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Abstract 

The work described in this dissertation was performed under the supervision of Prof. Dr. Christi-
ane Schmullius and Dr. Sören Hese at the Institute of Geography, Department of Remote Sensing 
at the University of Jena in Germany (Friedrich-Schiller-Universität Jena) from 2007 to 2011. 
This thesis deals spatially and regionally with the natural boundaries of the Euphrates River Basin 
(ERB) in Syria. Scientifically, the research covers the application of remote sensing science (opti-
cal remote sensing: LANDSAT-MSS, TM, and ETM+; and TERRA: ASTER); and methodologi-
cally, in Land Use/Land Cover (LULC) classification and mapping, automatically and/or semi-
automatically; in LULC-change detection; and finally in the mapping of historical irrigation and 
agricultural projects for the extraction of differing crop types and the estimation of their areas. 
With regard to time, the work is based on the years 1975, 1987, 2005 and 2007. 

The remote sensing-based available data used are: LANDSAT-MSS data (eight scenes) acquired 
in June 1975; LANDSAT-TM data (16 scenes) acquired in May 1987 and in August 1987 (eight 
scenes for the extraction of the winter crops and eight scenes for extraction of the summer crops); 
LANDSAT-TM data (16 scenes) acquired in May 2007 and in August 2007 (eight scenes for ex-
traction of the winter crops and eight scenes for extraction of the summer crops); and finally 
TERRA-ASTER data acquired in May and August 2005 (for extraction of the winter and summer 
crops). These have been combined with LANDSAT-ETM+ data (14 scenes) for two reasons; first-
ly to obtain complete spatial coverage of the study area, and secondly, to increase the spectral 
resolution of the ASTER-data. The LANDSAT-data was received from NASA-GLCF, while the 
TERRA-ASTER-data was obtained from the General Organization of Remote Sensing (GORS) in 
Syria. 

Initially, preprocessing of the satellite data (geometric- and radiometric- processing, image en-
hancement, best bands composite selection, transformation, mosaicing and finally subsetting) was 
carried out. Then, the Land Use/Land Cover Classification System (LCCS) of the Food and Agri-
culture Organization (FAO) was chosen. The following steps were followed in LULC- classifica-
tion and change detection mapping: visual interpretation in addition to digital image processing 
techniques; pixel-based classification methods; unsupervised classification: ISODATA-method; 
and supervised classification and multistage supervised approaches using the algorithms: Maxi-
mum Likelihood Classifier (MLC), Neural Network classifier (NN) and Support Vector Machines 
(SVM). These were trialed on a test area to determine the optimized classification ap-
proach/algorithm for application on the whole study area (ERB) based on the available imagery. 
Pre- and post- classification change detection methods (comparison approaches) were used to de-
tect changes in land use/land cover-classes (for the years 1975, 1987 and 2007) in the study area. 

Classification accuracy has been improved by adopting historical statistical and ancillary data for 
the year 1975. For the 1987 coverages, the ground truth points from the International Centre for 
Agriculture Research in Dry Areas (ICARDA) in Aleppo were adopted. For the other coverage 
years, 2005 and 2007, ground truth points were used that had been collected through two cam-
paigns in Syria and through the GORS project in the Euphrates River Basin in Syria, which was 
completed between 2005 and 2010. Therefore, the accuracy of the results presented in this study is 
only as true as the quality and accuracy of the data used. 

The remote sensing methods show a high potential in mapping historical and present land use/land 
cover classes and its changes over time. Significant results are also possible for agricultural crop 
classification in relatively large regional areas (the ERB in Syria is almost 50,335 km²). 

LULC-maps have been obtained automatically depending upon the satellite remotely-sensed im-
agery and digital image processing available. Interpretation for the years 1975, 1987, 2005 and 
2007 has been achieved by using digital image interpretation software (ERDAS v. 9.1, ENVI v. 
4.3 and later 4.6, and ArcGIS 9.3). 
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The results of the different applied classification methods and algorithms were obtained keeping in 
mind the accuracies dependent on historical, statistical, ancillary, and ground truth data using the 
kappa coefficient and error matrix. Based on these accuracy measurements, the most successful 
approaches were the multi stage classification and algorithm (Maximum Likelihood-MLC). 

Change trends in the study area and period was characterized by land-intensive agricultural expan-
sion. The rapid, more labor- and capital- intensive growth in the agricultural sector was enabled by 
the introduction of fertilizer, improved access to rural roads and markets, and the expansion of the 
government irrigation projects. Results from land cover change analysis, carried out from the post-
classification approach, show that the cultivated land increased from 1,123,268 ha in 1975 to 
1,783,286 ha in 2007 on account of a decrease in the natural vegetation area and an increase in 
bare areas. This approach shows obvious and detailed results. Pre-classification approach results 
were generalized but very effective in relation to the estimation of the occurred change on the cul-
tivated areas, especially when these areas were vegetated and not fallow. The total change in the 
whole study area (5,062,082 ha, 100 %) between 1975 and 2007 was about 600,967 ha (11.93 %), 
in which 238,646 ha (4.74 %) was changed from natural vegetated areas to bare areas and 362,321 
ha (7.19 %) changed from bare areas to cultivated areas (especially to irrigated agriculture). Areas 
recording no change equaled about 4,461,115 ha (88.62 %). 

Irrigated areas increased 148 % in the past 32 years from 249,681 ha in 1975 to 596,612 ha in 
2007. 

These statistics were taken from the maps of the general LULC- classes based on LANDSAT-
MSS-data acquired in June 1975, LANDSAT-TM-data in May 1987 and 2007, and ASTER-data, 
May 2005. The products of the post-classification change detection method were also used. The 
data mentioned above were also used to map the historical development of the irrigation projects 
in the ERB. Winter crops maps (especially wheat, barley and sugar beet) were mapped based on 
LANDSAT-TM-data acquired in May 1987 and 2007, in addition to the ASTER data acquired in 
May 2005. The summer crops (especially cotton, maize and watermelon) were mapped based on 
LANDSAT-TM-data from August 1987 and 2007, in addition to ASTER data from August 2005. 
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Zusammenfassung 

Das grundsätzliche Ziel der vorliegenden Arbeit ist es, einen Beitrag zur Verbesserung der ferner-
kundungsgestützten Kartierung landwirtschaftlicher Nutzflächen unter Verwendung von LAND-
SAT-MSS-, TM- und ETM+-Daten sowie TERRA-ASTER-Daten im syrischen Teil des semiari-
den bis ariden Euphrat-Tals zu leisten. Das Euphrat-Tal erstreckt sich im Nordosten Syriens von 
der türkischen (36°49’ N, 38°02’ E) bis zur irakischen Grenze (34°29’ N, 40°56’ E), wobei die 
landwirtschaftlich genutzte Fläche entlang des Flusslaufes etwa 50 335 km2 umfasst. Anfang der 
1970er Jahre wurde im Rahmen eines staatlichen Programms begonnen, das Wasser des Euphrat 
für Bewässerungszwecke zu nutzen, um Flächen für eine agrarwirtschaftliche Nutzung zu er-
schließen. Diese Bewässerungsprojekte, die während der letzten vier Jahrzehnte stattfanden, haben 
maßgeblich zu Landbedeckungs- und Landnutzungsveränderungen (LULC) beigetragen. 

Diese Arbeit zielt auf vier Schwerpunkte ab: eine LULC-Klassifizierung, eine 
LULC-Änderungskartierung, die Kartierung der Bewässerungsflächen und die Klassifizierung der 
angebauten landwirtschaftlichen Pflanzen im Euphrat-Tal. Es wurden vier LULC-
Klassifikationsprodukte (vgl. C6.A.1) für die Jahre 1975, 1987, 2005 und 2007 abgeleitet. Darüber 
hinaus wurden zwei LULC-Veränderungskartierungen für die Zeitspannen von 1975-2007 und 
1987-2007 durchgeführt. Zudem wurden vier thematische Karten hergestellt, welche die Lage und 
flächenmäßige Ausdehnung der Bewässerungsgebiete (vgl. C5.A.2) zu den diskreten Zeitpunkten 
1975, 1987, 2005 und 2007 darstellen und somit die Entwicklung der letzten 37 Jahre dokumentie-
ren. Schließlich wurden sechs detaillierte Klassifikationsprodukte (vgl. C5.A.3) zur landwirt-
schaftlichen Nutzung während der Hauptanbauphasen im Winter (Mai-Daten) und Sommer (Au-
gust-Daten) der Jahre 1987, 2005 und 2007 erstellt. 

Um diese Ziele zu erreichen, wurden acht im Juni 1975 aufgenommene LANDSAT-MSS-Szenen 
sowie insgesamt 32 LANDSAT-TM-Szenen für die Monate Mai 1987, August 1987, Mai 2007 
und August 2007 ausgewählt. Außerdem wurden 16 korrigierte LANDSAT-ETM+/SLC-OFF-
Szenen (filling of SLC-OFF data gaps using multi-temporal remotely sensed data / SLC-Gaps Fil-
ling Process - see Schultz, 2011), die im Mai und August 2005 aufgenommen wurden, mit TER-
RA-ASTER-Daten aus denselben Monaten verschnitten, um die spektrale Auflösung von drei auf 
sechs spektrale Bänder zu erhöhen. 

Fernerkundungstechniken wurden genehmigt und angewendet auf der Fernerkundungsdaten (vgl. 
C4.A) von 1975, 1987, 2005 und 2007 für die Vier Hauptschwerpunkte (LULC-Klassifizierung, 
LULC-Änderungserkennung, Bewässerungskartierung und bewässerte Landwirtschaft Klassifizie-
rung). Da nicht auf Methoden zurückgegriffen werden konnte, deren Übertragbarkeit auf die Ge-
gebenheiten des Untersuchungsgebietes hätte vorausgesetzt werden können, mussten neue Techni-
ken entwickelt und validiert werden, die kompatibel mit den verwendeten Daten und auf die Ziele 
der Arbeit und die Privatsphäre der Studiengebietsumfeld zugeschnitten sind. Viele der in dieser 
Arbeit verwendeten Vorgehensweisen (vgl. C4.A) wurden schon früher entwickelt. In einigen Fäl-
len wurden Methoden kombiniert oder modifiziert. 

Aufgrund sinkender Kosten, sowohl für Fernerkundungsdaten als auch für Software zu deren Be-
arbeitung – bestimmte Fernerkundungsprodukte sind inzwischen kostenlos verfügbar –, bietet sich 
Forschern in zunehmendem Maße die Möglichkeit, Methoden der Fernerkundung zu nutzen, aber 
die Prozessierung und Interpretation der Daten ist noch immer zeitaufwändig, und die sind nicht 
passend für alle Gebiete der Erde an demselben Niveau der Genauigkeit. In dieser Studie wird 
gezeigt, dass die geometrische, atmosphärische und radiometrische Korrektur (vgl. C5.B) in Ab-
hängigkeit von der konkreten Szene, dem jeweiligen Sensor und dem Aufnahmezeitpunkt nicht in 
jedem Fall notwendig ist. Die geometrische Korrektur, im Besonderen die Georeferenzierung, war 
leicht durchzuführen, wobei sehr hohe Genauigkeiten erreicht wurden. Für relativ alte Daten 
(MSS-1975) konnte keine Atmosphärenkorrektur durchgeführt werden, da die notwendigen Wet-
terparameter nicht vorlagen. Die radiometrische Korrektur konnte wiederum an allen Datensätzen 
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durchgeführt werden, was aber nicht bedeutet, dass immer zufriedenstellende Ergebnisse erreicht 
wurden. Wenn weder die Rohdaten noch die radiometrisch und/oder atmosphärisch korrigierten 
Daten als geeignet für die Mosaikierung eingeschätzt wurden, dann wurden die Szenen getrennt 
prozessiert und klassifiziert. ATCOR-2 wurde für die atmosphärische Korrektur verwendet, wäh-
renddessen iMAD bei der radiometrischen Korrektur zur Anwendung kam. Beide Algorithmen 
können mit geringem Zeitaufwand und ohne zusätzliche Inputparameter angewendet werden und 
liefern bessere Ergebnisse als Methoden wie MFF und 6S, die zudem eine größere Anzahl an Ein-
gabegrößen benötigen (Chavez, 1996). 

Die aus den Ergebnissen der Klassifikation entstandenen Karten wurden in einem einheitlichen 
Bezugssystem dargestellt. Sämtliche Daten wurden unter Bezugnahme auf den internationalen 
Ellipsoiden WGS84 und das Datum WGS84 auf die UTM-Zone 37 N projiziert. 

Die geometrische Korrektur, die Georeferenzierung und die geometrische Registrierung bilden die 
Grundlage für die Mosaikierung mehrerer Szenen (vgl. C5.B.5) sowie für das Verschneiden von 
Daten unterschiedlicher Sensoren. ASTER-Daten wurden mit LANDSAT-ETM+-Daten fusioniert 
(vgl. C5.B.4), um Veränderungen der Landnutzung zu kartieren (vgl. C5.L). 

Eine genaue Mosaikierung ist sehr wichtig für die weitere Datenverarbeitung (z.B. Klassifikation, 
Veränderungskartierung, usw.). Bei der Anwendung entsprechender Algorithmen gelang es nicht 
immer, im Farbverlauf kontinuierliche Datensätze zu erzeugen. Aufgrund dieser diskontinuierli-
chen Farbverläufe würde es zu verschiedenartigen Repräsentationen von LULC-Eigenschaften 
innerhalb einer zusammengesetzten Szene kommen. In diesen Fällen wurde die MAD-Technik 
angewendet, um eine radiometrische Konsistenz der Szene zu erhalten. Dieses Verfahren ist eine 
leicht handhabbare, nutzerfreundliche Kalibrierungstechnik, welche keine Kalibrierung mittels 
Gain- und Offset-Koeffizienten erfordert. Diese Technik hat den Vorteil, dass Szenen auch dann 
verglichen werden können, wenn Werte nicht verfügbar oder fehlerhaft sind. 

Die Klassifikation folgte konsequent dem hierarchischen Klassifikationsschema (LCCS) der FAO. 
Dieser Ansatz definiert und bestimmt die LULC-Klassen, die bei der Klassifikation berücksichtigt 
werden. Die Klassen wurden folglich vor dem Starten der verwendeten automatisierten überwach-
ten Klassifikationsverfahren festgelegt. 

Die Klassifikation beruhte auf dem traditionellen pixelbasierten Ansatz. Die Klassifikationsergeb-
nisse werden stets in Form von thematischen Karten präsentiert. Für die aus den verschiedenen 
verwendeten Ansätze und Algorithmen hervorgehenden Klassifikationsergebnisse wurde jeweils 
eine Genauigkeitsanalyse durchgeführt. 

Innerhalb dieser Studie wurden mehrere automatisierte Klassifikationsansätze (one-step und multi-
stage classification), und mehrere Algorithmen, namentlich MLC, NN und SVM, getestet, um eine 
möglichst optimale Methode für das Erreichen der Zielstellung zu finden. Die besten Ergebnisse 
wurden bei der Anwendung des Multi-Stage-Klassifikationsansatzes in Verbindung mit dem 
MLC-Algorithmus erzielt (vgl. C5.G). 

Die Klassifikation von Daten mit geringer räumlicher und spektraler Auflösung, d.h. von LAND-
SAT-MSS-Daten, erlaubte es lediglich, auf einem, fünf Klassen umfassenden Klassifikationslevel 
thematische Karten für das gesamte Gebiet des syrischen Euphrat-Tals zu erstellen, welche u.a. die 
räumliche Verteilung von bewässerten Gebieten wiedergeben. Darüber hinaus war es nicht mög-
lich, mit diesen Daten zufriedenstellende Ergebnisse auf einem höheren Klassifikationslevel zu 
erzielen. LANDSAT-TM-Daten erlaubten eine genauere Klassifikation auf dem höheren Klassifi-
kationslevel, aber waren im Vergleich zu den miteinander verschnittenen LANDSAT-ETM+- und 
ASTER-Szenen weniger gut für die Ausweisung von Klassen geeignet, welche die landwirtschaft-
liche Nutzung mit einer höheren inhaltlichen Tiefe repräsentieren. Schließlich erwiesen sich die 
(nicht verschnittenen) ASTER-Daten mit einer niedrigen spektralen Auflösung von nur drei Bän-
dern trotz einer höheren geometrischen Auflösung von 15 m als weniger zweckmäßig als die 
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LANDSAT-TM-Daten. Bei der Klassifikation der miteinander verschnittenen LANDSAT-ETM+- 
und ASTER-Daten wurden die besten Ergebnisse erzielt. Im Allgemeinen gelang die Klassifikati-
on landwirtschaftlicher Nutzflächen vor allem auf den großen, von staatlicher Seite geplanten Be-
wässerungsarealen mit einer hohen Genauigkeit (z.B. dem 21 000 ha umfassenden Gebiet bei Ost-
Maskana), wo einzelne bepflanzte Felder vergleichsweise groß und die Heterogenität der LULC-
Eigenschaften gering waren. Dieser Zustand änderte sich, wie aus den LANDSAT-TM-Daten von 
2007 zu ersehen ist. Die Felder wurden kleiner und die Heterogenität angebauter Pflanzen wuchs. 
Akzeptable Klassifikationsergebnisse wurden in Gebieten erzielt, die sowohl durch Privatpersonen 
als auch von staatlicher Seite bewirtschaftet werden (z.B. West-Maskana), wobei die Größe der in 
Privateigentum befindlichen Felder beträchtlich variiert. Demgegenüber wurden für die sehr alten 
Anbauflächen, die sich unmittelbar an den Uferbereichen des Euphrat befinden, wo die einzelnen 
Felder sehr klein sind und auf kleinem Raum eine Vielzahl von Feldfrüchten angebaut wird, inak-
zeptable Klassifikationsgenauigkeiten ermittelt. Für diese Gebiete würden Fernerkundungsdaten 
mit einer höheren räumlichen und spektralen Auflösung benötigt (z.B. IKONOS). 

Die Klassifikation der natürlichen Vegetation außerhalb der Bewässerungsgebiete in den ariden 
und semiariden Regionen Syriens, im Besonderen innerhalb der fünften landwirtschaftlichen Sta-
bilisierungszone, wurde durch die Dominanz und Variabilität der Bodenreflektanz erschwert (Hue-
te et al., 1994). Dies gilt auch für die Feldfrüchte und Bäume (wegen den verhältnismäßig großen 
Abständen zwischen einzelnen Bäumen im Vergleich zur räumlichen und spektralen Auflösung 
der verwendeten Fernerkundungsdaten), die teilweise in der dritten und vierten landwirtschaftli-
chen Stabilisierungszone angebaut wurden. 

Im Rahmen dieser Arbeit wurden zwei Ansätze der Veränderungskartierung auf nahezu alle land-
wirtschaftlich genutzten Gebiete in der ariden bis semiariden Umgebung des syrischen Eurphrat-
Tals angewendet, um die Eignung dieser Methoden zu prüfen. Der Ansatz einer der Klassifikation 
vorausgehenden Veränderungskartierung (pre-classification change detection) basiert auf den 
Grauwertdifferenzen zweier Szenen und erwies sich als sehr effektiv für die Erfassung neu ent-
standener landwirtschaftlicher Nutzflächen (neuer Bewässerungsprojekte) in der Zeitspanne zwi-
schen 1975 und 2007. Der Post-Klassifikationsansatz (post-classification change detection) führte 
zur Definition, Erfassung und Kartierung von 21 Änderungsklassen. Allerdings resultierte diese 
Herangehensweise in einer geringeren Genauigkeit (83 %) im Vergleich zur erstgenannten Metho-
de (86 %), was zum einen auf die Abhängigkeit der letztgenannten Methode von der Qualität der 
Klassifizierung und zum anderen auf eine wesentlich größere Anzahl von ausgewiesenen Verände-
rungsklassen (bei der ersten Methode wurden nur 3 Veränderungsklassen ausgewiesen) zurückzu-
führen ist. Dennoch widerspricht dieses Ergebnis der Annahme, dass die Post-
Klassifikationsmethode der genaueste Ansatz für die Veränderungskartierung sei (Mas, 1999). Die 
zwei Ansätze und aus denen gewonnene hervorgehende Ergebnisse waren leicht zu interpretieren. 

Aus dem Prä-Klassifikationsansatz (vgl. C6.C.1) konnten drei Haupttrends der Landnutzungs- und 
Landbedeckungsveränderung abgeleitet werden: Der erste Trend – keine Veränderung – ist mit 
einem Anteil von 88,62 % der dominierende. Ein zweiter Trend wird in der Veränderung einiger 
Flächen (4,74 %) von vormals natürlicher Vegetation zu vegetationslosen Arealen sichtbar. Dieser 
Trend dürfte hauptsächlich auf klimatische Fluktuationen, vor allem variable Niederschlagssum-
men, zurückzuführen sein, die großen interannuellen Schwankungen unterliegen. Zusätzlich muss 
ein anthropogener Einfluss, der sich u.a. in der Überweidung einiger Flächen niederschlägt, in Be-
tracht gezogen werden. Innerhalb des Untersuchungsgebietes befindet sich der größte Teil der na-
türlichen Vegetation in der fünften landwirtschaftlichen Stabilisierungszone, in der natürliche 
Graslandschaften anzutreffen sind. Der dritte Veränderungstrend besteht in dem flächenmäßigen 
Rückgang von vegetationslosen Gebieten (7,19 %), eine Beobachtung, die wie in den meisten 
entwickelten Ländern, auf eine landwirtschaftliche Inwertsetzung von Flächen zurückzuführen ist. 
Diese Ergebnisse werden durch die Resultate bestätigt, die aus der Veränderungskartierung mit der 
Post-Klassifikationsmethode hervorgingen (vgl. C6.C.2). Der starke Rückgang von Flächen mit 
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natürlichem Vegetationsbestand, die im Jahr 1987 noch 304 983 ha ausmachten (68,33 % sind 
betroffen), ist hauptsächlich auf deren Umwandlung in agrarwirtschaftlich genutzte Flächen (42,95 
%) oder auf den kompletten Verlust der Vegetationsdecke (24 %) zurückzuführen. Insgesamt 
konnte im betrachteten Zeitraum ein Verlust an vegetationsbestandenen Flächen von 43,22 % de-
tektiert werden, wobei 17,86 % auf landwirtschaftliche Nutzflächen entfallen. Durch die Errich-
tung neuer agrarwirtschaftlicher Nutzflächen kommt es trotz des Verschwindens einiger Anbauflä-
chen zu einem flächenmäßigen Zuwachs dieser Landnutzungsform um 35,49 %. Insgesamt gese-
hen konnte auch eine leichte Zunahme vegetationsloser Flächen um 0,23 % festgestellt werden, 
obwohl von der zum ersten Aufnahmezeitpunkt noch 263 863 ha umfassenden Fläche 2007 13,89 
% anderweitig genutzt wurden. Dabei wurden 10,01 % der ursprünglich vegetationslosen Gebiete 
in landwirtschaftliche Flächen umgewandelt. 

Einschränkungen in der Aussagekraft dieser Studie entstehen in der Hauptsache aus der sehr nied-
rigen geometrischen Auflösung von 60 × 60 m und der niedrigen spektralen Auflösung von ledig-
lich vier Bändern bei den LANDSAT-MSS-Daten von 1975. Die korrigierten LANDSAT-
ETM+/SLC-OFF-Daten von 2005, die mit den ASTER-Daten verschnitten wurden, um deren 
spektrale Auflösung von drei auf sechs Bänder zu erhöhen, wurden - nach der Verwendung einer 
Korrektur-Methode aus USGS - erhalten. waren demgegenüber verhältnismäßig genau aufgrund 
der verwendeten Korrekturmethode der USGS. Die Zeitlücke zwischen der Akquirierung der Fer-
nerkundungsdaten in den Jahren 1975 sowie 1987 und den Geländearbeiten 2007 und 2009 bedeu-
tet ebenfalls gewisse Einschränkungen für die Aussagekraft der Untersuchungen, zumal die Be-
schaffung von empirischen Daten aus dem Gelände, im Besonderen von Ground-Control-Points, 
schwierig war. Einige der gesammelten Ground-Control-Points sind deshalb für einige Zwecke nur 
bedingt geeignet. Zudem waren einige Standorte in dem großen Untersuchungsgebiet während der 
Geländearbeiten nicht zugänglich. 
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Motivation 

There are many motives that led me to write this thesis under the abridged title: Historical Land 
Use/Land Cover Classification and its Change Detection Mapping Using Different Remotely 
Sensed Data: A Case Study of the Euphrates River Basin in Syria. Foremost are the representation 
and mapping changes which occurred during the time period between 1975 and 2007 in data and 
remote sensing techniques or so-called remote sensing. This includes data from the artificial sen-
sors LANDSAT-, MSS/TM/ETM+ and TERRA-ASTER. 

These developments required me to specialize and to study towards a doctorate degree in the field 
of cartography, made possible by a grant from the Ministry of Higher Education in Syria. The sci-
ence of remote sensing and its requisites of techniques, software and algorithms which fall under 
the so-called processing or analysis of real and satellite-images automatically in digital format, is a 
very modern science compared with medicine, engineering, geography, etc. For my research and 
my specialist field of cartography, my interest lies in the possibility of remote sensing science to 
provide significant data and results in the study of land use dynamics and the nature of land cover. 
Thematic maps of the Euphrates River Basin represent the reality of land use and natural cover, 
and provide an ability to detect real change in the region over the time period of my research, more 
than 30 years. This data is characterized also by it is spatial comprehensiveness, allowing me to 
develop thematic maps of the study region, which extends over an area of almost 50,335 km². The 
combination between the remote sensing data, computers and algorithms which have been created 
in the field of image processing for general and remotely sensed data, shortens the time, effort and 
cost of research. This combination allows a shift from traditional cartography to automatic cartog-
raphy or so-called digital computer cartography, a continuous, automated form of science depend-
ing significantly on the rules, basics and equations of classical cartography. 

An important factor in my decision to study the data of the artificial sensors LANDSAT and 
TERRA-ASTER is the free, affordable and easy access provided. This data is characterized by 
good spectral accuracy that allows the ability to discriminate and separate between the different 
manifestations of the Earth. Spatial resolution is good, and appropriate for mapping land use and 
natural cover. The most important point in these data sets however, is the temporal and historical 
comprehensiveness, which provide information spanning more than 30 years. Finally, the spatial 
coverage is relatively large for each scenario with the LANDSAT-data slightly larger than that of 
ASTER. 

The Euphrates River Basin is one of the most important regions and territories in Syria. It contains 
a diversity of natural resources and has been developed over millennia for agricultural and irriga-
tion purposes. My selection of the area for this period of research was based on my personal 
knowledge and interest; the Euphrates River Basin was the subject of my study and research for 
my Diploma thesis. 

Only a few old and general studies have been presented on this territory of the Euphrates, and the 
use of remote sensing technique in such studies has not been well developed. Therefore, this thesis 
is an attempt to readdress the balance of knowledge in this area and to test the effectiveness of 
remote sensing in the development of thematic maps, especially regarding the spread of strategic 
crops such as wheat, barley, sugar beet, cotton and corn in the arid and semi-arid territory of the 
Euphrates. 
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Chapter 1: Introduction 

A. Problem statement and research questions 

Syria, with a total area of 185,180,000 km², has arable land estimated at 6.22 million hectares, or 
33 % of the total area of the country. The cultivated land is estimated at 5.66 million ha, which is 
94.07 % of the cultivable area. Of this area, 4.27 million ha consists of annual crops and 0.67 mil-
lion ha consists of permanent crops. About 62.41 % of the cultivated area is located in the three 
northern governorates (Aleppo, Arraqqa and Al-Hasakah), representing only 33 % of the total area 
of the country. The area of steppe and pastures is about 8.23 million ha, or 44 %; non arable land 
about 3.68 million ha, or 20 %; and forests quasi 0.57 million ha, or 3 % of the total area of Syria 
(Central Bureau of Statistics: CBS, 2009). The total populations were 23.02 million in 2009 (as 
registered by the Department of Civil Status), while the number of permanent residents, excluding 
those who live outside Syria, were 19.88 million. Some 46.48 % of the population lives in rural 
areas. Actual population growth was 2.5 % for the period 2000-2005. Agriculture employs around 
16.79 % of the total labor force, accounting for nearly 20 % of Gross Domestic Product (GDP), 
compared to 39 % in 1963. In 2004, the average population density was about 96 inhabitants/km² 
(CBS, 2009). Almost 55 % of Syria is dry steppe or quasi-desert, suitable only for grazing sheep 
and goats. Rain-based farming of cereals, food and feed legumes is the backbone of agriculture in 
Syria. Irrigated land makes up about 23.91 % of cultivated land, which is about 7 % of the total 
area of the country (Kangarani, 2006; CBS, 2008). 

Syria's climate is Mediterranean (arid and semi-arid) with a continental influence consisting of 
cool, rainy winters and warm dry summers, with relatively short spring and autumn seasons. Large 
regions of Syria have a high variability in daily temperatures. The greatest difference in daily tem-
perature can reach a 32 °C in the inside and about 13 °C in the coastal region. The common annual 
precipitation in the country is 252 millimeters (long-term average). Syria has limited water re-
sources, since 55.1 % of the total area receives precipitation of less than 200 mm per annum. The 
region is located in the fifth settlement zone (agro climatic zone) (see Fig. 3.1), which consists of 
rangelands and desert areas covering 1,208 million ha, representing 55.1% of the total area of the 
country. This zone includes 86 % of the pastoral land not suitable for rain-fed cultivation (Akkad, 
2001; Al-Fares, 2007; FAO-AQUASTAT, 2009). 

As outlined by this introduction, agriculture has traditionally been the foundation of the economy 
(46.48 % of the population was described as rural in 2009, with 16.79 % of the population em-
ployed in the agricultural sector and 20 % of Syria’s GDP attributed to this industry). The agricul-
tural sector has been influenced over the past 40 years by several factors. First, a growing popula-
tion (4.565 million in 1960, compared to 19.88 million in 2009) with a slight increase in acreage. 
Secondly, the natural climactic conditions in Syria are not conducive to agricultural stability, due 
to heavy precipitation. Since the output of agriculture (both plant and animal) is heavily dependent 
on precipitation (only about 23.91 % of the cropped area is irrigated), the large variation in the 
quantities and timing of precipitation can be a reason for a large changes in areas planted, yields 
and production. Thirdly, over 90 % of the total Syrian territory (arable lands) needs sustainable 
irrigation, even in areas which receive large quantities of precipitation, since most of the rain falls 
during the winter rather than in the growing season. In addition, the discharge periods of Syria’s 
rivers in March and May are late for winter crops and early for summer crops. The stream of the 
rivers varies significantly every year. Years of low stream make irrigation and agriculture difficult. 
These factors have led to a focus on large scale irrigation projects such as dam construction as a 
basis for economic and social development. The irrigable arable lands estimated in the ERB are 
1,040,000 ha (ACSAD, 2001). Syria has its own plans for irrigation development within the Eu-
phrates basin. These involve using water from the Euphrates to irrigate six major regions: the 
Maskana-Aleppo-Basin (155,000 ha), the Arrasafa-Basin (25,000 ha), the Al-Balikh-Basin 
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(185,000 ha), the Euphrates-Floodplain (170,000 ha), the Al-Mayadin-Plain (40,000 ha), and the 
lower Al-Khabour-Basin (70,000 ha) (see Fig. 3.4). This is a total of 645,000 ha (Beaumont, 
1996). Until now, only ca. 225,000 ha has been irrigated. Some 63 % of the irrigated areas in Syria 
are located in the Euphrates River Basin, according to the World Bank (CBS, 2009). 

Syria has limited water resources. There are 16 main rivers and tributaries in the country, of which 
six are main international rivers. The most important is the Euphrates, which is Syria's largest riv-
er, originating in Turkey and flowing to Iraq. Its total length is 2,880 km, of which 610 km are in 
Syria. The Euphrates River Basin has a surface area of 444,000 km², (17 %, or 75,480 km² in Syr-
ia) and its actual annual volume is 35.9 million cubic kilometers (ACSAD, 2001; Kangarani, 
2006). Total actual renewable water resources in Syria are estimated at 16.797 million ck/year. 
The natural average surface runoff to the Syrian Arab Republic from international rivers is esti-
mated at 28.515 million ck/year. The actual external renewable surface water resources are at 
17.335 million ck/year, which includes 15.750 million ck of water entering the Euphrates, as uni-
laterally proposed by Turkey. The Euphrates River provides more than 80 % of the total Syrian 
water resource (Kangarani, 2006; Radwan, 2006; FAO, 2009; CBS, 2009) and is the country’s 
biggest source of irrigation water. Early in the 1960s, Syria, due to the need to expand the agricul-
tural areas and to reduce the rain fed based agriculture areas, and the need for electricity, started 
utilizing the Euphrates water in irrigation and hydropower, with construction beginning on the 
Attabqa Dam in 1973 (it was completed in 1978) (FAO, 2009). 

Most regional crop estimate frameworks in Syria are based on knowledge from local experts (e.g., 
extension officers, farmers, grain traders etc.). These frameworks have developed depending heav-
ily on the expertise of the various officials. Estimates were often based on historical regional, state 
and national level statistics, which were, and still are, collated by the Central Bureau of Statistics 
(CBS) via an agricultural census/survey at the province/Muhafazah (statistical local area) scale. 
Lack of detailed province scale information further emphasizes the need for alternative accurate 
and objective crop area estimates to assist agro-industry decision-making at the regional scale. 

Earth Remote Sensing can be defined as the detection, measurement and analysis of electromag-
netic energy reflected, emitted or diffracted by an Earth surface feature without being in physical 
contact with it (Lillesand et al., 2008). This broad definition includes aerial imaging in the ultravi-
olet, visible and infrared (near, mid and far) reflective part of the spectrum, as well as thermal im-
aging and active technologies like radar, and moreover, geo-electric and geo-magnetic measure-
ments. The use of remote sensing is essential in recording a variety of information about the 
Earth’s surface and the atmosphere. This form of data gathering is an important tool in numerous 
sciences such as meteorology, environmental research and cartography. To make full use of the 
information potential of remote sensing, data must be processed, interpreted and evaluated system-
atically. 

The used techniques for interpretation of remotely sensed data are based on many compatible dis-
ciplines including: remote sensing; pattern recognition; artificial intelligence; computer vision; 
image processing; and statistical analysis. The progress in automated analysis of remotely sensed 
data is optimistic by the growing volumes of data, the great developments in computer science 
(software and hardware) that processes these data, as well as the high cost and effort involved in  
ground surveying. The new generation of remote sensing sensors provides superior spatial and 
spectral resolution data, leading to the use of remotely sensed products and further underlining the 
need for more automated and simplified forms of processing, interpretation, and analysis. Earth 
Observation Remote Sensing has led to the development of human perspectives and increased 
greatly our understanding of the planet (Steffen & Tyson, 2001). Beginning with data from the 
successful CORONA missions in 1960 and the start of the LANDSAT-program in the early 
1970’s, remotely sensed data are now globally available and deliver an exceptional amount of in-
formation about the Earth surface and the biosphere, thereby offering an enormous potential of 
information for monitoring (Jensen, 2007; Campbell, 2002). 
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A mainly central application of remote sensing is the production of LULC-maps from satellite 
imagery. Compared to more conventional mapping approaches such as terrestrial survey and basic 
aerial photo interpretation, LULC-mapping using remote sensing imagery has the competitive ad-
vantages of low cost, repetitive large area coverage. Earth Observation Systems (EOS) have the 
potential to offer spatially-distributed and multi-temporal information on LULC and its environ-
mental state over extended areas. Furthermore, satellite systems offer near-real time information, 
which is particularly important for natural hazards and disaster management, as one example. 
Overall the conduction of LULC-information from remote sensing imagery is a significant appli-
cation, concerning the support of multilateral environmental agreements, decision-making and 
monitoring systems. Its future use promises to be rewarding, judging by recent and rapid develop-
ments in sensor technology. Mainly remarkable in this view aspect is the superior spatial and spec-
tral resolution of the imagery captured by new satellite sensors. As well as existing sensors such as 
LANDSAT-TM and SPOT-HRV, a number of new remote sensing sensors with up to 1 m spatial 
resolution are already in operation. 

The quality of the agricultural information systems in Syria and the cropped areas estimate range 
from timely and reliable to virtually non-existent. Estimates are based on past trends (e.g., ground 
survey or census), and are sometimes adjusted by subjective judgment, rather than on objective 
information. There exists an established need for the nations of the world to better manage the 
planet´s agricultural production, with improved seasonal information on crop prospects for im-
portant producing regions. This need, coupled with the state of technical development and the con-
ceptual processing of remote sensing, has brought into focus the possibility of applying remote 
sensing and related technology, to the task of developing a technical concept for agricultural moni-
toring (Erb, 1980). The reliance on remote sensing techniques and using its data in Earth Observ-
ing Studies has many important advantages for these studies in comparison to other old and classi-
cal approaches. These remotely sensed data are objective, well-timed, recurrent and thus they 
could be able to present results (e.g., classification results) with a higher accuracy. During the last 
four decades, satellite- obtained information in the agriculture sector, using low spatial resolution 
images to high spatial resolution images, was helpful in the decision-making processes of govern-
ments. Agricultural production is highly dynamic and depends on complicated interactions of pric-
es, weather, soils and technology all over the world. This production has an influence on the global 
food market. For the purposes of agricultural studies, there is the need for accurate data at a specif-
ic time. Here, because the meaningful forces (e.g., economic, food, policy and environmental im-
pacts) of major strategic crops, it is significant to know the local distribution and the acreage of 
these types of crops. For these reasons, remote sensing, either alone or in combination with ground 
surveys (important for training samples gathering, classification use and ground truth points used 
for accuracing the classification results), has been used in crop acreage assessment (Erb, 1980; 
Allen, 1990; Hanuschak et al., 2001; You et al., 2004; Carfagna & Javier Gallego, 2005; Wardlow 
& Stephen, 2008). 

The use of remote sensing data and its applications for distinguishing between types of agricultural 
crop and interior crop characteristics was widely researched during the last four decades (Cloutis 
et al., 1996; Metternicht et al., 2000; Senay et al., 2000; Thenkabail et al., 2000; Van Niel & 
McVicar, 2000; Van Niel & McVicar, 2004 a; Blaes et al., 2005; Wardlow et al., 2007; Ozdogan, 
2010). The well improved tendencies involving particular types of crop, maturity, levels of the 
nutrient, and their reflectance values within the spectral bands and in correlation to the vegetation 
indices (VIs), are becoming more accurate and are helpful when the availability of ground truth 
data is limited (Senay et al., 2000). The majority of the presented efforts in mapping that were 
highlighted above have focused on the classification of LULC-features associated with natural 
systems (e.g., forest, grassland, and shrub land) and have a tendency to generalize/simplify the 
areas of cropland into a single or limited number of thematic classes. 
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Techniques of satellite remote sensing have a fundamental role in irrigation management. Some 
applications of satellite remote sensing techniques for irrigation management are: crop acreage; 
crop condition; crop yield; and performance of irrigation canal system. These techniques were 
applied effectively in monitoring irrigated lands in many areas around the world under a variety of 
climatic conditions. It offers a synoptic and a suitable temporal coverage of agricultural lands in 
several spectral regions. Its archived data offers comparison of imagery among dates, and yielding 
change over time. Up to now, there are many studies that have used remotely sensed imagery, 
mainly at high spatial resolutions such as LANDSAT, to observe and classify irrigated agriculture. 
The early studies focused on determining the ability of remotely sensed data to classify, map and 
update irrigated land acreage. This was mainly used in the US and India (Draeger, 1976; Heller & 
Johnson, 1979; Thiruvengadachari, 1981; Kolm & Case, 1984; Thelin & Heimes, 1987; Rundquist 
et al., 1989). Some new studies have improved and tested new classification methods particularly 
appropriated for mapping irrigated lands (Eckhardt et al., 1990; Ram & Kolarkar, 1993; Pax-
Lenney et al., 1996; Abuzar et al., 2001; Martinez-Beltran & Calera-Belmonte, 2001, Ozdogan et 
al., 2006; Ozdogan & Gutman, 2008; Pervez et al., 2008; Dheeravath et al., 2010). 

To monitor the changes in our surrounding Earth environment and to manage the natural resources 
of the Earth, researchers have presented many models and strategies, especially during the last few 
decades. The major element in structuring these models is how LULC-features change over the 
time dimension. Land use and land cover change has become a central component in current strat-
egies for managing natural resources and monitoring environmental changes. Remote sensing sat-
ellite images have proven their ability in change detection studies. So-called Change Detection 
Methods have been applied to multi-temporal images, in order that variations and changes in the 
state (especially spectral) and spatial distribution of features and phenomena can be recognized, 
mapped and interpreted (Singh, 1989; Coppin et al., 2004). This method includes procedures, 
which can identify and evaluate changes without past or present detailed knowledge of the land 
surface (Rogan et al., 2002). This information should offer land managers a better understanding 
of relations and interactions between the anthropogenic and natural phenomena. This should be 
able to offer an efficient distribution and management of available natural resources.  The deep 
understanding and consideration of all other issues on the reflected EMR-signal, within and be-
tween multi temporal remotely sensed data, will offer the basis for successful change detection 
studies (Lu et al., 2004). 

The research problem is that Syria, in general, and the Euphrates River Basin in particular, like 
other developing countries, rely very heavily on traditional statistical methods to monitor and 
study changes in the natural cover and land use over time. This is in order to obtain and compare 
statistical data and figures, and allows these data to act as a basis and reference to the decision 
makers in the development of national plans, including agricultural policy. Based on this collected 
data, with regard to the agriculture sector for example, decisions must be made on the abolition of 
creative projects, the development of new irrigation schemes, asset-sufficiency, and whether food 
should be imported or if local production covers the needs of the population. Many other proce-
dures and policies rely on the accuracy of statistical information and data for their success. The 
statistical methods used in Syria give unreliable results, because of their complete dependence on 
the human element. There is a need for the application of other methods that produce more accu-
rate data, and which may be less expensive and require less effort. The inability to represent the 
distribution and prevalence of various agricultural crops spatially increases the size of the problem 
and is a negative factor in statistical data collection in Syria. 

One challenge for researchers lies in the need to find scientific tools and methods with a suitable 
methodology, which can be applied to the study area. Remote sensing can contribute a greater role 
to the understanding of this problem by providing accurate mapping data about land uses, includ-
ing crop utilization over multiple time periods. Remote sensing also results in a realistic depiction 
of land use, by providing a spatial dimension. 
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Many kinds of data supply, especially spatial data on the dynamics of LULC, are poor and thus 
insufficient. Nevertheless, extended knowledge on the state and changes of LULC is needed in 
order to support the implementation of sustainable strategies of regional development. Spatial in-
formation is the basis for various planning tasks. This information could be obtained by applica-
tion of the remote sensing techniques. 

This monograph discusses four basic themes in the study area: the mapping of land use and natural 
cover; development mapping of irrigated areas; the mapping of the distribution of irrigated agricul-
tural crops, especially strategic crops; and mapping, monitoring and study of the changes in land 
use and natural landscape during the last 30 years. The questions this research poses and answers 
are: 

Which automatic classification technique or approach is the best for the study area? 
How can land use/land cover be mapped using different data from remote sensing instruments in 
arid and semi-arid regions? 
How can remote sensing be applied to the mapping and monitoring of the spatial expand in the 
irrigated projects constructed in the Euphrates River Basin in Syria? 
How can remote sensing be applied to the mapping of irrigated agricultural crops in arid and semi-
arid regions? 
Can mapping and monitoring aid understanding of land use/land cover changes over time by using 
the remote sensing concept in arid and semi-arid regions? 

B. Significance of the study 

The importance of this research stems from the location of the study, the Euphrates River Basin. 
This basin is one of the most important areas and territories in Syria, containing the important el-
ements of life: stability, food and water. The basin contains more than 80 % of the total water re-
sources of the country. It is the food basket of Syria, and is made up of three provinces: Aleppo, 
Arraqqa and Deir Azzour. These agricultural provinces contain 34 % of the total population of 
Syria, 38.4 % of the total area of Syria and 37.4 % of the total arable land. Some 40.2 % of the 
country’s total irrigated areas are found in these three provinces and almost half of the population 
that live there work in the agriculture sector. The equivalent of 37.67 % of the total acreage is 
planted with wheat, 51.27 % of the area in barley, 92.50 % in yellow corn (maize), 58.79 % cotton, 
49.63 % sugar beet and 49.92 % watermelon. 

C. Research objectives 

The major component in the development of LCLU-maps is satellite imagery. The objective of 
this work is the use of high resolution remote sensing data (LANDSAT: MSS, TM and ETM+; 
TERRA: ASTER) for the mapping of land use/land cover, land use/land cover change, and irrigat-
ed agricultural crops. The research objectives for this study are: 

- Understanding the spatial and temporal distribution of the interested study area surface fea-
tures; 

- Determination of the major dominant LULC in the area using LANDSAT: MSS, TM and 
ETM+-, and TERRA:ASTER satellite imagery from 1975, 1987, 2005 and 2007; 

- The temporal development mapping of irrigated areas; 
- The creation of one classification method to provide a sufficiently accurate discrimination 

of the main irrigated crops types in the study area; and 
- To determine and analyze the dynamics of change of LULC-classes (trend, nature, rate, lo-

cation and magnitude of land use land cover change). 
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D. Research hypotheses 

The rural environments have unique spectral characteristics and the application of remote sensing 
provides a unique opportunity to study these requirements. The process of integration between 
remote sensing data (in the case studies: LANDSAT and ASTER), and developments in Computer 
Science (hardware and software) and mathematics (algorithms) allows for the mapping of the his-
torical and current land use and natural land cover, thus ensuring access to the true spatial dimen-
sion of each type of land use. These technologies also allow the study and analysis of the changes 
in land use and natural cover over time, and the comparison of the current status of the region with 
how it was 30 years ago. 

E. Organization of the thesis  

This study is organized into seven chapters including this Introductory Chapter, which provides a 
statement of intent and sets out research questions, study objectives and study hypotheses. Chapter 
2 covers the necessary basics for understanding remote sensing in accordance to the current state 
of the art applications in use in Syria. Here, the classification process and various classification 
algorithms used, including unsupervised and supervised, parametric and non-parametric, pixel and 
object classification techniques, are discussed in detail in addition to the application of remote 
sensing in land use/land cover classification. This second chapter also reviews the literature on the 
current state of knowledge on regional scale crop area estimate approaches. This includes crop 
area estimates using remotely sensed data, the importance of temporal and spatial resolution, and 
the ability of satellite imagery to discriminate among crops. 

The third chapter describes the study area of the Euphrates River Basin, Syria. In this chapter the 
location, irrigation projects, climate, morphology, soil, hydrology, land use/land cover and human 
impacts are discussed. Chapter 4 describes the common resources that were available for this 
study, including satellite data, maps, field reference data, statistics and another ancillary data. 
Chapter 5 discusses the pre-processing techniques applied to the satellite images in order to obtain 
data with low calibration errors as a prerequisite for interpretation and comparison. Emphasis was 
placed on the geometric and radiometric accuracy of the processed data. In addition, research 
methodology, image processing, image classification and accuracy assessment are outlined in this 
chapter. In Chapter 6, results, analysis and thematic interpretations are discussed. The overall 
summary, general conclusions and recommendations of the research study are provided in Chapter 
7. 
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Chapter 2: Theoretical background and state of the art 

This chapter provides a short overview of the principles of remote sensing outlines current studies 
focused on the Euphrates River Basin (ERB) and presents a survey of the literature available on 
the topics that the thesis covers. Within the confines of this study, remote sensing is defined as the 
measurement of emitted or reflected electromagnetic radiation, or spectral behaviors, from a target 
object by a multispectral satellite sensor. This thesis contains four main sections: land use/land 
cover classification, the mapping of irrigated areas, irrigated agriculture mapping (especially crops 
classification), and land use/land cover change detection mapping. A great number of papers have 
been published on the above four topics. In this section a small range is given, based on signifi-
cance and likeness to this thesis, with the goal of providing no wide-ranging survey, but of giving 
an experience of the techniques, applications and performances found in the literature. 

A. Remote sensing concept 

A broad definition of remote sensing would include vision, astronomy, space-probes, most of med-
ical imaging, nondestructive testing, sonar, observation of the Earth from a distance, in addition to 
many other fields (Schott, 2007). For purposes of this text, discussion has been limited to Earth 
observation from space. "Remote sensing is the science and art of obtaining information about an 
object, area or phenomenon through the analysis of data acquired by a device that is not in contact 
with the object, area or phenomenon under investigation. Using various sensors, we remotely col-
lect data that may be analyzed to obtain information about the objects, areas or phenomena being 
investigated. The remotely collected data can be of many forms, including variations in force dis-
tributions, or electromagnetic energy distributions" (Lillesand et al., 2008). Fig. 2.1 illustrates 
schematically the generalized processes and elements involved in the electromagnetic remote sens-
ing of Earth resources (Lillesand et al., 2008). 

 
Fig. 2.1: Electromagnetic remote sensing of Earth resources (Source: Modified from Lillesand et al., 2008) 
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The translation of the former schematic view into text is given in the following essential relevant 
components (De Jong et al., 2007; Lillesand et al., 2008): 

1. The source of the electromagnetic energy: all materials with a temperature above 0 Kelvin 
have the ability to produce electromagnetic energy. Other materials or objects on or near 
the Earth’s surface are able to replicate or disperse incident EM-radiation emitted by an en-
ergy source (e.g., artificial sources such as microwave radiation, or natural sources like sun 
radiation). 

2. The path through the atmosphere: before energy source radiation (e.g., solar) reaches the 
Earth’s surface, it will be affected by the atmosphere. In addition, the atmosphere will im-
pact reflected solar radiation or emitted radiation by an object at the Earth’s surface before 
an airborne (aircraft) or space borne (satellite) sensor detects it (Van der Meer & De Jong, 
2001). "The changes of the radiation can vary with wavelength, condition of the atmos-
phere and the solar zenith angle" (Slater, 1980 cited in De Jong et al., 2007). The most sig-
nificant processes here are scattering (Herman et al., 1993) and absorption (LaRocca, 
1993). 

3. The interaction with the object: transmission, absorption and emission transmission are the 
three essential processes of the EM-radiation when it hits an object at the Earth’s surface. 
Here, the characteristics and properties of target object, especially those of a physical na-
ture, determine the mutual significance of these processes. 

4. The signaling of the energy via a sensor: a sensor is a satellite-borne engine. It is construct-
ed to be able to measure the electromagnetic energy radiating from Earth- and its sur-
rounded Atmosphere- features. There are two major types of sensors: 1) inactive sensors: 
they have not a built-in source of energy to radiate the atmosphere and/or the Earth surface. 
Thus, they use an external source of raw radiation (e.g., the light reflected from the sun, or 
when an object of interest due to its physical properties - is able to emit an energy). 2) ac-
tive sensors: they have their private artificial source of energy to radiate the objects of in-
terest. They have to be used for those objects that do not have the ability to emit either en-
ergy or radiation. Examples are RADAR (RAdio Detection And Ranging), and LIDAR 
(LIght Detection And Ranging). Radiation can be recorded in an analogue form (by aerial 
photograph), or it can be stored in a digital array, as a set of signal values on a magnetic 
device CD-Rom or DVD (used by most remote sensing systems at present) (De Jong et al., 
2007). 

5. Transmission, receiving and preprocessing of the recorded radiance: the recorded energy 
by the receiver on the sensor has to be transformed in electronic form to a receiving and 
processing station where the data is processed into an image (digital and/or hardcopy). Pre-
processing operations are required to correct the sensor- and platform-specific radiometric 
and geometric distortions of data. Each of these preprocessing operations will vary depend-
ing on the specific sensor and platform used to obtain the data and the conditions during 
acquisition of the data (De Jong et al., 2007). 

6. Interpretation and analysis of the remote sensing data: the exceptional benefit of digital re-
cordings is that many manipulations can be carried out according to an extended set of al-
gorithms and techniques of digital image processing and pattern recognition by using one 
of the different software packages for image analysis. Techniques of remote sensing offer 
us in general three major types of information (De Jong et al., 2007): 1) the classification 
of separate pixel(s) or separate object(s) (group of alike pixels) in a remote sensing image 
to their really class(es) in the real world (e.g., producing a thematic LULC-map); 2) the 
quantity calculation of some objects components in regard to temporal and spatial dimen-
sions (e.g., measuring a forest biomass amount); and 3) the observation of the spatial  ac-
tivities within the various types of LULC included in (1) or the quantity object characteris-
tics included in (2) throughout a time period (e.g., change detection mapping). In summary, 
there are four major united characteristics in remote sensing techniques and components, 
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and in objects of interest. Based on these characteristics, information about the Earth’s sur-
face features can be carried out De Jong et al. (2007): "a) spectral characteristics (wave-
length or frequency, reflective or emissive properties); b) spatial characteristics (viewing 
angle of the sensor, shape and size of the object, position, site, distribution and texture); c) 
temporal characteristics (changes in time and position); and d) polarization characteristics 
(object effects in relation to the polarization conditions of the transmitter and receiver)". 

7. Creation of the final product: the resulting output based on the remotely sensed data can be 
in different forms, and frequently results in information that can be used as input for further 
analysis and studies (e.g., in GIS) (De Jong et al., 2007). 

Imagery of remote sensing are recorded digitally using detectors and receivers located on sensors 
on board the satellites (McVicar & Jupp, 1998). Digital techniques of remote sensing convert the 
various elements of the electromagnetic energy (color, light, heat, etc.) to a digital type. Spatially, 
the data is composed of separate picture elements, or pixels, and radiometrically, it is quantized 
into separate brightness levels (ERDAS, 1999). An example of operation a satellite is explained in 
Fig. 2.2. The satellites vary in altitude above the Earth’s surface from those which orbit the planet 
at approximately 700 km, to those which are geostationary above the equator at 36,000 km 
(McVicar & Jupp, 1998). 

 
Fig. 2.2: Schematic of satellite operations, specifically the LANDSAT satellite and the Thematic Mapper (TM) sensor 

(Source: Modified from Harrison & Jupp, 1989) 

Key to the consideration of remotely sensed imagery is the coverage, resolution and density of its 
spectral, spatial and temporal characteristics. Spectral coverage describes which part of the EMS 
(Fig. 2.3) is being used (e.g., visible, infra-red, thermal, etc.). Spectral resolution indicates to the 
spectral bandwidths in which the sensor collects information. Spectral density indicates to the 
number of spectral bands in an exacting part of the EMS (e.g., the LANDSAT-MSS has only four 
bands, while the TERRA-ASTER has 14 bands, etc.). Spatial coverage is the area enclosed by the 
image, while spatial resolution indicates to the smallest pixel or picture element recorded. Tem-
poral coverage is the acquiring period over which the data is obtainable (e.g., LANDSAT-Sensors 
have a temporal coverage of 41 years). Temporal resolution relates to the time that the data is ob-
tainable over. It is generally low by most remote sensing systems. Temporal density refers to the 
repeat properties of the satellite. A good repeating in gathering the data would, for some applica-
tions, offer more availability of cloud free data (McVicar & Jupp, 1998). Radiometric resolution 
indicates to the active range or number of potential data file values in each spectral band (the num-
ber of bits into which the recorded energy/data is divided). For example, the total intensity of the 
energy for 8-bit data is measured from 0 to the maximum amount of 256 brightness values. Where 
0 stands for no energy return, 255 is the maximum return of each pixel (ERDAS, 1999). 



Chapter 2: A. Remote sensing concept  
 

10 

Blue Green Red

Y-ray X-ray Ultraviolet Near-IR Mid-IR Thermal-IR Microwave

Visible Bands

1 3 15

0.4 0.5 0.6 0.7

(μm)

(μm)

 
Fig. 2.3: The primary spectral regions of the electromagnetic spectrum that are of interest in Earth remote sensing 

applications (Source: Modified from Tso & Mather, 2009) 

No remote sensing of the Earth’s surface is possible without active atmospheric windows (Fig. 
2.4). These transmission bands allow light to pass through the atmosphere of the Earth with little 
or no interaction at different wavelengths of the EMS. This refers to the spectral coverage in which 
radiation reaching satellite sensors carry information about the Earth’s surface conditions (McVic-
ar & Jupp, 1998). This information includes: vegetation stress; surface temperature; atmospheric 
water content; and a mass of other characteristics that the human eye cannot see or recognize 
(Schott, 2007). 

Wavelength (μm)

Tr
an

sm
iss

ion
 (%

)

UV VNIR SWIR MWIR LWIR

 
Fig. 2.4: Atmospheric transmission spectra showing windows available for Earth observations (Source: Modified from 

Schott, 2007) 

A multispectral sensor (e.g., LANDSAT-MSS) acquires multiple images of the same target Earth 
surface feature (e.g., water, soil, bare area, agricultural crops, etc.) at different wavelengths (spec-
tral bands). Each band measures single spectral characteristics about the target (e.g., the fourth 
near infra-red band of MSS is responsible for detection and recoding the spectral response of the 
natural vegetation). A spectral band is a data set recorded by the sensor with information from sep-
arate parts of the electromagnetic spectrum (Richards, 1986). One foundation of remote sensing is 
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that LULC-features have different spectral properties and responses (McVicar & Jupp, 1998). An-
alysts generate spectral signatures based upon the detected electromagnetic energy’s measurement 
and place in the electromagnetic spectrum. A spectral signature contains statistics that define the 
spectral characteristic of a target feature or training samples. Image interpreters detect the value of 
these statistics by quantitatively comparing the relation between studied class signatures and the 
used spectral bands. Spectral signatures are made more sophisticated by superior ground-truth 
points/measurements and accuracy assessment analysis. By utilizing the sophisticated spectral sig-
natures in multispectral classification and thematic mapping, the interpreter generates new data for 
analysis (ERDAS, 1999). Fig. 2.5 shows idealized spectral reflectance plots for two types of vege-
tation, soils and water types, respectively. 

 
Fig. 2.5: Idealized reflectance plots for different land cover types (Source: Modified from Harrison & Jupp, 1989) 

Remote sensing lets us overcome the classical problem of “not being able to see the forest for the 
trees” in traditional Earth observation approaches (e.g., ground surface studies). These classical 
approaches can be rendered incomplete by providing too much detail on too few samples or by 
only having data from a very limited location. The ability of remote sensing techniques on the 
synoptic perspective lets us “see the individual trees in the forest”. The use of this perspective of-
fers a wide view of broad-scale environments with various features, tendencies and relationships. 
In turn, this leads to the interpolation or extrapolation of parametric values from extensively stud-
ied ground sites (ground truth sites). The temporal perspective offered by remote sensing tech-
niques from minutes up to decades over large areas, provides the ability to “see through the 
clouds” in atmospheric windows where this would generally be impossible (Schott, 2007). 

The most broadly used optical systems in the period from 1972 to 2000 were the LANDSAT-TM 
and MSS, the SPOT-HRV and the NOAA-AVHRR instruments. Examples of other optical remote 
sensing systems include the Chinese-Brazilian remote sensing system, the TERRA spacecraft, the 
European ENVISAT, the Indian IRS series and several Japanese experimental projects. High reso-
lution systems (4m in multispectral mode, one meter or less in panchromatic mode) are for exam-
ple the Quick-Bird satellite, IKONOS, and Rapid-Eye. Radar systems are also becoming more 
numerous: Canada’s RADARSAT-1, and 2, the German TERRA-SAR-X, the European Advanced 
Synthetic Aperture Radar (ASAR) positioned on ENVISAT, and the Italian COSMO-SkyMed-X-
band system. Significant interest is also being shown in the application of hyper spectral systems. 
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In comparison to multispectral sensors, a hyper spectral sensor collects data in a large number of 
very narrow wavelengths. NASA’s Earth Observer-I, launched in 2000, was the first orbiting 
spacecraft to carry a hyper spectral imager-Hyperion. The Hyperion instrument collects data over a 
narrow swath in 220 bands of 10 μm width. Other examples are DAIS instrument, the Compact 
Airborne Spectrographic Imager (CASI), and NASA’s AVIRIS. Another class of satellites systems 
is the small sat, developed using off-the-shelf mechanisms. The leader in this new technical field 
is Surrey Satellite Technology Limited, which has constructed the DMC or Disaster Monitoring 
Constellation of small satellites, which were purchased by several governments, including Algeria, 
Nigeria, China and the United Kingdom. The imaging sensor carried by these satellites is similar 
to LANDSAT’s TM in the visible and near-infrared spectral bands (Tso &  Mather, 2009). More 
details about the working of the main types of sensor carried by the different remote sensing plat-
forms presented in textbooks such (e.g., Mather, 2004; Lillesand et al., 2008). 

B. Remote sensing application in Syria 

The application of remote sensing in Syria is similar to the situation which exists in other develop-
ing countries. Remote sensing technology has been in place for more than two decades but has 
lacked the expected effectiveness of such technology as used in the countries of the developed 
world. The General Organization for Remote Sensing (GORS) was established by the Syrian Arab 
Republic (SAR) in 1986 and is today the most important and highest scientific body in the country 
competent to conduct remote sensing. It carries out many scientific projects and studies based on 
the application of remote sensing in the Syrian territories, and has utilized these skills even outside 
the country’s borders (e.g., in Sudan). All of these studies have been addressed to the govern-
ment’s institutions and ministries, and thus the basics and the details of remote sensing techniques 
has remained almost entirely within the confines of GORS and the researchers who work within 
this organization. 

Access to remote sensing technology has been limited to those interested in studying this science 
further. Until 2001, for example, the remote sensing module was taught in geography departments 
at Syrian universities for only one semester (two hours per week). Greater access to this technolo-
gy is needed, including an upgrade of the facilities and training available in this subject throughout 
Syrian universities. 

In addition to GORS, there are two other scientific authorities who have published studies based 
on the use of remote sensing technology: the Arab Centre for the Studies of Arid Zones and Dry 
Lands (ACSAD) and the International Centre for Agriculture Research in Dry Areas (ICARDA). 
Unfortunately, these two bodies have refused to cooperate with university and graduate students, 
requiring several levels of approvals before any research is distributed for academic purposes. The 
other related international institutions in Syria are the Food and Agriculture Organization (FAO) 
and the United Nations Development Program (UNDP), which work in co-operation with national 
institutions mentioned above. 

A vital component of the research required for this thesis was a project undertaken by GORS in the 
provinces of Arraqqa, Deir Azzour and Al-Hasakah. “The Survey of Natural Resources in the 
Eastern Regions of Syria in Cooperation with the Ministry of Agriculture and Agrarian Reform” 
was initiated in 2004 and was undertaken over a period of five years. Data was remotely collected 
from ASTER, IRES, SPOT and an Algerian satellite. The project included: 

o A tour of the provinces in question to choose the appropriate areas from which to take spec-
trometry readings on a variety of crops for the purpose of spectral profile/characterization, dur-
ing which different stages of growth were to be distinguished spectrally using satellite images; 

o Field testing of the devices to be used in the study (Spectrometer/FieldSpecPro and GPSs); 
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o The characterization of agricultural crops and land use during May 2005, consistent with the 
presence of winter crops, and during August 2005, consistent with the presence of summer 
crops. Some 1,050 sites were identified for the purposes of the study; 

o Spectrometry readings on strategic crops (wheat, barley, lentils, sugar beet, cotton, watermelon 
and maize). These readings were conducted on average once every two weeks through the 
stages of crop growth; 

o Input of field survey data and spectrometry readings to databases through electronic forms pre-
pared for this purpose; and 

o The creation of spectral signatures for each crop under study. Analysis of these spectral signa-
tures led to the identification of the optimal time to request satellite images to be used in the es-
timation of the areas of winter and summer crops. 

The project’s objectives were: a study and cost estimate on crop area and yield for various strate-
gic crops in Syria compared with traditional methods, and the production of maps of winter and 
summer crops, allowing the calculation of the level of agriculture in the regions. Many other stud-
ies focused on the Euphrates River Basin have proved essential during the development of this 
thesis.  

One of the aims of the project of Beaumont (1996) was to evaluate the effectiveness of satellite 
data for approximation agricultural changes within the upper part of the Euphrates basin and to 
calculate the area of irrigated agriculture. Two satellite images (LANDSAT-MSS) taken in the 
mid-1980s of two catchments was used. It is maintained that the satellite data offer more details 
and gives insights into the agriculture of the region which was not available from any other prior 
source. 

The paper from Hirata et al. (2001) focused on the vegetation classification in the Abd Al- Aziz 
mountain region in north-eastern Syria using geo-coded bands (2, 3, and 4) of LANDSAT-5-TM 
images to analyze the vegetation distribution in this highly diverse rangeland. The average classi-
fication accuracy was 85%. This shows that a 30*30 m spatial resolution of LANDSAT-TM imag-
es had the ability to classify natural vegetation at six sub-divided community levels. 

Zaitchik et al. (2002) used two LANDSAT-TM images from September 1990 and 2000, jointly 
with created digital elevation data from the ASTER sensor and the statistical tools of landscape 
ecology, to measure changes within the irrigation projects in the Al-Khabour-watershed. This 
analysis provides a description of the changing nature of agriculture. By joining this remotely 
sensed data with biophysical information on climate and hydrology, it is also possible to assess the 
hydrologic impact of various water extraction and diversion schemes. 

The activities of ICARDA cover a wide range of countries of the Middle East and North Africa. 
Research on the agricultural systems in Syria was carried out at the Yale Center for Earth Observa-
tion (CEO) in 2004. Time-series analysis of satellite data and ground truth studies were utilized to 
observe and evaluate changes in agricultural land use over the past 30 or more years. The research 
plan was used to expand these time-series data throughout historical and archaeological studies, 
and to relate land use changes to socio-economic methods. The major objectives were to classify 
the present classes and spatial geographic distribution of agricultural systems, and to map their 
development and evaluate their sustainability. The six agricultural systems were: river and wadi; 
rain-fed steppe; irrigated steppe; canal-fed steppe; mountain/hill; and coastal (ICARDA, CEO, 
2004). 

De Pauw et al. (2004) published a paper on the land use and land cover in Syria during the period 
1989/1990. The research was based on an interpretation of the data (LANDSAT-5-TM) and field 
checking. The approach to map land cover/land use was based on manual interpretation of hard-
copy images. The main product was a LULC-map of Syria for the base years 1989/1990. For this 
LULC-map, a local and a posteriori classification system was selected, incorporating elements of 
both land cover and land use. The map legend consists of two main classes: homogeneous units, 
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which can be considered relatively pure (80-90%), and mixed units, which are complexes of ho-
mogeneous units. Twenty-four homogeneous classes were differentiated on the basis of the fol-
lowing major categories: (i) bare areas with or without sparse cover; (ii) cultivated areas; (iii) for-
ests and other wooded areas; (iv) rangelands; (v) urbanized areas; and (vi) water bodies. In addi-
tion, 43 mixed classes were distinguished. Overall, the research confirmed that there is a good 
agreement between the derived land use estimates based on the remote sensing interpretation and 
between statistics derived from the Food and Agriculture Organization of the United Nations data-
base (FAOSTAT). 

De Pauw (2005) used remote sensing data with validation through expert knowledge and ground 
truth to map the agricultural regions in Syria. This satellite imagery (LANDSAT) was used in con-
junction with secondary information (including geological, soil, landform and climate maps) to 
delineate boundaries. 

Celis et al. (2007 a) used the Normalized Difference Vegetation Index (NDVI) calculated from 
spectral data obtained from the AVHRR-sensor on board the National Oceanic and Atmospheric 
Administration satellite NOAA-12 to research the year 1990, and the period April 1992 to March 
1993 using an established classification scheme that employed a hierarchical decision tree to iden-
tify LCLU-types in the Central and West Asia and North Africa region (CWANA). LCLU-types 
relevant for CWANA were selected on the basis of expert opinion, field surveys, and analysis of 
thematic maps and LANDSAT-satellite imagery. To assign a pixel to a particular LCLU-type, the 
decision tree used “sliding thresholds” for the annual minimum, maximum and mean, which var-
ied by agro-climatic zones. NDVI-thresholds were then fine-tuned, based on a careful analysis of 
climate station data and land use maps from different agro-climatic zones. 

