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2 ZUSAMMENFASSUNG 

Zusammenfassung 
 

Umweltrelevante Themen haben gegenwärtig in Forschung und Wissenschaft grosse 

Bedeutung erlangt. Besondere Beachtung findet dabei die Luftverschmutzung, da das enorme 

Anwachsen von Industriegebieten und urbanen Ballungsräumen zu einer erhöhten Abgabe 

von gasförmigen, flüssigen (mikroskopische Tropfen) und festen (feste Schwebeteilchen) 

Schadstoffemissionen in die Atmosphäre führt. 

Atmosphärische Aerosolpartikel können sowohl die Gesundheit der Bevölkerung als auch das 

Klima bedrohen. Durch zahlreiche in der Vergangenheit durchgeführte Studien wurde 

bewiesen, dass den Aerosolen eine grosse Rolle bei der Bewertung des Klimawandels 

zukommt, da sie die Sonneneinstrahlung absorbieren oder streuen und so die Wolkenbildung 

und –lebensdauer beeinflussen können. 

Die Zusammensetzung der atmosphärischen Aerosolpartikel ist unterschiedlich und hängt 

von den in den jeweiligen Gebieten vorherrschenden natürlichen und anthropogenen 

Emissionen ab. So sind beispielsweise in der Atmosphäre über urbanen Räumen vorwiegend 

anthropogene Bestandteile wie Russ, halbflüchtige organische Verbindungen, bestimmte 

Metalle, Sulfate, Nitrate usw. zu finden, während Emissionen wie Sodium- und 

Potassiumsalze, die durch schäumende Wellen der Ozeane bzw. durch Verbrennung von 

Biomasse entstehen und in die Atmosphäre gelangen, natürlichen Urprung haben. 

Besondere Bedeutung ist den anorganischen Salzen in den atmosphärischen Aerosolpartikeln 

beizumessen, da diese in hohem Masse wasserlöslich und/oder hygroskopisch sind. Aufgrund 

dieser Eigenschaften können atmosphärische Partikel, die zumindest kleine Mengen 

anorganischer Salze enthalten, als effiziente Kondensationskerne für die Wasserkondensation 

(mit oder ohne Eisbildung) fungieren und dadurch das Klima beeinflussen. Unter 

Berücksichtigung der Interaktionen der atmosphärischen Partikel mit Wasser ermöglicht die 

Identifizierung der in den Aerosolpartikeln enthaltenen Salze Rückschlüsse auf die in der 

Atmosphäre stattfindenden Prozesse. Die Analyse atmosphärischer Partikel unter diesen 

Gesichtspunkten setzt selbstverständlich die Verfügbarkeit geeigneter analytischer Techniken 

voraus. 

Eine Vielzahl bereits veröffentlichter Studien belegen die Eignung der Raman-Spektroskopie 

zur Identifizierung von bekannten atmosphärischen Salzen, darüber hinaus kann diese 

Technik jedoch auch zur Aufklärung der Bildungs- und Transformationsprozesse von 

atmosphärischen Salzen eingesetzt werden. 

Im Rahmen dieser Dissertation wurde der Ursprung bestimmter Salze und Salzmischungen 

unter Mitwirkung von Wasser untersucht. Die an den atmosphärischen Partikeln 

stattfindenden Kondensations- und Verdampfungszyklen führen zu Veränderungen der 

ursprünglich ausgestossenen Partikel und zur Kristallisation anderer Salze. In dieser Arbeit 

wird die atmosphärische Bildung von verschiedenen Salzen vorgeschlagen, insbesondere 

eines Fe(III)-Salzes, des sogenannten “Ungemachit”. Von jedem Salz wurden die Raman-

Spektren gemessen und die charakteristischen Banden zugeordnet. Untersucht wurde auch 

die Reaktivität von festen, alkaline Mineralien und (NH4)2SO4 enthaltenden Mischungen im 

Kontakt mit feuchter Luft, da solche Reaktionen infolge des Koagulationsprozesses an 

atmosphärischen Partikeln stattfinden können. Sowohl die Zusammensetzung der 

atmosphärischen Partikel als auch die Reaktivität fester Mischungen stellen nützliche Daten 

für die Erstellung von Modellen zur Schätzung des Klimawandels dar.  
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1 Summary 

 

1.1 Motivation  
 

It is known and accepted that human activities have effects on the surrounding 

environment. These effects depend on the specific geographic location as well as the 

“magnitude” of the activities in terms of exploitation of natural resources and generation 

of residues. Air trapped in ice samples dated back to the latter part of the eighteenth 

century, which coincides with the beginning of the industrial revolution, showed 

incipient global changes in the atmospheric composition, [1] confirming the important 

environmental impact caused by the industrial development. 

At present, environmental topics related to soil, water and air, as well as the 

development of new technologies and methods for the environmentally friendly 

production, are subjects of intense study. Much of the concern is related to the air 

pollution and how the atmospheric chemistry is affected, since substances emitted into 

the atmosphere can be transported to remote regions. Illustrative examples are the 

reports referred to the long-range transport of precursors of acid rain, [2,3] polycyclic 

aromatic hydrocarbons, [4] and mineral dust. [5-7] 

There are different pollutants present in the atmosphere, some of the most important 

ones are volatile organic compounds (VOCs), sulfur dioxide (SO2), nitrogen oxides 

(NOx), particulate matter, carbon monoxide (CO), carbon dioxide (CO2)
1
, tropospheric 

ozone (O3), peroxyacetyl nitrate (PAN), ammonia (NH3) and chlorofluorocarbons 

(CFCs). The direct influence and effects of these pollutants depend on their physical and 

chemical characteristics, e.g., methane (CH4), which pertains to the category of VOCs, 

is a gas known to contribute to the global warming, [8] while CFCs participate in the 

destruction of stratospheric ozone. [9] Furthermore, interactions between pollutants can 

cause an enhancement or attenuation of atmospheric processes, resulting in dangerous 

interferences on natural equilibrium.  

In the scientific literature a large variety of studies is dedicated to atmospheric 

particulate matter. Particulate matter contains components of natural and anthropogenic 

origin, which can even be found in rural areas, where the human influence is minimal. 

Nevertheless, even in rural areas the anthropogenic impact can be observed; the results 

of a study carried out in a rural area in Lithuania [10] illustrate this finding. There are no 

doubts that the human activities have direct and indirect influence on the size 
                                                           
1
 In 2007, after a long controversy, the U.S. Supreme Court held that the Clean Air Act gives the 

Environmental Protection Agency (EPA) the authority to regulate tailpipe emissions of CO2 and other 

greenhouse gases. (Massachusetts v. Environmental Protection Agency, No. 05-1120). This decision can 

be interpreted as a legal acceptance that CO2 is an air pollutant. 
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distribution, concentration and composition of atmospheric particles, and these 

suspended materials in turn are important because of their implications on human health 

and atmospheric processes. Therefore, the study of atmospheric particulate matter not 

only requires appropriate analytical methods, but also the interpretation of the observed 

atmospheric composition, its variations and significance. 

Particulate matter has a direct effect on the climate, since particles scatter and absorb 

the solar radiation. In addition, there are two indirect effects on the climate, both related 

to water in the hydrological cycle. [11,12] 

A remarkable component of the troposphere is water, which can be found in vapor, 

liquid and solid state. Water in solid state can be found fundamentally in the upper 

troposphere; the cirrus clouds are probably the most important form due to their 

radiative effects. [13] Liquid water is present in the troposphere as fog, cloud droplets 

and wet aerosols; clouds cover ~60% of the Earth’s surface and occupy ~7% of the 

troposphere. [14] In the condensation of both liquid and solid water (ice), atmospheric 

particulate matter plays a determinant role, since it allows the heterogeneous nucleation 

of ice [15] and the condensation of water droplets at reasonable supersaturations. [16] 

The increase in the concentration of particles (more particles per volume unit) results in 

the formation of more droplets and thus in an increased reflection to space of solar 

radiation (first indirect radiative forcing). In addition, the condensation of more droplets 

implies a decrease of the droplet radius and the precipitation efficiency. In other words, 

the precipitation is inhibited and the clouds contain more water (as droplets), leading to 

a further increase in the reflection of radiation (second indirect radiative forcing). 

[11,12] 

In this context, when particulate matter interacts with water in the atmosphere, particles 

can be removed by washout or modified in size and composition (aging processes) until 

they finally are removed by dry or wet precipitation. What is the composition of these 

aged particles? It is accepted that the result of aging processes is the formation of 

internally mixed particles
2
, [16] but there are uncertainties associated with the 

identification of the individual compounds. The ionic composition of atmospheric 

particulate matter has been a subject of study of several reported works, but there are 

only a few reports specifying the salt form in which the ions are found.  

The identification of the components found in atmospheric particulate matter (in this 

case inorganic salts) is important for monitoring purposes and also for the study of the 

atmospheric chemistry. Currently, atmospheric studies are performed not only using 

aerosol chambers and other related experimental setups, but also using computational 

models to evaluate different emission scenarios. These models are used to obtain 

climate projections and to estimate the effects of changes in atmospheric composition. 

