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1. Introduction 

Increasing attention towards sustainable and renewable resources has evoked a great deal of 

research activity in recent years (Belgacem and Gandini 2008). In this context, the focus of 

attention is natural polymers as a source of sustainable and renewable components for the 

generation of novel materials. Cellulose is by far the most abundant natural resource (Klemm et 

al. 2005). It is biodegradable, renewable, non-toxic and cheap. Cellulose can be modified by a 

variety of chemical reactions. There is therefore, ever increasing interest in the use of cellulose 

as a starting material for novel highly engineered products (Klemm et al. 1998a; Heinze et al. 

2006). With respect to studies on the chemical modification of cellulose (Schubert et al. 2011; 

Koschella et al. 2006; Liebert and Heinze 2004), the interest has primarily focused on 

nucleophilic displacement (SN) reactions (Petzold-Welcke et al. 2009). It was found that the p-

toluenesulfonic acid ester of cellulose (tosyl cellulose) is a very promising starting material for 

SN reactions. Moreover, it is feasible to modify the remaining hydroxyl groups of tosyl cellulose 

with various ester moieties, including negatively charged sulfate moieties without influencing 

the presence of the tosylate group (Heinze and Rahn 1996). Thus, polyampholytes carrying both 

types of ionic groups within one macromolecule can be synthesized by replacing the tosylate 

groups via SN reactions. The polyampholytes produced may display unique physicochemical 

characteristics and have great potential for various applications, including protein separation and 

purification, binding and recovery of metal ions, enhanced oil recovery, and adsorption on 

viscose fibers similar to chitosan (Kudaibergenov and Ciferri 2007; Strnad et al. 2010).  

The aim of the present work is to provide a synthesis pathway to novel cellulose-based 

polyampholytes. The functionalization of cellulose with p-toluenesulfonyl (tosyl) moieties and 

the subsequent introduction of sulfate moieties by the conversion of the remaining hydroxyl 

groups with sulfur trioxide pyridine complex yields a reactive amphiphilic polyelectrolyte, 

namely tosyl cellulose sulfate (Heinze and Rahn 1996). Tosyl cellulose and tosyl cellulose with 
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additional hydrophobic functional groups (e.g. acetate, benzoate, carbanilate) are accessible to 

nucleophilic displacement reactions with multifunctional amines (Tiller et al. 1999; Tiller et al. 

2001; Berlin et al. 2000; Berlin et al. 2003; Jung and Berlin 2005). However, the nucleophilic 

displacement of tosyl groups in sulfated cellulose polyelectrolytes has not yet been reported. In 

this thesis, the synthesis of tosyl cellulose sulfate, and the replacement of the tosyl groups by 

different multifunctional amines was carried out and the structures of the novel ampholytic 

products (namely 6-deoxy-6-amino cellulose sulfate derivatives) were characterized by means of 

elemental analysis, 
13

C-NMR-, FT-IR-, and UV-Vis spectroscopy. Moreover, the solubility of 

the samples in water at different pH values, the molecular weights and physicochemical behavior 

of the samples in aqueous solution were studied. 6-Deoxy-6-amino cellulose sulfate products 

were adsorbed on cellulose fibers, thereby conferring amphoteric characteristics. The functional 

groups displayed on the surface of the coated fibers and the electro-kinetic behavior of the coated 

fibers were characterized by means of different techniques and methods. Finally, studies on the 

antimicrobial and antithrombogenic efficiencies of the samples in aqueous solution and adsorbed 

on cellulose fibers were carried out. 
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2. Literature review  

2.1. Cellulose  

Cellulose is a valuable natural product. Human civilization uses it for a variety of applications in 

fields as diverse as medicine, pharmaceutics, cosmetics, clothing, construction, heating and food. 

There are only a few facets of human life which are not directly connected to cellulose or one of 

its derivatives. Thus, it is not surprising that a large amount of cellulose related research has been 

accomplished; indeed, two Nobel Prizes have been awarded for cellulose related research (Harris 

et al. 2010). Cellulose was characterized for the first time in various plants' tissues by the French 

plant scientist Anselme Payen (Payen 1838 ). He found that after treating the plant tissues with 

acids and ammonia, a fibrous solid could be extracted in water, alcohol, and ether. He 

determined the molecular formula (C6H10O5) of the extracted fibrous using elemental analysis, 

and observed its structural isomerism with starch. Subsequently, it was named as (Cellulose) by 

the French Academy (Brongniart et al. 1839 ). Cellulose is an essential ingredient of all woody 

plants (Fig. 1), and is the most abundant, biodegradable and renewable polymer in the world. 

The annual amount of naturally produced cellulose is around 1.5 x 10
12

 tons (Klemm et al. 

2005). 

 

2.1.1. Cellulose occurrence and extraction  

The most important source of cellulose is plants (Klemm et al. 2002 ). Sources of cellulose such 

as lignocellulosic material in wood, agricultural residues, water plants and grasses also contain 

other components such as hemicelluloses, lignin and small amounts of extractives (Hon 1996). 

However, the cellulose obtained for commercial uses tends to be harvested from sources such as 

cotton and wood due to their relative purity (Table 1). 
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Fig. 1. Cellulose microfibril structure according to the office of biological and environmental 

research of the U.S. Department of Energy Office of Science. science.energy.gov/ber/ 

 

It is also noteworthy that pure cellulose can be produced on a laboratory and semi-industrial 

scale, by acetic acid producing bacteria, such as Gluconacetobacter, xylinum and Acanthamoeba 

castellani (Tarchevskiĭ and Marchenko 1991). Algae such as Valonia ventricosa and 

Chaetamorpha melagonicum are also sources of highly crystalline cellulose, which have been 

used for studying polymorphism in polymers (Sugiyama et al. 1990; Yamamoto et al. 1989; 

VanderHart and Atalla 1984; Isogai et al. 1989). There is cellulose of animal origin and also 

cellulose, which found in fungal cell (Van Daele et al. 1992; Johansson et al. 1989).  
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Table 1. Chemical composition of some typical cellulose-containing material according to Hon 

1996. 

Source Composition (%)  

 Cellulose Hemicellulose Lignin Extract 

Hardwood 43 – 47 25 – 35 16 – 24  2 – 8  

Softwood 40 – 44 25 – 29 25 – 31 1 – 8 

Bagasse 40 30 20 10 

Coir 32 – 43 10 – 20 43 – 49 4 

Corn cobs 45 35 15 5 

Corn stalks 35 25 35 5 

Cotton 95 2 1 0.4 

Flax (retted) 71 21 2 6 

Flax (unretted) 63 12 3 13 

Hemp 70 22 6 2 

Henequen 78 4 – 8 13 4 

Istle 73 4 – 8 17 2 

Jute 71 14 13 2 

Kenaf 36 21 18 2 

Ramie 76 17 1 6 

Sisal 73 14 11 2 

Sunn 80 10 6 3 

Wheat straw 30 50 15 5 

 

Since cellulose is isolated from plants, it may contain some byproducts which are not desirable 

for chemical modification reactions. The industrial extraction and purification of cellulose has 

led to differing levels of purity from ultra-pure cellulose to cellulose which contains byproducts 

(Klemm et al. 2002 ). Table 2 gives some examples of such cellulose materials. 
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Table 2. Carbohydrate composition and degree of polymerization (DP) of some cellulose 

samples. (adapted from Heinze 1998).  

Sample Producer Carbohydrate composition (%)  DP 

  Glucose  Mannose  Xylose  

Avicel Fluka 100 - - 280 

Sulfate pulp V-60 Buckeye 
a)

 95.3 1.6 3.1 800 

Sulfate pulp A-6 Buckeye 96.0 1.8 2.2 2000 

Sulfite pulp 5-V-5 Borregaard 
b)

 95.5 2.0 2.5 800 

Linters  Buckeye 100 - - 1470 

Linters  Buckeye 100 - - 2000 

a)
 Buckeye Cellulose Corp., 1001 Tillman Street, Memphis/Tennessee 38108 – 0407, USA;  

b) 
Borregaard ChemCell, P.O. Box 162, N.1701 Sarpsborg, Norway. 

 

In Table 2, it is shown that the degree of polymerization (DP) and the molecular weight of 

cellulose (molecular weight = DP×162 g mol
-1

) vary widely according to the sources and the 

treatment methods. 

Extraction of cellulose involves treatment of the cellulosic materials with alkalis or bisulfites to 

separate the lignin and to extract the hemicellulose. Different extraction procedures can be 

performed, with each method possessing different advantages and disadvantages related to the 

amount, quality, composition and final properties of the resulting cellulose (Morán et al. 2008). 

The process can be summarized as digestion, removing most of the lignin as lignosulfonic acid 

(sulfite process) or as alkali or thiolignin (graft and sulfate process respectively), and subsequent 

bleaching steps for eliminating most of the residual lignin. The average chain length and the 

purity of the wood pulp obtained can be adjusted according to the end-use demands by 

controlling the digestion and bleaching steps (Klemm et al. 1998a).  
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2.1.2. Cellulose structure and reactivity  

Cellulose is rigid, highly crystalline, and insoluble in common organic solvents, which make it 

an ideal material for structural engineering (Hon 1995; Varshney and Naithani 2011). Cellulose 

is a polydisperse and linear polymer. Its basic monomeric unit is D-anhydroglucopyranose unit 

(AGU). AGUs are linked together by -(l→4)-glycosidic bonds and every two glucose units are 

assembled in a group forming an isotactic polymer composed of cellobiose dimers. Fig. 2 shows 

the typical molecular structure of the cellulose chain containing cellobiose dimer units. In every 

pyranose ring, the –CH2OH and –OH groups and the glycosidic bonds are all equatorial with 

respect to the mean planes of the rings, which means that pyranose rings possess a 
4
C1 

conformation. The C-1 end has reducing properties, while the glucose end group with a free C-4 

hydroxyl group is non-reducing. The cellulose molecule takes a form like a flat ribbon when it is 

fully extended and the hydroxyl groups which protrude laterally form inter- and intramolecular 

hydrogen bonds. The linear integrity of the cellulose chains and the reactivity of the hydroxyl 

groups are both affected by the intramolecular hydrogen bonding between the adjacent AGU 

rings. Particularly, C-3 hydroxyl group forms a strong hydrogen bond with the ring oxygens on 

adjacent AGU units. These features are responsible for the supramolecular structure of cellulose 

and determine its chemical and physical properties (Varshney and Naithani 2011). The solid 

state of the cellulose has highly ordered crystalline zones beside less ordered amorphous areas. 

The hydroxyl groups located in the amorphous areas are more available for the reactions than the 

ones in the more highly ordered crystalline zones (Coffey et al. 1995). The degree of crystallinity 

of cellulose is defined as the ratio of the amorphous to the crystalline cellulose, and it depends on 

the pretreatment of the samples and its purity (Fink et al. 1995). For example, celluloses derived 

from cotton, bacteria and Valonia algae have the degree of crystallinity about 40–45%, 75% and 

93%, respectively (Kulshreshtha and Dweltz 1973; Yamamoto and Horii 1993; O'Sullivan 1997). 

The most important factor which determines the chemical reactivity of cellulose originates from 
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the existence of three reactive hydroxyl groups within each AGU unit. The primary ones located 

on position six, and the secondary hydroxyl groups, located on positions two and three (Fig. 2). 

The three hydroxyl groups in each AGU unit, about 31.48% of the cellulose weight, offer 

considerable possibilities for functionalization. The reactivity of the hydroxyl groups of cellulose 

depends on the medium in which reaction is carried out. This can be clearly noticed in 

etherification reactions performed in an alkaline medium where the order of the reactivity OH 

groups is OH-2 > OH-6 > OH-3 while in the case of esterification reactions, the primary 

hydroxyl group (OH-6) is preferred (Hon 1996). However, the uniformity of the resulting 

products is not guaranteed due to the challenge of the regioselectivity of the specific syntheses. 

The type, distribution, and achieved uniformity of substituents groups clearly determine the 

properties of the derivatives (Klemm et al. 2002 ; Nicholson and Meritt 1985). The degree of 

substitution (DS) represents the average number of the hydroxyl groups functionalized by the 

new substituents. The highest DS that can be reached is three per anhydroglucose unit. Hydroxyl 

groups of cellulose can be involved in different types of reactions such as esterification, 

etherification, intermolecular crosslinking reactions, and free radical reactions, particularly in the 

formation of cellulose graft copolymers. Thus, a large variation of different chemical 

functionalizations of cellulose can be achieved (Varshney and Naithani 2011). Under appropriate 

conditions, the regions C-1 and C-4 are involved in degradation processes. The degradation can 

occur chemically (acid and enzymatic heterolysis, alkaline and oxidative degradation), 

mechanically (milling, ultrasonic agitation), thermally, and by radiation (UV, high energy 

radiation) (Klemm et al. 1998a).  
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Fig. 2. Molecular structure of cellulose. 

 

2.1.3. Dissolution and regeneration of cellulose  

Regenerated cellulose is produced via dissolution. The hydrogen bonds, which form the 

organized system surrounding the single polyglucan chain, are destroyed during the dissolution 

process (Heinze and Liebert 2001). The solvents used are classified to non-derivatizing and 

derivatizing solvents (see Fig. 3). Physical dissolution is performed by non-derivatizing solvents 

such as N,N-dimethyl acetamide (DMAc)/LiCl, while derivatizing solvents such as 

CF3COOH/(CF3CO)2O cause partial functionalization of the cellulose. Both solvents types can 

be used as media for derivatization and to prepare regenerates of cellulose (Klemm et al. 2002 ). 

In 1857, Schweizer reported the first solvent of cellulose, which is cuprammonium hydroxide 

solution (Schweizer 1857). After that, several solvents were reported and many important 

reviews have been published containing detailed discussion about known cellulose solvents and 

their respective mechanism of dissolution (Hudson and Cuculo 1980; Johanson 1985; Augustine 

and Hudson 1990; Philipp 1993; Dawsey 1994; Heinze and Liebert 1998; Heinze and Glasser 

1998). As a result of dissolution of cellulose, various types of regenerated cellulose were derived 

such as microcrystalline cellulose and viscose fiber. 

 

 

Non-Reducing 

End-Group 
-Cellobiose-Repeating unit 

n = Degree of polymerization (DP) 

Anhydroglucose 

unit (AGU) 

Reducing 
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                           Non-derivatizing solvents derivatizing solvents 

Aqueous media  

 Aqueous inorganic complexes  

Cuam 

Cuen 

Cadoxen 

 Aqueous bases 

10% NaOH 

 Mineral acids  

H2SO4; H3PO4 

 Melt of inorganic salt hydrates 

LiClO4 × 4H2O 

ZnCl2 × 4H2O 

Non-aqueous media 

 Organic liquid/inorganic salt 

CH3CON(CH3)2/LiCl 

(CH3)2-SO/CaCl2 

(CH3)2-SO/(C4H9)4NF 

 Organic liquid/amine/SO2 

(CH3)2-SO/(C2H5)3N/SO2 

 Ammonia/ammonium salt  

NH3/NH4SCN 

 Oxides of tertiary amines 

 

 

 CF3COOH/(CF3CO)2O 

 HCOOH 

 CS2/NaOH 

  

 

 

Fig. 3. Classification of typical cellulose solvents. (adapted from Heinze and Liebert 2001) 

 

2.1.3.1. Microcrystalline cellulose  

Microcrystalline cellulose (MCC) is produced by acid catalyzed depolymerization of native or 

the regenerated cellulose. For this purpose, HCl, SO2 and H2SO4 at high temperatures (110 °C) 

for ca. 15 minutes are used (Battista 1985). The amorphous regions are targeted by the acidic 

reagents causing degradation, which reduces the degree of polymerization. Only the acid-

resistant crystalline regions are saved. After spray drying of the MCC powder, the average 

particle size range is between 20-90 µm. Another type of MCC (called colloidal MCC) is water 
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dispersible and possesses a major proportion of colloidal sized aggregates (less than 0.2µm in 

diameter). For preparation of the colloidal MCC, mechanical energy is needed after the acidic 

hydrolysis in order to make microfibrils of the required size (French and Bertoniere 1993; 

Whistler and Daniel 1990). 

 

2.1.3.2. Viscose fiber 

In 1891, Charles Cross, Edward Bevan, and Clayton Beadle discovered that cotton or wood 

cellulose after treatment with alkali and carbon disulfide could be dissolved as cellulose 

xanthate. The treacle-like yellow solution was called ‘viscous cellulose solution’ which was later 

contracted to simply ‘viscose’. It was noticed that the viscous cellulose solution could be 

coagulated in an ammonium sulfate bath and then converted back to pure white cellulose using 

dilute sulfuric acid. This was known as the viscose process and the first patent on the viscose 

process was granted to Cross and Bevan in England in 1893 (Cross et al. 1893) (see Fig. 4). By 

1908, the fiber spun from viscose solution was considered as a key component of the textile 

industry and still enjoys the unique position of being the most versatile of all artificial fibers 

(Woodings and Editor 2001). At present, annually, 3 million tons of viscose fibers are produced 

worldwide through the viscose process (Klemm et al. 2002 ). There are many different technical 

procedures for the steps of xanthogenation, dissolution, and thread formation. Details about the 

chemistry of xanthogenation, transxanthogenation, and dexanthogenation and their influence on 

the substituent distribution and the solution state were discussed in (Götze 1967; Albrecht 1986; 

Engelhardt 1995 ; Klemm et al. 1998a). 

 

2.1.3.2.1. Properties of viscose fibers 

Viscose fibers are hydrophilic, absorbent, and skin-friendly. They provide good moisture 

management combined with restricted growth of microorganisms. These fibers are non-melting, 
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mechanically and chemically stable, but if needed, they may be physically and chemically 

modified (Roggenstein 2011). Cellulose fibers are the most appropriate to be used as 

antibacterial next-to-skin fabrics due to their low immunogenicity towards the human body, and 

the comfort resulting from their high moisture absorption (Di et al. 2011). These features make 

the viscose fibers one of the most important textile materials worldwide. 

