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|1 Introduction|

1 Introduction

The exhaustive use of cheap and abundant resources was always the most important stimulus

for the industrial revolution, boosting economic growth, scientific development and social

prosperity. Considering ethical and environmental aspects secondary, society followed the call for

competitiveness, development and growth with mainly social, economical and political interests

on the agenda.

But maintaining this course is very energy intensive and becomes noticeable in a huge imbalance

of total worldwide energy consumption and regeneration. To give an example, in 2008, about

470 exajoules (4.7 ⋅ 1020 J) of energy were used (produced from fuels), which is equivalent to an

average power production/consumption of 15 terawatts (1.5 ⋅ 1013W), but only the fraction of 61

exajoules (regeneration rate = 13%) came from renewable sources, which means that 87% could

not be restored (see figure 1).[2, 3]

fuels
(fossils, nuclear, biomas, ...)

waste products

(H2O, CO2, radioactives ... )

energy consumption
(combustion, fission, ...)

61 x 1018 J 470 x 1018 J

energy (re-)storage
(photosynthesis, geothermal ...)

Figure 1:General energy flux diagram for the use of energy by mankind.

As a result of this modern desire for accelerated industrialization and globalization, world

population grows and raises its living standard on the expense of infamous handling of nature

and dissipative usage of resources. Every day, along with worldwide growing energy consumption,

environmental destruction and pollution increases. In the same way fossil energy resources

decrease at an ever faster rate.The exponentially growing number of energy consuming processes

counters all advances in efficiency and sustainability, with the result that half of all the energy

utilized since the beginning of the industrial revolution has been consumed within the last twenty

years.[3] Especially developing countries like India, China or Brazil will accelerate this process in

the intermediate future.[3]

|1|



|1.1 Fossil Fuels and Nuclear Power|

Figure2:Projectionof theworldprimaryenergydemandaccording to thedifferentOECDscenarios.

Demand is given in million tonnes of oil equivalent (Mteo, 1Mtoe = 11 630GWh = 41.868 PJ).[3]

According to the OECDWorld Energy Outlook (the OECD and IEA represent the interests of the

industrial nations), the different scenarios can be imagined for governments all over the world to

handle the resulting problems by policy actions that affect technology, the price of energy services

aswell as the end-user behaviorwithin the next 25 years (see figure 2). TheCurrent Policy Scenario

depictswhat happens if governments do not change the use of energy. In contrary, theNewPolicies

Scenario assumes that the broad policy commitments and plans that have been announced by

countries around the world will be implemented. Finally the 450 scenario depicts the pathway

that would be necessary to limit global warming to 2°C by limitation of the atmospheric CO2

concentration to 450 parts per million.

By this means, it has become an important research aim to compensate negative effects and to

overcome the looming energy crisis.[4] Hence we need to understand the key issues of recent

energy production to identify the novel resources and technologies capable of producing energy

in a sustainable manner. Otherwise, if not a change in mind, at the latest the depletion of non-

renewable resources will force drastic changes of modern technological society and possibly even

of human culture.[5]

1.1 Fossil Fuels and Nuclear Power

Fossil fuels are resources with general abundance and a very high energy density as well as general

adaptability. Hence their very low prices on the worldmarket allow for their use in even extremely

demanding or inefficient processes, required by modern society (e.g. flying in an airplane instead

|2|



|1.1 Fossil Fuels and Nuclear Power|

of walking or mining and purification of rare elements for electronic devices). These demanding

processes drive our economy and represent the basis of ourwealth.Therefore, we are tremendously

dependent on cheap energy, as can be imagined exemplarily in the way how a doubling of

the gasoline price would decelerate economic growth due to increased transportation cost and

decreased flexibility.

Nowadays, about 90% of the world’s primary energy supply is provided by nuclear fuels or fossil

fuels, such as coal, oil and natural gas, which are burned in power plants and engines (see figure 3).