For interpretation purposes, the results obtained by computational calculations require 

the feed-back and the support of past and current atmospheric measurements. 

The aim of this doctoral thesis is to investigate aspects concerning the atmospheric 

origin of some inorganic salts of known atmospheric occurrence. Moreover, based on 

laboratory experiments, the atmospheric formation of other inorganic salts is proposed 

in view of the common presence of certain ions in the atmosphere and their interaction 

with atmospheric water. Raman spectroscopy is the main analytical tool used in this 

                                                           
2
 The terms internal mixture and external mixture are used to indicate whether two or more species are 

found together in one particle, i.e., as one “internal mixture” or are rather found in separate particles in 

the same sample, i.e., as an “external mixture”. [17] 
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work, therefore, the bands observed in the Raman spectra of all pure salts considered in 

this investigation have been properly assigned. The Raman-specific features of some 

salts were discussed from the point of view of their crystal structure.  

In the following section, general aspects of the significance of atmospheric particulate 

matter to human health, the atmospheric chemistry and climate are outlined. 

Furthermore, the most common analytical methods used to study atmospheric 

particulate matter and the advantages of Raman spectroscopy with respect to other 

methods are summarized. Finally, the results of this doctoral thesis are summarized and 

conclusions are drawn.  
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1.2 State of the Art 
 

Many research works have been done on the topic of particulate matter from the point 

of view of human health effects. [18-20] The researchers agree upon two important 

parameters to be taken into account: the particle composition and the respirable fraction 

of aerosol particles which can penetrate into the alveoli of the lungs. The deficit in lung 

function is associated with a set of pollutants such as fine particulate matter with an 

aerodynamic diameter
3
 below 2.5 µm (PM2.5). [21] The relative toxicity of atmospheric 

substances is important, because obviously it could aggravate the health complications 

related to inert particles of the same size. An important aspect to be considered in the 

health impact evaluation is the amount of water-soluble (bioavailable) substances. A 

Canadian epidemiological study has shown that sulfate, iron, nickel and zinc in ambient 

PM2.5 appear to be more strongly associated with mortality than PM2.5 mass. [18] It has 

also been postulated that iron and other transition metals could act as catalysts in the 

formation of reactive oxygen species that may be associated with the activation of many 

biochemical processes. [22] 

However, atmospheric particulate matter has environmental implications beyond the 

human health effects. There are important heterogeneous reactions which can alter the 

atmospheric composition, e.g., the formation of HCl(g) and NaNO3(s or aq) by the 

reaction between HNO3(g) and NaCl(s or aq). [23] In addition, photochemical reactions 

of mineral dust have been the subject of different investigations on the daytime 

chemistry. [24] Atmospheric particles affect also the weather conditions and climate, 

since they influence the cloud lifetime and the Earth radiation budget. [25,26] Cloud 

droplets and ice particles are formed in the atmosphere by condensation of 

supersaturated water vapor on atmospheric particles; particles which can nucleate liquid 

cloud droplets and induce the formation of ice crystals are called cloud condensation 

nuclei (CCN) and ice nuclei (IN), respectively. Undoubtedly, the composition of 

atmospheric particles is a key factor; particles made from water soluble (organic or 

inorganic) and insoluble but wettable materials, facilitate the formation of cloud 

droplets, while the organic hydrophobic compounds act inhibiting the condensation of 

water, [16] this means that even particles of hydrophobic materials but internally mixed 

with modest amounts of hydrophilic materials can act as CCN. The effect of the 

variation in the concentration of CCN on the onset of precipitation was observed in the 

event of smoke from forest fires, [27] and further implications include the increase of 

the stratospheric water vapor [28] and even effects on the depletion of stratospheric 

ozone. [29] 

Many researchers have studied the radiative forcing caused by specific components of 

the atmospheric particulate matter. [25,30-33] It has been found that some materials 

such as sulfates cause a negative forcing (cooling the atmosphere), while others such as 

black carbon have a positive forcing effect (warming the atmosphere). [30,33] 

Moreover, model studies have shown that variations in emissions of a given compound 

can modify the concentration of several others, [32] resulting in variations of the global 

radiative forcing.  

                                                           
3
 The aerodynamic diameter is defined as the diameter of a spherical particle with a density of 1 g cm

-3
 

and a settling velocity equal to that of the particle in question. Particles with the same physical size and 

shape but different densities have different aerodynamic diameters. [21] 
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About two decades ago, Preining (1991) [34] estimated that the annual global aerosol
4
 

production totaled approx. 2 Pg (1 Pg = 10
15

 g), whereof 40% was attributed to direct 

natural emissions (sea salt, mineral dust and volcanic material), 40% to natural gas 

emissions converted to aerosols (sulfates, nitrates and hydrocarbons), and 20% to 

anthropogenic emissions (direct and gas-to-particle conversion). The relative 

anthropogenic effect on the environment is normally a subject of intense discussion, 

because it is evident that the dividing line between anthropogenic and naturally-

originated pollutants is not always clear. The case of mineral dust transported by wind is 

illustrative, because the transport of these materials, especially from deserts, has been 

considered for a long time as a natural process, but now it is known that the progressive 

expansion of deserts and the soil degradation due to human activities can enhance the 

mentioned transport process. [35] Tegen and coworkers [36,37] demonstrated by model 

calculations that not all mineral dust has a natural origin, in fact more than 50% of the 

total atmospheric dust mass originates from human-disturbed soils. In addition, there are 

other sources of dust emissions probably underestimated in the past, but important in 

current scenarios in which human activities already affected the natural equilibrium.  

A well-known dramatic example of the destruction of the natural equilibrium by human 

activities is the desiccation of the Aral Sea due to the excessive exploitation of 

watercourses for agriculture, industry and human consumption. [38] One of the 

consequences of the desiccation of lakes is the dust emission from the dry lake beds, 

since the material therein has a very fine granulometry (clays and evaporite salts). 

Results from a model study performed by Tegen and coworkers [39] show that dry lake 

beds (called “preferential source areas” by these authors) make a substantial 

contribution to global dust emissions. When a saline lake desiccates, the saline fraction 

of the emitted dust is remarkably high; in the case of the Aral Sea, wind-transportation 

of huge amounts of salt/dust material (also known as “salt storms”) was observed as far 

as 500 km, affecting not only the health of people, but also the crop productivity by 

causing a systematic soil salinization in remote areas. [38] Of course, these particles of 

soluble salts occurring in atmosphere can also affect the weather, since they act as very 

efficient CCN.  

The Aral Sea is the most notorious case due to its magnitude, but not the only one; the 

Urmia Lake (Iran) is another saline water body in desiccation process, again triggered 

by an overexploitation of water inflows. [40] Some “soda lakes”
5
, e.g., the Owens Lake 

(USA), were also affected by desiccation processes, releasing large quantities of wind-

transported alkaline dust. [41,42] Although the emission of alkaline dust is known, 

studies on their atmospheric effects are scarce in the scientific literature. Usually, the 

effect of dust-contained alkaline materials on the atmospheric chemistry is just 

evaluated in terms of the effect on the pH value of atmospheric water. For atmospheric 

studies, the neutral pH value is 5.6, since it is considered that cloud- and rainwater are 

equilibrated with atmospheric CO2. [43,44] Several studies on the pH of atmospheric 

water in India above rural and urban areas have been reported in the past. [43-53] The 

authors agree that the observed pH values higher than 5.6 (in many cases even higher 

                                                           
4
 According to the rigorous definition, aerosols are relatively stable suspensions of solid or liquid particles 

in gas. Thus aerosols differ from particles in that an aerosol includes both the particles and the gas in 

which they are suspended. However, the term “aerosols” is often used in the atmospheric chemistry 

literature to denote just the particles. [17] 

5
 A soda lake or alkaline lake is a lake with pH values typically between 9 and 12. Generally, they are 

characterized by high concentrations of CO3
2-

 and Na
+
 ions. 
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than 7.0) can be attributed fundamentally to the interaction of the atmospheric water 

with soil dust known to be rich in alkaline materials. There are no doubts about the 

interaction of mineral dust with water in the atmosphere, and the interaction of dust 

particles with other atmospheric components and even with other particles of different 

composition can be expected. 

Gas-to-particle conversion processes (secondary particle formation) are other important 

contributors of atmospheric particulate matter. This kind of processes involves both 

organic vapors and gases emitted from oceanic and continental areas. Probably the most 

important gas-to-particle conversion processes are related to the formation in 

atmosphere of sulfate (SO4
2-

) and nitrate (NO3
-
).   

There are minor primary sources of sulfate particles (sea salt aerosol and some sulfate 

minerals in dust), but most of the atmospheric sulfate particles are secondary particles. 