 
  Cellulose 

alkalization NaOH, aq  

   

pre-ripening   

   

xanthogenation CS2  

   

ripening   

   

dissolution NaOH, aq  

   

filtration   

   

spinning CS2, H2S  

   

  Fiber, Film 

 

Fig. 4. Viscose process (schematically). (adapted from Klemm et al. 2002 )  

 

2.1.3.2.2. Adsorption and characterization of agents on viscose fibers  

Surface treatments of cellulose fibers with intelligent functionalities is one of the important 

research areas nowadays. The aim of that is to improve their existing properties or to add new 

properties to the fiber’s surface, such as improving hydrophobicity for the reduction of water 

uptake and release, increasing their reactivity towards polymeric matrices in order to prepare 

high-performance composite materials (Tonoli et al. 2009; Veronovski and Hribernik 2010), 

grafting of specific sensors at their surfaces to render them as photoluminescent (Kim et al. 2006; 

Sarrazin et al. 2007), providing their surfaces with amphoteric characteristics, which may further 

H2SO4/ 

Na2SO4 
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expand their potential usages by improving their surface adsorbtivity as well as their fiber dyeing 

capabilities (Ramesh Kumar and Teli 2007), and introducing a bioactive functionality, which 

may allow the medical use of the cellulose fibers (Yuan Gao and Cranston 2008; Simoncic and 

Tomsic 2010). 

It must be taken into account that before adsorbing any active agent, viscose fibers must be pre-

treated with alkali. Thus, the impurities which may lower their hydrophilicity and adsorptivity 

such as oils, waxes, antistatic agents, lubricants and stiffening additives, originating from the 

manufacturing process may be removed (Bredereck et al. 1996; Zemljič et al. 2008; Peršin et al. 

2004; Peršin et al. 2011). It is known that purified (alkali pretreated) regenerated cellulose fibers 

are negatively charged due to the presence of carboxyl groups within their structures (Stana-

Kleinschek and Ribitsch 1998; Stana-Kleinschek et al. 2001; Stana-Kleinschek et al. 2002). 

Therefore, an interaction between the negative charges on the fibers and positively charged 

molecules (e.g. polyelectrolytes) may facilitate their adsorption on the fibers. The process and 

theoretical aspects of polyelectrolyte adsorption on cellulose fibers have attracted considerable 

interest over the last 40-50 years, and many reviews have been already published on this topic 

(Wägberg and Ödberg 1989; Lindström 1989; Ödberg et al. 1993; Swerin and Ödberg 1997). An 

important example of fiber functionalization is the viscose fibers functionalized by chitosan 

which renders the surface of the fibers antimicrobial activity. The fibers are typically soaked for 

10 minutes in 100 ml of 1% chitosan solution, which is adjusted to pH 3.6 by the addition of 1 M 

HCl. The adsorption and desorption of the chitosan is analyzed using potentiometric titrations, 

the spectrophotometric method with dye C.I. acid orange VII, the Kjeldahl technique and 

polyelectrolyte titrations (Fras Zemljic et al. 2012). In addition to chitosan, several active agents 

can be introduced to the cellulose fibers to be used as antimicrobial agents (such as silver, 

quaternary ammonium salts, polyhexamethylene biguanide, triclosan, dyes and regenerable N-

halamine compounds and peroxyacids) (Yuan Gao and Cranston 2008).  
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Evaluation of the efficiency of absorption on the surface of the viscose fibers is achieved via 

analysis of the functional groups on the fibers’ surface before and after the adsorption has taken 

place. X-ray photoelectron spectroscopy is used for the determination of the surface element 

content of carbon, nitrogen, oxygen and sulfur (Buchert et al. 2001; Fras et al. 2005). For 

studying the physicochemical and the electro-kinetic behavior of the fibers, techniques such as 

Conductometric-, potentiometric and polyelectrolyte titrations are used (Fras et al. 2004; Cakara 

et al. 2009; Wägberg and Ödberg 1989; Laine et al. 1996), as well as conventional spectroscopic 

techniques such as the methylene-blue method, and zeta-potential measurements of the fibers as 

a function of pH (Klemm et al. 1998a; Stana-Kleinschek et al. 2001; Reischl et al. 2006). 

 

2.2. Chemical modification of cellulose  

Functionalization of cellulose can be performed either heterogeneously or homogenously. A 

successful uniform heterogeneous functionalization with high DS value needs efficient cellulose 

pretreatment in order to decrease the interfibrillar bonding caused by hydrogen bonds (Klemm et 

al. 2002 ). The most appropriate procedure used for activation of cellulose to be prepared for 

heterogeneous functionalization is swelling in polar liquids such as dimethylsulfoxid (DMSO), 

ethanol (EtOH), NH3, and H2O, R4NOH/H2O, or on the lab-scale, NH3 and with transitory 

formation of additional compound with NaOH/H2O (mercerization for technical etherification in 

particular). Several typical examples about the very fast formation of alkali cellulose with 

aqueous NaOH were explained in (Klemm et al. 1998a). Dissolution of cellulose (see chapter 

2.1.3) opened the way for functionalization of cellulose under homogenous conditions. By using 

protecting group techniques, a regioselective functionalization of cellulose for producing of 

novel types of cellulose derivatives could be widely performed (Qi et al. 2012; Susann et al. 

2010; Nagel et al. 2010; Schlufter et al. 2006; Heinze and Rahn 1996; Rahn et al. 1996). 
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2.2.1. Esterification of cellulose 

Various pathways for the esterification of cellulose have been investigated. They are one of the 

most versatile classes of transformations of the biopolymer. On a technical scale, cellulose 

derivatives are synthesized by heterogeneous procedures (Heinze et al. 2006). Esterification of 

cellulose involves the reaction of the primary and secondary hydroxyl groups of cellulose. The 

technicality which makes esterification reactions of cellulose different from those occurring on 

low molecular weight alcohols arises from the macromolecular structural aspects of cellulose 

(Wilks 2001). Hydrogen bonds reduce the solubility of cellulose by linking the individual chains 

and forming complex structures. Derivatization of cellulose into esters modifies the solubility of 

resultant cellulosic derivate and changes many of the properties of the cellulose. 

Esterificationcan of cellulose can be carried out using mineral acids, organic acids or their 

anhydrides with the aid of dehydrating substances. The resulting esters are either organic or 

inorganic (Shelton 2004; Balser et al. 2000) (see Fig. 5). Because of the equilibrium adjustment, 

it is not guaranteed that the esterification reactions take place according to simple stoichiometric 

rules. The maximum degree of substitution of 3 is difficult to be achieved. Only under carefully 

controlled conditions can a triester be obtained. The most preferred hydroxyl group for the 

esterification reaction is the primary one which is located on C-6, while the secondary hydroxyl 

groups on the C-2 and C-3 positions of the AGU react slower due to their steric hindrance 

(Balser et al. 2000). In spite of the variety of cellulose esters which can be produced, the focus in 

next two chapters will be only on the cellulose esters which are used in this work.  

 

2.2.1.1. Esters of cellulose with organic acids 

The synthesis of cellulose esters of organic acids is obtained by the esterification of hydroxyl 

groups which are commonplace in organic chemistry. Except in some cases, the reactivity of the 
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organic acid itself even when present at a large excess is insufficient for performing an 

esterification reaction of cellulose.  

 

Fig. 5. General structure of cellulose esters. (adapted from Shelton 2004) 

 

Therefore, carboxylic acid derivatives such as acid anhydrides or acid chlorides are used as 

reagents. Generally, the esterification of the hydroxyl groups is achieved under acidic conditions 

which may lead to hydrolytic cleavage of the backbone of cellulose. Only under highly alkaline 

conditions can irreversible saponification of the ester groups take place. A broad variety of 

cellulose esters has been synthesized such as cellulose formate, cellulose acetate, cellulose esters 

of higher aliphatic acids, esters of cellulose with substituted mono-, di- and tricarboxylic 

aliphatic acids, cellulose esters with aromatic acids, esters of cellulose carrying sulfonic or 

phosphonic acid groups, phenyl carbamates of cellulose (Klemm et al. 1998b). The focus in this 

work will be on the p-toluenesulfonyl ester of cellulose (Tosyl cellulose) which is used in the 

experimental part. 
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2.2.1.1.1. Tosyl cellulose  

Esters of cellulose with p-toluenesulfonic acid, tosyl celluloses form versatile intermediates in 

the organic chemistry of cellulose derivatization. In other words, the tosyl groups are considered 

as a protective group as well as a very good leaving group for subsequent nucleophilic 

substitution reactions, which allow for the introduction of different moieties to the cellulose 

chain (Petzold-Welcke et al. 2009; Klemm et al. 1998b; Heinze et al. 2001). Tosyl cellulose can 

be synthesized heterogeneously as well as homogenously and the higher reaction rate, in both 

cases, has been clearly noticed at C-6 position as compared with those at C-2 and C-3 (Takahashi 

et al. 1986; Petzold-Welcke et al. 2009; Rahn et al. 1996).   

 

Fig. 6. Synthesis path for the molecular structure of tosyl cellulose. (adapted from Rahn et al. 

1996)  

Heterogeneously, tosyl cellulose has been prepared by reacting cellulose suspensions with large 

excesses of the reagent (up to 40: 1 mol of p-toluenesulfonyl chloride per mol of AGU) in 

pyridine for a long reaction time (ca. days) between room temperature and 80 °C (Hess and 

Ljubitsch 1933; Honeyman 1947). The heterogeneous procedure has several disadvantages; 

among them are the long reaction times, the high amounts of the reagents needed for the 

reactions, chlorination, formation of aminodesoxy groups and the poor solubility of the products. 
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The disadvantages of the heterogeneous process have been avoided through the synthesis of tosyl 

cellulose in a homogenous system. The procedure has been described in (Rahn et al. 1996) (see 

Fig. 6). A non-derivatizing solvent system, e.g. DMAc/LiCl, has been used for dissolving 

cellulose with DP values ranging from 280 to 1020. Ratios between 0.6-9.0 mol of tosyl 

chloride/mol of AGU were used to synthesize tosyl celluloses of DS values between 0.4 and 2.3 

in the presence of triethylamine (TEA) as the base (with negligible incorporation of chlorodeoxy 

groups) for a period of 24 h at 8 °C (see Table 3).  

 

Table 3. Reaction of cellulose with tosyl chloride (TosCl) in DMAc/LiCl for 24 h at 8 °C. 

(adapted from Rahn et al. 1996). 

Cellulose 
Reaction conditions  

Reaction product 
 Molar ratio  

 DP AGU TosCl TEA  DSTos S (%) Cl (%) 

Microcrystalline 280 1.0 1.8 3.6  1.36 11.69 0.47 

  1.0 4.5 9.0  2.30 14.20 0.43 

Spruce sulfite pulp 650 1.0 1.8 3.6  1.34 11.68 0.44 

  1.0 9.0 18.0  1.84 13.25 0.49 

Cotton linters 850 1.0 0.6 1.2  0.38 5.51 0.35 

  1.0 1.2 2.4  0.89 9.50 0.50 

  1.0 2.1 4.2  1.74 12.90 0.40 

  1.0 3.0 6.0  2.04 13.74 0.50 

Beech sulfite pulp 1020 1.0 1.8 3.6  1.52 12.25 0.43 

 

As shown in Fig. 7, the mechanism for the reaction of cellulose with sulfonic acid chloride in 

DMAc/LiCl depends on the organic base used in the reaction. In more detail, sulfonic acid 

chloride reacts with DMAc in a Vilsmeier-Haack-type reaction and form O-(p-toluenesulfonyl)-
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N,N-dimethylacetiminium salt I. In the presence of organic bases such as TEA (pKa 10.65) or 

DMAc (pKa 9.70), intermediate I reacts with the spieces V which leads to the formation of 

cellulose sulfonic acid esters VI without side reactions. In contrast, weaker bases such as Py 

(pKa 5.25) or N,N-dimethylaniline (pKa 5.15) react with I, yielding a more reactive N,N-

dimethylacetiminium salt II compared with V. Thus, at high temperatures, II can form 

chlorodeoxy compounds III or after aqueous workup, it yields acetylated cellulose IV, and both 

products are undesired side products (McCormick et al. 1990; Heinze et al. 2006).  

 

Fig. 7. Mechanism for the reaction of cellulose with tosyl chloride in DMAc/LiCl depending 

upon the presence of different organic bases. (adapted from McCormick et al. 1990; Heinze et al. 

2006). 
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The synthesized products are soluble in DMSO in all DSTos values obtained herein, whereas in 

the case of other solvents such as dimethylformamid (DMF), acetone, tetrahydrofuran (THF) or 

chloroform the solubility depends on the DSTos. Tosylate can be employed as a protecting group 

for synthesis mixed esters of cellulose by esterification of the free hydroxyl groups. Besides this, 

amphiphilic esters such as phthalates, trimellitates and sulfates of cellulose tosylates with 

unconventional solubility properties can be synthesized. For example, the introduction of sulfate 

groups to tosyl cellulose results in water-soluble cellulose sulfate esters with tosylate groups 

capable of being substituted through subsequent nucleophilic reactions facilitating the design of 

new supramolecular cellulosic structures (Heinze and Rahn 1996; Heinze et al. 2001; Petzold-

Welcke et al. 2009; Klemm et al. 1998b; Heinze et al. 2006). 

 

2.2.1.2. Esters of cellulose with inorganic acids 

In spite of the large number of inorganic acids available only few of them have been used in the 

esterification of cellulose. In this context, the most common inorganic acids used for cellulose 

esterification are oxygen-containing acids of the elements nitrogen, phosphorus, sulfur and 

boron. Thus, several esters of cellulose were produced such as cellulose nitrate, cellulose nitrite, 

cellulose sulfates, cellulose phosphate, cellulose dithiocarbonic acid ester, and cellulose borates 

(Klemm et al. 1998b; Heinze et al. 2006) (see Fig. 8). Since cellulose sulfate is involved in the 

recent work, details about it will be discussed below.  
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Fig. 8. Examples of polysaccharide esters of inorganic acids. (adapted from Heinze et al. 2006) 

 

2.2.1.2.1. Cellulose sulfate 

The term (cellulose sulfate) refers to the sulfuric acid half-ester of cellulose. It can be obtained 

by esterification of hydroxyl groups of cellulose according to: 

Cell-OH + SO3              Cell-OSO3H 

Cell-OH + XSO3H                Cell-OSO3H + XH 

(X = H2N, HO, Cl) 

The resultant acid half-esters can be converted to neutral sodium salts that are soluble in water 

when the DS is above of 0.2-0.3 depending on the distribution of the ester moieties. Cellulose 

sulfate can be synthesized by displacing of very labile nitrite group from its position in the AGU 

by using various sulfating agents. In this way, a reaction system of cellulose dissolved with an 

excess of N2O4 in DMF (> 3 mol of N2O4/mol of AGU) to a cellulose trinitrite and containing an 
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excess of N2O4 and HNO3 as further components, can be directly sulfated without isolation of 

the cellulose trinitrite (Schweiger 1974; Wagenknecht et al. 1993). Cellulose has also been 

sulfated by using a complex of sulfur trioxide reacted with DMSO achieving a DS of sulfation 

up to 2 (Whistler et al. 1967). The most common sulfating agents used are sulfuric acid, sulfur 

trioxide or chlorosulfonic acid which are used as the only reaction component besides cellulose, 

or in combination with alcohols, amines or inert media like chlorinated hydrocarbons. By 

adaption of the reaction conditions such as time, temperature and molar ratio of agent to AGU, a 

range of DS of sulfate group between 0 and 3 can be achieved. The cellulose chain during 

sulfation is commonly degraded due to hydrolytic cleavage of the glycosidic bonds (Klemm et 

al. 1998b). Cellulose sulfate can be synthesized through three routes; heterogeneously using an 

activated cellulose suspension, homogeneously starting with partially substituted cellulose 

derivatives and by the displacement reaction of an ester or ether group already displayed on the 

macromolecule. (Gohdes and Mischnick 1998; Wagenknecht et al. 1993; Klemm et al. 1998b). 

Cellulose sulfate possesses a variety of interesting properties, such as solubility, rheological 

behavior, different interactions with low or high molecular weight cations, anticoagulant activity 

and antiviral activity (Wagenknecht et al. 2005). The focus of this work is on the homogeneous 

synthesis of cellulose sulfates starting from partially functionalized cellulose esters with a 

primary substituent acting as a protecting group. Thus, in a suitable dipolar aprotic medium, the 

cellulose can be sulfated using conventional sulfating agents. The sulfation process targets only 

the free hydroxyl groups (Klemm et al. 1998a). Regioselective sulfation offers, in this case, a 

route to tosyl cellulose sulfates with a well-defined site-selective distribution of the sulfate 

groups within the AGU as explained in Heinze and Rahn 1996. The tosyl group of the partially 

esterified sulfonic acid ester of cellulose (tosyl cellulose) plays the role of a protecting group in a 

subsequent sulfation, as it is stable under the reaction conditions for sulfation using sulfur 

trioxide pyridine complex (SPC) in DMAc. After isolation of the product, it is neutralized with 

aqueous NaOH forming the sodium sulfate half-ester (see Fig. 9) 
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Fig. 9. The synthesis path for the molecular structure of tosyl cellulose sulfate. (adapted from 

Heinze and Rahn 1996). 

 

Sulfonic acid esters of cellulose are prepared with various DSTos values varies from 0.46 to 2.02, 

which allows them to be soluble in DMAc for the subsequent esterification reaction. The 

tosylation takes place predominantly at position 6 of the repeating unit. A further prolongation of 

the reaction time does not lead to an increase in DSSulf (Heinze and Rahn 1996; Petzold-Welcke 

et al. 2009). The soluble sulfonic acid esters of cellulose in DMAc are used as starting 

compounds for sulfation of the remaining free hydroxyl groups. Thus, DS values of sulfate 

groups (DSSulf) in the resulting tosyl cellulose sulfates are between 0.34 and 0.80 (see Table 4). 

Tosyl groups, subsequently, act as a good leaving group for subsequent nucleophilic 

displacement reactions at position 6 (Heinze et al. 2006; Heinze and Rahn 1996).  
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Table 4. Conditions and results of the homogeneous sulfation of p-toluenesulfonyl (tosyl) 

cellulose with sulfur trioxide pyridine complex (SPC) in N,N-dimethylacetamide at room 

temperature. (adapted from Heinze and Rahn 1996). 