Germany represents a typical example, even though it is among the countries which use a higher

fraction of sustainable energies and nuclear power:

Compared to 2009, in 2010, the primary energy consumption has increased by 5.0% from 13.3 to

14 exajoules, which were produced from oil (33.7%), gas (21.6%), bituminous coal (12.1%), lignite

(10.9%), nuclear fuel (10.8%) and renewable energy sources (9.9%) such as biomass, wind, hydro

and solar energy.[6] By doing so, Germany reached rank six in the top ten of the highest CO2

emitting countries with an emission of 800Mt of carbon dioxide, which equals to 2.6% of the

world’s carbon dioxide emission.[7]

Figure 3: Fractions of energy sources in world primary demand according to the different OECD

scenarios.[3]

The increasing carbon dioxide emission was identified to be one of the major reasons for global

warming. Only the limitation of the release of this greenhouse gas into the worlds atmosphere to

450 ppm will ensure that global warming does not exceed 2°C (see figure 4). Hence an increased

use of nuclear power, which is considered to be a CO2-neutral energy source, can help to

|3|



|1.1 Fossil Fuels and Nuclear Power|

Figure 4: Projection of the world’s energy-related CO2 emissions by fossil fuels in the OECD-

New Policies Scenario where governmental policies will limit CO2 emission through a significant

contribution of carbon-free power to the total energy mix to reduce global warming.[3]

decrease CO2-deposition in the atmosphere. Due to its low price on market and stock buildings

from nuclear disarmament it is increasingly used in the world (55 nuclear power plants under

construction in 2009). Unfortunately, nuclear energy cannot be considered safe because the risk

of a disastrous accident. As well the difficult disposal of the nuclear waste remains an unsolved

problem. Hence, some governments are forced to think about nuclear phaseout.

In addition, nuclear as well as fossil resources are limited and shrink at an accelerating rate.

Seemingly, oil will be the first energy source that runs out (see figure 5). The point of peak oil

production is almost reached or was already passed, depending on the respective study.[3] Supply

Figure 5: Projection of the world oil production in the OECD-New Policies Scenario.[3]

|4|



|1.2 Renewable Fuels|

of natural gas is less limited and coal is the energy source with the highest geological availability.

The final question, whenwewill run out of these cheap energy sources, is very political and cannot

be answered satisfactorily. Depending on different scenarios and the considerations therein, this

is believed to happen on an intermediate timescale, within the next 35 to 200 years.[8]

A fact which shall not to be forgotten is that fossil fuels are very important raw material for

the chemical industry. Therefore, they should be preserved for later generations to avoid that

eventually agriculture will have concur with food production and chemical industry. Fossil fuels

should better be used for a smooth transition toward the development of new energy sources.

1.2 Renewable Fuels

Sustainable energies derive from solar, geothermal or gravitational activity, processes which may

be considered unlimited (on the human timescale). Therefore, renewable fuels have become

essential contributors to the energy supply portfolio because they contribute to world energy

supply security by reducing the dependency on the limited fossil fuel resources.[9] In addition

they provide opportunities for mitigating greenhouse gases such as CO2.

Nevertheless, they only sum up a tiny fraction to the world’s energy mix (compare figure 3),

which can be explained by the high costs, compared to the abundant fossil fuels. This makes

them especially unattractive to the developing countries with little money and a very high energy

demand. An additional effect is that the availability of such energies is strongly dependent on

limiting climatic and regional conditions. Delicate counter-arguments can also be found for every

one of the renewable energy sources:

For example, in agriculture, food production will concur with bio fuel production to a

considerable extent, while about 2 billion people suffer from underfeeding. This is because

sustainable vegetable products such as corn, wheat or canola are converted into ethanol, methane

or bio diesel because of the high demand in Europe andNorthernAmerica aswell as governmental

subsidies for renewable fuels. For an adequate energy supply by wind energy huge wind parks are

necessary, but they influence wildlife by noise emission and shadow casting. Likewise, hydro-

electric power plants have challenging environmental demands which cause problems like habitat

altering, forests covering, erosion and sedimentation (e.g. Three Gorges Dam in the Yangtze

River, China). Finally, solar electricity is more expensive thanmost of the other alternative energy
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sources and therefore it is less affordable. In addition, solar power is only available during daytime

and depends on changing irradiation angles. Especially weather and climate dependent intensities

results in the production of solar hot water or solar space heat in times when it is not needed

(summer). Even geothermal unitsmay cause problems, when drilling holes cause a destabilization

of the underground.

Despite these counter arguments, due to the debate on climate change and the arising economic

and political problems, resulting from scarce of unsustainable strategical resources, renewable

energy technologies have become of increasing interest. Recent years have witnessed a change

in the way governments approach energy-related issues. Many governments now give important

impulses for their development, granting subsidies for the installation of green energy sources,

offeringmandating “feed-in tariffs” for green electricity or supporting sustainable energy research.