The researchers monitoring land degradation and conducting LCLU-change mapping in the 
CWANA-region used remote sensing as a highly valuable tool to understand the highly complex 
issues of land change and degradation. AVHRR-imagery was used for delineating “hot spots” of 
LULC-change. The main advantage of the “hot spots” approach is that it allowed zooming into 
“target areas” for more detailed observations, through ground-based characterization and monitor-
ing assisted by high-resolution satellite information, such as LANDSAT. Some 612 10-daily com-
posites of 8-km (AVHRR) reflectance data, covering the period from January 1982 until Decem-
ber 2000, were used. The NDVI was calculated and aggregated into monthly NDVI-composites in 
order to reduce the effects of cloud cover. The following kinds of change were allocated to each 
pixel: noise, stable LULC, stable LULC-mosaic, and change pattern. Seventeen stable classes were 
recognized, as well as 66 change patterns, which were regrouped into 22 change classes and four 
change trends (“intensification of agriculture”; “intensification of natural vegetation”; “retrench-
ment of agriculture”; and “retrenchment of natural vegetation”) (Celis et al., 2007 b). 

The study from Udelhoven & Hill (2009) focused on long-term variations (1982 to 2004) in the 
Syrian rangelands using the ‘‘Mediterranean Extended Daily One Km AVHRR-Data Set’’ 
(MEDOKADS) and the 8-km Global Inventory Modeling and Mapping Studies (GIMMS) data 
set. In agreement with other studies it was found that the NDVI was a suitable proxy for land sur-
face response to precipitation variability even at low vegetation coverage. The inter-calibration of 
existing AVHRR-data with new data from the recent generation of moderate resolution narrow 
band satellite systems such as Spot (VEGETATION or MODIS) is a promising source of data for 
future LULC change monitoring that was already realized in the GIMMS-data set. 

C. Land use-land cover mapping 

During the past decade, after improvements in remote sensing data and computing resources in 
addition to the promise of the advanced classification algorithms, the mapping of LULC features 
became easier, potentially in a digitally form (DeFries & Belward, 2000). During this period, 
mapping of LULC features has developed through many efforts at state (Eve & Merchant, 1998; 
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Craig, 2001), regional (DeFries & Townshend, 1994; DeFries et al., 1998; Bosard et al., 2000; 
Vogelmann et al., 2001; Homer et al., 2004), and global (Hansen et al., 2000; Loveland et al., 
2000; Friedl et al., 2002; Bartholome & Belward, 2005) levels. 

1. Distinction between land cover (LC) and land use (LU) 

There is separation between land use and land cover, but they have a clear joined aspects in the 
real world (Meyer, 1995). Land use indicates to "man's activities on land which are directly related 
to the land" (Clawson & Stewart, 1965). Land cover, in contrast, describes "the vegetation and 
artificial constructions covering the land surface" (Burley, 1961). To explain these definitions: a 
land cover expression is “grassland”, while “rangeland” or “tennis court” indicates the use of grass 
cover. “Recreation area” is a land use expression that may apply to different land cover types, such 
as a beach, park or woodlands. 

Land use indicates to what are the human activities in the land, while land cover indicates to what 
natural features covering the surface of the Earth (Jensen, 2007). Land use influences land cover 
and changes in land cover influences land use. A change in either however is not necessarily the 
result of the other (Riebsame et al., 1994). Land cover is changed mainly by human use (Allen & 
Barnes, 1985; Turner et al., 1990; Turner et al., 1995), but natural occurrences such as weather, 
flooding, fire, climate fluctuations and ecosystem dynamics may also instigate modifications upon 
land cover (Meyer, 1995). Land use and land cover are not identical although they are interrelated 
(Briassoulis, 2000). The difference is schematically depicted in Table 2.1. 

Table 2.1: Types of land cover and associated types of land use (Source: Modified from Briassoulis, 2000) 
Types of land cover Types of land use 

 

Forest Natural forest-Timber production-Recreation 

Grassland Natural area-Pastures-Recreation-Mixed use: Pastures and 
recreation 

Agricultural land Cropland: Annual crops-Orchards-Mixed uses 
Built-up land City-Village-Archaeological site-Industrial area-

Transportation-Mixed uses 

 

2. The classification process 

The most commonly considered technical, methodological and experience fundamentals to pro-
duce an accurate classified thematic map from a remotely sensed image, are: the remotely sensed 
data have a suitable temporal, spectral and spatial resolution in regard to the characteristics of the 
study area of interest. Furthermore, the obtainability of supplementary data would give the data of 
remote sensing more accuracy in representing the real world in thematic maps (classification pro-
cess), especially those ground control points; the ability to create an appropriate classification pro-
cedure, and the skills and experiences of those employed for analysis (Lu & Weng, 2007). 

Classification of satellite images is one of the most commonly applied techniques used in remote 
sensing data processing. "Classification involves performing a transformation from the numerical 
spectral measurements into a set of meaningful classes or labels, which can describe a landscape. 
Classification effects a transformation from a physical measurement into a cartographic or themat-
ic description of the Earth’s surface, for examples into terms such as forest, built-up area, water 
bodies, etc. As such, classification can be viewed as a signal inversion process" (Wilkinson, 2000). 

During the 15-year phase studied, there has been progress in three main aspects of remote sensing 
data classification. These are: 1) the advancement of mechanism of the classification techniques: 
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the training or learning strategy; and methods applied to class separation based on statistical or 
other estimators and class separability indexes; 2) the advancement of innovative systems-level 
approaches that supplement the original classifier algorithms; and 3) the utilization of various 
types of data or auxiliary information, both numerical and categorical, in a classification process 
(Wilkinson, 2005). 

While Earth surface features have their own characteristic and spectral reaction in different spec-
tral bands of the electromagnetic spectrum, they can be recognized, identified and delineated in 
multispectral remote sensing. Therefore, the multispectral approach is the heart of the application 
of remote sensing in LULC-classification. By interpreting an image in several spectral wave-
lengths, we can improve the utilized remotely sensed data’s ability to distinguish the various 
LULC-features. For example, water and vegetation reflect light nearly equally in visible bands, but 
these features are almost always separable in near-infrared bands. 

In general, techniques of machine learning and pattern recognition execute the classification. Fig. 
2.6. shows that a pattern is a vector of features that describing an object. This pattern consists of 
measurements on a set of features. The feature of a natural pattern is a set of n- radiance measure-
ments acquired in the various spectral bands for each pixel. It can be considered as the axes of a k-
dimensional space, named the feature space (Tso & Mather, 2009). The classifier or the decision 
maker allocates the measurement vector to one of a set of classes based on a suitable decision rule 
(Swain & David, 1978; Lillesand et al., 2008). In the case of multispectral or hyper spectral image-
ry for example, the set of spectral reflectance measured in the different spectral wavelengths can 
be regarded as a signature. In addition, simple pixel values (e.g., spectral reflectance), spatial 
and/or temporal image information can be used (Lillesand et al., 2008). Spatially, one can use tex-
ture analysis considered in the subsequent classification process (Haralick et al., 1973; Soares et 
al., 1997). Temporally, one derives some temporal information, such as multi-temporal mean and 
variance, which can be integrated in the following image investigation (Bruzzone et al., 2004 b). 
Classification of remotely sensed data can be executed using: a single image dataset; multi-
temporal data (multiple images); image data with supplementary information (e.g., digital eleva-
tion measurements or models); or expert of study area based knowledge. 

 
Fig. 2.6: A model for pattern recognition in remote sensing (Source: Modified from Swain & David, 1978) 

In general, classification of LULC-features using remote sensing data consists of numerous phases 
(Robinove, 1981; Mather, 2004; Schowengerdt, 2007), as shown in Fig. 2.7: 

o Identifying: the number and the name of classes that represents the real-world features 
which have defining priority; 

o Feature extraction: data are frequently highly correlated between spectral bands. This high 
correlation might be inappropriate for classification of LULC-features and may reduce 
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classification accuracy. Optionally, one can apply the spatial (e.g., smoothing filter) or 
spectral (e.g., bands subset, such PCT, to reduce the data dimensionality) transformation of 
the multispectral data with the aim to: 1) differentiate between valuable information and 
noise or non-information; and 2) reducing the dimensionality of the data to shorten the 
computing time needed by the classifier, and thus to raise the effectiveness of statistical es-
timators in a statistical classifier; 

o Training: the term “training” is the choosing of the pixels to train/prepare the classifier to 
identify the preferred themes, or classes, and the selection of decision boundaries. Here, the 
drawing of boundaries around geographically located pixels has to be homogeneous, or ac-
ceptably heterogeneous. This phase can be carried out either supervised or unsupervised by 
the user; and 

o Labeling: this is the process of allocating different pixels to their most likely class based on 
the application of the feature space decision boundaries. This process of labeling can be 
supervised or unsupervised. If a pixel is not spectrally alike to any of the available classes, 
then it can be assigned to an unknown class. There are two kinds of relationships between 
the object and the class label: one-to-one (producing a hard classification); or one-to-many 
(producing a fuzzy classification). The object may be a single pixel or a group of neighbor-
ing pixels forming a geographical unit (e.g., an agricultural field). As a result, a thematic 
map is produced, presentating every pixel with a class label. The end result is a transfor-
mation of the digital image data into descriptive labels that classify different Earth surface 
objects or conditions. 

Sensor at aireal- or space- platform

Multi-spectral, multi-temporal and multi-source images; plus ancillary GIS or contextual information

Pre-processing: One or more of these steps (Geometric-, atmospheric- and radiometric- correction; 
enhancement: Color, spatial, radiometric and spectral; plus mosaic and subset)

The pre-processed
multi-spectral image

Feature 
extraction

K-D feature
image

Select training pixels

Auxiliary data (Maps, field
work: GPS-Points, …etc.)

Classes to be
classified

Discriminant Function based
on training statistics + Choise

the classification algorithm

Categorical lables

Accuracy assessment Post-processing: (Filtering … etc.) 
to refine LULC-Classes

K-D feature space

Final thematic map

Classifier

 
Fig. 2.7: The classification process (Source: Modified from Townshend & Justice, 1986; Tutz, 2000; Wilkinson, 2005; 

Schowengerdt, 2007) 
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3. Classification schemes 

"If a reputable classification system already exists, it is foolish to develop an entirely new system 
that will probably only be used by ourselves" (Jensen, 2005). 

Before creating any (LULC) thematic map, a classification system should be selected. Throughout 
the world there are no typical LULC-classification systems, thus many countries have their own 
differing systems. Various LULC-classification systems are designed particularly for use with re-
motely sensed data. Many of these are comparable to other classification systems (or integrate as-
pects thereof) to maintain coherence and allow for data integration. Classification systems come in 
two basic formats, hierarchical and non-hierarchical (Di Gregorio, 2005). A hierarchical con-
struction is often implemented within a classification system. It has the advantages of a harmo-
nized structure and different levels of class detail. This level can then be adapted to the required 
scale of the mapping product (Foti et al, 1994). 

There are two general approaches to classify the remotely sensed data, namely a superior or an 
inferior. The superior approach based on the consideration that the classes are absolutes of the 
LULC-features in the real world. The user determines the classes of interest before obtaining any 
data. Then, the user has to understand the complete probable combination and mixtures of rational 
rule between the various classes (Di Gregorio, 2005). "The major benefit is that classes are stand-
ardized, free of the area and the means used. The weakness, however, is that this method is inflex-
ible, as some of the field training sites may not be easily assignable to one of the pre-defined clas-
ses. A posteriori classification varies primarily by its direct method and its autonomy from prede-
termined designs. The approach is based upon definition of classes after clustering likeness or un-
likeness of the ground truth sites gathered. The advantage of this kind of classification is its flexi-
bility and adaptability in comparison to the inherent inflexibility of the a priori classification. The 
a posteriori approach involves a minimum of generalization. This kind of classification fits the 
collected field observations in a specific area. At the same time, however, because an a posteriori 
classification depends on the specific area described and is adaptable to local conditions, it is im-
possible to define standardized classes. Clustering of samples to define the classes can only be 
done after data collection, and the significance of individual criteria in an individual area may be 
limited when used in another place or in ecologically extremely different zones" (Di Gregorio, 
2005). 

Anderson et al. (1976) defined 10 standards for saying that the applied system for classification of 
LULC-features is improved and successful: 1) the accuracy percentage of 85 % has to be obtained; 
2) the similarity in accuracy percentages for different classes is necessary; 3) the possibility to ob-
tain a classification results from one analyst, which have to be reproducible if another user used 
the same data and methods. This reproducibility must be available not only for various users but 
also over several times; 4) the applicability for large areas has to be satisfied; 5) the ability to use 
the categorization of LULC-features as an alternative for activity; 6) the effectiveness of the appli-
caton of the classification system with multi-temporal remotely sensed data; 7) the system has the 
ability to integrate the subcategories that can be achieved from a ground survey; 8) the system of 
classification must satisfy that the resulting classes must be conformable with larger scale maps or 
enhanced remote sensor data; 9) the ability to compare a future LULC data; and 10) it is important 
- if possible - to recognize the multiple uses of land. 

There is the often realizable fact that no single classification could be applied with all kinds of 
images and scales. There are many Land Use/Land Cover Classification Systems (LULCCS). An-
derson et al. (1976) developed a hierarchical LULC-classification system for use with remote sen-
sor data. It has been implemented by the USGS for 1:250.000 and 1:100.000 scales LULC-
mapping of the United States. Other classification schemes existing for use with remotely sensed 
data are mostly modifications of the Anderson et al. (1976) one. The CoORdinated INformation on 
the Environment (CORINE) land cover classification scheme with three levels from the European 
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Environment Agency (EEA) is an example of a hierarchical classifier, constructed for European 
countries by using LANDSAT-TM/ETM+ data with focusing on agricultural and area of the for-
ests. The first level distinguishes five general LULC-features: 1) artificial surfaces; 2) agricultural 
areas; 3) forest and semi-natural areas; 4) wetlands; and 5) water bodies. The second level is more 
detailed with 15 classes. It is designed for scales between 1:500,000 and 1:1000,000. The third 
level includes 44 classes. It is designed for scales of 1:100,000. The land cover classification sys-
tem of the FAO of the United Nations (UN), as part of the IGBP-land use and cover change LUCC 
initiative AFRICOVER, developed a highly flexible scheme of several environmental layers in-
cluding: soil; lithology; climate; plant physiology; ...etc., with the major goal of creating an envi-
ronmental database. The IGBP-DIS Cover global (1km) data set is based on the NOAA-AVHRR 
(Africover, 2003). 

There are many certified country-based classification system around the world, but they are, unfor-
tunately, not trustworthy when we want to apply it in other countries with different characteristics 
to that one, for which the classification system was originally constructed. Thus, there are up to 
now no systems certified in all countries (i.e. Worldwide) for the classification of remotely sensed 
data, in spite of the advantages that could be presented by depending on a single classification sys-
tem. The detailed reasons for that were explained by Di Gregorio (2005). They are the three gen-
eral standards: purpose, steadiness and causal. 

4. The general classification techniques 

To gain higher accuracy values in the classification of remotely sensed data, and thereby obtain 
higher quality in derived thematic map(s), is possible using advanced classification algorithms. 
The recent literature (e.g., Gong & Howarth, 1992; Kontoes et al., 1993; Foody, 1996 and 1998; 
Miguel-Ayanz & Biging, 1997; Aplin et al., 1999 a; Stuckens et al., 2000; Franklin et al., 2002; 
Pal & Mather, 2003; Gallego, 2004) recommended several major standards for increasing the clas-
sification accuracy: 1) new technical development of sensors; 2) sufficient availability and a wide 
spectrum of variability of remote sensing data; 3) finding new superior methods that can offer a 
better use of spectral information; 4) developing techniques for fusion of the different sources of 
information, and for integration GIS-data with the other sources of information; 5) giving more 
attention to the use of knowledge-based classification techniques and other more powerful ma-
chine learning algorithms; and 6) the permanent technical development of computer power to have 
a constant performance. This led to changing from conventional statistical techniques to those ad-
vanced but complex techniques and algorithms that are more sophisticated (Jain et al., 2000; 
Richards, 2005). 

The general concept of pattern classification applied to a specific problem depends on: the data; 
the model of the data; and the information that one is supposed to get from the data (Bezdek, 
1981). The data could be: qualitative; quantitative; numerical; pictorial; textual; linguistic; or any 
combination of them. For example, pictorial data records information about the object represented 
in the image. "The model used must be such that it transforms the data and makes them compatible 
with the search and matching strategies to be used. Each search and matching strategy corresponds 
to a different pattern classification methodology. This is the reason for the use of different con-
cepts to pattern classification (e.g., mathematical or statistical, heuristic, and structural etc.)" (Tou 
& Gonzalez, 1974). 
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Researchers have presented various approaches for image classification, which can be divided into 
three general groups (Fig. 2.8) (Pal & Pal, 1993). 

 
Fig. 2.8: Major approaches for image segmentation/classification (Source: Modified after Pal & Pal, 1993) 

Statistical classifiers: these are ideally suitable for data that have information with an assumed  
theoretical model based distribution within each of the classes. The representative algorithms for 
this group are: MLC; PPC; k-NNC and MDC. Corresponding literature for these algorithms can be 
found in (Swain & Davis, 1978; McLachlan, 1992; Ripley, 1996; Hastie et al., 2001). Fuzzy math-
ematical approaches: Zadeh, (1965) presented the concept of fuzzy sets in which unclear 
knowledge can be used to delineate a result. Artificial intelligence (AI): here, supervised classifica-
tion approaches were developed from the starting of the 1970s, with the well-known “Arch Con-
cept Learning” problem presented by Winston (1975). These methods based on the learning from 
descriptions of a constructive pattern, and therefore gave up the value-attribute based model that 
was used in other methods. AI-type models were constructed based on semantic networks and on 
predicate logic. 

Liu & Mason (2009) summarized the classification approaches in seven categories: unsupervised 
classification; supervised classification; hybrid classification; single pass classification; iterative 
classification; image scanning classification; and feature space partition. In most cases, image 
classification approaches included: supervised and unsupervised; parametric and nonparametric; 
hard and soft (fuzzy) classification; per-pixel, sub-pixel, object-oriented and per-field; spectral 
classifiers, contextual classifiers and spectral-contextual classifiers; or combinative approaches of 
multiple classifiers (Lu & Weng, 2007). This last division was adopted in this chapter. This previ-
ously mentioned article presents: present practices; remotely sensed data classification troubles 
and scenarios. It highlighted the main advanced classification approaches, in addition to those 
techniques that can improve the at-end classification accuracy. 

Although there are many developed classification approaches, which approach is more appropriate 
for objects of interest in a selected study area is not totally understood (Schowengerdt, 2007). Se-
lection of an appropriate classifier needs consideration of many issues, such as: classification accu-
racy; algorithm performance; computational resources (DeFries & Chan, 2000); and effective sep-
aration of the classes (Flygare, 1997). Also, there are other issues that could be considered to select 
a classifier. They are: the spatial resolution; utilization of supplementary data; the used classifica-
tion scheme; the available and selected digital image processing software; and the skill of the user 
(Lu & Weng, 2007). A comparative study of various classifiers is often carried out to determine 
the best classification result for a definite study area (Zhuang et al., 1995; Atkinson et al., 1997; 
Cortijo & De La Blanca, 1997; Flygare, 1997; Michelson et al., 2000; Hubert-Moy et al., 2001; 
Keuchel et al., 2003; Pal & Mather, 2003; Erbek et al., 2004; Lu et al., 2004; Olthof et al., 2004; 
Pal & Mather, 2004; South et al., 2004). According to many studies and cases, contextual-based 
classifiers, per-field approaches, and machine-learning approaches give more classification accu-
racy than, for example, MLC, although some exchanges presented in: classification accuracy; time 
consumption, and computing resources have to be considered (Lu & Weng, 2007). 

Modifications of image classification techniques increase classification accuracy. Therefore, in 
contrast to classifiers which join a variation of the same classifier, other techniques are based on 

Image segmentation/classification approaches 

Statistical classifier Fuzzy mathematical approa-
ches

Artificial intelligence 
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the joining of different algorithms (multiple classifier systems) (Benediktsson & Kanellopoulos, 
1999; Jeon & Landgrebe, 1999; Steele, 2000; Liu et al., 2004 a; Fauvel et al., 2006 a and b). 

The next sub-chapter will review the fundamental ideas of classification techniques applied in re-
mote sensing. Classification techniques, grouped using these criteria (training samples, parameters, 
pixel information, definitive decision and spatial information), and their advantages and disad-
vantages will be discussed in detail. A detailed explanation for all supervised classifier approaches 
is beyond the scope of this dissertation. Interested readers can be referred to several references. A 
general introduction to pattern recognition and classification is given in the textbooks by Duda et 
al. (2000); and Bishop (1995 and 2006), and in the review paper by Jain et al. (2000). A detailed 
introduction in the context of remote sensing is given by Richards and Jia (2003), and a general 
overview by Richards (2005). 

4.1. Training sample based categories 

Unsupervised classification: when insufficient ground reference information is available (e.g., 
field work measurements such as representative training samples) about the characteristics of spe-
cific classes for classification processes, an unsupervised classification technique is used to identi-
fy natural homogeneous groups (clusters) within the remotely sensed data. 

Unsupervised classification approaches are based on non-parametric statistical approaches, such as 
Iterative Self-Organizing Data Analysis Technique (ISODATA) (Tou & Gonzalez, 1974), K-
means-clustering (Johnson & Wichern, 1988) algorithms, and the advanced unsupervised neural 
classification method Self-Organizing feature Mapping (SOM) (Kohonen, 1989). The details of 
other clustering algorithms can be found in Jain and Dubes (1988); and Mather (2004). In this ap-
proach, the image processing software groups pixels that have similar properties (in feature space 
and in adequate representative spectrally-separable clusters for the ground surface features), based 
on the statistics of the radiometric value/digital number of each pixel. Then the analyst evaluates 
the classified map with field survey data, aerial photographs and other reference data, and labels 
these clusters (spectral classes) with its equivalent in the real world to information classes, without 
having a prior knowledge of the classes. Generally, some clusters must be subdivided or combined 
to make this equivalence. Results of an unsupervised classification can be used to define the train-
ing samples, which are a main input in the supervised classification, or the labeled cluster map can 
be just accepted as the final map (Duda et al., 2000; Richards & Jia, 2003; Jensen, 2005; Lu & 
Weng, 2007; Schowengerdt, 2007). 

A general problem of algorithms used in unsupervised classification is that data can include clus-
ters with different shapes and sizes. Providing an applicable definition of clusters and the selection 
of a sufficient guide for likeness are complex (Jain et al., 2000). Although this approach is auto-
mated and seems complicated and powerful, the results are generally lower than those attained by 
using supervised approaches, where the most real-world features are complex in their nature, and 
therefore may not be easily spectrally separable. The assumption formed of the unsupervised ap-
proach that the pixels belonging to a specific class will have similar spectral response and that all 
classes are separable from each other in spectral feature space, is not easy to realize in practice. 
The approach also depends upon the analyst’s skill in determining suitable parameter values, and 
in integrating the clusters with information classes. Finally, the analyst cannot impact the identity 
and coverage of the resulting categories. Accordingly, the classification accuracy based on unsu-
pervised classification methods is inadequate (Jain et al., 2000). Computational complexity is high 
and there is little fitness for very high resolution data. 

The advantage of unsupervised approaches is that it requires no prior-knowledge. On the other 
hand, its disadvantage is that it does not provide any final membership decision. Also, class mem-
berships (e.g., class labels) and other knowledge about the image source do not influence the clus-
tering algorithm, only the interpretation of the final clusters (Jain et al., 2000). Finally, unsuper-
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vised classification is used particularly if reliable training samples for supervised classification 
inaccessible or are too expensive to obtain (Richards & Jia, 2003). 

Supervised classification: supervised approaches, as seen in Fig. 2.9, are based upon training sites, 
and can assure the former but not the latter; unsupervised approaches can assure the latter but not 
the former (Tso & Mather, 2009). 

Each image is characterized by n-observations (the values in n-data bands). Supervised image 
classification is an approach in which the analyst delineates the training samples (vectors in an n-
dimensional feature space) on the image which are representative of each interested LULC-class 
(Mather, 2004). A basic step in supervised classification and mapping is the design of a realistic 
classification scheme, which satisfies a clear definition of separable discrete informational LULC-
categories within the available data (Cingolani et al., 2004). Training sites/samples can be created 
from fieldwork, aerial photography and other existing maps based on analyst knowledge (e.g., 
thematic, Google Earth), and are then used as reference information (Skidmore, 1989; Wilkinson, 
2000; Jensen, 2005; Lillesand et al., 2008). Visual interpretation is used to locate the training sam-
ples position on the image (Mather, 2004). These training samples have to be homogeneous spec-
trally to represent specific LULC-classes. A supervised algorithm, after the training samples stage, 
uses the distribution of the training samples for each class to assess density functions in the feature 
space statistically and to divide the space into class regions (Fukunaga, 1990). In other words, the 
used image’s processing software recognizes the spectral signature of each training site based on 
its statistics (Leica Geosystems, 2005), and then classifies the images in different LULC-classes 
according to the applied classification algorithm (Jensen, 2005). Here, the information required 
from the training data differs from one algorithm to another. To get the assessment of the accuracy 
of supervised classification, two parts are available to determine the accuracy: partly by the quality 
of the ground truth data; and partly by how well the set of ground truth pixels are representative of 
the full image. 

The most general and used supervised approaches are: The Maximum Likelihood Classifier 
(MLC) and the Minimum Distance Classifier (MDC). The advanced supervised classification al-
gorithms are: The Artificial Neural Network (ANN), the Decision Tree Classifier (DTC), the 
Nearest Neighbor Classifier (NNC) and the Support Vector Machines classifier (SVM). 

The supervised approach is more popular but requires more detailed a priori knowledge of the 
study area and analyst expertise, to identify suitable training sites and the resultant spectra for clas-
sification (ERDAS, 1999). The characteristics of the training sites selected by the analyst have a 
great impact on the dependability and the functioning of a supervised classification process. This 
approach has a more subjective impact on the analyst during the defining of the LULC-categories 
characteristics and its representative training samples. Supervised classification approaches need 
more user-data-software interaction, especially in the collection of training data. 

 
Fig. 2.9: The principal idea of the supervised classification approach for multi-spectral remote sensing (Source: Mod 

ified from Eastman, 2006) 
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4.2. Parametrical based categories 

Parametric classifiers: these are also called single-stage classifiers, where an observation gives the 
label of one of a determined number of classes in a single step (Swain & Hauska, 1977). 

Parametric classification methods use a predetermined parameterized model (usually the Gaussian 
normal distribution) of the classes in the spectral feature space. Its assumption is based on the 
premise that a normally distributed dataset presents and that the statistical parameters (e.g., mean-
vector, and covariance-matrix) produced from the training samples are representative. The work-
ing of statistical classification algorithms will consequently be based on how acceptably the data 
agree with the predetermined model. If the data used meet with the requirements of this model, 
these classification methods would give higher classification accuracy than nonparametric meth-
ods. The Maximum Likelihood Classifier (MLC) is the most famous and important model for par-
ametric methods, due to its strength and its easy availability in almost any image-processing soft-
ware. 

The advantage of parametric classifiers in comparison to non-parametric classifiers is the theoreti-
cal evaluation of classifier error from the assumed distributions (Schowengerdt, 2007). Neverthe-
less, this assumed normal spectral distribution is often not true, especially in complex landscapes. 
Also, inadequate, non-representative, or multi-mode distributed training samples can introduce 
more uncertainty to the image classification process. Another disadvantage is the difficulty in inte-
grating spectral data with auxiliary data. As Swain and Hauska (1977) found, the statistical ap-
proach has two essential disadvantages, which are: 1) classification used only one probable com-
bination of features; and 2) because the testing of each sample against all classes, this leads to a 
rather high degree of ineffectiveness. 

Non-parametric classifiers: where the purpose of the training stage for a classifier is to define dis-
tinction surfaces that split the multidimensional feature space into zones matching to various the-
matic classes, the simplest structure of classifier is that based on non-parametric methods, because 
these classifiers are probability distribution free (no assumption of a normal distribution for the 
dataset is required), and they make no assumptions about the statistical estimates form of the den-
sity functions (Fukunaga, 1990). Therefore, non-parametric classifiers are often considered as ro-
bust because they could work satisfactorily for a broad range of class distributions, as long as the 
class signatures are plausibly separate. Non-parametric classifiers are consequently mainly appro-
priate for the integration of non-spectral data (ancillary data) into a classification process. Broad 
categories of non-parametric spectral classifiers exist, including statistical methods (e.g., the paral-
lel-piped or box classifier, the minimum distance classifier), and non-statistical methods (e.g., the 
neural network, support vector machines, decision tree classifiers and expert systems). Various 
prior studies have showed that non-parametric classifiers may offer more improved classification 
results than parametric classifiers especially in complex landscapes (Paola & Schowengerdt, 1995 
a; Foody, 2002). 

4.3. Pixel information-based categories 

Per-pixel classifiers: most classification approaches are based on per-pixel information, where 
each pixel is classified into one category and the LULC-classes are mutually exclusive. Various 
statistical methods can be used for pixel-based classification (see: Löffler, 1994; Hildebrandt, 
1996; Richards & Jia, 2003; Mather, 2004; Lillesand et al., 2008; Albertz, 2009). The automated 
classification of distinct pixels can be based on their spectral characteristics (spectral classifica-
tion), or texture characteristics (texture analysis). The spectral signature of each distinct pixel 
matches the reflected radiation energy of the imaged segment of the Earth's surface. The recording 
of the radiation spectrum can be done in several bands. Merging these various spectral bands cre-
ates an n-dimensional feature space, where each pixel, depending on its spectral values, can be 
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denoted. Alike pixels correspond as the one same thematic class, thereby resulting point clusters. 
The delineation of these clusters in feature space is the goal of multi-spectral classifiers. However, 
the resulting signature in these classifiers ignores the influence of the neighboring mixed pixels 
(one pixel covers an area with more than one type of land cover). The mixed pixels result from the 
technical geometry of the sensor and data storage in grid format. They arise by geometric resolu-
tion in this relation: the lower the spatial resolution, the higher the ratio of mixed pixel is the pixel. 
For this reason, the grid-cell-based close of separate information (LULC) can only be approximat-
ed to be correct. Another reason for mixing is because of the sensor blooming effects from neigh-
boring pixels that impact the range of the pixel (Townshend et al., 2000). Finally, if the used spec-
tral bands of a multispectral image are mis-registered, mixing occurs even without reassembling 
resampling for geometric registration (Billingsley, 1982; Townshend et al., 1992; Schowengerdt, 
2007). This fact was recognized early in the analysis of LANDSAT-MSS-data (Horwitz et al., 
1971; Nalepka & Hyde, 1972; Salvato, 1973). 

Sub-pixel classifiers: these have been developed to give a more suitable representation and accu-
rate area estimation of LULC than per-pixel approaches, mainly when coarse spatial resolution 
data are used (Foody & Cox, 1994; Binaghi et al., 1999; Ricotta & Avena, 1999; Woodcock & 
Gopal, 2000). 

All natural (heterogeneity landscapes) and most man-made surfaces are inhomogeneous at some 
level of spatial resolution, therefore the remotely sensed data has its limitations (especially in me-
dium and coarse spatial resolution data). Thus, signature mixing does not go away if one changes 
to higher-resolution imagery. The mixed pixels are a major problem, impacting the successful use 
of remotely sensed data in per-pixel classification approaches (Fisher, 1997; Cracknell, 1998). The 
development of hyper-spectral sensors has encouraged renewed interest in techniques for approx-
imating pixel mixture mechanism and its components, based on the traditional spectroscopy tech-
niques (Adams et al., 1995). A fuzzy representation, in which each location is collected from vari-
ous and biased memberships of all candidate classes, can participate in solving the pixel mixing 
problem. Different techniques have been used to develop soft classification algorithms, including: 
fuzzy-set theory; Dempster–Shafer theory; certainty factor (Bloch, 1996); softening the output of a 
hard classification from MLC (Schowengerdt, 1996); IMAGINE’s sub-pixel classifier (Huguenin 
et al., 1997); and neural networks (Foody, 1999 a; Kulkarni & Lulla, 1999; Mannan & Ray, 2003). 
The fuzzy-set technique (Foody, 1996 and 1998; Maselli et al., 1996; Mannan et al., 1998; Zhang 
& Kirby, 1999; Zhang & Foody, 2001; Shalan et al., 2003), and Spectral Mixture Analysis (SMA) 
classification (Adams et al., 1995; Roberts et al., 1998 b; Rashed et al., 2001; Lu et al., 2003 b) are 
the superior methods that frequently used to solve the problem of the mixture between pixels. 
SMA, for example, is helpful for improving classification accuracy accordingly to (Adams et al., 
1995; Roberts et al., 1998 a; Shimabukuro et al., 1998; Lu et al., 2003 b), and is mainly significant 
for improving area estimation of LULC-classes based on coarse spatial resolution data. 

However, one major drawback of sub-pixel classification is the difficulty in evaluating accuracy 
(Lu & Weng, 2007). 

Object-oriented classifiers: segmentation methods have been in use since about 1970. They were 
developed primarily in the topic of image processing for particular applications in: medicine; pat-
tern recognition; neuron-informatics (scene analysis); computer aided vision (computer vision); 
and communications engineering. 

It is true that the pixel-based approaches have specific robust advantages and remain broadly used, 
but these too have general disadvantages: 1) it might be difficult to pinpoint a definite assignment 
of the pixels on the plot-level to a single LULC-class because of the pixel values variations, where 
the changeability in spectral response and reflectance ratio within an object (e.g., agricultural par-
cel) can be influenced by parcel-internal variations (e.g., soil moisture and heterogeneities or plant 
disease). 2) the spectral properties of neighboring pixels may be a mixture between two or more 
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classes (e.g., two different agriculture parcels). Applying the object-based image segmentation can 
average each pixel value to separate each LULC-object. Therefore, the mixed pixels are eliminated 
(Smith & Fuller, 2001). 3) the target-object is significantly larger than the pixel size (Carleer et al., 
2005). 4) the spatial extent of each pixel and LULC-feature of interest do not always correspond 
(Aplin & Smith, 2008). Classifications that rely on the spatial scale of the objects of interest more 
than on the coverage/dimension of image pixels, may lead to a reduction of this problem (Flanders 
et al., 2003; Hay & Castilla, 2006; Platt & Rapoza, 2008). 

In object-based approaches, bordering pixels with similar characteristics (spectral, texture, form) 
are aggregated into pixel-groups (regions, segments, image-primitives, image-objects) (Haralick & 
Shapiro, 1985; Haralick & Shapiro, 1992; Haberäcker, 1995; Baatz et al., 2004; Hay & Castilla, 
2006; Lee & Warner, 2006; Aplin & Smith, 2008). Segment information (mean spectral value, 
texture, shape and neighborhood relationships) can be derived using an object-based approach, 
isolating the ground surfaces features imaged on an image into a number of spatially continuous, 
non-overlapping regions which are homogeneous. This is then used instead of the pixels during the 
classification process (Pal & Pal, 1993). 

Gorte (1999) determined the following requirements for successful object-based approaches: 1) 
high spatial resolution; and 2) powerful hardware with extensive memory. 

The well applied techniques to segment remotely sensed data could be classified into pixel-, edge- 
and region- based methods and their combinations. Pixel-based segmentation approaches start by 
grouping the pixels using image histogram thresholding or clustering in the multiple-band feature 
space. This can be considered as unsupervised classification rather than segmentation (Haralick & 
Shapiro, 1985; Pal & Pal, 1993). Edge-based segmentation approaches use edge detection algo-
rithms (e.g., Sobel-filter) to find the edges of the different neighboring regions in an image. One 
disadvantage is that there are often gaps in the edges, so that the segmentation cannot be accom-
plished with these approaches alone (Haralick & Shapiro, 1985; Pekkarinen, 2002). 

The difference between an object-based and object-oriented classification is the data type. The 
object-based approach utilizes the segments of an image to stabilize or to get a better classifica-
tion, such as in the land cover map of UK produced from Smith and Fuller (2001); and Fuller et al. 
(2002). The object-oriented classification, however, can be considered as a multi-level data proce-
dure to extract information from the illustrated reality in complex, hierarchical data models 
(Egenhofer & Frank, 1989; Molenaar & Richardson, 1994). The complete procedure consists of: 1. 
classification; 2. classes-generalization; 3. association; and 4. aggregation. 

The availability of the eCognition software gives the object-based classification of remotely 
sensed data more fame. It uses a region-growing model at various scale levels from coarse to fine, 
using spectral and spatial information (Campbell, 2002). The segmentation techniques implement-
ed by the eCognition software were carried out and tested in a number of studies (e.g., Tufte, 2003; 
Hay et al., 2003). The hierarchical association of the network of image objects with different 
scales, which can be created after multi-resolution segmentation with eCognition, can be used to 
classify objects at one level based on the classification of their sub-objects or super-objects (Fig. 
2.10) (Mitri & Gitas, 2004). 
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Fig. 2.10: The general concept of the object-based classification (e-cognition classification model) (Source: Adapted 

from Definiens, 2004) 

Despite the possibility of misclassifying specific pixels, object-based classification has these ad-
vantages: 1) thematic maps produced could be more identifiable and directly usable by users (Benz 
et al., 2004; Wu et al., 2007); 2) the object-based information can be joined with other spatial data 
under Geographical Information System (GIS) environments (Geneletti & Gorte, 2003; Benz et 
al., 2004; Walter, 2004); 3) reducing the inter-class spectral variation and noise generally deletes 
the so-called salt-and-pepper effects that are classic in pixel-based classification; and 4) the availa-
bility of more classification accuracy than pixel-based, because of the complementary use of large 
object information sets (spectral, spatial, textural, and contextual) (Lobo, 1996; Aplin et al., 1999 
b; Guo et al., 2007; Platt & Rapoza, 2008). This approach shows higher accuracy (~ 8 %) than the 
MLC, although the MLC-algorithm still had a surprisingly high accuracy of about 85 % (Mather, 
2004). 

More studies have presented the advantages of object-based classification in comparison to pixel-
based classification. Also, there are other studies that refer to its potential limitations (Hay & Cas-
tilla, 2008; Kampouraki et al., 2008). In the object-based classification approaches, two kinds of 
uncertainty are discussed: 1) characteristic uncertainty (uncertainty about the thematic class to 
which objects or image primitives belong); and 2) spatial uncertainty (e.g., uncertainty about the 
location of object boundaries (Cheng et al., 2001). Both kinds are strongly correlated (Brown, 
1998; Zhang & Stuart, 2001). For example, the letter from Liu and Xia (2010) reviewed the ad-
vantages and disadvantages of an object-based approach application in remote sensing image clas-
sification in comparison to a pixel-based approach. Two kinds of errors often arise in image seg-
mentation including: over-segmentation; and under-segmentation (Möller et al., 2007; 
Kampouraki et al., 2008). These errors may influence the next classification process in two ways: 
1) under-segmentation could result in image objects that extend among more than one class and so 
establish classification errors since all pixels in each neighboring mixed image object have to be 
allocated to the same class. (Wang et al., 2004) also indicate that there is the risk of integrating 
pixels from various classes into one object primitive, resulting in mixed-object and misclassifica-
tions; and 2) LULC-features extracted from missegmented image objects, resulted from over-
segmentation or under-segmentation errors, are not representative for real ground surface charac-
teristics (e.g., shape and area), so they may reduce the classification accuracy if not selected cor-
rectly (Song et al., 2005 a). For that reason, the final performance of object-based classification is 
determined by both its advantages and disadvantages (Liu & Xia, 2010). 

Per-field classifiers: the per-field/per-parcel classifier is constructed to deal with the problem of 
environmental heterogeneity and it was applied successfully in improving classification accuracy 
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(Aplin et al., 1999 a and b; Aplin & Atkinson, 2001; Dean & Smith, 2003; Lioyd et al., 2004). 
This classifier equalizes out the noise by using land parcels (called fields) as separate units (Pedley 
& Curran, 1991; Lobo et al., 1996; Aplin et al., 1999 a and b; Dean & Smith, 2003). GIS provides 
the basis for implementing per-field classification by integration of the both vector and raster data 
(Harris & Ventura, 1995; Janssen & Molenaar, 1995; Dean & Smith, 2003). The vector data are 
used to subdivide an image into parcels, and classification is then carried out based on the parcels, 
thus avoiding within-class spectral variations. The image data will be pixel-based classified, using 
either a supervised- (see: Aplin et al., 1999 b) or unsupervised- (see: Hoffmann, 2001) approach. 
However, per-field classifiers are often, according to (Janssen & Molenaar, 1995), affected by 
such factors as: 1) the spectral and spatial characteristics of remote sensing data; 2) the size and 
shape of the fields; 3) the definition of field boundaries; and 4) the LULC-classes chosen. 

It is difficult to treat the dichotomy between vector and raster data types. Also, an update of exist-
ing GIS-data sets is not possible by this approach (Hoffmann, 2001). Therefore, the per-field clas-
sification approach is not broadly used. Here, an alternate approach is to use an object-based clas-
sification (Thomas et al., 2003; Benz et al., 2004; Gitas et al., 2004; Walter, 2004), which requires 
no GIS-vector data. 

The basis for a successful application of a per-field classification is the satisfaction of a geometri-
cally accurate vector data set with a matching date. If this data must be produced by visual inter-
pretation or manual adjustment of existing spatial data, the time required increases considerably, 
and this approach loses its advantages (Hoffmann, 2001). 

4.4. Land cover class output-based categories 

A class definition always contains uncertainties and can never be absolute. Therefore, hard or 
sharp (crisp) and soft or vague (fuzzy) classification methods differ. 

Hard classification: most classification algorithms produce a “probability” function for the alloca-
tion of a class label to each pixel. A hard classification is created by selecting that class label with 
the greatest probability of being accurate (Winner-Take-All), where the feature space decision 
boundaries for a hard classification are well-defined (Fig. 2.11). Even if the probability values are 
reserved, multiple labels at each pixel must be allowed for. The probability values represent the 
virtual proportions of each real ground surface category within the spatially- and spectrally-
integrated multispectral vector of the pixel in the default feature space (Schowengerdt, 2007). 

 
Fig. 2.11: The difference between hard- and soft- classification (Source: Modified from Schowengerdt, 2007) 
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Soft (fuzzy) classification: while there are limitations in the ability of classical hard classification 
approaches in solving the mixed pixels problem (Liu et al., 2010), soft classification approaches 
have a greater ability for solving this problem, where they can label one class as true and all others 
as false through employing the fuzzy logic concept. Fuzzy terms can be expressed in relation to 
probabilities and how they use fuzzy-logic-based algorithms (fuzzy classification). These algo-
rithms can divide a pixel which has a membership of more than one LULC-class into all its real 
components (for example, they could divide a pixel existing on a parcel that has more than one 
land cover use, to 70 % agriculture, 25 % pasture and 5 % urban). Softness allows for a level of 
heterogeneity and thus allows a more realistic representation of the real ground surface features on 
the produced thematic map (Foody, 1999 a). Fuzzy classification algorithms are based originally 
on fuzzy-set-theory introduced in 1965 by Zadeh (cited in: Cheng, 2002; Ricotta, 2004). It takes 
uncertainty into account by allowing biased membership to a class. Each elementary in the remote-
ly sensed image can be assigned in a membership function based on a range of values from 0 to 1. 
If the elementary has the value of 0 then this means that this elementary has no membership to a 
specific class, and it has a certain membership when its value equal to 1. These values refer to the 
possibility, not to the probability, hence, the values for all classes located in one pixel need not 
sum to 1. Another approach to control uncertainty is irregular classification, where image primi-
tives can be allocated to three probable values for each class: not a member; maybe a member; or 
certainly a member (Ahlqvist et al., 2000). 

Implementation found that fuzzy-logic-algorithms came into being mostly as an extension of exist-
ing algorithms, such as the supervised fuzzy maximum likelihood (Paola & Schowengerdt, 1995 a; 
Palubinskas et al., 1995; Ricotta, 2004) and unsupervised fuzzy k-means, in NNC (Baatz et al., 
2004). Also, artificial neural networks (Paola & Schowengerdt, 1995 b), segmentation approaches 
using the eCognition software (Baatz et al., 2004), can be jointed with fuzzy-logic-algorithms. Soft 
classifications can also be created by softening the output of hard classifiers (Woodcock & Gopal, 
2000). 

4.5. Spatial information-based categories 

This category is divided into: spectral classifiers, contextual classifiers and spectral-contextual 
classifiers. 

Contextual classifiers: as we know, classical supervised and unsupervised classifiers are pixel-
specific classifiers, in that they rely on the spectral characteristics of each pixel in assignment to 
matched ground features, as independent from other pixels. To overcome the broadly existing 
problem of within-class spectral variations, in addition to object-based and per-field classifiers, 
contextual classifiers exist which apply within-image but pixel-external spatial information to im-
prove the remotely sensed data classification (Wharton, 1982; Gong & Howarth, 1992; Kartikeyan 
et al., 1994; Flygare, 1997; Sharma & Sarkar, 1998; Keuchel et al., 2003; Magnussen et al., 2004). 
The basic idea is that separate bordered pixels construct a related and correlated context of pixels, 
which can be considered in the classification process. For example, when an image pixel is located 
in the center of a homogeneous area that represents an agricultural field (e.g., sugar beet), then the 
surrounded pixels have high probability of being of the same land use class (sugar beet). Based on 
this simple idea, spatial classifiers attempt to automate the visual human spatial interpretation by 
applying it in digital image processing. Context is then used to describe the spatial relationship 
between it with the adjacent pixels, and it covers the spatial area between a pixel or group of pixels 
and the surrounding areas (Jensen, 2005). Using of spatial information or some of them, such as: 
pixel proximity; repetition; directionality; location; image texture; feature size; shape; etc., can 
assist in identifying the ground surface features. 

Contextual classifiers are also referred to as smoothing techniques, which can improve the classifi-
cation results (Flygare, 1997; Stuckens et al., 2000; Hubert-Moy et al., 2001; Magnussen et al., 
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2004). Smoothing techniques used in contextual classifiers include: markov random fields; spatial 
statistics; fuzzy logic; segmentation; or neural networks (Binaghi et al., 1999; Cortijo & De La 
Blanca, 1997; Kartikeyan et al., 1998; Keuchel et al., 2003; Magnussen et al., 2004). There are two 
types of smoothing: 1) pre-classification-smoothing classifiers that integrate the contextual infor-
mation as additional non-spectral bands, in the classification process using the general spectral 
classifiers; and 2) post-classification-smoothing classification which is carried out on the previous-
ly-classified image. The Markov random field-based contextual classifiers, such as iterated condi-
tional modes, are the most often used techniques in contextual classification, where they have been 
proven to improve classification results (Cortijo & De La Blanca, 1997; Magnussen et al., 2004). 

The advantages of contextual classifiers will usually result in increases in the classification accura-
cy rates (Swain et al., 1981; Jhung & Swain, 1996). However, they need much more computational 
time than spectral classification classifiers and require a more complex decision process (Lillesand 
et al., 2008). Finally, the development of spatial classification approaches and the useful use of 
spatial and jointed spectral-spatial image classification methods are still relatively limited, com-
pared to spectral classification methods, where the produced spatial resolution of most existing 
remote sensing satellite sensors is insufficient. Recently launched high resolution satellites should 
give a boost in efficiency to the technical basis for spatial classification algorithms (Lu & Weng, 
2007). 

4.6. Combinative-based classifiers 

The general concept of the combinative classifiers is the integration of several classifiers into one 
new enhanced classifier, with the aim of improving the classification process and increasing its 
accuracy. This approach was developed based on the knowledge of the merits and limitations of 
various classifiers (Franklin et al., 2003; Tso & Mather, 2009). Some studies that have proven the 
preference of the combinative classifiers are: (Giacinto & Roli, 1997; Roli et al., 1997; 
Benediktsson & Kanellopoulos, 1999; Warrender & Augusteihn, 1999; Steele, 2000; Huang & 
Lees, 2004). One common example is the use of the unsupervised classification cluster analysis, 
followed by the supervised classification maximum likelihood classifier, since by clustering, spec-
trally similar classes are identified, which in continuity will lead to supervised classifying 
(Richards & Jia, 2003). A crucial step in applying these approaches is to develop appropriate rules 
to join the classification results from different classifiers. Some previously investigated different 
techniques, such as: a production rule; a sum rule; stacked regression methods; majority voting; 
and thresholds have been investigated as ways to join multiple classification results (Steele, 2000; 
Liu et al., 2004 a). 

5. Remote sensing applications in land use/land cover mapping 

The broad utilization of remote sensing is to extract and represent LULC-information from multi-
spectral imagery as thematic maps, data and GIS-layers. Remote sensing provides a cost-effective 
method to acquire present and dependable LULC-information because of its availability and fre-
quency of update (Donnay et al., 2001). 

Research proves that remote sensing can be considered as a useful tool for studying arid and semi-
arid ecosystems (Tucker et al., 1983; Justice & Hiernaux, 1986; Townshend & Justice, 1986; 
Tucker, 1986; Maselli et al., 1993; Bastin et al., 1995; Hobbs, 1995; Schmidt & Karnieli, 2000; 
Kheiry, 2003; Suliman, 2003). 

In comparison to the more classical classification methodologies such as basic aerial photo inter-
pretation, LULC-mapping using satellite imagery has four distinct advantages: 1) LULC-classes  
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can be mapped faster and often with lower costs; 2) fast and inexpensive updating of LULC-map 
products is possible, where the satellite imagery are captured for the same geographic area at a 
high repeat ratio; 3) remotely sensed data are captured in digital forms and can thus be easily joint-
ed with other types of ground feature information through such techniques as GIS; and 4) the large 
economies of scale offered by digital satellite image processing make it fairly low-cost to map 
large areas, meaning it is easier and more cost effective to produce large amounts of map products. 

Many issues may impact the success of the classification process, for instance: the complexity of 
the landscape in a study area; selected or accessible remotely sensed data; approaches used for 
image-processing and classification (Lu & Weng, 2007). Therefore, it is a confrontation task to 
classify remotely sensed data into a thematic map. Many prior studies and some books are particu-
larly concerned with image classification (Landgrebe, 2003; Tso & Mather, 2009). Although the 
number of studies and published papers has greatly increased during recent decades, remotely 
sensed data analysis is not a new research topic. Richards (2005) pronounced that the classification 
of remotely sensed data had "its genesis in the signal processing methods of the 1950s and 1960s 
and their extension to handling image data". The research by Wilkinson (2005) of published pa-
pers on classification applications between 1989 and 2003 is worthy of mention as: 1) it illustrates 
that the mean classification accuracy stayed at nearly 80 % during his period of research; 2) it is 
noteworthy that the accuracy does not show an improving tendency; 3) the presented analysis of 
this fact in the articles is not exhaustive enough; 4) it however provides an interesting standard 
against with to compare this thesis' results; and 5) he demonstrates that resulted accuracy does not 
depend on the number of features (input spectral bands) used, nor on the pixel spatial resolution of 
the number of classes, and the area of the studied site (the author hypothesizes that the advantage 
obtained from the higher spatial resolution is equalized by the lower spectral resolution). Much 
promoted neural-network based algorithms do not show any considerable advantage, nor disad-
vantage, compared to other methods. 

Although the optical remote sensing systems such as LANDSAT-MSS/TM/ETM+, ASTER, and 
SPOT have limitations in obtaining cloud-free imagery and the resulted difficulties in performing 
spectral classification for specific categories of land features (Ulaby et al., 1982), they have proven 
an efficient device for LULC-mapping (Gong & Howarth, 1990; Ji, 2000). Kanellopoulos et al. 
1992 conducted a 20 class classification test on SPOT High-Resolution Visible (HRV) images, 
and the end-result was proven to be satisfactory. Muchoney et al. (2000) evaluated an artificial 
neural net (fuzzy ARTMAP), the MLC classifier and a DT in a study of vegetation and land cover 
mapping in Central America. Liu et al. (2002) too reached better classification results using ANN 
than using MLC for a land cover classification based on a medium resolution multispectral re-
motely sensed data and an auxiliary GIS-data layer. A good number of studies confermed that 
ANN classifications created in higher accuracy than MLC. Erbek et al. (2004) and De Colstoun et 
al. (2003) applied a decision tree on multi-temporal images from the ETM+ to distinguish between 
11 features of land cover. The overall accuracy was clearly enhanced by using classifier ensemble 
techniques, as boosting. Mehner et al. (2004) explain the application of a multi-layer perception 
network to IKONOS-data, in which a classification performance of 80% was achieved. Pal (2005) 
presented the classification results created from applying the random forest and support vector 
machines (SVMs) on ETM+ data in the United Kingdom with seven land cover classes. The paper 
from Berberoglu et al. (2007) aimed to evaluate the usefulness of integrating texture measures into 
MLC and ANN classifications in a Mediterranean environment, using LANDSAT-TM-imagery. 
The best classification accuracies were reached by using the ANN classifier. The dealing with the 
measures of texture characteristics were most effectively with the ANN rather than the MLC clas-
sifier. Kandrika and Roy (2008) presented a study based on using a temporal data set available 
from a moderate resolution sensor (AWiFS) aboard IRS-P6 for deriving LULC-classes. The use of 
a decision tree classification algorithm was able to exploit the temporal differences to distinguish 
between the land cover classes by asset of their spectral behaviors in temporal domain, where the 
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overall kappa was at 0.8651. Yuan et al. (2009) explained and applying an automated two-module 
ANN classification system, i.e. an unsupervised SOM network module and a supervised MLP neu-
ral network module, using LANDSAT-TM. After an evaluation of the performance of MLC, DA, 
and ANN in image classification, ANN classifications have the advantages in image accuracy 
overall and for single land cover classes (Heinl et al., 2009). 

LULC-Classification using the three VNIR- and six SWIR- bands of ASTER-data has been dis-
cussed in the past 10 years. The most commonly used approach is separating the ASTER-data into 
two sets of images, i.e.15 m and 30 m spatial resolution, where each have three and six spectral 
bands, respectively. For each set, support vector machine (SVM)-based algorithms (Zhu & Blum-
berg, 2002) or segmentation algorithms (Marcal et al., 2005) were applied for processing of classi-
fication. An approach based on wavelet fusion was proposed by Bagan et al. (2004). Other studies 
based on the Principal Component Analysis (PCA) were used to the nine VNIR and SWIR spectral 
bands. From the earlier obtained principal components, a supervised MLC algorithm was imple-
mented (Gomez et al., 2005). However, most of the approaches referred to have not adopted ther-
mal band data (TIR) in classification processing. In a study by Al-Khateeb (2008), TIR was used 
as a method to merge with other bands using wavelet transform, and compared with other usual 
methods, like Principle Component Analysis Analyses (PCA). It was observed that after applying 
the wavelet transform, the classification accuracy was better. ASTER-data can be used to perform 
LULC-classification effectively and accurately, but the general problem of the difference in spatial 
resolutions needs to be solved, namely, the different spatial resolutions of the Visible Near-
InfraRed (VNIR), ShortWave InfraRed (SWIR), and Thermal InfraRed (TIR) spectral bands must 
be transformed to the same spatial resolution (Bagan et al., 2008). Jianwen and Bagan (2005) used 
ASTER-data and the Kohonen’s Self-Organized neural network feature Map (KSOM) to LULC-
classification. It classified 7 % more accurately than MLC. Also, the study showed that the quality 
of ASTER-data was good for LULC classification. Yüksel et al. (2008) used ASTER-data and 
converted it into Top Of Atmosphere reflectance data (TOA) to generate LULC-maps according to 
the CORINE-Land cover project, using supervised and the knowledge-based expert classification 
systems to get a better accuracy of the classified image. In the study from Bagan et al. (2008), a 
LULC-classification methodology was developed using a composites of ASTER VNIR, SWIR and 
TIR spectral bands. This methodology was created based on the wavelet fusion and the SOM neu-
ral network methods. It compared the classification accuracies of different combinations of AS-
TER multi-band data. SOM classification accuracy was increased from 83 % to 93 % by this fu-
sion. Also, the increasing in band numbers had the benefit that the classification accuracy in-
creased. The final results were: using the all 14 bands performed the highest classification accura-
cy; the narrowly accuracy value to the above mentioned highest one was obtained when the three 
VNIR-bands, three SWIR-bands and two TIR-bands were used; and a like trends were too ob-
tained using the MLC classifier, but the classification accuracies of MLC over all band composites 
were significantly lower than those obtained using the SOM classifier. 

These optical remotely sensed data can be integrated with recordings from remote sensing active 
systems such as the microwave sensors (e.g., Synthetic Aperture Radar SAR), which has the abil-
ity to acquire remotely sensed imagery under various weather condition during both day and night 
(Curlander & McDonough, 1991; Won et al., 1999; Goetz et al., 2000; Haack et al., 2000). Studies 
(Haack & Slonecker, 1994; Solberg et al., 1994; Huang et al., 2007) using SAR and optical sensor 
data have confirmed clear enhancement in classification accuracies contrary to an optical sensor 
alone. Huang et al. (2007) presented the promise of combining radar data (RADARSAT) with op-
tical data (LANDSAT-ETM+) to improve automatic LULC-classification using the Maximum 
Likelihood Classifier (MLC) for the study area of St. Louis, Missouri in the United States of 
America. Watanachaturaporn et al. (2008) used the SVM classifier to execute multisource classifi-
cation. An IRS-1C-LISS-III image, NDVI image and DEM were used to produce a LULC-
classification for a study area in the Himalayas. The accuracy of SVM-based multisource classifi-
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cation was compared with other nonparametric algorithms, i.e. a Decision Tree Classifier (DTC), a 
Back Propagation Neural Network (BPNN) classifier and Radial Basis Function Neural NETwork 
(RBFNET) classifiers. The results confirm that using the SVM based classifier for integrated mul-
tisource data offers a significant increasing in accuracy. 

The main research goal of the study from Shimoni et al. (2009) was to examine the complementa-
rity and fusion of different frequencies (L- and P-band), polar-metric-SAR (PolSAR) and polar-
metric-interferometric (PolInSAR) data for LULC-classification. The SVM algorithm was found 
to be a more suitable classifier in this research than NN. 

Xu and Gong, (2007) evaluated the potential of the Earth Observing-1 (EO-1) Hyperion hyper-
spectral (HS) data with that of the EO-1 Advanced Land Imager (ALI) multispectral (MS) data for 
distinguishing various LULC-classes in Fremont, California. 

In addition to the progress achieved by the referenced studies, the use of object- or segment-based 
classification techniques is another new development in the environment of remote sensing image 
classification. This approach has achieved generally better success with the narrow bands and high 
spatial resolution data such as IKONOS, SPOT-5, or QUICKBIRD (Willhauck, 2000). In several 
of the followed studies (e.g., Lobo, 1996; Tso & Mather, 1999; Aplin et al., 1999 b; Smith & 
Fuller, 2001; Fuller et al., 2002; Geneletti & Gorte, 2003; Benz et al., 2004; Carleer et al., 2005; 
Marcal et al., 2005; Platt & Rapoza, 2008) segment-based classifications were more accurate than 
conventional pixel-based classifications. A few researchers used general statistical classifiers (e.g., 
Geneletti & Gorte, 2003), while other segment-based classifications based on non-parametric algo-
rithms: Liyod et al. (2004) used ANN, while Lalilberte et al. (2007) applied a DTC. In other stud-
ies were based on SVMs, such as (Marcal et al., 2005; Bruzzone & Carlin, 2006; Van der Linden 
et al., 2007). Hay et al. (2003) used IKONOS-data to extract image objects for a landscape with 
two major LULC-features, i.e. forestry and agriculture. Matinfar et al. (2007) compared between 
pixel-based and object-oriented classification methods using LANDSAT-7 ETM+ imagery. After 
evaluation of the accuracy, it was demonstrated that: object-oriented image analyses achieve high-
er overall accuracy; and an increased accuracy rate for individual producers and users for each 
classified land cover class. 

Robin et al. (2008) presented a new method for a sub-pixel land cover classification using both 
high-resolution structural data and coarse-resolution temporal data. The linear mixture model was 
used for pixel disaggregation. Liu et al. (2010) presented a new soft classification approach to im-
prove the performance of classification process for remote-sensing applications. It used the Mixed-
Label Analysis (MLA). Classification accuracy achieved by MLA was evaluated with other usual 
techniques such as linear spectral mixture models, MLC, MD, and ANN. MLA had an overall ac-
curacy of 91.6 %. ANN, ML, and the MD methods had an overall accuracy of 88.7 %, 85.3 % and 
83.7 % respectively. 

6. Issues in the classification of remote sensing data and uncertainty 

To obtain a successful thematic map with high classification accuracy, we have to understand the 
relationships between the classification steps find the weakest relations in the image-processing 
chain and then improve them (Friedl et al., 2001; Dungan, 2002). Many issues impact the accuracy 
of classification, such as: scale; dates; the number of used image spectral bands; the needed num-
ber of classes that have to be classified; and their reflectance properties (McCloy & Bøcher, 2007). 

Usually, classical spectral classifiers are limited by the spectral resolution of the used remotely 
sensed image, which cannot represent the whole range of variations captured in the training data or 
to separate them in the classification process. Also, as the size of area to be classified increases, 
accuracy typically decreases (Carlotto, 1998). Two essential issues are responsible for this mis-
classification: 1) the “noise” contained in a satellite image, such as temporal and spatial variations 
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of the same LULC-classes, atmospheric affects, mechanical sensor effects, mixed spectral infor-
mation contained in some pixels, etc. This leads to the differing of the spectral response of an in-
dividual LULC-class from its real response (complex spectral response problem). Another issue 
related to the spectral response is that some different LULC-classes have very similar spectral re-
flectance curves (puzzling pixel problem); and 2) the insufficient spatial resolution of imaging 
sensors (scale issue/spatial resolution). A remotely sensed image is an extraction of the real world 
(scene) and the objects which represent the scene (Ferro & Warner, 2002). The relationship be-
tween the scene and the image is largely controlled by the scale of acquire or transform, which is 
determined by the spatial resolution of sensor, estimated by its Instantaneous Field Of View 
(IFOV) and GSI, where it cannot get any information about objects of interest - founding on the 
ground areas - smaller than the IFOV (Zhang, 2003). Therefore, the limitation of a sensor in re-
cording the spatial characteristics is based on the IFOV (Atkinson & Aplin, 2004). Therefore, it is 
responsible for the quantity and type of information that can be obtained from digital imagery 
(Schowengerdt, 2007; Lillesand et al., 2008). To recognize and classify a specific object (informa-
tional class), the used imagery elements/pixels have to be smaller than the object but larger than its 
individual elements (objects at the next finest level in the hierarchy of scales) (Curran, 1988; Ferro 
& Warner, 2002). However, it is complex to determine a single suitable spatial resolution 
(Atkinson & Aplin, 2004). Some spatial resolution determining approaches are: the Average Local 
Variance (ALV) (Woodcock & Strahler, 1987), and the semi-variogram (Curran, 1988). The 
LULC-classes spatial arrangement in the real world (the landscape structure) impacts on the spatial 
resolution. Smith et al. (2002) studied the impact of LULC-heterogeneity and parcel-size factors 
on classification accuracy and came to the result that increased heterogeneity and smaller parcel 
sizes led to lower accuracies. Therefore, more complex arrangement landscapes need higher spa-
tial resolution data (Chen et al., 2004 a). Many studies have evaluated the influence of spatial scale 
on classification accuracy (e.g., Markham & Townshend, 1981; Irons et al., 1985; Marceau et al., 
1994 a and b; Raptis et al., 2003; Ju et al., 2005; McCloy & Bøcher, 2007). These showed that a 
single best scale cannot exactly represent all classes in a complex scene, due to the different sizes, 
shapes and internal variation of the parcels for various LULC-classes. Consequently, latest study 
has highlighted the development of multi-scale classification tools (Ju et al., 2005). 

Training area size can influence the classification accuracy, where there is a positive relationship 
between it and the classification accuracy for various classifiers (Zhuang et al., 1994; Foody & 
Arora, 1997; Foody, 1999 b; Foody & Mathur, 2004 b). 

The Problem of Class Definitions is a major problem in LULC-classification in that by definition, 
the classes to be classified are based on different subjective human concepts in understanding that 
are not exactly related to the physical signals detected and recorded by satellite sensors (Wil-
kinson, 2005). 

Field-work and gathering ground truth data is often a subjective man-based discipline that is de-
pendent on field analysts and which method is used to collect the truth-data. No analyst, gathering 
method or measurement tools can assure that the reference data are 100 % accurate. Also, there is 
the uncertainty when the field-work occurred in a time and the achievement of the classified image 
carried out in another time period. This gives the result that the reference data generally represents 
only a “relative truth” that will negatively influence the classification accuracy (Langford & Bell, 
1997). 

The paper from Lechner et al. (2009) studied the impact of plot area and its extent on classification 
accuracy. In this paper, the impact of grid position, object size and shape on classification accura-
cy was simulated. It was found that classification error was lowest when the scale and the location 
of the object and the raster grid matched. 
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Figure 2.12: The relationship between a satellite sensor array´s grid and features in the landscape (Source: Adapted 

from Lechner et al. 2009) 

Most of the applied atmospheric calibration approaches have clear residual inaccuracies that im-
pact negatively on the classification process (Schott, 2007), where the used algorithms may cause 
radiometric errors (Lu & Weng, 2007). In the same way, geometric rectification or image registra-
tion between multisource data could give uncertainty in the position (Lu & Weng, 2007). Friedl et 
al. (2001) summarized three main sources of errors: Image acquisition process errors, data-
processing technique errors, and spatial resolution introduced by the satellite sensor and the scale 
of ecological processes in the real world. Dungan (2002) defined five kinds of uncertainties in re-
motely sensed data: positional; support; parametric; structural (model); and variables. 

D. Land use/land cover change detection mapping 

Change detection analysis is important in monitoring and managing the natural resources of the 
Earth. It gives statistical analysis of the occurred spatial distribution of the LULC-changes of in-
terest (Singh, 1989). Some of its applications are: Monitoring shifting agriculture, estimation of 
deforestation, estimation of desertification, changes in vegetation phenology, seasonal changes in 
paddock production, damage evaluation, crop stress detection, disaster monitoring, and other envi-
ronmental changes (Vitousek, 1994; Lambin & Ehrlich, 1997;  Houghton et al., 1999; Lunetta et 
al., 2002; Achard et al., 2002; Gutman et al., 2004; Jingan et al., 2005). Natural change can have a 
wide impact on natural resources, such as a shift in the vegetation cover, a change in the physical 
and chemical soil components, alterations in plant and animal inhabitants, and effects on hydrolog-
ical externalities (Turner et al., 1994; Lambin et al., 1999; Aylward, 2000). Therefore, in relation 
to land use/land cover and natural resource and ecosystem management, there is an important need 
for timely, permanent, and truthful monitoring of changes occurring (Lu et al., 2003 a; Coppin et 
al., 2004). However, the problems challenging the change detection process are: where is the 
change?, how much?, when did it occur?, and how great is its impact on the ecosystem? (Lambin 
& Linderman, 2006). Changes can occur either suddenly or gradually (Lu et al., 2004; Coppin et 
al., 2004; Lambin & Linderman, 2006; Bontemps et al., 2008). Here, the remote sensing tech-
niques take on an increasing importance in natural resource monitoring programs and in answering 
the above questions (Coppin et al., 2004; Gross et al., 2006; Kennedy et al., 2009; Wiens et al., 
2009). 

In the case of LULC-changes, two kinds of change can be classified from previously published 
literature: conversion and modification (Riebsame et al., 1994; Turner et al., 1995; Lambin et al., 
2003). LULC-conversion is the change from one cover category to another (e.g., the complete re-
placement of an agricultural parcel by man-made buildings), while LULC-modification is the 
modifications of structure or function without a complete change from one category to another 
(e.g., changes in productivity, biomass, or phenology) (Skole et al., 1994). 

Driving forces can be simply defined as causes or factors responsible for LULC-change (Braimoh, 
2004). An exact understanding of the drivers or determinants or driving forces of change is not 
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always possible (Briassoulis, 2000). The major aspects were summarized according to Bürgi et al. 
(2004) as: 1) human-related driving forces: a. socio-economic driving forces are fixed in the econ-
omy and to a smaller degree in demographics; b. political driving forces are expressed in policies 
and political programmers; c. technological driving forces contain modernism, such as the fabrica-
tion of the automobile (especially over the 20th century); and  d. cultural driving forces imprint the 
landscape (e.g., through traditional agricultural practices). And 2) bio-physical driving forces: a. 
site factors (e.g., climate, topography, or soil conditions); and b. natural disturbances profoundly 
modify the existing LULC-pattern as they impact on the bio-physical conditions within the im-
pacted area. 