Tosyl cellulose 

 Reaction conditions  Tosyl cellulose sulfate 

 Mol SPC/ Mol free 

OH-groups 

Time  

in h 

 

 
 Solubility

 c)
 

DSTos 
a)

   DSSulf
  b)

 H2O DMSO 

0.46  3.0 2.5  0.80 + - 

0.89  2.0 2.5  0.85 + + 

1.43  2.0 2.0  0.57 + + 

1.43  4.0 2.0  0.71 + + 

1.43  4.0 4.0  0.85 + + 

1.43  4.0 6.0  0.85 + + 

2.02  2.6 2.0  0.34 - + 

 
a)

 Degree of substitution of tosyl groups calculated from S analysis; 
b)

  Degree of substitution of 

sulfuric acid half ester groups calculated from S and Na analysis; 
c)

 Determined at a 

concentration of 1 g/100 mL: + soluble, - insoluble, DMSO= dimethyl sulfoxide. 

 

2.2.2. Introduction of amino functions into cellulose backbone by SN reactions 

Derivatization of cellulose by nucleophilic displacement (SN) reactions is a suitable path for the 

preparation of novel highly engineered products (Heinze and Petzold-Welcke 2012). Thus, 6-

amino-6-deoxycellulose and related derivatives were prepared from p-toluenesulfonyl (tosyl) 

cellulose by SN reaction with azido groups at position 6. By subsequent reduction with LiAlH4, 

the azido group is reduced to the amino moiety, and simultaneously, the remaining tosyl groups 

are completely removed (Baumann et al. 2003; Liu and Baumann 2002) (see Fig. 10). 
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Fig. 10. The regioselective synthesis of 6-amino-6-deoxycellulose from p-toluenesulfonyl (tosyl) 

cellulose by SN reaction with azido groups at position 6 using LiAlH4. (adapted from Liu and 

Baumann 2002) 

 

The path of tosylation, SN with sodium azide and subsequent copper-catalyzed Huisgen reaction, 

has significantly broadened the structural diversity of polysaccharide derivatives because the 

method yields products that are not accessible via etherification and esterification, and the most 

commonly applied reactions are discussed in Liebert et al. 2006. The preparation of 6-deoxy-6-

azido cellulose and subsequent copper-catalyzed Huisgen reaction of 1,4-disubstituted 1,2,3-

triazols formed as linkers lead to novel cellulose derivatives with methylcarboxylate, 2-aniline, 

and 3-thiophene moieties. The 1,3-dipolar cycloaddition reaction of 6-azido-6-deoxycellulose 

with acetylenedicarboxylic acid dimethyl ester and subsequent saponification with aqueous 

NaOH yield bifunctional cellulose-based polyelectrolytes (Koschella et al. 2010). Moreover, 

water-soluble deoxy-azido cellulose derivatives (synthesized from tosyl cellulose) can be 

obtained by heterogeneous carboxymethylation applying 2-propanol/aqueous NaOH as a 

medium. Starting from the cellulose derivatives with different degrees of substitution (DS) of the 

azide moiety (0.58–1.01), various DS values of the carboxymethyl functions (1.01–1.35) were 

realized (Pohl et al. 2009). The carboxymethyl deoxy-azido cellulose provides a convenient 

starting material for the selective dendronization of cellulose via Huisgen reaction yielding 

water-soluble carboxymethyl 6-deoxy-(1-N-(1,2,3-triazolo)- 4-polyamidoamine) cellulose 

derivatives of first (DS 0.51), second (DS 0.44), and third generation (DS 0.39). A very 
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promising path to obtain amino group displaying polysaccharides is the SN reaction of tosyl 

cellulose with di- or oligoamines leading to water soluble 6-deoxy-6-amino celluloses (Tiller et 

al. 1999; Berlin et al. 2000; Jung and Berlin 2005). Using the hydrodynamic technique of 

analytical ultracentrifugation, it was shown that the 6-deoxy-6-amino celluloses form multiple 

oligomeric species, and this protein-like behavior further substantiates the high potential of 

carbohydrates in nanoscience (Heinze et al. 2011).
  

 

 

Fig. 11. Scheme of the conversion of 6(2)-O-tosylcelluloses or 6(2)-O-tosylcelluloses esters with 

aromatic and aliphatic diamino and oligoamino compounds. (adapted from Jung and Berlin 

2005)  

 

Moreover, 6-deoxy-6-amino celluloses were prepared with additional functional groups, such as 

acetate, benzoate, carbanilate, and methoxy at position 2 and 3 of the anhydroglucose unit 

(Berlin et al. 2003; Berlin et al. 2000; Jung and Berlin 2005; Tiller et al. 2001) (see Fig. 11). 
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2.3. Polyampholytes 

Polyampholytes are macromolecules charged positively and negatively and carry both acidic and 

basic groups on their chains (Bekturov et al. 1990; Kudaibergenov 1999). Under appropriate 

conditions these groups dissociate in aqueous solution, producing ionic groups on the polymer 

chains and respective counter ions in solution. In case the groups are weak acids or bases, 

varying the pH of their aqueous solutions can change the net charge of polyampholytes. The 

isoelectric point is found at a specific pH value, when the numbers of positive and negative 

charges are equal. The net charge at the isoelectric point is zero, and the polyampholytes state is 

divided into polyacids and polybases. Thus, the polymers are nearly charge-balanced and exhibit 

unusual properties of polyampholytes. At pH values far above or far below the isoelectric point, 

the polymers show polyelectrolyte-like behavior (Dobrynin et al. 2004; Kudaibergenov 1999).  

Ionic polymers can be divided into two groups: polyelectrolytes and polyzwitterions (e.g. 

polyampholytes or polybetaines) (Lowe and McCormick 2002). While polyelectrolytes are 

decorated either with cationic or anionic charges, polyampholytes carry both types of ionic 

groups within one macromolecule. Therefore, polyampholytes display unique physicochemical 

characteristics and have a huge potential for various applications, including protein separation 

and purification, binding and recovery of metal ions, and enhanced oil recovery (Kudaibergenov 

and Ciferri 2007). Some examples about the polyampholytes are denatured proteins (e.g., 

gelatin), proteins in their native state such as bovine serum albumin, and synthetic copolymers 

made of monomers with acidic and basic groups (Dobrynin et al. 2004). Polymers carrying ionic 

groups constitute different important classes of naturally-occurring biomacromolecules (e.g. 

polynucleotides or proteins) as well as different classes of synthetic polymers of commercial 

relevance (e.g. viscosifiers or flocculation agents). The theory of solution properties and other 

basic concepts regarding synthetic and natural polyzwitterions or polyampholytes were reviewed 
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by different authors (Lowe and McCormick 2002; Dobrynin et al. 2004; Ciferri and 

Kudaibergenov 2007).  

 

2.3.1. Classification of polyampholytes (adapted from Kudaibergenov 1999) 

Polyampholytes chains can include different types of zwitterions such as weak acid/weak base, 

strong acid/weak base, (or else weak acid/strong base) and strong acid/strong base monomers. 

Vinylpyridines and acrylic (or methacrylic) acid are typical examples of monomers incorporated 

in polyampholyte copolymers consisting of weak base and weak acid groups. While the 

copolymers of N-substituted allylamines and vinyl- or styrenesulfonic acids represent types of 

strong base/strong acid polyampholytes. The acidic and basic groups of polyampholytes can also 

be in salt forms with a low or high charge density along the macromolecules. From a 

macromolecular point of view (see Fig. 12), polyampholytes can be classified into random (a), 

alternating (b), graft (c), diblock (d) or triblock (e) sequences. In the case of polyampholytes 

with betaine-like structures (f), acidic and basic groups are located along the backbone of the 

polymer. In terms of classification of polyampholytes regarding their solubility, polyampholytes 

can be water soluble and water insoluble at pH values close to the isoelectric point (IEP). For 

example, over the whole interval of pH-values, unsaturated carboxylic acids and the equimolar 

copolymers of aminoalkyl(meth) acrylates are water soluble. By contrast, copolymers based on 

vinylpyridines and acrylic (methacrylic, vinyl- or styrenesulfonic) acid are insoluble at the IEP. 

Generally speaking, most of blockpolyampholytes possess wide insolubility regions. 

Hydrophobic polyampholytes represent the combination of the zwitterionic and hydrophobic 

structures in polyampholytes, which have behavior close to “polysoaps”. 
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Fig. 12. Classification of polyampholytes dependent on the macrostructure; (a) random, (b) 

alternating, (c) graft, (d) diblock, (e) triblock sequence and (f) betaine structure. A, B and C are 

acidic, basic and neutral monomers, respectively. (adapted from Kudaibergenov 1999) 
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2.3.2. Acid-Base equilibrium in polyampholytes (adapted from Kudaibergenov 1999) 

The nature of the functional groups and the microstructure of the chains of the polyampholytes 

determine the electrochemical properties. It is known in the literature that it is difficult to titrate 

the functional groups of polyampholytes in the proximity of the isoelectric point due to the fact 

that the acid-base properties of the amphoteric polyelectrolytes are different from the behavior of 

both polyacids and polybases (Tanford 1965). Only away from the isoelectric point, i.e. when 

negative or positive charges begin to be predominant, is the titration of acidic and basic groups 

straightforward. Then the acid-base equilibrium of polyampholytes can be analyzed using the 

modification of the Henderson–Hasselbach equation (Mazur et al. 1959; Merle and Merle 1982; 

Merle 1985; Merle 1987). 

       
                  

        
                

   
  and    

   are the acidic dissociation constants of acidic and basic groups, respectively, and   

and   are the degree of ionization of acidic and basic groups of polyampholytes, respectively. 

Katchalsky and Gillis (Katchalsky and Gillis 1949) have suggested a theoretical equation for 

determination of the dissociation constants of ionizing groups. The equation is based on the 

model of electrostatic potential smeared along the backbone of the polymer chain. It takes into 

account the electrostatic interaction between different chain segments as well as between ionic 

groups and low molecular weight electrolytes. The theoretical study was compared to the 

experimental and the agreement between theory and experimental is satisfactory. 

2.3.3. Adsorption of synthetic polyampholytes on disperse particles (adapted from 

Kudaibergenov 1999) 

Adsorption of charged polymers on the surfaces or disperse particles is one of the important 

questions of polymer physics. In the literature, several experiments on the interaction of 
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synthetic polyampholytes with disperse particles were perfumed (Blaakmeer 1990; Neyret et al. 

1995; Dobrynin et al. 1999; Ozon et al. 2002). The adsorption of a single polyampholyte chain 

on a planar solid surface imitating the latex particles was studied theoretically by (Joanny 1994). 

The theoretical results obtained by (Joanny 1994) are in a good agreement with the experimental 

results performed on the interaction of synthetic polyampholytes with colloidal dispersions 

(Musabekov et al. 1998). According to the theoretical study of (Joanny 1994), polyampholyte 

solutions are capable of being adsorbed on latex  particles even when the overall charge of the 

polyampholytes solution has the same sign as that of the latex particles. Two cases must be 

considered in the interaction between the functional groups of the polyampholytes; they are 

short-range (strongly screened) and long-range (unscreened). In the case of the short-range 

interactions, Joanny used the replica trick and a Hartree approximation and showed that the 

adsorption of the chain can occur even if the chain has the same net charge as the surface and if 

the interaction potential is larger than a critical value, i.e.: 

      
 

 
 

where    is the adsorption threshold,   is the fraction of monomers having the same charge as the 

surface and   is the fraction of monomers having the opposite charge as the surface. There is no 

adsorption threshold (    ), when the adsorbing chain possess an overall charge opposite to that 

of the surface. If the total charge is small, the value of    is small where  
 

 
   .  If the      , 

the adsorption threshold is zero and the chain adsorbs always in spite of absence of the average 

potential acting on the monomers. Furthermore, it is noted that the chain can adsorb when the 

interaction potential is large enough even if it is in average repelled by the surface    . 
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2.3.4. Cellulose-based ampholytic polymers 

Ionic cellulose derivatives are known for a long time. For example, carboxymethylcellulose, up 

to now the most important ionic cellulose ether, was first prepared in 1918 and produced 

commercially since the early 1920s in Germany (Thielking and Schmidt 2006). In the context of 

the development of smart polymers by chemical modification of polysaccharides, one of the 

main research areas is the design and synthesis of ionic cellulose derivatives applying 

unconventional methods and reaction media for cellulose functionalization (Heinze 1998; Heinze 

and Liebert 2001; Liebert and Heinze 2001; Heinze and Koschella 2005; Gericke et al. 2009a). 

Several unexpected properties, e.g. the protein-like oligomerization of so called amino celluloses 

were investigated (Heinze et al. 2011), that substantiate the huge potential of ionic cellulose 

derivatives. Surprisingly, it can be noticed that although numerous ionic cellulose derivatives are 

known up to now the research on polyampholytes is mainly focused on synthetic polymers. 

Except for a few research articles, there are no results published, which are concerned with the 

direct functionalization of cellulose towards cellulosic polyampholytes. Zheng et al. 1995, 1996 

synthesized an amphoteric cellulose derivative containing anionic carboxymethyl and cationic 2-

hydroxy-3-(trimethylammonium) propyl substituents. The authors highlighted the advantages of 

cellulose based polyampholytes and their significance for both theoretical studies and practical 

applications. In particular, the possibility to adjust the charge densities per repeat unit and the 

types/distributions of substituents turned out to affect the properties in aqueous solutions. 

However, to the best of our knowledge, since this work only one additional paper was published 

dealing with zwitterionically modified cellulose derivatives. Gaweł et al. 2010 synthesized novel 

polyzwitterions by grafting sulfobetaine side chains onto hydroxypropylcellulose (HPC) and 

used them for the preparation of antiadhesive surfaces, which may find use in biomedical 

applications (see Fig. 13). 
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Fig. 13. Structures of hydroxypropylcellulose (HPC) and HPC grafted with sulfobetaine 

monomer; N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine. (adapted 

from Gaweł et al. 2010) 

 

2.3.5. Fibers with amphoteric character  

It is known that purified (alkali pretreated) regenerated cellulose fibers are negatively charged 

due to the presence of carboxyl groups within their structures (Stana-Kleinschek and Ribitsch 

1998; Stana-Kleinschek et al. 2002; Ramesh Kumar and Teli 2007; Stana-Kleinschek et al. 

2001). While this implies that molecules containing cationic functionalities may be readily 

adsorbed on the fibers, providing their surfaces with amphoteric characteristics may further 

expand their potential usage by improving their surface properties and adsorbtivity, as well as 

their fiber dyeing capabilities. Although there are many published papers regarding the usage of 

different agents in order to functionalize fibers by introducing amphoteric characteristics, the use 

of polysaccharides due to their biodegradability and renewability is still a big challenge. There is 
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therefore a need to verify this possibility by conferring amphoteric characteristics to viscose 

fibers through adsorption of novel polysaccharide-based products. It has been reported in the 

literature that amphoteric polysaccharides, consisting of anhydrohexose units and modified by 

groups bearing at least one anionic and one cationic functional group, can be used for treating 

textile fiber articles. These amphoteric agents were used for preventing degradation, for enabling 

the protection of colors and for providing textile articles with crease-resistant and softening 

properties (Aubay et al. 2006). The amphoteric characteristics were introduced to the surfaces of 

the fibers by treating them with coupling agents like c-aminopropyl-triethoxy silane. The 

coupling agent was helpful by decreasing swelling and moisture uptake, in order to prepare the 

fibers for further specific processing steps (Bellmann et al. 2005). Amphoteric starch containing 

both cationic and anionic groups, i.e. 3 sulfopropyl groups/100 anhydroglucose units and 3.7 

basic amino groups/100 anhydroglucose units, was used for sizing mixed fibers in the form of 

yarns, e.g., mixtures of polyester fibers and cotton fibers. In this way, the dyeing properties of 

the material were improved so that it was possible for the fibers to be dyed with acid dyes at a 

pH values below the isoelectric point and with basic dyes at a pH values above the isoelectric 

point (Elizer 1972). It was also found that the treatment of poly(hexamethylene adipamide) fiber 

flocks with an aqueous solution of an activator comprising an amphoteric compound containing 

both sodium sulfate and tertiary amino groups, enhanced the activity and the uniform dispersion 

to the flock within an electrostatic field without clumping (Hirshfield 1964). Cotton fibers 

treated with triethanolamine hydrochloride (TEOA-HCl) showed positive zeta potential values 

because the nitrogen present in the TEOA became protonated at acidic pH value. Thus, the dye 

uptake was improved due to the fact that the adsorption of the anionic dye on the cotton fibers 

was greater (Ramesh Kumar and Teli 2007). 
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3. Results and Discussion 

3.1. Synthesis and characterization of aminocellulose sulfates 

3.1.1. Synthesis 

Polyampholytic cellulose derivatives were synthesized in three steps (Fig. 14). In the first step, 

the biopolymer 1 was allowed to react with p-toluenesulfonyl chloride in the presence of 

triethylamine in order to obtain tosyl cellulose (TC) 2a-d (Rahn et al. 1996). The degree of 

substitution of tosyl groups (DSTos) was adjusted between 0.55 and 1.37 applying different molar 

ratios of p-toluenesulfonyl chloride to anhydroglucose units (AGU). The conversion of 2a-d to 

tosyl cellulose sulfates (TCS, 3a-d) with SO3-pyridine complex was carried out homogeneously 

in N,N-dimethylacetamide (DMAc) (Heinze and Rahn 1996). The molar ratio of 1:5 (modified 

AGU: SPC) results in products with DSSulf values between 1.09 and 1.27 depending on the DSTos 

of starting TC (Table 5). The sulfonic acid half esters were converted into their sodium salts to 

avoid polymer degradation and hydrolysis of the functional groups.  

 

Fig. 14. Synthesis scheme for the preparation of 6-deoxy-6-(-aminoethyl)amino cellulose-

2,3(6)-O-sulfate (4a-d) and 6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino 

cellulose-2,3(6)-O-sulfate (5a-c) via p-toluenesulfonyl (tosyl) cellulose (2a-d) and tosyl 

cellulose sulfate (3a-d). 
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As shown in Table 5, the DSTos of the TCS is slightly decreased compared to the DS of the 

initial TC. The obtained TCS were soluble in water and dimethyl sulfoxide (DMSO). 

