181.1(2), Fe1-P1 217.68(6), Fe1-P2 218.06(6), 

Fe2-P1 217.17(6), Fe2-P2 217.00(6), Cl1-P1 203.24(8), Cl2-P1 203.57(8), Cl3-P2 203.16(7), Cl4-P2 

203.33(8), C1-O1 113.4(3), C2-O2 113.4(3), C3-O3 113.5(3), C4-O4 112.3(3), C5-O5 113.3(3), C6-O6 

113.6(3), Fe1-Fe2 269.56(4); selected bond angles [°]: C1-Fe1-C3 101.15(10), C1-Fe1-C2 101.10(11), 

Fe1-P1-Fe2 51.608(16), Fe1-P2-Fe2 51.536(16), Fe1-P1-Cl1 121.41(3), Fe1-P1-Cl2 119.66(3), Fe1-P2-

Cl3 120.45(3), Fe1-P2-Cl4 123.76(3), Cl1-P1-Cl2 97.97(3), Cl3-P2-Cl4 98.83(3). 
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The molecular structures of dinuclear 12 (CORM-P6) and [Fe2(CO)6{PCl(C6H5)}2] [136]  

both contain six carbonyl and two phosphanide ligands which are octahedrally arranged 

around the iron(I) centers. Both phosphanides of CORM-P6 carry two highly 

electronegative chlorine atoms, while in the corresponding phosphanide ligands in 

[Fe2(CO)6{PCl(C6H5)}2]  half of the chlorine atoms are substituted by phenyl groups. The 

Fe-CO bonds of CORM-P6 (1.802(2) Å-1.831(2) Å) are elongated in comparison to the 

corresponding Fe-CO bonds in [Fe2(CO)6(PC6H5Cl)2] (1.74(1) Å-1.80(1) Å). This finding 

results from the higher content of electron withdrawing chlorine atoms in CORM-P6 in 

comparison to [Fe2(CO)6{PCl(C6H5)}2], which decreases the transfer of electron density 

from the iron center to the antibonding π*-orbitals of the CO ligands.  

Furthermore, the IR frequencies of complexes 12 (CORM-P6), 13 (CORM-P7), and 

[Fe2(CO)6{PCl(C6H5)}2] [136] are shown in table 2.3.  

 

Table 2.3: Comparison of and IR frequencies [cm
-1

] data of the complexes (12, CORM-P6), (13, CORM-

P7), and [Fe2(CO)6(PC6H5Cl)2]. 
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The CO vibrations (νCO) of the highest energy are observed for CORM-P7. CORM-P6 

and [Fe2(CO)6{PCl(C6H5)}2] exhibit significantly lower energies. This result can be 

explained by the previous discussion that CORM-P7 contains the extremely strong 

electron withdrawing trifluoromethyl substituents in para-position of the phenyl rings. 

This influence decreases the transfer of electron density from the metal center to the 

antibonding π*-orbitals of the CO ligands. In addition, the more positive nature of the P 

atoms by  higher contents of chlorine atoms in CORM-P6 leads to a strong blue shift of 

the carbonyl IR frequencies of CORM-P6 compared to those of [Fe2(CO)6{PCl(C6H5)}2].  

Complex [(thf)4Ca{Fe2(CO)6(�-CO)(�-PPh2)}2] (14) [131] was investigated as a CORM 

with a large number of CO ligands. The iron centers in CORM-FC coordinate with 

different types of carbonyl ligands; the CO bond of the bridging carbonyl ligand is 

elongated compared to the bond lengths in terminally bound carbonyl groups. This fact 

is in agreement with the expectation that bridging carbonyl groups should exhibit a C=O 

bond order of two (comparable to ketones) whereas terminally bound carbonyl groups 

should show a higher bond order (comparable to isoelectronic cyanide). Moreover 

within the group of terminally bound carbonyl ligands significant differences can be 

noticed. The Fe-C bonds in trans-position to the bridging carbonyl group show 

significantly larger Fe-C distances due to the trans influence of the bridging carbonyl 

ligand. 

 

2.2.3 CO-release properties 

The CO release from all P-iron-based CORMs was quantified in a myoglobin-based 

assay by measuring the conversion of deoxymyoglobin into the myoglobin-CO complex. 

As shown in figure 2.22, a spontaneous CO release of 18.5 ± 2.3 µM (n = 6), 27.4 ± 

3.7 µM (n = 3), and 39.2 ± 8.4 µM (n = 7) was observed directly after application of 

100 µM of 9 (CORM-P3), of 10 (CORM-P4), and of 11 (CORM-P5), respectively, 

followed by slow additional CO release.   
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Fig 2.22: CO-releasing properties of CORM-P3, CORM-P4, and CORM-P5 (as indicated). Averaged 

spectra (n = 3-7) of the samples (deoxy-myoglobin solutions (100 µM)) were recorded before CORM 

application (dotted) and in the presence of CORM after 15 min of illumination (solid). Dashed lines 

represent spectra of CO-saturated myoglobin solutions. 

 

CORM-P3 showed the strongest CO release which is compatible with its highest CO 

vibrations (νCO) in comparison to CORM-P5 and CORM-P4 as a consequence of  

decreased transfer of electron density from the metal center to the antibonding π*-

orbitals of the CO ligands (figure 2.22).  This assay is in agreement with the fact that 

CORM-P3 contains the weakest Fe-CO bonds of all three tested compounds. In 

addition, CORM-P5 acts as stronger CO releaser than CORM-P4. Here the weakness 

of the Fe-CO bond results from the highly electronegative nitrogen atom in CORM-P5 in 

comparison to CORM-P4 which contains the dimethylaminophenyl substituent as 

electron donating group causing the weakest CO release behavior in all three 

mononuclear CORMs. 
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Time constants for the slow CO release obtained from monoexponential fits (figure 

2.23), were 646 s, 468 s, and 341 s for CORM-P3, CORM-P4, and CORM-P5, 

respectively, with a total CO release of 82.5 ± 4.7µM, 51.5 ± 5.3 µM, and 71.9 ± 6.8 µM 

after 15 min of illumination with white light. For all three CORMs tested, CO release did 

not require irradiation with light. In this test, CORM-P3 exhibited the strongest CO 

release of the compounds tested. In addition, only CO release of CORM-P3 was slightly 

light-stimulated. After start of sample illumination, speed of release was slightly, yet 

significantly (P<0.005) increased by a factor of 1.56-fold.  

 

Fig 2.23: Absorbance of deoxy-myoglobin solutions (100 µM) was measured at 540 nm. Relative 

absorbance changes (∆A540) compared to starting values are plotted against time. CORM-P3, CORM-P4, 

and CORM-P5 (as indicated) were applied at time zero. Sample illumination with a cold light source was 

started at 80 s, as indicated. Data are shown as mean ± SEM of 3-7 measurements. The superimposed 

black curves are single-exponential fits. 

