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1 Introduction 

In the last decades, transition metal complexes have played a crucial role in many 

domains of chemistry, such as supramolecular self-assembly, catalysis, photo-generated 

processes, chemosensors, and material science.[1-16] In particular, the d6-configured metal 

ions (i.e. FeII, RuII, OsII, IrIII, CoIII and ReI) were intensively applied in coordination 

chemistry and represent nowadays a well-studied and well-understood field.[11, 17-29] The 

lingering attractiveness can be explained by their exceptional photophysical properties 

(photostability and broad absorption in the visible region) as well as their chemical 

attributes (kinetic and thermodynamic stability in solution). The latter consideration can 

be ascribed to the electronic low-spin configuration for most octahedral d6 complexes 

which bear organic ligands causing a considerable high ligand-field splitting, and make 

these complexes inert with respect to unmeant substitution or oxidation-reduction 

processes. The coordinative bond, which is set up between a metal center and the donor 

atom(s) of the organic ligand, has to be assessed as an ambivalent interaction. It is (i) 

weak enough to keep the intrinsic properties − e.g., the redox properties of the metal ion, 

ligand-centered and metal-centered absorption bands – of the metal ion as well as ligand 

and (ii) sufficiently strong to enable new features (phosphorescent complexes as sensors, 

metal-to-ligand or ligand-to-metal charge-transfer bands) of the compound at the same 

time. An essential requirement to deliver transition metal ion complexes with desired 

chemical and physical properties is the creation of chelating ligand systems, whereby a 

certain alignment of fundamental features, such as chemical stability, redox properties, 

and excited-state quality, can be developed. Hence, an important challenge is to identify 

strategies which enable avenues to synthesize potential metal chelators, while at the same 

time the synthetic complexity of the ligand preparation should be minimized. Ideally, 

those methods provide functionalized ligand scaffolds by the use of modular building 

blocks. 

The phrase “click chemistry”, which was first introduced by Sharpless and co-

workers in 2001, describes such a modular approach to organic synthesis.[30] Click 

chemistry is defined by a set of criteria: a chemical reaction has to be stereospecific (but 

not necessarily enantioselective), give high yields, generates only minor byproducts and 

is wide in scope. Furthermore, the reaction must be easy to perform, be inert to oxygen or 

water, and the product isolation should be undemanding (no chromatographic 
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purification). Chemical transformations, which obey these criteria, can be primarily 

ascertained in the field of carbon−heteroatom bond formations comprising common 

reactions as: (a) additions to unsaturated carbon−carbon bonds (epoxidation, Michael 

additions and thiol−ene reaction), (b) nucleophilic substitutions (ring-opening of strained 

electrophiles, azidations) and (c) cycloaddition of unsaturated species (Diels−Alder 

reactions, 1,3-dipolar cycloaddition). 

In this respect, the regioselective CuI-catalyzed Huisgen 1,3-dipolar cycloaddition of 

organic azides with terminal alkynes (CuAAC) nearly fulfills these criteria and yields 

only 1,4-substituted 1H-1,2,3-triazoles (Scheme 1–1).[31-32] Indeed, 1,2,3-triazoles are not 

a discovery of the 21st century, since the first synthesis of a 1,2,3-triazole was already 

described in 1893 by A. Michael from phenyl azide and diethyl acetylenedicarboxylate 

and was thoroughly studied by Huisgen and coworkers in the 1960s in the course of a 

detailed investigation toward 1,3-dipolar cycloaddition reactions.[33] Although the 

reaction of organic azides with alkynes is highly exothermic (~220 kJ·mol−1), its high 

activation barrier in the range of 100 kJ·mol−1 results in low reaction rates for 

electronically inactivated reactants even at elevated temperature.[34] Overcoming the lack 

of selectivity (the non-catalyzed reaction generates the 1,4- and 1,5-regioisomers) and the 

low reaction rates of the non-catalyzed 1,3-dipolar cycloaddition by the discovery of the 

CuAAC in 2001, the 1,2,3-triazole emerged as an important scaffold and found numerous 

application in the field of polymer chemistry and material science.[35-40] Medicinal 

chemistry uses the 1H-1,2,3-triazole moiety as a stable linkage between chemical or 

biological systems, which is based on its low liability to hydrolytic cleavage and 

reduction/oxidation processes.[35, 41-44] 

In general, the CuAAC reveals a high thermodynamic driving force of about 

ΔG ≈ 250 kJ·mol−1, and the outcome of the reaction is considerably dependant on the used 

copper(I)-catalyst system.[35] The rate increase relative to the non-catalyzed process is 

about seven orders of magnitude, which results in a fast reaction even below room 

temperature. In general, the reaction performance does not suffer from sterical and 

electronic properties of the groups attached to the azide and alkyne entities. Solvents, 

which maintain ligand exchange during the process (alcohols and water) mostly, lead to 

high conversions, though the reaction runs in a broad range of protic and aprotic solvents. 

In most cases, there is no need for protecting group chemistry, since the most common 

organic and inorganic functional groups do not impair the CuAAC. 
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Scheme 1–1. Schematic representation of the difference of the non-catalyzed and the copper(I)-
catalyzed 1,3-dipolar cycloaddition. 

 

Up to date the mechanism of the CuAAC is not well-understood because of a 

complicated and discontinuous behavior, but the latest hypotheses are: (i) copper 

acetylide species are easily formed during the reaction and are crucial components for the 

catalysis cycle, (ii) a weak interaction of organic azides with the copper metal center 

inhibits the formation of disturbing polymeric acetylides or complexes and guides the 

acetylides into the productive catalytic cycle, and (iii) the catalytic active species may be 

a dinuclear copper complex and the nuclearity is continuously kept up during the 

catalysis.[45] 

Within in the last five years, chemists have identified a wide range of additional 

applications for the 1H-1,2,3-triazole heterocycle, e.g., synthesizing bidentate 2-pyridyl-

substituted 1H-1,2,3-triazole (trzpy) ligands. The system itself is known since 1970 and 

has been obtained by recyclization of v-triazolo[l,5-a]pyridines.[46] In 1977, Seebach et al. 

combined non-enolizable nitriles and lithiated nitrosamines providing N1-substituted 

trzpys.[47] The regioselective CuAAC of 2-ethynylpyridines with organic azides 

exclusively yields 1,4-substituted trzpys, a very versatile scaffold offering plenty of 

beneficial properties (Figure 1–1). Different groups have shown that the bidentate pocket 

of the trzpy can coordinate to a variety of transition metal ions, such as RuII,[48-51] IrIII,[52-

54] ReI,[38, 55-56] PtII,[57-58] PdII,[57-59] CuI,[60-61] CuII,[62] AgI,[62-64] NiII,[65] and ZnII,[65] 

whereby different kind of metal complexes were obtained. The structural and 
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photophysical properties, in particular coordination compounds of the electronically d6- 

and d8-configurated transition metal ions, resemble their relevant bipyridine counterparts. 

Recently, trzpy-based ruthenium(II) and iridium(III) complexes were used as 

photosensitizers for the catalytic production of hydrogen as well as in dye-sensitized solar 

cells, whereas the device performances were comparable to appropriate reference 

systems.[66-67] 

 

 

Figure 1–1. Versatility of 2-(1H-1,2,3-triazol-4-yl)pyridine-based ligands. 

 

The nitrogen donor atoms may also be a target for protonation[68] and 

methylation.[69] The unique position of the proton on the C-5 atom of the 1,2,3-triazole 

subunit permits additional features of the trzpy ligand. The C−H bond of the triazole has a 

strong dipolar disposition and is able to act as a hydrogen bond donor in contrast to 2,2´-

bipyridines.[70] Furthermore, those ligands are used in anion recognition[71-73] and open the 

door for carbene chemistry.[69, 74] The moiety R1 allows a straightforward 

functionalization by simply varying the organic azides in order to introduce 

polymerizable groups or enables immobilization on a surface. 

This thesis specifically covers events of the trzpy ligand that occur in the red- and 

green-marked region of Figure 1–1. The synthesis, characterization and investigation of 

photophysical properties of trzpy-based d6 metal complexes and the self-assembly of d10 

metal complexes as well as the preparation of polymeric architectures comprises the main 

part of this work. 
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2 Tuning the electronic properties of trzpy-based 

ruthenium(II) complexes 

Parts of this chapter have been published including: A1) B. Happ, D. Escudero, M. D. Hager, C. 
Friebe, A. Winter, H. Görls, E. Altuntas, L. González, U. S. Schubert, J. Org. Chem. 2010, 75, 
4025−4038. A2) D. Escudero, B. Happ, A. Winter, M. D. Hager, U. S. Schubert, L. González, 
Chem. Asian J. 2012, 7, 667−671. A3) B. Happ, A. Winter, M. D. Hager, U. S. Schubert, Chem. 
Soc. Rev. 2012, 41, 2222−2255. 
 