 

Table 5. Conditions for and results of the synthesis of tosyl cellulose (TC) and tosyl cellulose 

sulfates (TCS) 

TC 
a)

  TCS 
b)

 

No Molar ratio  

 

DS 
c)

  No DS 
d)

 

AGU 
e)

 TEA TosCl Tos  Tos SO3 

2a 1 1.6 0.8  0.55  3a 0.43 1.27 

2b 1 2.6 1.3  0.85  3b 0.61 1.14 

2c 1 3 1.5  0.95  3c 0.85 1.18 

2d 1 4.0 2.0  1.37  3d 1.08 1.09 

a)
 Prepared by the reaction of cellulose with p-toluenesulfonyl chloride (TosCl) in the presence of 

triethylamine (TEA) as a base within 24 h at 8 °C in N,N-dimethylacetamide (DMAc)/LiCl; 
b) 

prepared by the reaction of TC with sulfur trioxide pyridine complex (5 mol per mol of modified 

anhydroglucose unit) in DMAc as solvent; 
c) 

degree of substitution, calculated on basis of the 

sulfur content determined by means of elemental analysis; 
d) 

calculated on basis of the sulfur 

content and of UV-Vis spectroscopic measurements; 
e) 

anhydroglucose unit. 

 

It is well known that tosyl moieties are good leaving groups for nucleophilic displacement 

reactions (Heinze et al. 2006). However, in the case of TC and TCS only position 6 is accessible 

since the replacement of tosylate groups by weak nucleophiles (e.g. amines) follows the SN2 

reaction mechanism (Petzold-Welcke et al. 2009). The reaction of TCS 3a-d with 
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multifunctional amines like 1,2-diaminoethane (DAE) or tris(2-aminoethyl) amine (TAEA) leads 

to amino cellulose sulfate (ACS) with different structures. Namely 6-deoxy-6-(-

aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS) 4a-d and 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl) aminoethyl)) amino cellulose-2,3(6)-O-sulfate (BAECS) 5a-d were prepared under 

homogeneous reaction conditions in water or dimethyl sulfoxide at 100 °C.  

 

Table 6. Conditions for and results of the synthesis of 6-deoxy-6-(-aminoethyl)amino 

cellulose-2,3(6)-O-sulfate (AECS) and 6-deoxy-6-(2-(bis-N´,N´-(2-aminoethyl) aminoethyl)) 

amino cellulose-2,3(6)-O-sulfate (BAECS) starting from tosyl cellulose sulfates (TCS). 

TCS  AECS 
a)

  BAECS 
b)

 

No. DS  No. DS 
c)

 WS 
d)

 

at pH 

 No. DS 
c)

 WS 
d)

 

at pH 
Tos SO3  Tos SO3 AEA  Tos SO3 BAEA 

3a 0.43 1.27  4a 0 1.25 0.41 >5.8  5a 0 1.21 0.32 >9.0 

3b 0.61 1.14  4b 0 1.14 0.58 >7.0  5b 0 1.12 0.45 >9.7 

3c 0.85 1.18  4c 
e)

 0.09 1.41 0.85 >6.0  5c 
e)

 0.05 1.31 0.71 >9.7 

3d 1.08 1.09  4d 0.19 1.08 0.86 >8.2  5d 0.21 0.70 0.74 >11.0 

a)
 Prepared by the reaction of TCS with 1,2-diaminoethane (25 mol per mol modified 

anhydroglucose unit) at 100 °C in H2O within 6 h; 
b) 

prepared by the reaction of TCS with tris(2-

aminoethyl) amine (25 mol per mol modified anhydroglucose unit) at 100 °C in H2O within 6 h; 

c) 
degree of substitution, calculated on basis of the sulfur, nitrogen, and carbon content 

determined by means of elemental analysis; 
d)

 water solubility; 
e) 

prepared in dimethyl sulfoxide 

and the insoluble fraction (~5%) was removed.  
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To avoid intermolecular cross-linking, both amines (bifunctional DAE and trifunctional TAEA) 

were applied in molar excess of 25 equivalents (Tiller et al. 2001). The nucleophilic attack of the 

NH2 groups to the tosyl functionalized C6 of the repeating unit led to the formation of C–NH 

linkage between the polymer and the amine. With increasing DSTos of the starting material the 

DS values of the corresponding amine (AECS and BAECS) increases (Table 6). Moreover, it 

can be noticed that no tosyl moieties remain in the ACS synthesized starting from TCS 3a and 

3b with DSTos < 1. In case of TC 2c with DSTos   1, residues of tosyl groups can be detected in 

the final ACS (4c and 5c, DSTos   0.05 - 0.09). When using TCS 3d DSTos > 1, a quantity of 

tosyl groups can be detected in the final ACS (4d and 5d, DSTos   0.2). The maximal DSBAEA 

and DSAEA achieved could not exceed 0.74 and 0.86, respectively. Obviously, a small amount of 

tosyl moieties are cleaved during reaction without replacement by amino groups. It is suggested 

in literature that the cleavage is driven by the basic character of the amine, which may act as 

catalyst for the reaction of the tosyl groups with impurities or the solvent (Bieser and Tiller 

2011). In particular, carrying out the reaction in water or dimethyl sulfoxide this explanation 

holds true. 

 

3.1.2. Characterization 

The structure of the cellulose derivatives 2a-d, 3a-d, 4a-d, and 5a-d was studied by FT-IR- and 

13
C-NMR spectroscopy as well as by size exclusion chromatography (SEC). Fig. 15 shows the 

FT-IR spectra of cellulose 1, TC 2a, TCS 3a and BAECS 5a. The direct comparison of the 

spectra allows identifying the starting material, the intermediate products and the final ACS’s. 

The FT-IR spectra of the cellulose starting material 1, and the product formed upon its 

functionalization with tosyl groups 2a, is clearly proofed by the typical signals in the spectrum of 

2a. More precisely, the signals arising from the        (3063 cm
-1

),        
 (1600 cm

-1
), 

            (1360 cm
-1

), and              (1176 cm
-1

) are visible in the FT-IR spectrum of 2a. 
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The subsequent modification with SO3-pyridine complex generates sulfate moieties, which gave 

rise to the signals               (1260 cm
-1

) and               (1015 cm
-1

) in the spectra of 3a. 

Moreover, the signals arising from the tosyl groups (described above) are visible in the spectra of 

3a as well. The final     reaction of TCS 3a with TAEA led to the formation of BAECS 5a. As 

a consequence the signals arising from the tosyl groups disappear from the spectrum of 5a. The 

new signals, which became visible, can be assigned to the    
(3100 cm

-1
) and    

(1490 cm
-

1
) stretching. 

 

Fig. 15. IR spectra of cellulose (1), p-toluenesulfonyl (tosyl) cellulose (2a, DSTos = 0.55), tosyl 

cellulose sulfate (3a, DSTos = 0.43, DSSulf = 1.27), and 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate (5a, DSBAEA = 0.32, DSSulf = 1.21). 



3. Results and discussion 

 

 

Taha Genco  40 
 

Fig. 16 shows the 
13

C-NMR spectra of cellulose 1 dissolved in DMSO-d6/tetrabutylammonium 

fluoride (Fig. 16a), p-toluenesulfonyl (tosyl) cellulose (2a) dissolved in DMSO-d6 (Fig. 16b), 

tosyl cellulose sulfate (3a) dissolved in D2O (Fig. 16c), and 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl) aminoethyl)) amino cellulose-2,3(6)-O-sulfate (5a) also dissolved in D2O (Fig. 

16d). All signals could be assigned on basis of literature data (Rahn et al. 1996; Heinze and Rahn 

1996; Gericke et al. 2009a; Nikolajski et al. 2012). The spectrum in Fig. 16b reveals the success 

of the tosylation of cellulose. The 
13

C resonances of the sp
2
 carbon atoms of the aromatic residue 

of the tosyl group are visible in the range from 128 to 145 ppm. Moreover, the signal at 22 ppm 

can be assigned to the methyl group of the tosyl substituent. The direct comparison of the spectra 

of cellulose 1 and TC 2a shows that the signals of C1-C5 are almost unaffected while a shift of 

C6 to lower field (C6-Tos) is visible after the esterification. Although it is not possible to give an 

exact measure from 
13

C-NMR spectra as it is possible from the spectral integrals of proton NMR, 

the relative intensities of the signals of C6 and C6-Tos reveal that both species appear in almost 

same quantity. Keeping in mind that the DS of the sample measured is about 0.55 it can be 

concluded in accordance to literature that the tosylation takes place predominantly at position 6 

of the repeating unit (Petzold-Welcke et al. 2009). The 
13

C-NMR spectrum of TCS 3a obtained 

by the conversion of TC 2a with SO3 pyridine complex (Fig. 16c) shows the same peaks 

assigned to tosyl substituent as described above. The sulfation is proven by the typical resonance 

of C6-O-SO3
-
 at 66 ppm. Moreover, a larger line width could be noticed resulting from short 

lifetime of longitudinal and transversal magnetization. This typical phenomenon observed in 

NMR spectroscopy of polyelectrolytes is caused by the electrostatic repulsion forces and the 

resulting decrease in flexibility of the polymer chain. The spectrum in Fig. 16d was recorded 

after the reaction of TCS 3a with TAEA. It is obvious that all resonances assigned to tosyl 

substituents disappeared. The new signals, which became visible at 37 and 52 ppm, can be 

assigned to the methylene carbon atoms of the BAEA substituents. Additionally the signal at 45 
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ppm, which results from C6-NH proofs the covalent linkage between the BAEA substituents and 

the cellulose backbone. 

 

Fig. 16. 
13

C NMR spectra of: a) cellulose (1) in DMSO-d6 /Tetrabutylammonium fluoride 

(TBAF), b) p-toluenesulfonyl (tosyl) cellulose (2a, DSTos = 0.55) in DMSO-d6, c) tosyl cellulose 

sulfate (3a, DSTos = 0.43, DSSulf = 1.27) in D2O, and d) 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate (5a, DSBAEA = 0.32, DSSulf = 1.21) in 

D2O. 

 



3. Results and discussion 

 

 

Taha Genco  42 
 

Preliminary experiments for the determination of the apparent molecular size of the ACS 4a-d 

and 5a-d were carried out via size exclusion chromatography (SEC). The MW values obtained 

are 70,490 and 167,700 g mol
-1

 for AECS 4a and BAECS 5a, respectively. Considering the 

molar mass of the repeating unit, the corresponding DPW values are 233 for 4a and 536 for 5a. In 

comparison with the DPW of the initial cellulose (   260-280), a slight decrease can be noticed in 

case of 4a and an increase became apparent in case of 5a, which is not possible. It is difficult to 

give a definite interpretation to the exact numbers since the different polymers might behave 

different at the SEC column and standard pullulan applied for calibration of the SEC system 

could be not representative for all polymers measured. However, the trend of an increasing 

molecular weight observed for BAECS might be attributed to an aggregation, resulting from the 

polyampholytic character of the ACS derivatives. The higher extent of aggregation and thus the 

higher molecular weight in case of BAECS result from the higher content of protonated amine 

groups present in the polymer (see below). An intermolecular crosslinking can be excluded, 

since the increase of molar mass and DP would be much more pronounced. Moreover, a cross-

linking of polymers usually results in insolubility. 

 

3.1.3. Properties 

As it is typical for polyampholytes, the ACS 4a-d and 5a-d possess water solubility that depend 

on the pH value. The structure of the amine group carrying moiety and the DS of both, sulfate 

and amine groups, influence the solubility (Table 6). For example the BAECS 5a (DSBAEA = 

0.32, DSSulf = 1.21) is well soluble at pH 11.5. A decrease of the pH value leads to the formation 

of colloids at pH   9 and a precipitation at pH < 9. By the subsequent increase of the pH value 

the polymer was dissolved again. This result can be easily explained from the zwitterionic 

behavior of the ACS polymers. The two primary amine groups of the BAEA substituents display 

a pKa value of about 10.8, the secondary amine groups located in the linkage to the cellulose 

backbone have a pKa value of 7.3, and the tertiary amine groups have a pKa value of 3.2 (Cakara 
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et al. 2003; Genco et al. 2012). It can be assumed that they are completely deprotonated at a pH 

value of 11.5 and the BAECS is negatively charged and water soluble due to the dissociated 

sulfate groups. Decreasing the pH value, results in the protonation of the amine groups and 

attractive interactions between positively charged ammonium groups and negatively charged 

sulfate groups progressively dominate the repulsive electrostatic interactions. In the vicinity of 

charge balance, the BAECS starts to precipitate due to intra- and intermolecular interactions. By 

increasing the pH value, the reverse effects take place and a solution of the polymer can be 

obtained again. In case sample 5b, 5c and 5d with a higher DSBAEA and a lower DSSulf the pH 

value, which causes precipitation, is increased. Following the interpretation given above, this 

fact can be explained by the higher amount of ammonium groups at a certain pH value and the 

lower number of negative charges which need to be compensated to reach charge balance. The 

solubility behavior of the AECS 4a-d was very similar to the behavior of the BAECS discussed 

above. The key difference being that the samples 4a-d are generally soluble at lower pH values 

than 5a-d. On one hand, this can be attributed to the different pKa values of the AEA substituent, 

which are about 9.0 for the primary and 4.5 for the secondary amine group (Zemljic et al. 2011). 

On the other, the total amount of amino group accessible to protonation is lower than in BAECS 

substituents, and therefore, a higher level of protonation is needed to reach charge balance which 

results in precipitation. However, the solubility in water under basic conditions and the trend of 

an increase of the pH value, which causes precipitation, with increasing DSAEA and decreasing 

DSSulf was also observed as a general phenomenon. 

 

3.2. Physicochemical properties and bioactivity of aminocellulose sulfates 

6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS) and 6-deoxy-6-(2-(bis-

N´,N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS) are completely 

water soluble at pH≥11 (Table 6). The physicochemical properties of AECS sample 4c and 
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BAECS sample 5c were studied as typical examples. The DS values of the functional groups in 

AECS 4c are 0.85 for amino moiety (DSAEA) and 1.41 for sulfate moiety (DSSulf). AECS 4c 

possesses both primary and secondary amino groups. According to the structure DS x 2 gives a 

concentration of amino groups in AECS 4c of 1.70 moles per AGU. In the case of BAECS 5c 

there are four different amino groups (5c, DSSulf = 1.31, DSBAEA= 0.71); two primary ones, a 

secondary one, and a tertiary amino group. Thus, from structural point of view, DS x 4 provides 

real concentrations of the amino groups, with a value of 2.84 moles per AGU.  

 

3.2.1. Polyelectrolyte titration  

The accessible amounts of sulfate groups of AECS 4c and BAECS 5c were determined by 

polyelectrolyte titration, and compared with the values of cellulose sulfate (CS). Thereby, 

facilitating a better understanding of the influence of amino group on the physicochemical 

behavior of the ACS derivatives is possible. AECS 4c, BAECS 5c and CS were titrated under the 

same conditions. The titration curves for AECS 4c and BAECS 5c show that with decreasing pH 

value of the ACS solutions, the negative charge arising from sulfate group, decreased 

proportionally (Fig. 17a and Fig. 17b). At pH≤ 5.38 and pH ≤ 9.65 for AECS 4c and BAECS 5c, 

respectively, the negative charge due to aggregation with the cationic ammonium groups could 

not be detected by polyelectrolyte titrations (Table 7). The titration curve of CS shows, as 

expected, that within the whole pH range from 11.5 to 3.0, the same average amount of 6.2 

mMol g
-1 

was
 
detected for the sulfate groups (Fig. 17c). This amount agrees well with the total 

amount of sulfate moieties of CS (6.57 mMol g
-1

) obtained from EA.  The amino groups in ACS 

derivatives decrease with decreasing pH value due to their interaction with the sulfate groups. 

Since the sulfate ion, SO4
2-

, is the conjugate base of the strong sulfuric acid, the sulfate moieties 

are deprotonated within almost the whole pH range. Acidification of the ACS solutions increases 

the amount of protonated amino groups. Thus, the possibility for electrostatic interaction 
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between both groups increases and the protonated amino and deprotonated sulfate groups are 

blocked.  

 

Table 7. Amount of sulfate groups per gram of 6-deoxy-6-(-aminoethyl)amino cellulose-

2,3(6)-O-sulfate (AECS 4c) and 6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino 

cellulose-2,3(6)-O-sulfate (BAECS 5c) at different pH values obtained by polyelectrolyte 

titration. 

AECS, 4c  BAECS, 5c 

pH 

SO3
2-

 

[mMol g
-1

] 
 pH 

SO3
2-

 

[mMol g
-1

] 

11.7 3.86 ± 0.02  11.7 3.73 ± 0.07 

10.8 3.38 ± 0.04  11.2 2.88 ± 0.02 

10.2 2.77 ± 0.02  10.7 2.48 ± 0.02 

8.5 1.51 ± 0.02  10.1 1.25 ± 0.11 

7.3 0.65 ± 0.02  9.7 0.28 ± 0.02 

5.4 0  8.9 0 

3.6 0  7.2 0 

 

Consequently, aggregation occurred, as indicated by the precipitation of the samples observed in 

the titration cell with decreasing pH value. Since there is no aggregation between the sulfate and 

amino groups at pH 11.7 (also proven by pK values determined via potentiometric titration as 

discussed below), the sulfate groups are fully accessible for detection by polyelectrolyte titration 

and, at this point, give the maximum values for the sulfate groups.  
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Fig. 17. Comparison of polyelectrolyte titration curves at different pH levels for three cellulosic 

derivatives in aqueous solution; a) 6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino 

cellulose-2,3(6)-O-sulfate (BAECS 5c), b) 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-

sulfate (AECS 4c) and c) cellulose sulfate (CS). In every titration cell there are 3mg of dissolved 

polysaccharide, 39.8 ml of water adjusted to the desired pH value by means of NaOH/HCl 1M 

and 200 l of Toluidine Blue which was used as the indicator. The titrant used was 

polydiallyldimethylammonium chloride (PDADMAC), c = 1 mM. 