Kinetic measurements for 12 (CORM-P6) and 13 (CORM-P7) are based on monitoring 

the conversion of a buffered aqueous solution of deoxy-myoglobin to carboxy-myoglobin 

as shown in figure 2.24.  
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Fig 2.24: Myoglobin assay of indicated compounds: Absorbance as a function of wavelength of 100 �M 

deoxymyoglobin in the absence of CORM (red), as well as myoglobin incubated with 50 �M of CORM 

after 15min of irradiation at 470 nm (black) or after 15 min in the dark (gray). 
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CORM-P7 displayed stronger CO release than CORM-P6. This outcome is compatible 

with the higher CO vibrations (νCO) values of CORM-P7 than of CORM-P6. The weaker 

Fe-CO bond in CORM-P7 is caused by the electron withdrawing effect of the 

trifluoromethyl group.  

The suitability of complex [(thf)4Ca{Fe2(CO)6(�-CO)(�-PPh2)}2] (14) (CORM-FC) [130] 

as a CORM was investigated by using the myoglobin assay as shown in figure 2.25. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.25: Myoglobin assay of CORM-FC: Absorbance as a function of wavelength of 100 �M 

deoxymyoglobin with 50 �M of CORM after 15min of irradiation at 470 nm (black) or after 15 min in the 

dark (red). 

 

We assayed the properties of complex 14 in aqueous solutions. CO release was 

quantified in a myoglobin-based assay by spectrophotometric measurement of the 

conversion of deoxymyoglobin (Mb) into the myoglobin-CO complex (Mb-CO). For 

measurements in the range of 500 to 600 nm a solution was prepared that contained 50 

µM of [(thf)4Ca{Fe2(CO)6(�-CO)(�-PPh2)}2] (14) and 100 µM of deoxymyoglobin. 

Myoglobin was reduced with 0.1% sodium dithionite. CORM-FC showed no CO release  

500 520 540 560 580 600

0.4

0.6

0.8

1.0

A
b

s
o
rb

a
n
c
e

Wavelength(nm)

CORM-FC



77 

 

in the dark but irradiation with light for 10 minutes led to carbon monoxide liberation. 

Furthermore, CORM-FC also absorbs in this wavelength range as shown in figure 2.26, 

increasing the absorbance in the myoglobin sample with CORM-FC. 
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Fig 2.26: Absorption spectra in the range of 500-600 nm for 50 µM of CORM-FC. 
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3. Experimental 

General remarks Trirutheniumdodecacarbonyl [Ru3(CO)12], triirondodecacarbonyl 

[Fe3(CO)12], diironnonacarbonyl [Fe2(CO)9], and irontetrafluoroboratehexahydrate 

[Fe(BF4). 6H2O], myoglobin from equine skeletal muscle, and sodium dithionite were 

purchased from Sigma-Aldrich Company. Cysteamine HSCH2CH2NH2, cystamine 

(H2NCH2CH2S)2,  2-aminothiophenol HSC6H4-2-NH2, 2-(diphenylphosphino)ethylamine 

Ph2PCH2CH2NH2, o-fluoroaniline NH2C6H4-4-F, potassium diphenylphosphide solution 

KPPh2 (.50 M in THF), phosphorus trichloride (PCl3), and p-CF3C6H4Br were supplied by  

Acros Organics. All compounds were prepared and handled in an inert gas atmosphere 

under anaerobic conditions using Schlenk techniques. Tetrahydrofuran, diethyl ether, 

hexane, toluene, benzene, pentane, and heptane were distilled from sodium 

benzophenone, DMF was dried over molecular sieves, acetonitrile and dichloromethane 

were distilled from calcium hydride. 1H, 13C, 31P, and 19F NMR spectra were obtained on 

Bruker Avance 200, 400, and 600 spectrometers. Assignment of NMR data was 

performed on the basis of 1H, 13C, 31P, 19F, HSQC, HMBC, and H,H COSY experiments. 

Mass spectra were obtained on a Finnigan MAT SSQ 710. IR spectra were recorded on 

the Perkin Elmer FT-IR-Spectrometer System 2000 as Nujol mulls between KBr 

windows and ATR-IR spectrometer. Elemental analysis on a LECO CHNS-932 

apparatus gave values for C, H, N, and S. All UV-visible (UV-VIS) spectra of the 

myoglobin assay were recorded using an Ultrospec 1100pro spectrophotometer 

(Amersham Biosciences). 

3.1 Synthesis of [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) (1): 

 

 

 

 

For the synthesis of CORM-S1 (cis,trans,cis-dicarbonyl-bis(2-thiolato-κS-ethylamine-

κN)iron(II)) a suspension of 510 mg of triirondodecacarbonyl (1.01 mmol) and 463 mg of 

2,2'-disulfanediyldiethanamine (cystamine) (3.04 mmol) in 20 ml of THF were stirred 

under reflux for three hours; during this reaction time an orange suspension was 
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formed. All solids were collected and the filter cake dried in vacuum giving pure 

microcrystalline 1. The filtrate was reduced to 5 ml and stored at -18 °C yielding red-

brown single crystals suitable for X-ray diffraction studies. Total yield: 465 mg (1.76 

mmol, 58%). The physical data are identical to published ones [125]. 

Physical data: M.p.: 118 °C (dec.). NMR: 1H NMR ([D6]DMSO): 2.08 [t (4.9Hz), 2H]; 

2.74 [m (5.0Hz), 4H]. 13C NMR ([D6]DMSO): 28.68; 50.57; 215.08. MS-FAB: 265 

[M+H]+(16); 237 [M+H–CO]+ (10); 209 [M+H–2CO]+ (56); 208 [M–2CO]+(88). IR [KBr]: 

3436 (m); 3210 (s); 3119 (s); 2952 (m); 2922 (m); 2867(m); 2836 (w); 2364 (w); 2345 

(w); 2014 (vs); 1945 (vs); 1584 (m);1454 (w); 1433 (w); 1303 (w); 1269 (m); 1223 (w); 

1120 (m); 1094(m); 1042 (m); 971 (w); 918 (w); 848 (w); 805 (w); 648 (w); 591 (s);545 

(m); 492 (w). Elemental analysis of THF adduct (C10H20FeN2O3S2, 336.25 g mol−1): 

calculated: C 27.28; H 4.58; N 10.13; S 24.28; found: C 26.86; H 5.46; N10.13: S 23.18. 