Polypyridines, such as 2,2´-bipyridine (bpy) and 2,2´:6´,2´´-terpyridine (tpy) and their 

derivatives, are a well-established and well-studied class of organic ligands due to a 

predictable coordination behavior and interesting photochemical properties that result 

from their corresponding metal complexes.[6, 18, 75-77] In particular, the d6-configured metal 

ions RuII, IrIII, OsII and ReI have been chosen as transition metal ions, because of their 

useful spectroscopic properties comprising photostability and a broad absorption in the 

visible region.[18-21] As a result, d6 metal polypyridine compounds are extensively 

involved as photosensitizers in photochemical processes. For an ideal photosensitizer 

some requirements can be proposed: a reversible redox behavior, suitable ground and 

excited state potentials, durability towards thermal and photochemical decomposition, as 

high as possible extinction coefficients in a suitable spectral region (commonly >300 nm), 

and a high quantum yield as well as a proper lifetime of the reactive excited state. The 

excited state properties, i.e. excited state lifetime, exited state energy and emission 

quantum yield as central parameters, determine crucial characteristics of the 

photosensitizer, such as (photo)chemical stability and redox properties. Chemists have 

been trying for decades to understand the tuning of the excited state properties. The 

relatively long-lived excited states of the late d6 metal complexes (10−6 to 10−9 s), which 

are usually of MLCT character, were investigated in detailed photophysical and 

photochemical studies since the early 1970s leading to a well-understood field of 

chemistry nowadays.[26, 78-79]  

Apart from several photophysical and photochemical similarities, there exist 

fundamental dissimilarities with respect to the redox behavior of d6 metal complexes, for 

instance, when comparing RuII and IrIII as frequently used transition metal ions. Cyclic 

voltammetric studies of RuII polypyridine complexes have shown that they undergo a 

reversible oxidation associated with the metal-centered RuII/RuIII couple as well as a 
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reversible ligand-centered py/py− (py = polypyridine ligand) reduction to generate RuI. In 

general, the existence of both an oxidizable RuII center and a reducible ligand establishes 

a relatively long-lived (up to microseconds) low energy MLCT-associated excited 

state.[79] In contrast, when it comes to charged IrIII polypyridine complexes, cyclic 

voltammetric studies indicated that oxidation of IrIII to IrIV is often irreversible, which 

was attributed to the preference of oxidation rather at the ligand entity than at the metal 

ion center. As expected from charge pre-conditions, reduction of IrIII occurs at a much 

less negative potential than it does in the corresponding RuII complexes (this process is a 

reversible one related to reduction at the ligand). In contrast to RuII, the oxidation and 

reduction potentials of IrIII complexes suggest a relatively high energy MLCT excited 

state and, consequently, IrIII is by far a stronger oxidizing agent than RuII, but a weaker 

reducing agent.[80] The latter considerations resulted in the utilization of ruthenium(II) 

polypyridine complexes as prototype for photosensitizers in the first instance. 

The following achievements were established in order to tune the electronic 

properties of bidentate trzpy ligands by introducing electron-donating and electron-

withdrawing phenylacetylene units on the 5-position of the pyridine ring. The syntheses 

of the trzpy ligands were accomplished by the CuAAC, yet having a straightforward 

access to the central structural trzpy scaffold, whereby the donor and acceptor units were 

introduced by the Pd0-catalyzed Sonogashira cross−coupling reaction of various 

phenylacetylene moieties. Subsequently, the trzpy ligands were attached to the cis-

dichloro-bis(4,4´-dimethyl-2,2´-bipyridine)ruthenium [Ru(dmbpy)2Cl2] precursor 

(Scheme 2–1). The heteroleptic ruthenium(II) complexes 2-8 to 2-14 of the general 

structure [(dmbpy)2RuL](PF6)2 were synthesized by heating Ru(dmbpy)2Cl2 and the 

appropriate ligands (L = 2-1 to 2-7) under microwave irradiation. After 2 h, the reactions 

were completed and a 10-fold excess of NH4PF6 was added to precipitate the products. In 

most cases, precipitation occurred after 15 min and the pure complex was isolated after 

washing with different solvents in moderate to very good yields. The verification of the 

structures of 2-8 to 2-14 was carried out by 1H and 13C NMR spectroscopy as well as HR-

ESI mass spectrometry.  
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Scheme 2–1. Schematic representation of the synthesis of the N-heterocyclic ligands and their 
corresponding heteroleptic RuII complexes. 

 

The complexes 2-8 to 2-12 were characterized by cyclic voltammetry (CV) and the 

electrochemical properties are presented in Table 2–1. In all cases, a first reversible 

oxidation wave occurred at around +0.85 V (vs. Fc/Fc+) that can be assigned to a 
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RuII/RuIII oxidation process. Compound 2-8 showed a second oxidation process at 

+1.28 V, probably originating from an oxidation process of the triazole ligand. Due to the 

absence of electron-donating substituents at the triazole ligand, the respective ligand-

centered π-orbitals are more stabilized for complexes 2-9 to 2-12 and, therefore, no such 

oxidation processes were visible in the CV spectrum. In contrast to the other systems, the 

nitro-containing complexes 2-9 and 2-11 featured a single reversible reduction wave at 

around −1.35 V (vs. Fc/Fc+) that could be assigned to a trzpy-based reduction process. 

Both complexes provided a strongly electron-withdrawing substituent causing a 

stabilization of the trzpy-located antibonding π*-orbitals (compare results of the DFT 

calculations). Starting at −1.8 V all five complexes showed additional reduction waves 

deriving from ligand-based (dmbpy and triazole ligand) π*-orbitals. 

 

Table 2–1. Electrochemical data of selected RuII complexes. 

Complex E1/2,ox [V]a E1/2,red [V]a EHOMO [eV]b ELUMO [eV]b Eg
opt [eV]c 

2-8 +0.82, +1.28 
–1.85, –2.06, 

–2.23 
–5.62 –3.18 +2.48 

2-9 +0.88 
–1.34, –1.97, 

–2.18 
–5.67 –3.70 +2.43 

2-10 +0.84 –1.89, –2.13 –5.69 –3.21 +2.44 

2-11 +0.88 
–1.36, –1.98, 

–2.11 
–5.64 –3.62 +2.43 

2-12 +0.84 
–1.85, –2.03, 

–2.18 
–5.64 –3.17 +2.49 

a) Measurements were performed in CH3CN containing 0.1 M TBAPF6. The potentials are given vs. the 
ferrocene/ferricinium (Fc/Fc+) couple. b) Determined by using EHOMO = – [(Eonset,ox – Eonset,Fc/Fc+) – 4.8]eV 
and ELUMO = – [(Eonset,red –  Eonset,Fc/Fc+) – 4.8]eV, respectively.[81] c) Estimated from the UV/vis spectra at 
10% of the maximum of the longest-wavelength absorption band on the low-energy side.[81] 
 

The resulting photophysical properties of the heteroleptic ruthenium(II) complexes 

are summarized in Table 2–2. In the case of the acceptor-type complexes, referring to 

representative DFT calculations for complex 2-9, the broad absorption band between 400 

to 500 nm was assigned to various MLCT transitions between the ruthenium metal center 

and either the dmbpy or the triazole ligand (see Publication A1, Table 5 for details). For 

the donor-based complex 2-8, DFT calculations suggested a considerable contribution of 

LLCT transitions, in addition to MLCT transitions, from the π-orbital localized on the 

trzpy unit to the π*-orbital of one dmbpy ligand (Figure 2–1, see Publication A1, Table 5 



TUNING THE ELECTRONIC PROPERTIES OF TRZPY-BASED RUTHENIUM(II) COMPLEXES 

- 17 - 

for details). Between 300 and 400 nm, the complexes investigated herein exhibited 

different absorption behavior concerning their wavelength maxima and band shape. This 

region was dominated by IL transitions, namely located at the triazole and dmbpy ligand, 

respectively. More bands were present below 280 nm arising from further MLCT, LLCT 

and MC d-d transitions, respectively. The observed emission energies (Table 2–2) 

showed a clear dependency on the used substituent. Starting at 602 nm in the case of the 

alkoxy-containing system, the emission was strongly red-shifted to 621 nm for the 

unsubstituted triazole ligand and to 640 and even 674 nm in the case of the complexes 

possessing an ortho- and para-nitrophenyl moiety, respectively. This trend was most 

likely caused by the stabilization of the π*-orbitals located at the triazole ligand via 

introduction of electron-withdrawing groups. These orbitals are involved in the emissive 
3MLCT state (compare DFT ground state calculations in Figure 2–1) in the case of the 

acceptor-based complex 2-9, so that a lower energy level led to a decreased emission 

energy. 

 

Table 2–2. Photophysical data recorded for the RuII complexes. 