3. Results and discussion 

 

 

Taha Genco  47 
 

Thus, the amount of sulfate groups of AECS 4c and BAECS 5c at pH ~ 11.7, are 3.86 and 3.73 

mMol g
-1

, respectively, which agrees very well with the total sulfate amount obtained from EA; 

3.97 mMol g
-1

 and 3.15 mMol g
-1

 for AECS 4c and BAECS 5c, respectively. 

 

3.2.2. Potentiometric titration 

The protonation behavior of the amino groups of AECS 4c and BAECS 5c was studied by 

potentiometric titration. The charging isotherms normalized to the mass of the sample indicate 

for AECS 4c two protonation steps within the ranges 9.3 < pH < 0.8 and 5.7 < pH < 8.6 that 

correspond with the pK values determined of about 10.5 and 7.3. For BAECS 5c, three 

protonation steps within the ranges 9.3 < pH < 10.8, 5.7 < pH < 8.6 and a roughly distinguished 

step within the range 2.7 < pH < 3.7 were found (Fig. 18).  

 

Fig. 18. The experimental charging isotherms resulted from potentiometric titration (back way) 

of 6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate 

(BAECS, 5c) and 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS, 4c) at 298 

K. 
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Thus, from the charging isotherms, the pKa values of the products could be determined. Both 

primary amino groups have pKa values of around 10.5, whereas the secondary and tertiary amino 

groups have pKa values of about 7.3 and 3.2, respectively. This pKa values are in accordance 

with the literature values (Cakara et al. 2003). The protonation of brunched amino moieties first 

involves protonation of primary amine groups at the rim at high pH value, while the tertiary 

amine groups in the core protonate at lower pH value. The maximum positive charges detected 

from the charge isotherms shown in Fig. 18 are 2.53 mMol g
-1

 for AECS 4c and 4.07 mMol g
-1

 

for BAECS 5c. The pKa values were calculated using a non-linear least-squares fitting (Zemljic 

et al. 2011).  

 

3.2.3. Conductometric titration 

The conductometric titration curves of ACS, as presented in Fig. 19, possess two equivalence 

points (EP). The first EP represents the neutralization of the hydroxyl anions excess. The second 

EP represents the endpoint of the protonation reaction of the amino group. The titration curves 

end with a sharply rising slope due to the large conductivity of protons. The difference between 

the two equivalence points EP1 and EP2 corresponds to the volume of HCl needed to protonate 

the accessible amino groups. The results for conductometric titration, which indicated positive 

charges of 2.53 mMol g
-1

 for AECS 4c and 4.02 for BAECS 5c, agree very well with the 

maximum amounts of positive charges determined by potentiometric titration (Table 8). Thus, 

the results of conductometric titration supports those of potentiometric titration very well and 

support the high reliability of the results obtained. 
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Fig. 19. Conductometric titration curve for amino cellulose sulfate samples 20 mg of 6-deoxy-6-

(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS 4c) and 6-deoxy-6-(2-(bis-N´, N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS 5c) dissolved in 40 mL water 

containing 0.126 mL of 1M NaOH and titrated using 0.1 M aqueous HCl. 

 

Table 8. Concentrations of the accessible amino groups obtained by potentiometric and 

conductometric titrations with the concentrations of total nitrogen in 6-(-aminoethyl)amino 

cellulose-2,3(6)-O-sulfate (AECS 4c) and 6-deoxy-6-(2-(bis-N´, N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS 5c) obtained by elemental 

analysis. 

Sample 

Code 

Accessible amount of NH3
+ 

[mMol g
-1

]  Total nitrogen [mMol g
-1

] 

Conductometric 

titration 

 Potentiometric 

titration 

 

Elemental analysis 

  

AECS 4c 2.53  0.22  2.53  0.20  4.79  0.11 

BAECS 5c 4.02  0.44  4.07  0.04  7.24  0.04 
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The total nitrogen content of the samples detected by EA accounts for 5.69 mMol g
-1

 for AECS 

4c and 7.54 mMol g
-1

 for BAECS 5c. When these results are compared with the ones obtained 

from titrations, it is obvious that only about 44% to 53% of the total nitrogen was monitored by 

the titrations. This is expected due to the fact that with elemental analysis the total nitrogen 

presented in the samples is determined while with potentiometric and conductometric titrations 

only the accessible protonated amino groups are determined. 

 

3.2.4. Zeta potential measurements 

Zeta potential (ZP) measurements at different pH values were carried out in order to study the 

interactions of ACS particles formed by electrostatic aggregation, which are dispersed in the 

aqueous solution. The aggregation of dissolved ACS (with decreasing pH value) was proven via 

an investigation of the particle sizes by means of a light scattering particle size analyzer. It was 

found that the effective diameter of the ACS particles dispersed in the solutions increases from ~ 

75 nm at pH 11.5 to several micrometers at pH ≤ 10 and pH ≤ 7 for both BAECS 5c and AECS 

4c samples. 

ZP versus pH, =f(pH) plotted for AECS 4c and BAECS 5c (Fig. 20a) confirmed amphoteric 

characteristics for the ACS. AECS 4c and BAECS 5c behaved as ampholyte, which form 

zwitterions within a certain range of pH values. The ZP curve of BAECS 5c in pH range 

between 9.7 to 11.5 shows that the product possesses negative charges. At pH 11.5, the ZP 

values were smaller than at pH value of 11.0. It is believed that the smallest size of particles 

occurs at pH 11.5. Within the pH range from 11.0 to 9.7, the negative values of ZP decreased 

dramatically. It is believed that the negative charge of the sulfate groups starts to be blocked with 

increasing number of protonated amino groups. At pH 9.7, the average charge of the aqueous 

solution is zero, which represents the isoelectric point (IEP) of the sample. It can be concluded 

that IEP for the BAECS 5c solution is reached at this pH value, i.e. the total amount of sulfate 
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groups is fully aggregated with the amino groups. At pH ≤ 9.7, the zeta potential values indicate 

positive charges in the polymer solution. Due to the fact that total amount of amino groups in the 

samples is higher than the total amount of sulfate groups, the excess of the amino groups, which 

exceeds the equivalent of the sulfate groups, is protonated and has positive zeta potential values. 

 

 

Fig. 20. a) Zeta potential as a function of pH value of the aqueous solution of 6-deoxy-6-(-

aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS 4c) and 6-deoxy-6-(2-(bis-N´, N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS 5c), b) Negative charge 

isotherm representing the accessible amount of sulfate group determined by means of 

polyelectrolyte titration at different pH levels for AECS 4c and BAECS 5c aqueous solutions. 

 

AECS 4c generally behaves comparably to BAECS 5c, which can be seen from the ZP curve 

with the difference that the IEP shifts to pH 4.7. The considerable contribution of the secondary 

amino groups during aggregation with the sulfate groups shifts the isoelectric point to the acidic 

area, on one hand. On the other hand, since the amino moiety of the BAECS 5c possesses double 

the amount of primary amino groups of AECS 4c, the isoelectric point of BAECS 5c sample is 

shifted to the vicinity of the pKa value for the primary amino group (Fig. 20a). The results 

obtained from ZP measurements were compared with the results of polyelectrolyte titrations 

(Fig. 20b). It can be seen that at pH ~ 9.2 for BAECS 5c and ~ 5.4 for AECS 4c, the negative 
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charge of the sample is absent, which agrees very well with the values for IEP obtained using the 

ZP evaluations. 

 

3.2.5. Overview of the physicochemical characteristics of the ACS derivatives 

In the light of the aforementioned techniques, the physicochemical behavior of ACS derivatives 

can be summarized. At pH 11.5, the products are negatively charged and give the highest 

detected amounts of sulfate groups. At this stage, the amino groups are fully deprotonated (Fig. 

21a). By decreasing the pH value of the medium, primary amino groups will start to protonate in 

accordance with their pKa value of ~ 10.5. Due to the assumption that intra- and inter-chain 

electrostatic attractions in the polyampholyte may cause aggregation (Rinaudo 2006; Roy et al. 

2006), protonation of the amino groups creates cations, which may lead to aggregation with the 

negatively charged sulfate groups. When the protonation process produces an equivalent amount 

of positive charges equal to the total negative charges existing in the ACS solutions, the 

isoelectric point is reached and the products starts to aggregate, forming colloidal particles. At 

the isoelectric point, it is assumed that the total amount of sulfate groups in AECS 4c and 

BAECS 5c samples is countered with the available protonated amino groups. Thus, the products 

solutions remain non-charged at this stage (Fig. 21b). Since the amounts of amino groups are 

higher than the amounts of sulfate groups in both AECS 4c and BAECS 5c, access of protonated 

amino groups at pH values  IEP yields positively charged solutions (Fig. 21c). 

 

3.2.6. Bioactivity 

It has been realized that by changing the pH value, the accessibility and 

protonation/deprotonation of amino and sulfate groups may be manipulated. Due to the presence 

of both groups responsible for specific bioactive properties (as discussed in the Introduction), it 
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was hypothesized that by manipulating the amount of accessible positive or negative charges of 

ACS, the bioactive properties of samples can also be manipulated. 

 

 

 

Fig. 21. Physicochemical behavior representative scheme of amino cellulose sulfate derivatives; 

a) at pH>11 amino groups are fully deprotonated and ACS polymers are negatively charged, b) 

The polymer is in the isoelectric point state at pH ~9.7 for BAECS 5c and at ~4.7 for AECS 4c, 

c) Amino groups are fully protonated at pH<3 and ACS polymers are positively charged. 

 

3.2.6.1. Antimicrobial activity 

Antimicrobial activity is mostly driven by ammonium groups. The higher the number of 

ammonium groups, the higher the antimicrobial activity (Másson et al. 2008). As a definition, 

the antimicrobial reduction (determined by standard ASTM E2149-01 ) of any product should be 

greater than 75 % in order to be considered as an antimicrobial agent (Kim et al. 1998; Seo et al. 
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1991). For cellulose sulfate (0.01 wt.%) solution, it was found that the antimicrobial activity for 

the studied pathogens is reduced to less than 60%, i.e. according to the definition CS shows 

insufficient antimicrobial activity. However, no negative sulfate groups exist at pH values lower 

than the detected isoelectric points of ACS (Fig. 21b). In other words, the ACS solutions at pH ≤ 

9.7 for BAECS 5c and pH ≤ 4.7 for AECS 4c possess only positive charges arising from excess 

of protonated ammonium groups (Fig. 21c). 

The antimicrobial test for dissolved ACS samples (0.01 wt. %) was performed in vitro by 

measuring the reduction in growth of typical pathogenic microorganisms: Staphylococcus aureus 

as gram positive bacteria, Escherichia coli as gram negative bacteria and Candida glabrata as a 

fungus. Since the pH values of the skin surface and most of the physiological fluids of the human 

body range from 4.5 to 8.0 (Jolly et al. 1961; Levin and Maibach 2008; Pang et al. 2007; 

Yosipovitch et al. 1993), the antimicrobial test of ACS was performed at standard pH values of 5 

and 6.8. It was noticed that the inhibition for the tested pathogenic microorganisms was higher at 

pH 5 compared to pH 6.8 (Fig. 22). This was expected due to the fact that with the lowering of 

pH value the amount of protonated ammonium groups increased. Moreover, this confirms the 

relationship between the antimicrobial activity and the content of protonated ammonium groups. 

The antimicrobial test of the samples showed an increment of the reduction for Staphylococcus 

aureus from ~50% to ~90% in the case of AECS 4c and from ~65% to 85% for BAECS 4c with 

decreasing the pH values from 6.8 to 5. Thus, the decrease of the pH value of the sample leading 

to an increase of the amount of amonunium groups, introduces antimicrobial activity of samples 

regarding Staphylococcus aureus. However, a decrease of the pH value did not yield a reduction 

the growth of Gram negative Escherichia coli. At both pH values, the reduction of Escherichia 

coli was below 75% and thus the samples are inactive for this pathogen inhibition. Due to the 

complex structure of the cell wall of Gram negative bacteria, the inhibition it is more difficult 

compared to Gram positive bacteria. Comparable slight inhibition for Escherichia coli was 

observed for chitosan (Fras Zemljic et al. 2011; Zheng and Zhu 2003). Since the reasons for the 
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antimicrobial character of chitosan is the ammonium group (Shahidi et al. 1999)
 
it is believed 

that the mechanisms for the antimicrobial activity of ACS and chitosan is similar for both Gram 

positive and Gram negative bacteria. 

 

 

Fig. 22. Antimicrobial activity of the solutions of 6-deoxy-6-(2-(bis(2-aminoethyl)aminoethyl-

amino) cellulose sulfate (BAECS 5c), 6-deoxy-6-(2-aminoethyl) cellulose sulfate (AECS 4c) and 

cellulose sulfate CS at pH 6.8 and pH 5. The Antimicrobial activity was expressed as R=% 

reduction of the organisms after contact with the test specimen compared to the number of 

bacterial cells surviving after contact with the control.  

 

The antifungal test for AECS 4c and BAECS 5c showed that with decreasing pH value from 6.8 

to 5 the reduction of Candida glabrata increases significanly from ~ 35 % to ~ 90 % (Fig. 22). It 

has been proven that the protonation of amino groups (increasing by decreasing of pH value) 

significantly influences antimicrobial activity of ACS. Both ACS samples inhibited Gram 

positive bacteria Staphylococcus aureus and pathogen fungus Candida glabrata at pH 5, where 
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most of the amino groups are expected to be protonated. The ACS samples do not cause a 

reduction of Escheria coli at this pH value as discussed above. 

3.2.6.2. Antitrombogenetic activity 

Since sulfate groups in polysaccharides may impart anticoagulant activity (Robert 1955; Doctor 

et al. 1991; Groth and Wagenknecht 2001),
 
the antithrombogenicity for ACS was evaluated in 

vitro by measuring the APTT values of the dissolved samples. APTT was plotted as a function of 

the samples concentrations (Fig. 23). The test for BAECS 5c solutions at pH ~ 8 showed a 

prolongation of the APTT when the concentrations of the sample exceeded 100 mL
-1

. 

 

Fig. 23. APTT of 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS 4c), 6-

deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS 

5c) and heparin as a function of polysaccharide concentration. 

 

In the case of AECS 4c, the APTT of the sample is prolonged when the concentrations are equal 

or exceed 50 mL
-1

. According to the isoelectric points of the samples, in contrast with BAECS 

5c, the accessible amounts of sulfate groups in AECS 4c are still detectable at pH 8. Therefore, 

the antithrombogentic activity of AECS 4c is higher compared to BAECS 5c. In spite of this, 
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both samples prolong the APTT but in comparison with heparin, which prolongs APTT 

significantly, even at concentrations lower than 1 mL
-1 

(Hirsh and Raschke 2004; Whitfield 

and Levy 1980),
 
they have only minor anticoagulation activity. 

In order to more deeply understand the influence of DS values of sulfate and amino moieties on 

the APTT prolongation, the samples AECS 4a-4d which have different DSAEA and DSSulf values 

were studied (Fig. 24).  

 

Fig. 24. APTT of 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS 4a-4d) and 

heparin as a function of polysaccharide concentration. 

 

The antithrombogentic activity of AECS (4a, DSSulf = 1.25, DSAEA = 0.41) was the highest 

compared to the other samples AECS 5b - 4d. The reason is that the sample 4a possesses the 

lowest DSAEA value compared to the other samples. Thus, the lower the aggregation between 

amino and sulfate groups, the higher the amount of sulfate groups which contribute to the 

prolongation of APTT values. The antithrombogentic activity of the sample (4b, DSSulf = 1.14, 

DSAEA = 0.58) was lower than in the case of 4a due to increment in DSAEA and decrement in 

DSSulf compared to the sample 4a. Therefore, higher aggregation levels than in the sample with 

4a occurred, decreasing the APTT prolongation of 4b. The sample (4c, DSSulf = 1.41, DSAEA= 
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0.85) possesses the highest DSSulf value compared to the other samples, but the majority of 

sulfate groups were aggregated with amino groups due to the excess of amino moiety which 

lowered the APTT prolongation. The same discussion as in the case of 4c can be used for the 

sample (4d, DSSulf = 1.08, DSAEA = 0.86) with a difference that the DSSulf in 4d is lower than the 

in the case of 4c which caused more aggregation between amino and sulfate groups than in the 

case of 4c and the sample caused a slight prolongation in APTT compared to the blank. 

 

3.3. Characterization of viscose fibers modified with aminocellulose sulfates 

3.3.1. Efficiency of coating viscose fibers with amino cellulose sulfates 

Solution of BAECS and AECS (here denoted just ACS) were prepared at pH 11, with the aim of 

fully deprotonating all of the amino groups. Thus, precipitation due to electrostatic interaction 

between the amino and sulfate groups within the solution could be avoided, as shown in our 

previous publication (Genco et al. 2012). The equilibrium desorbed amounts in acidic medium 

detected by TN were 34% and 39% for AECS-Vis and BAECS-Vis, respectively, thereby giving 

an indication of the adsorbed amino cellulose sulfate’s stability (more than 60 % for both 

samples) on the viscose fiber.  

 

3.3.2. XPS measurements 

The surface elemental content of the non-coated and coated viscose fibers 269 determined by 

XPS is shown in Table 9. The amount of nitrogen on BAECS-Vis was 2.2 atom %, which is 

around 5 times higher than the amount of nitrogen on the AECS-Vis (0.43 %). This is higher 

than expected just from the fact that every amino moiety of BAECS contains 4 nitrogen atoms 

while the amino moiety of AECS contains only 2 nitrogen atoms. A 5 times higher concentration 

of nitrogen in BAECS-Vis in comparison with the AECS-Vis nitrogen concentration may also be 

explained as being due to the higher molecular weight and greater degree of branching of 

BAECS in comparison with AECS. Thus, the adsorption of BAECS to the viscose fibers may 
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only be restricted to a limited surface domain, whilst the smaller and more linear AECS 

macromolecule may also penetrate into the viscose fiber pores (inner fiber parts). Sulfur was also 

detected on the surfaces of the coated fibers (0.80% and 0.45% on BAECS-Vis and AECS-Vis, 

respectively). These differences support the notion that AECS-Vis may penetrate into the fibers 

while BAECS-Vis remains on the surface.  

 

Table 9. Surface chemical composition of the non-coated fibers (B-Vis), the coated fibers with 

6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-

Vis) and the coated fibers with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate 

(AECS-Vis), as measured by X-ray photoelectron spectroscopy (XPS). 