[16] Sulfur in atmosphere is emitted as SOx predominantly from volcanoes as a natural 

source, but also from fossil fuel burning and industry, [54] which then oxidizes to the 

SO4
2-

 observed in atmosphere as H2SO4 or sulfate salts. [17] However, sulfur is also 

released into the atmosphere from the ocean in the form of dimethyl sulfide (DMS) and 

then oxidized to SO4
2-

 by reaction with the hydroxyl radical (HO
•
) in presence of solar 

radiation. [55-57] 

The occurrence of nitrate in atmosphere (in snow, in liquid water or as solid salt) is 

attributed to processes taking place in the atmosphere. In fact, the formation of the most 

important nitrate deposits in the Antarctic Continent and the deserts of northern Chile 

was attributed to atmospheric processes. [58] The oxidation of nitrogenous material 

originated on the ocean surface, [58,59] the formation of nitrate as a product of the 

auroral activity (and other ionization stratospheric processes) in the upper atmosphere 

[60,61] and even the production of nitrate by the X- or γ-rays from supernovae [62] are 

the processes postulated and discussed during several years to explain the natural 

formation of the nitrate deposits. The emissions of NOx (which are between 70 and 90% 

of anthropogenic origin [63]) and the subsequent oxidation processes are remarkable 

contributions to the atmospheric nitrate. 

Besides SO4
2-

 and NO3
-
 ions, other ions are usually found in aerosols: Na

+
, K

+
, NH4

+
, 

Mg
2+

, Ca
2+

 and Cl
-
, among others. There are also several reports of metals in the 

atmospheric environment; iron, manganese, copper and zinc (among others) have been 

found in atmospheric water samples (cloudwater, wet and bulk precipitation) as well as 

in atmospheric particulate matter (PM10, PM2.5-10 and PM2.5). [64-72] The atmospheric 

occurrence of copper and zinc usually is attributed fundamentally to anthropogenic 

sources, while iron and manganese (sometimes) have both natural and anthropogenic 

origin. Zn-rich particles have been found in atmospheric particulate matter sampled in 

urban areas of China influenced by mining, zinc industries as well as steel production 

and coal combustion. [71,72] Most of the copper is emitted to the atmosphere by 

activities including iron and steel manufacturing, nonferrous metal production and fuel 

combustion, but there are also some contributions from soil, vegetation and sea salt 

spray. [73] The occurrence of both copper and zinc in cloudwater and atmospheric 

particles has also been linked to the automobile traffic. [67,74] Iron and manganese in 

atmosphere can be attributed to resuspended road dust, mechanical wear in road 

transport and combustion, [66] and also the long-range wind-driven transport of 

particles (e.g., particles coming from the Saharan desert).  

However, there are additional sources of metal emissions; Grassian [75] proposed that 

nanodust (nanoparticles) generated by the nanomaterial industry may be a source of 
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metals to the atmospheric environment, since ~50% of the consumer products composed 

of nanomaterials contain metals. It has been found that the use of organometallic 

gasoline additives containing Fe and Mn, such as ferrocene, FeC5H5 and 

methylcyclopentadienyl manganese tricarbonyl, CH3C5H4Mn(CO)3, generates the 

emission of iron and manganese nanoparticles. [76] Adachi and Buseck [77] confirmed 

that nanoparticles containing transition or post-transition metals are common in polluted 

air, with consequent effects on the population health.  

The presence of metals in atmosphere has also effects on the atmospheric chemistry; 

some studies revealed that soluble transition metal ions interfere with photochemical 

reactions in aqueous phase. [78] Matthijsen et al. [79] studied the influence of dissolved 

Fe and Cu on the in-cloud ozone using cloud model experiments for different 

photochemical scenarios; they found significant variations in the rate of ozone loss 

(higher for polluted continental conditions and lower for average continental conditions) 

and an increased production of HO
•
, which also boosts the oxidation of organic 

compounds (e.g., formaldehyde, etc.). Researchers studied with special interest the role 

of soluble Fe and Cu in S(IV) oxidation processes and a link between iron and sulfur 

cycles has been suggested. [56,80,81]  

It is clear that not only the mass and size distribution of aerosols, but also their 

composition are important in environmental studies. Depending on the state of the 

sample (liquid or solid) and the target analytes, different analytic methods and 

techniques are used to characterize atmospheric aerosols. Gas chromatography-mass 

spectrometry (GC-MS) [82,83] and high-performance liquid chromatography (HPLC) 

[84] have been successfully applied to analyze organic species such as the so called 

humic-like substances (HULIS) and levoglucosan (a typical sugar produced by forest 

fires). Moreover, the remarkable development of mass spectrometry techniques allows 

not only the chemical characterization of organic and inorganic aerosols (on-line and 

off-line), [85-87] but also the study of the aerosol morphology. [88] 

Many researchers reported analytical data related to the inorganic composition of 

atmospheric particulate matter, atmospheric liquid water (rainwater, cloudwater and 

fog) and snow, collected at different locations. [64-67,73,74,80,83,89-99] The most 

common methods used in earlier works to analyze atmospheric liquid samples are ion 

chromatography, atomic absorption spectrometry, colorimetric methods (e.g., Fe(II) by 

formation of the Fe(II)-ferrozine complex), and electrochemical methods. 

[64,68,69,73,74,89-91,95,96] For solids, depending on the research goals, the inorganic 

chemical composition can be elucidated for either all particles en masse or individual 

particles. [100]  

Several studies on atmospheric particulate matter can be found in scientific literature, in 

which the analysis of particles en masse (which implies the analysis of a mixture of 

particles) was reported. According to this type of analysis, the solid material has to be 

dissolved first in order to identify and quantify the components using a specific 

analytical technique such as ion chromatography, atomic absorption spectroscopy 

(AAS) and different types
6
 of inductively coupled plasma (ICP). [65-67,83,97,98,101-

103] These techniques provide information on the elemental composition of the sample.  

                                                           
6
 Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Inductively Coupled Plasma-

Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-

OES). 
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Most of the recent works employ the analysis of individual particles, since this 

information can provide clues on the origin of the particulate matter. The most 

important analytical techniques used to study individual particles are scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray 

spectrometry (EDX), X-ray fluorescence (XRF) and selected area electron diffraction 

(SAED). [92,93,101,104] Both SEM and TEM produce black and white images of the 

material on the scale of tens of nanometer, which provide valuable morphologic 

information. On the other hand, EDX and XRF provide information regarding the 

elemental composition of the sample. Usually the imaging and elemental analysis 

techniques are combined in order to identify the chemical form of the solid phases, e.g., 

SEM-EDX. [71,72,99,105] SAED is a technique that can be performed inside a 

transmission electron and can provide crystallographic information. These techniques 

can be supported by X-ray powder diffractometry (XRD), since crystalline materials 

have characteristic peaks in the XRD pattern. 

Except XRD, the mentioned techniques fundamentally provide elemental composition 

data and morphologic information which are only indicative of inorganic salts in 

atmospheric particles. Moreover, a great disadvantage of SEM and TEM is the necessity 

to operate in vacuum, as many hydrated inorganic salts can dehydrate under this 

condition. It was also reported that some inorganic inclusions in organic particles were 

beam sensitive even at low-intensity electron beams. [92] 

An appropriate analytical technique should provide reliable results and its selection 

requires the knowledge of the analytes. In this case, the goal is to know the chemical 

form in which the elements can be found in the atmospheric particles in view of their 

possible modification during the atmospheric transport, therefore the associated 

atmospheric processes should be known.  Since their emission or formation, particles in 

atmosphere suffer coagulation
7
 and/or coalescence

8
 processes (growing of the particles), 

undergo condensation-evaporation cycles (according to estimations, around ten 

condensation-evaporation cycles [106]) and participate direct or indirectly in chemical 

reactions, resulting in changes in the composition. The interaction of particles with 

atmospheric water - process known as “cloud processing” - implies not only the 

condensation-evaporation of water on the particle, but also the dissolution of the soluble 

material. Moreover, the aerosol solution generated by the condensation of atmospheric 

water on the particle can reach extreme low pH values due to the uptake of strong acids 

(especially H2SO4), [107] therefore, the solubility of metals is highly enhanced. For 

instance, the increase in soluble iron due to cloud processing was evaluated and 

confirmed in the past by different laboratory experiments. [108-110]  

It is not difficult to imagine that the atmospheric processes related to the particle 

growth, condensation-evaporation cycles and the exposition to solutions with low pH 

values (above polluted areas), modify both the average size and the composition of the 

atmospheric particles. Some authors, generally using X-ray powder diffractometry, 

reported in atmospheric particle samples the occurrence of minerals such as  

Na2Mg(SO4)2·4H2O (bloedite), (NH4)2Mg(SO4)2·6H2O (boussingaultite), 

(NH4)2Ca(SO4)2·H2O (koktaite), (NH4)2Fe(SO4)2·6H2O (mohrite), 

(NH4)2SO4·3NH4NO3, Na3(NO3)(SO4)·H2O (darapskite), among others. [101,111-115] 

While minerals in atmospheric particles partly originate from blown dust, the 

                                                           
7
 Coagulation is the process by which two particles combine to form one. 

8
 Coalescence is the process by which two or more droplets merge to form a single droplet. 
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atmospheric formation should be considered as an important contribution. The possible 

origin of these (and other similar) minerals should be evaluated in terms of the 

atmospheric processes.  