Complex λabs  [nm] (ε [103 L·mol−1·cm−1])a,b λem  [nm]a ΦPL
a,c 

2-8 
206 (145.6), 286 (133.1), 333 (59.8), 435 

(23.6) 
602 

0.001 
< 0.005d 

2-9 209 (58.4), 286 (63.4), 328 (38.6), 441 (11.6) 674 
0.001 
0.022d 

2-10 
209 (88.1), 286 (103.9), 312s (51.6), 440 

(18.3) 
620 0.002 

2-11 208 (66.6), 286 (74.7), 341s (22.6), 442 (12.4) 640 0.001 

2-12 
205 (131.1), 286 (125.6), 315s (60.9), 438 

(20.6) 
621 0.001 

2-13 206 (83.7), 286 (76.9), 326 (52.5), 440 (12.8) 642 < 0.001 

2-14 
195 (102.9), 286 (83.1), 316s (40.5), 442s 

(12.5) 
610 0.003 

a) For all measurements: 10−6 M solution in aerated CH3CN at room temperature. For emission 
measurements: excitation at longest absorption wavelength. b) “s” signifies absorption shoulder. c) 
Photoluminescence quantum yields determined using [Ru(bpy)3](PF6)2 (ФPL = 0.062) as standard. d) 
Measured in aerated CH2Cl2 solution at room temperature (10−6 M). 
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Figure 2–1. Energy levels for the most relevant Kohn-Sham orbitals of complexes 2-8 and 2-9 
including the HOMO-LUMO gaps calculated with B3LYP/6-31G*. 

 

The measured emissive behavior revealed a clear dependency on the electronic 

character of the peripheral substitution as well as on the polarity of the solvent. Similar 

observations on solvent-dependent luminescence have been reported in literature 

recently.[82-83] Therefore, TD-DFT calculations were performed to gain a deeper insight 

into the photophysical processes. The Jablonski diagrams was computed for simplified 

complexes (2-8 and 2-9, respectively) in CH2Cl2 (Figure 2–2). The most important 

singlet−singlet and singlet−triplet electronic excitations computed in CH2Cl2 at the S0 

geometry as well as some important triplet excited states at the T1 geometry are depicted 

in Figure 2–2a and b, respectively. The biggest SOC elements are obtained between 
1MLCT and 3MLCT states, particularly those possessing the same π* orbital but with 

2-8 2-9
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participation of different 4d orbitals (in the case of S2 interacting with T6 in complex 2-8 

or with T5 in complex 2-9, see Figure 2–2). 

 

 
 

 

Figure 2–2. Jablonski diagrams of a donor-type (a: resembles compound 2-8) and acceptor-type 
(b: resembles compound 2-9) RuII complex with TD-B3LYP singlet-singlet and singlet-triplet 
vertical excitations (in nm) computed in CH2Cl2. The main absolute SOCs (cm−1) and the main kr 
values (s−1) are highlighted. The magnitude of the oscillator strengths (f) at the S0 geometry are 
pictorially indicated by the width of the vertical transition. 

 

Only the largest radiative rate constant (kr) obtained for each complex is shown in 

Figure 2–2. The kr value for complex 2-9 [kr(T7→S0) = 5.4×107 s−1] is approximately one 
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order of magnitude larger than for complex 2-8 [kr(T6→S0) = 3.0×106 s−1]. A detailed 

analysis exhibited that in complex 2-8 the largest radiative rate is due to the interaction of 

T6 and S2 and both states are of MLCT character at S0 geometry. From T6, IC processes 

lead to the lowest T1, which is the emissive state as stated by Kasha’s rule.[84] In the case 

of complex 2-9, the ISC is due to the interaction of T7 with S4 at the Franck-Condon 

geometry and further IC to T1 follows. In both complexes, the T1 state is a 3MLCT state 

with 4d2→π*dmbpy character, as reflected by both the spin-density analysis and the TD-

DFT calculations at the T1 geometry. The reason behind the different orders of magnitude 

in the radiative rates can be correlated with the electronic nature of the substituent.  

Electron-rich substituents on the trzpy ligand stabilize the related πL orbitals and 

destabilize the π*L orbitals and, consequently, less 1MLCT states are excited below the 

experimental excitation wavelength. In complex 2-9, charge transfer transitions to the 

trzpy with high oscillator strengths are additionally present. The presence of these states 

is crucial to provide smaller 1MLCT−3MLCT gaps that contribute to a more efficient 

horizontal ISC and, thus, a larger radiative rate constant. Since larger kr values entail 

higher ΦP [ΦP = kr/(kr+knr)] the expected increase of the knr value for complex 2-9, as 

compared to complex 2-8, is overcompensated. Therefore, the combination of both effects 

finally leads to a higher ΦP value for complex 2-9. 

In summary, bidentate trzpy ligands were synthesized, whereas different 

phenylacetylene moieties of donor and acceptor nature, respectively, were attached on the 

5-position of the pyridine unit. The moieties featured a crucial influence on the electronic 

properties of these ligands. The N-heterocyclic ligands were coordinated to the RuII ion 

by using the Ru(dmbpy)2Cl2 precursor. The RuII complex with electron-donor nature 

revealed no luminescence at room temperature in contrast to the one with acceptor 

capability revealing remarkable luminescence at room temperature in CH2Cl2. Radiative 

rate constants (kr) have been calculated using a mixed TD-DFT/CASSCF approach for 

the complexes 2-8 and 2-9. The calculated kr values could be used to explain the 

considerable decrease in quantum yield of the donor-type compound 2-8. 



 

- 21 - 

3 Light-harvesting metallopolymers  

Parts of this chapter have been published including: A4) B. Happ, J. Schäfer, R. Menzel, M. D. 
Hager, A. Winter, J. Popp, R. Beckert, B. Dietzek, U. S. Schubert, Macromolecules 2011, 44, 
6277−6287. A5) B. Happ, C. Friebe, A. Winter, M. D. Hager, U. S. Schubert, Eur. Polym. J. 
2009, 45, 3433−3441. 
 

A general target of current research is the establishment of new synthetic approaches 

allowing the facile and straightforward covalent or non-covalent linkage of functionalized 

ligands or transition metal complexes to polymers. Covalent linkages are the basis for 

potential functional materials, which are able to avoid aggregation of the incorporated 

metal complexes, while maintaining the photophysical properties of the appropriate 

complex at the same time. Considerable effort in the synthesis of metal-containing 

polymers has been invested for combining the beneficial properties of a metal ion 

complex, which provides the optoelectronic capacity in many examples, and a polymer 

backbone enhancing the processability of the materials, e.g., using spin-coating and 

inkjet-printing, respectively. Applications in the field of supramolecular chemistry, 

conducting and photoresponsive materials, and catalysis were established.[7-9, 12, 85-87] 

In general, a metal complex can be incorporated into a polymer as part of the main 

chain or as a pendant group. It is also possible to prepare materials in which the metal 

complex is present in both the side and main chains (dendrimers). Mainly three different 

types of metal-containing polymers have been emerged: (i) the metal ions/complexes are 

attached to the polymer backbone at the side chain or as an end group by electrostatic 

interactions, metal–ligand coordination or covalent bonds, (ii) the metal complexes are 

part of the polymer main chain (coordination or covalent connection), and (iii) the metal 

ions are embedded in the polymer matrix by physical interaction. From the synthesis 

point of view, two primary procedures were applied to prepare the metal-containing 

polymers: (i) the transition metal complex was attached to a polymer backbone after the 

polymerization process (grafting), and (ii) the metal complex served itself as the 

monomer and was incorporated into the polymer by (co)polymerzation.  

The latter approach was used for the synthesis of a light-harvesting terpolymer by 

controlled RAFT radical polymerization containing a luminescent RuII complex 

coordinated by an acceptor-type trzpy chelate, a 2-(pyridine-2-yl)thiazole donor-type 

system and methyl methacrylate (Scheme 3–1). This terpolymer was designed in order to 
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mimic natural strategies for light harvesting systems for the conversion of energy from 

sunlight into chemical energy. The thiazole dye is supposed to absorb photons with an 

energy higher than 2.95 eV (λ < 420 nm) and transfers a decisive fraction of the 

excitation energy by the emission of photons (λem,max = 450 nm) to the RuII unit, where a 

MLCT state (λabs,max = 450 nm) is directly excited for charge separation. Hence, the 

transition metal complex might act as a primary electron donor in any photocatalytic 

process when, in perspective, combined with a suited electron acceptor. For the system 

under investigation, the focus was on the energy transfer, which may take place in the 

random donor−acceptor terpolymer.  

 

 

Scheme 3–1. Schematic representation of the synthesis of the donor−acceptor terpolymer capable 
of transferring energy upon light excitation of the donor-type thiazole entity. 

h·ν (370 nm)

FRET
620 nm
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The general synthesis route of the monomers is depicted in Schemes 3–2 and 3–3. In 

the first three steps, CuAAC and Pd0-catalyzed Sonogashira coupling were used to set up 

the trzpy scaffold bearing an electron-withdrawing 4-nitrophenylacetylene moiety on the 

5-position of the pyridine ring. The CuAAC of 2-ethynyl-5-bromopyridine and 11-

azidoundecan-1-ol yielded 3-1 under typical reaction conditions, using 10 mol% of 

CuSO4 and 0.5 equiv. of sodium ascorbate as CuI source. Consecutive Sonogashira cross-

coupling with TMSA and Pd0(PPh3)4, as catalytic active Pd0 source, as well as subsequent 

deprotection of the TMS by potassium fluoride afforded 3-2 in moderate yield (47%). The 

following Sonogashira coupling with 4-nitro-1-iodobenzene provided component 3-3. 