Sample C% N% O% S% 

B-Vis 64.1 0 35.9 0 

AECS-Vis 64.9 2.20 31.5 0.80 

BAECS-Vis 61.5 0.43 36.3 0.45 

 

3.3.3. Potentiometric titration 

The protonation behaviors of the existing moieties on B-Vis, AECS-Vis, and BAECS-Vis were 

studied using potentiometric titration. The charging-isotherms normalized to the mass of the 

fibers (Fig. 25) exhibited a negative charge for the non-coated fibers B-Vis with a plateau at ca. -

25 mMol kg−1, which is present at due to the presence of carboxyl groups (Stana-Kleinschek et 

al. 2002). At low pH values the charges of BAECS-Vis and AECS-Vis were positive due to 

protonation of the amino groups. The maximum positive charge detected from the charging 

isotherms of the coated fibers AECS-Vis and BAECS-Vis was 7.4 and 14.1 mMol kg
−1

, 

respectively, with charge reversal (point of zero charge, PZC) that occurred at pH = 4.0 for 

BAECS-Vis and pH = 3.4 for AECS-Vis. The indicated approximate pKa values ~3.40, ~3.75, 



3. Results and discussion 

 

 

Taha Genco  60 
 

and ~4.00 of the studied fibers B-Vis, BAECS-Vis, and AECS-Vis, respectively, were obtained 

according to the method described in the literature (Cakara et al. 2009). It was obvious that the 

pKa values in the samples BAECS-Vis and AECS-Vis were higher than the pKa value of B-Vis. 

This was due to the fact that the amino groups of ACS, on the coated fibers, possessed pKa 

values higher than the pKa value of the carboxyl groups existing on the non-coated fibers B-Vis 

(Genco et al. 2012; Fras et al. 2004). However these values did not approach the pKa value of the 

amino groups regarding the ACS product; due to the fact that a higher amount of acidic groups in 

comparison with amino groups (see Fig. 25) was present in the fiber. The anionic groups 

exceeded the cationic ones; the latter is also the reason for such a low PZC. 

 

Fig. 25. The experimental charging isotherms, normalized to the mass of the fibers, resulted 

from potentiometric titration (front way) of the non-coated fibers (B-Vis), the coated fibers with 

6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-

Vis) and the coated fibers with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate 

(AECS-Vis) at 298 K.  

 

3.3.4. Conductometric titration 

The titration curves of BAECS-Vis, AECS-Vis and B-Vis (Fig. 26) show two equivalence points 

(EP). The first EP represents the neutralization of free hydrogen ions. The second EP represents 

the endpoint of the dissociation of weak acids (amino and carboxyl groups). The titration curves 
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end with a sharply rising slope due to the large conductivity of the hydroxyl ions. The difference 

between the two equivalence points EP1 and EP2 corresponds to the deprotonation of the 

accessible amino and carboxyl groups existing on the viscose fibers (Fras et al. 2004).  

 

Fig. 26. Conductometric titration curve for the non-coated fibers (B-Vis), the coated fibers with 

6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-

Vis), and the coated fibers with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate 

(AECS-Vis). 

 

The accessible weak acids i.e. sum of the carboxyl and amino groups determined by 

conductometric titration on B-Vis, BAECS-Vis, and AECS-Vis are 35.6, 52.9 and 43.7 mMol 

kg
−1

, respectively (Table 10). 

The charge detected on the non-coated fibers is due to the carboxyl groups only, while the 

charges detected on the fibers coated with amino cellulose sulfate are due to both the initial fiber 

carboxyl groups and the introduced protonated amino groups. The increase in the total amount of 

weak acids after ACS-adsorption onto fibers clearly shows the introduction of amino groups as 

already pointed out by potentiometric titration. Since the BAECS-Vis and AECS-Vis have the 

same initial content of carboxyl groups as the reference sample B-Vis, the increase of the charge 
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detected in the samples BAECS-Vis and AECS-Vis makes it possible to calculate the accessible 

amounts of amino groups on the coated fibers. The amount in BAECS-Vis (17.4 mMol kg-1) 

was nearly twice as high as the amount in AECS-Vis (8.1 mMol kg
-1

) (Table 10).  

 

Table 10. Accessible amounts of amino groups determined by conductometric- and 

potentiometric titrations on the non-coated fibers (B-Vis), coated fibers with 6-deoxy-6-(2-(bis-

N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-Vis), and coated 

fibers with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS-Vis), if no 

electrostatic interaction between carboxyl and amino groups is predicted. 

Sample 

 Conductometric titration  Potentiometric titration 

 
Total charge 

[mMol kg
-1

] 

Amino group charge 

[mMol kg
-1

] 
 

Amino group charge 

[mMol kg
-1

] 

B-Vis  35.6 ± 3.6 0  0 

AECS-Vis  43.7 ± 4.2 8.1 ± 0.6  7.4 ± 0.5 

BAECS-Vis  52.9 ± 4.7 17.4 ± 1.1  14.1 ± 0.9 

 

This is due to the fact that the tris(2-aminoethyl)amine moiety in BAECS-Vis possessed twice as 

many 1,2-diaminoethane groups as AECS-Vis. The detected amounts of positive charge agree 

with the amounts of positive charge determined by potentiometric titration (see Fig. 27), which 

shows a linear relationship between the fiber charge values obtained from the conductometric 

titrations and those obtained from the potentiometric titrations. This demonstrates the high 

reliability for the results obtained by both methods and supports the notion that there is only 
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physical interaction between the ACS and viscose fibers. This has also been shown by other 

previous researchers (Cakara et al. 2009; Myllytie et al. 2009). 

 

Fig. 27. Correlation between the fiber-charge values obtained from potentiometric and 

conductometric titrations. 

 

3.3.5. Polyelectrolyte titration 

A well-defined linear part of the isotherm was obtained from the polyelectrolyte adsorption on 

viscose fibers B-Vis, BAECS-Vis and AECS-Vis as shown in Fig. 28. In order to monitor all the 

sulfate groups in the titration cell, the samples were measured within aqueous media with pH 

values around 11. Thus, any possible interaction between sulfate and amino groups was avoided 

(Genco et al. 2012). The total negative charge on the viscose fibers was determined by 

extrapolating the plateau back to a zero concentration of polyelectrolyte (Wägberg et al. 1989; 

Laine et al. 1996; Zhang et al. 1994). The negative charge determined for the non-coated fibers 

B-Vis was around 23.7 mMol kg
-1

 which is almost the same as determined by potentiometric 

titration. In the cases of the coated fibers BAECS-Vis and AECS-Vis, the negative charge values 

were higher than in the case of B-Vis. This was expected due to the adsorption of ACS, which 
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results in the presence of two different types of anionic groups, i.e. the initial carboxyl groups on 

the fibers weak and the adsorbed strong acids like sulfate groups. 

 

Fig. 28. Adsorption of polydiallyldimethylammonium-chloride (PDADMAC) on non-coated 

viscose fibers (B-Vis) and coated fibers with 6-deoxy-6-(2-(bis-N´, N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-Vis), and with 6-deoxy-6-

(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS-Vis), as a function of the equilibrium 

concentration regarding PDADMAC. 

 

This is in agreement with both the titration experiments which showed that the total charge was 

increased and the XPS results which showed the introduction of sulfate groups. Thus, in the 

coated fibers, the anionic groups are the sum of the initial fiber carboxyl groups, and the 

adsorbed sulfate groups. Furthermore, the negative-charge on AECS-Vis 38.8 mMol kg
-1

 was 

higher than in the case of BAECS-Vis 32.1 mMol kg
-1

. This was due to the fact that the DS of 

the sulfate moiety at AECS was higher than in the case of BAECS (Table 11). 
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Table 11. Accessible amounts of sulfate groups determined by polyelectrolyte titration and the 

methylene-blue method on the non-coated fibers (B-Vis), the coated fibers with 6-deoxy-6-(2-

(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-Vis), and the 

coated fibers with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS-Vis). 

Sample 
 Polyelectrolyte titration   Methylene blue method  

 Negative charge [mMol kg
-1

]   Negative charge [mMol kg
-1

]  

B-Vis  23.7 ± 2.7   22.7 ± 1.8  

BAECS-Vis  32.1 ± 2.2   29.8 ± 2.0  

AECS-Vis  38.8 ± 3.0   34.1 ± 1.4  

 

 

3.3.6.  Methylene-blue method 

The negative charges of the viscose fibers were determined by the conventional Methylene blue 

method (see Table 11). For the same reason as mentioned above during the polyelectrolyte 

titration, the pH values of the aqueous media used in the measures were adjusted to pH 11. The 

total negative-charges determined on B-Vis, BAECS-Vis, and AECS-Vis were 22.7, 29.8, and 

34.1 mMol kg
-1

, respectively. The larger part of the negative-charge determined on the non-

coated fibers B-Vis, originated from carboxyl groups, whereas, in the cases of viscose fibers 

coated with ACS, the negative charges arose from both the sulfate and 

carboxylate groups of the fibers (Fig. 29). The results obtained from the spectroscopic 

methylene-blue method agreed very well with the results obtained from the polyelectrolyte 

titration (Table 11). 
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Fig. 29. a) Calibration curve of absorbance against the concentration of methylene-blue within a 

range between 0.6 and 3.6 mg.L
-1

 b) Negative-charge content in the non-coated fibers (B-Vis), 

the coated fibers with 6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-

2,3(6)-O-sulfate (BAECS-Vis), and the coated fibers with 6-deoxy-6-(-aminoethyl)amino 

cellulose-2,3(6)-O-sulfate (AECS-Vis) as determined by the methylene-blue method. 

 

3.3.7. Zeta potential measurements 

As shown in Fig. 30, the non-coated viscose fibers showed the zeta potential (behavior as 

function of the pH value (ζ = f(pH)) typical for viscose cellulose fibers (Stana-Kleinschek et al. 

2002; Stana-Kleinschek et al. 2001). for B-Vis was negative within practically the whole pH 

region, with a plateau value at -10 mV. When the viscose fibers were coated with amino 

cellulose sulfates, the function ζ(pH) showed typical amphoteric characteristics. The protonation 

of the amino groups within the acidic region caused the streaming potential to turn positive 

streaming potential below the isoelectric point, which indicated the amphoteric character of the 

coated fibers. Both the coated fibers, BAECS-Vis and AECS-Vis, showed a shifting of the 

isoelectric point into a higher pH region, which is in accordance with the amino group quantities 

in each sample calculated by conductometric and potentiometric titrations. Negative  plateau 

values were also detected on both the coated viscose fibers’ samples, due to the presence of 
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carboxyl groups and the sulfate groups (see Fig. 30a). The isoelectric points obtained from zeta 

potential measures for B-Vis, AECS-Vis and BAECS-Vis were ~1.7, ~3.1, and ~6.3, 

respectively. The isoelectric points obtained from zeta potential measures were higher than the 

PZC’s obtained from potentiometric titration, which is probably due to differences in the nature 

of the techniques (surface potential vs. total charge). Moreover, comparison of the ζ (pH) curves 

of coated fibers, BAECS-Vis and AECS-Vis, with those of BAECS and AECS solutions, clearly 

showed that the isoelectric points on the coated fibers were shifted in order to be nearer to the 

isoelectric point of the ACS in the solution (Genco et al. 2012) (see Fig. 30b). It can be 

concluded from this comparison that BAECS and AECS were adsorbed onto the viscose fibers at 

a quite high percentage. This comparison gives further qualitative evidence of the existence of 

amino groups on the coated fibers, and their amphoteric character. 

 

 

Fig. 30. Zeta potential versus pH value for: (a) the non-coated fibers (B-Vis), the coated fibers 

with 6-deoxy-6-(2-(bis-N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate 

(BAECS-Vis), and the coated fibers with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-

sulfate (AECS-Vis). (b) Aqueous solution of the 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS), and the 6-deoxy-6-(-

aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS). 
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3.3.8. Antimicrobial Activity evaluation of AECS-Vis and BAECS-Vis  

The antimicrobial activities of ACS-viscose coated fibers were determined by pH=5 and pH=6.8. 

It is essential to obtain this information when coated-fibers are meant to be used for the 

development of medical and hygienic textiles that are often applied to the external and internal 

organs (skin and mucous membranes) that require particular pH values, depending on the 

physiological pH values of different environments. The antimicrobial activity results for gram- 

positive bacteria like Staphylacoccus aureus and Streptococcus agalactiae, for gram- negative 

like Eschericha coli, and for fungi like Candida glabrata and Candida albicans, was increased 

using typical behavior when the pH value of the media was changed from 6.8 to 5. This behavior 

can be ascribed to the fact that, when decreasing the pH values of the mediums of ACS 

derivatives, the amounts of the protonated amino groups increase. Since the protonated amino 

groups are responsible for the antimicrobial act (Zhao et al. 2010; Muzzarelli et al. 1986; Shahidi 

et al. 1999; Goy et al. 2009), the antimicrobial activity increased with decreasing the pH values 

of the functionalized fiber suspension. Most of the reduction values exceeded 80% at pH 5, 

which means that the functionalized fiber can be used within the medical industry at pH 5. The 

only expectation is AECS-Vis (pH=5) where the reduction value for Candida albicans was 

around 50%, which makes inapplicable for medical usage (Fig. 31). It is clear that fibers coated 

by ACS may be used for medical applications; especially for those applications requiring an 

acidic environment is required.  
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 Fig. 31. Antimicrobial impacts of those viscous fibers coated with 6-deoxy-6-(2-(bis-N´, N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate (BAECS-Vis), and viscous fibers 

coated with 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS-Vis), on gram- 

positive bacteria (Staphylacoccus aureus and Streptococcus agalactiae), for gram- negative 

bacteria (Eschericha coli), and for fungi (Candida glabrata and Candida albicans), measured at 

pH 5 and 7. The results are expressed as R = % reduction of the organism after contact with the 

test specimen, compared to the number of bacterial cells surviving after contact with the control.  
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4. Experimental part  

4.1. Synthesis and characterization of aminocellulose sulfates 

4.1.1. Materials  

Microcrystalline cellulose Avicel
®
 PH 101 was purchased from Fluka (Neu-Ulm, Germany). 

Determination of the intrinsic viscosity according to ISO 5351 and size exclusion 

chromatography of a carbanilated sample according to (Terbojevich et al. 1995) yield a degree of 

polymerization DPw (ISO) of 264, DPn (SEC) of 78 and DPw (SEC) of 281. Cellulose and LiCl 

(Merck, Darmstadt, Germany) were dried for 6 h at 105 °C under vacuum over potassium 

hydroxide prior to use. Methyl-6-O-tosyl-a-D-glucopyranoside was purchased from Wako 

Chemical, Ltd. Other chemicals were purchased from Sigma Aldrich (Deisenhofen, Germany) 

and were used without further treatment. 

 

4.1.2. Measurements  

NMR spectra were acquired in D2O or dimethyl sulfoxide-d6 (DMSO-d6) on a Bruker Avance 

250MHz or Avance 400MHz spectrometer with up to 75 000 scans, applying 100 mg sample per 

mL. FT-IR spectra were recorded on a Nicolet AVATAR 370 DTGS spectrometer with the KBr 

technique. Elemental analysis was carried out using a Vario ELIII (Elementaranalysensysteme, 

Hanau, Germany). UV-Vis measurements were performed with a PerkinElmer 10 UV-Vis 

spectrometer using quartz glass cuvettes. Size exclusion chromatography (SEC) was carried out 

in aqueous Na2HPO4/NaN3 buffer system (0.01 M) at pH 11 on a JASCO SEC system with a 

SEC-pump PU-980, RI detector (RI-930), and UV-detector (UV-975); columns: PSS 

SUPREMA pre/1000/100 Å; flow rate: 1 mL/min; 30 °C. For the calibration, pullulan (200–700 

000 g mol
-1

) was used as a polymeric standard.  
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4.1.3. Methods  

The degree of substitution of tosyl cellulose (DSTos) was calculated from the sulfur content 

according to:  

      
          

                  
     (1) 

MAGU denotes the molar mass of the anhydroglucose unit (AGU), MS the molar mass of sulfur, 

MTos the molar mass of the tosyl group, and wS(%) the mass fraction of sulfur in the samples 

determined by elemental analysis.  

The calculation of DSTos and DSSulf in tosyl cellulose sulfates was carried out on the basis 

of UV-Vis measurements and elemental analysis. Therefore, the UV-Vis spectra of ten standard 

solutions of Methyl-6-O-tosyl--D-glucopyranoside (MTG) in deionized water, in a 

concentration range from 0.010 and 0.045 g/L were measured (Fig. 32a). By plotting the 

absorbance at 227 nm over the concentration range, a calibration curve was obtained (Fig. 32b). 

Utilizing this calibration curve, the concentration of tosyl moieties cTos can be calculated from 

the absorbance A227 of the solutions of the tosyl cellulose sulfate samples in water: 

     
           

     
     (2) 

From cTos, the mass concentration of the tosyl cellulose sulfate sample (cW) and the molar mass 

of sulfur MS, the mass fraction of sulfur in the sample arising from tosyl groups can be 

calculated: 

         
            

  
    (3) 

Elemental analysis yields the overall sulfur content wS(%) arising from both tosyl and sulfate 

moieties of the tosyl cellulose sulfate. The difference between the overall sulfur content wS(%) 

and wS(%)Tos yields the sulfur content arising from the sulfate groups: 
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                            (4) 

and subsequently the concentration of sulfate groups: 

      
            

       
     (5) 

The concentration of modified anhydroglucose units (AGU), cAGU can be calculated from: 

     
                      (        )

    
    (6) 

Combining the results of eq. (2), eq. (5), and eq. (6) led to the degree of substitution of tosyl 

cellulose sulfates: 

      
    

    
 and        

     

    
    (7) 

The sulfur and nitrogen content determined by elemental analysis was used for the calculation of 

the DS-values of the amino cellulose sulfates (DSBAEA, 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate and DSAEA, 6-deoxy-6-(w-

aminoethyl) amino cellulose-2,3(6)-O-sulfate). 