3.2 Synthesis of [Fe(CO)2(SC6H4-2-NH2)2] (CORM-S2) (2):  

 

 

 

 

 

For the preparation of CORM-S2 (cis,trans,cis-dicarbonyl-bis(2-thiolato-κS-benzamine-

κN)iron(II)·THF) a suspension of 510 mg of triirondodecacarbonyl (1.01 mmol) and 760 

mg of 2-aminothiophenol (6.07 mmol) in 15 ml of THF were stirred under reflux for four 

hours. During this time a red suspension formed. The solids were collected by filtration 

and the filter cake dried in vacuum giving pure microcrystalline 2. The solvent of the 

filtrate was removed in vacuum and the residue dissolved in THF. Slow diffusion of 

pentane into this solution at -18 °C gave red-brown single crystals within one week 

suitable for X-ray diffraction experiments. Total yield: 812 mg (1.88 mmol, 62%). 

Physical data: M.p. 155 °C (dec.). NMR: 1H NMR ([D6]DMSO): δ 1.77 [s, 2H], 3.59 [s, 

2H], 5.77 [d (14.1 Hz), 2H], 6.79 [t (7.0 Hz), 2H], 6.84 [d (14.1 Hz), 2H], 6.88 [t (7.1 Hz), 

2H], 7.11 [d (7.0 Hz), 2H], 7.21 [d (7.1 Hz), 2H]. 13C NMR ([D6]DMSO): δ 25.1; 67.0, 

Fe

S

N
H2

CO
OC

S
NH2



80 

 

121.0, 125.7, 125.9, 128.1, 143.4, 147.3, 213.6. MS-FAB: 361 [M+H]+ (16); 333 [M+H-

CO]+ (10); 305 [M+H-2CO]+ (56); 304 [M-2CO]+ (88). IR [KBr]: 3227 (w), 3153 (m), 3116 

(m), 3055 (m), 2925 (vs), 2854 (vs), 2724(w), 2035 (vs), 1976 (vs), 1609 (w), 1589 (m), 

1553 (w), 1465 (vs), 1377 (s), 1294 (w), 1261 (w), 1201 (w), 1162 (w), 1138 (w), 1120 

(m), 1063 (w), 1041 (m), 934 (w), 889 (m), 803 (w), 779 (w), 753 (m), 740 (s), 722 (m), 

682 (m), 640 (w), 608 (m), 545 (m), 527 (s), 504 (m), 487 (w). Elemental analysis of 

THF adduct (C18H20FeN2O3S2, 432.34 g mol−1): calculated: C 50.01, H 4.66, N 6.48, S 

14.83; found: C 49.86, H 4.52, N 6.57, S 15.18. 

3.3 Synthesis of trans-[Fe(NC-Me)2(H2NCH2CH2PPh2)2] [BF4]2 (5): 

 

 

 

 

 

This complex was prepared according to a literature procedure [120]. 2-

(diphenylphosphino)ethylamine (136 mg, 0.593 mmol) in CH3CN (1 ml) was added 

dropwise to a stirring solution of [Fe(H2O)6][BF4]2 (100 mg, 0.296 mmol) and CH3CN (5 

ml). The mixture turned purple immediately and was stirred for 30 min. Then the solvent 

was removed in vacuo and the residue was dissolved in 1 ml of CH2Cl2. The addition of 

10 ml of diethyl ether yielded a purple solid, which was isolated by filtration and dried in 

vacuum (212 mg, 0.275 mmol, 93%). 

Physical data: NMR: 11B NMR ([D6]DMSO): δ -1.3. 19F NMR ([D6]DMSO): δ -151.9. 

31P{1H} NMR (CD3CN): δ 63.7. IR: 3330 (w); 2163 (s); 1604(s); 1312 (w); 873 (vs); 695 

(w); 646(s); 607 (vs); 511(w); 495 (m); 480 (m).  
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3.4 Synthesis of trans-[Fe(NC-Me)2(H2NC6H4-2-PPh2)2] [BF4]2 (6): 

 

 

 

 

 

Firstly, the 2-(diphenylphosphino)aniline ligand was prepared as described previously 

[137]. A microwave vessel was charged with o-fluoroaniline (1.1 g, 10 mmol) and KPPh2 

(0.5 M in THF, 20 ml, 10 mmol) under nitrogen. The vessel was closed and heated in a 

microwave to 180 °C for 15 min (approx. 800 W after the initial temperature ramping). 

The reaction mixture was quenched with deionized water (15 ml), and the organics were 

extracted into benzene (2 X 20 ml). The extract was filtered through a short alumina 

column and recrystallized from boiling EtOH yielding 2-(diphenylphosphino)aniline as a 

white powder (2.18 g, 79%).  

For the synthesis of trans-[Fe(NC-Me)2(H2NC6H4-2-PPh2)2] [BF4]2 (6) 2-

(diphenylphosphino)aniline (164 mg, 0.593 mmol) in CH3CN (1 ml) was added dropwise 

to a stirred solution of [Fe(H2O)6][BF4]2 (100 mg, 0.296 mmol) in CH3CN (5 ml). The 

reaction mixture turned purple immediately and was stirred for an additional hour. 

Thereafter, the solvent was removed in vacuo and the residue dissolved in 1 ml of 

CH2Cl2. The addition of 10 ml of diethyl ether afforded a purple solid, which was isolated 

by filtration and dried in vacuum (241 mg, 0.278 mmol, 94%). Recrystallization of a 

small portion of this solid from CH3CN/Et2O by using the slow diffusion method gave 

violet single crystals suitable for X-ray diffraction experiments. 

Physical data: M.p.: 211-213 °C. NMR: 1H NMR (CD3CN): δ 1.96 (s, 6H), 5.94 (s, 4H), 

6.87 (t, 8H), 7.33 (t, 8H), 7.53 (t, 8H), 7.73 (m, 2H), 7.84 (d, 2H). 13C{1H} NMR (CD3CN): 

δ 3.85 (t), 128.00 (t), 128.77 (t), 129.96 (t), 130.85 (m), 131.67 (s), 132.96 (m), 133.36 

(t), 133.66 (s), 134.85 (s), 137.95(s), 151.37 (t). 31P{1H} NMR (CD3CN): δ 68.1 (s). MS-

ESI: 305 [Fe(PPh2C6H4-2-NH2)2]
2+ (100); 277 [(PPh2C6H4-2-NH2)2]

2+ (90). IR [KBr]: 3280 

(s); 2207(s); 1607(w); 1566 (m); 1478 (s); 1436 (s); 1094 (vs); 1047 (vs); 820 (w); 756 
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(s); 694 (s); 575 (m); 520 (vs); 485 (m); 471 (vs); 458 (s); 415 (m); 929 (w); 816 (w); 747 

(s); 697 (s); 594 (m); 529 (s); 510 (m); 475 (w). Elemental analysis (C44H44B2F8FeN6P2, 

948.26 g mol−1): calculated: C 55.73; H 4.68; N 8.86; found: C 55.62; H 4.68; N 8.76.  