Raman spectroscopy is acquiring growing importance in mineral analysis; it has already 

been used to identify the composition of mineral deposits in the study of geologic 

processes [116] and several investigations reported the suitability of this technique for 

chemical characterization of atmospheric particles. [117-125] With Raman micro-

spectroscopy, which is a non-destructive analytical technique, it is possible to identify 

different minerals by their characteristic signals. The different hydrated states of 

inorganic salts, and even the phase in which the salt crystallizes, can be identified by 

Raman signals, since the Raman spectrum is determined by the crystal structure.  

Raman micro-spectroscopy can measure micrometer sized particles in the micrometric 

range in a relative short time, therefore, this technique is proposed in this work to study 

inorganic salts in the atmosphere.  
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1.3 Own research results 
 

The subjects referred to the atmospheric particulate matter are complex, due to their 

implications on human health, atmospheric chemistry and climate. In order to 

understand these implications, the atmospheric particulate matter must be studied from 

the point of view of its concentration, composition and reactivity. A primordial stage in 

the study of every pollutant is the understanding of the factors and conditions linked to 

the origin and removal (sink) of the pollutant. 

Considering that water is thought to play a fundamental role in atmospheric processes, 

the atmospheric formation of several salts is postulated. The crystallization in 

atmosphere of the mineral ungemachite and many other mixed salts including also salts 

of metals like iron, manganese, copper and zinc, is proposed. It is thought that the 

condensation-evaporation cycles have a strong influence in the modification of the 

particles during the transport (aging), resulting in the “rearrangement” of the ions in 

different salts than those originally emitted. The evaporation of solution droplets 

containing specific ions resulting in the crystallization of mixed salts (e.g., bloedite, 

darapskite, koktaite, etc.) and the formation of salt mixtures seem to confirm the 

preponderant role of water in the modification of the atmospheric particles. Moreover, 

the reactivity of certain alkaline minerals with an important aerosol component 

((NH4)2SO4) in contact with humid air shows that water is a key factor to trigger 

chemical reactions in solid particles. All of these aspects were studied and evaluated 

using Raman spectroscopy as the main analytical tool. Therefore, the bands in the 

Raman spectra of the pure substances were assigned and certain features discussed.  

In the following subsections, details concerning the experiments and results of the 

mentioned aspects are presented.  

 

 

1.3.1 Ungemachite: Vibrational spectra and its possible atmospheric 
occurrence  

 

Synthetic ungemachite was prepared for the first time by crystallization from an acidic 

solution containing stoichiometrical proportions of the constituent ions, as described in 

subsection 2.1 in [PV4]. 

Ungemachite, K3Na8Fe(SO4)6(NO3)2·6H2O is a rare mineral, which has been found and 

reported for the first time by Peacock and Bandy. [126,127] As expected for minerals 

containing nitrate ions (NO3
-
), the first samples of this mineral were taken from an 

extremely arid region (Chuquicamata, Chile).  

Since it is known that ungemachite crystallizes in the trigonal system with the space 

group R 3  and three molecules in the unit cell, [128] the factor group analysis using the 

correlation method [129] was possible (Table 1 and Figure 2 in [PV4]). The Raman and 

infrared spectra were recorded (Figure 3 in [PV4]) and the assignments were proposed 

for the most important bands; the four strongest bands in the Raman spectrum belong to 

the NO3
-
 symmetric stretching (1) at 1047 cm

-1
, and the SO4

2-
 symmetric stretching (1) 

at 1035, 1011 and 952 cm
-1

. The infrared spectrum shows strong bands for the H2O 

stretching modes at 3422 cm
-1

, NO3
-
 asymmetric stretching (3) at 1402 and 1384 cm

-1
, 

SO4
2-

 asymmetric stretching (3) at 1215, 1195, 1166 and 1131 cm
-1

, NO3
-
 symmetric 

stretching (1) at 1046 cm
-1

, and SO4
2-

 symmetric stretching (1) at 964 cm
-1

. 
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Remarkable is the fact that the H2O bending mode appears at unusually high values, 

1711 and 1663 cm
-1

 in the Raman spectrum and at 1769, 1698 and 1635 cm
-1

 in the 

infrared spectrum.  

However, there is a structural characteristic of ungemachite that can be observed in both 

the Raman and infrared spectra; Fe
3+

 ions are octahedrally coordinated by six oxygen 

atoms and all six Fe-O bonds are equivalent, [128] therefore the resulting FeO6 

octahedron belongs to the point group symmetry Oh. Six fundamental modes are 

observed under an Oh symmetry: 1 (A1g), 2 (Eg), 3 (F1u), 4 (F1u), 5 (F2g), and 6 

(F2u), where 1, 2 and 5 are Raman active, 3 and 4 are infrared active, and 6 is 

inactive in both infrared and Raman spectra. [130] In order to assign the bands to these 

modes (when they are intense enough to be observed), reported spectroscopic data of 

the compounds known as “alums”, Me
I
Me

III
(SO4)2·12H2O (where Me

I
 is a monovalent 

and Me
III

 is a trivalent metal), [130-135] were used, since they contain a Me
III

O6 

octahedron in their crystal structure. In the Raman spectrum, the band at 534 cm
-1

 was 

assigned to FeO6 1, while the bands in the region 400-500 cm
-1

 were assigned to SO4
2-

 

2 + FeO6 2, as a more distinct differentiation of the modes was impossible. In the 

infrared spectrum, the band at 511 cm
-1

 was assigned to the FeO6 3. 

As mentioned before, the existence of acidic solutions containing Na
+
, K

+
, NO3

-
, SO4

2-
 

and Fe
3+

 ions and their subsequent evaporization are the prerequisites for the formation 

of ungemachite, which can be achieved in atmosphere, since all those chemical species 

are usually present in the tropospheric environment. Although the origin is variable, the 

sea salt is considered the most important source of Na
+
, while the occurrence of K

+
 ions 

is usually linked to biomass burning. Most of the emitted materials containing Na
+
 and 

K
+
 ions are soluble salts such as NaCl and KCl, which can react during the atmospheric 

transport to form other salts. [93,136] Both NO3
-
 and SO4

2-
 ions are products of 

atmospheric oxidation processes; their abundance depends on the emission of adequate 

precursors, which are mostly of anthropogenic origin. 

Low pH values are expected in atmospheric water, especially above polluted areas. For 

atmospheric study purposes, it is considered that the neutral pH value is 5.6, [43,44] but 

the uptake of H2SO4 and HNO3 causes a drastic reduction in the pH value, so that a pH 

value of 4.7 would represent normal atmospheric conditions, [137-141] although under 

certain circumstances the pH of the aerosol solution could even be lower than 1.0. [107] 

It seems that the limiting factor of the atmospheric formation of ungemachite could be 

an insufficient availability of Fe
3+

 ion. The occurrence of iron in atmosphere as well as 

its transport has been intensively studied in the past, [138,141,142] because iron is an 

important micronutrient which restricts the growth of phytoplankton [67]. It is 

recognized that one of the most important pathways for iron to enter in the ocean is the 

deposition of atmospheric iron transported from continental areas. [107] In addition, 

aerosol materials originated from biomass burning [143] and fuel combustion, [144] 

which can be considered fundamentally anthropogenic, are important contributors of 

atmospheric iron. As explained in [PV4] (subsection 3.2), most researchers agree that 

the anthropogenic aerosols contribute more soluble iron than the Fe-rich dust emitted 

from continental areas, but in both cases the solubility of iron increases substantially 

with the low pH values expected for aerosol solutions.  

On the other hand, iron is found in atmosphere as Fe(III) and Fe(II). Some reduction 

processes from Fe(III) to Fe(II) were suggested in the past [145,146] and even linked to 

the sulfur cycle. [56] When analyzing dust particle emissions rich in Fe(III) oxides (as 

usually is the case) transported over long distances, the determination of the 
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Fe(II)/Fe(III) ratio can provide information on how much time this material was 

exposed to cloud processing. [56]  

Taking into account the mentioned aspects in this subsection, the atmospheric formation 

of ungemachite is plausible, because the conditions required to crystallize this mineral 

can be found in the atmospheric environment. Moreover, since ungemachite is a Fe(III) 

mineral, its presence in atmospheric particles may be an indication of a short-time cloud 

processing in a polluted atmospheric environment (rich in strong acids) with sea salt and 

potassium (biomass burning) contributions. The vibrational spectra of ungemachite 

presented in [PV4] can be used in the future for the analysis of atmospheric materials, 

mineral deposits and even in planetary exploration. 