 

Fig. 32. a) UV spectra of the methyl 6-O-tosyl-a-Dglucopyranoside (MTG) dissolved in 

deionized water at different concentrations. b) Calibration curve calculated from the absorbance 

at wavelength 227 nm as a function of the concentration of MTG. 
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4.1.4. Synthesis 

4.1.4.1. Tosyl cellulose 2a-d and tosyl cellulose sulfates 3a-d:  

Tosyl cellulose (2) was prepared under homogeneous reaction conditions according to (Rahn et 

al. 1996). Briefly, cellulose (1) was allowed to react with p-toluenesulfonyl chloride and 

triethylamine as a base for 24 h at 8 °C in N,N-dimethylacetamide (DMAc)/LiCl, (4.3% 

cellulose content). Tosyl cellulose sulfates (TCS, 3) were prepared under homogeneous reaction 

conditions as well. Therefore, 2 was allowed to react with sulfur trioxide pyridine complex using 

DMAc as the solvent (Heinze and Rahn 1996). 

 

4.1.4.2. 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate 4a-d, typical 

example:  

TCS 3a (15 g, 43.75 mMol) was dissolved in 105 mL H2O to give a clear pale yellow solution. 

The solution was heated at reflux under an inert atmosphere and 1,2-diaminoethane (DAE, 60 

mL, 893 mMol) was added drop-wise within 25 min. After 6 h the reaction mixture became a 

clear pale brown solution. The reaction mixture was cooled to room temperature and the product 

was precipitated in 1.5 L acetone and washed 4 times with acetone (each 300 mL). Subsequently, 

the final product 4a was dried at 50°C under vacuum. Yield: 12 g, 90.6%; EA [%]: C 26.39, H 

4.05, N 3.79, S 12.92; DSAEA 0.41, DSTos 0, DSSulf 1.25; FT-IR (KBr)  ̃[cm
–1

]: 3440 (-OH), 

3240 (NH2), 2947 (CH2), 1468 (NH2), 1237 (SO2, sulfate), 1142- 1109 (C-N primary and 

secondary), 800 (S-O, sulfate). 
13

C-NMR (D2O) [ppm]:  = 100.82 (C1), 83.37–72.50 (C2-C5), 

66.59 (C6-OSO3), 48.73 (C6-N), 45.48 and 38.35 (C7, C8).  
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4.1.4.3. 6-deoxy-6-(2-(bis-N´,N´-(2-aminoethyl)aminoethyl)) amino cellulose-

2,3(6)-O-sulfate 5a-d, typical example:  

To a solution of TCS 3a (15 g, 43.75 mMol) in 105 mL H2O 148 mL tris-(2-aminoethyl)amine 

(TAEA, 989 mMol) were added dropwise. The reaction mixture was kept at 100 °C for 6 h under 

a nitrogen atmosphere. After cooling to room temperature, the product was precipitated in 

acetone (1.5 L) and washed 4 times with acetone (each 300 mL). After filtration, the final 

product 5a was dried at 50 °C under vacuum. Yield: 11.8 g, 86%, EA [%]: C 27.99, H 4.28, N 

5.75, S 11.46, DSBAEA 0.32, DSTos 0, DSSulf 1.21, FT-IR (KBr)  ̃ [cm
–1

]: 3481 (-OH), 3148 

(NH2), 2960 (CH2), 1490 (NH2), 1253 (SO2, sulfate), 1141-1066 (C-N primary, secondary 

and tertiary), 800 n(S-O, sulfate), 
13

C-NMR (D2O) [ppm]:  = 100.40 (C1), 81.73-72.40 (C2-

C5), 66.45 (C6-OSO3), 53.75- 48.92 (C8, C9), 45.46 (C6-N), 38.88-37.32 (C7, C10), 21.14 

(C11´). 

4.2. Physicochemical properties and  bioactivity of aminocellulose sulfates 

4.2.1. Materials  

6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS), 4c, DSSulf = 1.41, DSAEA = 

0.85, DSTos = 0.09] and 6-deoxy-6-(2-(bis-N´,N´-(2-aminoethyl)aminoethyl)) amino cellulose-

2,3(6)-O-sulfate [BAECS, 5c, degree of substitution (DS)Sulf = 1.31, DSBAEA = 0.71, DSTos = 

0.05] were used. Cellulose sulfate (CS, DSsulf 1.74) was synthesized according to the literature 

(Gericke et al. 2009b). Heparin sodium salt from porcine intestinal mucosa was purchased from 

Fluka (product 51551). Other chemicals were purchased from Sigma Aldrich (Deisenhofen, 

Germany) and were used without further treatment. 

4.2.2. Polyelectrolyte titration 

Polyelectrolyte titrations were carried out in an aqueous media within a pH interval of 4 –11.7. A 

bulk solution 0.1% (w/v) of the sample with a pH ≈ 11.7 was prepared. Three microliters of this 

bulk solution was pipetted into the titration cell. Two hundred microliters of 0.1 × 10 
− 3 

M 
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indicator toluidine Blue (T-Blue) were added. The cell was filled to a volume of 40 mL with 

deionized water and adjusted to the desired pH value with NaOH/HCl (1 M). A Mettler Toledo 

DL 53 titrator with a 10 mL burette was used for the incremental additions of the polyelectrolyte 

titrant polydiallyldimethylammonium chloride (PDADMAC) with c = 1 × 10 
− 3

 M. Incremental 

additions of 100 μ L were added every 3–10 s. The absorbance was measured as a potential 

change in mV, using a Mettler Toledo Phototrode DP660 at a wavelength of 660 nm. The 

concentration of the accessible sulfate groups was determined from the equivalent volume of the 

added PDADMAC solution. The negative charge equivalence of the ACS derivatives was 

calculated from the amount of PDADAMAC needed to reach the point of steepest slope, 

assuming complete 1:1 ion pair interaction within the polyelectrolyte complex formation. 

Because the determination of the sulfate group is performed when the products are completely 

soluble at alkaline pH values, the assumption (1:1 ion pair interaction) is valid as long as the 

adsorbed polyelectrolyte is bound to the soluble polymers in a flat confirmation.(Horvath et al. 

2006; Notley 2008; Wågberg et al. 1987; Winter et al. 1986)  

 

4.2.3. Potentiometric titration 

A T70 Titrator with a two-burette instrument (Mettler Toledo T70) was used for potentiometric 

titrations. The titrator was equipped with a combined glass electrode (Mettler Toledo DG 117). 

The burettes were filled with 0.1 M HCl and 0.1 M NaOH. The solutions were prepared with 

deionized and degassed water with low carbonate content (≈ 10
 − 4

 M). The solution was boiled 

and subsequently cooled under a nitrogen atmosphere. Twenty milligrams of sample was 

weighed and diluted with deionized degassed water to a volume of 40 mL in the titration cell. 

About 0.126 mL of degassed 1 M NaOH was pipetted into a titration cell to give a solution pH of 

≈ 11.5. The sample solution was titrated in several forth and back runs between pH 2.5 and 11.5, 

using HCl–NaOH, at room temperature. The electrode readings were recorded either after a drift 
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of less than 0.1 mV min
−1

 or the maximum waiting time condition was satisfied. For achieving 

the equilibrium reading, all the sample solutions were left for about 10 min before starting 

measurements using stirring and nitrogen purging. Blank titrations were performed under the 

same conditions as for the samples. 

 

4.2.4. Conductometric titration 

The conductometric titrations for the ACS solutions were performed in an aqueous media at pH 

range (2.7–11.5). Twenty milligrams of the sample was weighed in the titration cell and filled up 

with deionized and degassed water to a volume of 40 mL to give pH ≈ 11.5. (adjusted by 0.126 

mL of degassed 1 M NaOH). The solutions were prepared with deionized and degassed water 

with low carbonate content (≈ 10
 − 4

 M); the solution was boiled and subsequently cooled under 

nitrogen atmosphere. A Mettler Toledo T70 Titrator with a 10 mL burette was used for the 

incremental additions of hydrochloric acid as a titrant (HCl, c = 0.1 × 10
 − 3 

M). Incremental 

additions of 25 μ L were added every 3–10 s. The conductivity was measured using a sensor type 

Inlab 730, NTC, 0.01–1000 mS cm
−1

. A blank solution, (0.126 mL of degassed 1 M NaOH was 

diluted with deionized and degassed water to a volume of 40 mL with pH ≈ 11.5), and titrated in 

the same way as the ACS solutions. 

 

4.2.5. Zeta Potential Measurements 

Electrokinetic measurements have been used in order to define ZP of the products using 

preparation of 0.1% (w/v) ACS samples in aqueous medium of pH 11.5. ZP (using the 

Smoluchowski equation)(Sze et al. 2003) was determined within a pH range from 11.5 to 2.3, the 

pH values were adjusted by adding drops of 1 M NaOH/HCl solution. At each pH value, the 

measurements were repeated five times using PALS Zeta Potential Analyzer equipped with a 
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particle sizer from Brookhaven Instruments Corp. An average value of ZP was calculated. The 

conductivities of the measured solutions were within the range (1–2) mS cm
−1

. 

 

4.2.6. Antimicrobial activity 

Antimicrobial activity was evaluated by modified ASTM E2149-01 under dynamic contact 

conditions. Gram-positive and Gram negative bacteria, as well as a fungi, were used as test 

organisms. An incubated test culture in a nutrient broth was diluted using a sterilized 0.3×10
-3

 M 

phosphate buffer (KH2PO4; pH 6.8 and pH 5), in order to provide a final concentration of 1.5–

3.0×10 
5
 colony forming units (CFU) mL

−1
. This solution was used as a working bacterial 

dilution. One microliter of ACS solution 0.5% sample was transferred to a 250 mL Erlenmeyer 

flask containing 50 mL of the working bacterial dilution. All flasks were loosely capped, placed 

in the incubator, and shaken for 1h at 37 °C and 120 rpm using a Wrist Action incubator shaker. 

After a series of dilutions using the buffer solutions, 1 mL of the diluted solution was plated in 

the nutrient agar. The inoculated plates were incubated at 37 °C for 24h and the surviving cells 

counted. The average values of the duplicates were converted into CFU mL
–1

 in the flasks, by 

multiplying with the dilution factor. The antimicrobial activity was expressed as R, that is, 

percent reduction of the organism after contact with the test specimen, compared with the 

number of bacterial cells surviving after contact with the control (E2149-01 2002). 

 

4.2.7. Antithrombogenic activity 

Antithrombogenic activity was detected by measuring the APTT. A Thrombotrack Solo (Axis-

Shield PoC AS, Norway) coagulometer was used. Eighty microliters of citrated normal plasma 

(ORKE 41, Dade Behring), 20 μL of ACS solution and 100 μL Pathromtin SL reagent 

(OQGS29, Dade Behring) were mixed. After 3 min of incubation at 37 °C, 100 μL of prewarmed 
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0.025 M CaCl2 (ORHO37 Dade Behring) solution was added to the mixtures to start the 

coagulation. The end point, which gives the APTT time, was determined automatically by the 

coagulometer. The final concentration of ACS was adjusted to cover a range from 0 to 200 μg 

mL
–1

 by dissolution in 0.9% of NaCl aqueous solution at pH 8. Heparin sodium salt was used as 

a reference, and a blank solution which contained the same components except for ACS, were 

tested in the same way as the sample solutions. 

 

4.3. Characterization of viscose fibers modified with aminocellulose sulfates  

4.3.1. Materials 

Amino cellulose sulfate derivatives namely 6-deoxy-6-(2-(bis-N´, N´-(2-

aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate [BAECS 5c, DSSulf = 1.31, DSBAEA = 

0.71, DSTos = 0.05] and 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate [AECS 4c, 

DSSulf =1.41, DSAEA = 0.85, DSTos = 0.09] were synthesized as described by (Heinze et al. 2012). 

Standard viscose fibers (39 mm, 1.3 dtex) were supplied by Lenzing (Lenzing AG, Austria). A 

low foaming nonionic scouring agent, Imerol PCJ liq, was obtained from Clariant Textile 

Chemicals. Methylene blue dye with a grade certified by the Biological Stain Commission, a 

technical grade poly(vinylsulfonic acid, sodium salt) solution 25 wt. % in H2O, 

poly(diallyldimethylammonium chloride) solution with average Mw 200,000-350,000 20 wt. % 

in H2O, sodium carbonate BioXtra ≥ 99.0% and all the other chemicals such as sodium 

hydroxide, potassium hydroxide sodium chloride, potassium chloride, boric acid, and potassium 

dihydrogen phosphate were purchased as analytical grade reagents from Sigma-Aldrich). 

Deionized water with low carbonate content (< 10
-5

 M) obtained by boiling the deionized water 

and cooling under nitrogen atmosphere was used during experiments. 
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4.3.2. Pretreatment and coating of viscose fibers  

Before coating with amino cellulose sulfate, the viscose fibers were pre-treated with alkali 

(Zemljič et al. 2008). For this, 1.5 g of Na2CO3 and 1.5 g of the scouring agent were added to 1.5 

L of deionized water, to give a solution with pH 10.9. 50 g of viscose fibers were suspended in 

the prepared solution. The pretreatment was carried out by inserting the fiber suspension into 

sealed stainless-steel dye pots housed in a Mathis Labomat BFA dyeing machine at 60 °C for 30 

min. After that, the cured fibers were rinsed intensively with deionized water until the 

conductivity of the suspension was less than 3 μS m
-1

. Then the fibers were air-dried overnight. 

2.5 g of amino cellulose sulfate was dissolved in 250 ml of aqueous NaOH solution at pH 11 in 

order to obtain a concentration of 10 g L
-1

. 5 g of the pretreated cellulose fiber were dispersed in 

the 250 ml of amino cellulose sulfate solution. After shaking for 2h at room temperature, fiber 

impregnation was performed by passing the suspension through a foulard impregnation press 

(Werner Mathis) at a pressure of 1.6 bars (~100% wet pick-up). The fibers then were pre-dried at 

40 °C for 30 min, and then air-dried overnight.  

The ACS-treated fibers were immersed in 250 ml of 0.01 M HCl and stirred for 30 min. The 

nitrogen content, desorbed from the fibers during soaking in HCl, was detected using a total 

nitrogen analyzer (TN) from Analytik Jena Multi C/N 2100 Instruments. Thus, the retention 

value of the adsorbed amounts of ACS on the fiber after washing in HCl was calculated 

indirectly from the nitrogen content desorbed from the fiber into the washing solution. After that, 

the coated fibers were rinsed thoroughly with deionized water until the conductivity of the 

suspension was less than 3 μS m
-1 

and air-dried overnight at room temperature. The moisture 

content, ~10 % w/w of the studied viscose fibers, was determined using a Mettler Toledo HB43 

moisture analyzer, and taken into account during calculations. The samples of 6-deoxy-6-(2-(bis-

N´, N´-(2-aminoethyl)aminoethyl))amino cellulose-2,3(6)-O-sulfate coated viscose fibers 

(BAECS-Vis), 6-deoxy-6-(-aminoethyl)amino cellulose-2,3(6)-O-sulfate coated viscose fibers 

(AECS-Vis), and the non-coated viscose fiber (B-Vis), were then collected for studies.  
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4.3.3. Characterization of fibers 

4.3.3.1. XPS  

A XPS (X-ray photoelectron spectroscopy) spectrometer PHI model TFA XPS from Physical 

Electronics was used to analyze the surfaces of the fibers. The depth of analysis (escape depth of 

the photoelectrons) in cellulose is a few nm (Buchert et al. 2001; Fras et al. 2005; Johansson et 

al. 2004; Johansson 2002). The diameter of the analyzed area was about 0.4 mm
2
. A 

monochromatic Al K-Alpha X-ray source (1486.7 eV) was used for excitation. The 

photoelectrons were detected using a hemispherical analyzer positioned at an angle of 45° with 

respect to the normal sample surface. The survey scan spectra were obtained within an energy-

range of 0-1100 eV, 0.4 eV step, and pass electron energy 187.85 eV, 3 cycles. Spectra were 

recorded in two different places on the surface and the average atomic composition calculated. In 

order to obtain the atomic percentage values, each raw XPS signal was corrected by dividing its 

signal intensity (number of electrons detected) by a relative sensitivity factor (RSF) and 

normalized over all the elements detected (Ghosh 2009). For determining chemical bonding, 

high-resolution carbon spectra were recorded within the energy-range 278-296 eV, 0.1 eV step, 

and pass electron energy 23.5 eV. An average of the spectra determined on three different areas 

of the fibers was used for analysis. A linear combination of Gaussian and Lorentzian line shapes 

was used to fit the sub-peaks corresponding to different carbon environments. The full width at 

half-maximum intensity (FWHM) was about 1.2 eV. A program from the manufacturer 

Multipack was used for data processing.  

 

4.3.3.2. Potentiometric titration   

2 g of the dry viscose fibers were suspended in 200 ml of acidic aqueous solution pH ~ 2.8, 

adjusted by adding 3 ml of 0.1M HCl. The titration was carried out on a Mettler Toledo T70 

titrator equipped with a 10 mL burette filled with 0.1 M KOH. The suspension was titrated from 
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an initial pH value of 2.8 to pH = 10.5. The titration experiments were carried out at 0.01 M 

ionic strength, set to its appropriate value with KCl. The titrant was added dynamically within a 

preset interval of [0.001 – 0.25] mL. The equilibrium criteria for the timed addition was set at 

dE/dt = 0.1 mV/150 s. 150s was the minimum time allowed for reaching equilibrium conditions 

between the two additions of the titrant, and the maximum time was set at 7200 s. The pH value 

was measured with a Mettler Toledo DG-117 combined glass electrode. Blank titration without 

the fibers was performed in the same manner, in order to minimize any errors due to the presence 

of impurities and carbonate ions in the suspension. All the presented values are the mean values 

of 3 parallel measurements. 

 

4.3.3.3. Conductometric titration  

2 g of dry fiber were suspended in 200 ml of aqueous solution at pH ~ 2.5, adjusted by adding 3 

ml of 0.1M HCl and ionic strength 0.01 M  adjusted with KCl. The suspension was stirred for 30 

min, and then titrated with 0.1 M KOH in inert atmosphere (N2 bubbling).  The titrant was added 

in increments of 25 μL every 3 - 10 seconds. The conductivity was measured using an Inlab 730, 

NTC, 0.01- 1000 mS.cm
-1

 sensor-type. A stability criterion of 0.1 S/150 s was set. The amounts 

of weak acids, like protonated amino groups and carboxyl groups, were obtained by 

extrapolating the linear parts of the titration curves to their points of intersection (Fras et al. 