The hydroxyl moiety was changed to methyl methacrylate in order to introduce a 

polymerizable group. The esterification of 3-3 with methacryloyl chloride gave 3-4 in 

good yield (89%). The heteroleptic ruthenium(II) complex 3-5 was synthesized by 

heating Ru(dmbpy)2Cl2 and ligand 3-4 under microwave irradiation for 2 h at 120 °C. The 

methacryl-moiety was found to be stable under these conditions as confirmed by 

preliminary experiments. After the reaction was completed, a 10-fold excess of NH4PF6 

was added to precipitate the ruthenium(II) complex. Precipitation occurred usually within 

30 min, and the complex was finally purified by recrystallization from ethanol and 

subsequent washing with cold ethanol (yield >90%). The verification of the structure was 

carried out by 1H and 13C NMR spectroscopy as well as by high-resolution mass 

spectrometry. 

The 4-hydroxythiazole 3-6 was prepared by a cyclization process of pyridine-2-

carbothioamide with ethyl 2-bromophenylacetate. Williamson-type etherification of 3-6 

with 3-bromopropan-1-ol as electrophile yielded 3-7 in good yield (68%) under mild 

conditions. Subsequently, the hydroxyl group was reacted with methacryloyl chloride 

under basic conditions to yield the polymerizable ester 3-8 (Scheme 3–3). All compounds 

had to be purified by column chromatography to ensure a proper reagent grade for the 

following radical polymerization. The confirmation of the structures was performed by 

NMR spectroscopy, mass spectrometry and elemental analysis. 

Two copolymers and one terpolymer were synthesized based on a PMMA 

backbone, where 3-8 served as the donor and 3-5 as the acceptor unit, respectively 

(Scheme 3–4). The conversion of the reactions was roughly 80% using a standard 

reaction time of 16 h. 
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Scheme 3–2. Schematic representation of the synthesis of the polymerizable acceptor-type 
ruthenium(II) complex 3-5.  
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Scheme 3–3. Schematic representation of the synthesis of the polymerizable donor-type thiazole 
ligand 3-8. 

 

 

Scheme 3–4. Schematic representation of the synthesis of the statistical copolymers 3-9. 

 

Because of the insolubility of 3-5 in commonly utilized solvents for radical 

polymerization processes (i.e. toluene, ethanol) the RAFT polymerizations were 
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performed in DMA. After the reaction, 3-9b was precipitated into cold diethyl ether 

yielding the desired donor-type copolymer. The polymers 3-9a,c were further purified by 

preparative SEC due to remaining monomer 3-5. It was found after optimization of the 

reaction conditions that initiation of the polymerization only occurred if the molar content 

of 3-5 did not exceed 5 mol%. This observation was attributed to the retardation nature of 

the NO2 group.[88] Consequently, the ruthenium(II) content of the terpolymer 3-9c was 

kept below 5 mol% to ensure sufficient initiation probability of the reaction. 

In order to verify a potential energy transfer in polymer 3-9c, firstly, excitation 

spectra were recorded of the donor-type polymer 3-9b, the acceptor-type polymer 3-9a 

and the donor−acceptor polymer 3-9c (Figure 3–1a). For recording the luminescence 

excitation spectra of the RuII subunit the emission was monitored at 620 nm, where no 

donor fluorescence appeared. A difference in the luminescence excitation spectra of 3-9a 

and 3-9c indicated contributions from the thiazole excitation to the luminescence of the 

ruthenium(II) unit as it can be seen in the increase of intensity around 380 nm for 3-9c. 

These findings point toward an energy transfer, since the excitation of the donor between 

325 and 425 nm led to amplified luminescence of the acceptor (Figure 3–1a, red line). 

Time-resolved measurements of the donor emission lifetime in 3-9b and 3-9c 

revealed that the donor emission decayed more rapidly in the presence of the RuII 

acceptor, since the interaction between the donor and the acceptor quenches the donor 

emission (Figure 3–1b). Based on temporal emission profiles the FRET efficiency was 

calculated to be 70%. Although there are many possibilities for excitation quenching in 

polymers, for instance energy migration, exciton−exciton annihilation,[89] and excimer 

formation,[90]it was assumed that this shortening of the donor decay time in the 

donor−acceptor polymer is dominated by FRET by comparing the results to analogous 

work.[91-93] Mostly, these events cause a reduction of the emission quantum yield and a 

non-exponential emission decay. Neither of these effects were observed in the reference 

polymer 3-9b probably caused by the low concentration of donor units in the polymer 

backbone. Additionally, Figure 3–1b shows a non-exponential decay trace of the donor 

emission in presence of acceptor units in the terpolymer because no fixed donor−acceptor 

distances exist within the polymer. Consequently, different energy transfer rates for 

individual donor−acceptor pairs occur leading to different decay rates for individual 

photo-excited donors. 
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Figure 3–1. a) Excitation spectra (in CH2Cl2, 25 °C) of 3-9c (red) and 3-9a (black) recorded at the 
RuII complex luminescence (620 nm). The fluorescence excitation spectrum of 3-9b recorded at 
450 nm (dashed) was normalized to the maximum emission intensity. b) Donor decay profile (in 
CH2Cl2, 25 °C) of the reference polymer 3-9b and the donor−acceptor polymer 3-9c excited at 
290 nm. The instrument response function (IRF) was measured by scattered light. 

 

Secondly, the excitation of the thiazole unit in polymer 3-9c evoked a reduction of 

the donor-based emission quantum yield by one order of magnitude compared to that of 

3-9b (see Publication A4, Table 3 for details). The quantum yield measurement in the 

donor−acceptor polymer 3-9c required adequate care due to the overlap of donor and 

acceptor absorption bands (Figure 3–1a). It was impossible to excite donor molecules 

within the terpolymer exclusively. Taking into account these overlapping absorptions, the 

molar extinction coefficients of donor and acceptor at the excitation wavelength had to be 

considered as well as the ratio of donor and acceptor units attached to the polymer chain. 

Considering these properties, the quantum yield measurement in 3-9c followed the same 

procedure as the emission quantum yield measurements of 3-8 and 3-9b. 

The description of the energy transfer process (donor quenching in the 

donor−acceptor polymer) would be incomplete when considering Förster’s theory only. 

Dexter-type energy transfer can also occur at donor−acceptor distances smaller than 10 Å, 

when donor emission and acceptor absorption spectrally overlap and, furthermore, an 

overlap of wavefunctions exists so that electrons of the donor and the acceptor, 

respectively, can occupy the other's molecular orbitals.[94]  

Above all, translational diffusion can cause an enhancement of the FRET efficiency 

at considerable high diffusion coefficients of an individual donor−acceptor pair, which is 

mainly ruled by the viscosity of the used solvent and the intrinsic viscosity of the donor 

a) b)
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and acceptor.[95-96] However, this effect can be neglected due to the static donors and 

acceptors within the polymer. 

Regardless of a possibly incomplete description of the excitation energy transfer 

only by FRET, the donor−acceptor polymers designed for efficient FRET allow enhanced 

light harvesting in a RuII complex, whereupon energy is focused into the 1MLCT band. 

By considering the charge-separating character of the MLCT states, this process increased 

the accessibility of RuII complexes as primary electron donors in photocatalytic systems. 

In summary, polymers containing a 1,3-thiazole dye (energy donor) and a 

ruthenium(II) chromophore (energy acceptor) were synthesized using a controlled RAFT 

polymerization procedure. A terpolymer, which consists of an energy donor and acceptor, 

was able to relay the absorbed energy by resonance energy transfer from the thiazole 

donor to the ruthenium(II) acceptor unit. The ruthenium(II) content in the 

macromolecules was limited to 5 mol% at the most, since for higher metal content the 

polymerization could not be initiated. The donor−acceptor functionalized terpolymer 

displayed a reasonable energy transfer efficiency of over 70%. Such polymeric systems 

might be used for the synthesis of artificial photosynthetic systems, in which they can act 

as light-harvesting antenna. 
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4 Self-assembly by d10-configurated metal ions 

Parts of this chapter have been published including: A6) B. Happ, G. M. Pavlov, E. Altuntas, C. 
Friebe, M. D. Hager, A. Winter, H. Görls, W. Günther, U. S. Schubert, Chem. Asian J. 2011, 6, 
873−880. 
 