“Green stimulus” efforts by many of the world’s major economies totaled close to $200 billion in

2009 and almost all renewable energy industries experienced manufacturing growth that year.[10]

According to the recent REN21 Status Report in the United States and Europe more renewable

power capacity was added than conventional power capacity (coal, gas, nuclear) in 2009 as well

as in 2010.[10]

As can be concluded from the future projections of the world’s energy demand as well as from the

problems referring to recent energy alternatives, mankind is threateningly far away from secure,

sustainable, clean and readily available energy supply.Therefore it is important to further increase

the ambitions in future energy research.

1.3 Energy Transformation and Storage

Due to the great dependency of the renewable energy power supply on natural phenomena

(which are the result of the solar, geothermal or gravitational energy source) some kind of energy

storage is necessary to compensate overproduction as well as overconsumption. The resulting

fluctuations are undesired and may even damage the power supply system especially in the case

of produced electricity. Nevertheless, large-scale electric energy storages such as batteries are still

very expensive or ineffective.[11]

Nowadays, 99% of the used energy comes from energy which is stored in some way. Including

biomass, in 2009, about 90% of the world’s primary energy supply was provided by combustibles,
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a reduced form of matter that needs to be oxidized to make the stored energy available. In

reverse, fuel production (storage in chemical energy) generally represents a reduction reaction

(see figure 6).

reduced matter + O2

(fuels)

oxidized matter

(H2O, CO2, ... )

energy extraction
(oxidation)

energy storage
(reduction)

Figure 6: Energy production and consumption considered as redox reaction.

Modeling upon nature, storage is best achieved with reversible chemical energy carriers, e.g.

carbohydrates like sugar or cellulose, in general high energy compounds, formed during

photosynthesis. Many of these compounds, i.e. alcohols, fats or gases like methane and hydrogen,

are potentially useful fuels. To choose an appropriate storage compound, there are three main

issues that have to be considered: formation (energy conversion), storage and consumption (back-

conversion). All of these have to be evaluated according to economic and ecological considerations

such as degree of efficiency, cost, sustainability and possible hazardous side effects. Due to lack of

proper techniques, carbon dioxide incorporating cycles are very difficult to handle.

In the scope of sustainability, the direct use of hydrogen gas as a sustainable (carbon and carbon

dioxide free) energy source with a high energy storage potential is also very appealing.[9] The

enthalpy of combustion for hydrogen is -286 kJ/mol and the exhaust gas is water vapor. Back-

conversion of the stored energy for end uses can be accomplished by direct combustion in engines

or its use in fuel cells to obtain thermal or electric energy.

Hydrogen is not only a fuel, but has countless industrial applications as well, e.g. in the upgrading

of fossil fuels (35% of total use), and in the production of ammonia likewise (51% of total

use).[9] Because hydrogen is not a natural resource on earth it is especially important to find a

sustainable way of its production.The key consumers of H2 in the petrochemical industry include

hydrodealkylation, hydrodesulfurization, and hydrocracking. Although there are some hazards in

handling hydrogen, like the low boiling point (20.28 K, -252.87°C) and the high flammability (it

will burn in air at a range of concentrations between 4% and 75%), large quantities of hydrogen are
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needed in the petroleum and chemical industries. Therefore, its handling is possible on a multi-

megaton scale.

Nowadays, industrial hydrogen production is mainly accomplished by steam reforming of natural

gas (48%). It is less often produced from more energy-intensive energy conversion methods like

the electrolysis of water (high overpotential) which accounts for 4%of the hydrogen production.[9]

In this context the investigation of light-driven water cleavage with formation of oxygen and

particular hydrogen provided very promising results.[4, 12]

1.4 Solar Energy Conversion

The most desirable and seminal but almost untapped energy source appears to be the sun. Solar

average energy uptake of the earth surface (3.9⋅1024 J) is almost four orders of magnitude higher

than the average energy consumption of mankind (4.7⋅1020 J).[4, 11, 13] However, the energy density
of the sunlight is very low, compared to fossil fuels. This makes it unattractive because large

collector areas are necessary (the average flux density of the sunlight on earth, solar constant, is

1.37 kW/m2 which would refer to 0.15 l of gasoline production in one hour at an energy conversion

efficiency of η = 100% whereat a car uses ∼7.0 l to drive 100 km in that time). Another fact is, that

sunlight, filtered through the earth atmosphere is still very polychromatic (compare figure 7).