3.5 Synthesis of [Fe(CO)(NC-Me)(H2NCH2CH2PPh2)2] [BF4]2 (CORM-P1)  (7): 

  

 

 

 

 

For the synthesis of 7 the isolation of complex 5 is not required. Therefore, aminoethyl-

diphenylphosphane (136 mg, 0.593 mmol) was added dropwise to a stirred solution of 

[Fe(H2O)6][BF4]2 (100 mg, 0.296 mmol) in 5 ml of CH3CN yielding a purple reaction 

mixture. After removal of all volatiles in vacuo and dissolution of the residue with 10 ml 

of CH2Cl2, this solution was treated with gaseous CO for 16 h. During this time a yellow 

suspension formed. CORM-P1 was isolated as a yellow solid (190 mg, 0.251 mmol, 

91%) by filtration and the filter cake dried in vacuum. Recrystallization of a small portion 

of this powder from a mixture of CH2Cl2 and DMF/Et2O by using the slow diffusion 

method yielded dark orange single crystals suitable for X-ray diffraction experiments. 

Physical data: M.p.: 202-205 °C. NMR: 1H NMR ([D6]DMSO): δ 2.18 (s, 3H), 2.92 

(broad, 4H), 4.07 (broad, 4H), 4.8 (broad, 4H), 7.04 (d, 8H), 7.36 (t, 8H), 7.57 (t, 4H). 

11B NMR ([D6]DMSO): δ -1.3. 13C{1H} NMR ([D6]DMSO): δ: 4.22 (broad), 31.02 (m), 

41.46 (broad), 129.22 (d), 131.47 (d), 132.11 (d), 133.30 (broad), 160.63 (broad), 

215.20 (broad). 19F NMR ([D6]DMSO): δ -148.7. 31P{1H} NMR ([D6]DMSO): δ 61.7 (s). 

MS-ESI: 257 [Fe(Ph2PC2H4NH2)2]
2+ (100); 229 [(Ph2PC2H4NH2)2]

2+ (16); 185 [(Ph2P)2]
2+ 

(37). IR [Nujol, KBr windows]: 3555 (w); 3307(s); 3269 (s); 3175(m); 3065 (m); 2922 

(vs); 2854 (vs); 2303 (m); 1985(vs); 1597 (m); 1460 (s); 1436 (s); 1376(m); 1256 (m); 

1094(vs); 1042 (vs); 1011 (s); 996 (s); 929 (w); 816 (w); 747 (s); 697 (s); 594 (m); 529 

(s); 510 (m); 475 (w). Elemental analysis (C31H35B2F8FeN3OP2, 757.03 g mol−1): 

calculated: C 49.18; H 4.66; N 5.55; found: C 48.93; H 4.35; N 5.35.   
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3.6 Synthesis of [Fe(CO)(NC-Me)(H2NC6H4-2-PPh2)2] [BF4]2 (CORM-P2)  (8): 

 

 

 

 

 

For the synthesis of CORM-P2, 8 (241 mg, 0.278 mmol) was dissolved in 10 ml of 

CH2Cl2 and stirred under a CO atmosphere for 16 h. The resulting orange-yellow 

solution was evaporated to dryness to leave a yellow powder, which was washed with 

diethyl ether. CORM-P2 was isolated as a yellow powder (218 mg, 0.256 mmol, 92%). 

Recrystallization of a small portion of this powder from a solvent mixture of CH2Cl2 and 

DMF/Et2O using the slow diffusion method yielded light orange single crystals suitable 

for X-ray diffraction experiments. 

Physical data: M.p.: 216-218 °C. 1H NMR ([D6]DMSO): δ 2.04 (s, 3H, CH3), 5.71 (s, 

4H, H2N), 6.92 (broad 8H), 7.39 (dd, 8H), 7.57 (broad, 8H), 7.76 (broad, 2H), 7.94 

(broad, 2H). 13C{1H} NMR ([D6]DMSO): δ 3.19 (s), 126.36 (m), 127.20 (m), 128.10 (t), 

129.67 (s), 130.86 (d), 131.32 (m), 132.50 (d), 132.88 (d), 133.11 (m), 134.99 (d), 

162.12 (broad), 206.35 (broad). 31P{1H} (CD3CN): δ 58.2 (s). MS-ESI: 305 

[Fe(PPh2C6H4-2-NH2)2]
2+ (100); 277 [(PPh2C6H4-2-NH2)2]

2+ (90); 201 [(PPh2-NH2)2]
2+ 

(7). IR [Nujol, KBr windows]: 3280 (s); 2290 (m); 2001 (vs); 1590 (w); 1480(s); 1437 (s); 

1096 (w); 1056 (vs); 751 (s); 696 (vs); 578 (m); 516 (vs); 464 (vs); 448 (m); 411 (w). 

Elemental analysis (C40H37B2Cl2F8FeN3OP2, 938.04 g mol−1): calculated: C 51.22; H 

3.98; N 4.48; found: C 50.76; H 4.03; N 4.65. 
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3.7 Synthesis of [Fe(CO)4(PCl3)] (CORM-P3)  (9): 

Fe

CO

OC

CO

P

OC

ClCl

Cl

 

CORM-P3, (9, tetracarbonyl[trichlorophosphine]iron(0)) was prepared according to a 

literature procedure [138]. A suspension of 1.0 g (2.75 mmol) of diironnonacarbonyl and 

757 mg (5.51mmol) of phosphorus trichloride in 70 ml of toluene were stirred at 90 °C 

for two hours. During the reaction time the color changed to deep red. Then the solvent 

was removed by cold distillation and the residue was suspended in 20 ml of n-pentane 

and poured over silica gel with n-pentane as eluent for column chromatography (40 x 3 

cm), the first band is a broad yellow zone which was collected. The solvent was reduced 

to 5 ml and stored the solution at -18 °C. After two days, complex 9 precipitated as a 

pure bright yellow powder. Yield: 1.11g (3.63 mmol, 66%). 

Physical data: M.p.: 165 (dec.). NMR: 13C NMR (CDCl3): δ 207.64. 31P NMR (CDCl3): δ 

183.10(s). MS-FAB: 305 [M] + (16); 277 [M-CO] + (54); 270[M-Cl] + (37); 249 [M-2CO] + 

(15); 242 [M-CO-Cl] + (11); 221 [M-3CO] + (16); 213 [M-2CO-Cl] + (30); 193[M-4CO] + 

(100). IR [KBr]: 3413 (vs); 2966 (m); 2470 (w); 2091 (m); 2081 (m); 2020 (vs); 1998(s); 

1987(s); 1602 (s); 1405(w); 1266 (s); 1077 (vs); 935 (m); 818 (m); 579 (vs). Elemental 

analysis (C4Cl3FeO4P, 305.22 gmol−1): calculated: C 15.74; found: C 14.82. 
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3.8 Synthesis of [Fe2(CO)6(PCl2)2] (CORM-P6)  (12): 

Fe Fe

P

P CO
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This complex was prepared as by-product during the synthesis of complex 9. 