N-Heterocyclic polytopic ligand scaffolds can be used as driving force for the formation 

of polynuclear self-assembled grid-based aggregates. The desired molecular architecture 

strongly depends on the specific ligand design and, thereby, encodes definite coordination 

information. The crucial element of ligand design is the establishment of a specific 

number of coordination pockets with particular donor atom arrangements that match to 

the employed metal ions and coordination sphere, respectively. This includes the atom 

identity, the constitution of the atoms, and their orientation, so that a metal is easily 

adjusted into a ligand pocket. Ideally, the metal ion possesses elementary coordination 

geometries (tetrahedral, octahedral) with a coordination number of 4 and 6, respectively, 

and predefines the complexation mode of the ligand. The number and configuration of the 

coordinating pockets of the ligand then fix the number and environment of the metal ions 

in the resulting supramolecular assembly. Two-dimensional [n×n] grid-like coordination 

complexes have a well-defined 2D disposition with an exact number of ligands and metal 

ions. A ligand with n coordination pockets generates a homoleptic [n×n] assembly, which 

is composed of 2n organic ligands and n2 metal ions. The formation of the grid-aggregate 

is accompanied by the competition of other types of structures, e.g. coordination 

oligomers and polymers, whereby the distinct grid-like array is preferred by entropic 

factors and further stabilization by non-covalent interactions (hydrogen bonding, π-π 

stacking).[97-99] 

Basically, five- and six-membered chelating rings enable relatively strong 

coordinative bonds based on favorable bite angles. Those ligands based on nitrogen donor 

atoms are by far the most extensively studied class, as 3,6-di(2-pyridyl)pyridazines 

(dppn) and its derivatives are a well-studied class of compounds with respect to 

polynuclear coordination assemblies including self-assembled grids,[98, 100-102] 

metallocryptand cages,[103-104] and helices.[105-106] The nitrogen atoms afford versatile 

coordination sites and their attachment to a variety of metal centers, e.g. CuI, ZnII, NiII, 

and AgI ions, triggered investigations of the resulting photophysical, magnetic, and 

electrochemical properties.[105, 107-108] However, the synthetic access is limited for the 
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dppn systems, as they can only be synthesized indirectly by an inverse electron-demand 

Diels-Alder reaction between 1,2,4,5-tetrazines and acetylenes, whereby the 1,2,4,5-

tetrazine acts as the electron-deficient diene.[109] In the last decade, several groups have 

shown that the 1H-1,2,3-triazole ring has the potential to replace pyridine as a nitrogen-

donor ligand for transition-metal ion complexation.[110-113] As a consequence, dppn-

analogous structures were synthesized by replacing the pyridine rings with 1,2,3-triazole 

rings, while maintaining the ditopic scaffold. The direct synthesis of the 3,6-bis(1H-1,2,3-

triazol-4-yl)pyridazine system (dtpn) was accomplished by starting with the ethynylation 

of 3,6-dibromopyridazine followed by the CuAAC (Scheme 4–1). 

 

 

Scheme 4–1. Schematic representation of the structural analogy and general synthesis of 2-
pyridyl and 4-triazolyl pyridazines, respectively. 

 

By utilizing the CuAAC as the final step, the substitution of the triazole ring could 

be controlled. The following study contains the synthesis and characterization of dtpn 

systems bearing an aromatic and a polymeric moiety. These organic ligands have the 

capability to complex d10-configurated transition-metal ions, such as CuI and AgI, 

expecting the formation of a [2×2] grid-like structure (Scheme 4–2). The verification of 

the structure of the metal complexes was examined by 1D and 2D NMR spectroscopy, 

high-resolution ESI-TOF mass spectrometry as well as analytical ultracentrifugation 

experiments. 
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Scheme 4–2. Schematic representation of the expected self-assembly of 3,6-bis(1H-1,2,3-triazol-
4-yl)pyridazines using copper(I) and silver(I) ions. 

 

The synthesis of the ditopic ligands 4-2 and 4-3 is outlined in Scheme 4–3. Maleic 

hydrazide was brominated to 3,6-dibromopyridazine and subsequent Sonogashira cross-

coupling as well as deprotection of the TMS-group with potassium fluoride provided the 

desired intermediate 4-1 in moderate yield. The following CuAAC reaction of 4-1 with 

mesitylazide, utilizing copper(II) sulphate and sodium ascorbate as copper(I) source, 

yielded the desired product 4-2 in a one-pot reaction. Consequently, the dtpn system 4-3 

was synthesized by in situ deprotection of the TMS-groups and subsequent CuAAC 

reaction with the monodisperse O-(2-Azidoethyl)-O′-methyl-undecaethylene glycol, 

which yielded the final product 4-3 bearing an oligomeric moiety. 

 

 

Scheme 4–3. Schematic representation of the synthesis of 3,6-bis(4-triazolyl)pyridazines 4-2 and 
4-3. 
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NMR spectroscopy was used to retrieve first information about the complexation. 

The 1H NMR spectrum for the obtained grids 4-4 and 4-5 revealed three aromatic signals, 

which expresses a high symmetry of the formed complexes. The proton signals of the 

pyridazine ring and the triazole ring of 4-4 were significantly downfield shifted upon 

complexation compared to the free ligand, which is a confirmation of successful 

complexation. The appearance of three definite aromatic proton singlets indicates the 

formation of defined grid-like architectures rather than polymeric species. UV/vis spectra 

in methanol were recorded for 4-4 and a new absorption maximum arose at 380 nm upon 

complexation with copper(I) ions. The dilution of the UV/vis solution by two orders of 

magnitude resulted in a successive decrease in the molar extinction coefficient at 380 nm, 

which was attributed to a metastable nature of 4-4 in solution. The instability was 

investigated in more detail by 1H NMR spectroscopy. 

In order to gain further confirmation of the integrity of the supramolecular structure 

of the metal complexes 4-4 and 4-5, analytical ultracentrifugation experiments were 

carried out in solution. Figure 4–1 represents the comparison of the differential 

distribution of the initial ligand 4-2 and the supramolecular systems versus the intrinsic 

sedimentation coefficient. Sedimentation velocity experiments of 4-4 and 4-5 in acetone 

clearly showed single species in solution (Figure 4–1) and illustrate that the assembly of 

the initial ligand with metal ions occurred. The distributions were normalized on the 

values of the maximal peak ordinates. By estimation, the obtained values were close to 

the theoretical ones of the [2×2] CuI and [2×2] AgI grid-like structure. 

 
Figure 4–1. Normalized differential distributions dc(s)/ds of sedimentation coefficients obtained 
with a regularization procedure and a confidence level of 0.90. 

4-2 4-4 4-5 
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Time-dependant 1D (1H) and 2D (1H-NOESY) NMR spectroscopy was used to gain 

more insight into the metastable solution behavior in solution of copper(I) complex 4-4. 

The 1H NOESY spectrum of 4-4 in deuterated acetone, which was recorded after one day 

standing in the NMR glass tube, is depicted in Figure 4–2. A correlation between the 

pyrimidine ring proton C and the triazole ring proton B indicates the successful 

complexation with copper(I) ions. A second correlation arose between proton B and a 

broadened signal next to it at 8.72 ppm. The latter correlation suggests the presence of at 

least one more copper(I) complex species. 

 

Figure 4–2. 1H NOESY spectrum (400 MHz, 25 °C, (CD3)2CO) of copper(I) complex 4-4 after 
one day. 

 

Figure 4–3 displays seven 1H NMR spectra of 4-4 (compare Figure 4–2 for the 

assignment of the protons of the top spectrum), which have been recorded within a period 

of two and a half weeks. After 17 days, the three primary signals had completely vanished 

and three broadened signals were mainly present. The 1H NMR spectrum did not 

transform anymore at this stage. This leads to the conclusion that the initial red material is 

only metastable in acetone solution. The new species formed are assumed to be 
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symmetrical copper(I) complexes, as the symmetry in the 1H NMR spectrum is retained 

similar to the former spectrum and the NMR solution was still orange-colored after 17 

days. 

 

Figure 4–3. 1H NMR spectra (250 MHz, (CD3)2CO) of copper(I) complex 4-4 followed over 
time. 

 

Furthermore, ligand 4-3 was coordinated to copper(I) ions by adding its 

dichloromethane solution (1 equiv.) to a solution of [Cu(CH3CN)4]PF6 (1 equiv.). The 

pure, oily product was obtained after purification by using preparative size-exclusion 

chromatography. ESI-QToF-MS spectrometry was used to clarify the structure of the 

latter purified compound and the mass spectrum revealed the existence of the complete 

[2×2] copper(I) grids (Figure 4–4). Peaks corresponding to fragments with four copper 

centers, such as [Cu4L4X2]2+ and [Cu4L4X]3+ (X = PF6
−), were observed. The isotopic 

pattern is accurately consistent with the simulated one and HR-ESI mass spectrometry 

further confirmed the stoichiometry of the fragments. Moreover, the long-term durability 

of the absorption maximum of 380 nm as well as the aromatic proton NMR signals 

demonstrated the structural stability in contrast to 4-4. In the case of 4-4 and 4-5, the ESI-

0 d

1 d

2 d

3 d

5 d

10 d

17 d

δ / ppm



SELF-ASSEMBLY BY D10-CONFIGURATED METAL IONS 

- 35 - 

QToF-MS spectra did not reveal signals of the entire grid. Fragments corresponding to 

the successive loss of one bar of the presupposed [2×2]-grid structure were observed, 

namely, [Cu2L3X]+ (X = PF6
−) and [Ag2L3X]+ (X = SbF6

−) as well as [Cu2L2X]+ (X = 

PF6
−) and [Ag2L2X]+ (X = SbF6

−), respectively. 
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Figure 4–4. ESI-QToF-MS spectrum of the purified copper(I) complex of ligand 4-3 (black) 
superimposed with the calculated spectrum (blue) indicating the existence of a [2x2] grid-like 
species. 

 

In summary, the synthesis of 3,6-bis(1H-1,2,3-triazol-4-yl)pyridazine systems was 

described using the Pd0-catalyzed Sonogashira coupling as well as the CuAAC reaction. 