1. Change detection techniques 

There are numerous change detection approaches applied on remotely sensed data, as a result of 
increasing versatility in processing digital data and increasing computing power (Pacifici et al., 
2007). Generally applied approaches are: image differencing; and image rationing (Singh, 1989; 
Muchoney & Haack, 1994). Some of the proposed supervised and unsupervised approaches in the 
literature are: write function memory insertion; image algebra; multiple-date composite; post-
classification comparison; image differencing; image rationing; change vector analysis; etc. 
(Nelson, 1983; Singh, 1989; Fung, 1990; Townshend et al., 1992; Muchoney & Haack, 1994; 
Townshend & Justice, 1995; Wiemker, 1997; Carlotto, 1997; Bruzzone & Serpico, 1997; 
MacLeod & Congalton, 1998; Nielsen et al., 1998; Mas, 1999; Xiaomei & Ronqing, 1999; Sohl et 
al., 2004; Lu et al., 2004; Jensen, 2005). Expert systems and neural networks were too used in 
change detection (e.g., Dai & Khorram, 1999; Chan et al., 2001; Seto & Liu, 2003). These ap-
proaches use multi-date imagery from multi- and hyper-spectral sensors, so that alterations, in fea-
ture or phenomena, be accurately recognized, measured and if needed observed (Civco et al., 
2002; Coppin et al., 2004; Jensen, 2007), each of which could be spatially, spectrally, or temporal-
ly controlled (Lu et al., 2003 a). It is not the purpose of this chapter to exhaust the inventory or 
give an evaluation of each approach. However, a general framework will be provided that could be 
useful to classify the various techniques of change detection. Fig. 2.13 illustrates how the various 
frequently used techniques are located in this framework (Lam, 2008). Detailed discussion about 
this can be found in: (Lu et al., 2004; Jensen, 2005 and 2007). 
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Fig. 2.13: A framework for classifying change detection methods (Source: Modified from Lam, 2008) 

There are a mass of change detection techniques. These techniques can be classified into two gen-
eral categories: post-classification comparison techniques; and enhancement change detection 
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techniques (Nelson, 1983). Coppin and Bauer (1996) summarized 11 various techniques docu-
mented in the literature by 1995: 1) mono-temporal change delineation; 2) delta or post-
classification comparison; 3) multidimensional temporal feature space analysis; 4) composite 
analysis; 5) image differencing; 6) image rationing; 7) multi-temporal linear data transformation; 
8) change vector analysis; 9) image regression; 10) multi-temporal biomass index; and 11) back-
ground subtraction. Chan et al. (2001) collected them in: 1) change enhancement methods; and 2) 
‘‘from–to’’ change information extraction methods. In Civco (2002), the author identifies four 
main categories: 1) traditional post-classification; 2) cross-correlation analysis (Koeln & 
Bissonnette, 2000); 3) neural Networks; and 4) image segmentation based classification. Deer 
(1998) suggested a three level categorization system: 1) pixel level: indicates to numerical values 
of each spectral band in an image, or simple computations between equivalent spectral bands (e.g., 
image differencing or rationing); 2) the feature level: is a higher level of processing, which in-
cludes transforming the spectral or spatial characteristics of the image (e.g., PCA, texture analysis 
or VIs). These transformed features may have real-world value (e.g. VIs in the radiometric field, or 
lines/edges in the spatial field), or may not (e.g. PC in the radiometric field); and 3) the object: is 
the highest level of processing (Blaschke, 2005). Finally, Pacifici et al. (2007) categorized two 
main approaches of change detection in: Unsupervised and supervised. 

Returning to Fig. 2.13, change detection techniques can be separated into two general groups, de-
pending on whether the technique needs classification before or after change detection process. 

1) techniques which first detect change and then assign classes (e.g., image differencing or PCA)-
Unsupervised Approach- Pre-classification method. 

Many unsupervised change detection approaches deal with the multispectral images in order to 
produce an additional image. The most essential basis for these algorithms is the determining of 
the finest global threshold in the histogram of the so-called generated difference image, where the 
classifying of change and unchange classes is made on the importance of the resulting spectral 
change vectors by applying of empirical or theoretical well-founded global threshold strategies. 
The best global threshold depends on the statistical irregularity of the two images, which are often 
unknown (Melgani & Bazi, 2006; Pacifici et al., 2007). For this category, Pacifici et al. (2007) 
reviewed the published techniques in the past decade: the Image Differencing (ID), Normalized 
Difference Vegetation Index (NDVI), Change Vector Analysis (CVA), Principal Component Anal-
ysis (PCA), Image Rationing (IR), Expectation Maximization (EM) (Bruzzone & Fernàndez-
Prieto, 2000), Markov Random Field (MRF) (Bruzzone & Fernàndez-Prieto, 2000), Object-Level 
Change Detection (OLCD) (Hazel, 2001), Reduced Parzen Estimation (RPE) (Bruzzone & 
Fernàndez-Pireto, 2002), Maximum a Posteriori Probability (MPP) decision criterion (Kasetkasem 
& Varshney, 2002), Multivariate Alteration Detection (MAD also called Iteratively Reweighted 
MAD (IR-MAD)) (Nielsen et al., 1998; Nielsen, 2007), MAD and the combined MAF/MAD 
(Maximum Autocorrelation Factor) transformations, and Genetic Algorithm (GA) (Celik, 2010). 
Image differencing, change vector method and multi-date comparison methods (Fig. 2.13 Box d) 
can be applied directly on the raw values of image pixels, or indirectly on manipulated values from 
the spectral bands (e.g., band ratios, principal components, chi-squared transformed, and texture 
transformed) (Fig. 2.13 Boxes b and c). 
The above techniques generally do not aim to identify clearly what types of LULC-changes have 
taken place in an area (e.g., which vegetated areas have been urbanized). They are suitable for ap-
plications such as detection of burned areas, or detection of deforestation. However, they are not 
useful when it is necessary to define the types of changes that have occurred in the studied area, 
for example, in: observing the shifting in cultivation; urban growth; or where it is required to know 
all the types of changes that occurred in investigated area.  
Only the CVA-technique allocates the various types of occurred changes. However, it does not 
clearly identify the typologies of changes, because it is not supervised (Pacifici et al., 2007). 
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Decisions are needed regarding: 1) selecting the raw to used spectral bands as input (e.g., DN, ra-
diance reflectance, vegetation indices); 2) selecting the kind to applied classification method and 
classifier (e.g., supervised, neural-net); and 3) selecting the kind to used error assessment method 
(Lunetta, 1999). 

Advantages: 1) pre-classification is not necessary, therefore, avoiding the tiring in classification 
process at the starting; 2) it is regarded as simple and rapid, and can be applied on a great number 
of images; and 3) the ease in fine-tuning to detect the specific interested changes, and they are, in 
general, likely to have a higher ability to find slight changes (Lambin & Ehrlich, 1997; Woodcock 
et al., 2001; Foody, 2002; Chen et al., 2003; Lunetta et al., 2004; Yuan et al., 2005). 

Disadvantages: 1) the detection of image changes, especially if focused on agricultural areas, may 
be affected by troubles with phenology and cropping. Such troubles could be worsened by inade-
quate image accessibility and poor quality in moderate zones, and the problems in adjusting poor 
images (Blaschke, 2005); 2) furthermore, these techniques are corrupted by: changes in illumina-
tion at two times, changes in atmospheric conditions, and in technical sensor calibration. These 
make complex a direct evaluation between raw imagery obtained at different times where addi-
tional processing steps are required (e.g., radiometric calibration) (Pacifici et al., 2007); and 3) 
there remains the problem of defining the threshold value at which the change between the two 
images is measured. Also, it is clear that using unsupervised methods is obligatory in many re-
mote-sensing applications, when appropriate ground truth information is not always available 
(Bruzzone & Fernàndez-Prieto, 2002). 

The study from Im and Jensen (2005) presented a change detection method depended on the 
Neighborhood Correlation Image (NCI) logic. This logic take advantages of that the same geo-
graphic area (e.g., a 3*3 pixel window) on images with two different acquired dates will tend to be 
highly correlated if little change has occurred, and uncorrelated if change occurs. Melgani and 
Bazi (2006) proposed an unsupervised change detection approach based on the fusion of an en-
semble of different threshold algorithms through a Markov Random Field (MRF) framework. Liu 
et al. (2008) used spatial-temporal Markov Random Fields (MRF) models to combine spatial-
temporal information with spectral information for multi-temporal classification. The goal was to 
reduce the influences of classification errors on change detection. Mura et al. (2008) proposed an 
unsupervised technique for change detection in very high geometrical resolution images, which is 
based on the integrating of morphological filters with a Change Vector Analysis (CVA) method. 
Malpica and Alonso (2008) publicized a new method in field of unsupervised change detection 
methods. It based on jointly analyzing the spectral channels of multi-temporal images in the origi-
nal feature space with no training data. This method is tested with two SPOT-5-satellite images 
pan-sharpened to a resolution of 2.5 m. Celik and Kai-Kuang (2010) developed an unsupervised 
change-detection algorithm by conducting probabilistic Bayesian inference to perform unsuper-
vised thresholds over sub-band difference images created at the various scales and directional sub-
bands using the DT-CWT for representation. 

2) techniques which first assign classes and then detect change (post-classification comparison) 
Supervised Approach Post classification methods. 

In order to overcome the limitations of the first technique, one can use techniques based on a su-
pervised classification of multi-temporal images: Direct Multi-data Classification (DMC), Neural 
networks (NNs) (Bishop, 1995), Knowledge-Based Systems (KBS), Support Vector Machines 
(SVMs) (Vapnik, 1998; Melgani & Bruzzone, 2004; Bruzzone & Carlin, 2006), Post- Classifica-
tion Comparison (PCC) (Del Frate et al., 2004 and 2005; Colwell & Weber, 1981). 

The fame of the above techniques may be because they can be freely applied on available created 
single date classifications, where they are based on separate single-date classifications whose re-
sults are later compared (Weismiller et al., 1977) with the result of the second independently clas-
sified image (Lunetta, 1999). This simple technique includes: 1) producing the classified image 
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based on the classification process; and 2) assessment the occurred changes based on the principle 
of identifying the areas of change as pixel per pixel differences in class membership (Castelli et 
al., 1999). 

Advantages: 1) the ability to clearly identify the kinds of occurred LULC-conversions; 2) the ro-
bustness to the various atmospheric and light conditions at the two recording times (Bruzzone & 
Fernàndez-Pireto, 2000); 3) where the two datasets/imagery are separately classified, so it is not 
needed to normalize these data (Singh, 1989); 4) it is more flexible than those used the comparison 
of multi-temporal raw data; 5) it allows one to make change detection also by using different sen-
sors and/or multi-source data at two times; and 6) the possibility in entering several modifications 
on the used classifier in classification process (e.g., contextual information as using the texture of 
an image, or a priori likelihoods from historical sources to weight class allocation) would increase 
the change detection mapping accuracy (Pacifici et al., 2007). Also, the new image classification 
algorithms, other than the traditional MLC, can be used to increase both accuracy and effective-
ness. 

Disadvantages: 1) requires more human supervision for classifying the images; 2) despite its po-
tential, this category is not relevant to quick change detection, because user supervision is required 
to pre-classify the images; 3) limitations also include cost in terms of money and implementation 
time, and generated errors from classification of imagery (Singh, 1989; Castelli, 1999), where the 
generation of a suitable training set has the two drawbacks, i.e. the difficulty and the high cost 
(Bruzzone & Fernàndez-Pireto, 2000); and 4) finally, the accuracy of the change thematic map 
will be equal to the accuracies of each individual classification for each date (Lambin & Stralher, 
1994). 

In addition to all of the above, there are more powerful alternatives, called cascade-classification 
approaches (Swain, 1978), which use all the information integrated in the image series to try and 
to make the use of the temporal correlation between used imagery. Diverse schemes of cascade 
classification were proposed, for example: bayesian methods (Serpico & Melgani, 2000); neural 
networks (Bruzzone et al., 1999; Melgani et al., 2003); and multi-classifier approaches (e.g., 
Bruzzone et al., 2004 a). Despite of the globally rising importance of knowledge-based classifica-
tion systems that are based on fuzzy rules, fuzzy cascade multi-temporal methods are mentioned 
rarely in the literature compared to other multi-temporal approaches (Feitosa et al., 2009). Feitosa 
et al. (2009) proposed a new fuzzy cascade multi-temporal classification method based on fuzzy 
Markov hains. This method varies from past fuzzy multi-temporal approaches in that: the method 
requires no knowledge about the true class at an earlier date; and also, as an alternative, it uses the 
characteristics of the image object being classified at the earlier date. This method joins the fuzzy, 
non-temporal, and classification of a geographical region at two points in time to give a single 
united result. 

The most general use of many of the above mentioned techniques has been applied to mapping 
change in coarse to medium spatial resolution satellite data, and they have worked successfully in 
the high-resolution field (Pacifici et al., 2007). In the last decade, some researchers have confirmed 
that it is possible to use the object-oriented image segmentation based change detection as an al-
ternative to pixel-by-pixel based change detection. It compares the homogeneous polygons/objects 
found in two images acquired at two different dates (Niemeyer & Canty, 2001 and 2003; Walter, 
2004). But, it has the drawback that the required algorithms for high-resolution image processing 
are more complex (Malpica & Alonso, 2008). A lot of present studies focus on the application of 
object-based approaches to for temporal studies (Walter, 2004; Zhou et al., 2008). For example, Im 
et al. (2008) compared between different pixel- and object-based change detection methods. The 
conclusion was that the advanced object-based approaches were superior. Object-based change 
detection has also been applied to different ecological interests, such as urban growth (Zhou et al., 
2008) and shrub-land infringement (Laliberte et al., 2004; Benfield et al., 2007; Stow et al., 2008). 
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2. Comparison between change detection techniques 

All digital change detection techniques are influenced by spatial, spectral, temporal and thematic 
limitations, which would consequently influence the qualitative and quantitative approximations of 
the change. Even in the same natural environment, various techniques might produce different 
change thematic maps. As a result, it is very significant to select the more appropriate technique. 
Singh (1989); and Coppin and Bauer (1996) both presented excellent and complete summaries of 
approaches and techniques of digital change detection. Not all these techniques are suitable to all 
regions, or all kinds of imagery (Nordberg & Evertson, 2003): each has its own merits and limita-
tions, and thus no single technique is best and appropriate to all cases (Berberoglu & Akin, 2009). 
In practice, various techniques are often compared to discover the most accrued change detection 
results for a particular application (Lu et al., 2004). Considerations that have to be taken before 
choosing the change detection technique are: the characteristics of the area to be studied, the re-
motely sensed data used, pre-processing needs, and the processing/computing capability of exist-
ing systems, in addition to time and budget (Coppin & Bauer, 1996; Jensen, 2007). 

It will be of immense use when researchers can develop capable and reliable change detection 
techniques which are automated, simple to use, and germane to various LULC as observed by dif-
ferent sensors at various scales, times and places (Lam, 2008). Bruzzone & Fernàndez-Prieto 
(2002) proposed a new automatic method for unsupervised change detection techniques, which 
presented a number of significant advantages in comparison to the conventional unsupervised 
techniques. Im et al. (2008) introduced an automated dual change detection method using a thresh-
old-based calibration model in his study. 

According to the research by Coppin and Bauer (1996), image differencing seems to present gen-
erally better results than other change detection techniques. This monitoring technique, based on 
multispectral satellite data, has confirmed capability as a way to detect, identify and map changes. 
It may be the most widely applied method for a range of geographical environments (Singh, 1989). 
The approach is based on deduction one date of images from a second date that was exactly rec-
orded to the first. Image differencing and CVA include the transformation of input spectral bands 
into temporal change vectors, with the previous being a band-by-band temporal deducting, and the 
latter needing derivation of scale and angle of spectral change. Post-classification approaches use 
the input spectral bands directly in classification (Lunetta, 1999). Although difference and CVA 
imagery represent direct information of spectral change over time, they include no reference to 
place within the original input data domain. In contrast, post-classification approaches use input 
spectral bands directly, and so include this reference information. Consequently, natural changea-
bility in initial and final (e.g., T1 and T2, respectively) LULC-classes are directly included into the 
change classification approach (Lunetta, 1999). 

A multi-date Tasseled Cap (TC) transformation is scene-independent and has been revealed to be 
successful for change detecting (Collins & Woodcock, 1996). 

Civco et al. (2002) provided a comparison between the following five LULC-change detection 
techniques: post-classification; cross correlation analysis; neural networks; knowledge-based ex-
pert systems; and image segmentation/object-oriented classification. Nine LULC-classes were 
selected for analysis. It was observed that there were merits to each of the five techniques studied, 
and that, at the point of their study, no single technique could perform change analysis. 

The most important advantages of the NDVI-based change detection technique presented by Lu-
netta et al. (2006) were: a) satisfying a powerful results; b) needs a small time in computation; c) 
offers the automatically in presenting the data processing procedures; d) it has potential to illus-
trate the product of annual change alarm; and e) the ability to deliver a product rapidly. 

Yamamoto et al. (2001); Bruzzone and Fernàndez-Prieto (2002); and Lam (2008) summarized the 
intrinsic difficulties of change detection when they listed the existing techniques into a framework, 
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and then disputed that the approach based on texture had potential for rapid change detection. Lam 
(2008) hypothesized that the integration of both textural and spectral indices could improve some 
of the existing change detection problems. 1) the texture measures (e.g., fractals, lacunarity, wave-
lets, and spatial autocorrelation statistics) could be applied directly to pre-classified images, so less 
human supervision would be required because there is no need in the classification process; and 2) 
while the spatial/texture techniques quantified the spatial differences across the image rather than 
comparing the values of brightness using the method of a pixel by pixel, they were more probable 
to expose main changes rather than false changes that arise because the noise, clouds or illumina-
tion dissimilarity. 

Shaoqing and Lu (2008) discussed in their paper the three main change detection techniques: 1) 
image differencing; 2) image rationing; and 3) post-classification. The first is a simple idea, easy 
to understand and easy to apply. It is beneficial to information extraction, in which the value of the 
object and surroundings value is smaller (e.g., the beach zone, the ditch of estuaries). The main 
limitation is that it cannot show which category is changed. The second is applicable during 
change detection of a city. Its limitation is that it cannot show which category is changed. The 
third technique can provide information about changing property, but it is limited in that accuracy 
depends on the accuracy of its classification. 

Berberoglu and Akin (2009) verified that, for LANDSAT-TM images based change detection of 
LULC in Mediterranean area, the CVA method could be advantageous for definite land covers. 
The conclusions of their research can be summarized as follows: 1) image differencing was sim-
ple, direct and analysis of the results was easy. However, the approach overrated the changes; 2) 
rationing was incapable to delineate changes well in complex areas like the Mediterranean envi-
ronment. In comparison to other change detection methods, CVA offered the lowest accuracy with 
an inadequate information about the occurred change; 3) the image regression technique was re-
sponsive to changes in reflectance. In addition, the production of accurate results was dependent 
on band selection. Determining the most fit linear function was generally time intense. It offered a 
lower accuracy than CVA, though it is a reflective and sensitive technique; and 4) CVA disad-
vantages were: the most computationally; the most time-consuming technique (including atmos-
pheric and radiometric normalization). CVA advantages: the most precise one for detecting and 
classifying changes using bands 3 and 4 of LANDSAT-TM imagery; the capability of using any 
number of bands in change detection; and the most accurate of all the tested techniques. 

3. Change detection using remote sensing 

Change detection mapping is one of the most essential remote sensing applications, as it can define 
both the quantitative and qualitative changes in a study area (Lunetta, 1999; Jensen et al., 1993; 
Ridd & Liu, 1998; Lunetta & Elvidge, 2000). Change detection based on remotely sensed data is 
the process of detecting, recognizing and locating differences in the components of an area (object 
or phenomenon) through monitoring, comparison between two classified data sets - post-
classification change detection approaches, and by examination and understanding the physical 
change indicators (changes in radiance values) based on radiometry measurements between sets of 
multi-temporal and geo-referenced satellite images at different dates - pre-classification change 
detection approaches (Singh, 1989; Wang, 1993; Lu et al., 2003; Nordberg & Evertson, 2003; 
Ramachandra & Kumar, 2004; Lunetta et al., 2006; Alberga, 2009). If possible, change detection 
techniques should be applied on remotely sensed data that have the following characteristics: ob-
tained via the same sensor; including the same of (spatial resolution, viewing geometry, spectral 
bands, and radiometric resolution); and obtained at the same time of day (i.e., this will remove 
errors caused by the different angles of the sun) (Lunetta, 1999; Jensen, 2005; Lillesand et al., 
2008). However, this supposition is often not explored before correcting imagery for atmospheric 
affects, sun elevation, and also various sensor conditions (calibration) (Lunetta, 1999). 
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Lu et al. (2004) grouped the extraction of LULC changes based on remote sensing data in the two 
broad groups: 1) finding of detailed “from-to” change information; and 2) finding of simple binary 
change information (e.g., change versus no change). The aims of remote sensing change detection 
are to: a) identify the geographic location of change; b) identify the kind of change if possible 
(e.g., from agriculture to urban); and c) quantify the amount of change (e.g., 500 ha). 

There are many sources of uncertainty using remotely sensed data for change detection mapping, 
for examples see (Congalton & Green, 1993; Foody, 2002; Sohl et al., 2004; Comber et al., 2004; 
Jensen, 2005). Hence, the next issues have to be considered for more accuracy: 1) noise: the dates 
of the two compared images should be nearly similar to avoid seasonal dissimilarity in vegetation, 
soil moisture, sun-angle and other responses (non-real land cover change). However, despite using 
the same date, specific atmospheric conditions, which differ from year to year, can impact the abil-
ity to delineate real changes (e.g., cloud cover or precipitation). Therefore, atmospheric correction 
must be applied to each image before processing; 2) pre-processing steps applied on the imagery 
might add errors; 3) additional care is needed to guarantee no pixel mis-registration between the 
two images (registration noise) and no geometrical distortion; 4) the applied algorithm in order to 
convert pixel values from analog to digital scale must be considered; 5) a large amount of data 
should be processed for detecting only a few change areas; and 6) the spectral bands of several 
types of satellite sensors do not always match in center wavelength and band width (Yamamoto et 
al., 2001; Bruzzone & Fernàndez-Prieto, 2002; Lam, 2008). There are some major complexities 
that have the influencing on change detection from remote sensing data. These arise from: the need 
to previous information about the nature of changed areas; the need to a reference data; and the 
skills of the interpreter and his experience (Singh, 1989; Townshend et al., 1992; Bruzzone & 
Serpico, 1997). Despite these limitations, remotely sensed based change detection is highly suc-
cessful for studying the dynamics of LULC (Lunetta, 1999). Change detection mapping errors are 
often temporally correlated (Van Oort, 2007). Three different patterns are generally reported in 
measurement of change detection accuracy: 1) single date error patterns (Woodcock et al., 2001; 
Chen et al., 2003; Lunetta et al., 2004; Stehman, 2005; Yuan et al., 2005); 2) binary change/ no 
change error patterns; and 3) the full change error patterns which are only very rarely reported. 
The paper from Van Oort, 2007 discussed the relation between these patterns. 

4. Change detection in arid- and semi-arid- environments 

Approximately 50 % of the total surface areas of the world are arid and/or semi-arid regions 
(Meadows & Hoffman, 2002). Arid and semi-arid areas feature irregular, low precipitation, dry 
ecosystems, and have a limited sustained economical potential (Adam et al., 1978). In relation to 
the ratio of total annual precipitation and potential evaporate-transpiration (P/ETP), arid and semi-
arid ecosystems have the values of 0.05 to 0.65, respectively. This ratio gives only a simple evalu-
ating of aridity or humidity of climate, and does not have a strong relation with agricultural or 
grazing potential. In response, the Length of Growing Period (LGP) concept was improved and 
applied in FAO studies on agro-ecological zones. This model gives better information on the po-
tential and suitability of region for diverse land uses and/or land covers. The LGP begins when 
precipitation rises above half of the potential evaporate-transpiration (ETP) and ends after the date 
when precipitation falls to under half of the ETP. Areas with an LGP of less than one day are de-
scribed as hyper-arid (true desert), less than 75 days are arid, 75 to less than 120 days are dry semi-
arid, and 120 to less than 180 days are described as moist semi-arid. Taken together, these areas 
are denominated as dry-lands (FAO, 1993 a). These arid and semi-arid ecosystems are very unsta-
ble and liable to drought cycles during periods of precipitation shortage, which in turn, leads to 
deteriorating natural vegetation cover, which may quickly recover during periods of good precipi-
tation. Despite their isolation and little numbers of human population, these areas frequently pro-
vide a variety of economic activities, such as public and commercial forage, mining operations and 
tourism. Because of the sensitive nature of these areas, it may only require a small amount of tur-
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bulence to cause clear changes within the environment (Okin et al., 2001). As a result, remote 
sensing is quickly becoming an essential tool to use in the study of these areas (Zhou et al., 1998). 

The deficit of information concerning to land cover and its dynamics, especially in developing 
countries which are almost all located in arid and semi-arid environments, can be attributed to a 
number of factors: 1) lack in state support for mapping agencies and related research institutions; 
2) expensive software and hardware; 3) inadequate finance for data buy; and 4) resistance to the 
modern digital mapping from classical cartography school followers. Fortunately, the growing 
availability of low-cost data and the accessibility of gratis data such as that offered by the Global 
Land Cover Facility (GLCF), the steady decreases in the costs of hardware and software and the 
increase in knowledge about the superior applications of remote sensing technology provides the 
necessary force for LULC-change assessment in the developing world (Geneletti & Gorte, 2003). 
In addition to the previously-discussed factors, there is a variety of other problems that confuse the 
detection of variations in the reflected EMR: 1) low irregular precipitation and high potential ETP 
allows only spatially-limited low vegetation cover by the available moisture. As a result, the great-
er part of the area-averaged reflectance of a pixel is for the soil substrate (Smith et al., 1990 a and 
b). Associated problems in these regions include the low organic components of the soils, which 
therefore tend to be bright. These issues join to negate, or reduce, the vegetation signal present 
within an individual pixel (Huete et al., 1985; Huete & Jackson, 1987; Qi et al., 1994). 2) the vari-
ability of soils (light, dark, etc.), and their spectral responses, over the ecosystem of the study area 
and over the resulting image also cause problems to the detection of vegetation. Huete and Jackson 
(1987) found that NDVI-values were undervalued in regions of light soils and overvalued for re-
gions with dark soils. This detected weakness (especially in the arid and semi-arid regions) in one 
of the most frequent and broadly used vegetation indices encouraged a vast amount of research 
that accounted for corrected soil noise (Baret & Guyot, 1991; Bannari et al., 1995). 

Existing remote sensing algorithms allow the application of LULC-change detection in moderate 
areas of the world (Berberoglu & Akin, 2009). However these algorithms are less able to be ap-
plied in the Mediterranean environment because: 1) the high temporal variability of the spectral 
responses of major land covers causes large inter-class spectral variability; 2) the complex mixed 
spatial frequency of the landscape; and 3) the similar reflectance responses of major land covers 
makes spectral separation hard (e.g., the bright toned, often calcareous soil can have alike reflec-
tance responses to urban areas and alike near-infrared reflectance to a crop canopy) (Berberoglu et 
al., 2000). Therefore, the observation of land cover change is complicated in Mediterranean envi-
ronments (Berberoglu & Akin, 2009). 

Before mapping LULC-change detection using optical sensors data in arid and/or semi-arid areas, 
we have to answer this question: at which scale is green vegetation detectable and how can we best 
distinguish it? Siegel and Goetz (1977) demonstrated that major changes in the reflectance charac-
teristics need a vegetation cover of more than 10 %, and that a vegetation signal has a tendency to 
be more significant than the soil signal when vegetation coverage is more than 30 %. Hill (2000) 
argued that this does not mean that vegetation coverage of less than 30 % is not detectable by re-
mote sensing, but affirms that ratio based vegetation indices do not offer the best approximation. 
Vegetation approximation under the spectral un-mixing concept offers better approximation of the 
true vegetation coverage (Hurcom & Harrison, 1998; Hill, 2000). 

A number of change detection studies, such as (Ram & Kolarkar, 1993; Ray, 1995; Kwarteng & 
Chavez, 1998; Ram & Chauhan, 2009) rely on the clear difference between agricultural fields or 
urban areas, and the neighboring arid environment, in order to detect LULC-change. However, for 
example, the detection of vegetative change (within the same LULC-category) within arid areas is 
significantly more difficult. Image differencing, especially the vegetation index differencing, is 
one of the most familiar vegetation change detection approaches, because of its simplicity (Singh, 
1989; Lu et al, 2003). Pilon et al. (1988) favored the use of the visible red spectral band infor-
mation to detect changes for their semi-arid study area. Chavez and Mackinnon (1994) established 
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that the red band differencing process presented improved information about vegetation change 
rather than NDVI in an arid environment. Lyon et al. (1998) accomplished that the NDVI-
vegetation index differencing technique achieved the best when comparing several vegetation in-
dices for change detection. 

Adeniyi and Omojola (1999), in their LULC-evaluation of the Sokoto Rima Basin in North West-
ern Nigeria based on archival remote sensing and GIS techniques, used aerial photographs, 
LANDSAT-MSS, SPOT-XS Panchromatic image transparency and topographic map sheets to 
study changes in two dams (Sokoto and Guronyo) between 1962 and 1986. Serrano et al. (2000) 
compared different techniques developed to create a homogeneous time series of LANDSAT im-
ages from 1984-2007 for the Middle Ebro Valley in Spain. Mahmood and Easson (2006) explored 
the capability of using ASTER imagery integrated with LANDSAT-7-ETM+ imagery of south-
western Bangladesh to detect equivalent measurements for change detection studies. The used 
methods were regression with Discrete Fourier Transform (DFT) and the cross-calibration method 
using digital number ratios. French et al. (2008) demonstrated and confirmed a method using AS-
TER-imagery obtained between 2001 and 2003) over the Jornada Experimental Range, to map the 
LULC-changes in a semi-arid area in southern New Mexico, USA. The results emphasize the im-
portance of multispectral thermal infrared data that contains observations at wavelengths within 8-
9.5 μm. Alphan et al. (2009) assessed land cover changes in Kahramanmaraş in Turkey and its 
environs by using multi-temporal LANDSAT- and ASTER- imagery taken in 1989, 2000 and 
2004. Ram and Chauhan (2009) prepared a LULC-change map of Jhunjhunun canton of arid Ra-
jastan in India based on LANDSAT-2-MSS from 1975 and IRS-LISS-III data from 2005. Alberga 
(2009) proposed a technique for probable change detectors in multi-sensor configurations, based 
on similarity measures that did not rely totally on radiometric values. A chain of such measures 
was used for automatic change detection of optical and SAR-images and an evaluation of their 
functioning were carried out to detect the limits of their applicability and their understanding to the 
occurred changes. 

E. Remote sensing for irrigated agriculture 

Exact information on irrigation spatial coverage is the foundation of many sides of the knowledge 
of the Earth’s systems and global change research. These contain: modeling of water exchange 
between the land surface and atmosphere (Boucher et al., 2004; Gordon et al., 2005; Ozdogan et 
al., 2006); investigation of the influence of climate change and variability on irrigation water re-
quirements/supply (Alcamo et al., 2003; Rosenzweig  et al., 2004; Vörösmarty et al., 2000); and 
managing of water resources that influence global food security (Vörösmarty et al., 2005). Agri-
culture is certainly the main water-use sector, accounting for about 70 % of all water reserved 
globally from rivers and aquifers for agricultural, domestic and industrial purposes (FAO, 2009). 
Ozdogan and Gutman (2008) defined irrigation as "agricultural area that receives full or partial 
application of water to the soil to offset periods of precipitation shortfalls under dry land condi-
tions". The remote sensing techniques offer a unique approach to the gathering of various data 
across place and time, facilitating the application of various methods to obtain irrigated area statis-
tics (Thinkabail et al., 2008). In addition, time-series remotely sensed data allow the dynamics of 
irrigated agriculture to be clearly researched, as differing from other land uses (mapping) (Thinka-
bail et al., 2008). 

To date, a number of researchers have used remote sensing to observe irrigated agriculture 
(Ozdogan, 2010). Initial efforts focused on applying remote sensing in mapping and to update irri-
gated land areas mostly in the US and India (Draeger, 1976; Heller & Johnson, 1979; 
Thiruvengadachari, 1981; Kolm & Case, 1984; Thelin & Heimes, 1987; Rundquist et al., 1989). 
More recently, studies on classification irrigated areas were carried out based on advanced classi-
fication algorithms (Eckhardt et al., 1990; Ram & Kolarkar, 1993; Pax-Lenney et al., 1996; 
Abuzar et al., 2001; Martinez-Beltran & Calera-Belmonte, 2001). These researchers concluded 
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that irrigation monitoring and mapping using remote sensing were at an advanced phase of im-
provement (Ozdogan et al., 2006) and that multi-temporal data were more effective rather than 
single-date data in determining individual irrigated crop classes (Thiruvengadachari, 1981; Rund-
quist  et al., 1989; Abuzar et al., 2001). Spatial resolution of used remotely sensed data for irriga-
tion mapping was seen as vital to obtaining sufficient spatial details about the irrigated fields (Pax-
Lenney & Woodcock, 1997), as was the potential of vegetation indices (e.g., NDVI) in classifica-
tion irrigated fields, if suitable time-series are obtainable. This latter fact was proved in several 
studies (Kolm & Case, 1984; Eckhardt et al., 1990; Pax-Lenney et al., 1996; Abuzar et al., 2001; 
Martinez-Beltran & Calera-Belmonte, 2001). 

Spatial resolution impacts the calculated irrigated areas (Thinkabail et al., 2008). Ozdogan and 
Woodcock (2006) argued that with coarser spatial resolution, calculated irrigated areas were high-
er, because of the use of the full pixel area as actual area instead of irrigated area fraction. The 
difference lies in the fact that individual pixels contain more feature types. Ozdogan and Wood-
cock also demonstrated that the LANDSAT 30 m was insufficient to estimate the real spatial ex-
tent of cultivated areas in parts of China, while a spatial resolution of 500 m was sufficient for the 
USA (Thinkabail et al., 2008). Thinkabail et al. (2008) had reported a comparison study within the 
GIAM-project, since irrigated areas have been estimated for specific areas of the Earth at 30 m 
(Velpuri et al., 2007) and 500 m (Dheeravath et al., 2010) spatial resolution. Thinkabail et al. 
(2008) had given low indications in the relationship between irrigated areas and spatial resolution 
of the imagery: a) "[the] finer the resolution, [the] greater is the area when irrigated areas are in 
fragments". This is because in lower-resolution pixels, fragmented portions will not be calculated 
sufficiently and/or may lose out completely, resulting in the under-estimation of irrigated areas; 
and b) "[the] finer the resolution, [the] lesser is the area in contiguous areas". This is because in 
neighboring areas higher spatial resolution imagery will isolate small parts like settlements, roads 
and leaved lands. These parts are subtracted out of the total area of high resolution imagery. How-
ever, in lower resolution, these small parts are summed into larger irrigated areas in the pixel, re-
sulting in the over-estimating of irrigated areas. 

Agriculture resources are one of the most significant renewable and dynamic natural resources. 
Forecasting and estimating crop production information is a major practiced activity in most coun-
tries of the world, used in supervising crop production, grain storage, transportation and determin-
ing grain prices. Also, crop production data are an important tool that was using from governments 
around the world to design countrywide farm programs and to establish import and export policies. 
The timely and objective agricultural statistical numbers are the bases for the management of agri-
cultural policy and the food security. In well-organized countries, crop area quotes are usually of-
fered a few months after harvest, as providing trustworthy statistics before harvest is a major chal-
lenge (Bauer, 1975; Ozdogan & Woodcock, 2006). Agricultural survey is the traditional method 
for estimating cultivated areas, but it has the tendency to be based on samples that are often inade-
quate in space and time (FAO, 1993 b; USDA, 2004). 

The analysis and mapping of both the spatial coverage and temporal change of cropland using re-
motely sensed data is significant for agricultural sciences (Rahman et al., 2005). It has become an 
effective tool for approximation cropland area and crop production in many parts of the world 
(Hill et al., 1980; Pax-Lenney et al., 1996; Panigrahy & Chakraborty, 1998; Frolking et al., 1999; 
Ares et al., 2001; Pinter et al., 2003; Xiao et al., 2003; Foody et al., 2006). Remote sensing tech-
nology has the ability to much improve the quality (availability, timeliness and accuracy) of na-
tional and world crop production data, which could have large economic and social benefits (Bau-
er, 1975). Since the launch of LANDSAT-1 in 1972, the specific application of remote sensing 
techniques for agriculture has been used for: a) Detection; b) Identification; c) Measurement; and 
d) Monitoring of agricultural phenomena and estimation of crop acreage, pest detection (Penuelas 
et al., 1995), crop stress (Jurgens, 1997), water stress (Moran et al., 1994), soil properties or soil 
inventory (Yang & Anderson, 1996), predicting crop yield, nutrient detection (Blackmer et al., 
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1996), vegetation change, crop vigor, crop density, crop maturity, growth rates, effects of fertiliz-
ers, water quality, irrigation requirement, and location of canals (Asati & Asati, 2007). It has been 
proved that remote sensing is economical, complete, simple and fast, but derived approximates are 
not without weaknesses. 

Remote sensing is an ideal technique for application in agriculture, because of the essential charac-
teristics of the features of this industry: a) the large spatial extent of the agricultural activities 
makes the traditional field survey or census long and generally expensive; b) the per-unit-area 
economic productivity from agriculture is not as important in comparison with other industries; c) 
the major characteristic of most of the crops is that they are non-permanent annual plants. They 
have diverse growth and development stages in diverse seasons. Agricultural activities have clear 
phenological regularities, and so the intra-annual change may be very extreme; and d) agriculture 
is basically a human activity, where timely and accurate monitoring information is needed for ef-
fective management. Remote sensing technology responds to these needs through its speed, accu-
racy, economy, timing, dynamics and repetitive monitoring capability. Significant developments in 
remote sensing technology, including high spatial resolution data, the hyper-spectral data, quanti-
tative inversion algorithms, etc., have advantaged the application of this method for agricultural 
purposes (Chen et al., 2008). 

However, Van Niel and McVicar (2000) outlined five limitations of remote sensing in agriculture: 
data availability, length of the recording period, limited mapping capability, requirement of exper-
tise and computer facilities, and cost. Some of the satellite systems’ limitations were carefully pre-
sented by Zhang et al. (2002) and contained: "a) The revisit-cycle may not allow a specific event 
to be captured; b) The limited extent of the area of interest; c) The cost of the data; d) Poor spatial 
resolution; and e) The time taken to access imagery from the supplier". 

Successful application of remote sensing in agriculture requires clear differences in the spectral 
reflectance of vegetation categories, and an appropriate sensor spatial, spectral, and temporal reso-
lution to detect the differences (Lamb & Brown, 2001). The foundation of this applied field of 
remote sensing for agriculture was the work done by Colwell (1965) on small-grain cereal crops 
and their infection using a color infrared film (also known as camouflage detection film). Applica-
tion of the visible and near-infrared portions of the EMS for remote sensing has its roots in the 
innovative works by (Gates et al., 1965; Allen et al., 1969; Gausman et al., 1969; Woolley, 1971; 
Allen et al., 1973; Gausman, 1973 and 1974; Gausman et al., 1971 and 1974; Gausman, 1977), 
who has contributed a great deal to the basic theory relatingthe morphological properties of crop 
plants to their optical properties. Natural and cultivated classes, with high resolution spectral sig-
natures, were presented as basis of information about normal plant growth and conditions caused 
by nutrient deficiency, pests, and abiotic stresses (Gausman & Allen, 1973; Gausman & Hart, 
1974; Gausman et al., 1975, 1976, and 1981; Peynado et al., 1980). Research on plant canopy con-
struction, solar lighting conditions and soil reflectance has improved remote sensing as an instru-
ment for study and its relevance to agronomic problems (Suits, 1972; Tucker, 1977; Bauer et al., 
1986; Liang, 2004). A review on the development of remote sensing for agricultural purposes was 
published in a set of articles in Photogrammetric Engineering and Remote Sensing (Volume 69). 
Another review on the application of remote sensing for dry-land crops was presented by Hatfield 
et al. (2004). 

The successful use of optical remote sensing has shown that it is already the most widely applied 
data-gathering method in agriculture. Sensors like SPOT, ASTER, with LANDSAT/TM & ETM+ 
will further enhance the assimilation of such technology (USGS, 2009). MODIS, with its relatively 
low spatial resolution (250 m x 250 m pixel size), has reported the most success in agricultural 
applications because of its high temporal resolution and its availability (Chen et al., 2008). High-
resolution commercial satellites, such as IKONOS & Quick-Bird, have an advantage in their tem-
poral resolution (1-3 days) (Moran, 2000). Microwave imaging sensors such as RADARSAT also 
play an important role. Within the past years, researchers have explored the usefulness of ENVI-
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SAT-ASAR dual polar-metric data for environmental mapping of agricultural areas (Lohmann et 
al., 2008). Multispectral sensors have drawbacks in their ability to give exact approximations of 
biophysical and yield information about agricultural crops (Thenkabail et al., 2002), and on crop 
class or species identification (Asner et al., 2000). To overcome these drawbacks, there has been 
an increasing interest in the narrow-waveband hyper-spectral sensors which can normally acquire 
data in hundreds, or even thousands of spectral bands. These hyper-spectral sensors such as Hype-
rion on NASA’s Observing-1 Platform have all played a role in the advancing application of re-
mote sensing for agriculture (Mather, 2004). This satellite with 220 spectral bands (0.4-2.5 μm), a 
30 m spatial resolution and a 7.5 km by 100 km spatial coverage land area per image, has allowed 
researchers to develop new vegetation indices, for example, Bannari et al. (2008) who developed 
several spectral chlorophyll indices. 

Some new advanced satellites with advantages in terms of revisit periods, and spatial and spectral 
resolution, such as VENUS and HyspIRI, will launch in the next five years. For instance, the new 
micro satellite VENUS, will carry a sole super spectral space camera and will have an advanced 
plasma-thruster mechanism for momentum. The hyper-spectral satellite HyspIRI is proposed to be 
launched sometime around 2013 and will carry a TIR scanner and a hyper-spectral imager that will 
cover UV, VIS, SWIR and TIR ranges. The TIR-range will have eight bands between 3.9 and 12.7 
μm with 45 m spatial resolution. Its data will offer practical information in the investigation of 
surface temperature, geology, surface morphology, natural resources, drought, soil and vegetation. 
However, for processing so many spectral bands, it requires the use of advanced digital image pro-
cessing software and algorithms to decrease the dimensionality of the data to a manageable level. 
These sensors are: costly to buy; costly to operate; large; and need a full-sized aircraft to board the 
instrument (except for the handheld sensors) (Deguise et al., 1998; Jensen, 2007). Where the 
growth and management of agricultural crops are influenced by local climate conditions (Atkinson 
& Curran, 1995), cloud cover can have an influence on the satellite remote sensing possibility. 
Airborne platforms sensors present more flexibility rather than satellite platforms and have solved 
some of these problems, i.e.: they can operate under clouds; and have a higher spatial resolution 
(Lamb & Brown, 2001). However, the cost and the difficulty in geometric correction of the images 
is still a source of interest, and work is being conducted on sinking the cost of the sensors (Everitt 
et al., 1995). Remote-control helicopters have been used to produce maps of crop status (Sugiura 
et al., 2005), and model aircraft have also been used as platforms for remotely sensed crop biomass 
and nitrogen status studies (Hunt et al., 2005). In addition, a high-altitude unmanned aerial vehicle 
was used to observe crop maturity and weeds in a coffee farms (Herwitz et al., 2004). However, 
these systems are expensive. For further reference, Pinter et al. (2003) presented the geographical 
extent of the agricultural research remote sensing programs. 

1. Remote sensing approaches for vegetation studies 

The optical characteristics of vegetation and different leaves were explained in detail by (Lambers 
et al., 1998; Ustin et al., 1999; Kumar et al., 2001). In general the reflectance of vegetation in the 
visible wavelengths (0.43-0.66 μm) is small and reflection in near infrared (0.7-1.1 μm) is large 
(Fig. 2.5). The life cycle in crop plants includes the three major phases: a vegetative stage, repro-
ductive phase and a grain-filling stage. Three features of leaves have an important impact on their 
reflectance characteristics: pigmentation (e.g., chlorophyll a and b), physiological structure and 
water content. Pigments absorb the energy of the visible wavelengths, where the highest level of 
absorption from chlorophyll a is located at 430 nm and 480 nm, while for chlorophyll b it is at 450 
nm and 650 nm. For example, the bandwidth of the LANDSAT-TM is too wide to detect these 
thin absorption bands (Bidwell, 1974; Lambers et al., 1998). The reflectance response of vegeta-
tion canopy is affected by: the vegetated and non-vegetated areas spatial distribution, vegetation 
classes, leaf area index, distribution of the leaf angle, and bio-chemical and physical vegetation 
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conditions. The water content of the leaves and water in the atmosphere decrease overall leaf re-
flectance and causes some thin absorption features (water absorption bands) (Irons et al., 1989). 

The spectral response of vegetation changes permanently during the growing season and with al-
terations in moisture content. Appropriate information about these changes assists in the determin-
ing of the best time period for field work and in determining biophysical features to be measured. 
Fig. 2.14 illustrates a simplified spectral reaction curve for vegetation from 400 to 2.500 nm. The 
relationship between the irradiation absorption and the irradiation reflection illustrated in this fig-
ure changes with wavelength. The biophysical controls (pigment, cell structure and water) of the 
irradiation to plant interaction are also affected by differing wavelengths (Swain & Davis, 1978; 
McCoy, 2005). 

Fig. 2.14: The typical spectral response curve for vegetation showing the characteristic bands that differentiate vegeta-
tion spectrally (Source: Modified from Hoffer & Johannsen, 1969) 

Factors controlling the spectral responses of the vegetation and its reflectance measurements in-
clude many natural and technical parameters, such as: atmosphere conditions (e.g., the quantity of 
occurring sunrays and the proportion of water vapor, change reflectance from plant canopies (Lord 
et al., 1985 a; Gao & Goetz, 1992); soil background (it has a large effect especially during the very 
early growth stages, where the  density of plant shoots and leaves are low (Huete et al., 1984; 
Elvidge & Lyon, 1985; Huete, 1988; Mickelson et al., 1998); wind (it influences the formation of 
canopies and leaf opening angle, and thus, reflectance (Lord et al., 1985 b); viewing angle (the 
ratio of off-nadir to nadir radiance increases or decreases as the view zenith angle increases based 
on view azimuth angle (Pinter et al., 1987; Ranson et al., 1985; Galvao et al., 2004); the altitude of 
the sensor from plant canopies; and the amount of light. 

There is an important relationship between the available images for an individual study area and 
the plant growth stages, where the growth stage determines which images are suitable for separa-
tion between the crops spectrally. Therefore, learning the phenological details about the crops of 
interest to an individual study area may be required. These phenological details refer to the natural 
vegetation calendar or a crop calendar. Data for these calendars can be obtained from: literature of 
previous ecological studies; meeting with qualified field-oriented ecologists; in state or regional 
bureaus engaged with natural resource management in the region; or from field-work based obser-
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vation and measurements (e.g., Spectrometer measurements). In Syria, these can be obtained from 
the Agriculture Ministry. Fig. 2.15 illustrates a supposed example of a crop calendar for a hypo-
thetical area. The time in which corn and soybean fields are most different phenologically is in 
October, during harvest. If those crops proved to be spectrally separable, then October imagery 
would be appropriate for digital classification. 

 
Fig. 2.15: Hypothetical crop calendar for an area in the Midwestern United States (Source: Modified from Jensen, 

2007) 

Single-date captured remotely sensed data would be inadequate for primarily vegetated areas de-
scribed by large temporal changeability and typical spatial patterns of highly frequent land cover 
changes between vegetation canopies. Multi-date remote sensing would be able to cover this prob-
lem: when specific data might not be suitable to separate individual LULC-classes, the use of an-
other acquisition date might prove more appropriate for classification. Therefore, the use of the 
total multi-temporal information gives us a better separation between several classes, and conse-
quently, more classification accuracy (see Fig. 5.23). Crop phenology understanding is very im-
portant in crop monitoring and classification (Chen et al., 2008). This fact is established by the 
results of a number of studies (Brisco & Brown, 1995; Guerschman et al., 2003; Blaes et al., 
2005). 

2. Remotely sensed vegetation indices 

The mathematical combinations of the visible and near infrared spectral bands allow us to separate 
naked soil surfaces or water bodies from vegetation. These combinations can be called spectral 
Vegetation Indices (VIs) (Crist & Cicone, 1984; Huete & Jackson, 1987), which provide us with 
insight into the spatial patterns of vegetation cover or canopy formations. Vegetation indices are "a 
dimensionless, radiometric measure that indicates relative abundance and activity of green vegeta-
tion" (Jensen, 2007). Their functionality is based on highlighting the spectral role of green vegeta-
tion in images, while obliterating the role of soil background, sun angle and atmosphere by joining 
several spectral bands in visible and near infrared portions of the EMS. Vegetation indices were 
improved on the basis of simple arithmetical principles (e.g., added, divided or multiplied) be-
tween the reflectance at given wavelengths in an intended method to harvest a single value that 
suggests the amount or activity of vegetation in a pixel and to improve the vegetation signal of 
pixels and spectral measurements (Araus et al., 2001; Campbell, 2002). The newly generated val-
ues of these indices are more highly correlated to plant parameters (e.g., leaf area index, biomass 
or vegetative cover) rather than the unprocessed reflectance values (Wanjura & Hatfield, 1986). 
The narrow spectral bands are also more capable than wide spectral bands in exactly defining 
physiological changes at certain wavelengths, which increase the efficiency of the spectral indices 
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(Gitelson et al., 2005). A variety of VIs has been developed during the past 40 years. Hatfield et al. 
(2004) reviewed the progress in VIs and their using to crop canopies. The original finding of VIs 
goes back to Jordan (1969), who linked the ratio of NIR-800 nm to red-675 nm reflectance 
(NIR/RED) to LAI. As a modification, Tucker (1979) proposed a Difference Vegetative Index 
(DVI) as NIR-RED. These spectral vegetation indices include among others: the Normalized Dif-
ference Vegetation Index (NDVI) (Tucker, 1986; Hurcom & Harrison, 1998); the Soil Adjusted 
Vegetation Index (SAVI) (Huete, 1988); the Tasseled Cap Greenness (TCG) (Crist & Cicone, 
1984; De Jong, 1994); the Ratio Vegetation Index (RVI); Physiological Reflectance Index (PRI); 
Water Index (WI); and Simple Ratio (SR). A lot of the current VIs are based on wide spectral 
bands strongly linked with LANDSAT. Thresholding a VI is a simple dual choice to classify the 
ground surface features as vegetated or non-vegetated. Any advanced within-vegetated areas clas-
sification requires further exhaustive information about the vegetation characteristics, where the 
life of any variety of vegetation in an individual area is controlled by the biophysical environment 
and the ecological conditions (Jensen, 2005). 

The calculation of NDVI can be very practical in the making of a LULC-classification. It is the 
most commonly used (Ahmadi & Mollazade, 2009). 

3. Crop discrimination from satellite-based images 

The most frequently practiced utilization of remote sensing for agriculture is the identification of 
crop types and then classification (Van Niel & McVicar, 2000), where crop discrimination is a 
critical and difficult first step for most agricultural observing activities. The capability of remotely 
sensed data to identify crop class makes it promising to classify and estimate each crop area, and 
so calculate the relevant statistics automatically that can used as inputs to crop production forecast-
ing models (Blaes et al., 2005). The application of remote sensing for discrimination between agri-
cultural crop classes and internal crop characteristics has been widely studied throughout the past 
decade (Metternicht et al., 2000; Senay et al., 2000; Thenkabail et al., 2000;  Van Niel & McVicar, 
2004 b; Blaes et al., 2005; Brooks et al., 2006;  Lucas et al., 2007; Wardlow & Stephen, 2008; 
Satalino et al., 2009). Most of these researchers have focused on increasing classification accuracy 
through the development of several techniques and methods. In contrast, only small studies have 
been presented on determining the best time(s) to obtain images in order to distinguish different 
crops (Van Niel & McVicar, 2004 a). 

The temporal information dimension in used remotely sensed data is the most useful factor in nat-
ural vegetation and agricultural applications for identifying crop types (Smith & Ramey, 1982; 
Badhwar, 1984; Hall & Badhwar, 1987; Price et al., 1997; Wardlow et al., 2007). This is because 
agricultural features have great (within-class and within-season) spectral flexibility, that is based 
on several complex natural and biophysical factors (e.g., crop type/s, soil, water and geographical 
location). The observation and understanding of these various spectral responses of crops, and 
comparison with the physical characteristics of remotely sensed data recorded in various dates in 
the year (building a crop-specific temporal record), would give us the appropriate date(s) during 
the growing stages in which the crops of interest are spectrally separable. Also, by observing the 
physical derived spectral indices from remotely sensed data that are sensitive to natural vegetation 
cover over time, it is possible to discriminate crops (Van Niel & McVicar, 2000; Ozdogan, 2010). 

Discrimination of crops using remote sensing imagery is generally achieved with supervised or 
unsupervised classification algorithms (Jensen, 2007). Recently, nonparametric algorithms, expert 
knowledge and ancillary data have been used in the process of cropland classification, improving 
the overall classification accuracy. One example of this is the establishment of neural networks for 
crop type identification, which is the most important development in information extraction from 
remotely sensed data in the last 15 years (Del Frate et al., 2003). Multi-sensor data fusion and clas-
sification of time series data are being applied in cropland classification more and more (Chen et 
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al., 2008). Multi-temporal imagery has been found to clearly obtain better results than those at-
tained by mono-temporal remotely sensed data (Brisco & Brown, 1995; Guerschman et al., 2003). 
The most simple method of distinguishing crops is the classification of images into large-scale 
classification categories including all agricultural features (Level 1 in LULC-classification) 
(Campbell, 2002). From this level of classification, agricultural features can be classified into 
cropping and non-cropping regions. 

The interaction between crop field scale and pixel size is a significant factor, especially in hetero-
geneous cropping areas. For instance, large pixel dimensions allow an increasing chance of record-
ing mixed reflectance values. This resulted mixed spectral response is confused by traditional local 
agricultural management practices, such as found in most areas of the Euphrates River Basin, 
where crops are sometimes planted in almost 30 m strips (see Fig. 5.29). This is alternated with 
un-cropped areas (bare soil, stubble, dirt roads, etc.) of similar size to the cropped strips. So, pixels 
that are not entirely homogeneous (e.g., solely forest, vegetation, wheat crop, etc.), have mean 
reflectance values (composite spectral response that might match neither feature’s spectral re-
sponse) as a result of more than one feature within the pixel area. Such pixels are known as mixels 
and are an ever-present problem in cropland classification, reducing their discriminating power 
(Chen et al., 2008). Spectral Mixture Analysis techniques (SMA) have been developed and used to 
solve the mixel-problem in remotely sensed data (Tompkins et al., 1997; Broge & Mortensen, 
2002; Doraiswamy et al., 2005; Fitzgerald et al., 2005; Theau et al., 2005). Confusion between 
natural vegetation and cropland is also another major source of error in crop classification using 
low spatial and/or spectral resolution remotely sensed data. Sometimes this is also true of high-
resolution imagery. This type of confusion is especially common in areas with very complicated 
traditional local agricultural management practices, which are controlled by natural topography or 
from land ownership (Loveland et al., 1999). An additional factor to the quantity of this confusion 
type is the seasonal variation in the NDVI signals caused by seasonal difference in illumination 
geometry, which imitates a phenological cycle (Spanner et al., 1990; McIver & Friedl, 2002). 

In order to support the capability of remotely sensed data to discriminate between the various 
crops, researchers have investigated many alternatives which have to do with: The sensor-type 
(e.g., optical or microwave); number of images (e.g., single-date or multi-date); timing of the im-
agery; digital processing techniques; or ancillary and spatial data integrating in the classification 
process (Van Niel & McVicar, 2000). 

Abou El-Magd and Tanton (2002) presented a multi stage MLC method and showed increases 
from 85 % to 94 % in accuracy of crop classification based on six bands of 30 m resolution 
LANDSAT-7-ETM+ data. At each stage, only a subset of the classes was classified. The results 
from individual stages were combined to produce a final crop maps. The case study from Van Niel 
and McVicar (2004 a) was tasked to: 1) conclude temporal periods for maximum overall and indi-
vidual crop separation; and 2) evaluate simple techniques for harvesting the best single-date results 
to improve overall accuracy. Seventeen single-date classifications of four major summer crops 
(rice, maize, sorghum and soybeans) were evaluated for a single growing season at the Coleam-
bally irrigation area in Australia using LANDSAT-ETM+ data. Per-pixel classifications were ap-
plied using MLC and were then joined with field borders to apply per-field classifications based 
on the greater part crop class within each field. Multi-date classifications were achieved by: 1) 
merging diverse numbers of spectral bands for each date into a single image stack previous to clas-
sification (two-date, and three-date-termed standard multi-date classification); and 2) obtaining 
maximum accuracy single-crop classes from diverse dates and merging them during the post-
classification process (termed iterative multi-date classification). Mart´ınez-Casasnovas et al. 
(2005) presented a method that made available long term cropping categories to be classified using 
time-series remotely sensed data and supervised classification techniques. The method was used to 
map the multi-year cropping categories in the Flumen irrigation region (33,000 ha) in the Ebro 
Valley in northeast Spain. A seven year time series (1993, 1994, 1996, 1997, 1998, 1999 and 
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2000) of crop maps derived from LANDSAT-5-TM and LANDSAT-7-ETM+ images were used to 
produce the yearly crop maps, from which to get the multi-year cropping categories. Blaes et al. 
(2005) used 15 ERS and RADARSAT/SAR- and three optical images to determine agricultural 
crop classes based on devoted per-parcel classification and photo interpretation schemes. A hierar-
chical classification strategy was applied in order to take into account the spectral signatures vari-
ability within each crop type. Brooks et al. (2006) studied the potentials of multi-temporal (differ-
ent parts of the agricultural growing season in the years 2004 and 2005), and multi-sensor 
(LANDSAT-5-TM, TERRA-MODIS and TERRA-ASTER) remotely sensed data to discriminate 
crop classes (corn, soybeans, wheat, alfalfa and grasses), in the 14,600 ha Upper Tiffin watershed 
in southeastern Michigan. The overall accuracy was 68.0 %. It was compared with two classifica-
tions techniques: the objected-oriented method with e-Cognition and a pixel-based method with 
ERDAS-Imagine. Both methods were found to have almost identical accuracy. The objective of 
the research from Wardlow and Stephen (2008) was to assess the applicability of time-series 
MODIS-250m-NDVI data for large-area crop-related LULC-mapping over the U.S. Central Great 
Plains. A hierarchical/graded crop classification approach, that used a decision tree classifier to 
multi-temporal NDVI data gathered over the growing season, was experienced for the state of 
Kansas. This approach created a series of four maps that increasingly classified: 1) crop/non-crop; 
2) general crop classes (alfalfa, summer crops, winter wheat and fallow); 3) specific summer crop 
classes (corn, sorghum and soybeans); and 4) irrigated/non-irrigated crops. The general classifica-
tion accuracy was at 84 %. In the study from Conrad et al. (2010), a multi-sensor model using 
2.5m-SPOT, and bi-temporal 15–30m-ASTER data, was designed to support classifications of 
wheat, rice and cotton rotations in the irrigation system of Khorezm, Uzbekistan. The model con-
sisted of two steps: a) the marking out of field borders using very high resolution satellite data; and 
b) the classification of multi-temporal medium resolution satellite data for discriminating crops 
and crop rotations within each field area. An overall accuracy of 80 % proved the success of the 
selected per-field classification rule base. 

4. Crop area estimation from satellite-based images 

Crop area measurement and survey are very common practices in agriculture. Photo-interpretation 
of images can give better information than statistical analysis to evaluate an amount, or area, for a 
thematic category (Ozdogan & Woodcock, 2006). Remotely sensed data plays a significant role in 
bringing precise and opportune information on the location and area of specific crop types, which 
has important economic, food, policy and environmental consequences (Deaton & Laroque, 1992; 
Nelson, 2002; Ozdogan, 2010). Usually, crop area estimation has been achieved with very costly 
and hard statistically-based ground surveys that do not determine either the area or the geograph-
ical distribution of individual crops. To overcome or decrease these drawbacks, remote sensing, 
either alone or in combination with ground surveys, were used in crop area estimation (Allen, 
1990; Hanuschak et al., 2001; Carfagna & Javier Gallego, 2005; Wardlow & Stephen, 2008). Ob-
taining full efficiency of remote sensing for crop area estimation depends on the landscape charac-
teristics, especially field size compared with the image resolution, where a suitable resolution for a 
specific landscape is realized when the most image pixels are pure. However, when this relation-
ship is not realized, for example when using MODIS- or MERIS images especially for landscapes 
with small fields, then sub-pixel classification techniques (e.g., pixel un-mixing) can be used 
(GEO, 2010). Remote sensing has not been widely used for crop area estimation, due to the 
tradeoff between spatial detail (the scale of the remote sensing data) and area coverage for each 
image. In addition, there is the relationship between the spatial resolution of the remotely sensed 
data and the agricultural field sizes. Agricultural fields in most countries in the world are rather 
small, requiring medium to high spatial resolution data. However, increases in spatial resolution 
provide a decrease in the temporal availability which in turn lowers the chance of clouds-free cov-
erage. Even if the clouds-free suitable spatial resolution data were obtainable, the increased num-
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ber of datasets makes the cost high, and the high spatial resolution sensor covers only small geo-
graphical areas at a time. This leads to an additional problem, the need for atmospheric corrections 
in automated image digital processing and classification, as the required images are often gained at 
diverse times during the growing cycle of a crop. Medium spatial resolution data (e.g., LAND-
SAT) may be too coarse in countries with very small cultivated fields (e.g., China), but high spa-
tial resolution is more appropriate for use in countries with large cultivated fields, such as the U.S. 
(Ozdogan & Woodcock, 2006). In contrast, lower spatial resolution data (e.g., MODIS) offer wide 
temporal and geographical coverage at continental and global scales, but need detailed spatial in-
formation. The fact that not each pixel in an image represents only single crop type can introduce 
uncertainty into area estimates because of the mixture (Van Niel & McVicar, 2000; Ozdogan & 
Woodcock, 2006). Where cultivated areas are smaller than the spatial resolution of the image, 
here, both cultivated and uncultivated areas (e.g., roads, houses, irrigation channels) are integrated 
in a pixel classified as agriculture or cropland. In agricultural situations, the amount of uncultivat-
ed area has been reported to vary from 10 to 40 % (Crapper, 1980; Okomato & Fukuhara, 1996; 
Gonzales-Alonso et al., 1998; Fang, 1998; Frolking et al., 1999). To relatively solve this mixed 
pixel problem which occurs especially in high temporal resolution data at low spatial resolution, 
some contributors have developed techniques that use the concept of temporal un-mixing (Adams 
et al., 1986). It is similar to the traditional spectral un-mixing technique, where pure end-members 
are distinguished by their spectral response. Temporal un-mixing uses end-members defined by 
their single temporal response to improve the fractional area of each end-member based on its part 
to the mixed temporal reaction observed by the sensor (Ozdogan, 2010). Finally, previous crop 
class identification steps also influence crop area measurement from remotely sensed data (Van 
Niel & McVicar, 2000). 

There are two generally used area estimation methods with remote sensing (Ozdogan & Wood-
cock, 2006). The first method calculates portions/fractions of a thematic category of interest for 
each pixel (Quarmby et al., 1992; Hansen et al., 2002). The essential drawback here is the accura-
cy assessment of fractions of the thematic field. However, area estimation by this method is be-
coming more common (Hansen et al., 2002; Liu & Wu, 2005). A second method is based on gen-
erating the thematic map through image classification and then multiplying the area of the pixels 
with their number in a specific class. The drawback here is the classification accuracy of the the-
matic map (Ozdogan & Woodcock, 2006). 

The first version of the Digital Global Map of Irrigated Areas (DGMIA) was published in 1999. It 
contained a raster map with a spatial resolution of 0.5° by 0.5° containing the fraction of the area 
that was ready for irrigation around 1995, the so-called irrigation density (FAO, 2009). Within the 
GIAM-project, irrigated areas were predicted for individual regions of the World at 500 m 
(Dheeravath et al., 2007; Thinkabail et al., 2008). Ozdogan et al. (2006) estimated changes in 
summer irrigated crops areas and related water use from remotely sensed data and secondary data 
in semi-arid southeastern Turkey, where usually rain-fed agricultural lands are fast being changed 
into irrigated fields using of water from the Euphrates-Tigris Rivers. An image classification 
methodology depended on thresholding of LANDSAT-NDVI data from the peak summer period 
shows that the sum area of summer irrigated crops has enlarged threefold (from 35,000 ha to over 
100,000 ha) in the Harran Plain between 1993 and 2002. Bayraktar and Bülent (2007) successfully 
achieved the irrigation of a total of 23,085 ha irrigateable land in central Diyarbakir and Ergani in 
Turkey using one ASTER-image. Ozdogan and Gutman (2008) presented a dry land irrigation 
mapping methodology that based on remotely sensed inputs from the MODIS sensor. Pervez et al. 
(2008) mapped irrigated areas of the conterminous USA using three sources of data: 1) county 
irrigation statistics from the USDA-NASS; 2) LULC-information from the 2001 National Land 
Cover Database (NLCD); and 3) satellite imagery from the MODIS sensor. The study from Lu et 
al. (2008) pointed out that high temporal-resolution MODIS data can improve the observation of 
irrigation in a large area and assist local mapping applications. In addition, it is free of cost, suita-
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ble and simple to receive and analyze MODIS data. Dheeravath et al. (2010) established a com-
plete method for the approximation of irrigated areas using MODIS-500 m over an eight day time 
series in India from 2001 to 2003. The irrigated areas were extracted with an overall accuracy of 
88 %. 

For several countries in the world which produce big amounts of wheat were important to approx-
imate their total production at suitable time using a dependable method. Thus, the Large Area Crop 
Inventory Program (LACIE) was found (MacDonald & Hall, 1980; Los et al., 2002). In the work 
from Ozdogan and Woodcock (2006), the resolution confidence of errors in approximation of cul-
tivated areas was investigated using cases from six agriculturally different regions around the 
world. The major question behind this study was: how much is the ability to approximate cultivat-
ed area using remotely sensed data with various resolutions in relation to impact of the size and 
spatial pattern of agricultural fields in different geographic regions? A following question: how 
much is the influence of the overall proportion of a landscape under cultivation on the accuracy of 
area estimates with remote sensing?. Liu et al. (2005) used LANDSAT TM/ETM+ data with the 
spatial resolution of 30 m to recreate spatial and temporal characteristics of cropland across China 
for the time period of 1990–2000. Hereher (2009) estimated the agricultural land area of Egypt in 
2005 using four images from MODIS-data (the wide swath of this sensor was 2,330 km). Potgieter 
et al. (2010) investigated the question of "How early and with what accuracy?" crop area estimates 
can be concluded using multi-temporal MODIS Enhanced Vegetation Index (EVI) imagery. The 
study was carried out for two shires in Queensland, Australia for the 2003 and 2004 seasons, and 
focused on obtaining total winter crop area estimates (including wheat, barley and chickpea). 