Separation of the reaction mixture by column chromatography (40 x 3 cm) initially gave 

a bright yellow zone, which was complex 9 as described above. Then an orange zone 

was collected, the solution was reduced to 3 ml and stored at -18 °C leading to the 

formation of complex 12 as pure dark yellow single crystals after one week suitable for 

X-ray diffraction experiments. Yield: 62 mg (127 mmol, 4.6%).  

Physical data: M.p.: 220 (dec.). NMR: 13C NMR (CDCl3): δ 206.12. 31P NMR (CDCl3): δ 

304 (s). MS-FAB: 484 [M] + (11); 456 [M-CO] + (31); 428 [M-2CO] + (23); 400 [M-3CO] + 

(8); 372 [M-4CO] + (12); 344 [M-5CO] + (26); 316 [M-6CO] + (51); 281 [M-6CO-Cl] + (39); 

244 [M-6CO-2Cl] + (9); 213 [M-6CO-2Cl-P] + (17); 178 [M-6CO-3Cl-P] + (11); 143 [M-

6CO-4Cl-P] + (37); 112 [M-6CO-4Cl-2P] + (43); 56 [M-6CO-4Cl-2P-Fe] + (100). IR [KBr]: 

3413 (vs); 2966 (m); 2470 (w); 2089 (m); 2060 (vs); 2032 (vs); 2019 (s); 1602 (s); 1402 

(w); 1259 (m); 1070 (s); 927 (m); 812 (s); 577 (vs). Elemental analysis (C6Cl4Fe2O6P2, 

483.50 gmol−1): calculated: C 14.90; found: C 14.78. 
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3.9 Synthesis of [Fe2(CO)6{PCl(C6H4-CF3)}2] (CORM-P7)  (13): 

 

 

 

 

 

 

Firstly (p-CF3C6H4)PCl2 was prepared according to the literature procedure [139]. 

(Et2N)2PCl required for this experiment was synthesized as described previously [140], 

n-Butyllithium (34.5 ml of 1.6 M solution in hexane, 55 mmol) was slowly added to a 

solution of p-CF3C6H4Br (12.5 g, 55 mmol) in diethyl ether (500 ml) at 5 °C. The mixture 

was stirred for one hour and (Et2N)2PCl (11.6 g, 55 mmol) was slowly added to the 

mixture at 5°C. The contents of the flask were warmed to room temperature and the 

mixture was stirred for two hours. (p-CF3C6H4)P(NEt2)2 was not isolated but used in situ. 

HCl (137.5 ml of a 2 M solution in diethyl ether, 275 mmol) was added to the reaction 

mixture at -78°C containing (p-CF3C6H4)P(NEt2)2. The mixture was allowed to warm to 

room temperature and stirred for 12 hours. The solvent was removed in vacuo, the solid 

dissolved in hexane (250 ml) and then filtered. The filtrate was concentrated and the 

remaining oil was distilled (85°C, 11 mm Hg) to yield (p-CF3C6H4)PCl2 as colorless 

liquid (10.45 g, 77%).  

For the synthesis of [Fe2(CO)6{PCl(C6H4-CF3)}2] (13), a mixture of [Fe2(CO)9] (3 g, 8.25 

mmol), [(p-CF3C6H4)PCl2] (4.08 g, 16.5 mmol), and 60 ml of toluene was heated slowly 

to 90°C  and stirred for four hours. Then it was filtered at room temperature to remove 

undissolved materials, and the filtrate was chromatographed on a silica gel column (40 

x 3 cm). [Fe2(CO)6{PCl(C6H4-CF3)}2]  obtained by eluting with 10/1 pentane/toluene and 

recrystallization from the same solvent mixture gave complex 11 as a yellow powder. 

Yield: 640 mg (0.91 mmol, 11%). 

Physical data: M.p.: 245 (dec.). NMR: 1H NMR (CDCl3): δ 7.34 (broad). 13C NMR 

(CDCl3): δ 122.67, 125.04, 130.25, 132.38, 209.59. 19F NMR (CDCl3): δ 63.75. 31P NMR 
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(CDCl3): δ 240.21 (s). MS-FAB: 702 [M] + (32); 674 [M-CO] + (48); 646 [M-2CO] + (7); 

618 [M-3CO] + (5); 438 [M-3CO-Cl-Ph-CF3]
 + (3); 407 [M--3CO-Cl-Ph-CF3-P] + (21); 350 

[M-3CO-Cl-Ph-CF3-P-Fe] + (11); 316 [M-3CO-2Cl-Ph-CF3-P-Fe] + (100); 260 [M-5CO-

2Cl-Ph-CF3-P-Fe] + (53);  232 [M-6CO-2Cl-Ph-CF3-P-Fe] + (13); 201 [M-6CO-2Cl-Ph-

CF3-2P-Fe] + (37). IR [KBr]: 3423 (w); 2962 (w); 2324 (w); 2295 (w); 2162 (s); 2078 (s); 

2044 (vs); 2020 (vs); 1606 (m); 1396 (s); 1323 (s); 1181 (m); 1106 (s); 1063 (w); 954 

(w); 829 (m); 705 (m); 573 (s); 468 (m); 447 (w). Elemental analysis 

(C20H8Cl2F6Fe2O6P2, 702.81 gmol−1): calculated: C 34.18; H 1.15; found: C 33.86; H 

1.06. 

3.10 Synthesis of [(thf)4Ca{Fe2(CO)6(�-CO)(�-PPh2)}2] (CORM-CF)  {14}: 

 

 

 

 

 

 

The complex 14 was prepared in a manner similar to the literature procedure [131].  

Method A: A solution of 0.16 g of [(thf)4Ca(PPh2)2] (0.229 mmol), which was prepared 

according to the literature procedure [141], in 15 ml of THF was added dropwise at 0°C 

to a solution of 0.17 g of Fe2(CO)9 (0.458 mmol) in 35 ml of THF. The color of the 

solution changed from yellow to red. After complete addition, the solution was warmed 

to room temperature and stirred for several hours. After reduction of the volume and 

storage at -25°C, 0.23 g of red crystals of 14 (0.17 mmol, 77%) precipitated.  