The ditopic N-heterocyclic ligands 4-2 and 4-3 were investigated with respect to their 

complexation capability of singly charged d10 metal ions (copper and silver). In this 

context, 1H NMR spectroscopy and ESI-QToF-MS of the copper(I) complex of ligand 4-3 

indicated the existence of a stable [2×2] grid-like structure. The copper complex 4-4 

turned out to be metastable in solution as confirmed by time-dependant 1D (1H) and 2D 

(1H-NOESY) NMR spectroscopy experiments. The latter experiments suggested the 

presence of at least one more copper(I) complex species. 
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5 Crosslinking assay of trzpy-based copolymers 

Parts of this chapter have been published including: A7) B. Happ, G. M. Pavlov, I. Perevyazko, 
M. D. Hager, A. Winter, U. S. Schubert, Macromol. Chem. Phys. 2012, 213, 1339−1348. 
 

More than three decades ago, the pioneering work amongst others by Charles U. Pittman 

and Charles E. Carraher has evoked a particular approach in current polymer chemistry 

that is phasing covalent linked polymer species with non-covalent interactions in order to 

establish new polymeric systems.[114-116] For this purpose, supramolecular polymers 

containing reversible metal-ligand interactions have been widely studied with plenty of 

applications that range from catalysis to light-emitting devices to sensory materials.[117] 

Metal-containing polymers (MCP) are macromolecules usually comprising dynamic 

metal−ligand coordination units. They can be classified in three categories: (i) linear, one-

dimensional macromolecules that may aggregate into higher dimensional nano-sized 

structures, (ii) three-dimensional networks that possess ordered structures and are usually 

insoluble, and (iii) three-dimensional networks that are able to incorporate external 

components, e.g. hydrogels. MCPs reveal advantageous features including the capability 

to transfer magnetic, optical, electronic and catalytic properties of the metal complex into 

a polymer. Second, the weaker coordinative bond enables reversibility in the design of 

materials that can be triggered by an external impact, such as pH changes, solvents, light 

and mechanical forces. The latter feature has channeled the research to the development 

of advanced materials with addressable properties enclosing switchable adhesives and 

self-healing materials.[9, 118-120] 

The following section describes the complexation and decomplexation behavior of 

trzpy-containing copolymers by FeII and CoII ions. The macromolecules were treated with 

FeII and CoII salts and the coordination performance was studied by means of UV/vis 

spectroscopy and titration experiments. Viscosity measurements and detailed analytical 

ultracentrifugation experiments were executed to study the intra- and intermolecular 

complexation behavior of the CoII ion in solution. A strong competitive ligand was used 

to examine the reversibility of the metal complexation in low concentrated solutions by 

means of UV/vis spectroscopy. 

The CuAAC of 2-ethynylpyridine and 11-azidoundecan-1-ol provided the alcohol-

functionalized trzpy ligand 5-1, which was subsequently esterified in good yield (87%) 

with methacryloyl chloride to monomer 5-2 (Scheme 5–1). The RAFT radical 
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copolymerization was performed to incorporate the bidentate ligand 5-2 covalently into 

two different polymer backbones, whereby MMA and BMA were used as comonomers. 

The RAFT polymerization technique was utilized due to its tolerance to a great number of 

functional groups. The polymerizations were performed in concentrated solutions (~2 M) 

to assure a controlled proceeding of the reaction. 2-Cyanobutan-2-yl benzodithioate 

(CBBD) was utilized as RAFT agent, since it is known to provide a narrow molar mass 

distribution and AIBN has been applied as initiator.[121] A reaction time of 16 h was 

chosen in order to drive the conversion of the reaction to approximately 80%. The 

obtained copolymers 5-3 and 5-4 were purified by preparative SEC and characterized by 
1H NMR spectroscopy, UV/vis titration experiments as well as SEC. The SEC coupled 

with a photodiode array detector revealed a typical UV/vis absorption spectrum of the N-

heterocyclic trzpy ligand (λmax = 286 nm), which confirmed the incorporation into the 

backbone of copolymers 5-3 and 5-4 (Figure 5–1). The molar masses were estimated by 

SEC using a linear PMMA calibration and the molar fraction (x) of trzpy-ligands was 

determined by both 1H NMR spectroscopy and UV/vis titration experiments. The molar 

fraction did not significantly deviate from the theoretical values and both characterization 

techniques revealed comparable results. 
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Scheme 5–1. Schematic representation of the synthesis of macromolecules 5-3 and 5-4. 
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Figure 5–1. SEC coupled with a photodiode array detector of the purified copolymer 5-4 (eluent: 
DMA with 0.08% NH4PF6). 

 

In a preliminary experiment, a concentrated dichloromethane solution of copolymers 

5-3 or 5-4 (c > 10 mg·mL−1) was prepared and subjected to gelation via metal 

coordination using a methanolic FeII or CoII solution. In the case of FeII, a red solid was 

obtained upon cross-linking each with three trzpy units. The crosslinking procedure with 

CoII ions led to a highly viscous solution, which was fluid yet. The reversibility of the 

crosslinking was examined by UV/vis spectroscopy experiments utilizing a strong 

competitive chelating agent (Scheme 5–2). At first, a UV/vis absorption spectrum of a 

dichloromethane solution of copolymer 5-3 was measured as a blank. The absorption 

spectrum exhibited a maximum at 286 nm, which can be assigned to electronic transitions 

of the trzpy moiety of the copolymer. Subsequently, the appropriate amount of metal salt, 

as methanolic FeII or CoII solution, was added to obtain a ligand-to-metal stoichiometry of 

3 : 1. The UV/vis spectrum was remeasured and the appearance of the MLCT bands at 

433 nm (FeII tris-homoleptic complex) and 320 nm (CoII tris-homoleptic complex), 

respectively, verified the complexation of the bidentate ligands by the metal ions (Figure 

5–2). The subsequent addition of 10 equivalents of a methanolic HEEDTA solution led to 

a vanishing of the MLCT absorption bands for both metal ions upon decomplexation. 



CROSSLINKING ASSAY OF TRZPY-BASED COPOLYMERS 

- 40 - 

 

Scheme 5–2. Complexation of the copolymers with FeII and CoII ions and decomplexation with 
HEEDTA. 

In order to gain detailed insights into the crosslinking process and the metal 

complexation, respectively, viscosity titration experiments at different concentrations of 

copolymer 5-4 and CoII ions were performed in acetone. FeII as metal ion could not be 

investigated by this method, since the acetone solution of iron(II) chloride was not stable 

yielding an off-white precipitate after a few minutes. The Co(BF4)2 × 6 H2O salt was 

dissolved in acetone and added in stepwise portions to a solution of the polymer with 

known concentration (cpoly
init). 



CROSSLINKING ASSAY OF TRZPY-BASED COPOLYMERS 

- 41 - 

    

Figure 5–2. a) UV/vis spectra (solvent: CH2Cl2) of the blank copolymer 5-3 (black), 
complexation with FeII ions (red) and decomplexation with methanolic HEEDTA solution (blue). 
b) UV/vis spectra (solvent: CH2Cl2) of the blank copolymer 5-3 (black), complexation with CoII 
ions (red) and decomplexation with methanolic HEEDTA solution (blue). 

 

The dynamic viscosity (η) was measured after each step and after the addition of the 

metal salt the final solutions were shaken for a sufficient time to enable homogenization. 

The polymer concentration was kept constant by the addition of the corresponding 

amount of the polymer solution with the concentration c = 2·cpoly
init. The results of this 

study are presented in Figure 5–3. The dynamic viscosity of the solutions containing the 

CoII salts strongly depended on the initial polymer concentration. For concentrated 

solutions, where the degree of dilution (product of intrinsic viscosity of the polymer and 

its concentration ([η]·c)) was higher than 0.5 (50% of the volume is occupied by 

macromolecules), an exponential increase of the dynamic viscosity value was observed 

with increasing CoII concentration. For [η]·c ≈ 0.8 the dynamic viscosity value increased 

approximately 20-fold compared to the initial one at a molar cobalt(II) concentration of 

c(CoII) = 3.66 mM (Figure 5–3, line 1). When the degree of dilution was low ([η]·c ≤ 

0.25) the dynamic viscosity value increased only about three times and after further 

addition of CoII ions a declining tendency of the η value was observed. The remarkable 

large increase of the dynamic viscosity in a concentrated copolymer solution with 

increasing CoII concentration was attributed to the formation of crosslinked structures 

(intermolecular complexation) in which CoII metal ions are linked to several different 

copolymer chains. The average molar mass of a crosslinked macromolecule can be 

estimated from the dynamic viscosity value. 
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Figure 5–3. Dynamic viscosity of the acetone solutions of 5-4 in dependence on the weight 
fraction (wt.%) of Co(BF4)2 × 6 H2O. The dotted line 4 corresponds to the polymer solutions 
without the cobalt(II) salt. 

 

It is known that the dynamic viscosity of various polymer-solvent systems at high 

concentrations above some critical molar mass (Mcr) is related to the molar mass by the 

equation η = Kh·Mw
3.4.[122] Below Mcr, the value of the dynamic viscosity is directly 

proportional to the molar mass. Considering the latter two extremes the following 

estimation was obtained for the solute with cpoly = 0.096 g·cm−3 and c(CoII) = 3.66 mM: 

70 < Mw×10−3 g·mol−1 < 500. Along the intermolecular crosslinking also intramolecular 

complexation occurred at a higher degree of dilution (Figure 5–3, line 3). 