F. Status of the accuracy assessment methods 

A classification process is not finished until its accuracy is measured (Lillesand et al., 2008). The 
assessment of the classification algorithm, change detection approach and the related end-results, 
which is generally a thematic map, is an important part of the digital remotely sensed data interpre-
tation chain and LULC-classification approach. Assessment approaches can be based on a qualita-
tive estimation using expert knowledge, or based on a quantitative estimation using statistical 
methods and previous data. These methods can be costly or cheap, brief or long in time, elegant 
and professional. The purpose of quantitative accuracy evaluation is the detection and measure-
ment of map errors, where it compares an area on an end-product map versus result-based refer-
ence information of the same area (Campbell, 2002; Lu & Weng, 2007). These reference data can 
be gathered from field work, or the interpretation of previous large scale thematic maps and aerial 
photographs, or the visual interpretation of imagery. Then, the reference classes can be compared 
to the result of the classification, and the percentages of correctly against wrongly classified pixels 
that were calculated for each class can be determined (Foody & Mathur, 2006). 
There is no optimized method to measure the absolute accuracy of end-results derived from re-
motely sensed data, because one cannot achieve such an evaluation without knowing 100 % of 
ground truth. However, in contrast, if we do have absolute information of ground truth in the study 
area, what is the meaning of the classification? Therefore, we can only obtain a relative accuracy, 
that gives us a base from which to accept or refuse the end-results (e.g., classification, change de-
tection, etc.) based on specific criterions at a specific confidence level (Liu & Mason, 2009). Ac-
curacy assessment based on error matrix is the most frequently used method for evaluating per-
pixel classification in addition to the possibility of use for object-based classification (e.g., Wang 
et al., 2004). Also, recently, fuzzy methods have been used for evaluating fuzzy classification re-
sults. The error matrix (also called confusion matrix or contingency table), describes the total part 
to which degree the created image classification matches with the reality (e.g., the reality repre-
sented by the ground truth points that is assumed to be correct). Thus a variance between the re-
sulted map from automated classification and reference information is a classification error 
(Congalton & Green, 1999; Foody, 2002). The accuracy formats allow the derivation of the most 
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general evaluation measurements: 1) overall accuracy; 2) producer accuracy; and 3) user accuracy. 
A detailed overview was presented by (Congalton & Green, 1999; Foody, 2002). In order to cor-
rectly produce an error matrix, one must respect the following issues: 1) reference data gathering; 
2) classification scheme; 3) sampling method; 4) spatial autocorrelation; and 5) sample size and 
sample unit (Congalton & Plourde, 2002). 

The overall accuracy value, derived from error matrix, includes a ratio that can be consolidated to 
likelihood conformity between the two data sets. Cohen (1960) improved the Cohen’s Kappa coef-
ficient as a measure of conformity/agreement which is used to likelihood conformity. It is fre-
quently applied for an assessment of maps from diverse areas. Congalton (1991) recommended the 
application of the Kappa coefficient as an appropriate measure of the accuracy of a classification 
as a way of correlating the uncertainty of the results. It measures the variance between the real 
agreement in the error matrix (see Fig. 5.63) (e.g., the conformity between the remotely sensed 
data classification and the reference data as showed by the main diagonal/transverse) and the like-
lihood conformity which is showed by row and column totals. Kappa analysis is documented as a 
robust method for evaluating a single error matrix and for comparing the divergences between 
various error matrices (Congalton, 1991; Smits et al., 1999; Foody, 2004 b), and it takes into ac-
count the entire error matrix rather than the diagonal elements only. The assessment of the Kappa 
coefficient is the lag between the two values, i.e. -1 and +1. A positive value is likely containing a 
positive correlation between the image and reference data that were used for classification. A value 
of zero shows no harmony in classification, while a value of 1 pointed to an ideal conformity be-
tween the classification method output and the reference data. 

Modified Kappa coefficient and Tau coefficient were founded to be as superior measures tools of 
classification accurateness (Foody, 1992; Ma & Redmond, 1995). The Kappa Index of Agreement 
(KIA) is not as well-known as the overall accuracy (percentage correct) as a tool with which to 
measure classification accurateness in applications of remote sensing techniques, but it is also used 
by many researchers (e.g., Dikshit & Roy, 1996; Cingolani et al., 2004). Næsset (1996) explains 
the application of a weighted Kappa coefficient to estimate the classification accurateness when all 
errors are not similarly important (e.g., if there are informational classes which are more strongly 
related to each other than others). Finally, accuracy assessment based on a normalized error matrix 
was carried out, which is observed as an improved contribution compared to the classical error 
matrix (Congalton, 1991; Hardin & Shumway, 1997; Stehman, 2004). 

Many researchers, among them: Congalton (1991); Janssen and Van der Wel (1994); Smits et al. 
(1999); Foody (2002); and Foody and Mathur (2006), have presented evaluation reviews for clas-
sification accuracy assessment, discussing the state of accuracy assessment of image classification 
and other important topics. For example, Congalton and Green (1999) methodically reviewed the 
idea of fundamental accuracy assessment and some superior issues included in fuzzy-logic and 
multilayer assessments, and clarified standards and practical considerations in modeling and 
achieving accuracy assessment of remote-sensing data. The traditional error matrix approach is not 
suitable for assessing the soft classification results that have been presented to reduce the mixed 
pixel problem using fuzzy logic. Hence, various novel methods, such as a modal/qualified entro-
py/selective and shared information (Finn, 1993; Maselli et al., 1994), fuzzy-set methods (Gopal & 
Woodcock, 1994; Binaghi et al., 1999; Woodcock & Gopal, 2000), symmetric index of infor-
mation nearness (Foody, 1996), Renyi generalized entropy function (Ricotta & Avena, 2002), and 
parametric generalization of Morisita’s index (Ricotta, 2004), were developed. On the other hand, 
a critical problem in evaluating fuzzy classifications is the complexity of gathering reference data. 
Therefore, more research is needed to find a suitable method for assessing fuzzy classification re-
sults. 

A classification accuracy assessment process in general consists of three basic mechanisms: design 
of sampling model; design of response; and methods that used for estimation and analysis 
(Stehman & Czaplewski, 1998). Choosing an appropriate sampling model is a significant stage 
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(Congalton, 1991), and it has been argued that the sampling design stage is not always suitable and 
an alternative is required (Foody & Mathur, 2006). The major components of a sampling mod-
el/strategy contain: units/shapes of sampling (pixels or polygons); plan of sampling; and range of 
sample in size and number (Müller et al., 1998). Achievable sampling designs contain random, 
stratified random, systematic, double and cluster sampling. It is dependent on the distribution of 
the class areas, thus this generally carried out after classification. A full explanation of sampling 
methods can be found in previous literature such as (Stehman & Czaplewski, 1998; Congalton & 
Green, 1999). By applying random sampling, each sample (e.g., pixel) has the same chance to be 
chosen. However, random sampling may lead to difficulties if the chosen samples are situated in 
inaccessible areas (e.g., very dense natural forests). Also, absolute random sampling could repre-
sent the classes of low coverage that fail to be represented in the sample, thus stratified random 
sampling, with prior knowledge about the areas, is often used in order to guarantee that samples 
from all classes are included in the accuracy assessment (e.g., Congalton, 1991; Congalton & 
Green, 1999; Helmer et al., 2002; Qiu & Jensen, 2004). To overcome the problem of an area’s 
inaccessibility by random sampling, some researchers use cluster sampling, related to the selected 
samples in earlier known areas. This positively helps to reduce the field access cost. However, this 
will negatively cause a biased (influenced and subjective one) testing sample and an overestima-
tion of the classification accuracy (Arora & Mathur, 2001). Cluster sampling and too systematic 
sampling, which chooses samples with an equivalent distance over the study area to be tested, can 
create spatially auto-correlated data. Finally, these methods do not guarantee that every entity in 
the population has an equivalent possibility to be included in the sample, thus disturbing the re-
quirements for deductive statistics (Næsset, 1996; Brogaard & Ólafsdóttir, 1997; Arora & Mathur, 
2001). 

There are two commonly conventional methods to obtain reference data: 1) use field-collected 
data. This is important for fast and temporally changing LULC-classes (e.g., crops), where the 
field data should be gathered at the same time with image acquisition; and 2) image-collected data. 
This uses spectral signatures and limited field knowledge, especially for slow changing LULC-
classes (e.g., rivers), where a user can manually select training samples of different classes using a 
multispectral image. These two methods are often integrated and used in combination as a hybrid-
approach (Liu & Mason, 2009). 

There are three ground data collecting ability scenarios: 1) no ground data may be acquired. This 
may be the situation when no approval can be attained from state establishments to visit the coun-
try (e.g., North Korea), or by a crisis (e.g., large areas of Somalia). As an alternative, samples col-
lected from a high resolution images or areal-photo-interpretation can be combined with image 
classification on medium resolution. A sampling strategy (random, systematic or stratified) should 
be used to select reference data from the high resolution images. However, accuracy is limited and 
needs to be confirmed from experience in other areas with similar landscape characteristics (GEO, 
2010); 2) an inadequate quantity of ground data can be acquired. This is the situation when state or 
local establishments do not create major hindrances to the gathering of ground data, but do not 
show interest in the research (e.g., Syria). In this situation, the efficiency of ground data is limited, 
although accuracy is more likely than in the first scenario; and 3) ground survey is possible. This 
occurs when state establishments are interested in the research subject and in the applications of 
remote sensing. Under this scenario, it is possible to collect sufficient samples of ground data. 
High accuracy can in this situation be reached. 

Before applying the assessment process to get the classification accuracy, one requires to deter-
mine the causes of errors (Congalton & Green, 1993; Powell et al., 2004). The measured accuracy 
of a classified remotely sensed data depends on many factors. In addition to the classification 
method itself, there are other causes of errors, such as location errors resulting from the geometric 
registration, interpretation errors, and reduced superiority of training or test samples. These all 
have an impact on classification accuracy. Many studies have shown that factors such as the sam-
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ple size (number of samples), structure and nature of the sampling strategy used, can have a large 
influence on image classification accuracy (Foody & Mathur, 2006). The sample size decides the 
confidence-intervals of the accuracy approximations (Næsset, 1996; Brogaard & Ólafsdóttir, 
1997). If confident/sure approximations of the classification accuracies for single classes are nec-
essary, the sample size has to be larger than that for a similarly confident approximation of the 
overall accuracy. Bigger samples than for a regular estimation of the overall accuracy are also re-
quired in order to sufficiently represent the uncertainty between all couples of classes in the error 
matrix (Congalton, 1991). The sample size is limited by the cost of determining the truth values 
for a large number of testing samples (Congalton, 1991; Langford & Bell, 1997). Accuracy as-
sessment is also influenced by sample numbers for each class, where as the sample numbers in-
crease, thus the accuracy assessment will be more trustworthy (Richards & Jia, 2003). Sometimes, 
the measured accuracy is influenced by whether the interpreters are assigning the reference data to 
the generated classes from classification process separately (blindly), or whether they know the 
classification result to be evaluated and can be impacted by it. This can lead to a clear increase in 
the overall accuracy value (Langford & Bell, 1997). It is better to eliminate areas close to class 
borders (mixed pixels) from the accuracy assessment by selecting testing samples in the center of 
homogeneous classes on the image, where errors in these areas may be due to mis-registration be-
tween the classified image and reference data (Langford & Bell, 1997; Hill, 1999; Schlerf et al., 
2003). Most guidance on training set design advises the use of a great number of complete pure 
pixels (Foody & Mathur, 2006). Foody and Mathur (2006) provided a method based on mixed 
spectral responses, using small training samples having mixed/assorted pixels for accurate hard 
image classification. 

Where a classification be more in depth/detailed (having more informational classes which are 
classified more exactly), the possible satisfied information of the resulting map increases, but the 
chance for classification errors thus increases (Campbell, 2002;  Laba et al., 2002). Fig. 2.16 a 
shows the increasing in classes number against the increasing level of classification detail with 
respect to the needed pixel size. Fig. 2.16 b shows a like relationship but with a graphic demon-
stration of the predictable error increasing by rising the classification level with respect to the sub-
pixel analysis of LANDSAT-TM/ETM+ data. 

 
Fig. 2.16: Schematic relation of pixel size, numbers of classes and estimated accuracy dependent on the classification 

level (Source: Modified from Schmidt, 2003) 

The accuracy of an approach to approximate the variability of cropland is influenced by sets of 
issues, such as the data used, scale, crop type, etc (Chen et al., 2008).  However, agricultural land 
use has, as a special characteristic, frequent changes in surface reflectance response in time with 
the growth of a crop, requiring recordings from remotely sensed data to cover the essential phono-
logical phases of the cropping system. This makes the accuracy assessment process more difficult 
(Thenkabail et al., 2000). 
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Chapter 3: Overview of study area 

A. Syria 

Present-day Syria (Fig. 3.1) forms only a small part of antique geographical Syria. Until the twen-
tieth century, when western forces started to create the irregular outlines of the modern countries 
of Syria, Lebanon, Jordan, and Palestine, the entire settled territory at the eastern ending part of the 
Mediterranean Sea was named Syria, a name came from the ancient Greeks to the land connection 
that links the three continents of Asia, Africa, and Europe. Historians and political scientists most-
ly use the expression “Greater Syria” to indicate this region in the pro-state time. Historically, 
Greater Syria seldom ruled itself, mainly because of its susceptible location between the Mediter-
ranean Sea and the desert. As a district between commonly powerful empires on the north, east, 
and south, Syria was frequently an arena for the political fates of dynasties and empires (Kan-
garani, 2006). 

 
Fig. 3.1: Present-day Syrian borders, the 14-governorates administrative divisions, Agro-climatic Zones, and the Eu-

phrates River Basin study area 

The Syrian Arab Republic (SAR), with a total area of 185,180,000 km² (ca. 18.5 million hectares), 
is located on the eastern coastline of the Mediterranean Sea, and is surrounded in the north by Tur-
key, in the east and southeast by Iraq, in the south by Jordan, in the southwest by Palestine, and in 
the west by Lebanon and the Mediterranean Sea. As administrative organization, Syria has 14 Mo-
hafazats (governorates), one of which is the capital Damascus (FAO, 2009). The coordinates of its 
geographic position are 32° to 37° N and 35° to 42° E (Miski & Shawaf, 2003). The total popula-
tion is 19.88 million, of which 46.48 % is rural. Actual population growth was 2.5 % for the period 
2000-2005. Over the half of the inhabitants are under 15 years old. The standard number of family 
members is greater than six. About half of the people live in the main cities, while the other half 
lives in the countryside (Miski & Shawaf, 2003). The average population density was about 96 
inhabitants/km² in 2004 (CBS, 2009). In 2009, agriculture employed around 16.79 % of the total 
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labor force, and accounted for nearly 20 % of GDP (compared to 39 % in 1963) and 60 % of all 
non-oil exports. 

Syria can be classified into four main climate regions: Mediterranean climate, Mediterranean influ-
ence steppe, desert and mountain. Each of these classifications appears again in two variants 
(Wirth, 1971; Akkad, 2001; FAO, 2009). The two major seasons in Syria are identified by signifi-
cant differences in precipitation and temperature. Summers are warm to hot and almost rainless; 
winters are rainy, mild to cool, and relatively moist. In between, spring and autumn appear often as 
only short transitional seasons. Overall, the winter in Syria can be described as more oceanic, while 
the summer has a more continent basic character. The most welcoming and nice climate in Syria is 
found near the shoreline. Precipitation increases with rising elevation in the mountains close to the 
shoreline, and snow is common in winter. Annual precipitation along the coastal mountain series 
from 750 to 1,000 mm. Moving inland from the coast, the climate becomes drier and less mild. 
Syria´s flat terrain areas have an average temperature close to 35° C in summer and 12° C in win-
ter, and the precipitation changes over these flat areas from 250 to 500 mm in the year. Winter in 
the north can be cold, with temperatures frequently falling under freezing. In the dry steppe and 
open desert countryside east of the mountains, a clear continental climate exists, with high summer 
temperatures and rather cold winters, with many nights of frost. This region, which covers approx-
imately 60 % of the country, has an average annual precipitation less than 250 mm. During spring 
and autumn, “KHAMASIN” wind, which are hot and dusty, blowing from the east and southeast. 
Thus, temperatures can be raised up to 43° and 49° C. The temperature values in Syria meet the 
definitions of the Mediterranean climate: the coldest month of almost all the weather stations has 
an average temperature of more than 5° C, the hottest of 25° C. Therefore the climate of Syria is-
under the threshold of the corresponding unit systems: warm-temperate (coldest month > 2° C), 
hot summer (July > 23° C), subtropical (January > 6° C), Mediterranean (January > 5° C). The 
majority of Syria has relatively high daily variations between the maximum and the minimum 
temperatures. This variation sometimes reaches 23° C in the interior areas and about 13° C in the 
coastal areas. The coldest months of the year are December and January, while the hottest months 
are July and August. The temperature often falls under 0° C, but rarely under -10° C, in the winter 
season in all areas excluding the coastal areas (with the exception of north Aleppo and north Al-
Hasaka). In summer, the temperature may rise frequently up to 45º C in places such as Al-Badia 
and Al-Hasaka (Akkad, 2001). Areas that have an elevation higher than 1500 m above the sea lev-
el, receive a snowy precipitation during the winter season. Areas with an elevation of 800-1500 m 
receive the both (rain and snow). Other areas with a lower elevation receive more rain and rarely 
snow, not including desert areas that receive insufficient rain. Precipitation falls constantly or at 
intervals. Frequent thunderstorms come with the intense showers do happen during winter. The 
greatness of such showers reaches in some areas 75 mm in 24 hours. The dense precipitation areas 
are the mountainous and coastal areas. These are followed by the northern region (i.e., north Alep-
po, Kamishly and Malikieh) (Akkad, 2001). The regular annual precipitation over the country is 
252 mm giving 46.6 km³. Precipitation becomes less and less when moving from west to east and 
from north to south. Total annual precipitation varies from 100 to 150 mm in the north-west, 150 
to 200 mm from the south towards the central and east-central areas, 300 to 600 mm in the plains 
and alongside the slopes/foothills in the west, and 800 to 1000 mm along the coast, increasing to 
1400 mm in the mountains (Al-Fares, 2007; FAO, 2009). Table 3.1 shows the distribution of the 
precipitation averages in the Syrian territories (Al-Fares, 2007), where only 25 % of its area re-
ceives more than 500 mm/year precipitation, 25 % of the area receives 250-500 mm/year, and 50 
% of the area receives less than 250 mm/year (Miski & Shawaf, 2003; Al-Fares, 2007). 
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Table 3.1: The distribution of the precipitation averages in the Syrian territories (Source: Modified from Al-Ashram, 
2001) 

Area/km² Percentage to the 
total area of 

Syria/% 

Annual rainfall 
average/mm 

Area/km² Percentage to the 
total area of 

Syria/% 

Area/km² 

9,250 5 More than 1000 74,000 40 100-250 
37,000 20 500-1000 18,500 10 Less than 100 
4,600 25 250-500    

 

"The relative humidity is high during winter and low in summer, of course, desert and semi-desert 
areas are those with the least relative humidity. For example, in winter the relative humidity varies 
from 60 to 80 % in the interior region and from 60-70 % in the coastal region. During summer, the 
rate of humidity in the interior region varies from 20 to 50 %, and in the coastal region from 70-80 
%. During winter, the prevailing winds in the eastern part of the country are easterly and in both 
the northern and northwestern parts, the winds are northerly. Other parts of the country are subject 
to westerly and southwesterly winds. During summer the prevailing winds in the northeastern part 
of the country are northerly, and the remaining parts of the country are subject to westerly and 
southwesterly winds" (Akkad, 2001). 

Most of the country is flat (Fig. 3.2), but a mountainous region is found towards the boundary of 
Lebanon. The east is desert, the west coast. The coastline is 183 km long and borders the Mediter-
ranean. Syria has two mountain ranges alongside the shoreline, with a cleft in between, which is an 
extension of the Red Sea rift (Miski & Shawaf, 2003). The country has the four next physiographic 
regions: 1) the coastal region between the mountains and the sea; 2) the mountains and the high-
lands expanding from north to south alongside the Mediterranean shoreline; 3) the plains or cen-
tral, situated east of the highlands and including the plains of Damascus, Homs, Hama, Aleppo, 
Hassakeh and Dara; and 4) the Badia and the desert plains in the southeastern part of the country, 
neighboring Jordan and Iraq (FAO, 2009). Behind the narrow Mediterranean coastal plain, the 
Jabal Al-Nusayriyah range rises to about 1,500 m, then falls suddenly to the Al-Aasi (Orontes) 
River Valley to the east. In the southwest of the country are the Anti-Lebanon Mountains, with a 
higher range which forms a boundary between Syria and the neighboring Lebanon. It rises to 
2,814 m at Jabal Al-Sheikh (Mount Haramon) on the Lebanese border. This series of mountains 
decreases into a hilly area in the southwest, known as the Golan Heights (captured by Israel in 
1967). The only other main area of highland is the Jabal Al-Duruz, southeast of Damascus on the 
Jordanian boundary. East of these mountain series, the land gradients softly northeast towards the 
Euphrates (Al-Furat) River Valley, which flows crossways/diagonally from Turkey in the north to 
Iraq in the east. This plateau includes the main towns and cities of Syria. The Orontes (Al-Aasi) 
spring from the Anti-Lebanese mounts in the south and passes the three governorates (Homs, Ha-
ma, and Idlib) in the west to Turkey in the north. It is the second longest river in Syria after Eu-
phrates. In the wide east area of Syria are the open arid and semi-arid grass-covered plains. The 
stony Syrian Desert (Al-Hamad) locates in the southeastern corner of Syria (FAO, 2009). 
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Fig. 3.2: Present-day Syrian borders, general geomorphologic characteristics, and the Euphrates River Basin study 

area 

The soils of Syria have, despite their differences, many common characteristics: the humus content 
is very low, but the carbonate content is very high. The pH-value varies with minor variations 
around eight. In their spatial differentiation, the soils of Syria are primarily determined by four 
factors; parent rock, climate, soil history and human impact (after German to English translation 
and modification from Wirth, 1971). One of the best, most productive soils of Syria is the deep 
and heavy Grumusole. This is a bright red to dark reddish calcareous soil, which is found mainly 
in the arable plains of Homs and Hama, east of Idlib, and north of Aleppo to the Syrian-Turkish 
border. Here in winter, wheat is the preferred agricultural crop, while cotton, watermelons and 
sugar beets are grown in summer. The similar deep and loose arable soils of the northeastern Syri-
an plains are comparable to the Grumusols. For agriculture, these soils are perhaps better suited 
than the Grumusole in western Syria because of the amount of swell-able or shrinking clay miner-
als which are lower, dry-out less quickly and can therefore be easier processed. More favorable are 
the basalt soils of Jabal Al-Hass and Jabal Chbeit in northern Syria. However, the best soils in Syr-
ia include the Pleistocene and Holocene fine-grained river and sea deposits of intra-Syrian basins 
and sinks. Irrigation on these soils provides high yields in sugar beets, hemp and cotton (after 
German to English translation and modification from Wirth, 1971). Based on soil type, Syria 
(18,518,000 ha) is classified into the following: Red Mediterranean soils (850,000 ha); reddish 
dark brown soils (2,217,000 ha); yellowish brown soils (4,782,000 ha); desert soils (4,244,000 ha); 
gypsum soils (5,528,000 ha); and other soils (897,000 ha) (Akkad, 2001). 

Water is an insufficient resource in Syria as it is all over the Middle East (Kangarani, 2006). Rapid 
increases in population have made it essential to enlarge the area of irrigated land to improve the 
agricultural inputs and meet the food requirements of the increasing population (DIWU, 1993). 
Seven main hydrographic basins can be identified (Fig. 3.3): Al-Jazeera; Aleppo (Quaick and Al- 
Jabboul sub-basins); Al-Badia (Palmyra, Khanaser, Al-Zelf, Wadi Al-Miah, Al-Rrasafa, Al- Talf, 
and Assabe’ biar sub-basins); Horan or Al-Yarmouk; Damascus; Al-Aasi-Orontes; and Al- Sahel. 
Precipitation and snowfall represent the main water supply for the basins, excluding the Al-Jazeera 
and Al-Aasi-Orontes, where the major sources of which are situated in the bordering countries. 
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Fig. 3.3: Irrigated areas distribution by basins in Syria (Source: Adapted from: World Bank Report, 2001) 

Syria has 16 major rivers and tributaries, where six are major international rivers (FAO, 2009). 
Some of them are: the largest and the most important river in Syria is the Euphrates (Al-Furat), 
which originates in Turkey and flows to Iraq; the Afrin in the north-western region of Syria, which 
stems from Turkey, traverses Syria and runs back to Turkey; the Orontes (Al-Aasi) in the western 
region of Syria, which stems from Lebanon and streams into Turkey; the Al-Yarmouk in the 
south-western region of Syria, which stems from sources in Syria and Jordan. It forms the bounda-
ry between these two countries before streaming into the Jordan River; in the south Al-Kabier Al-
Janoubi with, which stems from sources in Syria and Lebanon. It forms the boundary between 
them before streaming to the Mediterranean Sea; and the Tigris (Dijla), which forms the boundary 
between Syria and Turkey in the great north-eastern part of the country. 17.97 km³/year is the real 
regenerable resource of water. About 28.51 km³/year is the natural water resources (surface runoff) 
to Syria from rivers that spring from the border countries. 17.33 km³/year is the real regenerable 
surface resources of water. These involve: the Euphrates with 15.75 km³/year; the Orontes (Al-
Aasi) with 0.33 km³/year; and the Tigris (Dijlah) with 1.25 km³/year (FAO, 2009). Table 3.2 clari-
fies the gap between supply and demand of water in Syria (Al-Fares, 2007). 

Table 3.2: The expected difference between the supply and demand on the water in Syria in the period from 1989 to 
2010/Million m³ (Source: Modified from Al-Mansour, 2000) 

Sub-basin name Water resources 
average (above 

surface + under-
ground) 

Water needs for (drink-
ing+agriculture+industry) 

 

Deficit 

1989 
 

2010 
 

1989 2010 

Al-Aasi (Orontes) 2,717 17,100 2,921 +1,007 -204 
Al-Sahel (Coast) 2,335 415 1,116 +1,920 +1,219 
Barada and Al-Aawaj 
(Damascus) 

850 981 1,530 -131 -680 

Al-Yarmouk (Daraa) 447 195 366 +252 +81 
Al-Badia (Homs) 354 45 122 +309 +232 
Aleppo 649 661 944 -12 -295 
Tigris and Al-
Khabour (Al-Hasaka) 

2,388 1,213 2,116 +1,175 +272 

The sum 9,740 5,220 9,115 +4,520 +625 
 7,792   +2,572 -1,323 
Euphrates 25+X1 3,060 8,812 According to Syria´s share of 

Euphrates water 
Tigris X2 - 1,500 According to Syria´s share of 

Tigris water 
 

Total 9,765+X 8,280 19,427 9,765*0.8+X=19,427 

X 2010=11,651 
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Syria has 166 dams with an overall real storage of 19.7 km³. The biggest one is on the Euphrates. 
It is the Dam of Al-Tabqa near Arraqqa city. Behind it is the biggest lake in Syria. It is the Al-
Asad Lake with an actual storage of 14.1 km³ and a surface area of 674 km². Syria´s famous dams 
which have a medium surface area and thus a medium storage capacity are: the Arrastan (228 mil-
lion m³); the Qattinah (200 million m³); the Mouhardeh (67 million m³) and the Tal-Dau (15 mil-
lion m³). The third type of dams are those dams with a small surface area and thus a small storage 
capacity (about 20 million m³). The important and the largest of which is Dam of Daraa with an 
actual storage of (15 million m³). The greater part of these dams is constructed near Homs and 
Hama. Other lakes are Lake Al-Jabboul near Aleppo with a surface area of about 239 km², and 
Lake Qattienah near Homs (FAO, 2009). In 2004, the total area prepared for irrigation was ex-
pected at 1,439,100 ha, about 16 % of arable land, which is about 6 % of the total area of Syria 
(Miski & Shawaf, 2003). Irrigated areas are not spread regularly across Syria and the majority is 
concentrated in the Mohafazat (Governances) of: Al-Hasakeh (33.1 %); Arraqqa (13.6 %); Aleppo 
(13.1 %); Hama (10.6 %); and Deir Azzour (10.1 %) (CBS, 2006). Irrigation water is largely 
pumped from wells, while the rest is river and spring water (Miski & Shawaf, 2003). About 73.9 
% of the water resources in Syria are used in irrigation, 20 % is used in industry and 4 % in house-
holds (Miski & Shawaf, 2003). The main sources of the total irrigation water (22,491.00 m³) in 
Syria are: surface water (16,477,000 m³); renewable underground (2,321,000 m³); and springs 
(3,693,000 m³) (Akkad, 2001). 

"Much of the agriculture is concentrated in the ancient “Fertile Crescent” which extends in an arc 
from the inner rim of the coastal mountains, through northern Syria and down the Euphrates valley 
into Iraq. The main crops are: cotton, wheat, barley, rice, olives, millet, sugar-beet and tobacco" 
(Murdoch et al., 2005). Dry farming of cereals, food and feed legumes is the backbone of agricul-
ture in Syria. Moreover, based on land use, Syria is categorized into four major groups (Fig. 3.4) 
as follows: 1) cultivable land (6.22 million ha). The cultivated land is estimated at 5.66 million ha 
or 94.07 % of the cultivable land. Of this area, 4.27 million ha involves annual crops, and 0.67 
million ha involves permanent crops. About 62.41 % of the cultivated area is situated in the three 
northern governorates (Aleppo, Arraqqa and Al-Hasaka), representing only 33 % of the total area 
of Syria. The total agricultural crop production records for 1997 were: 4.318 million tons of grain, 
2.249 million tons of agricultural raw products for industry, 2.118 million tons of fruits, 1.920 mil-
lion tons of vegetables, and 183,000 tons of pulses. These statistical records represent a quadru-
pled increase in agricultural products during the two later decades; 2) uncultivable land (3.68 mil-
lion ha); 3) pasture, steppe and desert land (8.23 million ha), which is only appropriate for grass 
growing and it is used as pastures during the years of enough precipitation for grazing sheep and 
goats. The Al-Badia once offered the most important feed needs for five million sheep, but now 
only provides 20-25 % of this. The Al-Badia offers two thirds of all red meat production in Syria 
and one third of all milk; and 4) forests (0.57 million ha) (Akkad, 2001; Miski & Shawaf, 2003; 
Kangarani, 2006; CBS, 2009). 

Fig. 3.4: Land use/land cover distribution in Syria in 2009 (Source: Modified from: CBS, 2009) 
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The total area of rain-fed land (3,636,000 ha) is divided into five Agricultural Settlement Zones 
(ASZ) (Fig. 3.1). The borders are generally delineated on the basis of the precipitation amounts. 
These zones are: "a) first agro-climatic zone: with average annual precipitation greater than 350 
mm, the total area of this zone (2.071 million ha), represents 13 % of the total area of the country 
and includes around 28 % of the total cultivated land and 60 % of pastoral land. It is subdivided 
into two sub-zones: 1) a sub-zone with precipitation greater than 600 mm, where rain-fed crops are 
grown without any risk; and 2) a sub-zone with precipitation between 350 and 600 mm, where 
only two seasons out of three are secured. This zone can be mainly cultivated with wheat, legumes 
and summer crops; b) second agro-climatic zone: with average annual precipitation between 250-
350 mm, two out of three seasons are secured in this zone. Its total area (2.473 million ha), repre-
sents 15 % of the total country’s area and includes 30 % of the total cultivated land. The actual 
cultivated area in this zone in 1998 was 1.358 million ha, out of which 143,000 ha were planted 
with fruit trees and 1.215 million ha with field crops (mainly barley, wheat, legumes and summer 
crops); c) third Agro-climatic Zone: with an average annual precipitation greater than 250 mm in 
more than half of the seasons. The total area of the zone is 1,306 million ha, representing 7 % of 
Syria’s total area. The actual cultivated area in 1998 (830,000 ha) was planted with field crops 
(maize, lentils and chickpeas); d) fourth Agro-climatic Zone: with an average annual precipitation 
between 200 and 250 mm in more than half of the seasons. The area under this zone is about 1.833 
million ha, representing 10 % of the total country’s area. The actual cultivated area in 1998 
reached 592,000 ha, out of which 7,000 ha were planted with trees and 585,000 ha were planted 
with field crops (maize, wheat, barley, lentils and chickpeas); and e) fifth Settlement Zone: with an 
average annual precipitation of less than 200 mm in more than half of the seasons". Here locate the 
Syrian Desert and the marginal-lands. The total area of this zone is 10.208 million ha, i.e., 55 % of 
Syrian´s territory. This zone is only suitable for grazing, were 86 % of the Syrian´s pastures locat-
ed here. In general, there is a mechanism to determine types of crops to be plants in each year for 
each ASZ (Akkad, 2001). 

Syria can be divided into five major agricultural regions, i.e.: 1) the southern region which covers 
about 15.7 % of the total area of Syria and contains Damascus, Daraa, Assuweida, and Al-
Qunaytirah. It is well-known for production of the fruit, especially apricots, apples and grapes, but 
it also produces crops such as chickpeas and tomatoes, besides raising livestock. Between 1998 
and 1999, the region’s involvement to national production was: 36 % of chickpeas, 51 % of ap-
ples, 31 % of grapes and 62 % of apricots; 2) the central region accounts for about 27.6 % of the 
total area and includes Hama and Homs. It produces largely sugar beets, dried onion, potato and 
almonds. Between 1998 and 1999, the region’s involvement to the national production was 57 % 
for sugar beets, 53 % for dried onions, 31 % for potatoes, and 14 % for irrigated wheat; 3) the 
coastal region on the Mediterranean sea contains the cities of Lattakia and Tartous. Although this 
region is relatively small (2.3 % of the total area), its involvement to the national agricultural pro-
duction was 98 % of citrus, 42 % of olives, 55 % of tomatoes and 56 % of tobacco; 4) the northern 
region covers 12.6 % of the country’s total area and contains the cities of Aleppo and Idleb. Its 
major involvements to the national agricultural production are lentils with 55 %, chickpeas 51 %, 
olives 56 % and pistachios 69 %. Local farmers breed about 20 % of the total Syrian sheep popula-
tion; and 5) the eastern region is the largest in the country, including 41.8 % of the total area, and 
contributes to production of cereals and cotton. In order to enhance productivity several irrigation 
networks were built in this region, especially on the Euphrates and Al-Khabour rivers; and a num-
ber of wells were constructed. Farms have a tendency to focus on irrigated wheat which adds 64 % 
to the national production, while rain-fed wheat contributes 38 %, cotton 63 % and lentils 29 % 
(CBS, 2003; FAO, 2009). 
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Syria with its entire territories of 18.5 million ha, has 5.66 million ha cultivated areas. 1,439,100 
ha, or 25.42 % of these cultivated areas are irrigated (Miski & Shawaf, 2003). The area stability of 
these irrigated lands relies essentially on the actual Syrian´s share from water of the rivers that 
spring from border countries. 349,820 ha from the total irrigated lands locate within the irrigation 
projects of the government. 272,859 ha or 78 % of these irrigation projects receive the water from 
drainage. The ownership of irrigated parcels in Syria is in general small in comparison to the rain-
fed holdings size, and change from region to another. Almost 75 % of Syrian´s farmer have about 
10 ha of agricultural holdings (irrigated and/or rain-fed). However, each household has only about 
3.5 ha of irrigated land (FAO, 2009). 

The irrigation water resources were in general (1993): from groundwater with 62 % (pumped from 
the wells); and from surface water with 39.8 % (gravity-fed or pumped from the rivers and lakes). 
The irrigated systems are: the traditional practiced one is the flooding for irrigation of cereals; the 
furrow irrigation for vegetables; the basin irrigation for trees; and sprinkler irrigation with about 
30,000 ha (FAO, 1993 b; MAAR, 1993 b; UNDP/FAO, 1994). 

There is a broad variant in cropping samples in the irrigated areas, based on the water resources 
existing and the agro-climatologic circumstances. Strategic crops such as wheat and cotton are 
concerted in the northern and eastern region of Syria. More than 50 % of the wheat and cotton 
producing offers from the Al-Hasakeh governorate, in the north-eastern region of Syria (MAAR, 
1993 a). The production of winter vegetables is located mainly in the coastal region, while summer 
vegetables are located mainly in the inside plains, especially in the central and southern areas. In 
2004, of the total area prepared for irrigation of 1,439,100 ha, about 0.89 million ha were used for 
annual crops, where the cropping amount/intensity for annual crops achieving 121 %, leading to a 
total cropped area of annual crops of about 1.08 million ha (CBS, 2008). 

The vegetation throughout Syria, from the rainy mountains to the Mediterranean semi-desert, has 
been greatly changed by human intervention and seriously degraded (after German to English 
translation and modification from Wirth, 1971). Syria has no less than four major floral regions: 
mediterranean (western Syria); the Euro Siberian (mountains of the northwest); the Irano-Turanian 
(intra- and east Syria); and finally the Saharo's-Indian (south Syria). The surviving vegetation in-
cludes oak maquis on the narrow coastal plain and foothills, remnant coniferous forests on the 
slopes of the Jabal Al-Nusayriyah and along the Anti-Lebanon range, and subalpine and alpine 
communities above 2,000 m in the southern mountains. The floral elements in the steppes of cen-
tral, north and east Syria are made up of Pistacia atlantica, Artemisia herba-alba, stipa barbata, Poa 
sinaica. In the southern desert steppe and Euphrates Valley, Date palm, Haloxylon salicornicum 
and Populus euphratica can be found among the mainly Irano-Turanian vegetation (after German 
to English translation and modification from Wirth, 1971). The main landscapes and leading vege-
tation categories in Syria were lately summarized by Evans (1994); and Murdoch et al. (2005). 

B. The Euphrates River Basin (ERB) 

The name of this river comes from Old Persian and means “good to cross over”. The geographical 
coordinates of the Euphrates River Basin are 36°49'N, 38°02'E at the Turkish border and 34°29'N, 
40°56'E at the Iraqi border. The ERB (Fig. 3.1) includes the majority of the three governorates of 
Halab/Aleppo, Arraqqa and Deir Azzour. The variation in altitude (Fig. 3.2) is from ca. 520 m at 
the Turkish border to ca. 185 m at the Iraqi border. The Euphrates goes up in the mountains of 
eastern Turkey, and the sink has high mountains to the north and west and wide plains to the south 
and east. Two-thirds of river’s course flows throughout the highlands of eastern Anatolia in Tur-
key and the valleys of the Syrian and Iraqi flat terrain before down-warding into the arid plain of 
Mesopotamia. The Euphrates has its sources in the eastern highlands of eastern Turkey, between 
Lake Van and the Black Sea, and is created by two major tributaries, the Murat and the Kara-su. It 
enters the Syrian territory at Karkamish, down-tributary from the Turkish town of Birecik. It is 
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then joined by its major tributaries, the Al-Balikh and Al-Khabour, which too begin in Turkey, and 
streams southeast across the Syrian flat terrain before inflowing Iraqi terrain near Qusaybah. The 
Euphrates watershed includes five counties (Table 3.3): Turkey, Iraq, Syria, Saudi Arabia and Jor-
dan. Of its total area of 350,000 km², 28 % (98,000 km²) lies in Turkey, 17 % (59,500 km²) in the 
Syrian Arab Republic, 40 % (140,000 km²) in Iraq, 15 % (52,500 km²) in Saudi Arabia, and just 
0.03 % (105 km²) in Jordan (Kattan, 2008). The Saudi Arabian Euphrates dries in summer and 
there are no permanent rivers. The water requirements of Saudi Arabia and Jordan is a small pro-
portion of watershed. The Euphrates River, at 3,000km in length, is the longest river in south 
western Asia, divided between Turkey (1,230 km), the Syrian Arab Republic (710 km) and Iraq 
(1,060 km). Some 62 % of the catchment part that generates contributions to the river is located in 
Turkey and 38 % in Syria. Its real annual volume is 35.9 billion cubic meters (Kibaroglu, 2002; 
Kangarani, 2006; FAO, 2009). For almost its total length, the river streams in a valley changeable 
in width from 2 to 12 km, and with the valley base some 80-250 m less than the neighboring 
plains. In several places, the river splits into two or more canals, constructing several at-
olls/islands, several of which support dense thickets. There are also meanders, oxbow lakes, gravel 
pits and silted old water courses covered in reed-beds. Much of the river bank contains low alluvial 
cliffs. The water level was previously some 3-4 m higher in spring than in autumn due to the 
snow-melt in the Turkish highlands, but with the production of several large dams in Turkeyduring 
the previous decade, this yearly flood is now greatly decreased. 

The Euphrates River has a number of main tributaries where the Syrian government has carried out 
numerous projects. These flows are: 1) The Al-Khabour River (460km), which rises in the Raas Al-
ain region in Syria and flows into the Euphrates; 2) The Assajour River, which originates in Turkey 
and flows through Syria for a length of 48 km; its annual runoff is 100 million m³; and 3) The Al-
Balikh River, which rises near the Syrian villages of Aain Al-Arous and Tal-Abiad and flows 
through 105 km within Syria before joining the Euphrates. Its annual runoff is 150 million m³. 
Table 3.3: General statistical information on the ERB (Source: Modified from: Kattan, 2008; FAO, 2009) 

Country-Name Basin-Area/km² Length/km Catchment-Area/% 

Turkey 98,000 1,230 62 
Syria 59,500 710 38 
Iraq 140,000 1,060 0 

Saudi Arabia 52,500 0 0 
Jordan 105 0 0 
Total 350,000 3,000 100 

C. Irrigation projects in the ERB 

Since the 1970s, attention was given to drainage and irrigation rehabilitation, largely in the Eu-
phrates Valley, where irrigation using water pumped from the river was improved quickly since 
the 1950s. Significant development was made in renovating large irrigated areas which fell out of 
cultivation because of water-logging and salinity, especially in the lower and middle parts of the 
Euphrates Valley (DIWU, 1993). 

Table 3.4 explains the water requirements in the three major ERB countries. The available level of 
irrigated agricultural projects in Syria on the Euphrates is 194,000 ha (although according to other 
sources, it is about 250,000 ha). Over the coming decade, some further 542,275 ha will be irrigat-
ed, thus in the future, some 636, 275 ha will be irrigated in Syria with water from the Euphrates. 
The future water demand, including steam water, equals 13.263 billion m³. If we deduct from the 
returning water 2,463 billion m³, one obtains net 10.8 billion m³, representing the water needs of 
Syria from the Euphrates. This amount represents 34 % of current flow. 
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In 1987, Syria and Turkey signed a water agreement over the Euphrates River, determining the 
water flows on the Syrian-Turkish border at 500 m³/second. In 1990 a similar deal was agreed to 
between Syria and Iraq, dividing the Euphrates into the proportions of 42 % for Syria and 58 % for 
Iraq, thus allowing the current water situation for Syria of not more than 15.7*0.42 = 6.627 billion 
m³/pa Euphrates water. The 15.7 billion m³/pa corresponds to the amount of water that flows from 
Turkey towards Syria, as a result of the temporary agreement of 1987. Research sources expect that 
the 6.627 billion m³/pa Euphrates water are sufficient only for the irrigation of 308,000 ha instead 
of the planned 640,000 ha. According to others, a deficit of one billion m³ in Syria will give a pro-
portion of withering from 26,000 ha of agricultural land and transform it into unusable land. This 
would lead to at least a total of 110,000 ha from 640,000 ha, that could be converted to unusable 
lands (Al-Fares, 2007). 

Table 3.4: The water needs in the countries located on the Euphrates River (Source: Al-Samman, 1991) 

 Turkey Syria Iraq Total 
The executed agricultural facilities/in ha 
 
The futuristic facilities/ha 

300,000 
 

1,146,300 

194,000 
 

542,275 

1,200,000 
 

752,400 

1,694,000 
 

2,840,975 
The total agricultural land/ha 
 
The total amount of the waters’ needs in fu-
ture (irrigation + evaporation)/billion m³/pa 
 
The returning water/billion m³/pa 

1,446,300 
 

17.40 
 
 

1.70 

636,275 
 

13.26 
 

 
2.47 

1,952,400 
 

25.10 
 

 
5.10 

4,024,975 
 

55.76 
 

 
9.26 

Net consumption (average)/billion m³/pa 15.70 10.80 20.00 46.50 
Ratio of the net consumption to amount of the 
river flow/% 

50 % 34 % 64 % 148 % 

 

The Syrian needs from the Euphrates in 2000 were 11 billion m³ water, as agreed to by most 
sources, Turkey’s requirements were 15.7 billion m³/pa, and Iraq’s usage was 13 billion m³/pa. 
Thus, the minimum requirement for water of the Euphrates for the three countries is equivalent to 
the equation: 11 +15.7 +13 = 39.7 billion m³/pa. If we consider that the average annual income of 
the Euphrates River does not exceed 27 billion m³/pa, it follows that a water deficit of more than 
10 billion m³/pa exists, this, if Turkey agrees to reduce its share from 15.7 billion m³/pa to 12 bil-
lion m³/pa, and after Iraq has reduce its share from 20 to 13 billion m³/pa. The required amount of 
water from the Euphrates in the three riparian countries of Syria, Turkey and Iraq exceed the in-
come of the river water to more than one-half. With this mind, the total area which can be irrigated 
from the Euphrates in the riparian countries cannot exceed 2.5 million ha, despite measuring 4 mil-
lion ha in total, according to official statistics. 

Syria too has its individual strategies for irrigation expansion within the Euphrates Basin (Table 
3.5, Fig. 3.5). These include using waters from the Euphrates to irrigate six major regions: the 
Maskana-Aleppo Basin (155,000 ha); the Arrusafa Basin (25,000 ha); the Al-Balikh Basin 
(185,000 ha), the Euphrates floodplain (170,000 ha); the Al-Mayadin plain (40,000 ha); and the 
lower Al-Khabour Basin (70.000 ha). This is a total of 645,000 ha. The water need for such land, 
assuming a water application rate of about 10,000 m³  ) , would be 6,450* l0,000 = 
64,500,000 m³, or about 16 % of the unregulated stream of the Euphrates where it enters Syria 
from Turkey (Beaumont, 1996). 
Table 3.5: Reclamation and irrigation projects on the Euphrates River (Source: the Syrian Ministry of Irrigation, 2005) 

Project name The area, which have 
to irrigated/1000 ha 

The current investment 
status 

1. The Al-Balikh Basin 141  
1.1. The pioneering project (Arraed) 19.9 Under investment 
1.2. Beer Al-Hishm project 10 Under investment 
1.3. Reclamation project of the part (1-B) 10 Under investment 
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1.4. Remaining sections of the Al-Balikh Basin 101.1 Under construction 
2. The Euphrates Basin 152  
2.1. The Middle Euphrates project 27 Under investment 
2.2.  The Lower Euphrates project 125 Under construction 
3. The Lower Al-Balikh Basin 70 Under construction 
4. The Arrusafa Basin 25 Under construction 
5. The Al-Mayadin Basin 40 Under construction 
6. The Maskana Basin 166  
6.1. The 17000-ha project and the state farm 21 Under investment 
6.2. The Maskana-west project 20 Under investment 
6.3. The Maskana-east project 17.8 Under investment 
6.4. The rest of the Maskana Basin 107.2 Under construction 

The total 594 - 
 

 
Fig. 3.5: Study area and the irrigation projects in Syria (Source: MAAR, 2008) 

There are three big and major dams on Euphrates, which are: the Attabqa Dam, constructed be-
tween 1968 and 1975, has an actual water storage of 14.1 km³, and it produces electricity of 860 
mw based on hydropower; the al-Baath Dam with the essential purpose of regulation the water 
quantity of Euphrates; and the Tishreen Dam with the essential purpose of producing the hedro-
power based electricity, start of working was in 1991, has an actual water storage of 1.9 km³, and it 
produces electricity of 630 mw. The Lake Al-Asad behind the Attabqa Dam were constructed to 
increase the irrigated lands in ERB in Syria to be around 640,000 ha. Until 1997 about 240,000 ha 
were irrigated based on the storage water of Lake Al-Asad (Bagis, 1997). 

In Euphrates one can recognize two major systems which practice to supply the water for the agri-
cultural sector: 1) from surface water of the Euphrates and its tributaries (flooding, furrow, and 
canals); and 2) from groundwater (water extraction from wells) (Zaitchik et al., 2002). The mostly 
practiced irrigation system in ERB is the floodplain irrigation, were since thousands of years, hu-
man worked in agriculture along the Euphrates (Hillel, 1994 cited in Zaitchik et al., 2002). Close 
to the Euphrates planted crops in these floodplains benefit from flooding of the Euphrates using 
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small gravity-driven diversions and levee breaks. Far to Euphrates planted crops obtain the water 
using low-power diesel and electric pumps (Zaitchik et al., 2002). 

The practiced drainage systems in ERB have two general types, i.e. surface (open) and sub-surface 
(covered) systems. As an example, about 62 % of the irrigated lands in the province of the Arraqqa 
is drained. Almost 24 % of these drained lands was supplied with water using power-based irriga-
tion methods (e.g., diesel, electricity). The open surface drainage system has the disadvantage that 
it leads to salinization in irrigated soils. This system was installed on about 90 % of the actual irri-
gated areas. For instance, soils about 60,000 ha of irrigated areas in the year of 1993 has been af-
fected by salinization. Also, about 5,000 ha have to be totally new reclaimed due to water logging 
and salinization of the soils. The covered drainage system was installed on only a small area. Near 
Arraqqa, about 10,000 ha essentially situated within the second Euphrates terrace were brought 
under irrigation in 1970. The land was sited for a modern irrigation project, with a soil survey car-
ried out in 1980. Severe salinization with more than 16 ds/m of the soil paste extract was found in 
around 24 % of the project area as a consequence of lacking and inappropriate drainage system. 
The major reason for soil salinization was the planting of a new rice crop. Soil salinization is the 
major problem within the irrigated areas in the ERB, where about 3,000-5,000 ha of irrigated land 
have to be totally new reclaimed yearly (FAO, 1993 b). 

D. Climate 

"Most areas in the ERB have a sub-tropical Mediterranean climate with wet winters and dry sum-
mers. In the mountainous headwater areas, freezing temperatures prevail in winter and much of the 
precipitation falls in the form of snow. As the snow melts in spring the rivers rise, augmented by 
seasonal precipitation which reaches its maximum between March and May. In southeastern Tur-
key as well as in the north of the Syria and Iraq, the climate is characterized by rainy winters and 
dry warm summers. Average annual precipitation in the ERB is estimated at 335 mm, although it 
varies all along the basin area" (Hillel, 1994 cited in Kibaroglu, 2002). The yearly precipitation in 
the Mesopotamian plain is seldom above 200 mm, while it attains 1,045 mm in other parts in the 
basin. The summer season is very hot and dry with midday temperatures reach 50º C and daytime 
relative humidity about 15 %. These climatic conditions demonstrate that the Euphrates streams 
within arid and semi-arid areas inside Syria with increasing aridity downstream (Hillel, 1994 cited 
in Kibaroglu, 2002). The yearly standard temperature of the whole ERB is 18º C. It is about 5º C 
in January, although it can decline to -11º C in the coldest areas in the basin. This yearly standard 
temperature in July reaches 31º C, although it can raise to 37º C in the hottest areas (Hillel, 1994 
cited in Kibaroglu, 2002; FAO, 2009). In the Syrian part of ERB, the winter season is usually cool 
(5-10º C) and rainy, and the summer is warm (30-45º C) and almost totally devoid of precipitation. 
The average annual air temperature increases from north to south, and differs between 18º C in 
Jarablous and 20º C in Al-Bou-Kamal, where the dryness becomes more emphasized. The average 
monthly precipitation increases - from October to May - from south at Al-Bou-Kamal with 5-30 
mm to north at Jarablous with 20-60 mm. The average annual precipitation increases over the year 
from south at Al-Bou-Kamal with about 130 mm, over Dir Azzour with about 160 mm, to the 
north at Jarablous with about 350 mm. The average yearly precipitation value over the whole ERB 
in Syria is around 240 mm. The average yearly value of the relative air humidity differs between 
56 % (Jarablous) and 47 % (Dir Azzour), and declines to less than 44 % (Al-Bou-Kamal), the low-
est recorded value in Syria. The highest values of average monthly relative humidity (60-70) % are 
commonly observed during the coolest time period (i.e., December to January), while the lowest 
25-30 % happen in the warmest months (i.e., July and August). The potential evapo-transpiration 
value commonly goes above the precipitation and varies from 1,300-2,600 mm, with an average 
yearly value about 2100 mm (Kattan, 2008). Fig. 3.6; Fig. 3.7; and Fig. 3.8 illustrate the geograph-
ical distributions and the values of the precipitation, temperature and evaporation. 
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Fig. 3.6: Precipitation in the Euphrates-Tigris Basin (Source: http://www.grid.unep.ch/product/map/index) 

 
Fig. 3.7: The temperature averages of the Euphrates-Tigris Basin (Source: 
http://www.grid.unep.ch/product/map/index) 

 
Fig. 3.8: The evaporation averages of the Euphrates-Tigris Basin (Source: 
http://www.grid.unep.ch/product/map/index) 
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The ERB in Syria is located in two general climatic zones: 1) Mediterranean-influenced steppe 
climate: in dry and drought years, precipitation is often not enough for growing winter wheat, thus 
crop failures threaten. In January, average temperatures of about 5° C make frosts of -5° to -10° C 
possible. There are two variants: a) west-Syrian’s steppe climate (stations: Hama, Aleppo, Menbij 
and Daraa). This variation is to some extent DI > normal expression < the Mediterranean-
influenced Syrian steppe climate. In the sequence of shape changes between the heavily stained 
oceanic climates of the west and the highly colored continental climates of the east, the west-
Syrians steppe climate adapts all its manifestations without a break; and b) East-Syrian’s steppe 
climate. This is located out of the range of this study of the ERB. 2) desert climate: the desert cli-
mate in Syria is at the continental end of the so called west-east-sequence. The number of months 
during which one can expect precipitation is three to four, similar to the steppe climate. At these 
times, the precipitation amount is line with the average per month-precipitation, but it falls heavi-
ly. Under these conditions, it is usually not economical to cultivate crops without additional irriga-
tion. On the whole, however, the Syrian Desert climate is characterized by dry air and clear visibil-
ity. It has two variants: a) the Syrian Desert climate (stations: Damascus, Qariateine. Dir-Azzour, 
Arraqqa and Palmyra): with annual precipitation between 120 and 220 mm, crops are only able to 
thrive in pronounced wet years or through soil and relief of preferred sites. Opportunistic cultiva-
tion of this kind can only be operated by sedentary settlements. Supplementary irrigation fields 
must provide alternative nutrition and merit bases to cater for the possibility of drought years. 
However, the likelihood of rain in winter and spring is usually enough to leave a good pasture for 
the herds of the Bedouin and semi-nomads; and b) full Syrian Desert climate (stations: Attanf and 
Al-Bou-Kamal): precipitation has remained at an average of less than 120 mm per year for many 
years. Apart from irrigation areas which provide the base for crop cultivation, the availability for 
pasture is very sparse. The area of the Syrian Desert is therefore an empty space, usually avoided 
even by full-nomads (after German to English translation and modification from Wirth, 1971). 

E. Morphological structure 

The major topographical characteristic of ERB territories is the simplicity (Fig. 3.9). There are 
some of little height hills, essentially areas surrounds the Lake Al-Asad. The average height of 
ERB territories is 350 m in the north at Jarablous and 180 m in the south at Al-Bou-Kamal. Eu-
phrates´s ‘‘base valley’’ located downstream below 200 m. Its path-slope is about (0.25 m/ ) 
(Kattan, 2008). 

 
Fig. 3.9: The topography of the Euphrates-Tigris Basin (Source: http://www.grid.unep.ch/product/map/index) 
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Euphrates has a length of about 675 km in Syria. It across Syria within a low geological formation. 
The major geological components return to the three geological times: Paleogene (argillaceous 
limestone); Neogene (gypsum, silty clays, sandstone, siltstone, clays, and pebbles); and Quater-
nary (pebbles, gravels, loams, and sandy loams) (Ponikarov, 1967). The alluvial aquifer, composed 
mainly of gravels and boulders at the base and bigger alluvial sediments (i.e., loams and sandy 
loams) at the top, is the mainly significant water bearing system in the basin (Gersar-Scet, 1977; 
Kattan, 2008). 

F. Soils 

Soil is found on either side of the Euphrates in Syria which despite having copious irrigation, of-
fers unfavorable growing conditions, and thus reduce crop yield. The humus is low in the arid east, 
where mostly raw soils are found on soft, low resistive source rock. The soil debris, the plaster 
floors, and dust and loose soils of the Syrian desert steppe and desert are heavily climate condi-
tioned. This may represent an almost insurmountable obstacle for agricultural use in the northeast 
of Aleppo, especially for trees and vines. Soils with a high salt or gypsum content are not suitable 
for agricultural use. Fortunately, the Miocene gypsum and anhydrite of the lower Fars in Syria is 
found only in a large area in the desert steppe. The salt or salt surfaces of Sabchat Al-Jabboul, 
which today is the dry-end lake Syria, are also not so significant (after German to English transla-
tion and modification from Wirth, 1971). Gypsiferous crust soils covers a wide parts of ERB terri-
tories. The breakdown of irrigation water canals because flowing of the water within canals mate-
rial due to soil salinization. The second major reason for salinization is over-pumping. After sali-
nization due to the aforementioned reasons, the soil will be exposed. As a result, ERB soils have to 
be carefully irrigated (FAO, 1993 a). 

G. Hydrology 

The Euphrates River has a relatively regular watery regime/system, described by two months of 
very high rate stream in April and May, and a phase of eight dry months from July to February 
(Fig. 3.10). The yearly stream differs significantly from year to year (Fig. 3.11), as well as very 
low stream records between July 1957 and January 1963, during which time the average flow de-
creased to only 83 % of the long-term average. Euphrates´s discharge rate is from 200 to 300 
m³/sec. It begins to increase during early spring, i.e. in February. Then, becomes it more abundant 
in March during the melting of snow in the high mountains in Turkey. The peak of discharge is in 
April and May with 2,000 m³/sec and sometimes more. Because snow melts on peaks of moun-
tains and because the high rates of precipitation in April and May, the maximum flooding will be 
happening from mid-April to early May. Starting from July, the discharge begins to decrease. The 
bottom of discharge is either in September or in October. In April and May, discharge during the 
two months records for 42 % of the yearly full amount. Minimum streams happen from August 
through October and add only 8.5 % of the whole discharge (Beaumont et al., 1988; Shahin, 
1989). 
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Fig. 3.10: Euphrates River monthly mean discharges (m³/s) for the period 1925-2005 (Source: Adapted from DIWU, 

2009) 

 
Fig. 3.11: Mean annual discharge of the Euphrates River (m³/s) for the period 1975-2005 (Source: Adapted from DI-

WU, 2009) 

Only about 12 % of the ERB hydrous-network, that supplies the Euphrates River with water, lo-
cated in the Syrian´s territories which cover almost 1/3 of Syria. The other major 88 % hydrous-
network is formed in Turkey. Euphrates has three main tributaries: Assajour; Al-Balikh; and Al-
Khabour. There is no estimation about contribution of the precipitation above the Turkish territo-
ries in stream of these three tributaries. In general, this contribution supplies the Euphrates with 
about 95 % of its actual flow (Beaumont, 1996). The rest of the riparian countries add very little 
water (FAO, 2009). No other tributaries stream into the Euphrates after the Al-Khaour, excluding 
in Iraq, where some of the Tigris' waters are added. The observed average yearly stream across the 
Turkish/Syrian boundary is 29.8 billion m³ (29.8 km³). The natural stream of the river can be given 
as 33.4 bcm (33.4 x 109 m³) annually (Beaumont et al., 1988; Shahin, 1989), 30.0 km³ from Syria 
to Iraq (FAO, 2009). 
"One of the problems in the Euphrates system has been the variability of flow from year to year. 
Long-term records on the upper Euphrates before the construction of major dams (1937-1964) 
have revealed that minimum discharge fell to 16.871 MCM/y (1961), while a maximum value of 
43.457 MCM/y was recorded in 1963. Such large variations in discharge have made it difficult to 
plan irrigation schedules efficiently in the lower part of the basin when no water storage capacity 
has been available" (Beaumont, 1996). 
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Starting from the middle of the 20 century, the Euphrates had no longer its own natural hydrologi-
cal system due to the building of artificial dams (20 in Turkey) and a station that use the hydro-
power to produce the electricity (17 in Turkey). In Syria, only three smaller dams (Tishreen, Eu-
phrates/or Attabqa and Al-Baath) were constructed, with the plan to stop the main flooding and to 
produce the electrical power (Kattan, 2008). Syria started the using of the water of the Euphrates 
for irrigation and for hydropower in the early 1960s. The Attabqa Dam with its large lake (length 
75 km) was constructed on the Euphrates in 1973, largely with the assistance of the then Soviet 
Union. The purpose of this main dam was to meet the Syrian’s water and energy needs. The Al-
Baath Dam, finished in 1986, was the second Syrian dam on the Euphrates River. But, the hydro-
power capacity of the Al-Baath Dam was not of the same amount as the Attabqa Dam. The Al-
Baath Dam had a limited capacity for electricity generation and provided relatively little water for 
irrigation. The Tishreen Dam, the third Syrian dam on the Euphrates essentially planned for hy-
dropower, is still under building (Korkutan, 2001; FAO, 2009). 
"The average monthly discharge at the Syrian–Turkish border ranges between 450 and 886 
m³/ , with several peaks during winter and summer periods, and obviously lower registries 250 
– 875 m³/  at the Syrian–Iraqi border (Al-Bou-Kamal). Similar temporal patterns in river dis-
charge can be observed for the upstream stations of Jarablous and the Tishreen Dam. Downstream 
of the Euphrates Dam, the river discharge trends have a different evolution, and thus the temporal 
discharge patterns at the monitored stations (Al-Baath Dam and Al-Bou-Kamal) are similar and 
generally identical to the outflow discharge from the Euphrates Dam" (Kattan, 2008). The average 
monthly discharge of the Euphrates River at the Jarablous station previous to the 1960s was about 
735 m³/  (UNDP-FAO, 1966). During the previous few decades, the river discharge was man-
aged and controlled by Turkey, through an agreement that fixed the minimum monthly river dis-
charge for both Syria and Iraq at about 500 m³/ ).  On several occasions in recent years, low 
water levels in the Lake Al-Asad reservoir behind the Attabqa Dam were restricted the hydro-
power output (with an installed capacity of 800 MW) and irrigation development. In the 1970s 
Syria had planned to reclaim 640,000 ha or more in the Euphrates Basin. In 1989, 80 % of the nat-
ural run-off of the Euphrates River was developed by closing the Ataturk Dam, the biggest dam in 
Turkey, with a gross reservoir storage volume of 48.7 x 109 m³ (effective volume: 19.3 x 109 m³). 

H. Vegetation and land use - land cover 

Fig. 3.12 illustrate the broad general LULC-features in the whole Euphrates-Tigris Basin, while 
Fig. 3.13 provide general information about the LULC-activities in the ERB and Syria. 
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Fig. 3.12: LULC- spatial distribution in the Euphrates-Tigris Basin (Source: 
http://earthtrends.wri.org/pdf_library/maps/watersheds/eu28.pdf) 

 
Fig. 3.13: Approximate spatial LULC-distribution in the ERB and Syria (Source: 

http://images.nationmaster.com/images/motw/middle_east_and_asia/syria_land_1979.jpg) 
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The natural vegetation of the Euphrates River Basin includes riverine thickets of Populus eu-
phratica, Tamarix articulata, Salix sp., Glyzyriza glabra, Lycium barbarum, and reed-beds of 
Phragmites sp. and Typha sp. The river banks are intensively cultivated: There are vast areas of 
irrigated cotton and cereals, as well as orchards and plantations of Populus and Pinus halepensis. 
The heavily cultivated steppe of the Al-Jazirah region lies to the east and the Syrian Desert to the 
southwest (Murdoch et al.; 2005). For instance, an old and random Pistacia atlantica trees found 
in Jabal Abd Al-Aziz region. For decades, no young growth has been recorded because the de-
struction of the undergrowth has significantly deteriorated the micro-climate and the soil surface is 
now largely eroded. It is predicted that it will take only a few more decades in many parts of Syria 
before all of the few remaining tree ruins die and the last remnants of former high forests will dis-
appear. This is due in the main because of thousands of years of human cultural activity. The de-
sert steppe in the ERB was originally densely vegetated featuring tall grasses over 50cm in height, 
with species such as Stipa, Agropyrum, and Festucaspecies dominating. This grassland likely con-
tained sparse groves or woods of pistachios. In addition, it is thought the steppe was home to juni-
pers such as Juniperus excelsa, Kreuzdorn Rhamnus Palaestinae, Prunus, Pirus, Crataegus and 
Amygdalus. Occasional old pistachio trees of up to 5 m in height can still be found on many desert 
heights (e.g., Jabal Al-Bilaas, 500 m above sea level, near Deir Azzour). They have been however, 
decimated at alarming rates by the firewood needs of the camping nomads in winter. This wood 
steppe is traditionally the habitat of sheep and camel nomads. The nomads have largely destroyed 
the original vegetation over the centuries. The establishment of additional water supplies from 
deep wells and the transport of water by truck have also had disastrous consequences on this frag-
ile ecosystem. The steppe is also home to a variation of groundwater and riparian natural vegeta-
tion, on the floodplains and low terraces of the rivers which are not in use for agricultural purpos-
es. In this region, this vegetation consists mainly of Euphratpappeln (Populus euphratica) and pas-
tures (Salix acmophyll), with an understory of tamarisk (Tamarix tigrensis) (after German to Eng-
lish translation and modification from Wirth, 1971). 

For the human activities of land use in the ERB, we different between two geographical-historical 
regions: 1) the Young-settled (Arraqqa- and Deir Azzour- provinces) dominant winter cereals 
(wheat and barley) on dryland and cotton on irrigated ground almost to the level of monoculture. 
These represent the major growing crops in Syria. Much of the harvesting of these proportional 
sparsely populated areas goes to market or is readied for export. Tillage and harvest are increasing-
ly mechanized; and 2) the Old-settled (Aleppo Province) shows, in contrast a much larger variety 
of crops. Wheat and cotton are also cultivated in large parts of the fields in this region but not to 
the point of monoculture, as there are competitors with many other crops. Less demanding summer 
plants can grow well here, even without additional irrigation. Permanent crops, such as tree groves 
and vineyards, as well as intensive, irrigated vegetable crops are found almost exclusively in these 
old-settled areas. Only a relatively small portion of the harvest is exported. Here, too, is find a jux-
taposition of rain- and irrigated- crops; both are cultivated at a much greater extent with more tra-
ditional tools than in the Young-settled areas (after German to English translation and modifica-
tion from Wirth, 1971). 
Cultivation of olive trees, which has a long tradition in Syria (oil presses such as Ugarit were al-
ready in use around 2000 BC), is located almost exclusively in the Old-settlement (particularly 
north-west of Aleppo). Vineyards are located throughout this region, either on pure dry land or at 
the edge of the irrigation areas. All other fruit trees are found only small areas. The cultivation of 
pistachios is focused primarily on the perimeter of Aleppo (after German to English translation 
and modification from Wirth, 1971). 
Field-irrigation is used in almost all of the agricultural areas of the ERB. In the areas with more 
than 400 to 500 mm average annual precipitation, only intensive crops which need a high water 
demand are irrigated, e.g. vegetables, sugar beets, potatoes and peanuts. The irrigated land here 
(particularly in the west and northwest of Aleppo Province) is embedded with little natural contrast 
to a rain-floor, and both winter and summer crops flourish. In the areas with about 200-400 mm 
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average annual precipitation (particularly the north, south and east of Aleppo Province, and the 
northern parts of the provinces of Deir Azzour and Arraqqa) only winter crops can be grown with-
out additional irrigation. In drought years however, this does not provide sufficient income. During 
the summer months, the irrigation fields are lush green islands, raised above the dry yellow and 
brown rain-fed land. Between the two there is a clear division of function: in analogy, the drying 
fields of wheat and barley were appointed/ordered, while the irrigated areas in the old-settled areas 
had intensive cultivation of vegetables, a variety of summer fruits and fruit trees. The focus of irri-
gation in the dry steppe areas of northern Syria has been the use of groundwater pump wells. Here, 
the irrigation area is more scattered in an island-way over the rain-hall/floor. Finally, in the Syrian 
desert-steppe, where in years with little or average precipitation no winter grain grows, the irrigat-
ed floors are no longer being reserved for the cultivation of special crops. Instead, the self-
sufficiency of the local resident population of grain must now take place on irrigated land. In the 
Deir Azzour Province, for example, 90 % of the land use areas are irrigated (after German to Eng-
lish translation and modification from Wirth, 1971). 
The human impacts and changes in the Euphrates River Basin have clearly increased over the track 
of the 20th century, and the average of change in this first decade of the 21st century is especially 
significant. Major land degradation processes in Syria include salinization in irrigated areas, water 
erosion in mountain regions and wind erosion in the steppe area. Salinization is the main land deg-
radation process in irrigated agriculture, with about 45 % of this area affected by different degrees 
of soil salinization (e.g., the Arraed project near Arraqqa). However, assessment of the salinity 
grade and type needs efficient surveys and sampling. Water erosion degrades about 6 % of the 
country. Wind erosion is the more serious degradation type. If the steppe area where wind erosion 
has its greatest impact is measured, around 25 % of the total area is influenced by wind erosion. 
For instance, in the lower fields region of the Al-Khabour Basin there was a drop in the total dy-
namic irrigated area between September 1990 and September 2000, from 7,167-6,222 hectares. 
Also, building of the huge dams on Euphrates in Turkey leaded to a decrease in its actual flow. In 
the regions of Halabiya-Zalabiya, Ashumaytiyah and Al-Mayadin in Dir Azzour governorate there 
are three major risks: farmers change floodplain wetlands to cultivated land to be planting with 
agricultural types; they using the natural swamp plants as feed for their herds in extreme ways; and 
their disturbance is very high per km². Other two overall important risks are: using the riverine 
woody plants for heating; and the uncontrolled hunting of aquatic birds (Murdoch et al., 2005). 
Finally, in an environment where agricultural production is not possible with no irrigation, chang-
es in the machineries of water diversion and withdrawal have led to a changed allocation of human 
settlement in the landscape. As one technique to be used in LULC-studies, remote sensing tech-
niques offers a better understanding of LULC dynamics and its changes of activities over the time, 
where this technique determines and draws the spatial distribution of various LULC-features and 
thus quantify their areas (Zaitchik et al., 2002). 
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Chapter 4: Data 

One decides what information and data is needed to achieve the purpose of a study. The data col-
lection is, however, often controlled by what is obtainable or what the financial map will allow, 
rather than what is actually needed. During the searching process, one may find other undecided 
data sources or types that are useful to the achievement of the research. Data and information for 
the LULC-component is available from the local, county and state administrations. Moreover, ad-
ministrative divisions, libraries, universities and private companies can offer data. For instance, the 
Syrian´s Central Bureau for Statistics (CBS) offers a periodical demographic data. Processing time 
and resources require attention, depending on the amount of data collected and organized. Enough 
data is essential to guarantee accuracy and answerability. At sensor type choosing stage, in relation 
to rapid sensor development and various sensor configuration (spectral resolution, spatial resolu-
tion, temporal resolution, radiometric characteristics, etc.), one has to consider the broad range of 
application sectors in an attempt to give potentials that meet actual obligations, as it is impossible 
to find a specific sensor type to satisfy the all specific needs of all cases. 