 

 

1.3.2 Salt mixtures and mixed salts in atmospheric particulate matter 
 

Aspects concerning to the origin of salt mixtures and mixed salts in atmospheric 

particulate matter and their significance are described and discussed in [PV1], [PV2] 

and [PV5]. 

As mentioned in Section 1.2, a great variety of compounds can be found in atmospheric 

particulate matter. Since Na
+
, K

+
, NH4

+
, Ca

2+
, Mg

2+
, SO4

2-
, NO3

-
 and others are 

common ions present in atmospheric particles; their interaction with water results in the 

formation of solutions. When a solution containing many ions evaporates, the salts 

precipitate (crystallize) according to the relative concentration of the ions; several 

model studies were published on this topic, in order to predict the precipitation of salts, 

especially from seawater. [147-152] 

Raman spectroscopy is the analytical method proposed to identify the salts expected to 

form and appear in atmosphere, therefore, the Raman spectra of these salts must be 

known and the bands assigned. Since the atmosphere contains a great variety of 

materials, the formation of salt mixtures can be expected, although the formation of 

mixed salts as the product of recombination of ions should not be ruled out.  

The formation of a salt mixture was observed when solutions containing NaNO3 and 

KNO3 were evaporated under room conditions (20°C and ~50% relative humidity), as 

described in [PV2]. A droplet containing a saturated solution of NaNO3 and KNO3 in an 

equimolar ratio and placed on a microscope slide was vaporized in contact with ambient 

air. The Raman spectrum of the first crystal occurring in the solution was recorded and 

the following spectra were obtained successively during the water vaporization process 

until the droplet was dry (Figure 1 in [PV2]). As expected according to the solubility of 

the salts, KNO3 crystallized before NaNO3, but the Raman spectrum at t = 0 s (this 

means when the first crystal appeared) showed features of KNO3 in phase III (high 

temperature phase) with the strongest band at 1050 cm
-1

, rather than the stable phase at 

room temperature, phase II. Only when enough water was evaporated and the crystal 

was exposed to air, bands of phase II with the strongest band at 1047 cm
-1

, were 

observed. Xu and Schweiger [153] reported a similar phase transition for Na2SO4, 

which crystallizes from a saturated solution in phase III (high temperature phase) and 

transforms to phase V which is stable at room temperature. The solid resulting after the 

total evaporation of water was a mixture of the stable phases of NaNO3 and KNO3, both 

in phase II. In this case, a salt mixture of NaNO3 and KNO3 was observed; both salts 

crystallized independently of each other, maintaining their own crystal properties as 

space group, unit cell dimensions, etc., and therefore the resulting Raman spectrum of 



 
15 1 SUMMARY 

the mixture looks like the sum of the individual Raman spectra of the constituent salts. 

If a similar evaporating process takes place in aerosol droplets, the resulting particles 

would form an internal mixture. The crystallization from a solution of KNO3 at room 

temperature in phase III instead of phase V, reported for the first time in [PV2], is not a 

minor point, since the crystal structure of a solid can affect the rate of reactions in which 

this solid participates. For instance, Takahashi and coworkers [154]
9
 reported 

differences in the rate of singlet oxygen (
1
O2) formation from the irradiation of anatase 

and rutile, both polymorphs of TiO2. Many reports of heterogeneous reactions taking 

place on aerosols were published in the past; the formation of SO4
2-

 by heterogeneous 

reaction of SO2 on mineral particles, [155] and the loss of ozone on carbon soot aerosol 

[156] are examples of this kind of reactions. Although KNO3 in phase III can only be 

stable in contact with the saturated solution, atmospheric heterogeneous reactions 

involving this species cannot be ruled out. 

The formation of mixed salts by evaporation processes should also be considered. When 

a solution containing NaNO3 and Na2SO4 evaporates at room temperature, the Raman 

spectrum of the resulting solid shows not only bands belonging to NaNO3 and Na2SO4, 

but also of a third salt. The Raman spectra of individual particles of the milled residue 

obtained from solutions containing NaNO3 and Na2SO4 at the end of the total 

vaporization process usually showed two strong bands at 1060 and 993 cm
-1

. These 

values are different from the characteristic values observed for Na2SO4 (SO4
2-

 1 at 989 

cm
-1

) and NaNO3 (NO3
-
 1 at 1065 cm

-1
), but they are equal to the values observed in 

the unpolarized spectra of synthetic Na3(NO3)(SO4)·H2O
10

, also known by its mineral 

name darapskite. Since it is known that darapskite crystallizes in the monoclinic system 

with the space group P21/m and that it has two molecules in the unit cell, [158] it was 

possible to apply the factor group analysis using the correlation method [129] (Table 1 

in [PV2]). Considering these results and the observed bands in the polarized Raman 

spectra as well as in the infrared spectrum, the assignments for the most important 

bands (related to NO3
-
 and SO4

2-
 ions) were proposed (Table 2 in [PV2]). These data are 

valuable for Raman-based analytical methods when applied to the analysis of 

atmospheric particulate matter.  

An earlier observation of darapskite in atmospheric particles was attributed to acid 

(H2SO4 and HNO3) attack upon marine NaCl. [114] It is accepted that NaCl reacts with 

H2SO4 and HNO3 to form Na2SO4 and NaNO3, respectively, [23,93,112,159] but it is 

not clear if there is a direct process in which the action on NaCl of H2SO4 and HNO3 

together, as suggested by Harrison and Sturges, generates darapskite. It seems that 

simple dissolution-crystallization processes - due to condensation and evaporation of 

water - on earlier-formed Na2SO4 and NaNO3 can explain the formation of darapskite in 

the atmosphere. Regardless of whether Na2SO4 and NaNO3 are formed together in the 

same particle or whether they are formed by separate processes and bind together by 

coagulation processes, the condensation of water on this particle triggers the dissolution 

of the salts and the subsequent evaporation results in the crystallization of variable 

amounts of darapskite, depending on the ion concentration and the temperature. 

Sulfate mixed salts containing sodium and magnesium are another important case of 

study. Both sodium and magnesium represent the most abundant cations in sea water 

                                                           
9
 Study on the 

1
O2 formation for oral bacterial disinfection. 

10
 Na3(NO3)(SO4)·H2O (darapskite) was crystallized from a solution containing NaNO3 and Na2SO4 in the 

same proportion as previously reported. [157] 
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and their atmospheric occurrence is fundamentally attributed to oceanic contributions. 

[160] When a solution containing MgSO4 and Na2SO4 evaporates, four mixed salts can 

be formed: Na2Mg(SO4)2·4H2O (bloedite), Na2Mg(SO4)2·5H2O (konyaite), 

Na6Mg(SO4)4  (vanthoffite), and Na12Mg7(SO4)13·15H2O (loeweite). Among these 

mixed salts, only bloedite was found in atmospheric particulate matter, [101,115,125] 

therefore some questions arise: Can other mixed salts of magnesium and sodium be 

found in atmospheric particulate matter? If so, what conditions are necessary? 

Furthermore, knowing that bloedite was observed in atmospheric particles, how does it 

form? To answer these questions, a series of crystallization experiments was performed 

within droplets, as described in [PV1] (Section II). 

According to earlier studies, the crystallization of Na2Mg(SO4)2·4H2O (bloedite) on 

saturation of equal molar solutions of MgSO4 and Na2SO4 is expected. [161,162] The 

partial evaporation of a droplet containing MgSO4 and Na2SO4 in an equimolar ratio 

resulted in the formation of small crystals with sizes ~10 µm, which were identified as 

bloedite. Crystals with the same characteristics were also observed, when solutions 

containing MgSO4 and Na2SO4 in molar ratios of 1:2, 1:3, 2:1 and 3:1 were partially 

evaporated. Accordingly, crystallization of anhydrous Na2SO4 (thenardite) was 

observed when evaporating partially solutions with an excess of Na2SO4 respect to 

MgSO4 (molar ratios of 1:2 and 1:3). Figure 3 in [PV1] shows the bloedite crystals and 

a circular crystal formation identified as thenardite within a solution droplet with a 

molar ratio of 1:2, as well as the Raman spectra of these crystals. No other salts were 

observed until complete water elimination and it was at this point when the abrupt 

precipitation of different salts was observed in all solution droplets, leading to the 

formation of salt mixtures. The Raman spectra of these salt mixtures showed additional 

strong bands at 1039 and 1003 cm
-1

, which could not be explained considering only 

Na2SO4, bloedite and different hydration salts of MgSO4. In order to identify the 

components present in these mixtures, konyaite, vanthoffite and loeweite were 

synthesized and the Raman spectra recorded. Figure 2 in [PV1] shows the Raman 

spectra of the four mixed salts of the MgSO4-Na2SO4 system. The band observed at 

1039 cm
-1

 belongs to loeweite, while the band at 1003 cm
-1

 belongs to konyaite. 

Considering the spectroscopic data of the pure salts, it is possible to summarize that the 

resulting salt mixtures contained variable proportions of thenardite, MgSO4·6H2O 

(hexahydrite), bloedite, konyaite and loeweite. In no case vanthoffite was detected 

because, probably, its crystallization requires higher temperatures. 