2004). A blank titration was performed in order to calibrate the system and to eliminate the 

effects of impurities. The results obtained are the mean values of 3 separate titrations. 

 

4.3.3.4. Polyelectrolyte titration  

Polyelectrolyte titration was carried out using a particle charge-detector (Mütek PCD 03 pH) for 

detection of the zero potential of the fibers, combined with an automatic titration unit (Mettler 

Toledo, DL 28). 0.3g of the dry fiber was transferred into a 100 ml beaker. A set of seven 
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beakers was prepared for every sample. 40 mL of 0.1 M NaCl with pH 11 were added to each 

beaker. The pH was adjusted by means of 0.1 M NaOH. Seven different volumes between (0.5 - 

10.5) mL of the cationic polymer polydiallyldimethylammonium-chloride (PDADMAC) 1.4144 

g. L
-1

 were added to each set. The suspensions were stirred for 30 min in order to reach 

adsorption equilibrium and then filtered through filter paper using a Büchner funnel. The fibers 

were then washed with some more water so that the total amount of filtrate was 55 mL. 10 mL of 

filtrate (which contains a non-adsorbed polyelectrolyte) were titrated with poly(vinylsulfonic 

acid, sodium salt). A set of seven blank samples, which contained the same volumes of cationic 

polymer without fiber, were titrated in the same way as the fibers so that the effects of polymer 

adsorption by the glassware and the glass-fiber filter could be eliminated. The filtrated samples 

were dried in an oven at 105°C for at least 4 h. The dried samples were placed in a dry desiccator 

to cool down, and were then weighed. The following equation was used for calculating the 

charge (Q) of the fibers:  

  
              

    
 

    

       
     (8) 

where V0 is the volume of PVSNa consumed by the blank sample, Vtit is the volume of the 

PVSNa solution consumed during titration of the fiber sample, cpvs is the concentration of the 

titrant PVSNa, Vtot is the total volume of filtrate, Vsample is the volume of the filtrate suspension 

taken to the titration, and mdry is the dry mass of the sample. The charge on the fibers was 

estimated from the adsorption isotherms by extrapolating the plateau level of adsorption to the 

zero polymer concentration. The amount of charge adsorbed with the polymer at this point in 

mMol kg
-1

, was taken as the charge of the fibers. All reported values are the mean values of three 

parallel measurements. For a detailed description of the techniques see (Laine and Stenius 1997).  
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4.3.3.5. Spectroscopic methylene blue method (adapted from Klemm et al. 1998a)  

The negative charge of the viscose fibers was determined using a modified conventional 

methylene-blue method. 0.5g of the fiber were suspended in 25 ml of aqueous methylene blue 

chloride solution (300 mg.L
-1

) and 25 ml of the prepared buffer of pH=11 for l h at 20°C in 100 

ml Erlenmeyer flask. The viscose fiber sample was then isolated via filtration on a sintered-glass 

disk. 5 ml of the filtrate was transferred to a 100 ml volumetric flask. Then 10 ml of 0.1M HCl 

and, subsequently, deionized water was added to achieve a total volume of 100 ml. The 

methylene-blue content of the liquid was determined photometrically at 660 nm, the same 

selected wavelength as the standards. The total amount of the non-sorbed methylene-blue was 

calculated using a calibration curve. Thus, the total negative charges’ (as a sum of the carboxyl 

and sulfate groups) content of the viscous fibers was obtained. 

 

4.3.3.6. Zeta potential measurements (adapted from Reischl et al. 2006) 

0.5 g of the fiber samples, B-Vis, BAECS-Vis or AECS-Vis, were soaked in 10
-3

 M KCl solution 

for 60 min prior to the measurements, which enabled full swelling of the fibers (Stana-

Kleinschek et al. 2001). Thus, no additional structural changes due to swelling occurred during 

the actual determination of their zeta potential. The fibers were then placed in the cylindrical cell 

of the streaming potential measuring device ZetaOszi designed according to (Reischl et al. 

2008). Both the upper and lower sieves of the cylindrical cell were adjusted in order to obtain a 

compressed fiber plug of about 0.5 cm thick. A tubular reservoir was connected to the fiber cells 

and 100 ml of electrolyte solution (10
-3

 M KCl) was poured into the reservoir. A MultiSens 

electrode was inserted into the electrolyte solution. The electrolyte solution was then oscillated 

back and forth through the cell at a frequency of 0.4 Hz for 120 steps. Measuring was started 

when the air-bubbles trapped inside the fiber sample were fully removed by this oscillation. The 

starting pH value of the electrolyte solution was adjusted manually to about pH ~ 11.5, by 
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addition of 1M NaOH solution. Three subsequent single measurements of the zeta potential were 

made during a period of 60 s, after which a certain amount of 0.1 M HCl solution was added to 

lower the pH value. The mean value from three measurements was calculated for each additional 

step. Three repeats were carried out for each sample, resulting in three ZP/pH curves. As a result, 

the mean curve of ZP=f (pH) is given. 

 

4.3.3.7. Antimicrobial Activity  

The antimicrobial properties of the functionalized fibers were evaluated by (ASTME2149-01 

2001), which is a quantitative antimicrobial standard test method performed under dynamic 

contact conditions. Gram-positive bacteria like Staphylococcus aureus (Staph. Aureus) and 

Streptococcus agalactiae (Strep. agalactiae), gram-negative ba 

cteria like Escherichia coli (Esche. coli) and fungi like Candida albicans (Cand. albicans) and 

Candida glabrata (Cand. glabrata), were used as test organisms. An incubated test-culture 

within a nutrient broth was diluted using a sterilized 0.3 mMol phosphate buffer (KH2PO4) at pH 

= 6.8, in order to give a final concentration of 1.5-3.0 x 105 colony forming units (CFU).mL
-1

. 

This solution was used as a working bacterial dilution. Each sample (0.5 g) was cut into small 

pieces (1  1 cm) and transferred to a 250 mL Erlenmeyer flask containing 50 mL of the working 

bacterial dilution. All the flasks were loosely capped, placed in the incubator, and shaken for 1 h 

at 37C and 120 rpm using a Wrist Action incubator shaker. 1 mL of the diluted solution was 

plated in nutrient agar after a series of dilutions using the buffer solutions. The inoculated plates 

were incubated at 37C for 24 h and the surviving cells counted. The average values for the 

duplicates were converted into CFU.mL
-1

 in the flasks, by multiplication using the dilution 

factor. The antimicrobial activity was expressed as R = % reduction of the organism after contact 

with the test specimen, compared to the number of bacterial cells surviving after contact with the 
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control. The same procedure was applied on an incubated test culture within a nutrient broth 

diluted in a sterilized 0.3 mM phosphate buffer at pH = 5. 
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5. Summary 

Amino cellulose sulfates, a new class of polyampholytic polysaccharide derivatives, are 

accessible by a three step synthesis; tosylation, sulfation and nucleophilic displacement for 

introduction of amino moieties. Thus, tosylate moieties can be introduced in position 6 of the 

repeating unit of the cellulose backbone. Subsequently, anionic sulfate groups can be linked to 

the tosyl cellulose by the treatment with sulfur trioxide pyridine complex. The nucleophilic 

displacement of the tosyl moieties by multifunctional amines like 1,2-diaminoethane or tris(2-

aminoethyl) amine leads to amino cellulose sulfate of different structure; namely 6-deoxy-6-(-

aminoethyl)amino cellulose-2,3(6)-O-sulfate (AECS) and 6-deoxy-6-(2-(bis-N´,N´-(2-

aminoethyl) aminoethyl)) amino cellulose-2,3(6)-O-sulfate (BAECS) were prepared under 

homogeneous reaction conditions. 

The structure of the polysaccharide derivatives can be clearly described by FT-IR and NMR 

spectroscopy. Investigation of the solubility of the polymers shows a polyampholyte-typical 

water solubility that depends on the pH value of the system. This pH value dependency can be 

tailored by the choice of the amine used for functionalization and the synthesis conditions 

applied. Moreover, preliminary experiments of the determination of the apparent molecular sizes 

of the products were carried out applying size exclusion chromatography. The MW values 

obtained are 70,490 and 167,700 g mol
-1 

for (AECS 4a, degree of substitution, DSSulf = 1.25, 

DSAEA= 0.41, DSTos ≈ 0) and (BAECS 5a, DSSulf = 1.21, DSBAEA = 0.32, DSTos ≈ 0), respectively. 

Considering the molar mass of the repeating unit, the corresponding DPW values are 233 for 4a 

and 536 for 5a. In comparison with the DPW of the initial cellulose (≈ 260–280), a slight decrease 

can be noticed in case of 4a and an increase became apparent in case of 5a. However, the trend 

of an increasing molecular weight observed for BAECS might be attributed to aggregation 

resulting from the polyampholytic character of the ACS derivatives. The higher extent of 

aggregation and thus the higher molecular weight in case of BAECS result from the higher 
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content of protonated amine groups present in the polymer. The physicochemical behavior of 6-

deoxy-6-(2-(bis(2-aminoethyl)aminoethyl-amino) cellulose sulfate and 6-deoxy-6-(2-

aminoethyl) cellulose sulfate was studied by means of polyelectrolyte-, potentiometric-, and 

conductometric titrations as well as by zeta potential measurements. It was found that there is 

aggregation between oppositely charged sulfate and amino moieties dependent on the pH value. 

The amounts of protonated amino groups determined by conductometric titration were 4.02 and 

2.53 mMol g
-1

 for BAECS and AECS, respectively. Since for both samples the amounts of 

amino groups are higher than the amounts of sulfate groups, protonation of the excess of amino 

groups at pH values lower than the isoelectric points causes the products solutions to be 

positively charged. The antimicrobial test of BAECS and AECS solutions showed that the 

samples inhibit the growth of Staphylococcus aureus and Candida glabrata at pH =5 but they are 

inactive against Escherichia coli. Due to blocking of most of the sulfate groups by aggregation 

with amino/ammonium groups, the products showed no antithrombogenicity. It was possible to 

control the antithrombogenicity of the products by variation of the DS values of both amino and 

sulfate groups.  

Viscose fibers were coated with BAECS and AECS. The determination of accessible amounts of 

sulfate (anionic) and protonated amino groups (cationic) on the fibers shows that the amino 

cellulose sulfates had adsorbed on the fibers leading to amphoteric characteristics. The coating of 

fibers by AECS and BAECS introduces new functional groups to the fibers; as positively-

charged amino groups and negatively-charged sulfate groups. The functional groups of the non-

coated fibers and of the ACS-coated fibers were characterized by means of X-ray photoelectron 

spectroscopy (XPS), conductometric, potentiometric and polyelectrolyte titrations, as well as 

conventionally by the spectroscopic methylene-blue method. The electrokinetic behavior was 

evaluated by measuring the zeta potential of the fibers as a function of pH between pH 11.5 and 

2.0. The amounts of the positive-charges (protonated amino groups) determined by 

potentiometric titration agreed with the amounts of the positive charges determined by 
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conductometric titration. The total amounts of negatively-charged fiber groups (sulfate and 

carboxyl) determined by polyelectrolyte titration were 38.8 and 32.1 mMol Kg
-1

 for viscose 

fibers coated with AECS and BAECS, respectively. These results were in accordance with the 

conventional methylene-blue method. Protonation of the amino groups on the fibers render them 

positive at pH values lower than the isoelectric point. At pH values higher than the isoelectric 

point, the fibers are negatively-charged due to the existence of deprotonated sulfate- and 

carboxyl groups. The antimicrobial test of viscose fibers coated with BAECS and AECS showed 

that the samples inhibited the growth of Staphylacoccus aureus, Streptococcus agalactiae, 

Eschericha coli, Candida glabrata at pH=5, but the viscose fibers coated with BAECS and 

AECS were inactive against Candida albicans at this pH value. 
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6. Zusammenfassung 

Aminocellulosesulfat, eine neue Klasse von polyampholytischen Polysaccharidderivaten sind in 

einer dreistufigen Synthese zugänglich: Tosylierung, Sulfatierung und nukleophile Substitution 

zur Einführung der Aminogruppen. Die Tosylgruppen werden an Position 6 der 

Wiederholungseinheit des Celluloserückgrates gebunden. Nachfolgend werden anionische 

Sulfatgruppen durch Umsetzung mit Schwefeltrioxid-Pyridin-Komplex eingeführt. Die 

nukleophile Substitution der Tosylgruppen durch multifunktionelle Amine, wie 1,2-

Diaminoethan oder tris(2-Aminoethyl)amin ergeben Aminocellulosesulfate unterschiedlicher 

Struktur. 6-Deoxy-6-(-aminoethyl)aminocellulose-2,3(6)-O-sulfat (AECS) und 6-Deoxy-6-(2-

(bis-N´,N´-(2-aminoethyl)aminoethyl))aminocellulose-2,3(6)-O-sulfat (BAECS) wurden so unter 

homogenen Reaktionsbedingungen synthetisiert. 

Die Struktur der Polysaccharidderivate kann mittels FT-IR- und NMR-Spektroskopie eindeutig 

beschrieben werden. Die Untersuchung der Löslichkeit der Polymere zeigt das für 

Polyampholyte typische pH-Wert-abhängige Verhalten. Diese Eigenschaft kann durch die Wahl 

des Amins und die Reaktionsbedingungen gesteuert werden. Darüber hinaus wurden 

orientierende Versuche zur Bestimmung der scheinbaren Molmasse mittels 

Größenausschlusschromatographie unternommen. Die erhaltenen Werte betragen 70.490 g mol
-1

 

(AECS 4a, Substitutionsgrad, DSSulf = 1.25, DSAEA = 0.41, DSTos ≈ 0) und 167.700 g mol
-1 

(BAECS 5a, DSSulf = 1.21, DSBAEA = 0.32, DSTos ≈ 0). Unter Berücksichtigung der molaren 

Masse der Wiederholungseinheit ergeben sich die korrespondierenden DPw-Werte von 233 (4a) 

und 536 (5a). Im Vergleich zum DPw der Ausgangscellulose (≈ 260–280), kann bei Probe 4a ein 

leichter Polymerabbau beobachtet werden, während der scheinbare DP bei Probe 5a zunimmt. 

Die steigende Molmasse von BAECS kann auf den polyampholytischen Charakter dieses 

Derivates zurückgeführt werden. Die stärkere Aggregation und damit die höhere Molmasse 

resultiert aus dem höheren Gehalt an protonierten Aminogruppen im Polymer. Das 



6. Zusammenfassung 

 

 

Taha Genco  90 
 

physikochemische Verhalten von 6-Deoxy-6-(2-(bis(2-aminoethyl)aminoethyl-

amino)cellulosesulfat und 6-Deoxy-6-(2-aminoethyl)cellulosesulfat wurde mittels 

Zetapotentialmessung, Polyelektrolyttitration, sowie potentiometrischer und konduktometrischer 

Titration untersucht. Dabei konnte eine Aggregation zwischen gegenseitig geladenen 

protonierten Amino- und Sulfatgruppen beobachtet werden, die vom pH-Wert abhängig ist. Die 

mittels konduktometrischer Titration bestimmten Gehalte an protonierten Aminogruppen 

betragen 4,02 mMol g
-1

 (BAECS) und 2,53 mMol g
-1

 (AECS). Weil beide Proben einen höheren 

Gehalt an Aminogruppen als Sulfatgruppen aufweisen, liegt das Produkt bei pH-Werten, die 

kleiner als der isoelektrische Punkt sind, protoniert vor. Beide Proben hemmen das Wachstum 

von Staphylococcus aureus und Candida glabrata bei pH =5, sind aber unwirksam gegenüber 

Escherichia coli. Aufgrund der Blockierung vieler Sulfatgruppen durch Aggregation mit Amino-

/Ammoniumgruppen, wirken die Proben nicht antithrombogen. Die antithrombogene Wirkung 

kann durch Variation der DS-Werte von Amino- und Sulfatgruppen gesteuert werden. 

Viskosefasern sind mit BAECS und AECS beschichtet worden. Die Bestimmung der 

verfügbaren Mengen an Sulfat- (anionisch) und protonierten Aminogruppen (kationisch) auf den 

Fasern zeigt die Beschichtung der Fasern an und verleiht diesen amphotere Eigenschaften. 

Hierdurch werden neuartige funktionelle Gruppen eingeführt: positiv geladene Aminogruppen 

und negativ geladene Sulfatgruppen. Die funktionellen Gruppen der unbeschichteten und ACS-

beschichteten Fasern wurden mittels Röntgenphotoelektronenspektroskopie (XPS), durch 

Titration (konduktometrisch, potentiometrisch, Polyelektrolyt-) sowie spektroskopisch durch die 

Methylenblau-Methode bestimmt. Das elektrokinetische Verhalten der behandelten Fasern 

wurde durch Messung des Zetapotentials als Funktion des pH-Wertes zwischen pH 11,5 und 2,0 

beurteilt. Die mittels potentiometrischer Titration bestimmten Gehalte an positiven Ladungen 

(protonierte Aminogruppen) stimmen mit den durch konduktometrische Titration bestimmten 

Gehalten überein. Die durch Polyelektrolyttitration bestimmte Gesamtmenge der negativen 
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Ladungen auf den Viskosefasern (Sulfat- und Carboxylgruppen) beträgt 38,8 mMol kg
-1

 (AECS) 

bzw. 32.1 mMol kg
-1

 (BAECS). Diese Ergebnisse stimmen mit den Resultaten der 

Methylenblau-Methode überein. Die Fasern werden durch Protonierung der Aminogruppen bei 

pH-Werten unterhalb des isoelektrischen Punktes positiv. Bei pH-Werten oberhalb des 

isolelektrischen Punktes werden die Fasern durch deprotonierte Sulfat- und Carboxylgruppen 

negativ. Untersuchungen zur antimikrobiellen Aktivität zeigten, dass die Proben das Wachstum 

von Staphylacoccus aureus, Streptococcus agalactiae, Eschericha coli, und Candida glabrata 

bei pH=5 hemmen, aber inaktiv gegenüber Candida albicans sind. 
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