Here, to optimize the choice of the remotely sensed data, we have to determine the purpose of the 
research and which dataset can realize the two criterions of being cost effective and providing the 
relevant information in relation to the research purpose. Finally, at these basic stages of choosing 
and preparing the dataset, it is also significant to consider the relationship between the used dataset 
and the required mapping scale (Liu & Mason, 2009). 

Despite the fact that some gaps exist, there are sufficient data capable of mapping traits of natural 
environment and land uses. 

The purpose of the current study is to set maps of land uses and the natural coverage of the basin 
area of the Euphrates River. The satellite images suggest basic inputs for a comprehensive study of 
this area, which is also reliant on other data and information to achieve targets, such as topograph-
ic maps and statistical records published by the Ministry of Agriculture, which are associated with 
land use at village level and at that of the administrative district, the governorate and agricultural 
areas. Lastly, the study cannot be fulfilled without reliance on field observations. 

A. Satellite data 

In general, sensors gather the electromagnetic spectrum of the sun radiation. The EMS has a range 
from the shortest wavelengths to the longest one and it includes the whole variety of the sun radia-
tion (radiant energies, wave frequencies). It is divided into seven ranges: Radio; microwave; infra-
red; visible; ultraviolet; x-ray; and gamma ray radiation (NASA, 2005). Satellite data are charac-
terized basically by four major and important types of resolutions: spatial resolution; spectral reso-
lution; temporal resolution; and radiometric resolution (see C2.A). 

LANDSAT and ASTER general characteristics (Fig. 4.1, Table 4.1,Table 4.2) are: Medium spatial 
resolution, medium area coverage, moderate revisit capability and multispectral bands characteris-
tic. The scale of the area coverage (imagery) of the LANDSAT satellite and the ASTER sensor 
makes them mainly suitable for LULC-studies for extended areas, such as regions, countries and 
continents. The largest part of Earth observation satellites that have a medium resolution are in a 
sun-synchronous orbit (Van der Meer et al., 2002). The LANDSAT data archive at the 
USGS/EROS Center-holds an unequaled 36-year record of the Earth's surface and is available at 
no cost to users via the Internet (Woodcock et al., 2008). The Earth Science Data Interface (ESDI) 
has a data archive with a global coverage, free for download or for very low managing and deliv-
ery costs to large numbers of countries around the world. The data-archive includes: ortho-
rectified LANDSAT-imagery from the three Sensors (MSS, TM, and ETM+); composite MODIS-
imagery; and remotely sensed data based derived products (e.g., vegetation cover imagery, and 
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NDVI). The owner of this archive is NASA and it hosted at the University of Maryland in the 
USA (http://glcf.umiacs.umd.edu/index.shtml). The Earth Observing System Data Gateway (EOS) 
provides a big archive of land, water and atmosphere data products. Also, the source of these data 
comes from NASA in USA (http://edcimswww.cr.usgs.gov/pub/imswelcome/). There are also a 
valuable and gratis remotely sensed data or with an inexpensive shipping costs. Well-known re-
motely sensed data such as AVHRR, MODIS and ASTER can also be obtained. 
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Fig. 4.1: An overview on the general characteristics of the used satellite dataset in the study 

Table 4.1: General information about the two satellites LANDSAT and TERRA-ASTER (Source: Adapted from: 
Schowengerdt, 2007; Chander et al., 2009) 

Satellite Launch 
dates 

Decommission Altitu-
de/km 

Indinati-
on/degrees º 

Peri-
od/min. 

Temporal 
resoluti-
on/days 

Crossi-
ng time 
(a.m.) 

LANDSAT-1 23.07.1972 07.01.1978 920 99.20 103.34 18 9:30 
LANDSAT-2 22.01.1975 25.02.1982 920 99.20 103.34 18 9:30 
LANDSAT-3 05.03.1978 31.03.1983 920 99.20 103.34 18 9:30 
LANDSAT-4 16.07.1982 30.06.2001 705 98.20 98.20 16 9:45 
LANDSAT-5 01.03.1984 Operational 705 98.20 98.20 16 9:45 
LANDSAT-6 05.10.1993 Did not achieve 

orbit 
     

LANDSAT-7 15.04.1999 Operational 705 98.20 98.20 16 10:00 
TERRA-
ASTER 

18.12.1999 Operational 705   16 10:30 

Table 4.2: General information about the sensors-data used in the study (Source: Adapted from: Van der Meer et al., 
2002;  Schowengerdt, 2007;  Liu & Mason, 2009) 

Platform Sensor Spatial 

Resolu-
tion/m 

Spectral 

Bands 

Spectral 

Range/μm 

Swath 
width/km 

Pointing 

Capabil-
ity/degrees 

º 

Mapping 
scales/m 

LANDSAT 
(1-5) 

MSS- Multi-
spectral 

60 1-4 
 

0.5-1.1 185×185 No 1/160,000 

LANDSAT 
(1-3) 

RBV- Return 
Beam Vidicon 

25 1 0.505-0.750 185×185 No 1/50,000 



Chapter 4: A. Satellite data  
 

79 

LANDSAT 
(4-5) 

TM-
Multispectral 

 
TM-Thermal 

30 
 

 
120 

1-5, and 7 
 
 
6 

0.45-2.35 
 
 
10.40-12.50 

185×185 
 

 
185×185 

No 
 

 
No 

1/60,000 

LANDSAT 
(7) 

ETM+ 
/Multispectral 

 
ETM+/ Thermal 

 
ETM+/ Pan-

chromatic 

30 
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15 
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No 
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1/120,000 
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ASTER 
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15 
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90 
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60×60 
 

60×60 
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±24 
 

±24 
 

±8.55 
 

±8.55 
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degree 
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1. LANDSAT (MSS, TM and ETM+) Sensors 

Lauer et al. (1997) provides a short history of the LANDSAT-program and its noted successes. 
The development of the LANDSAT-program originated from global efforts to improve our 
knowledge of Earth, and it is perhaps the most successful satellite remote sensing program devoted 
to land monitoring. The first Earth Resources Technology Satellite (ERTS-1) was launched to 
space on 23 July 1972 in cooperation between the National Aeronautics and Space Administration 
(NASA) and other USA-federal agencies. It was later renamed LANDSAT-1. This launch is seen 
as the birth of the present age of Earthly satellite remote sensing. LANDSAT-1 was a Nimbus-type 
platform which held a sensor box and data-relay tools. ERTS-2 was launched to the space on 22 
January 1975. It was too renamed to LANDSAT-2. Other four LANDSATs (3, 4, 5 and 7) were 
launched in 1978, 1982, 1984 and 1999 respectively. Each successive launch has included im-
proved sensor and communication capabilities. This has had a huge influence in several applica-
tion fields (Lauer et al, 1997). In comparison to the military satellite systems, the civilian LAND-
SAT-family of satellites has supplied civilization with over 34 years of consistent, medium spatial 
resolution, multispectral images of the world. Due to the long historical record of the LANDSAT-
program, no other remotely sensed data sets allow us to study the nature of the Earth and the hu-
man activities and impacts so effectively (Green, 2006; Williams et al., 2006). This continuous 
record was realized because of good luck and superb engineering rather than careful management 
oversight (Williams et al., 2006). The LANDSAT World Wide Reference (WWR) system catalogs 
the Earth’s landmasses into 57,784 scenes, each 185 km wide and 170 km long (USGS, 2009). 

The famous family of LANDSAT-satellites (LANDSAT-1, 2, 3, 4, 5, 6 and 7) and sensors (MSS, 
TM, ETM and ETM+) can be divided to three common types based on the characteristics of their 
sensors and platforms: 1) LANDSAT (1, 2 and 3), that have the sensor type of MSS and the cam-
era type of Return Beam Vidicon (RBV). The platform was like a Nimbus (cloud). MSS has the 
spatial resolution of 79 m (frequently, prepared to be 60 m as pixel size). Its spectral resolution is 
not large enough for some studies (e.g., crops classification), where it has four spectral bands only. 
These bands located within the four spectral portions (wavelengths) with a four typical band-
naming: blue (MSS-4), green (MSS-5), red (MSS-6) (the visible spectral portion); and the Near-
Infra-Red (NIR) (MSS-7). Only the third LANDSAT hold a MSS sensor that has five spectral 
bands, were the fifth one was a thermal infrared (10.4 to 12.6) μm (Markham & Barker, 1983 cited 
in Chander et al., 2009). This standard is no longer used; instead the MSS-bands are referred to the 
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bands 1,2,3 and 4 respectively, consistent with the TM and ETM+ sensors; 2) LANDSAT (4 and 
5), which carried the TM sensor, in addition to the MSS. This second generation offered a clear 
enhancement in remote sensing through the supplement of a more advanced sensor, enhanced 
gaining and transmission of data, and more rapid data processing at a highly automated processing 
capability. The MSS-sensor was kept to provide continuity with the previous LANDSAT-
missions, but TM-data rapidly became the main source of information used from these satellites 
because of its enhanced spatial, spectral, radiometric and geometric characteristics in comparison 
to MSS-data. Finally, the gaining was limited to real-time download only, since there were no 
onboard recorders on these sensors (Chander et al., 2009); and 3) LANDSAT (6 and 7), consisting 
of LANDSAT-6 which carried the Enhanced Thematic Mapper (ETM) sensor and failed on 
launch, and LANDSAT-7, with its Enhanced Thematic Mapper Plus (ETM+) sensor. LANDSAT-
7 also had a 378 gigabit Solid State Recorder (SSR) that could store 42 minutes (about 100 scenes) 
of sensor data and 29 hours of housekeeping telemetry concurrently (L-7 Science Data User's 
Handbook). No MSS-sensors were included on either satellite. The following TM-bands list de-
scribes the most appropriate applications of each of the seven spectral bands (ERDAS, 1999): 
Band 1: it has the mapping ability of many features (coastal water regions, types of forests, civiliz-
ing features, and soil and vegetation mapping); Band 2: it has the distinguishing ability between 
healthy and unhealthy vegetation, where it is equivalent to the spectral reflectance of healthy vege-
tation within the green spectral portion of this band. It has too the ability to distinguish between 
the various cultural features; Band 3: it has the spectral separation ability between various plant 
types. It has also the ability to draw civilizing features, soil and geological borders; Band 4: espe-
cially responsive to the presented vegetation biomass in an image, where it has the ability to quan-
tify sum of the biomass. It used often for classification of agricultural crops. It is useful for high-
lighting the contact between soil and crop and between land and water; Band 5: it has the ability to 
determine whether the natural and the agricultural plants and crops suffer from drought or not, and 
whether they are healthy or not, where this band is sensitive to the amount of water in plants and 
thus it can quantify the portion of water. It used also to distinguish between clouds, snow and ice; 
Band 6: it has the ability to detect the stress in the natural vegetation and in the agricultural crops. 
It used also to determine intensity of the heat for these plants. Other use for this band in agriculture 
is for insecticide. Some other uses of the sixth spectral band are: thermal pollution activity deter-
mination; and geothermal activity locating; and Band 7: it has the ability distinguish between types 
of the geologic deposits. It used also to draw of soil borders. Also, it is useful for quantifying the 
moisture content in both soil and vegetation. 
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Fig. 4.2: The used imagery spatial coverage of the sensors: MSS (June, 1975), TM (May and August, 1987 and 2007), 

and ETM+/SLC-Off/corrected (May and August, 2005) 

2. TERRA-ASTER 

In 1999, after the cooperation between NASA and the Japan’s Ministry of Economy Trade and 
Industry (METI), the Advanced Space-borne Thermal Emission and reflection Radiometer (AS-
TER) was launched into the space. It was held on board the NASA-TERRA satellite. The ASTER-
sensor represents the next generation in remote sensing, following the older LANDSAT-TM. It 
acquires high spatial resolution data in 14 spectral bands, ranging from visible to thermal infrared 
portions. This sensor contains three separate instrument subsystems that operate in different spec-
tral portions and have their own telescope(s). The subsystems are: 1) the Visible and Near Infra-
Red (VNIR): operates within three spectral bands at visible and NIR wavelengths of 0.52-0.86 μm, 
with a spatial resolution of 15 m. It is especially useful for topographic interpretation because of 
its along-track stereo coverage with 15 m spatial resolution. Also, it is useful in assessing vegeta-
tion and iron-oxide minerals in surface soils and rocks; 2) the Short-Wave Infra-Red (SWIR): op-
erates within six spectral bands in the NIR region of 1.600-2.430 μm, through a single-nadir point-
ing telescope that offers a spatial resolution of 30 m. These six bands were selected mainly for the 
purpose of surface soil and mineral mapping; and 3) the Thermal Infra-Red (TIR): operates within 
five bands inside the thermal infrared region of 8.125-11.65 μm, using a single, fixed-position, and 
nadir looking telescope with a spatial resolution of 90 m. This subsystem allows for a more accu-
rate determination of the variable spectral emissivity of the land surface, and hence a more accu-
rate determination of the land surface temperature. The spatial coverage of the ASTER-sensor is at 
60 * 60 km (Yamaguchi et al., 1993; Fujisada, 1994 and 1995; Yamaguchi et al., 1998; Kiffer et 
al., 2008). 
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The relatively high spatial (Fig. 4.1) and spectral (Fig. 4.3) resolution of the ASTER-data in com-
parison to LANDSAT-data can increase the ability of separation between the various ground sur-
face features and decrease the problems of mixed pixels (Yamaguchi et al., 1998). Therefore, AS-
TER-data are more suitable for LULC-classification (Bagan et al., 2008). 

 
Fig. 4.3: Comparison of the spectral coverage between LANDSAT-sensors (MSS, TM, and ETM+) and the ASTER-

sensor 

The ASTER-sensor, because it is the only high spatial resolution sensor, is the “zoom lens” for the 
other carried sensors onboard the TERRA-satellite. TERRA is in a sun-synchronous orbit, 30 
minutes behind LANDSAT-ETM+, and it crosses the equator at about 10:30 am local solar time. 
ASTER can obtain data over the whole globe with an average obligation cycle of 8 % for each 
track. This offers a gaining of about 650 scenes per day (subject to on-board storage limitations), 
that are processed to the two products types (Level-1A; of these, about 150 are processed to Level-
1B). ASTER-L1A data are officially classified as reconstructed, unprocessed data at full resolu-
tion. They contain the image data, the radiometric coefficients, the geometric coefficients and oth-
er supplementary data without applying the coefficients to the image data, thus keeping the origi-
nal data values (raw data). The L1B-data are produced by applying the coefficients for radiometric 
calibration and geometric resampling. All gained 1A and 1B scenes are transferred to the EOSDIS 
archive at the EROS Earth Data Center’s EDC Land Processes Distributed Active Archive Center 
(LP-DAAC), for storage, distribution and processing to higher-level data products. All ASTER-
data products are stored in a specific implementation of Hierarchical Data Format called HDF-
EOS. 
ASTER’s geometric system correction mainly contains the rotation and the coordinate transfor-
mation of the line of sight vectors of the detectors to the coordinate system of the Earth. This is 
done as part of ASTER-Level-1 processing at GDS using supplementary engineering data from the 
sensor and similar auxiliary data from the spacecraft platform. The geometric correction of AS-
TER-data has developed in two complex processes of both pre-flight and post-launch calibration 
(ASTER Users Handbook). Tests have proven that ASTER has excellent radiometric, geometric 
and spectral functioning (Ono et al., 1996). 
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Fig. 4.4: The used imagery spatial coverage of the sensors ASTER (May and August, 2005), and ETM+/SLC-

Off/corrected (May and August, 2005) 

The main scientific purpose of the ASTER-mission is to gain better knowledge of the local and 
regional scale processes happening on or near the Earth’s surface and lower atmosphere, as well as 
the relations between the Earth surface and the atmosphere. Special applications are: 1) earth sur-
face climatology; 2) vegetation and ecosystem dynamics; 3) volcano observing; 4) hazard observ-
ing; 5) aerosols and clouds; 6) carbon cycling in the marine ecosystem; 7) hydrology; 8) geology 
and soil; and 9) LULC-change (Yamaguchi et al., 1999). 

3. SRTM 

The Shuttle Radar Topography Mission (SRTM) was started in February 2000. This mission took 
eleven days and named as STS-99-mission. The mission was ended successfully after an interna-
tional cooperation. The goal of this mission was to offer a new source for deriving of topograph-
ical data digitally, especially the height element/z, where the traditional methods were based on 
digitizing the contours lines from the topographic maps. After achieving the goal of the mission, 
we had become the Digital Elevation Models (DEM). This product was until 2009 the most com-
plete archive of digital topographical data, which covers a near-global scale from 56° S to 60° N 
with a high spatial resolution. To realize the above mentioned goal, the mission included a special-
ly modified RADAR-system, which was based basically on the model used in the 1994  Shuttle,  
the older Space-borne Imaging Radar (C and X) bands Synthetic Aperture Radar (SIR-C/X-SAR). 
The system was carried on board of the Endeavour Space Shuttle. The  technique  used to generate 
topographic data digitally from the space with representation of the elevation element (z), is the 
Interferometric Synthetic Aperture Radar (ISAR). The SRTM mission was supplied with two radar 
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antennas. "One antenna was placed in the Shuttle's payload bay, the other, a critical change from 
the SIR-C/X-SAR allowing single-pass interferometry, on the end of a 60 m mast that extended 
from the payload bay as soon as the Shuttle was in space" (Nikolakopoulos et al., 2006; Farr et al., 
2007). 

"The elevation models were set into tiles, each covering one degree of latitude and one degree of 
longitude, named according to their south western corners. It follows that “n45e006” stretches 
from 45° N 6° E to 46° N 7° E and “s45w006” from 45° S 6° W to 44° S 5° W. The resolution of 
the cells of the source data is one arc second. The one arc second 30 m data have only been re-
leased over United States territory; for the rest of the world, only three-arc-second 90 m data are 
available" (Nikolakopoulos et al., 2006; Farr et al., 2007). 

The second realized DEM-product was presented from ASTER-sensor in 2009. Thus, it can charge 
the digital topographic database with new and different source. It named as Global Digital Eleva-
tion Model (GDEM). 

 
Fig. 4.5: The used imagery spatial coverage of the sensor SRTM 

B. Reference- and complementary- data 

Reference and complementary data can be obtained from information sources other than the im-
agery data itself, such as field observations and measurements, aerial photograph interpretation, 
thematic maps and other archival materials. The expression “ground truth” can be substituted by 
the more appropriate expression “reference information”, which is seen to be "more inclusive than 
“ground” and less absolute than “truth” ". Generally, no study should be carried out without study 
area visits, but it is often possible to select training and testing samples for accuracy assessment 
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from high resolution aerial photographs or from a suitable thematic maps showing LULC-
categories (McCoy, 2005), in addition to topographic maps and Google Earth data. On the other 
hand, social science can help to confirm and analyze remotely sensed observations (e.g., validating 
remote observations versus data gathered on the ground). For example, it is possible to determine a 
number of land use activities (classes) during classification remote sensing imagery based on a few 
social behaviors (McCoy, 2005). One of the interesting example presented by Lesschen et al. 
(2005) presents other data sources such as questionnaires (often used by sociologists). It is particu-
larly helpful to obtain management-related data (e.g., agricultural crop cycles) and can also give 
insight into the main factors of LULC-change. 

1. Field reference data 

One of the mainly and important steps in any remotely sensed based study is gathering the themat-
ic data (attribute data, such as qualitative breaks by vegetation cover density: Low, medium, high), 
and measurements (e.g., a quantitative differentiation of vegetation cover density by break points: 
< 10 %, 11-40 %, > 40 %), or observations (e.g., determination which category of the legend is 
more suitable to a surface feature) of the phenomenon of interest in the field. This is also the most 
difficult step, because it is a very time-consuming, often boring task which entails difficulties such 
as what want the researcher measuring and observing, where it is important to determine that be-
fore the field work, and then it is important to choose the method to be applied in the field to gath-
er the required data (McCoy, 2005). Ground truthing is important for remote sensing to properly 
identify objects, provide precise image registration and verify results. Before beginning to gather 
reference data in the field, two steps must have been completed: 1) study goals must be obviously 
determined; and 2) a classification scheme for all LULC-classes must have been selected (McCoy, 
2005). 
Spectro-radiometry is a frequently used ground-based reference data source in remote sensing 
techniques (Yang et al., 2007). Spectro-radiometer can measuring the values of radiance, irradi-
ance, reflectance or transmission of individual targets or objects, by locating the radiometer above 
the targets of interest, and records these values as digital spectral quantitative records. It used 
mostly as hand-held cameras (or mounted on a tripod, tower, tractor etc.). After finishing the 
measuring process, the user compares them to the biological, chemical and physical characteristics 
of the object. For agriculture, red and NIR portions of the EMS profile utilized particularly to cal-
culate and generate the Vegetation Indices (VI) that are correlated with parameters of canopy 
structure (e.g., LAI). Spectro-radiometers named also radiometers or InfraRed Thermometers 
(IRT) (Schowengerdt, 2007). 

For the purpose of this study, the major related field-work/s was: The 1987-GPS points (ICAR-
DA); the 2005-GPS points (GORS); the 2007 and 2009 GPS-points obtained from two excursions; 
Spectrometer-measurements (GORS); and the NDVI-measurements (GORS). (see C5.D). 

2. Maps 

Thematic maps of LULC-types should be a part (especially in the visual interpretation) of the se-
lection of training samples and the gathering of testing sites for accuracy assessment when there is 
no alternative. Thematic maps are generalized information with two drawbacks, in that they are 
probably based on unlike designations for classes, plus an unlike minimum unit (cell or pixel) size 
than that which is being used in a specific study. Therefore, most maps are considered untrustwor-
thy and unacceptable for use as reference data, other than for a general understanding of the area 
(McCoy, 2005). 
Soils and thematic maps are reproduced from previous studies (especially from ICARDA-Aleppo), 
as well as topographic maps with various scales from 1/25,000 to 1/100,000, which cover the 
whole study area. These were purchased from the General Organization for Military Survey in 
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Damascus. Some aerial photos for small areas in the Aleppo-governorate were also obtained from 
the military survey. 

3. Statistics 

The analysis of spatial distribution of agricultural features were based on: statistical data taken at 
both village and the administrative district level for the years of 1975, 1987, 2005, and 2007; on 
previously achieved studies relating to the study area; and on the field observations. Statistical data 
were checked and proven. They are the basic foundation of Syrian agricultural statistics. These 
data are collected by agrarian engineers working in counselling units centred in the administrative 
sectors. 
Furthermore, there are general information and agricultural statistical records for the period 1970–
2010. These are useful to understand the geographical history of the study area in relation to nature 
and human activities, and especially the historical development of the irrigation projects in the 
ERB. Each of these information and statistical records has a periodical annual publication, issued 
by the CBC in Damascus. The agricultural statistical records are collected on various levels, in-
cluding village, administrative region, governorate, agricultural stable zones and the whole area of 
Syria (Fig. 5.63, Fig. 5.64). 
Detailed information and statistics for the period 1970–2010 about the agricultural irrigation pro-
jects were obtained from IGDEP in the city of Arraqqa. 

4. Ancillary data 

Ancillary data is used to facilitate a better understanding of LULC-dynamics and the reasons be-
hind them. There are a various obtainable types of ancillary data: digital elevation models; soil 
map; housing and population density; road network; temperature; and precipitation. These can be 
integrated, as external inputs to remotely sensed data. into a classification process in various con-
cepts (Lu & Weng, 2007). This integration has the benefit of improving the overall accuracy of 
produced thematic maps based on classification of remote sensing imagery. The percentage of this 
improvement based essentially on the used classifier (Heinl et al., 2009). 

Climatic data (such as precipitation, temperature, humidity, etc.) was also gathered for the climatic 
stations that existed in the three major governorates within the ERB: Aleppo, Arraqqa, and Deir 
Azzour, during the temporal period of the study. These were obtained from the General Organiza-
tion for Meteorology in Damascus. These data were useful for radiometric normalization using 
(iMAD) (see C5.B.3). Ancillary data for the entire water basin of the Euphrates is also included, as 
well as the agricultural calendar. 
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Chapter 5: Research methodology 

This chapter gives a review about techniques and methodologies that were applied to answer the 
presented research questions and to confirm the hypothesis of this thesis. The conceptual workflow 
chart of the thesis is illustrated with an overview provided in Fig. 5.1. It will be clarified in the text 
part below. 
Tone or color is the basis factor for most methods of digital image analysis. It is represented as a 
digital number (i.e., brightness value) in each cell of the recorded remote sensing image. The first 
step before the main image analyses operated is applying a various procedures of preprocessing on 
the raw digital image. To carry out image classification, many steps have to be considered: choos-
ing of a fit classification system; choosing of training samples; preprocessing of image(s); drawing 
out the feature; choosing of fit classification approaches; processing the resulted products of classi-
fication (post-classification); and accuracy assessment. 
Utilization of several variables during the classification process can make the classification accu-
racy worse because of unlike capabilities in separation between classes of interest (Price, 2003). 
Therefore, many potential variables were used in image classification for the study case of this 
thesis, including spectral signatures, vegetation indices and transformed images (NDVI), multi-
temporal images (1975, 1987, 2005 and 2007; April, May, July and August), multi-sensor images 
and ancillary data (GPS measurements, spectral information, statistical records, Google Earth etc.). 

In this thesis, I will try to propose the methodological means which contribute to analysis of vari-
ous data and information, and to integrate some of these data between each other, if necessary, to 
extract the information/results from the satellite images, to be presented in the final thematic maps. 

Setting three local levels with multi-temporal levels to process sensory data available for obtain-
ing thematic maps. 
The first local-level: this level was embodied in the four administrative areas’ borders (Menbij, Al-
Jurnia, Ain Eisa and Athawra), and was accredited to test and compare several algorithms and au-
tomated classification methods in order to best determine the optimized algorithm and method of 
classification. Algorithms such as MLC, NN and SVM were tested in two ways. The first approach 
relied on a hierarchical shape and involved the extraction of classification outcomes through mul-
tiple stages, starting from the wide general level with little details and ending up at low levels sub-
divided from the previous general one, yet, advantaged with more detailed classes. The second 
approach classified sensory data through one stage. The used data were: LANDSAT-MSS-June-
1975-60m; LANDSAT-ETM+/SLC-Off/corrected and fused with ASTER-May-2005-15m; and 
LANDSAT-TM-May-2007-30m. 

The second local-level: represented in the entire natural borders of the ERB. This level’s outcomes 
were represented in three products. The first product involved setting thematic maps to represent 
the natural coverage and the wide general land uses distribution (LULC). Five classes counting on 
classification system were accredited in this study. The used data and dates were: LANDSAT-
MSS-June-1975-60m; LANDSAT-TM-April-1987-30m; LANDSAT-ETM+/SLC-Off/corrected-
April-2005-15m; and LANDSAT-TM-April-2007-30m). Here, for the automated classification 
process, one product (map) was obtained for each year (coverage), which represented and illustrat-
ed the quality and quantity of the spatial and temporal distribution of the natural coverage and uses 
of the lands. A quantitative analysis of produced maps was set (statistical data and tables) to com-
pare, explain and analyze these numbers. Comparison was made between recordings extracted 
from various sensory data, regarding spatial and spectral resolution (positives, negatives, ad-
vantages and disadvantages). 
The third product involved setting map/s representing the temporal and spatial change of the natu-
ral coverage distribution as well as land uses, utilizing the pre-classification change detection ap-
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proach. For this, the LANDSAT-MSS-June-1975 and the LANDSAT-TM-August-2007coverages 
were used. 
Regarding the last two products, temporal and spatial changes were studied and analyzed. 

 
Fig. 5.1: The general conceptual workflow chart of the thesis 
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The third local-level: represented in distribution of the irrigated agricultural projects within the 
natural limits of the ERB. The first product involved setting maps of distribution and change of 
agrarian irrigated areas, temporally and spatially, for the following data and years: LANDSAT-
MSS-June-1975-60m; LANDSAT-TM-May-1987-30m; LANDSAT-ETM+/SLC-Off/corrected 
and fused with ASTER-May-2005-15m; and LANDSAT-TM-May-2007-30m. 
As for the second product, this was manifested by setting thematic maps to represent the distribu-
tion of winter and summer basic crops in irrigated plantation projects, the types of cultivations and 
their area. The used data for this purpose was as follows: For the winter crops: LANDSAT-TM-
May-1987-30m; LANDSAT-ETM+/SLC-Off/ corrected and fused with ASTER-May-2005-15m; 
and LANDSAT-TM-May-2007-30m. For the summer crops: LANDSAT-TM-August-1987-30m; 
LANDSAT-ETM+/SLC-Off/ corrected and fused with ASTER-August-2005-15m; and LAND-
SAT-TM-August-2007-30m). 
The development of irrigated agricultural areas was calculated for the past 40 years. 

A. Extraction of the study area 

Extraction of the natural aquatic borders of the ERB in Syrian lands through the use of the digital 
elevation model DEM available from the sensor data SRTM in 90m spatial resolution, in addition 
to the DEM-data from ASTER in 30m spatial resolution. 
Data was imported to the ArcGIS 9.3 program using the following steps: Export raster data (raw-
data) to GRID-format; ArcToolBox/Spatial Analyst Tools/Hydrology: (Fill/Flow direction/Flow 
accumulation/Conditional-Con/Stream to feature/Add one point -.shp file-/Watershed); Conversa-
tion Tools: (from raster – Watershed-/Raster to polygon); and Analysis Tools: (Extract/Clip). 
Throughout the proposed results, the spatial distribution layer of the natural borders of river-basin 
was obtained from the SRTM-data. Concerning ASTER-data, there has been an unwillingness to 
depict the river basin edges because of their higher spatial resolution rather than the SRTM-data. 
Unfortunately, dealing with this data proved to be exhausting and full of errors. Therefore, a return 
to the SRTM-data ensued. There has been no accredited map issued by the Ministry of Irrigation 
that draws the borders of the ERB. The majority of Syria’s irrigation projects lie within the natural 
boundaries of the ERB, except for some projects in the north and the south of the city of Aleppo, 
where waters have been extracted from the Euphrates River for the past five years. This means that 
many of these projects are not introduced in this study, as they occurred after the date of the last 
remote sensing data used (i.e., 2007). 

B. Pre-processing of the satellite data 

“A good player never makes more effort than he needs to win” - old Arabic wisdom. 
Remote sensing data may have two common types of distortions (systematic and non-systematic). 
This is because the method performance of the Earth observation system and the characteristics of 
Earth’s surface (Henderson & Lewis, 1998; Richards & Jia, 2003). 
There are a variety of preprocessing procedures that could be applied on satellite data: finding and 
replacement of damaging lines of pixels; geographical registration of image and geometric rectifi-
cation; radiometric calibration and atmospheric correction; and correction the topographical ef-
fects. As example about textbooks that explained the subject of preprocessing thoroughly are 
(Toutin, 2004; Jensen, 2007). The most often carried out procedures of preprocessing are geomet-
ric correction and atmospheric calibration. 
According to Mather (2004), pre-processing procedures used to correct the generated deficiencies 
of geometric and radiometric formation of a remotely sensed image, and then it used to remove the 
errors of data. These deficiencies and errors have to be removed or at least manipulated, if it is 
achievable, before the starting with imagery classification. Which method would be applied, is 
dependent upon the goal of study. The most availability of preprocessing procedures or programs, 
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automatic, is for coarse and medium spatial resolution data (e.g., LANDSAT-TM) and for high 
temporal resolution data (e.g., NOAA-AVHRR).  
A good optimizion in presentation of an individual object in the dataset of remote sensing data, is a 
result of a suitable selection of digital image preprocessing procedures. This goodness can be con-
firmed using a visual interpretation (Liu & Mason, 2009). There are many digital methods to better 
enhancement of an image. These methods have the benefit of increasing the visual interpretability 
of used data and thus the thematic information of interest could be easily derived. The common 
three methods of image-enhancement are: 1) enhancement of contrast ("more of the available 
range of digital values is used, and the contrast between targets and their backgrounds is in-
creased" (Jensen, 2005)); 2) spatial enhancement (spatial filtering, edge enhancement, and Fourier 
analysis etc.); and 3) spectral transformation (generating more valuable data or products - e.g., 
NDVI - based on manipulation - e.g., division - of several spectral bands of data). 
Despite the LANDSAT-images being level 1G corrected (Level-1G was corrected from USGS, 
and this modification consists of the basic corrections of radiometric and geometric distortions. 
But these corrections are not suitable for each application and thus user have to make additional 
corrections if the from USGS corrections are not sufficient), they are not good enough accurately 
registered in form pixel-to-pixel. USGS had pointed to a possible error of up to 250 m 
(http://landsat7.usgs.gov/index.php), and had not atmospherically corrected the data, thus all find-
ings were subsequently re-corrected geometrically for this work (see C5.B.1). Atmospheric effects 
on the spectral signal were also minimized with a correction method (see C5.B.2). In addition to 
radiometric normalization (see C5.B.3), the ASTER data were delivered in Level 1A without any 
corrections. 

ETM+-bands 6 and 8, plus TM-band 6, were eliminated from the entire processing and classifica-
tion. The panchromatic information of band 8 was only used for pan sharpening. The sixth thermal 
spectral band - with its thermal information - was not used because the two reasons: it has a coarse 
spatial resolution; and it can recording only the transmitted radiation from objects in contrast to 
other spectral bands that measure the reflected radiation. 

All image processing, classification and preparing the final results were carried out using two pro-
grams: ENVI, Version 4.6 and ArcGIS, Version 9.3. 

1. Geometric data processing 

"The more time steps involved for a change analysis, the more effort should be spent on image 
registration and radiometric adjustment" (Wulder & Franklin, 2003 cited in Schultz, 2011). Con-
sequently, the goodness or badness of method used in the registration of remote sensing data (im-
age/s) will determine the quality/accuracy of the resulting change detection product (Schultz, 
2911). Townshend et al. (1992) assumes that the "problems created by misregistration are likely to 
be greater in the sensing of land surfaces compared with the atmosphere or many ocean proper-
ties". 

There are several common expressions used to explain geometric correction process (registration, 
rectification, geo-coding and ortho-rectification) (Schowengerdt, 2007). This process corrects the 
two different errors types (systemic and nonsystematic) resulting from the two different sources 
(within the remote sensing system itself, and during the recording of images) (Lo & Yeung, 2002). 
The various applications of geometric correction on remotely sensed data are: co-registration of 
images that cover the same area on the Earth but they were obtained from two or more different 
sensors, or they were obtained at two or more different periods of times, or they were obtained 
from two or more different sites; and rectifying an image to be accurate to an individual coordinate 
system (geo-coding) (Liu & Mason, 2009). "Spatial distortion arises from scanner characteristics 
and their interaction with the airborne platform or satellite orbital geometry and figure of the 
Earth" (Schowengerdt, 2007). Geometric correction can maximize the usefulness of the remotely 
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sensed data for information extraction (e.g., thematic maps). To get more details about geometric 
rectification or image registration and their application on remotely sensed data, there are many 
textbooks and articles (e.g., Jensen, 2005). 

The geometric correction is the first image processing step (pre-classification approach) carried 
out when the remotely sensed data are not geo-rectified (Liu & Mason, 2009). However, geo-
rectification can be carried out as a post-classification approach to reduce the errors and distortions 
resulting from the geometric correction process. This step is influenced by the approach used to 
process a remotely sensed image, , and therefore depends on the use for which the data is intended, 
and when the geo-rectification is done (Liu & Mason, 2009). Generally, it is more competent to 
begin with geo-rectifying the still unprocessed data. Therefore, all products that will result from 
the raw data will be automatically geo-rectified (Liu & Mason, 2009). 

The problems that can occur in pixels of an image that will be rectified to other one (source image) 
are: the pixels have a different position; different orientation; and different size (Fig. 5.2). With 
this in mind, resampling methods have been developed to cope with these problems. The methods 
are based on choosing well-known and matching sites in both images of the selected cartographic 
projection. Based on these sites, a resampling technique will calculate the relation between their 
positions in the two images. These positions can be located exactly on an image using the so-
called Ground Control Points (GCPs). These points are potential to define a suitable transfer func-
tion to be applied between the both images, i.e. rectify and master scenes (McCloy, 1995). There 
are three components to the process: 1) selection of suitable mathematical distortion model(s); 2) 
coordinate transformation; and 3) resampling (interpolation). These are also known as warping 
(Wolberg, 1990). 

 
Fig 5.2: Reposition pixels from their original locations (Input matrix) in the data array into a specified reference grid 

(Output matrix) (Source: Modified from Lillisand et al., 2008) 

"Resampling is the process of calculating the data file values for the pixels in the rectified image 
by the use of data file values in the source image data" (McCloy, 1995). There are three 
resampling schemes: nearest neighbor (sometimes called zero-order interpolation); bilinear inter-
polation; and cubic convolution. In the nearest neighbor approach, "the data file value of the near-
est pixel to the retransformed pixel in the source image is adopted as the data file value for the 
output rectified pixel" (Liu & Mason, 2009). By comparison with the other two schemes, it has the 
advantages: that it does not change the digital number value in the data file; it is simple and rapid; 
and the main drawback is the stair stepped effect. This is used frequently before the process of 
classification is carried out (Liu & Mason, 2009). 
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Ground control points (GCPs) are pixels with well-defined positions in an image for which the 
output map coordinates are previously definite. They must have the following conditions and char-
acteristics: 1) they have to be recognizable with a site both on the image and the real world surface 
(high contrast); 2) they are accessible in the field; 3) they are consistently located within the study 
area of interest; 4) there are sufficient of them; 5) they have a small feature size; and 6) they have 
to be fixed over time. The most frequently used method to select these GCPs is the visual method 
(Liu & Mason, 2009). If the point features to be GCPs are difficult to be exactly located on an im-
age, it is better to select the ground object features to be a GCP (e.g., intersections of linear fea-
tures). In an image-to-image registration model, intersections of highways or main roads are fre-
quently used as GCPs. The next mathematical statement determines the minimum number of 
GCPs to be used:  

Minimum number of GCPs = ((n1)(n2)) / 2, where (n) is the order of polynomial. 

To obtain superior classification results, additional GCPs to the minimum number are commonly 
used. There is an error measurement technique that can compute the correctness of selected GCPs. 
It named the Root Mean Square (RMS) error, which is the distance between the input (source) po-
sition of a GCP in the input-matrix and the re-transformed position for the same GCP in the out-
put-matrix. RMS-error is computed using the next mathematical statement: 

 

Where: ; , : The retransformed coordinates. 

The RMS error will be determined for each GCP. In the next step, the total RMS error will be 
computed by calculation the all RMS error of all GCPs. In the third step, the RMS error will then 
be tested for accuracy. If the overall RMS error is not good enough, then those GCPs with high 
RMS errors must be removed. This previous step will be repeated until the RMS error is good 
enough. 

For comparison and combination based studies that use diverse sources of data and information, 
like remote sensing imagers obtained from diverse sensors (e.g., MSS, TM, ... etc.), field reference 
points (e.g., GPS-points), topographical data (e.g., DEM) and other available data for a study area, 
it is important to transfer all these data into a reference cartographic projection system; the result 
of which is a generally suitable data basis. The ERB projection parameters are: (Projection: UTM, 
Ellipsoid/spheroid: WGS84, Datum: WGS84, Units: Meters, Zone: 37 North). The study area is in 
one UTM-zone (37 N), which was an advantage for this work, since no geometric problems oc-
curred due to changes between two UTM-zones. 

All LANDSAT-data with their different sensors have no spatial deformations among them (i.e., 
among the images of each sensor). However, during the connection and use of mosaic scenes, 
which result from gathering individual sensor images together, it was necessary to register the mo-
saic scenes to each other by accrediting one scene as the master-scene and linking the other sce-
ne/s. Regarding the ASTER-data, the majority of images were not geometrically corrected, par-
ticularly between close paths. Therefore, a geometric correction was needed, in addition to a spa-
tial registration with ETM+-data which was considered to be the geographical reference. Here, the 
problem was that ASTER-data had a geographical reference different from the geographical pro-
jection system of the ETM+-data, and with a 16*16 m pixel dimensions. For the purposes of this 
study, they were re-projected from: Geographic Lat/Lon, Datum: WGS-84, 16*16 M Pixel Dimen-
sions to UTM, Datum: WGS-84, Zone: 37 North, Units: Meters, 15*15m pixel dimensions using 
Rigorous Transformation. 

Although the program ENVI can automatically correct the ASTER-data geometrically, these data 
were geo-referenced using the “Image to Image” concept, and then analyzed on the basis of 
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LANDSAT-data, prior to fusing the two sensors-data. Fig. 5.3 illustrates the results of the geomet-
ric correction for two ASTER-images. 

 
A) Before corrections 

 
B) After corrections 

Fig. 5.3: The geometric correction (including the radiometric corrections) results of two ASTER-scenes 

The registration of the multispectral images was carried out using ENVI 4.6 software. The three 
general steps were: 1) locate GCPs in the two imageto be corrected using the GCP-editor. The 
GCPs were interactively selected manually; 2) compute the transformation matrix using the GCP 
editor and the transformation editor until the RMS error is small enough. A first-order polynomial 
was sufficient for the transformation; and 3) resample the image data. The nearest neighbor 
resampling technique was applied for rectifying the multispectral imagery. 

For example, the geo-registration for the two remotely sensed data coverages LANDSAT-MSS-
June-1975 and LANDSAT-TM-August-2007, was carried out using 14 GCPs (Fig. 5.4) which 
distributed across the image, especially on the margins (the number was dependent on the size and 
image spatial resolution of the used remote sensing data set). Table 5.1 lists the GCPs coordinates. 
It was simple to gather and present good results. The nearest neighbor 1st order polynomial correc-
tion was also used. According to the criteria presented in the literature of remote sensing, the RMS 
error per image must be always less than the half of spatial resolution of the image pixels, namely, 
< 15 meters (0.36) (Townshend et al., 1992; Mather, 2004; Jensen, 2007). 
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Fig. 5.4: The distribution of the 14-GCPs, used for registration of the tow data set (MSS-June-1975 and TM-August-

2007), image-to-image concept 

Table 5.1: The selected GCPs coordinates, used for registration the tow data set (MSS-June-1975 and TM-August-
2007), image-to-image concept 

GCPs 

 

Base (x) 

 

Base (y) 

 

Warp (x) 

 

Warp (y) 

 

Predict (x) 

 

Predict (y) 

 

Error (x) 

 

Error (y) 

 

RMS- 
Error 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
 

74.730.000 

13.666.000 

14.781.000 

18.051.000 

63.010.000 

77.410.000 

11.331.000 

15.591.000 

18.008.000 

83.510.000 

15.686.000 

14.659.000 

17.364.000 

11.962.000 
 

63.920.000 

62.370.000 

82.830.000 

89.730.000 

81.650.000 

81.380.000 

90.470.000 

10.136.000 

11.303.000 

11.310.000 

12.107.000 

13.287.000 

14.886.000 

17.240.000 
 

14.390.000 

76.300.000 

87.465.000 

12.016.000 

26.400.000 

17.030.000 

52.975.000 

95.570.000 

11.973.000 

23.170.000 

96.510.000 

86.250.000 

11.329.000 

59.270.000 
 

74.400.000 

59.400.000 

26.392.500 

33.310.000 

25.190.000 

24.930.000 

33.990.000 

44.930.000 

56.590.000 

56.650.000 

64.630.000 

76.430.000 

92.410.000 

11.595.000 
 

14.370.695 

76.309.792 

87.461.775 

12.016.498 

26.523.039 

17.053.866 

52.958.665 

95.562.622 

11.973.374 

23.159.195 

96.512.613 

86.242.500 

11.329.206 

59.275.189 
 

74.499.013 

59.333.543 

26.395.139 

33.305.137 

25.180.724 

24.916.530 

34.021.619 

44.923.377 

56.594.625 

56.647.066 

64.628.173 

76.424.509 

92.409.188 

11.595.316 
 

-19.305.143 

0.97916066 

-0.32248964 

0.49801720 

12.303.943 

23.866.399 

-16.335.435 

-0.73775910 

0.37395907 

-10.804.704 

0.26131315 

-0.74995666 

0.20638698 

0.51886214 
 

0.99013222 

-0.66456802 

0.26385880 

-0.48629317 

-0.92761745 

-13.470.035 

31.618.867 

-0.66228433 

0.46254371 

-0.29344471 

-0.18272012 

-0.54913877 

-0.081211834 

0.31586047 
 

0.50213654 

0.10258974 

0.41667857 

0.69606191 

0.23569874 

0.15429854 

0.15214582 

0.99141768 

0.59480422 

0.20245697 

0.31885922 

0.92950975 

0.22179032 

0.60744198 
 

Total RMS Error: 0.367236 

2. Atmospheric correction 

A literature review describing the atmospheric effect and its correction is provided by (Kaufman, 
1989). Electromagnetic energy detected and recorded above the atmosphere by remote sensing 
sensors (here, those that work in the optical section of the EM spectrum/especially in the visible 
and near-infrared regions) includes two sources of energy: reflected and/or emitted from the 
ground surface; and energy scattered within and/or emitted from the atmosphere. The quantity of 
this electromagnetic energy is dependent on the quantity of exhaustive solar energy (irradiance), 
which is reduced due to many factors: atmospheric absorption; the reflectance characteristics of 
the various ground surface features; the differences in path length; the atmospheric conditions; and 
the wavelengths. Hence, energy recorded by the sensor is a constructed process of: 1) incident en-
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ergy (irradiance); 2) target reflectance; 3) atmospherically scattered energy (path radiance); and 4) 
atmospheric absorption (ERDAS, 1999; Liang, 2004). Fig. 5.5 illustrates this process. 

Earth Surface
A

Satellite

Sunlight

Sunlight

Atmosphere

Schematic of the atmospheric influence on the recorded radiation at the sensor. The 
Sunlight is broken into three compenents:

: Air light.

: Diffuse lighting. Distracted Radiation and Reflection/Emission.

: Direct Reflection/Emission + Reflection/Emission by neighborhood effects.

A: Target
 

Fig. 5.5: A simplified model of the atmospheric effects on the reflection on a target object (Source: Modified from 
Kaufman, 1985) 

A large amount of optical remote sensing data is affected by the impact of the atmosphere. This 
impact is called atmosphere effects (Liang, 2004). It includes "molecular and aerosol scattering 
and absorption by gases, such as water vapor, ozone, oxygen and aerosols" (Liang, 2004). These 
effects are note measured as “error”, because they are a component of the entire recorded signal by 
a receiver or sensor (Bernstein, 1983). To deal with these effects in optical remote sensing, there is 
a procedure known as Atmospheric Correction. It corrects for surface reflectance from remotely 
sensed images. However, it is not always simple to remove or enhance these effects. The proce-
dure of atmospheric correction includes: assessment of the parameter of the atmosphere; and re-
gain of the surface reflectance. To correctly regain the surface reflectance based on converting of 
sensor measurements to actual reflectance values on the ground using radio transfer codes, may be 
need a well knowledge about the atmospheric conditions at the time of image acquisition by a re-
mote sensing sensor (e.g., humidity and temperature). 
The assumptions that the reflectance values recorded on the remotely sensed data (optical remote 
sensing) are equal to the real reflectance of the different features on the ground surface, and that 
there is representative relation between the recorded values on the images and between the three 
properties of the ground surface (physical, chemical and biological), is not acceptable unless at-
mospheric corrections are applied (Liang, 2004). Smith and Milton (1999) had presented the next 
more radical principle: "to collect remotely sensed data of lasting quantitative value then data must 
be calibrated to physical units such as reflectance". 

It is not always necessary to apply an atmospheric correction technique for each remotely sensed 
study, since the necessity for that depends on the goals of the analysis and the expected results or 
products. For clarification, it is very important to be applied when a remotely sensed data of a cer-
tain region are to be evaluated over a time period - e.g., over a period of a crop growing - (Liang, 
2004). Atmospheric correction is necessary for classifying a multi-sensor (especially when inte-
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grated for an image classification) or multi-date imagery. It is moreover, essential for mapping of 
change detection over a time, since it used to guarantee that gray values of pixels are comparable 
in both images in a temporal sequence (Liang, 2004), since atmospheric effects are one of the error 
sources in change detection studies (e.g., Chavez & Mackinnon, 1994; Coppin & Bauer, 1996; 
Song et al., 2001; Rogan et al., 2002; Coppin et al., 2004). Atmospheric correction is essential for 
enhancing the results carried out based on remotely sensed data (Elmahboub et al., 2009). 
In general, if a single-date image is used in LULC-classification, it may not require atmospheric 
correction as long as the atmospheric effects are consistent over the whole scene, since their im-
pacts are similarly on the spectral vectors of training and unknown pixel, and their relative posi-
tions in spectral space are unaffected. However, if the atmospheric conditions varies largely within 
the study area (e.g., due to haze, smoke or dust storm), then spatially-dependent correction is 
needed (Song et al., 2001; Liang, 2004; Schowengerdt, 2007). 

A lot of models and techniques were founded to normalize and, if possible, to correct the radio-
metric distortions of the data and the atmospheric effect related to atmosphere conditions. These 
include, for example: the simple relative calibration approaches (e.g., the dark-object subtraction); 
and the complex approaches (e.g., 6S) (Markham & Barker, 1987; Gilabert et al., 1994; Stefan & 
Itten, 1997; Vermote et al., 1997; Tokola et al., 1999; Heo & Fitz-Hugh, 2000; Song et al., 2001; 
Du et al., 2002; McGovern et al., 2002; Canty et al., 2004; Hadjimitsis et al., 2004). These meth-
ods include: 1) Invariant-Object Methods (Moran et al., 1992; Chavez, 1996); 2) Histogram 
Matching Methods (Richter, 1996 a and 1996 b); 3) Dark-Object Methods (Chavez, 1988 and 
1996; Moran et al., 1992; Kaufman et al., 1997 a and b, and 2000; Liang et al., 1997), which is 
frequently used; 4) Contrast Reduction Methods (Tanre et al., 1988; Tanre & Legrand, 1991); 5) 
Cluster Matching Method (Liang et al., 2001); 6) The MODTRAN-code (Berk et al., 1998); and 7) 
The Second Simulation of the Satellite Signal in the Solar Spectrum 6S-code (Vermote et al., 
1997). 

In the study presented here, the simplified and fast correction approach using the software program 
ATCOR-2 (Richter, 2011) was used in an attempt to atmospherically correct the images when 
needed. 
The ATCOR-2/ ATmospheric CORrection program was developed by the German Center for Aer-
ospace (DLR/ Deutschen Zentrum für Luft- und Raumfahrt) (see: Richter, 1996 b and 2011; 
http://www.op.dlr.de/atcor). It provides spatially adaptive and fast algorithm. It supports the re-
mote sensing sensors LANDSAT-MSS/TM and SPOT from SPOT-4. It works with a set of func-
tions for atmospheric correction. This set (or catalog) was developed based on MODTRAN-2 and 
SENSAT-5 code. ATCOR-2 assumes that the target objects have an isotropic reflection behavior, 
where the error effect is taken in account by the blooming effect. The program uses the compara-
tive analysis of the measured reflectance of a target object on the sensor with the back-calculated 
reflection of the same target, which it derived from models. It is also implemented in ERDAS IM-
AGINE (http://www.geosystems.de; http://www.atcor.de). The software has been available since 
1996/2002, and is a part of other digital image processing software such as ENVI and PCI-
Geomatica, or as an independent program. 
Some of the advantages of ATCOR-2 are: 1) short times required for computing process; 2) ade-
quate results in comparison to other simple approaches or models; 3) it is easy to get the required 
parameters to be input to the program; and 4) it is uncomplicated to set and modify these parame-
ters separately across the study area, especially if this area is large enough to have different radia-
tion effects (Leica Geosystems, 2005). Fig. 5.6 subdivides the module ATCOR-2 into many sub-
modules. 
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ATCOR-2/Main Menu:
-Determining the input parameters.
- First definition (assumption) of the
atmospheric model, the calibration file, and the
visibility.

Spectra:
-Interactive process to selest (adequate
atmosphere models, calibration file, and ground
visibility).
- Control the above selection by selecting typical
test object in the image.

Constant atmosphere:
-Elimination of haze.
- Calculation of the reflection.

Spatially varying atmosphere:
-Elimination tof haze.
- Calculation of spatially varying
visibility.
- Calculation of the reflection.

Spatially varying atmosphere
(ext. Visibility file):
-Elimination of haze.
- Calculation of the reflection
using external visibility files.

Sun-position calculator:
- Calculate the (zenith and azimuth) of the sun at 
the recording time for the given location. 

 
Fig. 5.6: ATCOR-2 and its central sub-modules (Source: Modified from Leica Geosystems, 2005) 

The parameters that have to be entered in the ATCOR-2/main menu are: 1) the image has to be 
corrected, the input-file source location, and the output-file destination after finishing the process 
of correction; 2) selection of spectral bands to be corrected; 3) determining the sensor specifica-
tions (calibration file); 4) determining the atmospheric model (based on meteorological infor-
mation and the parameters of the applied model); 5) the size of the study area; 6) size of the used 
filter (to minimize the blooming effect), reflection- and emission- correction factors using the 
maximal dynamic range of the output-file by rescaling 8 bit; 7) some secondary information (e.g., 
location coordinates, recording date/time, zenith angle, mean elevation of the study area, air pres-
sure, air temperature, absolute and relative humidity,  and visibility); and 8) selection of the suita-
ble atmospheric conditions from constant and spatially varying by comparison with secondary 
sources (Leica Geosystems, 2005). 
The Spectra-module can be used optionally after point 7 as parameter number 8 in the module 
(main menu), checks whether the selected atmospheric model and the visibility are adequate (and 
if necessary adjusts the parameters iteratively). 

Fig. 5.7 illustrates the major followed steps in atmospheric correction of the data set in this study. 
The solar zenith/sun elevation (61.07 º) and the solar azimuth/sun angle (126.22 º) were calculated 
using the sun position calculators based on the recoding date of the image (e.g., 
p172r035)/(07.8.2007), scene-center-scan-time (07:50:59 clock), and the Longitude (039 45 10 E) 
and Latitude (35 10 05 N) of the scene center. The necessary information can be found in the 
header file of the image data. The used atmospheric type was midlat-summer-rural, where: midlat 
= radiation region of the mid-latitudes, summer = season, and rural = aerosol type. Table 5.2 pro-
vides the used weather information. If the meteorological data are not always obtainable, then the 
standard atmosphere (dry desert) have to be used, which took into account the atmospheric effects 
in a good approximation (Richter, ATCOR-2/3 User Guide, 2011). 
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Fig. 5.7: The general concept of atmospheric correction using ATCOR-2 

Table 5.2: Weather data from the Arraqah climatic station (Longitude: 039 59  00  E; Latitude: 35 54  00  N; Eleva-
tion: 250 Meters), 07.08.2007, 8.20 clock (Source: The General Authority for Meteorology, Damascus, 
2008) 

Temperature 30.4ºC 

Relative Humidity 44 % 
Visibility 35 km 
Air pressure 870.3 hPa 
Sun elevation 61.07 

 
The sensor calibration file represents another important input. This file includes the calibration 
data (correction factors: Bias [c0] and Gain [c1]) of each channel. Bias: Describes the spectral ra-
diation on the sensor for a gray value of zero. Gain: Represents the gradient calibration. The data 
takes place in the unit of electromagnetic radiation [mW cm-2 sr-1 μm-1] (Lillesand et al., 2008). 
ATCOR-2 calculates the reflection on the sensor using these factors in the linear equation: 

L = c0 + c1 * DN, where: L = calculated radiance on the sensor; DN = digital numbers 

The new atmospheric corrected image (LANDSAT-TM-p172r035-070807) has new gray-values 
(e.g., DNs-before: 50, 65, 83; DNs-after: 41, 45, 65). The corrected histogram band 1 has, in com-
parison to the raw data, the same trends. It is darker, the individual object-groups are more evident 
through peak formation in the corrected data (DN-values), and they are, therefore, better to delimit 
than in the raw data (uncorrected) (Fig. 5.8). 

 
Fig. 5.8: Histogram comparison of the (LANDSAT-TM-Band-1) before and after the atmospheric correction 
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3. Radiometric processing/calibration 

The application of the information-extraction algorithms for LULC-classification, change detec-
tion and other remotely sensed Earth observation studies can be generally useful when the data are 
radio-metrically processed (De Jong et al., 2005). On the other hand, if the user select an approach, 
that is based on products resulting after classification, for mapping the change detection, then radi-
ometric correction is avoidable (Jensen, 2007). It is true when only one image at each compared 
time (no mosaic) is used in classification, and when each image has the same irradiance conditions 
(e.g., no haze or dust). However, the using of some change detection approaches (image differenc-
ing, change vector analysis), would requires a radiometric normalization. Also, radiometric correc-
tion is necessary for some applications (e.g., image mosaicing, generating of vegetation indices 
over the time) (Yang & Lo, 2000). 

The radiometric correction set can correct radiometric distortion, which occurs because of sensor 
noises and atmospheric effects. Radiometric correction of remotely sensed data is a process of 
converting the recorded pixels’ brightness values (where they are simply numbers, without physi-
cal units) to an absolute independent scale of radiance that serves as a more direct link between 
image and biophysical phenomena, then addressing the errors in pixel values. It is then possible to 
manipulate these values to maximize their information for studies that are based on the digital pro-
cessing of remote sensing data (Wulder & Franklin, 2003; Liang, 2004; Richards, 2005; 
Schowengerdt, 2007; Lillesand et al., 2008). 
Schowengerdt (2007) has listed three levels of radiometric calibration. The first converts the sen-
sor DNs to at-sensor radiances. The second transforms the at-sensor radiances to radiances at the 
Earth’s surface. The third transforms it to surface reflectance. 
The radiometric correction/adjustment set includes the three mechanisms: 1) calibration of the 
sensor: it is the process of converting the DNs to at-sensor radiance for inter-sensor data compari-
son. Gains and offsets are well-known for each remote sensing sensor, and these used to the rec-
orded signals to generate the DNs. This first mechanism is frequently calculated at the satellite 
ground stations; 2) atmospheric correction (see C5.B.2); and 3) radiometric normalization (abso-
lute and relative). A) absolute radiometric normalization: "for a linear sensor, is performed by rati-
oing the digital numbers (DNs) from the sensor, with the value of an accurately known, uniform 
radiance field at its entrance pupil" (Liang, 2004). In this case, user has to carry out atmospheric 
corrections, which require atmospheric information at the time of the image acquisition (see 
C5.B.2). However, when it is difficult to obtain these atmospheric parameters and/or the absolute 
surface radiance is not necessary, one can change to B) relative radiometric normalization: it is an 
in-image technique which uses the information contained within the image itself, and used when 
the full radiometric calibration for remote sensing data is complex. The concept is based on the 
supposition that it is possible, by application of linear functions, to estimate the at-sensor radiances 
recorded at two different times and for the same area but under different conditions (Yang & Lo, 
2000). This technique has the disadvantages of difficulty and time-consuming, where it has to de-
termine the suitable time-invariant features upon which the normalization is based (Teillet & Fe-
dosejevs, 1995; Schowengerdt, 2007). This method is applied especially in applications based on 
LULC-classification and post classification change detection (Song et al., 2001). 

Several methods (Schott et al., 1988; Hall et al., 1991; Moran et al., 1992; Furby & Campbell, 
2001; Du et al., 2002) were developed and proposed to be applied as techniques for the relative 
radiometric normalization in remote sensing applications. Canty et al. (2004) proposed a method 
based on MAD, which use the advantage of the invariance properties of MADs. Canty and Nielsen 
(2008) further improved this approach by introducing an iteratively re-weighting method of the 
MADs, which executed superior in isolating no-change pixels fit to use for the relative radiometric 
normalization. The MAD method, after the modifications by Canty et al. (2004); and Schroeder et 
al. (2006) provides better radiometric normalization than those achieved with manual selected in-
variant features. 
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MAD can be used for bi-temporal change detection and for automatic relative radiometric normal-
ization (Nielsen, 2007; Canty & Nielsen, 2008; Canty, 2010). Canty (2010) explained the mathe-
matical background of MADs. 

To create a MAD-image, it is necessary to select two multi-spectral images that have alike spatial 
dimensions (size of the pixels). The two images will be modeled as a casual variable G1 and G2. 
When each image has, for example, 123 pixels, then these 123 pixels have a 123 times repetition 
of a mathematical random experiment, where, –here, the accurate value of pixels are not defined or 
described. If G1, G2 represent only a specific pixel or an entire image, then it will be illogical for 
them. What is important here is the properties of the causal variables G1, G2. Some suppositions 
about G1, G2 can be made by using the metrics of histogram (e.g., empirical variance, mean-based 
assessment of predictable value). Each image includes an N spectral bands, with G1 (also G2) as a 
random vector (Schultz, 2011). 
The X² image expresses the representative pixels which may be suitable for the radiometric nor-
malization (Canty, 2009). The X² distributions are only the pixels that satisfy the formula: /Pr (no 
change) > t, where (t) is a decision threshold that is typically 95%/. The radiometric normalization 
based on these satisfying pixels will be used to perform an orthogonal regression. 
The iMADs, X²-values can only be calculated for overlapping areas, since the iMAD is designed 
for applying the automated radiometric normalization of multi-temporal remotely sensed data sets. 
Adjacent scenes can be normalized by selecting their overlapping area (subsets) and followed by 
using the created transfer function of the orthogonal regression expressed on an entire image. It is 
important to cover all LULC-properties in the overlapping region of the two images (master and 
target), while pixels with an alike spectral behavior from overlapping and non-overlapping regions 
will be treated according to the regression function (Canty & Nielsen, 2008). 
Large water bodies (e.g., sea) affect the iMAD negatively (Canty, 2009). Clouds and their shadows 
do not affect the normalization superiority, while they are detected as change (Canty & Nielsen, 
2008). 
Summarized after Canty and Nielsen (2008) and Schultz (2011), the performed radiometric nor-
malization was achieved in the five phases: 1) insert the dual-temporal data set; 2) compute CVs, 
build MADs and reweighing the spectral information accordingly; 3) repeating until no signifi-
cantly improvement in correspondence of the CVs; 4) select pixels that have a no-change chance 
greater than a threshold value (t); and 5) determine the two radiometric normalization coefficients, 
i.e. slope and intercept, based on the orthogonal regression on selected pixels that have to be per-
formed previously. 

The iMAD was applied to the imagery using ENVI 4.6 and IDL 7.06. The source code used was 
provided by Morton Canty and can be downloaded at “http://mcanty.homepage.t-
online.de/software.html”. In Canty (2009) the implementation and installation of the software to 
ENVI 4.6 is presented and explained. 
To normalize the radiometry of all the used remote sensing sensor (e.g., LANDSAT-MSS-June-
1975 and LANDSAT-TM-August-2007) data sets, a master scene has been selected in each data 
set to which all other scenes have been adjusted. LANDSAT-MSS scene (p185r035) and LAND-
SAT-TM scene (p172r035) were selected as master scenes for each data set, as each was in the 
center of the study area and covered the greater part of it. Atmospheric conditions/illumination 
were the same overall in each scene (e.g., no dust, no haze, etc.), and they had no cloud cover. All 
other scenes in each data set were radio-metrically adjusted based on the two master scenes. Re-
gions in the image overlap areas of the bordering scenes were used to calculate regression coeffi-
cients, which were applied in a second phase to the complete sub-scene. The overlapping areas 
were selected to represent the variability of surface across the scenes. Finally, after mosaicking the 
images of each data set, the TM-Mosaic-Image was chosen as a master scene to normalize the 
MSS-Mosaic-Image radio-metrically (Fig. 5.9). 
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Fig. 5.9: Radiometric normalization between the two data-sets, which were used for change detection 

Fig. 5.10 provides the results of the radiometric normalization using iMAD. 

MSS-1975-Mosaic/before (iMAD) MSS-1975-Mosaic/after (iMAD)   TM-2007-Mosaic/Master scene 

 

Basic Stats     Stdev     Stdev     Stdev
     Band 1 24,345611 53,79413 66,910881
     Band 2 39,756239 38,173823 42,59285
     Band 3 41,205301 63,594957 62,193548
     Band 4 31,961721 60,645272 59,189952  

Fig. 5.10: iMAD results for the two data sets MSS-1975 and TM-2007. We can notice that the basic statistics (e.g., 
Stdev) of the radiometric normalized image are more similar to the master scene than the unnormalized im-
age 

A radiometric correction process was fulfilled on the mosaic scenes which comprehensively cov-
ered the study area. This was achieved by accrediting one of the scenes as a radiometric-reference 
(master-scene). Then, the other image/s were matched with it radio-metrically, i.e., a transfor-
mation process of the radiometric characteristics of the source-scene was conducted on the other 
images (targets). This resulted in obtaining close and similar radiometric characteristics for all 
scenes that covered the study area, because all had the same reference/source (i.e., the master-
scene). Consequently, the Earth features (e.g., wheat fields) that existed in an individual scene, 
appeared spectrally (reflectance values/gray values) and radio-metrically, similar to those wheat 
fields located in each of the other scenes. This degree of similarity was based on the applied radi-
ometric correction method/s and on the nature of the ground surface features that existed in the 
satellite image. 
After finishing the atmospheric correction using ATCOR-2, a radiometric correction process was 
conducted of the scenes covering the study area (MSS-June-1975 and TM-August-2007) using 
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iMAD. A radiometric correction was applied upon the two mosaic-scenes, since the TM-data was 
too basic for use with iMAD. 
Concerning the scenes that could not pass the radiometric correction process (for instance, TM-
May-2007-data), it was enough to make atmospheric correction using ATCOR-2, followed by an 
automated classification applied for each image. Finally, the mosaicing-process was applied for 
the produced thematic maps that resulted from classifying each image. This mosaicing-process 
was helpful, in that it made it easier to find the final statistical results for the whole study area, and 
to compare the area with other results from separate data and dates. 