Konyaite, bloedite and loeweite can be produced by evaporation of solutions at 

tropospheric temperatures, but the specific characteristics of the condensation-

evaporation cycles taking place in atmosphere seem to favor the formation of konyaite. 

Konyaite has been found in cave environments, [163] marine deposits, [164] and saline 

soils. [165-167] Keller and coworkers [168] reported the persistence of konyaite for 

long periods of time in dry efflorescences and that it was metastable in contact with 

saturated solutions containing Na
+
, Mg

2+
 and SO4

2-
 ions. They also postulated that 

konyaite precipitates before the nucleation of bloedite. This seems to be highly unlikely, 

since the results of the evaporation experiments in droplets clearly showed that only 

bloedite and thenardite (in some cases) were present in partially evaporated droplets. 

Friedel [169] observed that the transformation from Na2Mg(SO4)2·5H2O to 

Na2Mg(SO4)2·4H2O in a saturated solution occurs in a matter of days. As a 

consequence, if konyaite was formed in an earlier stage, it had to be detected together 

with bloedite within the solution; however, konyaite was observed only after all water 

was evaporated from the droplet.  Therefore, the formation of konyaite may be 
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attributed to a fast evaporation process (the final evaporative stage in the mentioned 

droplet experiments), as suggested also by Shayan and Lancucki. [164] With all these 

aspects in mind, it is possible to conclude that konyaite is the main mixed salt produced 

in atmosphere when the aerosol solutions containing Na
+
, Mg

2+
 and SO4

2-
 ions 

evaporate. Nevertheless, special conditions including slow evaporation processes of 

aerosol solutions, further condensation-evaporation cycles taking place on early-formed 

konyaite particles or the exposition of konyaite particles to dry conditions (low relative 

humidities), could result in the formation of variable amounts of bloedite with 

(internally mixed) or without konyaite. Additionally, the formation of loeweite by an 

eventual further reaction between bloedite and konyaite, as it was considered for soil 

systems by Keller [168], should not be completely ruled out.  

The combined effect of the great mineralogical variety on the terrestrial crust 

susceptible to erosion and wind-transport, the release into the atmosphere of oceanic 

materials and the anthropogenic emissions result in primary particles of different 

composition but with the potential to combine during aging processes. As mentioned 

before, aging processes are strongly influenced by water and can modify the 

composition of the atmospheric particles. Moreover, the low pH values of aerosol 

solutions can favor the dissolution of metals occurring in mineral dust, particles from 

mechanical wear, fly ash and other specific industrial emissions, resulting later in the 

precipitation of simple and mixed salts. Many salts can be produced by the combined 

effect of coagulation, coalescence, chemical reactions and condensation-evaporation 

cycles, and the detection of these processes can provide valuable information on 

pollution sources and atmospheric mechanisms. Taking into account the atmospheric 

processes mentioned before as well as the wind-transport of crust material, the Raman 

spectra of forty-five atmospheric salts including sulfates, nitrates, carbonates, 

bicarbonates, sulfate-carbonate and sulfate-nitrates were recorded and the bands 

assigned ([PV5]). The characteristic bands observed in the Raman spectra of these salts 

not only allow the appropriate identification of the salts, but also the assessment of 

similarities/differences in the crystal structure of the salts. 

The atmospheric formation of sulfates containing iron, manganese, copper and zinc was 

postulated ([PV5]). The considered salts were: FeSO4·H2O, FeSO4·4H2O, FeSO4·7H2O, 

MnSO4·H2O, ZnSO4·7H2O, CuSO4·5H2O, (NH4)2Fe(SO4)2·6H2O, 

(NH4)Fe(SO4)2·12H2O, (NH4)2Mn(SO4)2·6H2O, (NH4)2Zn(SO4)2·6H2O, 

(NH4)2Cu(SO4)2·6H2O, K2Zn(SO4)2·6H2O, K2Cu(SO4)2·6H2O, Na2Mn(SO4)2·2H2O, 

Na2Zn(SO4)2·4H2O and Na2Cu(SO4)2·2H2O. All these salts crystallize at 20°C from the 

evaporation of aqueous solutions containing the appropriate ions. Iron salts require also 

acidic pH values, which can be found in aerosol solutions. The occurrence of these salts 

in atmospheric particles can be used as an indicator not only of the emission of these 

metals, but also provide information on the relative solubility of the emitted metal-rich 

material and the “history” of the particulate matter. 

The solubility of metals is frequently correlated with their bioavailability; [170] for 

instance, the soluble fraction of iron in mineral dust and other suspended particulate 

materials has been a subject of intense study, because iron is considered a critical 

micronutrient for the primary productivity over the ocean. [171,172] Mn(II), Zn(II), 

Cu(I), Cu(II), Fe(II) and Fe(III) are the soluble metal forms that can be expected, each 

one with specific characteristics. The occurrence of Mn in rainwater was studied by 

Deutsch et al. [90] and Willey et al. [95] and they observed that only Mn(II) can be 

found in a dissolved state, while the insoluble phase is related to Mn(IV) as oxide. 

These authors agree in the conclusion that Mn(III) is unstable under atmospheric 
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conditions and that only a very short-lived occurrence during the oxidation of S(IV) can 

be expected. Both Cu(I) and Cu(II) were detected in fog and rain water, [89,73] but 

Cu(II) seems to be the predominant form. Fe is considered ubiquitous in atmosphere, 

[146] as it was found in atmospheric aqueous samples (fog, cloud and rain water) as 

both Fe(II) and Fe(III), in variable ratios. [64,91,96,171]  

The history of the particulate matter, i.e. the processes suffered by the material and the 

atmospheric conditions during transport, can also be deduced from the chemical form in 

which the metal is found in the particles. Considering the redox reactions of iron taking 

place in atmosphere and their relation to the sulfur cycle, [56] three iron (II) sulfate 

salts
11

 can be expected in atmospheric particles: FeSO4·7H2O (melanterite), 

FeSO4·4H2O (rozenite), and FeSO4·H2O (szomolnokite). FeSO4·7H2O crystallizes from 

slightly acidic solutions containing Fe
2+

 and SO4
2-

 ions, while FeSO4·4H2O and 

FeSO4·H2O can result from dehydration-hydration processes at reasonable tropospheric 

conditions. The exposition of FeSO4·7H2O at room temperature to dry air or to strong 

acidic solutions results in the elimination of six H2O molecules. FeSO4·4H2O can be 

obtained by either dehydration of FeSO4·7H2O or hydration of FeSO4·H2O, since 

rozenite is the stable form of iron (II) sulfate at normal temperatures and humidities. 

[173] These three iron (II) sulfate salts can provide information on particle-affecting 

processes, because if FeSO4·7H2O is found, the particle (produced by crystallization 

from a solution) is “young” and/or maintained in this chemical form by a high relative 

humidity. If FeSO4·H2O and FeSO4·4H2O are observed, their occurrence could be 

explained in terms of an atmospheric aging, i.e. due to variations in atmospheric 

conditions promoting the mentioned dehydration-hydration processes.  

As described in this subsection, the crystallization process of certain salts due to the 

evaporation of solution droplets was observed using Raman micro-spectroscopy. This 

kind of experiments showed that mixed salts and salt mixtures in atmospheric 

particulate matter can be the products of the evaporation of aerosol solutions. 

Depending on regional conditions as well as the influence of specific emissions, many 

simple and mixed salts can be formed in the atmosphere, some of which are considered 

in [PV5]. The Raman spectroscopic information of the salts depicted in [PV5] can be 

used in the study of atmospheric particulate matter not only for the chemical 

characterization of materials, but also to study atmospheric processes and the influence 

of human activities on the air quality. 

 

 

1.3.3 Calcium mixed salts in atmosphere 
 

Aspects concerning to the origin of four calcium mixed salts in atmospheric particulate 

matter are described and discussed in [PV3]. 

Different sources contribute calcium to the atmosphere. Wind-blown dust [5] and 

marine biogenic material (coccoliths) [101] introduce CaCO3 (calcite) into the 

atmosphere. There are also reports of calcium emissions from continental areas in the 

form of calcium sulfate. [159] The evaporation of sea-spray, cloud and rain droplets can 

result in the crystallization of CaSO4·2H2O (gypsum). [174] The anthropogenic sources 

                                                           
11

 Jambor and Traill [173] reported that the pentahydrate salt of iron (II) sulfate (siderotil) is produced by 

dehydration instead of FeSO4·4H2O when impurities of Cu
2+

 ions substitute some Fe
2+

 ions in the 

FeSO4·7H2O structure, but our attempts to produce siderotil by dehydration (short-time exposition of 

FeSO4·7H2O to temperatures of 30-40°C) were unsuccessful. 
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are also important; gypsum emission is generally associated to combustion processes, 

while calcite is present in dust from metallurgical, chemical and cement industries. 