Method B: A solution of 0.21 g of [(thf)4Ca(PPh2)2] (0.30 mmol) [141] in 15ml of THF 

was added dropwise at 0°C to a solution of Fe3(CO)12 (0.30 g, 0.60 mmol) in 35 ml of 

THF. The color of the solution changed from yellow to red. After complete addition, the 

solution was warmed to room temperature and stirred for several hours. In order to 

complete the reaction, the solution was heated under reflux for 4 h. After reduction of 

the volume and storage at -25°C, 0.29 g of red crystals of 14 (0.22 mmol, 73%) 

precipitated. 
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3.11 Myoglobin Assay: 

The amount of CO released from the complexes prepared in this study was evaluated in 

a spectrophotometric assay by measuring the conversion of deoxy-myoglobin (deoxy-

Mb) to the carbon monoxide myoglobin complex (Mb-CO). Reduced myoglobin 

solutions (100 µmol/L) were prepared immediately before the experiments by dissolving 

the protein in phosphate buffered saline (PBS, pH 7.4) with freshly added 0.1% sodium 

dithionite. Carbonyl complexes were added from 10-mmol/L DMSO stock solutions to a 

final concentration of 50-200 µmol/L. The light-dependent CO release from all CORMs 

in this study was measured by recording spectra in the range of 500-600 nm before the 

carbonyl complexes were added to the deoxy-myoglobin solution and 15 min after 

exposing these solutions to light from a cold light source (20 W halogen lamp, Osram 

GZX4, with 2 W output power at the end of the light guide; the light guide was placed at 

the top of a 1-mL cuvette at a distance of 20 mm.). However, because of the strong self-

absorbance of CORM-P2 further experiments were performed at lower concentration 

(5 µM CORM and 10 µM Mb) in a spectral range covering the Soret region (380-

450 nm). Spectra in the absence of CO and in CO-saturated solution were recorded to 

calculate the maximal absorbance difference, required to convert absorbance changes 

to relative CO release. The time course of CO release was monitored by measuring the 

changes in absorbance at 540 nm for CORM-S1, CORM-S2, CORM-P3, CORMP4, and 

CORM-P5. For CORM-S2, absorption of the compound itself was corrected for by 

performing equivalent experiments in the absence of myoglobin. Variations of this assay 

are critically reviewed by Atkin et al. [142]. For CORM-P1 and CORM-P2 the time 

course of CO release was monitored by measuring absorbance at 422 nm, 470 nm, and 

520 nm every 10 s. To test for dependence of CO release from light, myoglobin, or 

dithionite, samples were preincubated for 10 min under different conditions. Spectra in 

the Soret region were recorded immediately after addition of myoglobin and sodium 

dithionite at their final concentrations of 10 µM and 0.1%, respectively.                            
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3.12 X-Ray Structure Determinations: 

The intensity data for the compounds were collected on a Nonius KappaCCD 

diffractometer using graphite-monochromated Mo-Kα radiation. Data were corrected for 

Lorentz and polarization effects but not for absorption effects [143,144]. The structures for 

all complexes in this study were solved by direct methods (SHELXS [145]) and refined 

by full-matrix least squares techniques against Fo
2 (SHELXL-97[145]). All hydrogen 

atoms for compound 6, the amine hydrogen atoms of 2 (CORM-S2), 4, 7 (CORM-P1), 

and 8 (CORM-P2), additional to the acetonitrile hydrogen atoms of 7 (CORM-P1), were 

located by difference Fourier synthesis and refined isotropically [145]. All other 

hydrogen atoms were included at calculated positions with fixed thermal parameters. All 

non-hydrogen atoms were refined anisotropically [145]. A disorder has been observed for 

the coordinated DMF molecule of 4. Three alternative sites were refined that resulted in 

equal occupancies of 33.33%. The non-coordinated DMF molecule was refined in two 

alternative sites with occupancies of 69(2) and 31(2)% for atoms C1DA–C3DA and 

C1DF–C3DF, respectively. All non-disordered non-hydrogen atoms were refined 

anisotropically [145]. Crystallographic data for all compounds in this study and 

refinement details are summarized in Tables 1, 2, and 3 (SIEMENS Analytical X-ray 

Instruments, Inc.) was used for structure representations. 
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Summary 

Carbon monoxide (CO) is a highly toxic gas; nevertheless, it is increasingly being 

accepted as a cytoprotective and homeostatic molecule with important signalling 

capabilities in physiological and pathophysiological situations [7-12], Due to the high 

toxicity of CO if inhaled sophisticated strategies have to be developed in order to use 

these gaseous messenger molecules in cellular tissues. The most promising strategies 

include the use of carbonyl complexes of transition metals (CO-releasing molecules, 

CORMs) including water-insoluble [Mn2(CO)10] as CORM-1 and [Ru2(CO)6Cl2(µ-Cl)2] as 

CORM-2, water soluble [RuCl(CO)3(H2NCH2COO)] as CORM-3 (CO-release via ligand 

exchange reactions) and Na2[H3B-COO] as CORM-A1 (pH-dependent CO release) 

[50,77,94]. 

Iron-based CO-releasing complexes represent a promising target because iron is a non-

toxic 3d metal whose concentration is tightly regulated in biological systems [60]. We 

prepared CORM-S1 (figure 3.1 (left)) and CORM-S2 (figure 3.1 (right)) with good yields 

via the oxidative addition of cystamine to iron carbonyls and via the direct metalation of 

iron carbonyls with the appropriate thiol, respectively [117]. 

 

 

 

 

 

 

Fig 3.1: Molecular Structures of (left) [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) and (right) [Fe(CO)2(SC6H4-

2-NH2)2] (CORM-S2) [117].
 

In addition, CORM-P1 (figure 3.2 (left)) and CORM-P2 (figure 3.2 (right)) were 

synthesized with very good yields in order to investigate the CO liberation kinetics [119]. 

The largest advantage for these CORMs is based on the phosphorus-containing ligands 

which give one sharp resonance in the 31P NMR spectrum. Therefore, the release 

kinetics of carbon monoxide during irradiation with visible light can be studied by using 

31P NMR techniques.  
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Fig 3.2: Molecular structures of [Fe(CO)(CH3CN)(Ph2PCH2CH2NH2)2] [BF4]2 (CORM-P1, left) and 

[Fe(CO)(CH3CN)(Ph2P-C6H4-2-NH2)2] [ BF4]2 (CORM-P2, right) [119]. 

We extend the presented work in the synthesis of CORMs with higher CO contents. 

Accordingly CORM-P3 (figure 3.3 (left)) and CORM-P4 (figure 3.3 (right)) were 

prepared via the reaction of diironnonacarbonyl [Fe2(CO)9] with phosphorus trichloride 

(PCl3). 