4. Data fusion 

Image fusion is the process of fusing the lower multi-spectral spatial resolution with the higher 
panchromatic spatial resolution, to generate a higher multi-spectral resolution data set, which has 
the advantages of both: the high spatial resolution of the panchromatic image; and the higher spec-
tral resolution of the multi-spectral image. It is one of the spatial enhancement techniques which 
are able to use the corresponding information that obtained from different imagery about the same 
terrain features in an effective way. The application of this technique is more for visual observa-
tion and interpretation than for quantitative analysis, as it can maximize the differences between 
different targets (Liu & Mason, 2009). 
Fusing panchromatic- and multispectral- data includes two general steps: 1) the geometrically reg-
istration the low-resolution multispectral imagery to the high-resolution panchromatic imagery 
(see C5.B.1); and 2) merging the information contents, spatial and spectral, to produce one data set 
that have the best characteristics of the two input data sets. Examples of image fusion techniques 
are: IHS (Intensity-Hue-Saturation); PCS (Principal Component Substitution); HPF (High-Pass 
Filter); RVS (Regression Variable Substitution); and SVR (Synthetic Variable Ratio). In this 
study, the Gram Schmidt Spectral Sharpening Algorithm was used. 
The merged data were fit for further digital classifications, since the spectral separability for 
LULC- and crops- classes/six spectral bands of the merged data was better than the spectral sepa-
rability of the original data. This was because there were only three spectral bands. Therefore, 
merged images were used for visual interpretation and for features extraction (classification). 
Fig. 5.11 explains the concepts followed to generate the final fused and mosaiced data set of the 
ERB-borders based on TERRA-ASTER & LANDSAT-ETM+ images. 
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LANDSAT-ETM+/SLC-Off_Corrected/ data
(the bands: 1,5, and 7_30m)

TERRA-ASTER data (the bands: 1,2, and
3_15m)

Geometric correction/GCPs

Radiometric adjustment (atmospheric
correction/ATCOR-2 + radiometric

normalization/iMAD

Radiometric adjustment (atmospheric
correction/ATCOR-2 + radiometric

normalization/iMAD

Fusion (sharpening) using the panchromatic
band (8)_15m

Subset all images (to remove the distortion
on the margins)

Mosaic image (3 bands with 15m)
Mosaic image (3 bands with 15m)

ETM+_p173r035-scene_(1,2,3,4,5, and 7 
bands)_15m (cover the west area, that

ASTER-data not covers it)

Layer stacking

Fused data set (mosaic)

Mosaic
The final fused data set (cover the all study

area)
Subset (ERB-

borders)

Gram Schmidt 
Spectral

Sharpening-
Algorithm

Geometric
regestration

(image to image)

Radiometric
normalization

(iMAD)

 
Fig. 5.11: Fusion- and Mosaic- concept for LANDSAT-ETM+ and TERRA-ASTER data set, acquired in May and 

August 2005 

The ASTER data did not cover the entire study area, only the first three bands with a spatial reso-
lution of 15 m. This data was previously tested on the separability among the extracted classes of 
interest from the study area and compared to the same ASTER data after they were merged with 
the three spectral bands (1, 5 and 7) of LANDSAT-ETM+. However, these three bands were use-
less in the classification process due to their low separability when compared with the results of 
spectral separability that resulted after fusing with the other three bands of ETM+ (see Table 5.4, 
Table 5.5). Therefore, ETM+-scenes which were corrected SLC-off data were used. This data had 
similar temporal coverage to the ASTER data. The purpose was to increase the spectral resolution 
which in turn, increased the spectral separability between classes. These offered classification re-
sults with higher accuracy rather than using only the three spectral bands of ASTER data in the 
classification process. 
Because the ASTER data had a spatial resolution of 15 m, and in order to benefit from this to 
compare results with the results of MSS-60m, and TM-30m, a spatial enhancement of the ETM+-
scenes with the spatial resolution of 30 m was required. This was conducted by transforming the 
data into a 15 m spatial resolution using the ENVI-program and selecting the Schmidt Spectral 
Sharpening Algorithm. 
(Fig. 4.4) shows the spatial distribution of the two remotely sensed data which were used in the 
fusion and mosaicing process. 

5. Mosaicing, subsetting and masking 

The mosaic-process was applied to data which had similar atmospheric conditions and no radio-
metric distortion overall, or to those data whose atmospheric and/or radiometric distortions were 
corrected or normalized using ATCOR-2 and/or iMAD (see C5.B.2 & C5.B.3). For the data which 
were impossible to correct, a LULC-classification was carried out for each scene and then mo-
saiced to the results, to determine statistics. These results were in turn compared with those of the 
other data set (e.g., post-classification change detection) (see C5.L.2). The advantages of the mosa-
ic process were found to be their ease and the speed in digital image processing. 
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The section C5.B.4 and the tow figures (Fig. 5.9 & Fig. 5.11) explains the followed process for 
two data sets. Fig. 5.12 explains the difference between two generated mosaics and the importance 
of the pre-processing steps, especially color balancing, radiometric normalization and atmospheric 
correction. 

The masking operation enables researchers to use an image file to choose (mask) definite areas 
and/or values from a matching raster file, and use those areas and/or values to generate one or 
more new files. The input mask file and input file must be the same as masking will be performed 
on the image area that both files have in general through the intersection process. This operation 
was used too often in the Multi Stage Classification Approach (see C5.G.1.2.1), especially in crops 
classification (see C5.J). The masking areas were selected by generated class values or were based 
on NDVI transformation (the masking operation was a processing and not a pre-processing step). 
All the class values of classes to be masked were set to zero or recoded to zero, then all unwanted 
zero signed features will be ignored when masking was executed. 

The sub-setting operation was used broadly in this study to cut and remove the distorted margins 
of the LANDSAT-data; to subset only the study area (ERB borders) from each image or from the 
whole data set mosaic scene; to reduce processing time; and to reduce the geographical local ex-
tent that increased the spectral differences of the existing ground surface features. The final subset 
of the study area was about 50,335 km². 
Mosaics for the ASTER-May and August-Data in 2005 were produced, eight paths from left to 
right (path-1: 4 rows, path-2: 4 rows, path-3: 3 rows, path-4: 3 rows, path-5: 3 rows, path-6: 4 
rows, path-7: 5 rows, and path-8: 4 rows). 
After the enhancement of the three bands of the ETM+-data (six bands for the scene (p173r035), 
i.e., the bands (1, 2, 3, 4, 5 and 7) which covered a part of the study area that the ASTER data did 
not cover), scenes were collected in one mosaic-scene. Here, before mosaicing, subsets were com-
pleted for each scene to remove margin deformations. After that, a geographic registration was 
applied for the ASTER-mosaic-scene with the ETM+-mosaic-scene as master-scene, using the 
image to image method. Before the last step, the three bands of ASTER data were composited with 
the three bands of ETM+-data (one layer-stack). The last step created a mosaic for the last scene 
which resulted from fusing ASTER-bands with ETM+-bands, and for the p173r035-scene of 
ETM+-data that covered the rest of the study area. The final result was the creation of one com-
pound mosaic scene from both the ASTER- and ETM+-data that was homogeneous: Radiometri-
cally (i.e., no or acceptable spectral appearance of the same features overall in the mosaic-scene); 
spatially (15 m); and spectrally (six bands). 
In order to reduce temporal and effort processing series on the remote sensing scenes which cov-
ered more than the spatial distribution of the study area, these scenes were subsetted (either sepa-
rately or inclusively in one mosaic-scene) to include only the spatial distribution of the ERB bor-
ders. 
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Fig. 5.12: Two mosaic-results of the data set (LANDSAT-TM-August-2007). Left: without any digital pre-processing 

steps/techniques or corrections; Right: After applying corrections 

C. Design of the LULC- classification system 

A LULC-classification process starts with defining a classification system. A successful LULC-
classification requires a suitable classification system and an adequate number of training sites. Its 
design is related to: the needs of the user; the spatial resolution of used remote sensing data; the 
capability with the prior studies; the used algorithms for image-processing and classification; and 
the time limitations. A system of LULC classification categorizes the all definable LULC-features 
into classes in the system. A good system should have three characteristics (informatively, ex-
haustively and separability) (Landgrebe, 2003; Jensen, 2007). A system is exhaustive when each 
feature in the real world has a label. Also, a good system structure can be located at any point on 
the map/ground into one and only one LULC-category. 

An a priori hierarchical structure system for the LULC-classification for the study area was build. 
This system was adopted to increase the flexibility of classification procedures and to take differ-
ent conditions into account. Furthermore, the LULC-classification system used the "diagnostic 
criteria and their hierarchical arrangement to form a class (map-ability function), that had the abil-
ity to define a clear boundary between two classes. Hence, diagnostic criteria should be hierarchi-
cally arranged in order to assure a high degree of geographical accuracy at the highest levels of the 
classification. These prerequisites can only be accomplished if the classification has the possibility 
of generating a high number of classes with clear boundary definitions" (Di Gregorio, 2005). 

The Land Cover Classification System (LCCS) was designed with two main phases (see Fig. 5.13): 
A) an initial Dichotomous Phase, in which eight major land cover types were defined: (1) Culti-
vated and Managed Terrestrial Areas; (2) Natural and Semi-Natural Terrestrial Vegetation; (3) 
Cultivated Aquatic or Regularly Flooded Areas; (4) Natural and Semi-Natural Aquatic or Regular-
ly Flooded Vegetation; (5) Artificial Surfaces and Associated Areas; (6) Bare Areas; (7) Artificial 
Water bodies, Snow and Ice; and (8) Natural Water-bodies, Snow and Ice (Di Gregorio, 2005). 
Five major classes were classified: 1, 2, 5, 6 and 8, since the classes 3, 4 and 7 did not exist in the 
study area ERB. A dichotomous key was applied at the major level of classification to identify the 
major land cover classes (see Fig. 5.13). Three classifiers were used in the dichotomous phase, i.e.: 
Presence of Vegetation; Edaphic Condition; and Artificiality of Cover. "These three classifiers 
were hierarchically arranged, although independent of this arrangement, the same eight major land 
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cover types would be keyed out. The hierarchical arrangement is thus not important in this phase, 
but was a guiding principle in the subsequent Modular-Hierarchical Phase" (Di Gregorio, 2005). 

 
Fig. 5.13: Overview of the Land Cover Classification System (LCCS), its two major phases and the classifiers 

(Source: Adapted from Di Gregorio, 2005) 

This was followed by a subsequent so-called: "B) Modular-Hierarchical Phase, in which land 
cover classes were created by the combination of sets of pre-defined classifiers. These classifiers 
were tailored to each of the eight major land cover types. The tailoring of classifiers in the second 
phase allowed the use of the most appropriate classifiers to define land cover classes derived from 
the major land cover types and at the same time, reduced the likelihood of impractical combina-
tions of classifiers" (Di Gregorio, 2005). 
The classifiers of the pure land cover can be jointed with so-called attributes for additional de-
scription. There are two kinds of these attributes, which form separate levels in the classification: 
(Di Gregorio, 2005): "(1) Environmental Attributes: these attributes (e.g., climate, landform, alti-
tude, soils, lithology and erosion) influence land cover but are not inherent features of it and 
should not be confused with “pure” land cover classifiers. These attributes can be combined in any 
user-defined order; and (2) Specific Technical Attributes: these attributes refer to the technical dis-
cipline. For Semi- Natural Vegetation, the Floristic Aspect can be added (the method on how this 
information was collected as well as a list of species); for Cultivated Areas, the Crop Type can be 
added either according to broad categories commonly used in statistics or by crop species; and for 
bare soil, the Soil Type according to the FAO/UNESCO Revised Soil Legend can be added. These 
attributes can be added freely to the pure land cover class without any conditions". 
The LCCS is a wide-ranging, standardized a priori classification system, designed to meet specific 
user requirements, and formed for mapping exercises, free from scale factor or means used to map. 
Any LULC-feature well-known overall around the world can be readily contained. The classifica-
tion uses a set of diagnostic standards that are independent and that able to allowing a correlation 
with presented classifications and legends. The advantages of the classifier or parametric approach 
are manifold. The system created is a highly flexible a priori land cover classification in which 
each land cover class is clearly and systematically defined, thus providing internal consistency. 
The system is truly hierarchical and applicable at a variety of scales. Re-arrangement of the classes 
based on re-grouping of the classifiers used facilitates extensive use of the outputs by a wide varie-
ty of end-users. Accuracy assessment of the end product can be generated by class or by the indi-
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vidual classifiers forming the class. All land covers can be accommodated in this highly flexible 
system; the classification could therefore serve as a universally applicable reference base for land 
cover, thus contributing towards data harmonization and standardization (Di Gregorio, 2005). 

Included here is the general legend which generated from the LCCS-Software, because it is diffi-
cult to read the description of the resulted classes once the legend is integrated with the resulting 
thematic maps (Fig.5.14). 

 
Fig. 5.14: Description of the resulting 14-class for the four 4-Regions sub-study-area (Source: Adapted from: LCCS-

Software/Version 2.0) 

D. Field work 

The identification of the potential LULC-classes and the thematic content that a classification can 
or should be included is necessary, where a classification process is a thematic interpretation of the 
landscape (Jensen, 2007). Such interpretation to be founded, it is necessary to identify and under-
stand factors that control and determine the form of features or phenomena. Therefore, field work 
and observations are essential if a supervised and/or knowledge based classification method will 
be used (Richards & Jia, 2003).  
Interviewing local farmers provides important understanding of the general characteristics of the 
LULC in the study area during the past decades. For the purposes of this thesis, interviews were 
conducted with village leaders and farmers. The main reason for interviewing these people was to 
find the relationship between the satellite data and the qualitative LULC-history in the surround-
ings of the villages. 

Field work was carried out in June, 2007 (Fig. 5.15), since measurements can be taken (GPS-
points) for either winter and/or summer crops. Annually in June in Syria, the wheat and barley are 
harvested (N.B., most irrigated wheat in east Syria will not be harvested yet), the sugar beet will 
still be green,  cotton and corn will grow without problems. A second campaign was conducted in 
July 2009 for complementary information and some GPS-measurements based on the knowledge 
of the farmers. These two field work periods were held to increase the understanding of the pat-
terns of LULC in the study area. Preliminary image classification (unsupervised) and RGB-
composite imagery of the study area were printed to show target areas to be surveyed depending 
on the accessibility of each site. The data were gathered from different sites depending on the dif-
fering soil types and irrigation systems in the study area. Random sampling methods were used. 
Each plot was registered by using GPS-technology (using a GARMIN-Colorado-300 global posi-
tioning receiver) to allow for further integration with the spatial data in a geographic information 
system (GIS) and image classification programs. 
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Fig. 5.15: Excursion-GPS-Points-2007 and other GPS-measurements from ICARDA and GORS 

Information was gathered based on specific procedures such as: identification of the dominating 
species of trees, shrubs and herbs; detection of the physical aspects of the soil; conduction of in-
terviews and group discussions with local farmers to extract historical information about the 
LULC in the study area; and gathering of information about prior LULC activities regarding to 
types, densities, distributions, and species. 

Fig. 5.16 illustrates one example from the study area as explanation of the steps followed during 
the excursion in 2007 to collect ground truth data (especially for agriculture). The outputs of this 
first experimental stage were the gathering of the training samples and the testing of sites for au-
tomated supervised classification algorithm/s and accuracy. Fig. 5.17 presents the complementary 
stages of the field-work, which could perhaps be described as “office work”. This was essentially 
based on the gained output-results of the previous stage and their use as inputs in the automated 
supervised classification processes chain. The classification process in this work included two 
types (see C5.M; C6.B); the first using the automated accuracy assessment based on trusted data 
(e.g., aerial photographs, GPS-measurements, etc.); and the second manually comparing the result-
ed readings from remote sensing data with the state statistical records. One cannot separate be-
tween these two stages, especially when the desired classification result reaches a very detailed 
level of information about the LULC-features (e.g., crops mapping). Thus, these stages have been 
linked and described in the same place here. 
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Fig. 5.16: The followed methodology for collecting the ground truth data during the field-work in 2007 
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Fig. 5.17: The followed methodology for collecting the results during the “office-work” 

E. The possibility of spectral separation between crops/spectral considerations 

Satellite data was procured based on agricultural crop calendars and separability (dependant on 
crop cover, density, leaf area, leaf structure, crops growth stage, etc.) of the main crops cultivated 
in the region. By application of remote sensing data in agriculture, the observing of spectral of the 
crops at one exact stage is more common than those over the entire growing season. Thus, the 
spectral behavior of plants and the effects of the background surface (soil or water) should be well 
understood. 
The questions related to the spectral characteristics of the used data are: what are the agricultural 
features that have to be classified? are they spectrally separated from the other associated agricul-
tural features and land cover types (especially the natural plants)? which EMS portion, wave-
length, or spectral band are most helpful for spectrally distinguishing and classifying the agricul-
tural features? and what time period of the year is more suitable, in which remote sensing data 
would be acquired? This based on the fact that the spectral behavior of these agricultural features 
is unique or more unique during certain times of the year (Hoffer, 1980). 

The conceptual method and the final results carried out from the GORS-project (see C2.B) using 
the spectrometer measurements were used to determine the appropriate date/s, in which is it was 
possible to separate between the agricultural crops spectrally and then to classify the individual 
winter and summer crops. This presentation was to confirm the temporal choice of the various 
remotely sensed data that are used in this study. 
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A FieldSpecPro spectrometer by GORS was used to collect the radiometric measurements of the 
major crops in the study area. It had a spectral range of 350-2,500 nanometers, with a spectral in-
terval of 1 nanometer. It offered very sensitive and accurate measurements in the spectral ranges of 
visible, near infra-red, far infra-red, and thermal, and was equipped with two software-programs. 
The first, RS3, recorded target reflectance and saved the measurement records. The second, View-
SpecPro, processed the recorded data and transformed them to digital-format, for ease of analysis 
(Fig. 5.18). 

 
Fig. 5.18: The followed concept in spectral measurements using (FieldSpecPro) by (GORS) (Source: GORS, 2007) 

The total radiometric readings numbered 2,669 measurements that represented 103 training-fields 
of different crops (Fig. 5.19). 

 
Fig. 5.19: The distribution of the training fields used in the spectral measurements (Source: GORS, 2007) 

These displayed the values of the spectral reflectance as spectral signature for each crop, within 
the wave-lengths from 350-2,500 nm and with a spectral interval of 1 nm for the crops in the study 
area through their growth stages, allowing for a temporal succession of 15 days between the vari-
ous readings, from planting and germination until harvest. 
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The spectral results that represented the winter crops included wheat, barley and sugar beet. For 
example, the training fields of wheat in Arraqqah Province were made up of 35 fields (Fig. 5.20). 

 
Fig. 5.20: Spectral reflectance measurements for wheat at different growth stages (Source: GORS, 2007) 

Fig. 5.21 illustrates the relationship between the spectral responses of the irrigated wheat during 10 
different growth stages and the characteristics of the eight bands of ASTER-data. It is clear that the 
reflectance potential is greatest at the third spectral band among the whole growth stages, with the 
exception of the time period from 04.12 to 23.01 in the study year, where the reflectance of the 
soils prevailed. 

 
Fig. 5.21: Spectral reflectance values of irrigated wheat during its growth stages in Arraqqah using the ASTER-bands 

(Source: GORS, 2007) 
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Fig. 5.22 illustrates the change in the spectral response of the irrigated wheat in relation to the 
eight spectral ASTER-bands among the 10 various growth stages. 

 
Fig. 5.22: Spectral reflectance values of ASTER-bands during the different growth stages of the irrigated wheat 

(Source: GORS, 2007) 

After analyzing the various spectral responses of the different winter crops in the study area, the 
appropriate date for separation between the three irrigated major strategic crops (wheat, barley and 
sugar beet) was determined in the first days of May. In addition, sugar beet was found to have an-
other separation date in mid-June, when the other two crops (wheat and barley) were harvested or 
had a dry and yellowish appearance (Fig. 5.23). 

 
Fig. 5.23: NDVI-values of major winter crops during growth stages in Arraqqah Province in Syria (Source: GORS, 

2007) 



Chapter 5: E. The possibility of spectral separation between crops/spectral considerations  
 

114 

Secondly, the spectral results that represent the major summer crops included cotton, corn and 
watermelon. Fig. 5.24 illustrate the spectral response of each crop. The third spectral band of the 
ASTER-sensor had the greatest sensitivity and potential to detect the spectral characteristics of the 
three crops of interest, among the various growth stages, using the first three ASTER-bands. 

 

Fig. 5.24: The relationship between the spectral reflectance and the different growth stages of the three essential sum-
mer crops by the first three spectral bands of ASTER (Source: GORS, 2007) 

Fig. 5.25 represent the effect of the vegetation growth stages on the spectral response of cotton at 
the third ASTER-band. 

 
Fig. 5.25: The relationship between the spectral reflectance and the different growth stages of cotton by the third spec-

tral band of ASTER (Source: GORS, 2007) 

The suggested date of separation and classification of the three summer crops is the period be-
tween 20 July and 20 August (Fig. 5.26). Fig. 5.27 illustrate the different spectral responses of 
these major crops. 
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Fig. 5.26: Temporal- and spectral- separability of cotton, corn and watermelon by the third spectral band of ASTER 

(Source: GORS, 2007) 

 
Fig. 5.27: The spectral response of cotton, corn and watermelon during the suggested dates to recognize these summer 

crops in the spectral range (350-2500) Nanometer (Source: GORS, 2007) 

These results are compatible with both ASTER-data and LANDSAT-data, and it is possible to 
generalize them with other remotely sensed data that operates especially in the visible and the near 
infra-red spectral ranges (GORS, 2007). 

1. The phenological case of the different crops/the agricultural calendar 

With the use of remote sensing to separate the agricultural crops, the spatial dimension of land 
uses were obtained but the problem remained of identifying of the crops spectrally, particularly 
those whose spectral behavior was similar in the date of access to the remotely sensed data (e.g., 
wheat and barley). To overcome this latter problem, good knowledge of the study area was re-
quired in terms of types of crops that were cultivated, growth stages, the dates of propagation and 
harvest (agricultural calendar), and the type of farming prevailing, whether irrigated 
crops/plantations, rain-fed, or mixed. 
"Agricultural crops have rapid changes in spectral characteristics at various times in the growing 
season. For example, at the beginning of May, wheat planted in the ERB presents a green canopy 
of vegetation to the remote sensor, but by late May, the same wheat will be golden brown and 
nearing maturity. Two weeks later between mid and late June, the crop will have been harvested 
and one will see only the highly reflective yellow straw. Sometimes, when there has been no till-
age or another crop has been planted, many weeds and green vegetation will be mixed in with the 
straw, which could be observed as grazed pasture or perhaps hay. Therefore, it is very important to 
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understand the rapid seasonal changes of the crops or other Earth surface features of interest (espe-
cially natural vegetation). To this end, crop calendars can be developed for any particular geo-
graphic area. Crop calendars describe the general characteristics of the different crops types as a 
function of the time of year and the geographic location. They can vary from one year to the next, 
depending on the various conditions such as extreme weather events of that particular year. Final-
ly, crop calendars should be developed more effectively in areas of the world where seasonal 
changes are distinct" (Hoffer, 1980). 

Crop phenology (regular information on the growth cycle of crops) is important in the monitoring 
and classification of land use, where it can have a significant effect on the accuracies of crop yield 
and acreage change. It controls the temporal changes observed from remotely sensed data. The 
integration of space and time represent crop growth in remote sensing. Therefore, crop phenology 
contributes to the understanding and monitoring (e.g., spectral measurements) of crop type reor-
ganization and area measurement. Different crops (wheat, barley, sugar beet, cotton, corn, etc.) 
have a clear and unmistakable spectral response exhibit and period of maximum greenness. This 
information or phenology can be used in the classification process to accurately discriminate vege-
tation classes (Hoffer, 1980). 
Phenological knowledge (beside the spectral measurements) plays a critical role in determining 
optimal acquisition dates for the selection of the remotely sensed data for agricultural monitoring 
and classification. For example, wheat can be easily recognized from other crops and vegetation 
because of its greater Greenup (Greenup is the date of onset of photosynthetic activity), that occurs 
earlier than for other crops. Crop phenology is generally divided into: "1) vegetative stage: is 
largely defined by the part of the growth cycle where the crop develops and grows, starting emer-
gence to tasseling; and 2) reproductive stage: starts at anthesis and ends after maturity. For dry-
land crops, several transitions are important in terms of management: emergence, tasseling and 
initiation of senescence" (Chen et al., 2008). 

2. The size of the agriculture holdings and methods of water supply/spatial considera-
tions/spatial aspects of spectral response patterns 

The questions related to spatial characteristics of the used data are: how much is the size area con-
cerned? is it sufficient to classify only a sample of all the data, or is it necessary to classify the all 
data for the whole coverage of the study area? what format of results is needed (maps and/or ta-
bles)? if the needed format is a map as a final product, then what scale and level of accuracy is 
needed? what are the spatial characteristics of the agricultural features in comparison to the char-
acteristics of the used remotely sensed data (Hoffer, 1980)? And finally, what are the spatial as-
pects of the spectral response patterns? 

Geographic variability of various categories or crop species of interest is another aspect of spatial 
variability of spectral signatures. Namely, the same crop species does not have the same spectral 
response pattern in all geographic locations on any one date. For example, barley may be harvested 
in east Syria at the beginning of May when it has reached maturity, but has not yet been harvested 
in west Syria, and perhaps is still immature and green in southern east Syria. Based on the spectral 
(signature) concept, it is impossible to define a single spectral response pattern that will be appli-
cable for the same crop species in all geographic areas at any one time. Geographic variability of 
agricultural crops includes another related aspect, since not all crop species are found in all geo-
graphic locations. Therefore, knowledge of the location from which remote sensor data was ob-
tained can prove useful in attempting to identify a particular crop species, even though the spectral 
response pattern of that crop may not be well known at that time of the year because of lack of 
ground truth data. For example, when data from east Syria is analyzed, it could be concluded that 
the particular spectral response patterns would be essentially wheat, barley, cotton and corn, and 
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not, for example, tobacco, which does not grow in the area to a large extent. Instead, tobacco is 
planted widely in the west near the Mediterranean Sea. 

Three methods of water withdrawal at present dominated for irrigation the agriculture features in 
the Euphrates Basin: A) floodplain irrigation (small holdings, not organized geometrically); B) 
canal irrigation/farmers (small up to big holdings, semi-organized geometrically); and C) canal 
irrigation/state (medium up to very big holdings, full organized geometrically) (Fig. 5.28). 

 
Fig. 5.28: Schematic diagrams of the spatial characteristics of the irrigated agricultural areas in the study area, ERB. 

A: Floodplain; B: Canal irrigation (Farmers); and C: Canal irrigation (State) 

3. The choice of the most appropriate time to obtain satellite images/temporal considera-
tions/spatial aspects of spectral response patterns 

The questions related to temporal characteristics of the used data are: how much of the remotely 
sensed data has to be obtained at a certain time? what time or times of the year are more suitable 
(or required) for obtaining these remotely sensed data? are there particular daytime considerations 
that have to be involved during the obtaining of data (Hoffer, 1980)? and, what are the spatial as-
pects of the spectral response patterns? 

Image acquisition date selection is essential for successful classification of many vegetation co-
vers, especially agricultural crops (Rundquist et al., 2002). 

The study of LULC using remotely sensed data faces the problem of the selection of the date in 
which the image was captured, i.e., the year and the month. This selection is decisive with regard 
to the information which researchers receive. Most of the irrigation projects discussed in this study 
were located within the five agriculturally stable zones in Syria, which receive insufficient precipi-
tation to establish a rain-fed agriculture. Therefore, the majority of cultivated areas are irrigated 
either in winter or in summer. The agricultural cycle of both winter and summer crops ends in May 
and August, respectively. This means the spectral differences reach their maximum point of clarity 
at this time, despite different patterns of land use. For remote sensing based studies, the time of 
year of the image capture is an important factor, because of the density of vegetation, both natural 
and cultivated. This depends on many factors, notably the amount of precipitation that changes 
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from year to year; and human factors, such as the use of fertilizers, which lead to changes in the 
characteristics of spectral reflectance/response of a specific crop. For example, the spectral re-
sponse of fertilized wheat will differ from a field of the same crop which is unfertilized. The use of 
fertilizers where insufficient water exists will lead to early yellowing of the crops. 

Generally, worldwide, the best date range for identifying winter wheat is late March through to 
early May, when the crop is at peak greenness. To identify corn and other summer crops, the best 
date range is late July to mid-August. The most important and best way to choose an appropriate 
time for remotely sensed data is to study the growth stages of each type of vegetation and the spec-
tral change in its behavior during the months of growth, through field work and the use of spectral 
reflectance measurement devices (Spectrometer) (see C5.E). As a result of these measurements, 
the growth periods of a variety of crops and the differences in their spectral reflections can be de-
termined. 

The results of the spectrometry readings taken for the purposes of this study are outlined in C5.E. 
When comparing the spectral reflectance curves of the studied summer crops (cotton, and corn), it 
was found that the best spectral region for the separation of crops was the near infrared domain. 
Under the conditions of the project area, the best period to distinguish these differences was found 
to be the period between July 20 and August 20. Based on previous results, it was recommended 
that the satellite imagery for the study area was brought with the same referred date to use in esti-
mating crop area of summer crops. The best spectral range for the separation of winter crops 
(wheat, barley and sugar beet) was also found to be the near infrared domain. The best period to 
distinguish these crops was found to be during the month of May (GORS, 2008). 

"There are more short-term temporal variations in the spectral responses of agricultural crops and 
other ground surface features, such as differences in spectral behavior at different times of the day 
or night. Differences in the angle of the sun cause variations in atmospheric damping. Sometimes, 
vegetation that is not under moisture stress early in the morning will show severe symptoms of this 
later in the day" (Hoffer, 1980). "Researchers have also found the problem of temporal definition 
of a particular cover type of interest, for example, the use of remotely sensed data to classify corn. 
At what stage of growth do you define a particular agricultural field as being corn?; do you call 
field (X) a field of corn after it has been planted or after emergence, or when the corn-stems are 15 
cm high?; or is it not until the corn covers 25 % of the ground surface?; or indeed 50 %?" (Hoffer, 
1980). 

4. Choice of the most appropriate bands composite of the satellite images 

The optimal selection of spectral bands for classification was broadly discussed in a variety of lit-
erature (Mausel et al., 1990; Landgrebe, 2003; Jensen, 2007). There are two general kinds of tech-
niques: 1) graphic analysis (e.g., bar graph spectral plots, co-spectral mean vector plots, two-
dimensional feature space plot, and ellipse plots); and 2) statistical methods (e.g., average diver-
gence, transformed divergence, Bhattacharyya distance, Jeffreys-Matusita distance). They were 
both applied to find an optimal subset of spectral bands (Jensen, 2007). 

Generally, it may appear that three spectral bands may be more suitable than two, as more infor-
mation is offered. Also, data that have a broader radiometry field may provide improved results, 
since some of the problems related to parametric models are avoided, whose support significantly 
falls outside of the data domain. However, by using three spectral bands instead of two with 
broader data domain instead of the standard one, classification and estimation may in fact be much 
slower. 

"Classification accuracy does not increase linearly, or even increase at all, as the number of spec-
tral bands used is increased" (Hoffer, 1980). However, this is not true for the spectral separability 
of crops or other Earth surface features, which increases steadily as the spectral bands increased. 
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F. Training samples: Selection, analysis and evaluation 

The most important factor in selecting training sites for supervised classification is that all the var-
iability within classes is representative. Only a few sites will be required in some homogeneous 
classes, and more sites in classes with high variability. A general concept offered by Jensen 
(2007), is that in developing training statistics, it is necessary to select a number of pixels in each 
class that is at least 10 times greater than the number of bands used during the classification pro-
cess. For example, we need at least 40 training pixels for each class if we used four spectral bands 
of LANDSAT-MSS data. This is enough to allow good computations of variance–covariance ma-
trices, which are usually carried out with classification software. Related to size of sample sites, it 
is noted that "as sites grow larger than 10 pixels, there may be no new information added. There-
fore, it would be better to have six sites of 10 pixels in each class rather than one training site of 60 
pixels" (Schowengerdt, 2007). 

In order to classify the remotely sensed data into classes, the classification algorithm needs to be 
trained to distinguish one class from another. Representative homogeneous class sites are known 
as prototypes, exemplars or training samples. After the classifier is trained to statistically analyze 
to “distinguish” the different classes represented by the training sites, the “rules” that were devel-
oped during the phase of training are utilized to label all pixels in the image to their “in real world” 
classes (Schowengerdt, 2007). 

A large enough number of training samples and their ability of representativeness are significant 
for image classifications (Hubert-Moy et al., 2001; Chen & Stow, 2002; Landgrebe, 2003; Mather, 
2004). When the biophysical structure of the study area is complex and heterogeneous, selecting 
enough training samples will be difficult. This problem would be greater if medium or coarse spa-
tial resolution data were used for classification, because a large number of mixed pixels may oc-
cur. Therefore, the selection of training samples must consider the three standards: 1) the spatial 
resolution of the available remote sensing imagery; 2) availability of ground truth data; and 3) the 
complexity of the biophysical structure in the study area (Lu & Weng, 2007). 

Training samples are usually collected from fieldwork/in-situ, fine spatial resolution aerial photo-
graphs and satellite images/in-image, recently from Google Earth, etc. Different gathering strate-
gies, such as single pixel, seed and polygon, can be used, but they can influence classification re-
sults and accuracy (Chen & Stow 2002). 

Care must be taken to collect representative and non-auto-correlated training samples. The prob-
lem in spatial autocorrelation occurring in remote sensing data is that pixels in the image should 
not be considered as fully discrete features independent of their juxtaposition, but rather a set of 
continuous features influenced by their neighbors (Campbell, 1981). This exists among pixels that 
are neighboring (e.g., neighboring pixels have a high chance to have alike brightness values), 
which can cause a decrease in variance between neighboring pixels (Campbell, 1981). This de-
crease in variance can make large masses of neighboring training pixels less representative of a 
particular LULC-class in the entire image; in contrast, the use of several single-pixel training sam-
ples that are situated spatially separately from each other can result in better classifications than 
large masses (polygons) of neighboring training pixels (Cambell, 1981; Medhavy et al., 1993). 
Therefore, if such care is taken, classification results for LULC-types (especially for crop recogni-
tion, since they have, generally speaking, a relatively small spatial distributions/fields) can be 
more effective. 

Google Earth (http://earth.google.com/) contains ever more wide-ranging coverage of the globe at 
very high spatial resolution 0.61-4 m, allowing the user to zoom into particular areas to get great 
detail. Google Earth data were used in this study for: 1) identification and labeling the broadly 
general classes (e.g., water surfaces) and some sub-classes (e.g., trees, since they change slowly 
over the time); 2) help in drawing the out-borders of the irrigated projects; and 3) assistance in 
assessing the classification accuracy (especially for general classes). 
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Ground-reference data were compiled from ICARDA for the remotely sensed data obtained in the 
year 1987, from GORS for the remotely sensed data coverage for 2005, and from the two excur-
sions carried out in the years 2007 and 2009. Parts of these ground truth data were used in the gen-
eration of training samples and others were used for accuracy assessment at the end of the classifi-
cation. 

Several measures of class separability have been suggested as way to isolate optimal or near-
optimal subsets of features for use with classification algorithms. Swain (1978) found three ap-
proaches: divergence; Jeffries-Matusita distance; and transformed divergence. The general concept 
is that the used approach can make a quality measure of the discrimination ratio of a group of 
spectral features, when achieved over all classes. By comparing between all the achievable combi-
nations of subsets of the spectral features (e.g., which three out of nine available spectral bands), 
the one that presents the highest quality metric can be used. Only the reduced subset of spectral 
bands is then used in the overall image classification process. 

A potential problem is that if one combination of spectral bands creates classes with a large diver-
gence values for some classes and small values for other classes, and a second creates a small di-
vergence values for all classes, which represents a better overall pair-wise selection of features. 
This suggests that increasing the pair-wise divergence has a decreasing return (Schott, 2007). 
Swain (1978) invented the Jeffries-Matusita distance to overcome this problem, but it had the dis-
advantage of time-consuming computing. A more commonly used heuristic approach is the trans-
formed divergence that has the mathematical statement: 

  

"This has the characteristic of exponential saturation of the divergence measure and scales the 
transformed divergence over the range 0 to 2" (Schott, 2007). Mausel et al. (1990), in assessing 
separability measures, used the scaling factor of 2000 rather than 2 that gave larger additions for 
differences between small divergence values (Schott, 2007). 

For example, when classifying agricultural crops, it is important to train not only the crop classes 
of interest but also the other classes of no interest such as urban, bare areas, water, etc. if they oc-
cur in the region. Similarly, when we focus on a few existing crops (e.g., wheat, barley, and sugar 
beet), we also have to classify all other crops (e.g., lentil, cumin, etc.) and list them under “other 
crops”, for example. Failure in the training phase generally results in cases of the untrained classes 
being commissioned. This means that the analyst must spend considerable time and effort in train-
ing the classes of no interest. 

Training samples selection also depends on many factors which affect classification results and 
their accuracy. They are, according to Foody et al. (2006): 1) number of training sites for each 
category; 2) method of sampling (random or systematic sampling); 3) source of the used data for 
labeling training sites (ground data, air photographs, etc); and 4) timing of data collection. 

Several authors have proven that good separability values between the LULC-features to be classi-
fied will improve classification accuracy, because there is no narrow relation between the average 
transformed divergence for a feature set and the accuracy reached during classification (Gong et 
al., 1992; Chen et al., 2004 b). The reason is because the separability measures are usually calcu-
lated only from the training sites. Therefore, these measures cannot predict the exact classification 
accuracy for classified LULC-features in the whole image, if the training sites are not fully repre-
sentative for all spectral ground surface feature variations in the remotely sensed image, including 
areas of potential edge effects. In general, a specified value of an obtained separability measure 
can estimate a certain range of possible classification accuracies for the examined training sites 
(Landgrebe, 2003). 

The training sites were chosen in a way to give the broadest possible range that can represent all, 
or almost all, existing LULC-categories (especially crops) spatially and spectrally. Crop fields 
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with various planted and fallow areas (on light soil, on dark soil, etc.) were visited. The size of the 
training areas was chosen to be at least 50*50 meters, since some studies have concluded that this 
is a suitable size for training sites in semi-arid areas (Olsson, 1985; Wellens, 1997). Larger train-
ing sites were selected, when it was possible, in order to reduce the effect of possible technical 
geometrical noise in satellite data and GPS-data. Homogeneous agricultural fields smaller than 
about 100*100 m were excluded, while they were too small in contrast to LANDSAT-pixels of 
30*30 m. The training site plots were taken in the centre of the homogeneous area. The GPS-
measurements were taken twice in the middle of the field in order to obtain a mean value and re-
duce possible noise related to the GPS-type. 

 
Fig. 5.29: The small and very small crops fields on the Euphrates River banks near Deir Azzour in July 2009 

The size of samples also has a great importance, together with distribution, for providing repre-
sentative training sites. Justice et al. (1981) recommended that the using of a model that takes ad-
vantage of using the characteristics of the spatial image to define the size of a training site. The 
suggested model can approximate the size of any sample quadrant as a function of the pixel size 
and the predicted geometric accuracy of the images. 

L = P(1+ 2 G) , Or: A = P(1+ 2G)² ; where: (L: length of any side, A: area to be sampled, P: pixel 
size, and G: geometric accuracy of the image). 

Accordingly, using TM or ETM+ images with 1-pixel geometric accuracy, the size of the training 
site will be 0.81 hectare, the equivalent to a 3*3 pixel kernel area. 

Generally, two procedures were used: 1) ground truth data based approach: here, the agricultural 
crops to be classified were defined in addition to some of their attributes (e.g., statistical records, 
agricultural calendar, etc.). Of key interest were the strategic crops, such as the winter crops of 
wheat, barley, and sugar beet, and the summer crops of cotton and corn. Random GPS-
measurements were then taken at the study area and other historical agricultural information was 
obtained from local farmers in Aleppo in the Upper-Euphrates and in Deir Azzour in the Lower 
Euphrates Basin. The training sites were analyzed statistically using the two spectral separability 
measurements (Jeffries-Matusita and Transformed Divergence) to determine how the used remote-
ly sensed data would be able to distinguish the interested classes (spectrally) on average. Accord-
ing to PCI-Geomatics (2001) and Richards and Jia, (2003), measurements < 1,000 = very bad 
spectral separability; 1,000 < measurements < 1,900 = limited separability; and measurements > 
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1,900 = very good spectral separability. The majority of the training sites satisfied the last consid-
eration; and 2) satellite image based approach: this approach in gathering the training sites was 
based on visual interpretation, using the background of the interpreter about the study area. This 
approach was used only for gathering the representative training sites for the five general LULC-
classes. It was also possible to select the training samples for the agricultural class (trees, especial-
ly Poplar) from Google Earth visually by shadows that appear clearly. This method was used to 
confirm the measurements/or choice based on the statistical records for the year 1987, (see C5.J) 
for the training sites of some crops. Other remotely sensed images were only used visually without 
processing. For this purpose, if some fields appear black/burned on an image recorded in August 
for example, this would indicate it was a wheat field. Sugar beet appeared on the July images as 
green in contrast to wheat, which once harvested, appeared as burned/black, straw/yellow, or till-
aged/light- or dark- brown. Table 5.3 gives an overview about the used training samples in the 
supervised classification. 

Table 5.3: Variations, source, and date used training samples in the supervised classification process 
Classes 1975 1987 2005 2007 
Cultivated and man-
aged areas 

Visual interpretation Visual interpretation Visual interpretation Visual interpretation 

Trees  Topographic Maps Google Earth Google Earth 
Herbaceous (Permanent- 
and winter- 
crops/Irrigated): 

N.C. (Not Classified) N.C. N.C. N.C. 

Alfalfa N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

N.C. N.C. 

Vetch N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

N.C. N.C. 

Wheat N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Barley N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Sugar beet N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Other crops N.C. ICARDA-points, and visual 
interpretation 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Rain-fed crops N.C. Visual interpretation N.C. N.C. 
Fallow N.C. Visual interpretation Visual interpretation Visual interpretation 
Herbaceous (Summer 
crops/Irrigated): 

N.C. N.C. N.C. N.C. 

Cotton N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Corn N.C. ICARDA-points, statistical 
records, and detailed 
schemes 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Other crops N.C. ICARDA-points, and visual 
interpretation 

GORS-points, and visual 
interpretation for multi-
temporal images in this 
year 

Field work, and visual 
interpretation for 
multi-temporal imag-
es in this year 

Fallow N.C. Visual interpretation Visual interpretation Visual interpretation 
Natural Vegetation Visual interpretation Visual interpretation Visual interpretation Visual interpretation 
Artificial Surfaces Visual interpretation Visual interpretation Visual interpretation Visual interpretation 
Bare areas Visual interpretation Visual interpretation Visual interpretation Visual interpretation 
Natural Water-bodies Visual interpretation Visual interpretation Visual interpretation Visual interpretation 
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It was impossible to obtain training samples for the study area based on accurate remotely sensed 
data for 1975 and partially for 1987, as no remote sensing based research had been carried out in 
this area. This is one disadvantage of using the historical data, where one cannot make any field-
work and gather ground truth data. However, there is the essential advantage in the provision of 
initial information about the study area, with which to compare to the present. It was not necessary 
to obtain ground truth for the remotely sensed data of LANDSAT-MSS-1975, because classifica-
tion can only be done in the broad general classes in the study area, as they have poor spectral and 
spatial resolution. Therefore, it was easy to collect the represented training samples and the accu-
racy (testing) data, from the remotely sensed data itself using visual interpretation. The ground 
truth data for LANDSAT-TM-1987 were found by ICARDA, but were insufficient. Attempts were 
made to increase the potential of these truth data by taking advantage of integrating the remotely 
sensed data, the historical statistical records and the detailed spatial schemes of the various irriga-
tion projects (see C5.J). 

Twenty GPS points were collected for each class of land use and natural coverage. These points 
were collected along the study area in fields with almost 300 * 300 m dimensions to ensure the 
survival of location points in case technology related errors occurred which would affect the accu-
racy of the measurements. Photographic images were taken for several GPS-points to provide ad-
ditional descriptive information about land uses, in which reference points exist, such as plants’ 
density, length and phenological cases (when the land use/land cover is agriculture or natural vege-
tation). As regards to some land use and natural lands such as airports, constructions areas, rivers 
and lakes, it was easy to find reference points using the satellite images themselves, topographic 
maps or Google Earth. Hence, the majority of reference points represent the more detailed crops 
types falling under the more general class of cultivated areas. 

Spectral signature generation, analyses and evaluation were processed iteratively. As a result, 
many signature files were produced due to the two classification approaches (One- and Multi- 
stage classification), and multi-temporal remotely sensed data (over many months and years) used 
in the study. Some results of spectral separability based on transformed divergence were presented. 
The presented training sites here were those used especially in the training study area (see C5.G), 
and for which the optimized classification algorithms MLC, NN, SVM were chosen. 

Table 5.4, Table 5.5, Fig. 5.30, and  

Fig. 5.31 illustrate the increase of spectral separability in relation to the spectral bands used, and 
give an illustrated example of how spectral separability was calculated quantitatively. 

Table 5.4: The spectral separability of the training samples related to ASTER-data (3 spectral bands, 15 m) 
Pair Separation 
(least to most) FW SW AS BA F NW NH TR TI WR WI BR BI PI 
Fresh Water  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Saline Water 2000  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Artificial Surfaces 2000 2000  2000 2000 1999 2000 2000 2000 2000 2000 2000 2000 2000 
Bare Areas 2000 2000 2000  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Fallow 1999 2000 1991 1924  2000 1999 2000 1999 2000 2000 1968 2000 2000 
Natural Woody 2000 2000 1996 2000 1899  2000 2000 1999 2000 2000 1999 2000 2000 
Natural Herbaceous 1978 1999 1984 1963 1054 1847  2000 1999 2000 2000 2000 2000 2000 
Trees-Rainfed 1999 2000 1995 1926 0836 1834 0613  2000 2000 2000 2000 2000 2000 
Trees-Irrigated 2000 2000 1988 2000 1773 1483 1342 1399  2000 2000 2000 2000 2000 
Wheat-Rainfed 2000 2000 1989 2000 1992 1828 1524 1894 1675  2000 2000 1999 1998 
Wheat-Irrigated 2000 2000 1976 2000 1975 1793 1669 1848 1383 0718  2000 1999 1979 
Barley-Rainfed 2000 2000 1998 2000 2000 1999 1202 1652 1866 1986 1997  2000 2000 
Barley-Irrigated 2000 2000 1974 2000 1973 1902 1614 1831 1203 1532 1514 1962  2000 
Pastoral-Irrigated 2000 2000 1994 2000 1999 1969 1753 1977 1967 1000 0878 1999 1957  
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Table 5.5: The spectral separability of the training samples related to fused ASTER-data with LANDSAT-ETM+- data 
(6 spectral bands, 15 m) 

Pair Separation 
(least to most) FW SW AS BA F NW NH TR TI WR WI BR BI PI 
Fresh Water  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Saline Water 2000  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Artificial Surfaces 2000 2000  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Bare Areas 2000 2000 2000  2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 
Fallow 2000 2000 2000 2000  2000 2000 2000 2000 2000 2000 2000 2000 2000 
Natural Woody 2000 2000 2000 2000 2000  2000 2000 2000 2000 2000 2000 2000 2000 
Natural Herbaceous 2000 2000 2000 2000 2000 2000  2000 2000 2000 2000 2000 2000 2000 
Trees-Rainfed 2000 2000 2000 2000 1934 2000 2000  2000 2000 2000 2000 2000 2000 
Trees-Irrigated 2000 2000 2000 2000 2000 1997 2000 2000  2000 2000 2000 2000 2000 
Wheat-Rainfed 2000 2000 2000 2000 2000 2000 1996 2000 2000  1974 2000 2000 2000 
Wheat-Irrigated 2000 2000 2000 2000 2000 2000 2000 1985 2000 1776  2000 2000 1989 
Barley-Rainfed 2000 2000 2000 2000 2000 2000 1994 2000 2000 2000 2000  2000 2000 
Barley-Irrigated 2000 2000 2000 2000 2000 2000 1992 1986 2000 2000 1915 2000  2000 
Pastoral-Irrigated 2000 2000 2000 2000 2000 2000 2000 2000 2000 1962 1835 2000 2000  

 
The resulting training samples for all classes were checked for normal distribution of their digital 
numbers in the remotely sensed data multispectral bands. Where the training samples’ statistical 
characteristics differed from normal distributions (e.g., bimodal distributions), various classifica-
tion algorithms and approaches were experimented with to improve the relation of the classes and 
the characteristics of the study area (geographical, location and its related effects on other sub-
characteristics such as climate). 

 
Fig. 5.30: Spectral class signatures (band means) related to ASTER data (3 spectral bands, 15 m) 
 

 
 

Fig. 5.31: Spectral class signatures (band means) related to fused ASTER data with LANDSAT-ETM+ data (6 spectral 
bands, 15 m) 
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The incapability of actual representation of the studied area regarding the accuracy ratio of auto-
mated classification and the ROIs-separability ratio among various classes of interest to be classi-
fied, can be put down to several reasons, including: the interaction among classes of land uses and 
the natural coverage distribution; and the lack of concrete borders to separate them. There were 
two factors affecting and complicating this: The geographical location of the study area; and na-
ture and type of classes of LULC, which was affected generally by the geographical location. 

Another important reason is that the selection of the training sites is not completely an objective 
process, affected by the person who selects and trains the sites. When a researcher selects the train-
ing samples, they do so because they consider them fit, appropriate and representative to the 
LULC in the study area. The training process may not include all areas and classes in a study area 
(especially within the same class); for instance, there are several kinds of wheat (hard and soft), 
some are rain-fed and some irrigated, some are located on dark humid soils, while others are on 
light and less moisture-rich soils, some have organic and chemical fertilizers added, while others 
grow in different quantities; some wheat-fields may be peppered with natural herbs and plants that 
grow within the wheat plants, while other fields have homogeneous growth of only wheat plants; 
and finally, some wheat-fields may be infected with disease. Wherever these differences are relat-
ed to one class (i.e., wheat) this will make spectral and spatial discrimination between wheat and 
other crops difficult. Each difference (or more collected differences) leads to various spectral ap-
pearances on the satellite image. Therefore, the analyst has to gather training samples that satisfy 
the entire different spectral responses of the crop especially if there are natural or agricultural 
crops in the area with a similar spectral response. 

G. The choice and evaluation of the optimized method of automated classification 

A comparative study of different remotely sensed data classification algorithms is often conducted 
to find the optimized classification result for a specific study (Lu & Weng, 2007). 
Many considerations, such as: spatial resolution of the remotely sensed data (how many meters?); 
spectral resolution (how many bands?); different sources of data (which sensors?); a classification 
system (which scheme?); and training samples (which statistical distribution?), must be taken into 
account when selecting a classification algorithm for use. Each algorithm has its merits and defi-
cits. Therefore, the question of which classification algorithm is more suitable for a specific study 
in a specific area is not easy to answer. Also, different classification results could be obtained de-
pending on the classifier(s) chosen. 

Experiments were conducted on the testing study area to determine the suitable algorithm to use on 
the entire ERB study area. The supervised classification algorithms tested were: MLC: Maximum 
Likelihood Classifier, NN: Neural Network, and SVM: Support Vector Machine (Fig. 5.32). Two 
classification procedures were also applied: 1) one stage classification approach; and 2) multi stage 
classification approach, to produce land cover maps. 

To compare and judge the different classification algorithms results, we have to, as far as possible, 
exclude the influence of interfering factors. Therefore, while this is a comparative study, a wider 
choice in the same training samples (size, number, location, etc.) in each studied year and for all 
remotely sensed data, and for all compared classification algorithms, would be useful. This would 
not be applicable when using the masking operation used in the multi stage classification ap-
proach. 

1 The test area 

The four administrative areas of Menbij, Ein Eisa, Al-Journia and Athawra were selected as testing 
areas (sub-study-area) for applying various automated supervised classification approaches and 
algorithms. These sites were adopted as they contained the majority of natural coverage forms and 
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land uses which exist among the entire ERB area. These areas were also sited within range of the 
agricultural stabilization zones in the basin and contained a number of irrigated projects. Finally, 
the sites were distributed in only one scene of the LANDSAT-data, which satisfied the homoge-
neity in spectral and radiometric characteristics. The result: this testing area was considered as 
representative to the whole basin area from the perspective of natural and climatic characteristics, 
distribution of natural coverage and land uses. Therefore, any outcomes resulting from the sub-
study-area could be adopted, generalized and applied to the whole Basin. 

 

 
Fig. 5.32: The spatial extent of the four administrative regions (Athawra, Al-Jurnia, Ain Eysa and Menbij) 

1.1.Unsupervised classification 

The migrating means (or ISODATA, or nearest mean) algorithm (Ball & Hall, 1965), is the most 
commonly used algorithm in unsupervised classification approaches. It frequently executes a com-
plete classification process; recalculates statistics; uses lowest spectral distance method (reducing 
the value of the function is the average Euclidean distance between each sample point and the 
matching cluster mean) repeatedly to classify the pixels; and re-specifies the rules of each LULC-
class or candidate pixel (iterative processes). Intuitively, the calculated minimized value of the 
average Euclidean distance is equal to creating sphere-shaped clusters with little difference or dis-
persity. There is no logical technique for creating clusters that minimize the value of the average 
Euclidean distance. Therefore, the data will be continuously classified until either a maximum 
number of iterations have been executed or a maximum percentage of unchanged pixels have been 
achieved between two iterations (Ball & Hall, 1965; Leica Geosystems, 2005; Jensen, 2005). The 
process starts with an identified number of random cluster means or the means of existing signa-
tures, and then it processes iteratively, so that those means move to the means of the clusters in the 
data. "The ISODATA-classifier filters cluster by splitting (if the cluster standard deviation exceeds 
a predefined value and the number of pixels is twice the threshold for the minimum number of 
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members) and merging (if either the number of members (pixel) in a cluster is less than a certain 
threshold or if the centers of two clusters are closer than a certain threshold)" (Leica Geosystems, 
2005; Jensen, 2007). There are various forms of this technique, but in all of them at least two fac-
tors have to be defined by the analyst: clusters number; and the iterations maximum number (this 
ensures the method will stop if convergence is not achieved). 

This algorithm has several disadvantages. Some of the generated clusters are not important in re-
gard to reality since they represent a mix of different LULC-features or “on the ground” classes. It 
is also not unusual that several spectral classes build one functional class, and it has to be 
remerged. Also, there is a causal relationship between the functionality of this algorithm and the 
ability of the user to identify the number of current spectral classes (Hoffer, 1980). Many of the 
data characteristics that a photo interpreter would use to identify an individual LULC-feature (such 
as: shape, size, texture, shadow, association, etc.) are not used in classification of the data that op-
erated based on the computer digitally (Hoffer, 1980). 

Methods of unsupervised classification have the ability to define the different classes that could be 
presented in the study area before the going to the field. Then, the natural objects that are present-
ed in the remotely sensed data can be identified and linked to the resulting spectral classes of clas-
ses of interest (crops, land cover classes, etc.) (Hoffer, 1980). For this research, the initial thematic 
map generated from this approach helped to identify the features and provide the feel of the study 
area, although the images could not be directly used for other analysis without field-work. 

The ISODATA-algorithm has proved useful as an indicator and guide as it provides an idea of the 
relative stability of each category (McCoy, 2005). The individual data are processed using the un-
supervised ISODATA-algorithm to generate a large number of class assortments. These so-called 
clusters are then supposed to represent classes in the image and are utilized to compute statistics of 
the class signatures. It is helpful to define relatively homogeneous features to be used as training 
sites in the potential supervised classification approach (Schowengerdt, 2007), where pixels that 
always arise jointly in the same cluster are strong and are a very homogeneous category (McCoy, 
2005). 

It was found that the hybrid-procedure integrating ISODATA-clustering with the supervised clas-
sification algorithms such as MLC seemed to be the most satisfactory and effective procedure to 
follow as it simplified the work and produced better results. This was the case mainly in land areas 
with wild habitat where the fields were small, or where the LULC-categories and spectral classes 
were complex (Hoffer, 1980). The classification approach is illustrated in Fig. 5.33. 

 
Fig. 5.33: Integrating the ISODATA-clustering with the supervised classification algorithms in a so-called hybrid-

procedure 
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The parameters for the performance of ISODATA-algorithm were given as follows: Number of 
classes = 25; Maximum iterations = 20; Convergence threshold = 0.98. A thematic raster layer and 
a signature file (identifiable) were created from the ISODATA-clustering. For example, it was 
found that water bodies, bare areas, artificial surfaces and fallow ground could be clearly identified 
using the ISODATA-clustering technique. It gave general information about the spectral mixture 
between the various LULC-features. Mixtures were between built-up areas and dark color-tones 
bare areas; dark color-tones bare areas and fallow on dark soils; light color-tones bare areas and 
fallow on light soils; very dense irrigated trees (especially Poplar) and dark water; and between 
vine and sugar beet. 

1.2. Supervised classification 
 
1.2.1. The multi stage classification approach 

The decision tree classifier is a hierarchically based classification method which compares data 
with a variety of well-chosen features. The selection of these features is controlled by an estima-
tion of the spectral distributions or separability of the classes (Pal & Mather, 2003). There is no 
commonly confirmed formula and each decision tree or set of rules must be constructed by a spe-
cialist. If a decision tree presents just two outputs at each stage, then it will be named a Binary 
Decision Tree Classifier (BDTC). This procedure was applied in many cases due to its flexible 
characteristics. In agriculture applications, the rules of a decision tree are acquired via analyzing 
the specific attributes (understanding the various spectral responses, the agricultural calendar, etc.) 
of different crop types (Chen et al., 2008). Fig. 5.34 and Fig. 5.35 illustrate the steps applied in the 
multi stage classification approach to generating the classification results of the four region study 
area. 
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Fig. 5.34: Illustration the application of multi stage classification approach (chain-steps), using MLC-algorithm, on the 
LANDSAT-TM-data of May 2007 with spatial resolution of 30 m 
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Fig. 5.35: The flow-chart of the applied multi stage classification approach in this study  
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Training sites and testing areas are fulfilled separately and compared to satellite images for each 
classification algorithm after applying the masking-process. This is done because, for example, the 
mask that represents the distribution of the irrigated agriculture (separation and classification of 
the irrigated agriculture areas and the rain-fed agriculture areas) using the MLC-algorithm covers 
areas differing from those areas covered by the same mask. This results from using the SVM-
algorithm in the classification process. 

After finishing the multi stage hierarchal classification, various classes resulting from each stage 
are collected and fused in one scene that represents the LULC in the study area using ENVI-
program (band-math), or the ArcGIS-software (Fig. 5.36). 

 
Fig. 5.36: Combine the 14-class illustrated in the previous figure in one thematic map, using ArcGIS-software to sum 

the individual thematic results, and LCCS-software to prepare the legend 

Obtaining 100 %, 90 % or other percentages reflecting accuracy and quality of automated classifi-
cation (or the semi-automated classification), does not necessarily mean that the percentage com-
pletely represents land use distribution or the prevalence of natural coverage on real ground. The 
accuracy percentage of 100 % obtained from the classification of primarily vegetated areas and 
non-primarily vegetated areas does not mean that the entire area contains the same percentage of 
classification. Of the primarily vegetated areas (e.g., 100,000 ha) perhaps 1,000 ha are primarily 
non-vegetated areas. This error/s in classification would then be repeated in each step or stage of 
the multi stage classification approach. This means that the primarily vegetated areas class might 
appear under classification of the components of the second level (i.e., the second terrestrial and 
aquatic level underlying under the first primarily non-vegetated areas level) within the used classi-
fication scheme (i.e., LCCS), although it should have been classified and separated into the first 
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level. Therefore, the LCCS-principle of classification should be strictly adhered to, that is separa-
tion between classes in every level and every stage in classification system. Here the primarily 
vegetated areas, (for example the 1,000 ha that had been classified incorrectly under the primarily 
non-vegetated areas class) will during the automated classification process, be automatically fused 
with classes within the second general level (i.e., primarily non-vegetated areas), thus creating 
accumulated error/s in the classification process. 

Part of the resolution of this problem is to re-classify the wrongly-classified areas when moving to 
the next stage or level of classification, as long as there are lands representing the wrong classified 
class within the various levels of the multi stage hierarchical classification approach. When we 
return to the example of the 1,000 ha, which were classified as non-vegetated areas and consider 
this at the second level of classification, instead of training sites that represent only the two classes 
of this level (i.e., terrestrial and aquatic), extra training sites will be selected that represent the 
1,000 ha area/s. If this 1,000 ha were completely separated and classified within the second level, 
it will be appropriate. Otherwise, if a further part of this area, such as 100 ha would appear within 
the next level, again additional training sites would be trained to represent this class in the classifi-
cation process. 

1.2.2. MLC 

The Maximum Likelihood Classifier (MLC) has been employed since the late 1940s. It found in-
creasing investment in the two fields of: pattern recognition; and remote sensing techniques 
(Nilsson, 1965). It is offered in almost all remote sensing and image processing software packages, 
and it is commonly applied as the typical supervised classification approach. It is a widely robust 
supervised classification algorithm, and it is the primary approach for most multi-spectral remote 
sensing interpretations at present (Wessel et al., 2004; Jensen, 2005; Lillisand et al., 2008). Its 
general concept defines the maximum likelihood decision rule, which is the probability that a pixel 
belongs to an individual class (ERDAS, 1999). This classifier is derived from the Bayes-rule in 
which classes have equivalent priorities. It uses the training data gathered during field-work or on 
image itself to calculate the mean vector and variance-covariance matrix for each required class. 
Both means and variances are then employed to assess the probabilities (Jensen, 2005; Leica 
Geosystems, 2005). This algorithm is based on the supposition that the likelihood degree function 
for each class is multivariate, and often a Gaussian distribution is assumed. A pixel is lastly classi-
fied to that class, for which it has the highest probability (Strahler, 1980; Bastin, 1997; Richards & 
Jia, 2003; Lillesand et al., 2008). 

MLC operates (see Fig. 5.37) by using the training-samples-based means and standard deviations 
of individual spectral bands in order to scheme LULC classes as centroids in feature space. These 
centroids are circumscribed by likelihood curves. The likelihood degree function supposes that the 
representative sample values for each presented class are normally distributed (Bastin, 1997). The 
so called Gaussian threshold can border the class space in feature space, which is the radius (in 
standard deviation units) of a hyper-ellipsoid around the mean of the class in feature space (PCI 
Geomatica, 2001). Here, observations which do not locate inside the hyper-ellipsoid of any class 
are allocated to a null class (Strahler, 1980). The necessary number of training samples needed to 
calculate the statistics of a class for a Gaussian (quadratic) classifier is in addition linked to the 
square of features number (Fukunaga, 1990). This presents increase in the Hughes effect: for a 
limited number of training samples, the classification accuracy increases in the beginning with the 
number of features (or difficulty in measurement), but then it attains a maximum and begins to 
decrease when more features are added. It is generally agreed that the class spectral separability is 
constantly higher for data with a superior dimensionality (more measurements), but this superior 
or higher dimensionality impacts and decreases the accuracy of the statistics estimation when the 
dimensionality becomes too high, and in some cases, this has the result of producing a lower clas-
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sification accuracy despite the presented and improved theoretical class separability (Landgrebe, 
2003). Enough training samples for each spectral class of interest must be presented to offer logi-
cal approximations of the elements of the mean vector and the covariance matrix to be determined. 
For an (N) dimensional multi-spectral space, at least (N+1) samples are needed, to avoid the co-
variance matrix being singular. 

 
Fig. 5.37: Maximum Likelihood Classifier (MLC) concept (Source: Modified from: ERDAS IMAGINE®, 1999) 

The strong advantage of the MLC algorithm is its applying for well-developed probability theory. 
If it is true that the class likelihood degree functions are Gaussian, then MLC is the best classifier 
which reduces the overall chance of error (Liu et al., 2002). Benediktsson et al. (1990) noticed that 
even for data which have not got a normal distribution, the MLC produced a better classification 
result, although it has also serious known weaknesses under specific situations. Firstly, if the his-
togram/frequency distribution of the image data does not ensure the normal distribution, the essen-
tial supposition of this classifier is violated and presents poor or confusing results. Secondly, the 
computational cost needed to classify each pixel (data with a large number of spectral bands, or 
data containing many spectral classes to be distinguished) is at issue. The computing cost increases 
in conjunction to the square of the applied features channels (Benediktsson et al., 1990). Thirdly, 
the algorithm works acceptably for relatively low spatial resolution data with a limited number of 
spectral bands, but it may not be acceptable for the high resolution and/or high dimensionality data 
sets, which tend to increase the within-class variability. This means that the volume of feature 
space occupied by each class is extended and increases the risk of class overlap in feature space 
(Qiu & Jensen, 2004). Fourthly, the relationship between sample size and the number of features 
impacts the assessments of mean vector and variance-covariance matrix. Furthermore, inadequate 
ground truth data may present a false assessment of the mean vector and the variance-covariance 
matrix of population (poor classification results). Fifthly, in case of high correlation between two 
spectral bands (LANDSAT-data), or when the training samples used for signature generation are 
not adequately homogeneous, the covariance matrix becomes unstable. This can be overcome 
through the use of other robust statistical method (e.g., PCA) before proceeding to classification 
(Hilderbrandt, 1996; Blaschke, 2000; Richards & Jia, 2003; Albertz, 2009). Sixthly, an inherent 
weakness of MLC is that the subset of features applied in classification is not necessarily to be the 
optimal selection for all classes (Swain & Hauska, 1977). Finally, when auxiliary data is integrated 
into a classification process, the assumptions of MLC cannot be confirmed. 
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There have been a number of researchers who have MLC, such as (Brisco & Brown, 1995; Chust 
et al., 2004; Huang et al., 2007). MLC can be used with multi-source data with separate scales of 
measurement (Arora & Mathur, 2001), while a parametric MLC, which is commonly used for pix-
el-based hard classifications, can be used to segment imagery (e.g., Geneletti & Gorte, 2003) or 
expand to a fuzzy classification idea (e.g., Schowengerdt, 1996). 

1.2.3. ANN 

Humans are good pattern recognizers. This tenet has given researchers in the field of pattern 
recognition the basic concept to examine whether computer systems based on a simplified model 
of the human mind can simulate the real world, and whether better overall accuracies can be given 
compared to traditional statistical approaches. The Artificial Neural Networks (ANN) algorithm is 
an example of these recently advanced methods. It is designed to simulate human learning pro-
cesses through organization and strengthening of passage ways between input data and output da-
ta. Because of the nonparametric structure of the NN-classifiers and while networks are general-
purpose calculating tools that can overcome the complex non-linear problems, the use of NNs for 
classifying remotely sensed data has developed quickly over the past decade Researchers have 
noted that NNs do better than standard statistical classifiers such as MLC (Fischer, 1996; Del Frate 
et al., 2003; Tso & Mather, 2009). NNs have been increasingly used since the 1990s (Franklin, 
1995; Sugumaran, 2001) in field of pattern recognition in general, and in the field of remote sens-
ing analysis and classification in particular. It covers: supervised classification (Benediktsson et 
al., 1990; Hepner et al., 1990; Heerman & Khazenie, 1992; Foody & Arora, 1997); and unsuper-
vised classification (Baraldi & Parmiggiani, 1995; Schaale & Furrer, 1995; Tso, 1997). A broad-
spectrum introduction to neural networks was given by Bishop (1995), while a very good presenta-
tion of applying neural network in classification and its relationship to conventional statistical 
classification was provided by Schürmann (1996). An overview in the context of remote sensing 
has been described by Benediktsson et al. (1990), and Kavzoglu (2001). 