The intramolecular complexation of such kind of copolymers with multivalent ions 

may be observed and studied in the regime of very dilute solutions. The velocity 

sedimentation of the solutions with the polymer concentration c = (0.070 ± 0.005) × 

10−2 g·cm−3 was studied as function of the concentration of the Co(BF4)2 × 6 H2O salt. 

This polymer concentration corresponds to a very high degree of dilution of 0.006, where 

only 0.6% of the solution volume is occupied by macromolecules. Hence, the 

macromolecules are separated by the distance larger than their hydrodynamic size and the 

information obtained at this condition virtually concern the properties of individual 

macromolecules. 

When the solution of the Co(BF4)2 × 6 H2O salt is added into a diluted polymer 

solution first a significant decrease of the velocity sedimentation coefficient was observed 

(Figure 5–4a, region 1). This experimental fact can be explained by an increase of the 
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proportion of CoII ions bound to ligands of the polymeric chain. This leads to an increase 

of the number of electrical charges on individual macromolecules and, consequently, 

allows the raise of the translational friction coefficient due to the additional friction losses 

resulting from the electrostatic expansion of the chains and from the electrostatic 

interactions between distant macromolecules (Figure 5–5). The increase in the 

translational friction coefficient f results in a decrease in the velocity sedimentation 

coefficient, as s ~ Mw·f−1. In the range of a CoII salt concentration of 0.2 mM the 

minimum of the velocity sedimentation coefficient was observed. The argument to prove 

that the decrease of the velocity sedimentation coefficient is related with the charge effect 

of the coordinated CoII ions was supported by the addition of a one-to-one ion salt 

NH4PF6 (0.05 M) to the cobalt-containing solution. The velocity sedimentation 

coefficients take values close to that obtained for pure acetone without CoII salt (Figure 

5–4b).  

 

Figure 5–4. Dependence of the intrinsic velocity sedimentation coefficient measured for the 
copolymer 5-4 (cpoly = 7×10−4 g·cm−3 in acetone) on different molar concentrations of cobalt salt 
without ( ) and with 0.05 M NH4PF6 ( ) using a semi logarithmic scale. 

 

After reaching a minimum, the value of the velocity sedimentation coefficient 

begins to increase as a function of the concentration of cobalt salt. Presumably, in this 

case the main effect is the screening of charges on the polymer chains by additional 

charges appearing in solution and a large part of the new added ions are not bound by the 

polymer chains anymore. 
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Figure 5–5. Enlargement of region 1 of the previous Figure which reveals a significant decrease 
in the velocity sedimentation coefficient upon metal complexation of copolymer 5-4. 

 

In summary, the copolymers were investigated towards their gelation properties 

against FeII and CoII ions on a molecular level. Both metal salts showed a crosslinking 

ability in concentrated solution (c > 10 mg·mL−1), whereby in the case of cobalt a highly 

viscous fluid was observed. The differentiation between intermolecular and 

intramolecular complexation, respectively, was achieved by viscosity titration 

experiments at different concentrations of the copolymer in acetone using CoII ions. In 

concentrated solutions, i.e. with a degree of dilution higher than 0.5 of the polymer, 

intermolecular complexation of the CoII ion with different macromolecule chains was 

deduced from the latter experiments. The complexes were destroyed during the dilution 

of the solutions. The intramolecular complexation with CoII ions was studied in highly 

diluted acetone solution of the trzpy-containing copolymer by means of different 

analytical ultracentrifuge experiments. The addition of a small amount of CoII ions 

resulted in a significant decrease of the intrinsic sedimentation coefficient, which could 

be related to the elongation of the individual polymer coils upon the electrostatic 

repulsion of the coordinated CoII ions. 
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6 Summary 

This thesis compiles construction, metal coordination chemistry and macromolecular 

chemistry of 2-(1H-1,2,3-triazol-4-yl)pyridine (trzpy) ligands (Scheme 6–1). The 

regioselective copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and 

terminal alkynes (CuAAC) represented the key step for the preparation of the trzpy-based 

chelators. The use of the triazole entity provided a facile access to bidentate chelates that 

can be regarded as analogs to 2,2´-bipyridines. Using the CuAAC as a synthetic tool 

enabled a convenient functionalization of the trzpy ligands: Reactive functional groups 

can be directly introduced by designing the organic azide and allow subsequent chemical 

transformations, such as the application of radical polymerization methods. Furthermore, 

the CuAAC is able to support the introduction of additional functional moieties at the 

triazole (providing solubility, introducing substituents) due to its high tolerance to a wide 

range of reaction conditions and to a large independence on the electronic configuration 

of the deployed reactants. 

 

 
Scheme 6–1. Schematic representation of the chemistry of 2-(1H-1,2,3-triazol-4-yl)pyridine 
ligands. 
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It reconsiders the synthesis of trzpy ligands bearing different donor- and acceptor-

type phenylacetylene moieties on the 5-position of the pyridine unit and their 

coordination to ruthenium(II) metal ions using Ru(dmbpy)2Cl2 as precursor. The various 

substituents of the phenylacetylene moieties showed a crucial influence on the 

photophysical properties of the ligands and their corresponding ruthenium(II) complexes. 

The donor or acceptor capability of the trzpy ligands determined the emission quantum 

yield of the resulting RuII complexes significantly, whereby the highest quantum yield 

was found for the RuII complex that has a nitro group attached in para-position of the 

phenylacetylene subunit. DFT ground state calculations for the donor-type ruthenium 

complex exhibited a π-localized HOMO on the trzpy entity unlike the acceptor-type 

complex possessing a t2g-localized HOMO on the central RuII atom. Consequently, the 

HOMO–LUMO transition upon light excitation has considerable LLCT character in the 

case of the donor-type complex. Above all, radiative rate constants (kr) were calculated 

using a mixed TD-DFT/CASSCF approach for both complexes explaining the observed 

drop of the luminescence quantum yield for the donor-type complex. 

The reversible addition-fragmentation transfer (RAFT) copolymerization of a 1,3-

thiazole dye (energy donor) and a trzpy-based RuII chromophore (energy acceptor) was 

highlighted with respect to the ability to transfer energy from the donor to the acceptor. It 

turned out during the synthesis of donor- and acceptor-alone copolymers that only a 

maximum content of 5 mol% of the [Ru(dmbpy)2(trzpy)]2+ chromophore could be 

embedded into the macromolecules caused by its nitro-functionalization. Several 

photophysical measurements (excitation spectra, lifetime) suggested successful relay of 

the absorbed energy by Förster resonance energy transfer (FRET) from the thiazole donor 

to the RuII acceptor. The donor−acceptor functionalized terpolymer displayed a 

reasonable energy transfer efficiency of over 70% and will therefore be practical to act as 

light-harvesting antennas. 

The synthesis of two 3,6-bis(R-1H-1,2,3-triazol-4-yl)pyridazine systems (R = 

mesityl, monodisperse –(CH2−CH2O)12CH3) was carried out using a combination of Pd0-

catalyzed Sonogashira coupling and the CuAAC. The ditopic N-heterocyclic ligands were 

investigated with respect to their complexation capability of singly charged d10 metal ions 

(CuI and AgI). The obtained copper(I) complexes were thoroughly characterized by time-

dependent 1D [1H, 13C] and 2D [1H NOESY] NMR spectroscopy, elemental analysis, HR 

ESI-ToF mass spectrometry, and analytical ultracentrifugation. The latter characterization 
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methods indicated the formation of a self-assembled supramolecular [2×2] grid in the 

case of the oligomeric PEG-functionalized ligand. The mesityl-functionalized ligand 

yielded a red-colored CuI complex, which turned out to be metastable in solution. This 

behavior was studied by 1H NMR spectroscopy in acetone solution over two weeks and 

the experiments verified the irreversible transformation of the CuI complex into at least 

one different copper complex species. 

The synthesis of trzpy-containing copolymers and the subsequent characterization 

was described after complexation with FeII and CoII ions. The reversibility of the resulting 

crosslinking process was demonstrated by UV/vis spectroscopy experiments utilizing a 

strong competitive ligand. A differentiation between intermolecular and intramolecular 

complexation, respectively, was achieved by viscosity titration experiments at different 

concentrations of the copolymer in acetone using CoII ions. The intramolecular 

complexation with CoII ions was studied in highly diluted acetone solution of the trzpy-

containing copolymer by means of different analytical ultracentrifuge experiments. The 

addition of CoII ions led to a significant decrease of the intrinsic sedimentation 

coefficient, which can be explained by the elongation of individual polymer coils upon 

the electrostatic repulsion of coordinated CoII ions. 