Figure 7: Solar radiation spectrum at sea level with assigned atmospheric absorption bands.[13]
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A fraction of about 53% is infrared (IR) light and about 3% result from ultra violet (UV) light.The

spectrum has amaximum in the blue of the visible light region (vis), which contributes about 44%

of the solar energy input to earth’s surface. For solar energy utilization a main fraction of the light

energy must be captured and converted into heat, electricity or chemical energy at an affordable

cost. Several concepts are available at present to achieve this conversion:

Solar thermal energy is currently the cheapest method of solar energy capture, conversion, and

storage. Devices, using solar heat span from small cloaking devices and domestic heat systems

up to large-scale power plants which concentrate visible light via mirror systems to drive a steam

turbine with the heated water vapor like the Planta Solar 10 in Spain (see figure 8).

Figure 8: The 11 MW solar heat power plant Planta Solar 10, Seville, Spain.[14]

One kW-hr can cost as little as $ 0.10 - 0.15 for electricity production, which is only five times

higher than conventional electricity.[12] Photovoltaics (PV) accomplishes direct light into electric

energy conversion, using the photovoltaic effect. In this process photons excite the electrons of

a semiconductor into higher states or bands, creating charge separation with formation of an

electric potential that can be tapped. Typical light absorbing semiconductor materials are doted

monocrystalline silicon in conventional PV or conjugated polymers for organic solar cells. Photo-

electrochemical cells and dye-sensitized solar cells (DSSC) also known as Grätzel cells are also

of interest.[15, 16, 17] Here an excited sensitizer molecule (e.g. Chlorophyll or Ru(bpy)2+3 ) is capable of

donating an electron into the conduction band of a linked semiconductor to generate an electric

potential. A redox shuttle system (e.g. I−3 /I−) accomplishes contact with the counter electrode and

is used for the regeneration of the oxidized chromophore.
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To counter the low solar energy flux, materials for energy conversion without foregoing

concentration must be long-term stable and cheap to make the process economical. Today, the

cost of solar electricity is about ten times higher than conventional energy.

A direct conversion of solar energy into chemical energy (fuels) represents the third alternative for

its exploitation. Light-driven reactions can copy principles of nature in which chemical bonds are

broken and formed to keep the organism alive and to build up biomass.The basis for such artificial

photosynthesis process is the detailed understanding of important principles of photophysics,

photochemistry, electrochemistry and catalysis as well as of the natural photosynthesis.

1.5 Photosynthesis

Already about 3.5 billion years ago, nature learned how to utilize sunlight in a primitive way.

Starting from bacteria photosynthesis evolutionary processes led to the photosynthesis of higher

plants. Until today, bacteria, algae and green plants are capable of transforming vast amounts of

solar energy into biomass via different types of photosynthesis. The primary processes from light

to chemical energy conversion are very efficient and sustain the organism’s life. Besides, only a

small fraction (1% of the available light energy) is used by plants for biomass production. By that

means, solar energy conversion accounts for the formation of nowadays biomass as well as for the

formation of fossil fuels.

These primary steps of the so called light-dependent reactions involve light absorption, charge

separation and transfer as well as catalytic oxidation and reduction processes within two

photosystems at the thylakoid membrane of chloroplasts.[18] Figure 10 gives a résumé of these

extremely organized processes in the so called Z-scheme of photosynthesis.[19]

Photosynthesis starts with the simultaneous excitation of special pairs of chlorophyll(a)molecules

(P680) in photosystem II (PS II, see figure 9) and (P700) in photosystem I (PS I), the only

step where light energy is converted into chemical energy stored in excited electrons with high

reduction potential. This can be achieved by direct absorption of visible light by the special pairs

(λPS II
max = 680 nm and λPS I

max = 700 nm). However, more likely is the activation by excitation energy

transfer via Förster orDextermechanisms fromnearby arranged chlorophylls and carotenoids.