The user-selected parameters affecting the NN-classifier are, according to Kavzoglu (2001): 1) 
learning parameters: the back-propagation learning algorithm needs from the analyst to offer val-
ues of the learning rate and momentum; 2) initial weights: these random settings to the pre-trained 
network affect the network implementation; 3) number of training iterations: this defines the level 
of generalization as contrasting to specialization of the solution. If a network is trained using very 
large number of iterations, it might not work well on the test data. Conversely, if it is not trained 
well enough, it will not be able to separate the classes; 4) number of hidden layers and units: this 
controls the ability of the network to learn and generalize; and 5) number of input patterns: some 
researchers have suggested that classification accuracy is influenced by the number of training 
patterns. 

NNs are based poorly on the data distribution assumptions of examples and on the character of the 
relationship between inputs and outputs (Paola & Showengerdt, 1995 b). This is an advantage that 
makes these algorithms smarter than statistical classifiers, mainly in the case when the size of 
training data is incomplete and sufficient assessment of statistical parameters is hard to achieve 
(Tso & Mather, 2009). Also, different sorces of data can be applied as inputs which are then scaled 
to a general range (typically values between 0 and 1 like the node output values) before training 
and classification. According to Paola and Schowengerdt (1995 b), and Qiu and Jensen (2004), 
ANN-classifiers are strong to noise in the training data and has the ability to generalize. They are 
error-tolerant and relatively insensitive to background noise. 

The drawback of neural networks lies in that they work as a “black box” (Franklin, 1995; Qiu & 
Jensen, 2004), whilst lacking the ability to give details to further the understanding of the relation-
ship between input and output. Because of their indicative structure and the element of random 
variations in the results (due to the randomization of the weights of the connection links before 
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training), functioning prediction and the interpretation of results are not easy. Another drawback is 
that iterative training needs much more computation time than parametric methods (Paola & 
Schowengerdt, 1995 b; Landgrebe, 2003). However, when the network is trained, the classification 
process in this way is rapid (Pal & Pal, 1993). Despite the high cost of training expenses (Foody, 
1999; Lillesand et al., 2008), neural networks have no stable rules for the network design and their 
functionality is influenced by some issues (e.g., the network architecture) (Foody & Arora, 1997), 
which is dependent on the analyst. 

Classification is improved by using hierarchical NN-classifiers and combining the classification 
results of multiple classifiers by a compromise rule (Lee & Ersoy, 2007). It is established that the 
use of a collection of neural networks for LULC-classification of multispectral remotely sensed 
data can give a significant increase in classification accuracy (Canty, 2009). A review and analysis 
of papers published about ANNs before 1994 can be found in Paola and Schowengerdt (1995 b). 
Example applications of ANNs in remote sensing image classification for the period between 1994 
and 2007 are given in Schowengerdt (2007). 

A successful method of classifying remotely sensed data based on different approaches in choos-
ing the networks of ANNs has been referred in many studies (Bagan et al., 2008). E.g., Multi-
Layer Perception MLP (Benediktsson et al., 1990; Zhang & Scofield, 1994; Foody, 1995; 
Rumelhart et al., 1996; Foody, 1999; Arora & Mathur, 2001); ARTMAP (Carpenter et al., 1997; 
Borak & Strahler, 1999; Muchoney et al., 2000; Karen et al., 2003; Alilat  et al., 2006); radial ba-
sis function (Bruzzone & Fernandez-Prieto, 1999); and the SOM-algorithm with Learning Vector 
Quantization (LVQ) (Ito & Omatu, 1999; Ji, 2000). 

ARTMAP-systems, particularly ART2 and fuzzy-ART, can be practical in executing unsupervised 
classification on remotely sensed imagery (Tso & Mather, 2009). An example of applying fuzzy-
ARTMAP was presented by Carpenter et al. (1997), where the results are compared to those creat-
ed by the MLC, nearest neighbor and multilayer perceptron approaches. It confirms that it is faster 
and more constant. The same conclusion is also confirmed by Mannan et al. (1998). Liu et al. 
(2004 b) presented an ARTMAP-based model called ART Mixture MAP (ART-MMAP) for ap-
proximation LULC-fractions within a pixel. Finally, in order to obtain fine results, one might have 
to try a variety of ART model-based parameters (Tso & Mather, 2009). 

The most common NN-classifier in remote sensing is the MLP (the multi-layered feed-forward 
network) (Tso & Mather, 2009). Excellent reviews about experiments using MLP are presented by 
Paola and Schowengerdt (1995 b), Atkinson and Tatnall (1997), and Kanellopoulos and Wilkinson 
(1997). MLP employs the “generalized delta rule”. "At the first stage of training a back-
propagation network, the training sample vectors (with known classes/target outputs) are used as 
input for the network and propagated forward to calculate the output values for each output node. 
The error between the real and preferred output is calculated. In the case where each output node 
represents one class, the preferred output is a high value (e.g., 0.9) for the node of the correct class, 
and a low value (e.g., 0.1) for the other nodes. The second training stage features a backward pass 
from the output nodes through the network, during which the weights are changed according to the 
learning rate and the error signal passed backwards to each node" (Benediktsson et al., 1990). This 
process of inputting the training data (Fig. 5.38), estimating the output error and modifying the 
weights of the connection links is repeated many times (Foody, 2004 a), until some condition is 
satisfied, and if possible until the network has stabilized in order that the changes in error and 
weight per cycle have become very small (iterative training). When the network is trained, i.e. 
suitable weights are found and, all the pixel vectors are fed into the network and classified. 
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Fig. 5.38: The Neural Network Classification Model (Source: Adapted from: 

www.ndt.net/article/v05n07/spanner2/spanner2.htm) 

The produced back-propagation neural network utilizes the “generalized delta rule” during the 
learning stage. The network was trained using the same class training samples which were also 
used in MLC and SVM. The activation type was Logistic; the training threshold contribution was 
0.90; the training rate was set to 0.10; the momentum rate to 0.90; the training RMS-exit-criteria 
was 0.10; the number of hidden layers was 1; and the training cycle (adjustment of weights after 
forward and backward propagation of values through the network) was repeated for a maximum of 
1,000 iterations, or until the maximum normalized total error was less than 0.01, or the maximum 
individual error was less than 0.001. The last two situations did not occur, so the training was al-
ways performed for 1,000 iterations. ("the individual error is the sum of errors in the output values 
for one sample, meaning the difference between target value and output value of each output node. 
The normalized total error is calculated as half the sum of the squares of the individual errors, di-
vided by the number of samples") (PCI Geomatica, 2001). The error plot was then observed to see 
whether the value for the normalized total error had stabilized before the 1,000th iteration. This 
was the case for all classifications performed here, although the total error was still between 0.45 
and 0.52. In a second step, the training and momentum rates were lowered to 0.05 and 0.20 respec-
tively, for a slower, more stable training with smaller step increases for an enhancement of the 
network weights (PCI Geomatica, 2001). 1,000 additional iterations were improved with these 
parameters, resulting in final maximum total errors between 0.39 and 0.46. 

1.2.4. SVM 

The Support Vector Machine (SVM) classification algorithm is based on statistical learning theory 
as proposed by Vapnik and Chervonenkis (1971). It is discussed in detail by Vapnik (1995 and 
1999). The SVM is a newly developed method to train polynomial, radial basis function, or multi-
layer perceptron classifiers. Bennet and Cambell (2000) gave a geometric clarification of how the 
support vector machines functioned (Fig. 5.39). A detailed presentation to the general concept of 
SVMs is provided by Burges (1998), and Schölkopf and Smola (2002). An overview on the appli-
cation in remote sensing is given by Gualtieri and Cromp (1998), Chapelle et al. (2002), Huang et 
al. (2002), Foody and Mathur (2004 a and b), Melgani and Bruzzone (2004), Pal and Mather (2005 
and 2006), and Watanachaturaporn et al. (2006 ). 
SVMs were at first presented as a binary classifier (Vapnik, 1998). The idea is based on fixing an 
Optimal Separating Hyper-plane (OSH) to the training samples of two classes, so the pixels from 
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each tested class are at last on the right side of the hyper-plane. The optimization problem that has 
to be removed is based on the minimization of structural risk. Its goal is to maximize the borders 
between the OSH and the nearest neighboring training samples, the so-called support vectors 
(Vapnik, 1998). Therefore, the model just considers samples nearly from the class boundary and 
operates well with small training samples, even when high dimensional data sets are used in classi-
fication (Melgani & Bruzzone, 2004; Pal & Mather, 2006). Foody and Mathur (2004 b) indicated 
that a complete description of each class is not necessary for an accurate classification. While only 
samples close to the hyper-plane are measured, other training data has no influence on the interpre-
tation. However, a larger number of training samples guarantees the employment of sufficient 
samples (Foody & Mathur, 2004 b). 

In contrast to other classification algorithms (e.g., decision tree), the initial output of a SVM does 
not have the final class label. The outputs include the distances of each pixel to the OSH-plane 
(rule images). These rule images can then be utilized to verify the final class membership that is 
based on the multiclass strategy. This principle is furthermore known as “winner takes all”, where 
only one value (the maximum) is used for choosing the membership. Contrary to these two multi-
case-methods, other approaches directly identify the SVM as one multiclass problem (Sebald & 
Bucklew, 2001; Hsu & Lin, 2002). A simultaneous separation of more than two classes presents a 
more complex optimization problem (Sebald & Bucklew, 2001). Thus, such approaches may be 
less professional in comparison to conventional multiclass approaches. In Melgani and Bruzzone 
(2004) a computationally promising hierarchical tree-based SVM was presented as an alternative 
concept. 

SVMs operate very well with high dimensional data (Watanachaturaporn et al., 2004). Their com-
putational cost does not depend on data dimensionality and they require no feature selection. Thus, 
classification results for multisource data classification from a non-parametric classifier in particu-
lar, is probably better than that received from a parametric classifier, since a non-parametric classi-
fier can solve some of the problems of a stacked vector approach (Watanachaturaporn et al., 2008). 
SVM learning generally requires large memory, a great deal of computation time and small train-
ing sets (Su, 2009). 

Some of the issues that influence the classification accuracy of SVM-classifiers (Huang et al., 
2002) are: Choice of kernel used (linear, polynomial, radial basis function, and sigmoid); and 
choice of the parameters related to a particular kernel (degree of kernel polynomial, bias in kernel 
function, gamma in kernel function, penalty parameter, pyramid levels, and classification probabil-
ity threshold). 

 
Fig. 5.39: Geometric explanation for the linear classification of SVM (Source: Modified from Vapnik, 1998) 
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Recent studies have shown that the use of SVMs in remotely sensed data classification might pre-
sent results with higher accuracy than other classifiers (Tso & Mather, 2009). SVMs have been 
used for classification of RADAR-data (Fukuda & Hirosawa, 2001; Lardeux et al., 2006; Shimoni 
et al., 2009), ASTER-data (Zhu & Blumberg, 2002; Marçal et al., 2005), LANDSAT-TM-data 
(Keuchel et al., 2003) and hyper-spectral-data (Melgani & Bruzzone, 2004). Only a few studies are 
known which have used SVMs for classifying multisource or multi-temporal data (Halldorsson et 
al., 2003; Song et al., 2005 b; Camps-Valls et al., 2006; Fauvel et al., 2006 a). 
Foody and Mathur (2004 a and b, and 2006) have examined both the characteristics and the size of 
training samples in SVMs. The paper from Hernandez et al. (2007) confirmed that applying a clas-
sification approach based on SVMs such as the SVDD could be used to provide more accuracy 
(97.5 %) than a MLC-algorithm (90.0 %). Other significant papers on this topic include: Bruzzone 
and Marconcini (2009), and Su (2009). 

The SVM-options that were used in the study were: Kernel type (polynomial); degree of kernel 
polynomial (2); bias in kernel function (1,000); gamma in kernel function (0.111); penalty parame-
ter (100,000); pyramid levels (0); and classification probability threshold (0). 

2. Results and evaluation 
This section present the results (thematic maps) of the comparison study which used the remotely 
sensed data obtained from LANDSAT: MSS-June-1975 with 60 m spatial resolution and four 
spectral bands (Fig. 5.41); TM-May-2007/30 m and six bands (Fig. 5.42); and TERRA: ASTER-
May-2005/15 m and three bands (Fig. 5.43) fused with additional three spectral bands of LAND-
SAT: ETM+/SLC-Off-corrected/-May-2005/15 m (Fig. 5.44). Two supervised classification ap-
proaches (Multi Stage Classification Approach and One Stage Classification Approach) were 
adopted, using the three supervised classification algorithms MLC, ANN and SVM. This compari-
son study was carried out for the selected sub-study-area of the four administrative regions. The 
LULC-classes generated in relation to the selected testing area based on the LCCS-classification 
scheme, are described in Fig. 5.40. 

 
Fig. 5.40: LULC-classes that generated from the LCCS-software (version-2) for the Four Regions study area 



Chapter 5: G. The choice and evaluation of the optimized method of automated classification  
 

139 

 
Fig. 5.41: The produced thematic maps from LANDSAT-MSS-data using various supervised classification approaches 

and algorithms for the testing area 
 

 
Fig. 5.42: The produced thematic maps from LANDSAT-TM-data using various supervised classification approaches 

and algorithms for the testing area 
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Fig. 5.43: The produced thematic maps from ASTER-data and LANDSAT-ETM+-data using various supervised clas-
sification approaches and algorithms for the testing area 

 
Fig. 5.44: The produced thematic map from ASTER-data with only the first three spectral bands (right), and the re-

sulted map after fusing the previous three bands with the 4, 5, and 7 spectral bands of LANDSAT-ETM+-
data (left) using various supervised classification approaches (here, one stage classification approach) and 
algorithms (here, MLC) for the testing area 
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An evaluation of the presented results was performed to define and confirm which classification 
approach and/or classification algorithm was optimized for the sub-study area and for the greater 
study area of the Euphrates River Basin. Two methods were used in the evaluation process. The 
first (Fig. 5.45) was qualitative rather than quantitative, more manual, and used non-remotely 
sensed data (human-based data) as truth-reference for measurement of the accuracy of the pro-
duced thematic maps results. 

 
Fig. 5.45: The comparison between the areas of various LULC-classes that generated from the supervised classifica-

tion of remotely sensed data with the statistical records in the Menbij Region in 2007 

The second method (Table 5.6, Fig. 5.46) is quantitative, more automated, and used either non-
remotely sensed data (e.g., GPS-measurements) or remotely sensed data as truth-reference/s, based 
on suitable founded mathematical equations (see C5.M). 

This evaluation showed that: 1) the accuracy values range from 49.56 % to 99.02 %; 2) after com-
parison of each of the three used classification algorithms (MLC, NN, and SVM) with the three 
different spatial resolutions of remotely sensed data (ASTER-15 m, LANDSAT-TM-30 m, and 
LANDSAT-MSS-60 m) and various spectral resolution (ASTER-3-bands, TM-6-bands, and MSS-
4-bands), for the 12 individual classification levels, it can be concluded that the MLC-algorithm 
had the highest accuracies in general, followed by SVM and finally, NN. Generally, the accuracy 
decreased horizontally with the reduction of the spatial resolution at almost each classification 
level, with the exception of ASTER-data at the more detailed levels. Although these data had the 
best spatial resolution, there was no corresponding increase in accuracy. Therefore, the higher 
spectral resolution by LANDSAT-data with coarser spatial resolution was more important than the 
higher spatial resolution by ASTER-data with coarser spectral resolution. In addition, accuracy 
decreased vertically with the increase in the information extracted at individual level; 3) after 
comparison of the final overall accuracy of classification using the multi stage classification ap-
proach and the MLC, NN and SVM algorithms (with accuracy values resulting from using one 
classification approach and the same three algorithms), it was evident that the first approach al-
ways showed a higher accuracy among the three classification algorithms. Also here, MLC har-
vested the higher accuracy in both approaches. The higher accuracy was found by using LAND-
SAT-MSS-data, while the offered classified classes were too little and wide than those generated 
from other used remote sensing data; and 4) therefore, the optimized results for the used remote 
sensing data, the classification approach and classification algorithm were found to be LANDSAT-
TM-data (ASTER-data had insufficient spectral resolution, while LANDSAT-MSS-data had insuf-
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ficient spatial resolution), the multi stage classification approach and the MLC-classification algo-
rithm. 

Table 5.6: The final resulted overall accuracy values of applying various classification approaches and algorithms on 
various remotely sensed data 

  MLC MLC MLC NN NN NN SVM SVM SVM Average/ 
Level-
based   ASTER-

15m-
May-05 

Landsat-
TM-
30m-
May-07 

Landsat-
MSS-
60m-
June-75 

ASTER-
15m-
May-05 

Landsat-
TM-
30m-
May-07 

Landsat-
MSS-60m-
June-75 

ASTER-15m-
May-05 

Landsat-TM-
30m-May-07 

Landsat-
MSS-60m-
June-75 

            
A/B: 99.02 98.73 92.85 98.58 97.73 91.25 98.92 97.41 93.52 96.44 
     
A1/A2: 97.69 96.31 88.54 96.56 95.58 85.59 96.92 95.89 86.55 93.29 
  
A11/A12: 95.56 94.08 80.21 92.56 90.98 79.55 90.69 87.36 77.56 87.61 
  
A111/A112: 80.56 90.31 - 80.00 90.17 - 81.57 89.41 - 85.33 
  
A1111/A1112: 78.21 89.81 - 76.54 88.44 - 77.66 89.96 - 83.37 
  
A1121/A1122: 57.21 60.88 - 56.58 60.52 - 58.58 61.68 - 59.18 
  
A11211/A11212/
A11213: 

58.25 65.22 - 59.85 65.13 - 56.55 66.36 - 61.92 

  
A11221/A11222/
A11223: 

65.54 75.02 - 64.59 72.12 - 66.99 75.36 - 69.93 

  
A121/A122: 50.59 57.32 - 49.56 50.36 - 54.55 55.52 - 52.98 
  
B/A: 99.02 98.73 92.85 98.58 98.73 91.25 98.92 99.41 93.52 96.77 
     
B1/B2: 96.69 95.32 89.54 95.56 94.58 85.96 95.92 95.62 87.55 92.92 
  
B11/B12/B211/B
212: 

92.69 95.72 90.51 90.31 94.45 88.24 91.54 96.86 92.28 92.45 
 

73.27 
  

80.91 84.81 89.08 79.96 83.21 86.97 76.18 84.17 88.49 83.75 
 Aver-

age/Algorithm-
based/Multi 
Stage Classifica-
tion Approach 

One Stage 
Classification 
Approach 

77.32 83.23 88.14 73.25 82.59 84.87 70.24 83.15 86.59 81.04 
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Fig. 5.46: Illustrate the accuracy assessment values presented in Table 5.6 visually 

H. General classes classification 

Drought is one of the main characteristics of large areas of the ERB, since variation in lands and 
natural coverage is partially measured by average precipitation. Geological and geomorphologic 
characteristics and soil types change depending on the availability of water or the climatic risks 
affecting the area. 
One of the more satisfying results of setting general classification controls representing the natural 
coverage and land uses of basin areas falling outside the borders of water agrarian projects, is the 
appearance of planted lands with trees in bare, uncultivated lands as shown in satellite images, 
particularly, in relatively dry areas with dominated light color soils. This may occur because of the 
ratio between dimensions of pixel in TM-30 m data, and the distance between planted trees within 
one field. In the region of Aleppo, pertaining to the widely spread Aleppo-pistachio and olive 
trees, the distance between every two trees is estimated with 8-10 m (Fig. 5.47), i.e., there will be 
an approximately 16 trees in each pixel of the TM-data. Because the greater portion of this planta-
tion lies on light soil, and since remotely sensed data are insufficient and unqualified in spatial 
resolution, it is difficult to detect the distribution of these plantations. It is also complex to repre-
sent them through automated classification. 

 
Fig. 5.47: The distances between the rain-fed olive trees in the study area (photo) 
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However, where there is water availability (prevalence of irrigation projects), all types of cultiva-
tions and even gardens appear clearly on the satellite images used in current study. 

Time differentiation of termination of the agricultural crop rotation of rain-fed crops existed away 
from irrigation projects, compared to their counterparts included in irrigation projects. Conse-
quently, it was necessary to have satellite image coverage to be compatible with the precise dates 
of the agrarian crop rotation of rain-fed crops in April. 

The satellite images did not allow discrimination between barley and wheat fields, which were 
similar in relation to their spatial discrimination (the field areas of each crop) and spectral discrim-
ination (there were no clear differences in spectral reflectance). These two major and strategic 
crops were planted widely in rain-fed areas based outside the borders of irrigation projects. Yet, 
the situation was different within the irrigation projects, as barley occupied few of the limited irri-
gated areas, but was commonly planted. This led to change in the agrarian crop rotation and its 
spectral behaviour, differentiating it from rain-fed wheat. This in turn led to the possibility of spec-
tral separation between irrigated wheat and barley at the beginning of May, regarding the radio-
metric field measurements that proved the possibility of separation (see C5.E.1). 

The study area was divided into two almost equal sectors corresponding in the western part with 
the second, third and fourth agricultural stabilization zones. The eastern part matched the fifth ag-
ricultural stabilization zone, which included the pasture Al-Badiaand the Syrian Desert. Each of 
these two general sectors corresponded with distinct areas concerning land use and natural cover-
age. Applied agrarian legislation was a factor, especially the total prevention of cultivation in the 
fifth agricultural stabilization zone. These two sectors were almost homogeneous in relation to 
spectral reflectance on this scale. 

The general extracted and classified LULC-classes based on LCCS-scheme (see C5.C) were: Cul-
tivated and managed terrestrial area(s); Natural and semi-natural terrestrial vegetation; Artificial 
surfaces and associated area(s); Bare area(s); and Natural water-bodies, snow, and ice. 

The three period LANDSAT-imageries (MSS-June-1975, TM-May-1987 and TM-May-2007) and 
the one period ASTER-imagery (ASTER-May-2005 fused with the LANDSAT-ETM+/SLC-Off 
corrected/-May-2005-data) (see C4.A) were classified using the supervised classification tech-
nique MLC to generate the general LULC-classes of the first LCCS-classification scheme.  

The concept used to produce the thematic maps of the general classes was divided into two ways: 
preprocessing steps and the mosaic-process (see C5.B). The classification process was carried out 
for all defined classes on the one mosaic-image that covered the whole spatial distribution of the 
study area. This mosaic-image was generated from more than one remote sensing image, in which 
the temporal, spatial, spectral and radio-metrical characteristics of each image were deemed to be 
compatible with each other, or when it was possible to enhance and/or correct the distortion in 
these characteristics. The second method was performed when it was impossible to generate a cor-
rect and suitable mosaic-image with no, or an acceptable level of, distortion in the above referred 
characteristics, or when it was possible to generate a more suitable mosaic-image which gave more 
accuracy in classification. For example, the second method was performed on the LANDSAT-
MSS-June-1975 data, where subsetting of each of the seven images using the ERB-borders-vector-
file extracted from the SRTM-data was conducted (see C5.A) (Fig. 5.48). The classification proce-
dures were performed for each subsetted image after which mosaicing was carried out on all the 
individual classification results to produce one final thematic map (Fig. 5.49). The procedures that 
were performed in the classification were: 1) Creation of the legend including the LULC-classes to 
be classified based on LCCS-scheme (see C5.C); 2) Selection of the training samples visually 
from the MSS-data itself; 3) Calculation of the separability values for the selected training samples 
(see C5.F); 4) Application of the MLC-algorithm that offered the best accuracies (see C5.G.2); and 
5) Validation of the classification accuracy using the accuracy assessment methods (see C5.M). 
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Fig. 5.48: LANDSAT-MSS-June-1975 imagery subsetting based on the spatial extent of the ERB in Syria 

 
Fig. 5.49: LANDSAT-MSS-data-June-1975 classification results for each subsetted image and the mosaicing of all 

results in one thematic map 

I. Irrigated areas mapping 

As shown in the information obtained from the Syrian Irrigation Ministry, the total reclaimed 
lands (irrigated areas) in the Euphrates River Basin in the period 1970-2007 comprised some 
201,372 ha, distributed in the governorates of Aleppo(72,492 ha), Arraqqa (102,512 ha) and Deir 
Azzour (26,367 ha). 
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However, the variation in the radiometric characteristics over the various imagery that were used 
to construct the final mosaic-images and the variation in the spectral, spatial and radiometric char-
acteristics over the various multi-sensor datasets, added their own uncertainties to irrigated area 
estimates (FAO, 2005). 
This section describes the methodology used to locate irrigated areas within the national adminis-
trative units in the Euphrates River Basin. Irrigation maps were derived from remotely sensed data 
(LANDSAT-MSS-June-1975, LANDSAT-TM-May-1987 and 2007, and TERRA-ASTER-May-
2005), and from the very detailed schemes of each irrigation project that were obtained from the 
Syrian Ministry of Irrigation and IGDEP. These schemes represent clearly each project’s formative 
spatial distribution, but with no geographical reference. These schemes were linked with the re-
motely sensed data available using a hard visual interpretation. The information was also digitized 
to locate the detailed schemes on the various existed remote sensing data in order to extract the 
boundaries of the irrigation projects. After the maps were on-screen digitized, the borders of the 
irrigated areas were evaluated using satellite imagery in many areas. The both shape and size of 
the digitized areas were followed by an adjusting process where necessary. Finally, it was helpful 
to use publications such as project reports and the frequently published statistics about the devel-
opment in the irrigation areas and the agricultural plan over the time. 
In general, the following steps were adopted: 1) generation of a vector-file that defined the spatial 
distribution of the ERB-borders; 2) the register of national irrigation statistics for the ERB in Syr-
ia; 3) geospatial information (detailed schemes and various remotely sensed data) used to locate 
irrigated project areas within the ERB-borders; 4) the production of a detailed vector-based digital 
map of irrigated project areas in the ERB (Fig. 5.50), to be used as a spatial indicator in combina-
tion with the remote sensing data during the agricultural classification within these projects; and 5) 
fusion of the digital maps of the irrigated areas in the ERB for the years 1975, 1987, 2005 and 
2007. 

 
Fig. 5.50: The spatial distribution of the 16-projects in ERB (about 230,000 ha) that generated from the detailed irriga-

tion projects-schemes and the remotely sensed data (as vector-file) 
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Three methods in mapping the irrigated areas were followed. The first method (Fig. 5.51) was 
based on the previous general classes classification results (see C5.H), where the class (cultivated 
areas) represented the irrigated areas, which were actually the agricultural areas (planted and fal-
low). Then, the irrigated areas vector-file was used to subset and extracts the actual irrigated agri-
culture within the projects from the ERB-borders. Here, the classification accuracy was equal to 
the gaining general classes accuracy, which was generally high for wide categories classification. 
The second method combined the transformed NDVI-values to vector-file (as mask). The draw-
back here was that NDVI can only detect the planted areas and not the fallow-fields. To overcome 
this problem, the two major agricultural seasons of winter and summer needed to be classified, 
where, for example, the non-planted fields during winter would be almost completed planted in 
summer, especially in areas with an abundance of water. Then, the two winter and summer classi-
fication results were added into one thematic map that represented the actual irrigated areas over 
an individual year. The third method involved the analysis of each of the 16-projects alone. This 
was more significant for crop classification within the irrigated areas, especially when insufficient 
truth-references existed. To this end, the use of statistical information was helpful. This method is 
presented in the next section. 
The next task was to define the spatial distribution areas of irrigated agricultural projects within 
the natural borders of the ERB in the study’s reference time period of 1975, 1987, 2005 and 2007 
by calculating the values of NDVI and making a mask that covered the spatial prevalence of the 
projects’ areas. This mask was the study area for classification of the irrigated winter and summer 
crops during the previously mentioned time durations except for in 1975. The remotely sensed 
data (LANDSAT-MSS) available in that year had a low spatial resolution of 60 m, and for this 
reason, it was impossible to produce detailed maps of land uses, specifically in those areas includ-
ed under wide classes (e.g., both wheat and barley are detailed classes that lie under the heading 
“wide general class”, namely, the agrarian lands). 
The total cultivated area of the Arraed project was c. 21,000 ha. However, due to bad land recla-
mation procedures, salinization had resulted in large areas of the project lands. In 2005, the arable 
land mass was only 2,433 ha. 

 
Fig. 5.51: Irrigation mapping in the ERB based on the traditional supervised classification approach (the first method) 
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J. Crops classification 

Classification of agricultural crops using remote sensing data requires in general, knowledge about 
crop phenology, climate of the exacting growing season and ground reference information about 
specific agricultural practices in the drainage basin. 
"The development of a regional-scale crop mapping methodology is challenging because it re-
quires remotely sensed data that have large geographic coverage, high temporal resolution, ade-
quate spatial resolution relative to the typical field size, and minimal cost" (Wardlow  & Egbert, 
2008). Remotely sensed data from customary sources such as the LANDSAT (TM and ETM+) 
and (AVHRR) proved the usefulness for the classification of LULC-features (Wardlow  & Egbert, 
2008). 
Supervised classification is the most frequently used classification method in agricultural areas 
(Van Niel & McVicar, 2000). 

MSS data are used to set maps concerning the expansion of the agricultural lands and to distin-
guish them from constructional lands, for example. However, one drawback is that these data are 
unable to set thematic maps which view the more detailed crops’ expansion. Of course, there are 
always exceptions; for instance, the agricultural cultivated fields planted with different crops are to 
some extent considered wide spaces, which enables the MSS-data to distinguish them. Yet, this 
condition was not verified in the ERB, which was characterized by having small agricultural 
fields, especially those located outside of the borders of the governmental irrigated agrarian pro-
jects. These areas were also organized following the agricultural crop rotation policy. 

In the third part of this study, carefully timed remotely sensed data were used to map the location 
and extent of irrigated winter and summer crops for the years 1987, 2005 and 2007. 
The commonly implemented crop classification approaches included: unsupervised classification; 
supervised classification; and decision tree classifier. In the cases where there was less information 
for a study area, only the characteristics of the image (also, statistical records and the detailed 
schemes, especially for 1987) were used. 
The adopted concept (Fig. 5.52) in agriculture classification was based on the results of the previ-
ous two sections (C5.H and C5.I). The first step was to define the classes to be classified, based on 
the statistical records for the study year/s with no/or insufficient truth-data (e.g., 1987-data). This 
was followed by selection of the winter related data (Fig. 5.53), and subsetting to remove margin 
distortions, and to extract only the ERB spatial related areas. The time series of remotely sensed 
data were first used to generate a LULC-map of the whole ERB-area based on the LCCS-scheme 
(see C5.H). This process involved the use of one mosaic-image or each individual image, which 
was then mosaicked into one thematic-mosaic-map. The classification method was based on a 
MLC-supervised algorithm. The resulting classification had five general classes. The important 
general class which was used as the basis in irrigated agriculture classification was: cultivated are-
as: cropped and fallow. Using the derived vector-file which located the detailed spatial distribution 
of each project, sub-setting was conducted and the cultivated areas which existed only within the 
irrigation-projects and not within the whole ERB were extracted. Finally, using the unsupervised 
classification approach as an indicator for additional information about the spectral characteristics 
of the area, training samples were collected for some general classes (e.g., water), followed with 
the tested MLC supervised classification approach (see C5.G) to generate the final thematic map 
of the major winter crops of interest (wheat, barley, and sugar beet), in addition to fallow, which is 
classified in both seasons. 
Trees and shrubs could be classified from either winter remotely sensed data or from data acquired 
in summer. This information was then combined and a mask constructed that included all the win-
ter-data-based classified LULC-areas which could be planted during the summer-season (fallow, 
wheat, barley, and other crops). The other classified areas which were almost impossible to be 
changed during the summer-season of the same year (e.g., trees, permanent crops, etc.) were ex-
cluded. Finally, the previously built mask was applied to the summer-related remote sensing data 
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(Fig. 5.54) for classification of the summer crops of interest (cotton, and corn), in addition to fal-
low. Before the completion of this task, it was necessary to perform an accuracy assessment for all 
the produced classification results. 

 
Fig. 5.52: The general concept-steps adapted to classify the various agricultural classes, especially the major strategic 

winter and summer crops 

 
Fig. 5.53: The followed concept to classify the major winter crops based on both the previous general classes classifi-

cation and the generated spatial distribution of the irrigated areas 



Chapter 5: J. Crops classification  
 

150 

 
Fig. 5.54: The followed concept to classify the major summer crops based on both the previous winter crops classifica-

tion and the generated spatial distribution of the irrigated areas 

The other method that was adopted to classify the irrigation areas (especially the state projects) 
and the various permanent, winter, and summer agriculture-categories, was to integrate the remote-
ly sensed data with the non-remotely sensed data (e.g., statistical records and detailed schemes), 
especially for the LANDSAT-TM-May and August-1987 data. This is explained in the next sec-
tion.  

The most important point involved in these projects was the engineering organization and division 
of each project into several farms with names and known geographical sites. The cultivated fields 
were large enough to be easily distinguished by available remotely sensed data. In addition, the 
geographical distribution of those fields had well known coordinates and detailed charts, and 
schematics were available for each project with large drawing scales. Because of this, I was able to 
become familiar with every irrigation project included in the basin and its spatial prevalence on the 
satellite images. Consequently, I was able to integrate the spatial distribution with the available 
statistic numbers of each project in several time-durations. This was also compatible with the re-
motely sensed data about the study area in my possession. These links enabled me to select the 
training samples used in the supervised classification process and to use them in assessment of the 
accuracy of the classification. This was, of course, in addition to the remaining referential data 
previously mentioned.  

As for the other basin areas located outside the borders of the irrigation projects, since the required 
classification level is general and not detailed, it was decided it would be sufficient to count on the 
remotely sensed data in addition to the thematic, topographic and Google Earth maps and during 
the selecting process of the training-samples. 
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Here the problem is that full statistics concerning agrarian activities and types/classes of planta-
tions were available, but only at a governmental and governorates level. This meant that the data 
did not provide information about what had been previously cultivated. The other problem was 
that many fields were not planted every year with the same crop. Detailed information about which 
specific crops had been planted in the training-samples was required. This level of detail was pos-
sible for the State-run irrigation projects in the “Organization of Development of the Euphrates 
Basin”, which has three branches - the Upper-Euphrates in Aleppo, the Mid-Euphrates in Arraqqah 
and the Lower-Euphrates in Deir Azzour. These areas were well managed, and a detailed agricul-
tural statistics procedure was developed for every project. 

One example of a training sample is a 17,000 ha project, which is integrated with a state farm 
(4,000 ha). Thus, the total area is 21,000 ha. Located within the Upper-Euphrates Basin in Aleppo 
governorate, the reclamation of the project began in 1979. The land is irrigated by pumping water 
from Lake Al-Asad. 
The temporal developments in the extension of this project were as followed: In 1979 (3,031 ha), 
1980 (4,762 ha), 1981 (9,634 ha), 1982 (15,103 ha), 1990 (16,703 ha), 1991 (17,513 ha), 1992 
(19,703 ha), 1993 (20,903 ha), and in 2005 (21,325 ha) with 100 % of the irrigation plan. 
The first step was to integrate the construction scheme with the remotely sensed data to extract the 
spatial distribution of the project of interest (Fig. 5.55). This was complicated by the fact the area 
had no ground truth reference. 

 
Fig. 5.55: The integration of the remotely sensed data with the construction scheme of the 21,000 ha project 
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The second step was to define what ratio of agricultural crops existed. This was generated from 
non-remotely sensed/human-based collected data (Table 5.7). 

Table 5.7: The statistical information about each farm of the 21,000 ha project for 1987 (Source: Adapted from: 
GOEDEB, 1987) 

   The Farms 
 
 
The Crops 

State 
Farm 
2937 ha 

First 
Farm 
2040 ha 

Third 
Farm 
3557 ha  

Fourth 
Farm 
2753 ha 

Fifth 
Farm 
3293 ha 

Sixth 
Farm 
2320 ha 

Total/ha 
 
 
        1987 

Winter       10,146 
Wheat 707 562 943 782 974 1073 5,041 
Sugar beet 300 130 174 234 231 150 1,219 
Barley/Irrigated    127   127 
Barley/Rain-fed 965 340 1061 496 463 302 3,618 
Vicia beans 53   78 10  141 
Fallow       5,359 
Summer       3,052 
Cotton 400 483 393 401 451 266 2,394 
Maize 74 105 155 46 119 159 658 
Fallow       12,453 
Permanent crops       1,572 
Fruit trees 109 53   112  274 
Poplar 156 172   203  708 
Alfalfa 189 98 42 73 95 93 590 

 

The third step (Fig. 5.56) was to extract the smallest unit/farm in the 21,000 ha project to make the 
reorganization process of various agricultural features easier. Then, the various record-
times/coverages were used in a visual interpretation process to recognize various agricultural fea-
tures and to define the training samples that represent these features in a supervised classification 
approach. For example, it was possible to recognize agricultural features such as trees, alfalfa and 
sugar beet using multi-date remote sensing data and visual interpretation. Based on the agricultural 
calendar, trees fields appeared as planted areas over the three datasets (May, June and August); 
alfalfa fields appeared as green areas over the four datasets (April, May, June and August); and 
sugar beet fields appeared in April data as diverse planted areas in comparison to wheat and barley 
fields. The June data showed the area was still planted in comparison to other winter crops, espe-
cially those that had similar spectral response, such as wheat and barley. These three various ap-
pearances of the wheat at first degree and the barley in the June data, confirmed the selection for 
the training samples from the May data. The region also contained many dairy farms nestled 
among the irrigation projects with known geographical locations. These farms were planted only 
with barley, and provided a useful basis for training sites. Circular-irrigation fields also provided a 
useful source of reference, as the agricultural fields appear in a circle-shape. These fields were 
planted almost entirely in wheat. To this end, the visual interpretation and unsupervised classifica-
tion results were able to be compared with the statistical numbers, which provided a background 
about each farm’s planted crop. After all the representative training samples for each agriculture-
category (permanent, winter, and summer) were collected, the supervised classification was con-
ducted under the vegetation-mask generated from NDVI-values. 
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Fig. 5.56: The followed concept to collect training samples for the area/s with no truth-data or with insufficient refer-

ence data (the state farm) 

This resulted in the collection of several training samples within the irrigation agricultural land 
projects, which represented the majority of variations in the LULC-categories, especially the agri-
culture class. Some of training-samples were used in the automated classification process, whereas 
others were used to evaluate the accuracy of these classifications. 
At this point, a query arose over what requirement was needed to link statistical records with spa-
tial records concerning the irrigation projects. This was needed for the training-samples represent-
ing the land uses which would be used later in automated classification, despite the availability of 
other referential GPS-points. There were three reasons for this. Firstly, the GPS-points did not to-
tally cover all the study sites. Points of ICARDA-1987 were all located within Aleppo gover-
norate, but no points existed in the Arraqqa and Deir Azzour governorates. The GORS-points for 
2005 were all located within Deir Azzour. The only points distributed over the three governorates 
were those taken in 2007. Secondly, because of the relatively large extension of the study area 
which lies within various natural regions (climatic: rains, temperature, humidity and soil), there 
was too much variation in the cultivations and plants along the basin. For instance, points of 
ICARDA-1987 did not represent poplar tree farms which existed only within the irrigation agricul-
ture projects area in the Arraqqa governorate (Al-Asad institution project). Thirdly, the variation in 
the method of collecting the GPS-points and the training-samples proved of issue, as well as the 
potential error in measurements of the GPS, relating to technical reasons. It is hypothesized that if 
one of the points measured a wheat field which neighbored a field of barley, then if the GSP-
device was inaccurate enough or the satellite image that received the point was not correctly refer-
enced, then the point may be shown as lying within the closely bordered barley field. Consequent-
ly, mistakes could occur in the classification process. 

After the collection of sufficient training samples for the existing various LULC-features from the 
state farm, the entire 21,000 ha project was generalized via the supervised classification method 
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(Fig. 5.57). Here, the multi stage classification approach was followed with various created masks. 
At first, both the unsupervised and supervised classification approaches were used to classify the 
five general classes (see C5.H). Then, the approaches were combined into two more general clas-
ses, namely, uncultivated areas and cultivated areas. The subset “cultivated areas” represented the 
actual planted fields and the fallow and/or drilled lands, and displayed the irrigated area in project-
scale. A mask was then created to represent the spatial distribution of this cultivated areas class, 
and to eliminate the uncultivated areas and their negative spectral influence on the other features of 
interest. It also reduced the computer processing-time of the data (although the user-data-
interaction time was increased because of the greater number of processing-steps). After applying 
the masking-process and the supervised classification, the three classes were obtained (trees, her-
baceous and fallow). The tree class was extracted from the next classification steps. Two masks 
were then built; the first for the herbaceous class and the second for herbaceous and fallow areas. 
Under the first mask, a supervised classification was carried out to obtain the permanent and win-
ter crops classification results (alfalfa, wheat, barley, sugar beet and other crops). The second mask 
for herbaceous and fallow areas, where some of herbaceous areas would be replanted in summer 
season (e.g., corn after barley), produced the thematic map of summer crops (cotton, corn and oth-
er crops) using summer remote sensing data for August. 

 

Fig. 5.57: The general classes classification, irrigation mapping, and agriculture classification methods that were per-
formed based on the spatial extent of each irrigation project 
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The concept in classification adopted above was applied for other study years (Fig. 5.58) to obtain 
historical remote sensing based statistical numbers (Table 5.8). 

 

Figure 5.58: The general classes classification, irrigation mapping, and agriculture classification results that were 
produced based on the spatial extent of each irrigation project 

Table 5.8: The remotely sensed data classification based statistical results for the 21,000 ha irrigation project for 1975, 
1987, 2005 and 2007 

The 21,000 ha- Project _ All 
Classes 

 
   

 1975 1987 2005 2007 
Cultivated Areas  23,834 25,806 34,792 
* Trees+Shrubs  648 872 58 
* Herbaceous (Winter crops)  12,561 22,377 23,366 
Alfalfa  275 459 198 
Wheat  3,669 11,693 10,560 
Barley  5,305 4,150 1,211 
Sugar beet  3,454 6,075 2,359 
Other crops  62 200 9,038 
* Fallow  10,927 2,796 11,970 
* Herbaceous (Summer crops)  50,499 24,272 13,303 
Cotton  2,950 8,412 2,284 
Corn  2,099 463 650 
Other crops  8,143 127 10,369 
* Fallow  10,063 15,270 22,277 
Water 0 0 0 0 
Uncultivated Areas 46,324 22,494 20,501 11,489 
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Finally, all the previously adapted steps and methods were applied and data was added for the oth-
er 15 projects to the thematic map/s for the 21,000 ha project (Fig. 5.59). 

 
Figure 5.59: Illustration of the individual 16-project-based classification results (permanent and winter crops classifica-

tion results for 1987) 

K. Post-classification processing 

Many researchers have argued that post-classification processing is a vital step to improve the re-
sults of classification (Harris & Ventura, 1995; Murai & Omatu, 1997; Stefanov et al., 2001; Lu & 
Weng, 2004). 
Ancillary data are often used to enhance the classification result based on performed expert rules. 
For example, dense forests are often found in mountain areas in Syria, but food-trees (cultivated 
plantations) are essentially located in plain areas, with sparse houses and a low population density. 
Therefore, expert knowledge can be performed based on the relationships between the high factor 
and the agricultural conditions to separate food trees from forested areas. 
Classical pixel-based classification methods often lead to “salt and pepper” effects in final classifi-
cation results maps, caused by the isolated pixels of some classes within another dominant class. 
That is due to the complexity of biophysical environments, which potentially decrease the classifi-
cation accuracy. It is more logical to join these isolated pixels to the dominant class that they are 
first assigned to. A suitable enhancing filter applied after the classification process on the produced 
thematic map will not only “clean up” the map and make it visually less noisy, but also increase 
the classification accuracy. 
To improve the classification results, the majority/mode filter in ENVI, v. 4.6 was used as a post- 
classification procedure. This procedure is a low-pass filter that reduces the created effects and 
noises from the classification process, where it replaces the isolated pixels by whatever value con-
stitutes the majority in their neighborhood. It could be regarded as a kind of post-classification 
spatial integration. This filter is simple, where it smoothes a thematic map without any numerical 
operations (Liu & Mason, 2009). 
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The classification results (the thematic maps) were filtered using a 3 by 3 majority filter window, 
followed by a sieve filter. This caused a smoothing of the class boundaries. A small pixels-cluster 
of an individual class was added to the surrounding area of a larger class, and the boundaries of the 
LULC-classes were generalized and clearly identified. The sieve filter was used in addition to the 
majority filter to clean the classification result of further small pixel-clusters that were not elimi-
nated from the majority filter. Clusters with less than 10 pixels were removed by merging them 
with their largest neighbor. 

L. Automated change detection mapping 

1. Pre-classification approach 

This approach was essential in mapping the increasing changes in the agricultural irrigated areas in 
the ERB. Data from the LANDSAT-program, MSS and TM spanning the period between 1975 
and 2007 were chosen from a similar time of the year in order to allow each LULC-class of inter-
est a similar spectral response and similar illumination conditions. The MSS-data set of six images 
(Fig. 5.60) were pre-processed (see C5.B) for radiometric normalization using iMAD. The master-
scene was p185r035. It was impossible to correct the atmospheric effects because it was difficult 
to obtain weather parameters for such relatively old dates. However, it was possible to carry out 
radiometry and atmosphere corrections for the TM-data set of six images. The master-scene for 
this was p172r035. Each data set was then mosaiced to produce only two mosaic-images, each 
representing one date. Again, iMAD was applied to the two resulting mosaic-images. The master-
scene was chosen as the mosaic-scene produced from the TM-data in 2007, as it was possible to 
get weather data for the dates, and radiometric normalizations and atmospheric corrections were 
able to be performed. Finally, the two mosaic-scenes were geometrically registered using the im-
age to image method. The MSS-scene was also resampled to the same spatial resolution of 30 m as 
TM-scene. Finally, the two remote sensing data-scenes were added to the change detection map-
ping process using the image differencing method. The three major mapped changes over the last 
32 years were: natural areas to bare areas, bare areas to cultivated areas, and no change (see 
C6.C.1). 

 
Fig. 5.60: The pre-classification change detection mapping concept that was performed for the two remotely sensed 

data sets (MSS-June-1975 and TM-August-2007) 
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2. Post-classification approach 

The post-classification change detection approach concerned the analysis of the differences be-
tween two more or less independently classified images. A comparison of the categorizations was 
performed using raster-based analysis (ENVI, v. 4.6). The major merit of this approach was that 
data normalization was not needed because the remote sensing data recorded at two dates were 
classified separately (Singh, 1989). Disadvantages that reduce the implementation of this approach 
are: cost; consistency; and error propagation (Lunetta, 1999). 

The post-classification change detection approach for the ERB (Fig. 5.61) was based on the two 
previously supervised classified remote sensing data sets (TM-May-1987 and TM-May-2007) us-
ing the MLC-algorithm (see C5.G.1.2.2). The resulted five general classes that provided input in 
the change detection were: cultivated and managed terrestrial areas; natural and semi-natural ter-
restrial vegetation; artificial surfaces and associated areas; bare areas; and natural water-bodies 
(see C5.H). The resulting 1987 and 2007 classification results were used as inputs for classifica-
tion, then post classification, followed with change detection statistics under the ENVI-program 
with the version 4.6. This yielded a change image (change matrix), in which 20-types of change 
between the two dates were potentially possible (see C6.C.2). 

 
Fig. 5.61: Flow chart of the post-classification change detection mapping approach that was performed for the two 

remotely sensed datasets (TM-May-1987 and TM-May-2007) 
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M. Accuracy assessment 

The execution estimation of an applied classification approach is a complex process, involving 
various criteria. Cihlar et al. (1998) suggested six criteria. These are: "accuracy; reproducibility; 
robustness; ability to fully use the information content of the data; uniform applicability; and ob-
jectiveness". These requirements are difficult to satisfy using only one classification approach. The 
reason for this relates to the different environmental settings and datasets used. DeFries and Chan 
(2000) suggested four criteria. These are: classification accuracy; computational resources; stabil-
ity of the algorithm; and robustness to noise in the training data. In conclusion, accuracy assess-
ment of classification results is, mainly, the most common method for an estimation of classifica-
tion approach execution. The acceptable accuracy values are relative, determined generally by the 
users themselves depending on the type of application. Accuracy values that are acceptable for 
specific application may be unacceptable for others. 

Generally, there are no dependable rules for determining the testing samples that are required to 
evaluate the classification accuracy. However, there are some useful suggestions, including those 
made by Fitzpatrick-Lins (1981). Another idea, put forward by Congalton and Green (1999), is to 
use 50 testing samples as minimum for each classified LULC-category. If the study area is larger 
than 1,000,000 ha, or if there are more than 12 classified categories, then there should be 75-100 
samples for each LULC-category. This suggested approach samples small areas thoroughly, while 
large areas might be under-sampled. Thus, it is suggested that testing sample numbers could be set 
for variations in size and within-class variability. 

Accuracy assessment is a post-classification step. It was accomplished for the purposes of this 
study using ENVI, v. 4.6, which was used to evaluate the correspondence of the classified LULC-
maps to the true and/or assumed true geographical reference data (Congalton, 1991). The refer-
ence data were: Part of the collected field-data for the years 1987, 2005 and 2007(see C5.D), 
where the first part was used as training samples; assumed truth data based on the integration of 
the remotely sensed data; irrigation projects statistical records and the detailed construction 
schemes of these projects, which were used locate the spatial distribution of the various agricultur-
al features in the irrigation projects area for 1987 (see C5.J); thematic maps; visual interpretation 
based on the remote sensing data itself; and Google Earth. Fig. 5.62 illustrate the major steps that 
were followed in assessing the various thematic maps that resulted from the classification process. 

 
Fig. 5.62: The general accuracy assessment steps that were applied on the resulted thematic map/s from the classifica-

tion process 
Results of classification were presented in form of thematic maps. Using the various truth refer-
ence data, accuracy assessments were carried out for all classification results. The reference da-
ta/classes were compared with the predicted classes by the adopted classifier/s (and probably en-
hanced using the post-classification processing). The final evaluation results were reported in the 
form of error matrices. The overall classification accuracy (percentage correct) was calculated for 
all classifications, as well as the accuracies of the class-specific user and producer. 
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Two accuracy assessment methods were performed in this thesis. The first method is based on the 
pixel scale to derive the accuracy of classification in the remotely sensed data, which resulted from 
the calculation of the error/confusion matrix. 
Let, for a (l-class) classification problem, (N) be the total number of reference samples. The corre-
sponding confusion matrix is illustrated in Fig. 5.63. The number of samples that are classified as 
class /ωi (i = 1,2,..,l)/ and belong to land cover class /ωj (j = 1,2,…,l)/ are described by ( ), for 
example, ( ) denotes the number of samples that belongs to class (1) and correctly assigned to 
class (1), whereas ( ) defines the samples belonging to class (1), but incorrectly classified to 
class (2). The diagonal cells ( ) (the highlighted elements in Fig. 5.63) of the error matrix con-
tain the number of correctly classified samples (Congalton & Green, 1999), while the off-diagonal 
cells represent the disagreement between the classified image and the ground truth data (Mather, 
1999). The overall accuracy is calculated by their sum (the diagonal observations) divided by the 
total number of samples (N) (all observations included in the error matrix): 

 

 

Fig. 5.63: Explanation of the error matrix approach (Source: Modified from: Congalton & Green, 1999) 

Generally, the individual LULC-class that accounts for a large rate of the study/testing area, might 
be classified with a high accuracy using an individual classification algorithm,  which creates an 
alignment in overall accuracy. Therefore, it is necessary to consider the individual class accuracies 
to avoid the alignment. Class-specific accuracies can be created based on the confusion matrix 
(i.e., producer and user accuracy). It can be also used to create the corresponding error rates. "An 
error of omission is to exclude a sample from a class in which it originally belongs (a misclassifi-
cation error is an omission from the correct class). A commission error on the other hand assigns a 
sample to a wrong class (a misclassification error is a commission into another class). Consequent-
ly, each error is an omission from the correct class and a commission to a wrong class. The pro-
ducer accuracy, that is a measure of error of omission" (Story & Congalton, 1986), for class (c) is 
calculated by dividing the number of correct samples of (c) by the total number of reference sam-
ples of class (c). The resulting percentage producer accuracy indicates the probability that a refer-
ence pixel will be correctly classified. 

 

The user accuracy, that is a measure of error of commission (Story & Congalton, 1986), describes 
how many samples that were classified as (c) in fact belong to class (c). The measurement is re-
sulted from: 
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Finally, multiplying the results of each the previous three accuracies by 100 forms the percent cor-
rectly classified (PCC) metric.  

The second statistic used is the kappa coefficient (kc). It is generally known as a precision measure 
since it is considered as a measure of agreement in the absence of chance (Cohen, 1960; Lillesand 
et al., 2008). Conceptually it can be defined as: 

 

The kappa statistic is calculated from the confusion matrix by using the following mathematical 
statement: 

 

Where:  = total number of pixels used for testing the accuracy of a classifier, 
              = number of classes, 
             = sum of diagonal elements of confusion matrix, 
             = sum of row , 
             = sum of column .

An example is presented to explain the derived classification accuracies for the 21,000 ha project 
for the year 2007. 
Table 5.9: The classification accuracy assessment for the resulted thematic map that represents the spatial distribution 

of the permanent and the winter agricultural classes in the 21,000 ha project 
Reference 
classes (image/ 
ground) 

Resulted classified classes from LAND-
SAT-TM-images 

Total/
possible 

Omissions Commissions Mapping Accuracy 

1 2 3 4 5 6 7  

Trees and 
shrubs (1) 

9 1 0 0 0 1 0 11 2/11 = 0.18 
*100 = 18% 

3/11 = 27% 9/9+2+3 = 64%  

Alfalfa (2) 1 7 0 0 1 0 0 9 2/9 = 22% 2/9 = 22% 7/7+2+2 = 63% 
Wheat (3) 1 1 17 4 1 0 0 24 7/24 = 29% 5/24 = 20% 17/17+1+5 = 73% 
Barley (4) 0 0 4 13 0 0 2 19 6/19 = 31% 6/19 = 31% 13/13+6+6 = 52% 
Sugar beet (5) 0 0 1 1 10 0 0 12 2/12 = 16% 2/12 = 16% 10/10+2+2 = 71% 
Fallow (6) 1 0 0 0 0 17 0 18 1/18 = 5% 1/18 = 5% 17/17+1+1 = 89% 
Other (7) 0 0 0 1 0 0 14 15 1/15 = 6% 2/15 = 13% 14/14+1+2 = 82% 
Total 12 9 22 19 12 18 16 108  

Overall LANDSAT-TM Classification Accuracy = 9 + 7 + 17 + 13 + 10 + 17 + 14 / 108 = 80 % 
 
 

Mapping Accuracy for any Class (X) =  
 
                                                              
   

                                                                 
                                                               
 
                                                                
 
 
 
 
 
 
 
Kappa Coefficient (KC) = 108 * 87 – 108 * 108 / 7,569  – 108 * 108 = 9,396 – 11,664 / 7,569 – 11,664 = - 2,268 / - 4,095 = 0.55 
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The second method is based on the state administrative divisions (e.g., Menbij see C5.D and 
C5.G.2) and/or on the state irrigation projects divisions (e.g., the 21,000 ha project see C5.J), to 
derive the accuracy of the correspondence between the derived statistical numbers from the auto-
mated classification of remote sensing data and those human-based statistical records. 

The correspondence degree for a specific season at an administrative-scale was measured by calcu-
lating the Percent Error (PE): 

 

PE is calculated as: the percent proportion of the variation between the remotely sensed area esti-
mate (predicted) and the surveyed area estimate (observed) to that of the surveyed area estimate 
(observed) for each method for each year within a state administration’s boundaries. 

After finishing the automated classification process, and obtaining the results and evaluations, re-
sults were compared with statistical records on the level of the three governorates (Aleppo, Ar-
raqqa, and Deir Azzour), on the administrative region level (e.g., Al-Bab) in each governorate, and 
on the level of the natural borders of agricultural stabilization zones within the borders of the three 
governorates and their administrative regions. Finally, these statistical records were reported on 
the level of the irrigation agricultural projects’ borders. The next diagrams (Fig. 5.64, Fig. 5.65) 
show the structure of the statistical process in Syria in general. 

 
Fig. 5.64: The major spatial levels of collecting the statistical information about various LULC-features (Source: Mod-

ified from: CBS, 2008) 
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Fig. 5.65: The major structural levels of collecting the statistical information about various LULC-features (Source: 
Modified from: CBS, 2008) 
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Chapter 6: Results, analysis and discussion  

This chapter deals essentially with the results of this thesis, that are then followed with analysis 
and discussions. 
This chapter presents the various LULC-features classification results (the wide major classes, the 
irrigated areas development mapping, and the small detailed agricultural classes), and their accura-
cies. Factors which influence the classification results are also discussed. Chapter 6 illustrates the 
various LULC- change detection mapping results (pre-classification approach results and post-
classification approach results), and discusses the successes and the limitations of applying the 
various remotely sensed data used in this study, to satisfy investigation into the objectives of the 
thesis. 
Statistical records do not contain all elements of the irrigation projects. The second step in this 
research involves employing remotely sensed data to obtain statistical numbers which represent 
the areas in over past periods. Here, again, emerges the integration between statistical data and 
remote sensing data in study land uses, distribution of natural coverage and its change across time. 
In the first step (see C5.J), statistical numbers have been useful in the spatial determination of the 
spread of the targeted needed classes, and are represented in the automated classification process 
in order to represent the spectral characteristics of all classes. In addition to the utilization of the 
total statistical records in evaluation, the accuracy of the classification needs to be determined 
through comparison of the final results of the automated classification with the results of the tradi-
tional human-based survey (i.e., the statistical records). The second step, after obtaining the train-
ing-samples from the irrigation projects which have statistical records or by using the available 
GPS-points as training-samples, is to determine the statistics of the regions which have no gov-
ernmental statistical data. 

A. LULC-classification 

The spatial resolution of LANDSAT 30 m makes LULC-mapping in some situations difficult as 
compared to other platforms such as IKONOS (4 m), SPOT-5 (2.4 m), and QUICKBIRD (less 
than 2 m) (Jensen, 2005). Some parts of the ERB have strips of cultivation areas (planted: various 
crops, non-planted: fallow or drilled), and natural vegetation, that are less than 30 m in width 
and/or length (see Fig. 5.29), which were not mapped explicitly using the LANDSAT-sensor. This 
highlights a need to adopt more high-resolution images for this purpose, but unlike other remote 
sensing platforms (e.g., IKONOS, and ASTER), the LANDSAT-sensor can allow long term moni-
toring using data from the 1970s up until to present day (Jensen, 2005). 

1. The broad major LULC-features  

An ERB-map has been created which represents the state of five major LULC-features for the 
years 1975, 1987, 2005 and 2007. Table 6.1 and Fig. 6.1 provide a statistical overview of the 
LULC-distributions. The majority is occupied by bare lands, followed by cultivated areas, natural 
vegetation areas, natural water-bodies, and finally, artificial surfaces. The total area of these major 
classes is 5,033,537 ha. 
Table 6.1: Overview of the LULC-occupations rate in several years 

 1975 1987 2005 2007 
Cultivated Areas 1,123,268 1,316,117 1,670,625 1,783,286 
Natural Vegetation 562,890 710,093 686,718 403,113 
Artificial Surfaces 413,204 255,140 18,312 89,772 
Bare Areas 2,843,452 2,635,830 2,497,157 2,641,953 
Natural Waterbodies 90,723 102,730 160,725 109,580 
TOTAL 5,033,537 5,033,537 5,033,537 5,033,537 
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Fig. 6.1: Illustrated overview of the LULC-occupations rate in several years 

Irrigated Aleppo’s eastern plains. These plains are irrigated from the Euphrates River by pumping 
water from Lake Al-Asad. They extend from the south of Aleppo (near the Tall Addaman town) to 
the township of Maskana. The southern and southeast borders of the plains are formed by Al-
Badia. The marsh of Al-Jabboul that lies east of the city of Assafira separates those irrigated plains 
from the southern Al-Hass mountain plains which extend to the beginning of the Syrian Desert 
(Al-Badia). Agriculture in the Al-Hass mountain plains often relies on rain-fed cultivation such as 
wheat, barley, lentil and cumin, with the omission of cotton. The Al-Badia lands that lie on the 
borders of the projects of east and west Maskana are protected pastoral lands, and cultivation with-
in them is restricted to secure pastures for animals. The irrigated lands are bordered from north by 
a large major irrigation canal that transports water from Lake Al-Asad. North of this canal are rain-
fed plantations, and in some places, artisan wells upon which the cultivation of vegetables, sum-
mer, and winter crops rely in small rates. Here, only one winter crop is planted - either wheat or 
barley - as ground water is rare and does not cover the need for irrigation of both crops. Recently, 
cumin has begun to be grown in the area and many farmers have started to cultivate olive trees, 
which require little water. These rain-fed cultivations extend from the irrigation canal in the south 
to the Turkish borders in the north. 
A new project, begun in 2007 aims to redirect part of the Euphrates from the basic canal in Arbid 
Kabeer toward the north, to the Tadif and Al-Bab plains and ending at the village of Bershaia. This 
project will irrigate nearly five kilometres width of agricultural lands, using the modern technique 
of irrigation (dropping). In this area, wheat and cotton are largely cultivated, while peanuts and 
sugar beet are farmed in small spaces. Before the irrigation project, these areas featured bare land, 
void of planting coverage because of the scarcity of water in summer. The East Aleppo plains end 
at the city of Maskana and at the pumping station of Babiri. The plains of Maskana-west follow 
Aleppo administratively. In the winter, wheat, peanuts and sugar beet are cultivated and irrigated 
barley in low rates. The major cultivated summer crops are cotton, yellow corn, and low rates of 
vegetables and watermelon. 
Therefore, these lands are all agricultural lands depending on rain-fed irrigation systems, with the 
exception of the recently irrigated plains of Tadif and Al-Bab, which amount to about 6,700 ha. 
Near Menbij City, there are individual dragging operations by pumps extending about one kilome-
tre or more, which are detectable on the remote sensing data used. 
Al-Badia/the pasture (the fifth agricultural stabilization zone) is largely classified under the gen-
eral class of natural vegetation and a lesser part of bare areas. The Syrian Ministry of Agriculture 
defines this area as one in which precipitation is less than 200 mm per year. Al-Badia is character-
ized by natural plants, which are either seasonal or permanent, with different densities due to natu-
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ral factors such as soil type, water recharge, and the local topography. Human factors, such as the 
density of the grazing, modern plantations and projects to improve pastures also have an impact. 
Most of the wetlands and the water surfaces distributed in the study area were characterized by 
their short-term duration (except the Euphrates River). For instance, the large salty Al-Jabboul 
lake/marsh, and the marshes of Al-Haraik, Al-Adamy and Maraga are all exposed to seasonal or 
yearly floods, depending on precipitation amounts. The borders of these areas were represented on 
the thematic maps according to their expansion in spring season and in a rainy and wet year 
(LANDSAT-TM-May-1987). This was done to show that the areas may sink underneath waters. 
As for temporal valley streams, they can be drawn digitally using topographic maps with 1/50,000 
scale, for example. 
In general, the detection, separation, classification and mapping of the roads (especially, the sec-
ondary roads) and the small villages, which underlie the general class of artificial surfaces, were 
classified with low accuracy, using the available remote sensing data. If this is insufficient for oth-
er studies about the ERB, topographic maps offer the possibility of digitalization, from which the 
data can be extracted with very high accuracy. The use of other remotely sensed data with very 
high spatial resolution (e.g., IKONOS) is also recommended. 

The most important problem in the separation and classification of the Earth features in the study 
area is the classification of the marginal land. The ability to classify these lands is linked to several 
factors. 
The temporal factor: some lands were covered with temporary natural vegetation that grew during 
spring and at the beginning of summer (from March to early May). There were also very small 
areas covered with seasonal and permanent vegetation. Some of these areas could not be spectrally 
separated or classified from the surrounding bare areas because their spectral and spatial resolu-
tions were insufficient. Another reason was the dispersion of vegetation that dominated the spec-
tral reflectance of dry soils, particularly those that had light colours. Also, because of the presence 
of the natural vegetation during the synchronism season with cultivation of winter crops, there 
emerges the problem of spectral integration/mixing of these vegetation with one or more types of 
the agricultural crops classes. The presence of these marginal lands in the sensory data of August, 
led to the disappearance (or semi-disappearance) of the spectral correlation problem between the 
marginal lands that were covered with the temporarily natural coverage of vegetation during the 
spring months. Between the lands with agricultural crops this natural coverage almost vanished in 
August because of the absence of precipitation and domination of drought. However, in contrast, 
the remotely sensed data taken in August had the problem of spectral correlation of the marginal 
lands with the spectral characteristics of the fallow lands, especially if they were covered with 
light soil. 
The spatial factor: the presence of these lands within the irrigated agricultural projects increased 
the problem size since more details were required concerning the credited classification system 
levels, where green areas were classified into several classes/agrarian crops. The presence of mar-
ginal land outside the borders of the irrigated areas was a secondary problem with only slight ef-
fects (here, a general degree of classification was required, i.e., five classes only, where green are-
as were classified into only two agricultural lands with all of their crops and classes, and natural 
vegetation lands). 
The climatic factor: the rain-element determined prevalence, location and density of the natural 
vegetation, and as a result, it controlled the spectral behaviours which changed permanently ac-
cording to time, place, kind of soil and amount of precipitation. Consequently, the spectral behav-
iour of these natural plants might look similar and correlate with a spectral behaviour of a crop 
(barley for example). This behaviour is likely to change across time from one year to another, and 
perhaps even in the same season and location/field, since, the natural plants may correlate with 
other spectral response of crops other than barley (e.g., wheat). 
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LANDSAT-MSS-June-1975 data. By classifying the study area using several scenes included in 
one mosaic-scene, it was possible to make classifications for only three classes (i.e., the cultivated 
areas, uncultivated areas and water areas). There was a mixing between cultivated and uncultivated 
areas, particularly, in the inactive volcano cones area, which is found to the east of the city of Ar-
raqqa, where dark colour soils are interrelated with fallow lands. Also, there were mixing and mis-
classification concerning water and cultivated areas, particularly in river areas with narrow width 
and shallow depth. It was possible to integrate the volcano area into the uncultivated areas by 
manually drawing the borders of the area in the form of vector-shapes. There was also significant 
mixing between fallow and bare areas, meaning the separation and classification between artificial 
surfaces and bare areas was impossible. 
Each scene was classified separately after sub-setting based on the borders of study area. After 
that, classification results scenes were collected in one mosaic-scene (Fig. 6.2). Thus, the classifi-
cation results were better rather than the above mentioned situation, as it was possible to obtain the 
five needed general classes. These results were improved for several reasons: technically, return-
ing to the used remotely sensed data itself, where, whatever the quality of the present algorithms to 
correct satellite scenes that contain differences in their radiometric characteristics, they were not 
accurate 100 % of the time. Hence, using every scene separately ensured the spectral behaviour 
towards all Earth surfaces features (and the probable variations within each feature alone). The 
natural reasons for this included: The large size and extension of the study area and its relation 
with the geographical location that controlled the natural climatic characteristics (especially the 
precipitation-factor), led to variation in Earth surface features and consequently in their spectral 
behaviour on satellite images. This is turn provided more details and information within the image 
but with the decreased possibility of spectral separation between the features of interest (indicating 
that, spectral separation increases or decreases according to the used sensor and its techniques). 
One of the negatives reflected by the classifying of each scene alone was the emergence of sepa-
rating borders between two neighbouring scenes after the mosaicing-process, which meant there 
was no continuity in representing the prevalence of features and classes naturally and spatially. 
This problem was limited by use of a “majority-filter”. 