[175] 

It is clear that the originally emitted calcium species are modified during the 

atmospheric transport, and then calcium is found in other chemical forms (simple and 

mixed salts). Some works suggest that calcite can react in atmosphere with (NH4)2SO4, 

H2SO4 and gaseous HNO3 to produce (NH4)2Ca(SO4)·H2O [5], CaSO4 (CaSO4·2H2O), 

[105] and Ca(NO3)2, [176] respectively. 

The calcium mixed salts Na2Ca(SO4)2 (glauberite), K2Ca(SO4)2·H2O (syngenite), 

(NH4)2Ca(SO4)2·H2O (koktaite), and K2Ca2Mg(SO4)4·2H2O (polyhalite) have been 

reported in atmospheric particles by many studies, [71,72,104,111,177] but only a few 

attempts were made to explain their origin. 

Syngenite, koktaite, glauberite and polyhalite were synthesized and the Raman spectra 

recorded. The Raman spectra of these four calcium mixed salts are shown in Figure 1 in 

[PV3], while the proposed band assignments are summarized in table 1 in [PV3]. Since 

the crystal structure as well as the number of molecules in the unit cell of syngenite, 

koktaite, glauberite and polyhalite are known, [178-182] the factor group analysis using 

the correlation method [129] could be applied for the four mixed salts. The infrared 

spectra were recorded only for syngenite and koktaite, because for glauberite and 

polyhalite small amounts of gypsum were detected in the bulk substance (using X-ray 

diffractometry)
12

, which probably formed during the separation of these compounds 

from the mother liquor. 

The strongest band in the Raman spectra of the four calcium mixed salts belongs to the 

SO4
2-

 symmetric stretching (1). The Raman spectra depend on the structural 

characteristics of the mixed salts, therefore two bands belonging to the SO4
2-

 1 were 

observed for syngenite (at 1003 and 979 cm
-1

), koktaite (at 996 and 980 cm
-1

) and 

polyhalite (at 1014 and 987 cm
-1

), while only one band was observed for glauberite (at 

998 cm
-1

). On comparison of the spectra (Figure 1 in [PV3]) the similarities between the 

spectra of syngenite and koktaite are evident; the number of bands observed for each 

SO4
2-

 mode is equal and only small differences in the wavenumbers of the SO4
2-

 bands 

can be observed. The Raman spectra of these mixed salts also suggest the structural 

relationships among them. Despite these similarities, the unambiguous differentiation 

between these mixed salts is possible when using the broad bands of NH4
+
 (2 and 4), 

as these are absent in the spectra of syngenite. As expected from the crystal structure of 

glauberite and polyhalite, the Raman spectra of these mixed salts are clearly different 

compared to the spectra of syngenite and koktaite. These data are valuable for Raman-

based analytical methods when applied to the analysis of atmospheric particulate matter.  

Considering that water plays a fundamental role in atmospheric processes, experiments 

of crystallization within droplets, as described in [PV3] (Subsection 2.2), were 

performed.  

                                                           
12

 The pellet necessary to record the infrared spectrum is prepared with the bulk substance, so if this 

material contains even small amounts of an impurity, the resulting spectrum will not be of the pure 

substance. This is the reason why the infrared spectra of glauberite and polyhalite were not included. On 

the other hand, the Raman spectra of synthetic salts were recorded using micro Raman spectroscopy, 

which allows to record the Raman spectrum of individual micrometric particles (or microcrystals), 

therefore the interference of eventual impurities is avoided. 
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A droplet of a saturated solution containing CaSO4 and K2SO4 in molar ratio 1:50 was 

evaporated under room conditions (20°C and ~50% relative humidity). The Raman 

spectrum of the first crystal occurring in the solution was recorded and the following 

spectra were obtained during the evaporation process until the droplet was dry. Figure 2 

in [PV3] shows microphotographs of the crystal formation and the Raman spectra at 

different times. The first crystal occurring within the droplet was identified as syngenite 

and the total evaporation of water results in the crystallization of the remaining K2SO4. 

The Raman spectrum at t = 234 s (dry droplet) indicates that the resulting solid was a 

mixture of syngenite and K2SO4. 

Like for the CaSO4-K2SO4 system, a droplet of a saturated solution containing CaSO4 

and (NH4)2SO4 in molar ratio 1:50 was evaporated under room conditions to evaluate 

the crystallization process. Figure 3 in [PV3] shows microphotographs of the crystal 

formation and the Raman spectra at different times. The first crystal occurring within 

the droplet was identified as koktaite and the total evaporation of water results in the 

crystallization of the remaining (NH4)2SO4. The Raman spectrum at t = 210 s (dry 

droplet) indicates that the resulting solid was a mixture of koktaite and (NH4)2SO4. 

According to experiments of a recent study [PV6], a reaction in a solid mixture of 

gypsum and (NH4)2SO4 exposed to humid air (70% RH) can take place to produce 

koktaite. The following reaction is proposed: 

 

CaSO4·2H2O + (NH4)2SO4  (NH4)2Ca(SO4)2·H2O + H2O                 (1) 

 

It seems that koktaite can be produced not only by precipitation from aerosol solutions, 

but also by a reaction of solid material in the presence of humid air. This reaction is 

reported for the first time in [PV6]. 

The attempts to crystallize glauberite and polyhalite under room conditions were 

unsuccessful. Using different concentrations of solutions containing CaSO4 and Na2SO4 

for experiments of crystallization within droplets, only gypsum or Na2SO4 in phase III, 

but no glauberite were observed. The crystallization of Na2SO4 in phase III from 

solutions containing Na
+
 and SO4

2-
 ions and its relatively high stability at room 

temperature was earlier reported by Xu and Schweiger. [153] The evaporation of 

different solutions containing CaSO4, K2SO4 and MgSO4 resulted, in the majority of 

cases, in the crystallization of syngenite, whereas the crystallization of polyhalite was 

not observed. It was suggested that the crystallization of glauberite requires the presence 

of NaCl in the solution and/or higher temperatures. [183] A phase diagram for the 

MgSO4-K2SO4-CaSO4 system at 83ºC [184] suggests that a high temperature is also 

necessary to crystallize polyhalite.  

A possible explanation for the occurrence of glauberite and polyhalite in atmospheric 

particles may be the back-reaction of early-formed minerals. Harvie and co-workers, 

[185] based on computer calculations, suggested back-reactions of early-formed CaSO4 

(anhydrite) or gypsum and glauberite, in order to explain the formation of glauberite and 

polyhalite. This theory is accepted in geology to explain the origin of certain evaporite 

deposits, and may also apply to the atmospheric environment.  

The crystallization process of calcium mixed salts due to the evaporation of solution 

droplets was observed using Raman micro-spectroscopy. This kind of experiments 

showed not only the formation of the mixed salts syngenite and koktaite, but also the 

formation of salt mixtures. This is the first time experimental evidence is presented of 
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the formation of koktaite by the interaction of water vapor with a solid mixture 

containing CaSO4·2H2O and (NH4)2SO4. Since glauberite and polyhalite do not 

crystallize from solutions at ordinary temperatures, it is reasonable to explain the 

atmospheric formation of these salts by back-reactions of calcium sulfate. The Raman 

spectroscopic data of these four calcium mixed salts depicted in [PV3] can be used in 

the future for the analysis of atmospheric materials, mineral deposits and in planetary 

exploration. 

 

 

1.3.4 Reactions of alkaline minerals in solid mixtures exposed to humid 
air 

 

The reactions between some common alkaline minerals and (NH4)2SO4 are presented 

and discussed in [PV6]. 

The emission of alkaline minerals into the atmosphere is a fact; some reported cases are 

the dust emissions from playas
13

 in the Mojave Desert (USA) [186] and from the Owens 

(dry) Lake. [187] Studies concerning alkaline minerals in atmosphere should be 

performed with respect to their reactivity with other atmospheric components. In order 

to understand the effects of airborne alkaline particles on human health as well as their 

weather and climate implications, the atmospheric chemical reactions (intermediate and 

final products) of these materials should be investigated.  

In general, wind-transported particles, depending on their size, can sediment or remain 

suspended for many days. The suspended material (fine particles) undergoes different 

atmospheric processes, one of them is the coagulation, which can produce internally 

mixed particles (each particle is a mixture). The presence of water condensed on 

particles from air due to hygroscopicity of the solid material, can trigger chemical 

reactions between the components of the mixture, resulting in modifications of the 

particles composition and thus their properties. 

In order to evaluate the reactivity in certain solid mixtures expected to occur in 

atmospheric particles, a macroscopic approach was proposed in [PV6]. The reactants, as 

fine powders, were intimately mixed, exposed to humid air and then the course of the 

reaction was monitored using Raman spectroscopy. Using this methodology, the 

reactions of synthetic Na2CO3·H2O (thermonatrite), Na3(HCO3)(CO3)·2H2O (trona) and 

Na6(CO3)(SO4)2 (burkeite) with (NH4)2SO4 were studied. 