This thesis highlights the versatility of trzpy ligands. Beyond basic investigations of 

this topic it would be interesting to explore potential applied properties in subsequent 

research activities. In particular, the further development of the polymer-based 

donor−acceptor light-harvesting unit might be a promising scope with respect to the light-

induced water-splitting. 
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7 Zusammenfassung 

Diese Arbeit beschäftigt sich mit der Synthese, Koordinationschemie und der 

makromolekularen Chemie von substituierten 2-(1H-1,2,3-Triazol-4-yl)Pyridin (trzpy) 

Liganden (Scheme 7–1). Die entscheidende Reaktion zur Synthese dieser Liganden war 

die regioselektive Kupfer(I)-katalysierte 1,3-dipolare Cycloaddition (CuAAC) zwischen 

organischen Aziden und terminalen Alkinen. Diese Art von Liganden stellen ein Pendant 

zu 2,2´-Bipyridinen dar, jedoch ermöglicht die Verwendung des Triazolrings einen 

bequemeren synthetischen Zugang. Zusätzlich konnten die zweizähnigen Chelatoren – 

unter Zuhilfenahme der CuAAC – einfach durch die Variation des Azids funktionalisiert 

werden. Durch ein gezieltes Design des Azides können verschiedenste funktionelle 

Gruppen eingeführt werden, die anschließend weitere chemische Umsetzungen zulassen 

(Polymerisationen etc.) oder intrinsische Eigenschaften, wie z.B. Löslichkeit, 

entscheidend beeinflussen. Darüber hinaus toleriert die CuAAC ein sehr breites Spektrum 

an Edukten und gelingt in vielen Fällen unabhängig von den Reaktionsbedingungen 

sowie den elektronischen Konfigurationen der Reaktanden. 
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Scheme 7–1. Die Chemie der 2-(1H-1,2,3-Triazol-4-yl)Pyridin Liganden. 
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Zunächst wird die Synthese von trzpy Systemen und die anschließende 

Koordination an RuII Ionen mit Hilfe des Ru(dmbpy)2Cl2 Precursors erörtert, wobei 

Donor- und Akzeptor-basierte Phenylacetyleneinheiten an der 5-Position des Pyridinrings 

angebracht wurden. Dabei stellte sich heraus, dass diese Substituenten einen 

entscheidenden Einfluss auf die photophysikalischen Eigenschaften der Liganden und 

Metallkomplexe haben. Insbesondere die Lumineszenzquantenausbeuten der 

Rutheniumkomplexe hingen stark von der Elektronenkonfiguration der Substituenten ab. 

Der Rutheniumkomplex, der mit einer Nitro-Gruppe an der Phenylacetyleneinheit in 

para-Position funktionalisiert war, besaß die größte Lumineszenzquantenausbeute. In 

Folge dessen wurden DFT Berechnungen im Grundzustand und zeitabhängige DFT 

Berechnungen stellvertretend für einen Donor- und einen Akzeptor-basierten 

Rutheniumkomplex durchgeführt. Dabei zeigten die Grundzustandsberechnungen des 

Donor-basierten Rutheniumkomplexes, dass das HOMO am trzpy Liganden lokalisiert 

ist, während sich das HOMO der Akzeptor-basierten Koordinationsverbindung eher am 

Ruthenium befindet. Infolgedessen besitzt die langwelligste Absorptionsbande (HOMO–

LUMO Übergang) des ersteren Komplexes einen erheblichen LLCT Charakter. Weiterhin 

haben zeitabhängige DFT/CASSCF Berechnungen dazu beigetragen, radiative 

Geschwindigkeitskonstanten beider Komplexe zu berechnen und so die erhebliche 

Auswirkung der Substituenten auf die Emissionsquantenausbeute zu erklären. 

Darüber hinaus beschäftigt sich diese Arbeit mit der kontrollierten RAFT 

Copolymerisation eines 1,3-Thiazol-Farbstoffs (Donor) und eines trzpy-funktionalisierten 

Rutheniumkomplexes (Akzeptor) um den gerichteten Energietransfer vom Donor zum 

Akzeptor zu studieren. Jedoch fungierte der Rutheniumkomplex auf Grund seiner NO2-

Funktionalisierung während der Polymerisation als Inhibitor. Folglich musste für eine 

erfolgreiche Copolymerisation ein Anteil kleiner als 5 mol% verwendet werden. 

Verschiedene photophysikalische Messungen (Anregungsspektren, Lebenszeit) haben 

gezeigt, dass das Donor–Akzeptor Terpolymer in der Lage ist, Energie über einen 

Förster-Mechanismus mit einer Effizienz von ca. 70% vom Donor hin zum Akzeptor zu 

transportieren. 

Des Weiteren wird die Synthese von 3,6-bis(R-1H-1,2,3-Triazol-4-yl)pyridazinen 

(R = Mesityl, monodisperses –(CH2−CH2O)12CH3), die als ditopische Liganden zur 

Komplexierung von d10-konfigurierten Metallen (CuI und AgI) verwendet wurden, 

beschrieben. Die so erhaltenen Kupferkomplexe wurden bezüglich der Selbstorganisation 
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zu [2×2] Gitterstrukturen mittels zeitabhängiger 1D [1H, 13C] und 2D [1H-NOESY] 

NMR- und analytischer Ultrazentrifugations-Messungen sowie HR ESI-ToF 

Massenspektrometrie detailliert charakterisiert. Letztere Methoden verifizierten die 

Bildung eines stabilen [2×2] Gitters im Falle des oligomeren Ethylenglykol-

funktionalisierten Liganden. 1H NMR Messungen über zwei Wochen zeigten, dass der 

mehrkernige Kupferkomplex des Mesityl-funktionalisierten Liganden in Aceton 

metastabil ist und sich irreversibel in mindestens eine neue Kupferspezies umwandelt.  

Die Synthese von trzpy-basierten Copolymeren und deren Charakterisierung wurde 

nach der Komplexierung mit FeII bzw. CoII Ionen untersucht. Die reversible Vernetzung 

unter Zuhilfenahme eines starken Chelatliganden konnte mittels UV/vis Spektroskopie 

nachgewiesen werden. Darüber hinaus wurde ein Copolymer bei verschiedenen 

Konzentrationen mit CoII Ionen titriert. Anschließende Viskositätsmessungen 

ermöglichten eine Differenzierung zwischen intermolekularer und intramolekularer 

Komplexierung. Außerdem wurde der Einfluss der CoII Ionen auf die Konformation des 

Copolymers in hochverdünnter Lösung untersucht. Eine geringe Zugabe an Metallionen 

führte zu einer Ausdehnung des Polymerknäuels, welche durch die elektrostatische 

Abstoßung der koordinierten Metallionen verursacht wurde. 

Diese Arbeit belegt die vielfältigen Einsatzmöglichkeiten von trzpy Liganden. In 

weiterführenden Arbeiten dieses Themengebietes wäre es unter anderem interessant, 

neben der Grundlagenforschung auch anwendungsbezogene Eigenschaften dieser 

Ligandensysteme zu untersuchen. Insbesondere die Weiterentwicklung der 

polymerbasierten Donor−Akzeptor Lichtsammeleinheit könnte im Hinblick auf die 

lichtgetriebene Wasserspaltung ein vielversprechendes Anwendungsfeld sein. 
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Abbreviations 

abs  absorption 

AIBN  2,2´-azobis(iso-butyronitrile) 

BMA  butyl methacrylate 

bpy  2,2´-bipyridine 

CBBD  2-cyanobutan-2-yl benzodithioate 

CuAAC copper(I)-catalyzed azide−alkyne cycloaddition 

CV  cyclic voltammetry 

DAD   diode array detector 

DFT   density functional theory 

DMA   N,N-dimethylacetamide 

dmbpy  4,4´-dimethyl-2,2´-bipyridine 

DMF   N,N-dimethylformamide 

DMSO  dimethyl sulfoxide 

DP  degree of polymerization 

EDTA  ethylenediaminetetraacetic acid 

em  emission 

ESI   electron spray ionization 

f  translational friction coefficient 

Φ  quantum yield 

Fc  ferrocene 

FRET  Förster resonance energy transfer 

η  dynamic viscosity 

HEEDTA trisodium N-(2-hydroxyethyl)ethylenediamine triacetate 

HOMO highest occupied molecular orbital 

HR-ESI MS high-resolution electron spray ionization mass spectrum 

IC  internal conversion 

IL  intra-ligand 

IRF  instrument response function 

ISC  inter-system crossing 

J  overlap integral 

kr  radiative rate constant 
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LLCT  ligand-to-ligand charge transfer 

LUMO  lowest occupied molecular orbital 

M  mol·L−1 

Mn  number average molar mass 

Mw  weight average molar mass 

MALDI  matrix-assisted laser desorption ionization 

MC  metal-centered 

MCP  metal-containing polymer 

Mes  mesityl 

MLCT  metal-to-ligand charge transfer 

MMA  methyl methacrylate 

NMR   nuclear magnetic resonance 

NOESY nuclear Overhauser effect spectroscopy 

PDI   polydispersity index 

PEG  poly(ethylene glycol) 

PL  photoluminescence 

PMMA poly(methyl methacrylate) 

RAFT  reversible addition-fragmentation transfer 

s  velocity sedimentation coefficient 

SEC   size exclusion chromatography 

SOC  spin-orbit coupling 

τ  luminescence lifetime 

TD-DFT time-dependent density functional theory 

TEA   triethylamine 

THF   tetrahydrofurane 

TMSA  trimethylsilylacetylene 

trzpy  2-(1H-1,2,3-triazol-4-yl)pyridine 

UV/vis  ultraviolet-visible 
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