 
Fig. 6.2: The spatial distributions classification of the five major LULC-categories in the ERB for the data of LAND-

SAT-MSS acquired in June-1975 
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LANDSAT-TM-May-1987 data. This coverage was one of two coverages (in addition to the 
LANDSAT-TM-May-2007 coverage) which were used to produce a map of the change detection 
which has occurred in the past 20 years, through the application of the post-classification change 
detection approach. During the classification of both coverages into the five basic classes (Fig. 
6.3), there was a mistake in classifying some areas of rain-fed cultivations as natural plant lands, 
because the most rain-fed plantations have a low density vegetal biomass, making them close to 
that which characterizes natural plants. 
There was an increase in ratio of classification (over-classification) of the artificial surfaces specif-
ically in volcano areas and Lake Al-Asad’s banks, and also in some bare areas. The reason for this 
is that as is the case with the MSS-data, the negation or the lack of success ratio of radiometric 
correction/normalization imbued the radiometric properties of the same land features distributed in 
the several satellite scenes (i.e., those that construct the mosaic-scene), with similar or at least 
enough approximate compatible value/s. Thus, to overcome this problem, it was necessary to clas-
sify each image alone and then create mosaic-processes of scenes of the automated classification 
results. 
The mixing between the natural vegetation class and the rain-fed based crops areas was lesser than 
it was in the LANDSAT-TM-May-2007 coverage. Also, the total water area was lesser than it was 
in the 2007-coverage, because of the recently constructed dams. There were areas located in the 
five agricultural stabilization zones, that classified in 1987-coverage as cultivated, but were reclas-
sified in 2007-coverage as natural vegetation and/or bare areas. This was related to the prevention 
of agriculture after 1990 in the fifth agricultural stabilization zone. 
There was also (using the all available remote sensing data for this study) a problem in separation 
and misclassification between fallow and bare areas with dark soils colours. 
The ability to separate the inactive volcanoes area from the dark colored fallow fields and classify 
them, is better rather than with the MSS-data, because the higher spatial and spectral resolution of 
TM-data. 
Another problem detected while using TM-data was correlation between the Euphrates River wa-
ters in the shallow and less wide areas because of the number of the training samples concentrating 
on cultivated lands at the expense of the water areas. However, this problem was overcome by 
increasing the number of the representative training samples of the water, which were distributed 
suitably over the whole borders of Euphrates River. 

 

Fig. 6.3: The spatial distributions classification of the five major LULC-categories in the ERB for the data of LAND-
SAT-TM acquired in May-1987 
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TERRA-ASTER-May-2005 data fused with LANDSAT-ETM+-May-2005 data. These data were 
found to be optimal in classifying the ERB-study area to the five general LULC-classes (Fig. 6.4), 
especially for classifying the artificial surfaces which had been classified with poor accuracy using 
the three other data-coverages. Thus, their outcomes of classification can be considered as a base 
when more accurate statistical information is required about the distribution of the general classes 
within the ERB. 

 

 

Fig. 6.4: The spatial distributions classification of the five major LULC-categories in the ERB for the data of TERRA-
ASTER fused with LANDSAT-ETM+/SLC-Off/corrected acquired in May-2005 

LANDSAT-TM-May-2007data. There was a problem in spectral separation between the inactive 
volcanoes area with dark colour and the fallow lands. Yet, after drawing a large ROI in the volca-
no area, the spectral separability increased from 1.61 to 1.78. This accentuated the high signifi-
cance of the process in selecting the training-samples and the bases it included (number of the ex-
perimental areas that represented each class, area or total areas of the samples for each class, the 
shape of the samples whether pixel or polygon, and the geographical spatial distribution of these 
training samples within the study area). 

There was a limited spectral correlation between natural vegetation and the cultivated areas, par-
ticularly those lands of rain-fed plantations, because of their similarity in the green vegetation bio-
mass (Fig. 6.5). 
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Fig. 6.5: The spatial distributions classification of the five major LULC-categories in the ERB for the data of LAND-
SAT-TM acquired in May-2007 

2. The temporal development mapping of the irrigated areas  
In Syria, the majority of irrigation projects were devised for two main crops, wheat in winter and 
cotton in summer. However, since the 1990s other crops have emerged, such as yellow corn, sun-
flower, peanuts and watermelon. These new species have started to compete with the two main 
crops, because of their better financial outcomes and the possibility of farming fields for three sea-
sons instead of two. 
Fig 6.6 presents the temporal development of the irrigated areas for the years 1975, 1987, 2005, 
and 2007 using different remotely sensed data. 
Table 6.2 presents the statistics of the extension of the irrigated areas over different times. It pre-
sents also the areas rates of the other two general classes, i.e., uncultivated areas and water. 
Cultivation of sugar beet within the irrigation areas has clearly decreased (Table 6.3), because the 
high salinity of soil and irrigation water, which make the crop less sweet. At present, this crop is 
mainly used as animal feed. 
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Fig. 6.6: The final irrigation mapping thematic maps, which explain the temporal development of the spatial distribu-

tion expansion of the irrigated areas during the last three decades using various remotely sensed data 
Table 6.2: The areas rates of the three wide existing general classes based on the irrigated areas level 

 1975 1987 2005 2007 
Cultivated Areas 249,681 301,517 458,288 596,612 
Uncultivated Areas 673,992 607,925 430,129 294,633 
Water 52,030 65,980 87,284 84,347 

 
Table 6.3: The areas rates of the three wide existing general classes and the various agriculture features based on the 

irrigated areas level 
   1975 1987 2005 2007 
Cultivated 
Areas 

  249,681 301,517 458288 596612 

 Trees + Shrubs   2,137 26,148 27,206 
 Herbaceous (permanent- and 

winter- crops) 
  163,402 162,211 262,294 

  Alfalfa  23,608   
  Vetch  2,328   
  Wheat  53,013 131,881 188,688 
  Barley  4,902 19,423 16,299 
  Sugar beet  2,349 7,683 1,803 
  Rain-fed crops  37,707   
  Other crops  39,495 3,224 55,504 
 Fallow   135,978 269,929 307,112 
 Herbaceous (summer- crops)   111,968 183,334 126,207 
  Cotton  67,881 136,392 37,475 
  Corn  33,519 31,198 25,481 
  Other crops  10,568 15,744 63,251 
 Fallow   189,549 274,954 470,405 
 Cropped _Total   301,517 371,693 415,707 
Uncultivated 
Areas 

  673,992 607,925 430,129 294,633 

Water   52,030 65,980 87,284 84,347 



Chapter 6: A. LULC-classification  
 

172 

In Syria, the majority of irrigation projects were devised for two main crops, wheat in winter and 
cotton in summer. However, since the 1990s other crops have emerged, such as yellow corn, sun-
flower, peanuts and watermelon. These new species have become competitive with the two main 
crops because of their better financial outcomes and the possibility of farming fields for three sea-
sons instead of two. 

Cultivation of sugar beet within the irrigation areas has clearly decreased (Table 6.3), due to the 
high salinity of soil and irrigation water, which make the crop less sweet. At present, this crop is 
mainly used as animal feed. 

The agrarian plains directly on the banks of the Euphrates River, specifically, those extending 
from Arraqqa to Deir Azzour, are relatively small extended plains in a north-south direction. They 
are mainly limited between high rocky cliffs (old river terrace) in the south and the Al-
Badia/pasture in the north. After passing the pasture Al-Badia, the agrarian lands emerge again in 
the second, third and fourth agrarian settlement areas. The river plains are characterized by their 
very small fields and variation of crops even in the one field. Many farmers divide their fields into 
parts - a section for economic income, one for providing animals with food, and another for vege-
tables and fruit for domestic use. These plains are crossed by lots of trees and scattered houses. 
These factors decrease the ability of the used satellite data to discriminate various interrelated land 
uses, to classify them and map their borders and spatial prevalence. 

There are some small areas within the project of west Maskana which were classified as cultivated 
irrigated lands in 1987, although investment in this project began after this date. These irrigated 
areas are centred in valleys and seasonal small rivers (e.g., Quieck and Azzahab), while others 
depend on artisan wells for irrigation. 

3. Distinguishing, classification and areas measurement of the strategic crops 

LANDSAT-TM-May-1987 data. The separability and classification of alfalfa during its presence 
with the winter crops is higher than when it is included with summer crops, since alfalfa mixes 
spectrally with corn. Hence, the cultivated lands with alfalfa are gathered to the created mask for 
trees (i.e., fruit, poplar trees, grapevines, and other trees and shrubs located in cities, residence 
areas, and on the Euphrates River banks). 
Some areas which are considered as agriculturally uncultivated, such as the mask created from 
sensory data taken in May for uncultivated areas, were shown as cultivated lands on satellite imag-
es taken in August. Hence, an error in automated classification results due to the masking-process 
has been made. 

The majority of winter and summer cultivation is centred in Deir Azzour governorate (Fig. 6.7); 
winter vegetable areas are remarkably rare in Arraqqa; instead while cultivation increases in sum-
mer. Sugar beet propagation is focused in Deir Azzour, while in Arraqqa there is comparatively 
little. Corn, cotton and sesame are equally distributed throughout the three governorates. Barley is 
the major crop among rain-fed crops, followed by wheat, lentils, cumin and chickpeas. 

The spectral separability between vetch and barley is fair but not good (1.70) because of the inter-
relation of their planting in some areas, where vetch plant (Thamilip/charged) and barley are both 
considered forage crops. The separability between irrigated barely and the rest of the rain-fed 
crops is good to some extent (1.83). 
There was difficulty in the separation between the light fallow lands (as the training samples were 
selecting on purely fallow areas) and the uncultivated areas, including the artificial surfaces within 
the irrigation areas, to build the mask that represents the cultivated areas, under which the classifi-
cation was carried out for agriculture features. To overcome this, the merging of training samples 
of both fallow and cropped areas offered better results in separation. 
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The differentiation in the spectral response of the winter crops (and the variation within each type) 
was limited by the early periods of vegetative germination of crops (March), which increased con-
tinuously until they reached their peak/s during April and early May, and then began to decline and 
disappear. 

LANDSAT-TM-August-1987 data (Fig. 6.7). The problem of spectral correlation and separation 
between the uncultivated areas and the fallow was raised whether using remotely sensed data of 
May or August. It was, in general, less effective in August-data, where the separability reached 
1.85, and where the most correlation was seen within the artificial surfaces. Here the question was 
raised “Why are the uncultivated areas again classified since the classification method relies on the 
hierarchical approach using the mask-process, which separated the uncultivated areas from the 
cultivated areas (including the fallow) in the previous classification level?” 
The answer, previously mentioned (see C5.G.1.2.1), is that the hierarchical approach of classifica-
tion has its drawbacks that lead to mistakes in the results just like any other approach. Accumula-
tive errors result in those negatives brought by production/extraction of the mask’s layer either 
counting on results of supervised or unsupervised classification, NDVI or others; or where, these 
credited approaches cannot reach a degree of perfection in spectral separating of the Earth surface 
features or the other classes of interest. This can also occur if these traditional approaches of clas-
sification have the ability to reach a suitable rate in spectral separation and classification. The hier-
archical approach was not used in the classification process or in the creation of the masks at each 
classification level as it costs effort and time. As suggested in Fig. 5.35, the classification process 
was repeated on the classes which were not classified and completely extracted during the last 
classification process. The use of this approach was to increase the classification accuracy (the 
final product that resulted from collecting outcomes of each level and stage of the hierarchal clas-
sification), through a decreasing number of features and classes which exist in the study area, ei-
ther by eliminating some features out of classification process (i.e., insignificant classes in irrigat-
ed agricultural projects such as bare areas), or postponing classification to the next stage if spec-
trally possible. Here, the significance of the accredited methodological approach in building up the 
used classification system emerged, in the reduction of the number of classes in each stage of clas-
sification and the securing of some reduction in the spectral mixture. 
One of the positives of the hierarchal principle is to reduce the effect of the geographical location 
and the natural and climatic properties that affect the spectral behaviour of the studied Earth sur-
face features, specifically, if the study area is within a wide geographic distribution, peppered with 
large diversion in natural and climatic characteristics. For example, making a mask of the distribu-
tion of irrigated plantations gives a natural harmonious area, since all the cultivations here are irri-
gated and the majority of soils have close colours and close content of humidity, etc. The greater 
the study area with a geographic and spatial distribution featuring the same or similar natural and 
climatic characteristics, the more likely homogeneity will be achieved in the spectral response of 
the Earth surface features contained in the study area. This trait does not exist in the geographical 
and spatial distribution of the Euphrates River Basin, since, for example, the spectral behaviour of 
bare areas will be in the dozens. 

One of the more significant positives of the masking process was the reduction in the problem of 
spatial correlation which produces classification errors, as well as separating borders areas and/or 
the mutual areas between two classes or more (the negative impact increases wherever the spatial 
resolution decreases and the spectral variation rises). This was most effective when the areas of the 
class (other crops) were over-classified. Taking into consideration that the mask layer resulted in 
application of the NDVI has meant a few of the agricultural areas were neglected. 
Making automated classification on sensory data after applying the mask (through use of the op-
tion: apply mask in ENVI-program) and integrating the mask layer with/or on the satellite scene 
with spectral bands (layer stacked), will decrease the separability between the spectral signatures 
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created from the training samples. Consequently, automated classification was conducted directly 
on sensory data through selecting the option of using mask in the ENVI-program. 

The classification of water was more effective when using the remotely sensed data acquired dur-
ing the summer season (e.g., August). 

The reason that the corn was over-classified in some cases, was probably to do with the mixture 
between the lands that were cultivated previously with wheat during the winter season. This oc-
curred when the wheat residues were not burnt or tilled, and the fields remained covered in yellow-
ish dry residues (straw). In addition, some plants grew naturally after the harvesting of the wheat. 

 
Fig. 6.7: The classification of the major permanent, winter and summer irrigated crops within the irrigation projects in 

the ERB for the data of LANDSAT-TM acquired in May and August 1987 

TERRA-ASTER-May-2005 data fused with LANDSAT-ETM+-May-2005 data. There was no 
negative or positive impact for using thermal spectral and panchromatic bands on the spectral dis-
crimination and the separation between various crops, trees and other surface features in the study 
area. Therefore, they were dispensed in the automated classification, especially, the panchromatic 
bands, to decrease the time of classification. Hence, participation of these bands became a negative 
factor regarding to the time taken required for classification. 
An error was also detected in classifying some constructional areas as well as some limited areas 
from the bare areas considered as fallow lands (Fig. 6.8). 
Sugar beet was perfectly classified. Other crops classes were broken in form of lines among fields, 
either in the shape of trees, shrubs, bushes and fences, or as natural plants and crop residues. 

The spectral mixture between wheat and barley was found mostly in the higher areas of the ERB 
(fortunately, the cultivation of irrigated barley is rare here), while further down the basin in the 
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Deir Azzour governorate, the spectral separation ratio was reported as good because the majority 
of irrigated barley is a pastoral barley. 
There was no large difference in the spectral separability and discrimination between the various 
agrarian crops in areas featuring irrigation projects and large, organized fields, either using the 
TM-data with spectral resolution of six bands and spatial resolution of 30 m, or the AS-
TER/ETM+-data with the same spectral resolution and a higher spatial resolution of 15 m. There 
was also no significance in obtaining or using sensory data of larger spatial resolution than 30 m; 
consequently, the negatives of this were the increases in time, cost and effort. The ASTER-data 
with the spectral resolution of three bands and a spatial resolution of 15 m were tried on large area 
fields, and the outcomes of spectral separability and classification were compared with data out-
comes of the TM/6-bands/30 m. The result was that the high spatial resolution 15 m could be dis-
pensed with, without lowering the spectral separability among crops. 

However, a high spatial resolution data, such as ASTER/ETM+-15m, was found to be beneficial 
when studying ancient and tiny agrarian areas, such as those centred along the banks of the Eu-
phrates (from the Euphrates Dam near the city of Athawra to the border with Iraq). For this kind of 
research, it may even be preferable to use even higher spatial resolution while preserving the six 
spectral bands. 

TERRA-ASTER-August-2005 data fused with LANDSAT-ETM+-August-2005 data. The ap-
pearance of fruit, poplar and other trees within dwelling areas and their margins were seen in a 
better and clearer way on satellite images acquired during summer (August) (Fig. 6.8) in contrast 
to those images acquired in April and May. There was a severe decline in the spectral properties of 
forest trees that previously existed in multiple places along the banks of Lake Al-Asad and the 
Euphrates River, in favour of the power and superiority of the spectral reflectance of light soil. 
This is due to the lowering of moisture and the dryness of the green mass of the forest trees (some 
are even crusty), in addition to an increase in sunshine levels. 

The appearance of fields within the irrigated agriculture projects in very light colours made them 
look as if they were bare areas, while they were in fact wheat and barley fields seen after harvest 
(covered by the green mass of ex-crops that remains a very light yellow colour). These fields had 
been left for grazing purposes or the residue would be collected for use as hay during winter. In 
summer, these fields appeared after harvesting as a black colour as if they were water surfaces 
because of the residue left after burning. Here, the importance of the analyst’s role in knowing his 
or her study area is important. 
The third appearance the wheat and barley fields after harvesting was in a form in which the dry 
yellow remains of green mass (straw) of the two crops interacted with several kinds of natural 
plants that grew in these fields, benefitting from the remaining soil moisture. This occurred when 
the fields were not tilled. This field shape had a negative impact on summer crops classification, as 
the growing natural plants have a high vegetarian intensity, high vital mass and similar spectral 
behaviour as the some of the summer crops’ spectral response. These fields were classified as fal-
low. 

The cultivation of trees for agriculture purposes was centred in particular within the irrigation pro-
jects (especially poplar trees), in addition to their distribution along the main streets, between the 
agrarian fields (as separators between the fields or as wind barriers), and along some irrigation 
canals that were largely within the irrigation projects or reclaimed lands. This also related to the 
agriculture of forest trees (pine and cypress) in particular on Lake Al-Asad’s banks. 

Aquatic plants appeared clearly and were distributed more evidently within the August coverage in 
contrast to May, either in the Euphrates River waters (mosses were seen in shallower locations) or 
within prevailing swamps stretching out along the river, where the deserted river elbowed. These 
were seen along the river’s bank in an almost continuous linear way. Climatic factors played a 
fundamental role in this by providing moisture and temperature elements, with the ratio of aquatic 
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plants increasing in August due to the high number of sun accelerating the growth and density of 
the plants. 

The increase of variation and differentiation in reflectance and in the spectral behaviour of plants 
(crops and trees) within the coverage period of August was greater than that found in the May da-
ta. 
Grapevine lands were classified under the orchard class. This was a new type of agriculture culti-
vation in the study area, which started at the beginning of this present decade in limited areas. 
The appearance of some tree-lands (especially, the orchards) on satellite images is unclear, alt-
hough these areas were irrigated and took on a regular and organized engineering shape. This was 
because of the disproportion among adapted distances in the cultivation of trees and their spacing 
from each other, and the available spatial resolution of the used remotely sensed data. They were 
in most cases classified as fallow or sometimes as a type of crop, although not to tree class. 
The problem of classifying poplar trees was represented in that a land plot may be planted with 
trees of differing ages. Additionally, permanent cutting of part of these trees to be used in the pa-
per, pulp and wood industry led to a mixture in classification from poplar trees to fallow. The 
problem lay not in how to separate these areas spectrally but in spatial separation resulted in con-
tinuous alternation between the two classes within small spatial areas, which allowed some errors 
to occur in evaluation and the calculation of distribution area. The spatial resolution of the availa-
ble remotely sensed data did not have the ability to represent this alternation and introduce the 
spatial boundaries to separate the two classes.  

This coverage was found to be the best for separation between the uncultivated areas and the fal-
low areas. 

 
Fig. 6.8: The classification of the major permanent, winter and summer irrigated crops within the irrigation projects in 

the ERB for the data of TERRA-ASTER and LANDSAT-ETM+ acquired in May and August (2005) 
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LANDSAT-TM-August-2007 data. Sand storms emerged on the August data, which caused great 
changes in the spectral characteristics of the elements that needed to be classified. This impact was 
on p172r035 acquired in 07.08.07 along the extended area between Arraqqa and Deir Azzour. 
It was noticed that in the past years within the irrigation projects (for instance, the previously ref-
erenced project of 21,000 hectares), the cultivated areas with specific crops were significantly 
smaller (Fig.6.9) in contrast to the beginning of these projects’ establishment and for long periods, 
where regular agricultural policies were followed. The reason for this is likely to be that the gov-
ernmental foundations who established the projects have since transferred management of the pro-
jects in favour of the farmers, who are not, in turn, committed to any agrarian policy and rotations 
accredited by the Ministry of Agriculture. This matter had a critically negative impact on the 
crops’ classification using available data. The spatial resolution became less effective because of 
the limited area specified for the various crops’ cultivation. This was the same negative impact in 
consideration to the spectral factor, because of the increase in the types of crops seen in this area 
(possibility of setting two comparative scenes of 1987and 2007). 

 
Fig. 6.9: The classification of the major permanent, winter, and summer irrigated crops within the irrigation projects in 

the ERB for the data of LANDSAT-TM acquired in May and August 2007 

Table 6.4 presents the areas rates of the three broad existing classes (cultivated areas, uncultivated 
areas, and water) and the various agricultural features (permanent-, winter-, and summer- crops) 
within each adapted irrigation project borders for the time periods 1975, 1987, 2005, and 2007. 
Finally, this table presents the total area of each above mentioned class within the whole adapted 
borders of the different irrigation projects for the same four time periods (see too Table 6.2 and 
Table 6.3). 
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Table 6.4: The areas rates of the three wide existing general classes and the various agriculture features based on the individual 16-irrigated projects level 

 
Cultivated 
Areas/ha                 

Unculti-
vated 

Areas/h 
Wa-

ter/ha 

  
Permanent 

crops   
Winter 
crops        

Summer 
crops       

 Total 
Trees+ 
Shrubs Alfalfa T Wheat Barley 

Sugar 
Beet Vetch 

Rain-
fed-

crops 
Other 
crops T Fallow Cotton Corn 

Other 
crops T Fallow T T 

17000ha-project and 
the state farm_75 5 n n n n n n n n n n n n n n n n 46325 0 

1987 15648 800 767 1567 4359 2310 201 1026 2034 367 10297 3784 3453 311 20 3784 10297   
2005 23479 2565 0 2565 12904 673 8 0 0 2321 15906 5008 3966 1041 1 5008 15906   
2007 26367 4364 0 4364 12877 1033 116 0 0 2172 16198 5805 923 23 4859 5805 16198   

Al-Asad Lake 
Area_75 3175 n n n n n n n n n n n n n n n n 37845 38124 

1987 523 5 47 52 305 0 0 8 1 19 333 138 105 3 30 138 333   
2005 4544 462 0 462 2412 193 25 0 0 3 2633 1449 1167 144 138 1449 2633   
2007 7865 2490 0 2490 3030 513 27 0 0 754 4324 1051 267 118 666 1051 4324   

AL-Balikh Ba-
sin_Beer Al-Hishm 
section_75 164 n n n n n n n n n n n n n n n n 24909 0 

1987 6518 0 492 492 1306 1204 8 651 1733 2 4904 1122 1010 62 50 1122 4904   
2005 10015 313 0 313 4633 207 124 0 0 82 5046 4656 3748 905 3 4656 5046   
2007 8584 338 0 338 5060 272 39 0 0 74 5445 2801 1365 22 1414 2801 5445   

Al-Balikh Ba-
sin_Lower mean 
canal section_75 8174 n n n n n n n n n n n n n n n n 21771 10 

1987 2759 0 1 1 1000 35 14 29 163 92 1333 1425 783 567 75 1425 1333   
2005 15067 184 0 184 4949 648 57 0 0 0 5654 9229 7561 1654 14 9229 5654   
2007 11124 643 0 643 4408 132 28 0 0 71 4639 5842 3331 447 2064 5842 4639   

Al-Balikh Ba-
sin_section-2_75 8924 n n n n n n n n n n n n n n n n 45373 197 

1987 16674 34 1165 1199 2955 0 0 0 64 175 3194 12281 5089 1150 42 6281 9194   
2005 14146 1152 0 1152 3927 543 271 0 0 0 4741 8253 6534 1074 645 8253 4741   
2007 17268 1715 0 1715 9754 1287 98 0 0 11 11150 4403 1465 1449 1489 4403 11150   

Al-Balikh Ba-
sin_section-3-
Western_75 0 n n n n n n n n n n n n n n n n 2174 0 

1987 252 0 57 57 60 2 0 12 17 0 91 104 95 9 0 104 91   
2005 567 16 0 16 332 29 15 0 0 0 376 175 181 3 0 184 367   
2007 924 32 0 32 532 66 2 0 0 37 637 255 45 0 210 255 637   

Al-Balikh Ba-
sin_section-3_Mlihan 
and Aadman area_75 0 n n n n n n n n n n n n n n n n 46599 0 

1987 35 0 16 16 0 0 0 0 11 8 19 0 0 0 0 0 19   
2005 2159 17 0 17 1651 197 7 0 0 0 1855 287 285 2 0 287 1855   
2007 3749 617 0 617 3058 42 0 0 0 0 3100 32 32 0 0 32 3100   

Al-Balikh Ba-
sin_section-4_75 168 n n n n n n n n n n n n n n n n 86564 0 

1987 144 0 28 28 5 0 0 0 78 1 84 32 0 0 32 32 84   
2005 6552 51 0 51 3790 88 8 0 0 2 3888 2613 1908 705 0 2613 3888   
2007 13997 800 0 800 10637 1173 121 0 0 117 12048 1149 498 2 649 1149 12048   

Al-Balikh Ba- 15990 n n n n n n n n n n n n n n n n 38897 86 



 

179 

sin_sections-5 and 
6_75 

1987 13040 23 1810 1833 4637 48 549 5 4302 297 9838 1369 594 742 33 1369 9838   
2005 25488 290 0 290 8732 733 139 0 0 10 9614 15584 10918 4654 12 15584 9605   
2007 28909 1436 0 1436 14868 1821 210 0 0 497 17396 10077 6135 334 3608 10077 17396   

Arraed project_75 11735 n n n n n n n n n n n n n n n n 38907 135 
1987 20243 186 2808 2994 6156 480 113 278 1397 113 8537 8712 7484 1105 123 8712 8537   
2005 20194 2396 0 2396 6960 1003 1434 0 0 94 9491 8307 7113 888 306 8307 9491   
2007 20505 3355 0 3355 10226 394 107 0 0 614 11341 5809 1553 837 3419 5809 11341   

Arrusafa area_75 2914 n n n n n n n n n n n n n n n n 23958 7 
1987 1510 2 344 346 589 2 1 173 86 76 927 237 212 2 23 237 927   
2005 7262 455 0 455 4836 167 70 0 0 0 5073 1734 1543 80 111 1734 5073   
2007 10572 1257 0 1257 7502 268 44 0 0 20 7834 1481 371 111 999 1481 7834   

Lower Euphrates_75 124523 n n n n n n n n n n n n n n n n 63237 3460 
1987 109194 29 4812 4841 6599 0 2 0 3 37218 43822 60531 27706 25236 7589 60531 43822   
2005 109384 7303 0 7303 23125 12162 3791 0 0 1? 39078 63003 47166 6613 9224 63003 39078   
2007 119115 3577 0 3577 20016 6347 461 0 0 49234 76058 39480 9750 13901 15829 39480 76058   

Maskana east_75 0 n n n n n n n n n n n n n n n n 28836 0 
1987 286 0 0 0 0 5 0 0 18 0 23 263 0 0 263 263 23   
2005 12836 654 0 654 7509 169 0 0 0 59 7737 4445 3331 1114 0 4445 7737   
2007 19816 434 0 434 13523 1085 40 0 0 70 14718 4664 1131 6 3527 4664 14718   

Maskana west_75 0 n n n n n n n n n n n n n n n n 84258 0 
1987 18885 15 666 681 476 468 814 6 16077 147 17988 216 190 2 24 216 17988   
2005 56625 504 0 504 26363 1251 70 0 0 618 28302 27819 20434 7371 14 27819 28302   
2007 62205 2500 0 2500 35866 440 335 0 0 510 37151 22554 5763 418 16373 22554 37151   

Middle Euphra-
tes_right and left 
Bank_75 41514 n n n n n n n n n n n n n n n n 6680 2457 

1987 44753 153 5810 5963 10930 4 31 21 66 421 11473 27317 19400 4323 3594 27317 11473   
2005 40035 7796 0 7796 12008 731 1630 0 0 0 14369 17870 10154 2906 4810 17870 14369   
2007 33983 1081 0 1081 20205 775 145 0 0 76 21201 11701 1553 7584 2564 11701 21201   

Upper Euphrates_75 25180 n n n n n n n n n n n n n n n n 53618 7602 
1987 33488 886 3739 4625 13695 341 607 115 11589 552 26899 1964 1758 6 200 1964 26899   
2005 23107 2004 0 2004 7619 617 26 0 0 32 8294 12809 10308 2032 469 12809 8294   
2007 29834 2322 0 2322 16686 512 22 0 0 1218 18438 9074 3279 232 5563 9074 18438   

Sum_1975 249681 n n n n n n n n n n n n n n n n 673992 52030 
Sum_1987 301517 2137 23608 25745 53013 4902 2349 2328 37707 39495 139794 135978 67881 33519 10568 111968 189549 607925 65980 
Sum_2005 458288 26148 0 26148 131881 19423 7683 0 0 3224 162211 269929 136392 31198 15744 183334 274954 430129 87284 
Sum_2007 596612 27206 0 27206 188688 16299 1803 0 0 55504 262294 307112 37475 25481 63251 126207 470405 294633 84347 
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B. Accuracy assessment comparisons 

Table 6.5 shows the final comparison between the various accuracies of classification results. 
There was no classification achieved for the class/es with no accuracy value/s (e.g., alfalfa was 
included in the coverage of 1987 under broadly cultivated, but later the cultivated alfalfa areas 
were very small, thus it was included under the class of other crops). In general, the lower accura-
cies were made using MSS-data, while the higher were found by using ASTER-data fused with 
ETM+-data. Using TM-data, the accuracies were close. The greatest problems were found while 
classifying the artificial surfaces, especially by using MSS- and TM-2007- data. The classification 
accuracy of barley and corn was relatively slight. The details of these classification problems were 
discussed for each LULC-class and for each used remotely sensed data in C6.A.1, .2, and .3. 

Table 6.5: The final overall accuracy of classification results of the general classes, the irrigated areas and the agricul-
tural features (permanent, winter and summer), using various remote sensing data (LANDSAT: MSS and 
TM; and TERRA: ASTER fused with LANDSAT: ETM+) for the years 1975, 1987, 2005 and 2007) 

   MSS-
1975 

TM-
1987 

ASTER and 
ETM+ - 

2005 

TM-
2007 

Irrigated Areas   82% 93% 94% 92% 
Cultivated Areas   82% 93% 94% 92% 
 Trees + Shrubs  - 

 
91% 92% 90% 

 Herbaceous (per-
manent- and winter- 
crops) 

 - 87% 85% 85% 

  Alfalfa - 89% - - 
  Vetch - 79% - - 
  Wheat - 82% 84% 83% 
  Barley - 71% 74% 73% 
  Sugar Beet - 89% 88% 91% 
  Rain-fed crops - 93% - - 
  Other crops - 88% 86% 84% 
 Fallow  - 96% 97% 95% 
 Herbaceous (sum-

mer- crops) 
 - 89% 87% 86% 

  Cotton - 84% 87% 86% 
  Corn - 74% 78% 76% 
  Other crops - 82% 85% 78% 
 Fallow  - 87% 86% 83% 
Uncultivated Areas   79% 87% 90% 88% 
 Natural Vegetation  60% 67% 73% 63% 
 Artificial Surfaces  40% 81% 77% 65% 
 Bare Areas  67% 88% 91% 83% 
Water   79% 92% 89% 77% 

 

For evaluation of the change detection products, for instance, Macleod and Congalton (1998) pro-
posed an adjusted change detection mapping products method for evaluating their accuracy. This 
process is based on Congalton (1991) and requires the regular confusion matrices to be applied on 
bi-temporal resulted change maps. These matrices can represent all combination classes of oc-
curred change. A simplified no-change change matrix was also proposed. 
The essential problem for assessing the accuracy of change detection products is the gathering of 
truth reference data, where the conditions of the initial time period (i.e., 1975) cannot be revisited 
as the land use has been significantly changed. Therefore, accuracy assessment depended on the 
remotely sensed data of the final time (i.e., 2007), in addition to ancillary data. 
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C. LULC-change detection mapping 

This section gives a historical view of the different LULC-features in the study area. It describes 
the rate of their changes over the last 32 years, in particular the irrigated agricultural lands. The 
results are essentially presented by maps, statistics/tables and graphs. 

1. Pre-classification results 

Each change detection process analysis/result, whether a pre-classification approach is used (in 
this section) or a post-classification approach (see C6.C.2), consisted of four major components, 
which were: 
Measure of changes/quantity. This provided the quantity of the occurred change and measured the 
area/s of change/s to provide statistical numbers, i.e., how much was/were the change/s? 
Pre-classification approach results (Fig. 6.10) were generalized but very effective in relation to 
estimating the occurred change on the cultivated areas, especially when these areas were vegetated 
and not fallow. The total change in the whole study area (5,062,082 ha, 100 %) between 1975 and 
2007 was about 600,967 ha (11.93 %), in which 238,646 ha (4.74 %) was changed from natural 
vegetated areas to bare areas, and 362,321 ha (7.19 %) changed from bare areas to cultivated areas 
(especially to irrigated agriculture). Areas recording no change were about 4,461,115 ha, 88.62 %. 
In comparison, the results of the three previously-mentioned approaches generally changed classes 
with those that resulted from applying the post-classification approach (see C6.C.2), but for the 
duration 1987-2007 the total change in the whole study area was about 5,027,722 ha, 99.32 % in 
which 170,454 ha, 3.36 % changed from natural vegetated areas to bare areas; 263,863 ha, 5.21 % 
changed from bare areas to cultivated areas; and areas recording no change were about 34,360 ha 
(0.68 %). 

Nature of changes/quality. This explained the quantity of the occurred change and whether it was 
positive/gain or negative/loss. In addition, the nature of change determined what LULC-feature/s 
was/were changing and to what (Braimoh, 2004). 
Based on the visual interpretation of the change map for the period 1975-2007, in addition to in-
formation obtained during field-work, secondary data and related previous literature, it can be 
shown that the land use which changed the most was agriculture, which increased largely because 
of the construction of irrigation projects among the Euphrates River and on account of a reduction 
in areas classified as bare. The most new agricultural lands were seen in the region near the Eu-
phrates. This was obvious especially in the area of land which extends from the city of Arraqqa 
and the Euphrates Dam in the south toward the Turkish border (including the Al-Balikh tributary) 
in the north. In addition, the area located along the south bank of Lake Al-Asad and the lands lo-
cated along the southern side of the major irrigation canal, which runs from Lake Al-Asad towards 
the city of Aleppo, also experienced significant agricultural growth. 
There were also changes in vegetation cover within the lands of the five agricultural stabilization 
zone (the pastures). Fig. 6.10 describes the nature of changes in LULC from 1975-2007. The result 
can be determined through three categories: LULC- no change, which remained unchanged, i.e., 
no loss and no gain (neutral/zero); LULC- Natural Vegetation to Bare Area change, where the nat-
ural vegetation class area decreased to bare area in 2007, i.e., loss and no gain; and the LULC- 
Bare Areas to Cultivated Areas category, where the cultivated class area increased in 2007 on ac-
count of changes to the bare area, i.e., gain and no loss. 
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Fig. 6.10: Statistics of occurred changes in percentage and hectare, that resulted from applying the pre-classification 

approach using the data of LANDSAT-MSS from June-1975 and the data of LANDSAT-TM from August-
2007 

Spatial distribution of changes/mapping. This provided the clear location and extension of oc-
curred change by mapping and visualizing the area/s of change/s to produce the thematic map/s, 
i.e., where was/were the change/s? 
By differencing the raw data mosaic-image/LANDSAT-MSS-June-1975 (pixel gray values) of the 
initial comparison date from those of mosaic-image/LANDSAT-TM-August-2007, the distribution 
of the three general levels of LULC-changes of interest could be detected, calculated and mapped. 
ArcGIS 9.3 and ENVI 4.6 packages were used for this purpose. Fig. 6.11 visualizes the result of 
the changes. 

 
Fig. 6.11: The three wide major LULC-changes that resulted from applying the pre-classification change detection 

approach for the period (1975-2007) 

88,62% 

4,74% 7,19% 

4461115 ha 238646 ha 362321 ha

No Change Natural Vegetation to Bare Areas Bare Areas to Cultivated Areas

Pre-classification change detection statistics 
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Evaluation of changes/accuracy. This showed the accuracy of the produced change detection re-
sults by assessing the occurred errors which resulted from the adopted approach in change detec-
tion process and by using the general principle of the error matrix, i.e., How effective was the ap-
plied approach to detect the changes? 
As the change classes are relatively general, it was possible to perform the accuracy visually using 
the remotely sensed data itself. Some 250, 200 and 150 testing points were automatically distribut-
ed (random-points) for the three resulted change classes respectively (i.e., no change, natural vege-
tation to bare areas, and bare areas to cultivated areas) over the resulted thematic map (Fig. 6.11). 
Then, the initial remotely sensed image, the final remotely sensed image and the resulted thematic 
map from the differencing process were geographically linked with each other. This was, of 
course, after the geographic registration (see C5.B.1). After that, came the manual step, where 
each point on the thematic map was compared to its land use/land cover in 1975 and again in 
2007, using the visual interpretation of LANDSAT-MSS-June data and the LANDSAT-TM-
August data. The point resulted change class (e.g., bare areas to cultivated) was found to be correct 
only when its use/s in both comparison dates (1975 and 2007) were compatible with the defined 
and resulted description of the change class. For example, it’s the point resulted change class use 
in 1975 had to be as a bare area and then as a cultivated area in the year 2007. However, the the-
matic map that represented the change classes did not include all the possibilities of LULC-
changes (e.g., cultivated areas to bare areas, etc.). Therefore, the class “other” was added for pur-
poses of accuracy (i.e., the initial data), could be used to can represent the rest of the possibilities 
of the LULC-alternations between the two compared dates. The overall accuracy was 86 %. 
This method would be useful for assessment of the accuracy of change detection mapping, where 
it is almost impossible to gather ground and/or reference data for the relatively old dates. 

Table 6.6: Accuracy assessment of pre-classification change detection approach results 
Initial 
LANDSAT-
MSS-data 
(1975) 

Final  LANDSAT-TM-data (2007) Total/ 
possible 

(1) 
 

(2) 
 

(3) 
 

 

No change (1) 230 21 7 258 
Natural 
vegetation to 
bare areas (2) 

13 155 4 172 

Bare areas to 
cultivated 
areas (3) 

3 8 132 143 

Other (4) 4 16 7 27 
Total 250 200 150 600 
 
Overall pre-classification change detection accuracy = 230 + 155 + 132  / 600 = 86 % 
 

 

 
2. Post-classification results 

Measure of changes/quantity. Post-classification approach results (Fig. 6.12, Fig. 6.13, Table 6.7, 
Table 6.8) were more obvious and detailed rather than those resulting from a pre-classification 
approach (see C6.C.1). The total change in the whole study area (5,062,082 ha, 100 %) between 
1987 and 2007 was about 5,027,722 ha (99.32 %). Areas recording no changes were about 34,360 
ha (0.68 %). 
The greatest changes (Table 6.7, Fig. 6.12) were in the artificial surfaces classification with a total 
change of 83.16 %, in which 38.77 % was changed to cultivated areas and 35.08 % transformed to 
the bare areas class; natural vegetation with 68.33 %, where 42.95 % changed to cultivated areas 
and 24.00 % to bare areas; natural water-bodies with 21.45 %, where 13.34 % changed to cultivat-
ed areas; followed by cultivated areas with 17.86 %, of which about 6 % was changed to each of 
the other two classes, i.e., natural vegetation and bare areas. The bare areas class showed the most 
stability over time with 13.89 % change. 
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Three general trends in LULC-changes were found: negative values/loss, in which the represented 
classes were artificial surfaces (-64.81 %) and natural vegetation (-43.22 %); neutral value/stable, 
in which the represented class was bare areas (0.23 %); and positive values/gain, which included 
cultivated areas (+35.49 %) and natural water-bodies (+6.66). 

Table 6.7: LULC-change matrix (%) in the study area for 1987 and 2007 

 
Cultivated 
Areas 

Natural Vege-
tation  

Artificial 
Surfaces  Bare Areas  

Natural Wa-
terbodies  Class Total 

Cultivated 
Areas  82.135 42.95 38.778 10.011 13.34 100 
Natural Vege-
tation  6.59 31.667 4.556 2.775 0.041 100 
Artificial 
Surfaces 1.945 0.019 16.831 0.641 2.86 100 
Bare Areas  6.904 24.005 35.083 86.101 4.977 100 
Natural Wa-
terbodies  1.444 0.069 3.329 0.019 78.543 100 
Class Changes 17.865 68.333 83.169 13.899 21.457 0 
Image Diffe-
rence 35.496 -43.228 -64.814 0.232 6.668 0 

 

Fig. 6.12: Statistics of occurred changes in percentage which resulted from applying the post-classification approach 
using the data of LANDSAT-TM from May-1987 and the data of LANDSAT-TM from May-2007 

Each LULC-class has three general trends (Table 6.8): 1) The stable trend, that represents the un-
changed part of an individual class (e.g., cultivated areas: 1,080,987 ha) over the time period; 2) 
The positive trend (the horizontal direction in the change matrix), which represents the transform 
or gain from the other four LULC-classes (i.e., natural vegetation: 304,983 ha, artificial surfaces: 
98,939 ha, bare areas: 263,863 ha, and the natural water-bodies: 13,703 ha) into an individual class 
such as cultivated lands. Therefore, the total areas of cultivation were 1,783,286 ha in 2007; and 3) 
The negative trend (the vertical direction in the change matrix), that represents the transformation 
or loss from an individual class (e.g., cultivated areas) into one or more of the other four LULC-
classes (i.e., natural vegetation: 86,738 ha, artificial surfaces: 25,600 ha, bare areas: 90,864 ha, and 
natural water-bodies: 19,001 ha). Therefore, the total area of cultivation was 1,303,190 ha. The 
greatest difference was for the class of cultivated areas - 480,096 ha or +35.49 %. 
The state of the land use/land cover in 2007 was expressed in the following areas: cultivated 
(1,783,286 ha), natural vegetation (403,131 ha), artificial surfaces (89,772 ha), bare lands 
(2,641,953 ha), and natural water-bodies (109,580 ha). 
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Table 6.8: LULC-change matrix (hectares) in the study area for 1987 and 2007 

 
Cultivated 
Areas  

Natural Vege-
tation  

Artificial 
Surfaces  Bare Areas  

Natural Wa-
terbodies  Class Total 

Cultivated 
Areas  1,080,987 304,983 98,939 263,863 13,703 1,783,286 
Natural Vege-
tation  86,738 224,868 11,623 73,150 41 403,131 
Artificial 
Surfaces  25,600 1,339 42,943 16,888 2,938 89,772 
Bare Areas  90,864 170,454 89,510 2,269,485 5,112 2,641,953 
Natural Wa-
terbodies  19,001 486 8,493 503 80,687 109,580 
Class Changes 235,129 485,222 212,196 366,344 22,043 0 

 
Fig. 6.13: Statistics of occurred changes in ha, that resulted from applying the post-classification approach using the 

data of LANDSAT-TM from May-1987 and the data of LANDSAT-TM from May-2007 

Nature of changes/quality. For this purpose, the change matrix was generated (Table 6.7, Table 
6.8) based on classified images from 1987 and 2007. It presented the nature of changes of the 
LULC-categories for the period 1987-2007. The results were defined by twentieth detailed combi-
nations of the five general classes. Fig. 6.12 and Fig. 6.13 show the statistics describing the nature 
of LULC-changes for the period 1987-2007. 
Results from the land cover change analysis, carried out from the post-classification approach, 
show that cultivated land increased from 1,080,987 ha in 1987 to 1,783,286 ha in 2007 on account 
of the transformed areas from natural vegetation, bare areas, artificial surfaces and natural water-
bodies lands into managed terrestrial areas. The greatest mistake was in accounting the change 
value in artificial surfaces, especially based on the remotely sensed data obtained in 1987 (TM), 
since this approach was based on the classification results. These results were not efficient in clas-
sifying the artificial surfaces because the low spectral separability within the bare areas. However, 
what is important is that the artificial surfaces (especially the built-up areas) had little spectral mix-
ture with the cultivated areas (especially fallow), since the greatest interest of this study is related 
to it. Also, it was possible to estimate the real artificial surfaces areas from the other two remotely 
sensed data gathered in 2005/ASTER-images fused with ETM+- images and 2007 (TM). 
The change from cultivated to natural water-bodies can be explained, in addition to the errors in 
classification process that exist almost in every classified class. This was due to the changes in the 
water capacity (flooding) of the Euphrates in relation to the water allowed to enter to Syria from 
Turkey, and the natural conditions, such as the actual planted areas and the impacts of the climatic 
elements. It distributes nearly from the river-bed, especially in the upper-Euphrates (Fig. 6.14). 
The change from natural vegetation to cultivated areas can be explained because of the construc-
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tion of the irrigation projects (e.g., the lands of Maskana-east and the 21,000 ha-project). This 
change-class was also found in the marginal lands northeast from Lake Al-Asad to the Al-Balikh 
surrounded areas, where some of these lands had been cultivated or sometimes left as uncultivated 
according to the availability of rains. The change into bare areas can interpreted as being due to the 
climatic factors (precipitation in particular), as most of these lands exist in the five agricultural 
stabilization zones (Al-Badia), i.e., to the east of the Al-Balikh River. The change from artificial 
surfaces to cultivated areas can be seen almost as a misclassification between the artificial surfaces 
(especially the dark appeared civilization areas) and the cultivated areas (the fallow on dark 
soils).The change into bare areas can be analyzed because of the misclassification between the 
dark appeared civilization areas (e.g., the cities) and the dark colored bare areas (e.g., the inactive 
volcanoes area in the east of Arraqqa City), and the misclassification between the light appearing 
areas of artificial surfaces category (e.g., waste dumps and extraction sites) and the bare areas with 
light parent rocks or those that covered with shifting sands (e.g., dunes). The shift from bare areas 
to cultivated lands was because of the expansion in agriculture. Finally, the change of part of the 
water-bodies area into cultivated areas was because the misclassification of the TM-2007 final-
data, where a dust-storm appeared over some river parts between the two cities of Arraqqa and 
Deir Azzour, in addition to the drying of the swamps, which has left the river without some of its 
elbows (the abandoned elbows). 

Spatial distribution of changes/mapping. This is illustrated by the thematic change map (Fig. 6.14) 
for the period 1987-2007. This thematic map was produced by overlaying the two LULC-
classification results of the two dates, to locate, compute and map the spatial distribution of each 
change-type. The results were defined by twentieth detailed combinations of the five classified 
general classes, in addition to the class of (no change), i.e., it presents 21-classes of changes. Fig. 
6.14 visualizes the results of the changes. 

 
Fig. 6.14: The 21-detailed LULC-changes that resulted from applying the post-classification change detection ap-

proach for the period 1987-2007 
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Evaluation of changes/accuracy. Some 15 to 99 testing points for each change combination were 
distributed, i.e., 1,163 in total (Table 6.9), automatically (random-points), for the twentieth result-
ed change combinations classes, over the resulted thematic map (Fig. 6.14). The overall accuracy 
was 83 %, i.e., lesser than those resulted using the pre-classification approach (86 %) (see C6.C.1). 
There were two major reasons. The first was because of the misclassification of the five general 
LULC-classes of interest, especially between the artificial surfaces and the bare areas, and the se-
cond was due to the pre-classification approach being limited to only three wide general change 
possibilities in contrast to the post-classification approach, that had twentieth one change possibili-
ties to be tested. 

Table 6.9: Accuracy assessment of post-classification change detection approach results 
Initial 
LANDSAT-
TM-data 
(1987) 

 Final  LANDSAT-TM-data (2007)  Total/ 
possible 

12 13 14 15 21 23 24 25 31 32 34 35 41 42 43 45 51 52 53 54 N 

1 to 2 49 0 1 0 2 1 1 0 0 1 3 0 0 0 2 0 0 0 0 0 2 62 

1 to 3 2 65 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 

1 to 4 0 0 53 0 0 3 0 0 0 0 0 2 3 0 0 0 1 0 0 0 1 63 

1 to 5 0 0 0 51 1 4 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 61 

2 to 1 1 2 0 3 87 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 2 99 

2 to 3 3 1 0 4 0 41 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 53 

2 to 4 0 3 0 1 0 1 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84 

2 to 5 0 0 2 0 0 0 4 39 0 0 0 0 0 0 0 0 0 0 0 0 0 45 

3 to 1 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 40 

3 to 2 1 0 0 0 0 0 0 0 0 37 0 0 0 1 0 0 0 2 0 0 0 41 

3 to 4 0 0 0 0 0 0 0 0 0 0 85 1 0 0 0 0 0 0 3 0 0 89 

3 to 5 0 0 0 5 2 0 0 0 0 0 0 27 3 1 0 0 0 0 0 4 0 42 

4 to 1 4 0 0 0 3 0 2 0 0 0 0 1 66 1 1 0 0 0 0 0 0 78 

4 to 2 2 0 0 1 0 0 0 3 1 0 0 1 0 67 0 0 0 0 0 0 0 75 

4 to 3 0 0 0 0 0 0 0 4 1 0 2 2 0 0 25 0 0 2 0 0 0 36 

4 to 5 0 0 0 0 1 0 0 2 2 0 1 0 0 0 1 19 0 0 0 0 0 26 

5 to 1 0 0 0 2 0 0 0 1 0 0 0 0 2 0 0 2 17 0 0 0 0 24 

5 to 2 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 9 0 0 0 13 

5 to 3 0 3 0 0 0 3 0 0 0 0 0 0 1 3 0 0 0 2 8 0 0 20 

5 to 4 0 0 0 0 0 1 0 0 0 0 0 0 2 2 1 0 0 0 0 11 0 17 

No 
Change 

3 0 1 0 1 0 0 0 0 0 2 0 0 2 0 1 0 0 1 0 91 102 

Other 0 1 2 3 0 0 2 0 1 0 2 0 2 1 0 1 2 0 3 0 3 23 

Total 65 75 60 70 99 55 90 50 45 40 95 35 85 80 30 25 20 15 15 15 99 1,163 
 
Overall post-classification change detection accuracy = 49 + 65 + 53 + 51 + 87 + 41 + 79 + 39 + 40 + 37 + 85 + 27 + 66 + 67 + 25 + 19 + 17 
+ 9 + 8 + 11 + 91 / 1,163 = 83 % 
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Chapter 7: Summary, concluding remarks and recommendations 

A. Summary 

The overall and general objective of this thesis is as a contribution to the use of remotely sensed 
data of LANDSAT: MSS, TM, and ETM+; and ASTER for agricultural purposes in the arid and 
semi-arid areas of the Euphrates River Basin (ERB) in Syria. The study area is located in the 
northeast of Syria. The geographical coordinates of the ERB are 36°49'N, 38°02'E at the Turkish 
border, and 34°29'N, 40°56'E at the Iraqi border. Its total area is about 50,335 km². Starting in the 
1970s, Syria began to utilize the water of Euphrates River in agriculture, reclaiming a large 
amount of uncultivated areas from the river. The main objective of this program was to increase 
the amount of cultivated areas in the basin, as Syria basically is an agricultural country. These irri-
gation projects during the past four decades produced a great deal of change in land use/land cover 
(LULC). 

This thesis deals with four major emphases LULC-classification, LULC-change detection, irriga-
tion mapping and irrigated agriculture classification of the Euphrates River Basin area in Syria. 
Four general LULC-classification products (see C6.A.1) have been generated for the years 1975, 
1987, 2005 and 2007; also, two LULC-change detection maps (see C6.C) have been produced for 
the periods between 1975-2007 and 1987-2007. In addition, four thematic maps representing the 
development of the irrigation areas (see C5.A.2) in the last 37 years with the intervals 1975, 1987, 
2005 and 2007 have also been produced. Finally, six detailed agricultural classes classification 
products (see C5.A.3) have been generated for the two major agricultural seasons in Syria, i.e., the 
winters (May data) and summers (August data) of 1987, 2005 and 2007. 

To realize the objective of this study, eight scenes of LANDSAT-MSS obtained in June 1975 were 
chosen; 32 scenes of LANDSAT-TM obtained in May and August of the years 1987 and 2007; 
and 16 scenes of corrected LANDSAT-ETM+/SLC-OFF/ obtained in May and August 2005 which 
were fused with scenes of TERRA-ASTER obtained in May and August of 2005 in a bid to in-
crease spectral resolution from three to six spectral bands. 

Remote sensing techniques were approved and applied on the remotely sensed data (see C4.A) of 
1975, 1987, 2005 and 2007 for the four major emphases (LULC-classification, LULC-change de-
tection, irrigation mapping, and irrigated agriculture classification). There were no known deter-
mined adopted techniques that could be directly applied for the emphases. Therefore, it was neces-
sary to set suitable methods that would be compatible with the used data, the thesis questions and 
the privacy of the study area environment. Most of the applied methods in this work were already 
recognized, some were modified and some were combined. 

It is true that a lot of remotely sensed data and some processing programs are becoming more and 
more accessible to researchers at little or no cost, but remotely sensed data processing and inter-
pretation techniques are still time consuming and not suitable for all regions of the Earth at the 
same level of accuracy. It has been shown in this study that the geometric, atmospheric and radio-
metric correction processes (see C5.B) are not always necessary for each image, each sensor data 
and each date. Geometric correction processes, especially for the geometric registration, were not 
difficult and were achieved at very high accuracies. However, atmospheric correction was impos-
sible for the relatively old data (MSS-1975), where the weather parameters were difficult to obtain. 
Radiometric correction was applicable for all data, but this did not mean that it produced suitable 
results for the whole dataset. Therefore, when neither the raw data or the enhanced data after ap-
plying the atmospheric and/or the radiometric corrections gave good results (especially for use in 
mosaicing), then the data were processed and classified separately, i.e., each image alone. 
ATCOR-2 was used for atmospheric correction, while iMAD was used for radiometric correction. 
Both applications were relatively easy to use and required no additional external information. The-
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se programs were found to give better results than those methods that are time consuming and 
needed more external data such as MFF and 6S (Chavez, 1996). 

Where the results of the classifications were cartographic products, all spatial data were standard-
ized, and were transformed and geometrically corrected to a general reference system: a UTM-
projection of Zone 37 N with the international general ellipsoid/spheroid WGS84 and datum 
WGS84. 

Geometric correction, geo-referencing and geometric registration formed the basis for mosaicing 
more than one image (see C5.B.5) for fusion of different remotely sensed data, i.e., the ASTER-
data were fused with LANDSAT-ETM+-data (see C5.B.4) for detection of changes (see C5.L). 

Precise mosaicing was very important for further remotely sensed data processing and interpreta-
tion (e.g., classification, change detection, etc.). The general algorithms of imagery mosaicing 
were not always able to produce a one mosaic-image with a consistent appearance in which the 
values of the histograms of each image were combined together in one mosaic-image. This gave 
an unsuitable presentation of the various LULC-features on the mosaic-image. In these situations, 
the MAD-technique was applied to satisfy a radiometric consistent mosaic. This was a comfortable 
relative radiometric calibration technique that built a data calibration with linear values as gain and 
offset coefficients as unnecessary. This technique had the robust advantage of the ability to create 
a scene comparison even though values were not available or wrong. 

The international hierarchical classification scheme (LCCS) of FAO was followed as guide in the 
classification processes. This approach defined and determined the LULC-classes to be included in 
the classification/s. These classes were defined before starting each automated supervised classifi-
cation procedure. 

The classification of the remotely sensed data was based on the traditional pixel-based classifica-
tion method. The results of classifications were always presented as thematic maps. The results of 
the various tested approaches and algorithms of classification on the various obtained remote sens-
ing data were interpreted based on the accuracy assessment method. 

In this study, several automated classification approaches (i.e., one-step, and multi-stage classifica-
tion) and several algorithms (i.e., MLC, NN, and SVM) were tested on several remote sensing data 
(LANDSAT: MSS, and TM; TERRA: ASTER fused with corrected LANDSAT-ETM+/SLC-
OFF/), to find the optimized approach and algorithm. The multi stage classification approach and 
the MLC-algorithm harvested the best results (see C5.G). 

The classification of coarse resolution (spatial and spectral) data like LANDSAT-MSS in relation 
to its geographical location of ERB, was suitable to produce thematic maps of the five wide gen-
eral classes for the whole large area of the ERB and to represent the spatial distribution of the one 
irrigated areas class. These data had not the ability to classify any more detailed classification level 
(e.g., agriculture). LANDSAT-TM data were more suitable for classifying the general classes and 
the irrigated areas. However, it was less suitable for classifying the detailed agricultural classes. 
Finally, the low spectral resolution ASTER-data of only three bands was less suitable in compari-
son to TM-data, although they had a higher spatial resolution, i.e., 15 m. However, after fusing 
them with the LANDSAT-ETM+/SLC-OFF/ corrected data to increase the spectral bands to six 
bands, these data harvested the best results. In general, the classification of the agricultural features 
using TM and ASTER-ETM+ data was very good over the State achieved irrigation projects (e.g., 
the 21,000 ha project, Maskana-East, etc.), where the individual planted fields were relatively 
large and thus classifiable in regard to the used remote sensing data, and the diversity in LULC-
features was small. These were changed starting from the TM-data of 2007, where the fields be-
came smaller and the diversity of planted agricultural types became more widespread. The diversi-
ty was acceptable over the State and farmer-cultivated irrigation areas (e.g., Maskana-West), 
where the private holdings were varied from small fields to very large fields. However, the classi-
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fication results were unacceptable over the very old cultivated areas located on the Euphrates Riv-
er banks, where the holdings were very small with great diversity in cultivated agricultural fea-
tures. Therefore, this area requires remote sensing data with higher spatial and spectral resolution 
(e.g., IKONOS). 

The classification of natural vegetation outside the irrigation areas in arid and semi-arid regions in 
Syria, especially in the fifth agricultural stabilization zone, was made difficult because of the dom-
inant and variable soil signal (spectral response) (Huete et al., 1994). This was also true for the 
agricultural crops and trees (because of the relatively wide dimensions between the trees in rela-
tion to the spatial and spectral resolution of the used remotely sensed data), that were cultivated 
particularly in the third and fourth agricultural stabilization zones. 

In this study, two approaches of change detection techniques were applied to almost all agricultur-
al areas in the arid and semi-arid ERB-environment in Syria, to test the effectiveness of the two 
techniques in mapping the changes. The pre-classification change detection approach that was 
based on image differencing was very effective in mapping the change from bare areas to cultivat-
ed areas (the new irrigation projects) over the time period 1975-2007. The post-classification ap-
proach detected, mapped and defined 21 type of change. However, it offered a lower accuracy (83 
%) rather than the first method (86 %), because it depended on the quality of already achieved 
classification and dealt with more types of change (21) rather than the first method (3). Therefore, 
it contradicted the assumption that this was the most accurate change detection approach (Mas, 
1999). The two approaches were easy to interpret. 

Based on the pre-classification change detection approach (see C6.C.1), there were three major 
trends of activities of land use/land cover: The first trend (no change) was stable and the most 
dominant with about 88.62 %. The second was negative, where as in most arid and semi-arid re-
gions, the major cause of natural vegetation change to bare areas (4.74 %) was related to the cli-
matic factor of precipitation, which is unstable and changes from one year to another. In addition 
the human factor of overgrazing must be taken into consideration. The largest area of natural vege-
tation exists in the fifth Agricultural Stable Zone (ASZ) which is made up of natural pastures. The 
third major driving force was positive because it accounted to a decrease in bare areas (7.19 %), 
where as in most developed countries, it was related to the activities of cultivation agriculture. 
These results were confirmed by applying the post-classification change detection approach (see 
C6.C.2), where the change value of natural vegetation was 68.33 %, in which 42.95 % was trans-
formed to cultivated areas and 24 % transformed to bare areas, and the loss was at 43.22 %; the 
change value of cultivated areas was 17.86 %, and the gain was at 35.49 %. This was on account 
of the natural vegetation with 304,983 ha and bare areas with 263,863 ha. The change in bare areas 
was about 13.89 %, where 10.01 % transformed into cultivated areas, and the gain was only 0.23 
%. 

The major limitations of this study were the MSS-data of 1975 that were characterized by low spa-
tial resolution of 60 * 60 m and low spectral resolution of four bands. The corrected LANDSAT-
ETM+/SLC-OFF/ data of 2005 that were fused with ASTER-data to increase their spectral resolu-
tion from three bands to six bands, were obtained after the applying a correction method from 
USGS. The time period lag between the remotely sensed data of the years 1975 and 1987, and the 
field-work in 2007 and 2009 limited the full usefulness of using the remotely sensed data, because 
it was very difficult to obtain the additional non-remotely sensed data (the ground reference data in 
particular), and the gathered ground reference data would only be partly suitable for some purpos-
es. The study area was large with some locations inaccessible during field-work. 

B. Concluding remarks 

The kernel of this study was whether, how and to what extent applying the various remotely 
sensed data that were used here, would be an effective approach to classify the historical and cur-
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rent land use/land cover, to monitor the dynamics of land use/land cover during the last four dec-
ades, to map the development of the irrigation areas, and to classify the major strategic winter- and 
summer-irrigated agricultural crops in the study area of the ERB. 

It is true that the development of remote sensing techniques focuses greatly on construction of new 
sensors with higher spatial and spectral resolution, but it is not possible to ignore the data of the 
older sensors (especially, the LANDSAT-mission) when the historical mapping of land use/land 
cover and monitoring of their dynamics are needed, although their low spatial and spectral resolu-
tion in comparison to the new sensors launched in the last decade (e.g., IKONOS) needs to be tak-
en into consideration. These older sensors are still precious. To maintain the advantages of these 
sensors, researchers during the last five decades have developed new and more effective digital 
image processing and interpretation methods, to harvest more accurate results. Therefore, it is im-
portant to focus on the development of new and enhanced techniques that can translate the rela-
tionship between the general characteristics of the old acquired data and the specific characteristics 
of each individual environment such as the arid and semi-arid lands. 

Regarding to field-work, this remains very important as a basis in most remote sensing applica-
tions, offering the training samples for supervised classification. It provides for evaluation the re-
sults of classification using accuracy assessment techniques. It is also useful to understand the spe-
cific characteristics of the environment of the study area. 

The application of the various remote sensing techniques, which were adopted in this study, was 
not only related to the location of the study area, but also to various types of remotely sensed data 
(see C4.A). 

These techniques were: extraction of the borders of the study area using the SRTM-data and 
ArcGIS-extensions (see C5.A); geometric correction based on GCPs, and/or geometric registration 
based on image to image method (see C5.B.1); atmospheric correction using the ATCOR-2 pro-
gram (see C5.B.2); relative radiometric normalization using the MAD-concept (see C5.B.3); en-
hancing the spatial resolution of LANDSAT-ETM+ data from 30 m to 15 m using the Gram 
Schmidt Sharpening Technique to increase the spectral resolution of ASTER-data using the fu-
sion-technique (see C5.B.4); mosaicing, subsetting and masking (see C5.B.5); training samples 
selection and evaluation (see C5.F); unsupervised classification (see C5.G.1.1); supervised classi-
fication using the three algorithms of classification (i.e., MLC, NN and SVM) with the two ap-
proaches of classification, i.e., the one stage and the multi stage classification approaches (see 
C5.G.1.2.1); post-classification processing (see C5.K); automated change detection mapping using 
the pre-classification approach (see C5.L.1) and the post-classification approach (see C5.L.2); and 
finally, the accuracy assessment techniques (see C5.M). 

The new relative radiometric normalization method that was used in this study, was, after Canty et 
al. (2003), favored, where it can be applied automatically. It is consistent, constant, rapid, parame-
ter free and sensor independent, and is enhanced by an orthogonal regression. 

The aforementioned and used techniques in this study have various alternatives of sub-technique 
(e.g., radiometric normalization can be performed using more than one method, such as 6S, dark 
object method, histogram matching, etc.) and/or various parameters (e.g., SVM-algorithm of su-
pervised classification can be used with various of parameters combinations). Thus, some of these 
alternatives were mentioned, discussed and compared to justify the final choice of each alternative 
technique and/or parameters that were used in this study. 

This study proved that the use of multi-sensor (MSS-1975 and TM-2007) and multi-scale 60 m 
and 30 m data for change detection mapping is possible. Also, it is possible to use the multi-sensor 
ASTER-2005 and LANDSAT-ETM+ data for LULC-classification. 
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The available remotely sensed data of ASTER-sensor with low spectral resolution (three bands) 
and high spatial resolution (15 m) had given worse results with lower classification accuracy than 
those obtained after fusing with the data of LANDSAT-ETM+ to increase the spectral resolution. 

New sensors (e.g., ASTER) offer higher accuracy rather than the old sensors (e.g., LANDSAT-
MSS), but also bring new problems, such as the increasing time of processing because of the high-
er spatial resolution and the lower local coverage of each scene, and the increase of geometric er-
rors because of the higher spatial resolution/pixel size. 

Remotely sensed data spatial resolution/scale affects the level of useful information that can be 
extracted from the satellite imagery. 

C. Recommendations/outlook 

Remote sensing techniques and data (LANDSAT and ASTER) were found to be very effective in 
the classification of land use/land cover and in the mapping of irrigation areas, and to detect and 
map changes that occurred over a number of years in the arid and semi-arid area of the Euphrates 
River Basin in Syria. However, these approaches were uneven for classification of agricultural 
crops, where their effectiveness were based on many factors, such as the used remotely sensed data 
type and its characteristics (e.g., spatial and spectral resolution, etc.), the agricultural holdings area 
and construction (e.g., the classification accuracy is very good where the large fields exist), and the 
crop type to be classified (e.g., the existing of wheat and barley together would make the spectral 
separation difficult that will impact the accuracy of classification). Here, more positive results may 
be realized by obtaining images at more times during the annual agricultural growing cycle. 

The use of remote sensing techniques and data periodically to monitor and evaluate above ground 
surface natural resources can save time, effort and capital which are needed for traditional human-
based ground surveys. 

It is important to integrate the gathered human-based statistical records (agricultural statistics in 
particular) with the remote sensing techniques to interpret the relative old data of remote sensing 
that have no or insufficient compatible reference data. It is useful too, when a part of the study area 
is inaccessible. 

The adoption of remote sensing techniques is an essential cartographical tool to map the general 
wide land use/land cover classes. 

Some demands include: The construction of user-friendly data archives with united data-formats 
as far as possible; the direction of more attention to the developed countries where there are many 
interesting topics to study using the remote sensing techniques. For instance, it is very difficult and 
time consuming to obtain remotely sensed data even if they are free of cost, and one requires a 
large amount of time to download one image because the slow Internet speed, in addition to a lack 
of digital image processing software. 

For further research: This study, like all studies, is an unfinished work because of the limitations 
of time, resources and finance. Therefore, the results included in this study are the best they can 
be, considering these limitations. 

It would be interesting if the results of this study which are based on medium- to high- resolution 
optical remotely sensed data, were compared with those from resulting from the application of a 
very high resolution optical data (e.g., IKONOS), especially for agricultural purposes; the use of 
remotely sensed hyper-spectral data (e.g., Hyperion); and the application of remotely sensed RA-
DAR-data (e.g., TerraSAR-X). In these cases, it would be necessary to apply new advanced digital 
analysis techniques, such as spectral un-mixing analysis. 
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Also, I am interested to link the results of this study and remote sensing techniques with GIS, for 
hydrologic study and regional water resources management of the Euphrates River Basin in Syria, 
and for agricultural water usage. I have collected a great deal of water data about the Euphrates, 
especially the water measurements at many measurement-stations along the river from the Syrian-
Turkey borders to the Syrian-Iraqi borders over many decades. 

This integration would be effective, because the classical applied approaches for estimating the 
hydraulic parameters are expensive and time consuming. Remote sensing can overcome these 
problems, by presenting a rapid and complete overview of the study area of interest. Here, weather 
satellites such as the NOAA-TIROS (National Oceanic and Atmospheric Administration-
Television Infrared Observation Satellite), can provide us with some needed parameters (climatic 
parameters) which are essential for input in the hydraulic model. Evaporation or evapo-
transpiration (ET) is the most important and difficult to estimate in the hydraulic studies. Remote 
sensing techniques cannot measure it directly, but they suggest approaches based on LULC-
features classification and climatic factors (e.g., solar radiation, temperature, humidity, surface 
albedo, etc.). 

Also, for runoff measurement, techniques of remote sensing provide a source of input-data (water-
shed geometry, drainage networks, empirical flood peak, LULC-classes, etc.), and help to estimate 
equation coefficients and other model parameters. 
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