  

 

 

 

 

 

Fig 3.3: Molecular structures of [Fe(CO)4(PCl3)] (CORM-P3, left) and [Fe2(CO)6(PCl2)2] (CORM-P4, right). 

 

Also as CORMs with high CO contents CORM-P4 (figure 3.4 (left)) and CORM-FC 

(figure 3.4 (right)) [131] were synthesized via the reaction of diironnonacarbonyl 

[Fe2(CO)9] with [4-(Trifluoromethyl)phenyl]phosphonous dichloride in CORM-P4 and the 

reaction of  diironnonacarbonyl [Fe2(CO)9] or triirondodecacarbonyl [Fe3(CO)12] with 

calcium bis(diphenylphosphanide) in CORM-FC.  
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Fig 3.4: Molecular structures of [Fe2(CO)6{PCl(C6H4-CF3)}2] (CORM-P4, left) and [(thf)4Ca{Fe2(CO)6(�-

CO)(�-PPh2)}2] (CORM-FC, right) [131]. 

 

The main target for synthesis of these complexes is to improve the CO releasing 

properties by addition of an electron withdrawing group in a trans position to the 

carbonyl ligands, such as trifluoromethyl in CORM-P4 and the bridging carbonyl in 

CORM-CF.  These terminal carbonyl ligands which are in a trans position to the electron 

withdrawing group have higher stretching frequencies in the IR spectra then the other 

terminal carbonyls. This fact indicates that the M-CO bond is weaker due to a lower 

back donation of charge from the metal to the π*(CO) ligand orbitals which eases the 

liberation of CO from these CORMs. 
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Zusammenfassung 

Kohlenstoffmonoxid (CO) ist ein sehr toxisches Gas und wird trotzdem zunehmend als 

zytoprotektives und homöostatisches Molekül sowie als physiologischer und 

pathophysiologischer Botenstoff erkannt [7-12]. Durch die hohe Giftigkeit, die CO beim 

Einatmen besitzt, müssen wohl durchdachte Strategien entwickelt werden, um den 

gasförmigen Botenstoff in zellulärem Gewebe einzusetzen. Die vielversprechendsten 

Ansätze umfassen den Einsatz von Übergangsmetall-Carbonylkomplexen (CO-

releasing molecules, CORMs), wie die wasserunlöslichen Verbindungen [Mn2(CO)10]  

(CORM-1) und [Ru2(CO)6Cl2(µ-Cl)2] (CORM-2), sowie die wasserlöslichen Komplexe 

[RuCl(CO)3(H2NCH2COO)] (CORM-3, CO-Freisetzung durch eine Ligandenaustausch-

reaktion) und Na2[H3B-COO]  (CORM-A1, pH-abhängige CO-Freisetzung) [50,77,94]. 

Eisenbasierte, CO-freisetzende Komplexe sind vielversprechend, da Eisen ein 

ungiftiges 3d-Metall ist, dessen Konzentration in biologischen Systemen in engen 

Grenzen reguliert wird [60]. CORM-S1 (Abb. 3.1 (links)) und CORM-S2 (Abb. 3.1 

(rechts)) konnte mit guten Ausbeuten, mittels oxidativer Addition von Cystamin an 

Eisencarbonyle sowie durch direkte Metallierung geeigneter Thiole durch 

Eisencarbonyle, dargestellt werden [117]. 

 

 

 

 

 

 

Abb. 3.1: Molekülstrukturen von (links) [Fe(CO)2(SCH2CH2NH2)2] (CORM-S1) und (rechts) 

[Fe(CO)2(SC6H4-2-NH2)2] (CORM-S2) [117].
 

Darüber hinaus wurden CORM-P1 (Abb. 3.2 (links)) und CORM-P2 (Abb. 3.2 (rechts)) 

mit sehr guten Ausbeuten dargestellt, um die CO-Freisetzungskinetik zu untersuchen 

[119]. Der größte Vorteil dieser CORMs liegt in den phosphorhaltigen Liganden, welche 

ein scharfes Signal im 31P NMR spektrum zeigen. Damit kann die Kohlenstaffmonoxid 

Fe

S

N
H2

CO
OC

S
NH2

Fe

S

N
H2

CO
OC

S
NH2



94 

 

freisetzungskinetik, während der Bestrahlung mit sichtbarem Licht, mit NMR-Techniken 

untersucht werden. 

 

 

 

 

 

 

Abb. 3.2: Molekülstrukturen von [Fe(CO)(CH3CN)(Ph2PCH2CH2NH2)2] [BF4]2 (CORM-P1, links) und 

[Fe(CO)(CH3CN)(Ph2P-C6H4-2-NH2)2] [ BF4]2 (CORM-P2, rechts) [119]. 

Außerdem wurden CORMs mit höherem CO-Gehalt dargesatellt. CORM-P3 (Abb. 3.3 

(links)) und CORM-P4 (Abb 3.3 (rechts)) konnten durch die Umsetzung von 

Dieisennonacarbonyl [Fe2(CO)9] mit Phosphortrichlorid (PCl3) erhalten werden. 

  

 

 

 

 

 

Abb 3.3: Molekülstrukturen von [Fe(CO)4(PCl3)] (CORM-P3, links) und [Fe2(CO)6(PCl2)2] (CORM-P4, 

rechts). 

 

Ebenso wurden CORM-P4 (Abb 3.4 (links)) und CORM-FC (Abb 3.4 (rechts)) [131]  als 

CORMs mit hohem CO-Gehalt, durch Reaktion von Dieisennonacarbonyl [Fe2(CO)9] mit 

[4-(Trifluormethyl)phenyl]phosphordichlorid (CORM-P4) und Dieisennonacarbonyl 

[Fe2(CO)9] oder Trieisendodecacarbonyl [Fe3(CO)12] mit Calcium 

bis(diphenylphosphanid)  (CORM-FC), dargestellt.  
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Fig 3.4: Molekülstrukturen von [Fe2(CO)6{PCl(C6H4-CF3)}2] (CORM-P4, links) und [(thf)4Ca{Fe2(CO)6(�-

CO)(�-PPh2)}2] (CORM-FC, rechts) [131]. 

 

Das Hauptaugenmerk bei der Synthese lag auf der Verbesserung der CO-

Freisetzungseigenschaften durch Einführung von elektronenziehenden Liganden in 

trans-Position zum Carbonylliganden, z.B. Trifluormethyl in CORM-P4 oder das 

verbrückende Carbonyl CORM-FC. Die terminalen Carbonylliganden, die trans-ständig 

zu einem elektronenziehenden Liganden sitzen, haben größere 

Streckschwingungsfrequenzen im IR als andere terminale Carbonyle. Dies zeigt eine 

Schwächung der M-CO-Bindung durch verminderte Metall-Ligandrückbindung an, 

welche die CO-Freisetzung der CORMs erleichtert.  
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Table 1: Crystal data and refinement details for the X-ray structure determinations of the compounds 1 

(CORM-S1), 2 (CORM-S2), 3, and 4. 