The experiments showed that when the solid mixtures containing the alkaline salt 

(thermonatrite, trona or burkeite) and (NH4)2SO4 were exposed to ordinary conditions - 

i.e. temperatures ranging between 21 and 23°C and a relative humidity (RH) of air 

below 50% - the chemical reaction rate was very slow; the Raman spectra of mixtures 

exposed to room conditions during 24 h show no or only weak bands of the reaction 

products. However, when the mixtures were exposed to humid air (~70% RH), there 

was a remarkable increase in reactivity. The unequivocal sign that reactions were taking 

place in the mixtures was the release of NH3, which is a product of acid-base reactions 

involving CO3
2-

 and/or HCO3
-
, and NH4

+
 ions. Although the CO2 release from the 

                                                           
13

 The Spanish word "playa" means "beach". The term “playa” is commonly used by scientists to denote 

the dry lakes. From the point of view of dust emissions, playas are classified as wet and dry (see reference 

[186]). 
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reacting mixture was not directly measured, the mentioned acid-base reactions imply its 

formation. 

The Raman spectra acquired at different times from equimolar mixtures of 

thermonatrite-(NH4)2SO4, trona-(NH4)2SO4 and burkeite-(NH4)2SO4 exposed to humid 

air at ordinary temperatures (21-23°C) (Figure 1 and 3 in [PV6]) showed the formation 

of the mixed salt NH4NaSO4·2H2O (lecontite). It seems that lecontite and also NaHCO3 

are intermediate products in the solid reactions of these three systems, while Na2SO4 

and NH4HCO3 are the final products.  

Two phases of anhydrous Na2SO4 can remain stable at environmental temperatures: V 

and III. Phase V is the stable phase at room temperature. Evaporation experiments 

performed in droplets by Xu and Schweiger [153] at 23°C showed that Na2SO4 

crystallizes in phase III, and this result was confirmed during the attempts to crystallize 

glauberite within droplets ([PV3]). It seems that Na2SO4 crystallizes in phase III when a 

fast crystallization process is taking place, e.g., during the room temperature 

evaporation of droplets. Since Na2SO4 in phase III can remain unmodified for long 

periods, [188] the occurrence of this phase should be considered in studies of 

atmospheric processes. Using Raman spectroscopy phase III and phase V can be 

distinguished from each other, since the strongest band in their Raman spectra (SO4
2-

 

symmetric stretching) appear at 996 and 993 cm
-1

, respectively.  

The Raman spectra acquired at different times for the three studied mixtures show the 

formation of Na2SO4 in phase III within the first hours of reaction and the subsequent 

formation of Na2SO4 in phase V (Figure 1 and 3 in [PV6]). This indicates that the phase 

transition Na2SO4(III)  Na2SO4(V) takes place in the reacting mixtures, probably due 

to the contact with humid air. 

Considering the behavior (emergence and disappearance) of the characteristic bands of 

carbonate, bicarbonate and sulfate salts, the equations for the chemical reactions taking 

place in the three studied systems were proposed (Eq. (1)-(8) in [PV6]). 

The reactivity in the solid mixtures was attributed to the formation of a “liquid H2O 

film” on the solids due to the prolonged exposition to humid air and the hygroscopicity 

of at least one of the components (see Figure 2 in [PV6]). In this “film”, a partial 

dissolution of the solids and the reactions of CO3
2-

 and/or HCO3
-
 with NH4

+
 take place, 

resulting in the crystallization of new salts. This can explain the formation of NaHCO3, 

NH4HCO3, lecontite and Na2SO4 in the solid mixtures at different times.  

The proposed macroscopic approach used to study the chemical reactions taking place 

between the three alkaline salts (thermonatrite, trona and burkeite) and (NH4)2SO4 is 

appropriate to identify the intermediate and final products, and therefore the equations 

of the chemical reactions can be proposed. If there is a chemical reaction between two 

solid compounds present in a single micrometer particle, this reaction takes also place in 

a macro scale, i.e., a bulk powder mixture. It is clear that kinetic differences between 

experiments in micro and macro scale can be expected, fundamentally due to 

differences in surface area and gas diffusion. Since the reaction rate in a bulk solid 

mixture may be lower than in a single particle, it is more likely to detect intermediate 

products under this condition. Essentially, this is the reason why the use of bulk powder 

mixtures was chosen. 

Considering that (NH4)2SO4 is a well-known anthropogenic salt occurring in 

atmospheric particulate matter and the coagulation processes favor the formation of 

solid mixtures in atmospheric particles, the reactions presented in this work (and their 
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implications on the atmospheric chemistry) should be considered in regions influenced 

by alkaline dust emissions. 

Although the coagulation of particles is a well-known atmospheric process, reactions 

involving solid mixtures have not been considered in atmospheric models. Since most 

of the current scientific efforts are focused on the study of changes in the atmospheric 

composition and their consequences, it is now imperative that future investigations 

address the reactivity of other solid mixtures of atmospheric importance. 

 

 

1.4 Conclusions and Outlook 
 

The possible atmospheric formation of the rare mineral ungemachite, 

K3Na8Fe(SO4)6(NO3)2·6H2O, is proposed on the basis of its synthetic preparation, the 

atmospheric occurrence of the necessary ions, and the low pH values expected in 

aerosol solutions. The synthetic conditions necessary to crystallize ungemachite are 

similar to those to be found in the troposphere, therefore the atmospheric formation of 

ungemachite is plausible. The Raman and infrared spectra of ungemachite were 

recorded and the bands assigned considering crystal structure details. This information 

provides valuable data for analytical purposes. 

A series of crystallization experiments was performed within solution droplets and the 

formation of both salt mixtures and mixed salts was observed using micro-Raman 

spectroscopy. These experiments provide evidence concerning the origin of certain salts 

observed in the atmospheric particulate matter. The atmospheric occurrence of 

Na2Mg(SO4)2·4H2O (bloedite), which is a known salt in atmospheric particles, can be 

attributed to crystallization processes from aerosol solutions. Moreover, the occurrence 

in the atmosphere of other mixed salts of the MgSO4-Na2SO4 system can be expected. 

In addition, considering the condensation-evaporation cycles in which water plays a 

fundamental role, the formation of other salts can be postulated. 

The crystallization within solution droplets of KNO3 in phase III (high temperature 

phase) rather than phase II (stable phase at room temperature) was observed and 

documented for the first time. It seems that KNO3 in phase III crystallizes as a 

consequence of fast evaporation processes and is stable at room temperature only in 

contact with the saturated solution. The existence of a crystalline phase achieved by fast 

crystallization of a salt (as occurs in droplets) has importance not only from an 

analytical point of view, but is also a fact to be considered when investigating further 

heterogeneous reactions taking place in atmosphere. The possible effect of the crystal 

structure of crystalline materials in the atmosphere should be evaluated in future works. 

It cannot be ruled out that the crystal structure has effects on certain catalytic reactions 

in the atmosphere.  

The atmospheric formation of four calcium mixed salts was evaluated using micro-

Raman spectroscopy. The results of the crystallization experiments within solution 

droplets suggest that K2Ca(SO4)2·H2O (syngenite) and (NH4)2Ca(SO4)2·H2O (koktaite) 

can crystallize at ordinary temperatures from solutions containing the necessary ions, 

while the atmospheric origin of Na2Ca(SO4)2 (glauberite) and K2Ca2Mg(SO4)4·2H2O 

(polyhalite) probably is linked to more complex processes. Considering the atmospheric 

conditions in which water interacts with suspended particles, the origin of glauberite 

and polyhalite in atmospheric particles may be attributed to back-reactions of early-
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formed minerals. The Raman spectroscopic data of these salts can be used for Raman-

based analytical methods. 

The reactions of some solid mixtures containing the alkaline minerals Na2CO3·H2O 

(thermonatrite), Na3(HCO3)(CO3)·2H2O (trona) and Na6(CO3)(SO4)2 (burkeite) and the 

typical atmospheric salt (NH4)2SO4 were studied using Raman spectroscopy. The 

equations of the chemical reactions taking place between each of the mentioned alkaline 

mineral and (NH4)2SO4 in the presence of humid air (~70% relative humidity) were 

proposed. The final products of these reactions are Na2SO4 (in phase V) and NH4HCO3, 

while NaHCO3, (NH4)NaSO4·2H2O (lecontite) and Na2SO4 (in phase III) are 

intermediate products. Furthermore, the formation of koktaite by the reaction between 

CaSO4·2H2O (gypsum) and (NH4)2SO4 within a solid mixture exposed to humid air, 

demonstrates that these reactions in solid state and in contact with humidity are not 

limited to carbonate minerals. Future works should consider reactions in solid state, 

because they can be important during the coagulation and transport of atmospheric 

particles.  

In order to get more accurate climate projections, future model studies should consider 

the condensation-evaporation cycles as well as solid state reactions as important factors 

in the investigation of changes in the composition and/or properties of atmospheric 

particulate matter. 
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