Compound 1 (CORM-S1) 2 (CORM-S2) 3 4 

Formula C6H12FeN2O2S2, 
C4H8O 

C14H12FeN2O2S2, 
C4H8O 

C6H8N2O2RuS2, 
C4H8O 

C14H12N2O2Ru S2, 
2 C3H7NO 

fw (g�mol
-1

) 336.25 432.33 377.44 551.64 

T/K -140(2) -140(2) -140(2) -140(2) 

crystal system monoclinic triclinic monoclinic monoclinic 

space group P 21/n P ī P 21/n P 21/n 

a/ Å 16.3227(3) 5.6236(1) 16.5181(6) 5.6470(1) 

b/ Å 9.7721(2) 8.8547(2) 9.7343(3) 20.4208(3) 

c/ Å 20.0057(4) 10.5982(2) 20.1750(8) 22.3020(3) 

α/° 90 106.325(1) 90 90 

β/° 111.759(1) 103.221(1) 111.248(2) 90.743(2) 

γ/° 90 94.462(1) 90 90 

V/Å
3 

2963.69(10) 487.304(17) 3023.46(19) 2571.57(7) 

Z 8 1 8 4 

ρ (g�cm
-3

) 1.507 1.473 1.658 1.519 

µ (mm
-1

) 13.01 10.08 13.14 8.09 

measured data 17902 12952 17299 13093 

data with I > 2σ(I) 5868 4148 5362 5004 

unique data (Rint) 6762/0.0338 4232/0.0453 6854/0.0588 5584/0.0256 

wR2 (all data, on 
F

2
)
a)

 
0.0888 0.0598 0.1172 0.1342 

R1 (I > 2σ(I)) 
a)

 0.0404 0.0238 0.0559 0.0615 

s 
b)

 1.185 1.050 1.117 1.301 

res. dens./e�Å
-3 

0.466/-0.505 0.297/-0.333 0.956/-0.639 1.761/-0.629 

CCDC No. 848989 848990 848991 848992 
 

a)
 Definition of the R indices: R1 = (ΣFo-Fc)/ΣFo; 

wR2 = {Σ[w(Fo
2
-Fc

2
)
2
]/Σ[w(Fo

2
)
2
]}

1/2
 with w

-1
 = s

2
(Fo

2
) + (aP)

2
+bP; P = [2Fc

2
 + max(Fo

2
)]/3; 

b)
 s = {Σ[w(Fo

2
-Fc

2
)
2
]/(No-Np)}

1/2
. 
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Table 2: Crystal data and refinement details for the X-ray structure determinations of the compounds 6, 7 

(CORM-P1), and 8 (CORM-P2). 

Compound 6  7 (CORM-P1) 8 (CORM-P2) 

formula [C40H38FeN4P2]
2+

, 
2[BF4]

-
, 2(C2H3N) 

[C31H35FeN3OP2]
2+

, 
2[BF4]

-
 

[C39H35FeN3OP2]
2+

, 
2[BF4]

-
, CH2Cl2 

fw (g�mol
-1

) 948.26 757.03 938.04 

T/°C -140(2) -140(2) -140(2) 

crystal system triclinic triclinic monoclinic 

space group P ī P ī P 21/n 

a/ Å 11.3798(2) 9.8383(1) 13.4610(3) 

b/ Å 12.4188(2) 11.7972(3) 23.0816(4) 

c/ Å 17.8206(3) 14.4190(3) 13.5722(3) 

α/° 74.966(1) 98.138(1) 90 

β/° 85.178(1) 92.800(1) 100.427(1) 

γ/° 68.964(1) 95.042(1) 90 

V/Å
3 

2270.05(7) 1647.08(6) 4147.26(15) 

Z 2 2 4 

ρ (g�cm
-3

) 1.387 1.526 1.502 

µ (cm
-1

)  4.75  6.32  6.43 

measured data 14722 9907 23878 

data with I > 2σ(I) 9507 6869 7781 

unique data (Rint) 10305/0.0197 7443/0.0151 9451/0.0390 

wR2 (all data, on F
2
)
a)

 0.0986 0.0828 0.1347 

R1 (I > 2σ(I)) 
a)

 0.0390 0.0380 0.0547 

s 
b)

 1.057 1.070 1.054 

Res. dens./e�Å
-3 

0.589/-0.469 0.822/-0.441 0.843/-0.979 

CCDC No. 905061 905062 905063 
 

a)
 Definition of the R indices: R1 = (ΣFo-Fc)/ΣFo; 

wR2 = {Σ[w(Fo
2
-Fc

2
)
2
]/Σ[w(Fo

2
)
2
]}

1/2
 with w

-1
 = σ

2
(Fo

2
) + (aP)

2
+bP; P = [2Fc

2
 + Max(FO

2
]/3; 

b)
 s = {Σ[w(Fo

2
-Fc

2
)
2
]/(No-Np)}

1/2
. 
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Table 3: Crystal data and refinement details for the X-ray structure determinations of the compound 12 

(CORM-P6).  

Compound 12 (CORM-P6) 

formula C6 Cl4 Fe2 O6 P2 

fw (g�mol
-1

) 483.50 

T/°C -140(2) 

crystal system trilinic 

space group P ī 

a/ Å 7.8114(2)  

b/ Å 8.2118(2)  

c/ Å 12.5477(3) 

α/° 83.767(1) 

β/° 81.531(1) 

γ/° 69.899(1) 

V/Å
3 

746.16(3) 

Z 2 

ρ (g�cm
-3

) 2.152 

µ (cm
-1

) 28.88 

measured data 4564 

parameters 181 

data with I > 2σ(I) 3490 

unique data / Rint 3384/0.0171 

wR2 (all data, on F
2
)
a) 

0.0641 

R1 (I > 2σ(I))
a) 

0.0258 

s
b) 

1.060 

Res. dens./e�Å
-3 

0.916/-0.429 

 

a)
 Definition of the R indices: R1 = (ΣFo-Fc)/ΣFo; 

wR2 = {Σ[w(Fo
2
-Fc

2
)
2
]/Σ[w(Fo

2
)
2
]}

1/2
 with w

-1
 = σ

2
(Fo

2
) + (aP)

2
+bP; P = [2Fc

2
 + Max(FO

2
]/3; 

b)
 s = {Σ[w(Fo

2
-Fc

2
)
2
]/(No-Np)}

1/2
. 
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