A great number of these antenna pigments is precisely arranged in light harvesting complexes

(LH I and LH II) and increases the absorption area as well as the absorption band of P680 and
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Figure 9: Molecular structure of important redox-active species involved in the initial charge

separation of PS II. Depicted parts to conform to the present text: OEC (Mn4Ca), tyr (Tyrz), special

pair P680 (PD1/PD2) and antenna pigments (Car and Chl), Pheo (PheoD1/PheoD2), PQ (QA/QB), and

cyt f (Cyt b-559). The protein surrounding is omitted for clarity.[20]

P700. Interestingly, chlorophylls exhibit two major absorption maxima in the blue and red of the

visible region. One between 600 and 700 nm, the so called Qy-band and the Soret Peak between

400 and 500 nm.Therefore, plants can use a major fraction of solar energy, except a part of green

and yellow light.

Nevertheless, ultrafast charge separation and electron transfer processes away from the special

pairs, finally start the true chemical steps.The key process for life on earth is the electron entering

the first redox shuttle. This happens by oxidative quenching of the excited P680* by nearby

pheophytin (Pheo) with formation of the strong oxidant P680+ and reduced Pheo− in PS II. In a

similar way excited P700* in PS I donates its excited electron to a nearby electron acceptor (A0, a

chlorophyll-a molecule, not depicted in figure 10), with formation of P700+ and A−0 .

Regeneration of the photooxidized special pairs P680 and P700 happens almost simultaneously.

The missing electron in P680+ is recovered from water oxidized by a multiple reducible Mn4Ca

cluster also known as oxygen evolving complex (OEC). This complex sequentially extracts four
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Figure 10: Z-Scheme of photosynthesis, representing important processes of light absorption,

charge separation and electron transfer, involved in water splitting (see text for details).[19]

electrons from two water molecules (serving as sacrifical donor) and liberates molecular oxygen

and four protons to the lumen. Four single electron transfer steps via a specific tyrosine moiety

(tyr) replenish the photooxidized P680.

2H2O
OECÐÐÐÐÐ→ O2 + 4H+ + 4 e−

P700+ becomes reoxidized to P700 by the reception of an electron from plastocyanine (PC,

a mobile copper-protein) which had previously been passed down through the redox gradient

originating in PS II. The reduced primary electron acceptor A−0 passed the electron ultimately

to nicotinamide adenine dinucleotide phosphate (NADP+). This happens via several other

intermediates, including redox shuttles like phylloquinone (vitamin K), several membrane bound

iron sulfur proteins (FeS) and ferredoxin (Fd), a slightly mobile FeS.

Eventually, the enzyme ferredoxin-NADP reductase (FNR), an oxido-reductase, gathers two of

such electrons and uses one proton for the final transfer step. The reduction of NADP+ with

formation of NADPH represents a "fuel production" step in the plant. Importantly, the resulting

NADPH is a hydride carrier molecule which is one of the most widely used energy storage

molecules and reducing agents in cells, e.g. essential for the production of sugars from CO2 in

the Calvin cycle.
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2NADP+ + 2H+ + 4 e−
FNRÐÐÐÐÐ→ 2NADPH

The redox gradient which passes the electrons from PS II to PS I drives yet another endergonic

process to sufficiently exploit the energy of the absorbed light. When a special PQ has accepted

two electrons from PS II, it also takes on two protons from the stroma and it detaches from its

binding site. The hydrophobic quinole PQH2 may now pass through the hydrophobic core of the

thylakoid membrane to a protein complex (cyt f) which contains FeS, cytochrome f, and two

cytochrome b6 molecules. Having arrived there, it releases the transported protons to the lumen

and passes the electrons onward to an incorporated FeS protein (also called Rieske protein) and

then to PC which is then released and serves as the electron provider for P700+.

With the help of a proton gradient between lumen and stroma, light reactions in their turn

provides the energy of adenosine triphosphate ATP in a way that is similar to the ancient forms

of photosynthesis in archae bacteria. This proton gradient between stroma (pH 8) and lumen (pH

6) derives from the release of protons by the OEC as well as from transport of protons against

the gradient by PQ in the Q-cycle. An osmotic pressure and a difference in potentials between

stroma and lumen of approximately 120mV is the result. ATP is produced through ATP synthase

(not depicted), using adenosine diphosphate (ADP), inorganic phosphate and energy from a

proton gradient across the thylakoid membrane. Protons, driven out from the lumen have to

pass through the central core of the transmembrane enzyme ATP synthase.This causes rotational

conformational changes in the enzyme and catalyzes the phosphorylation of ADP along with the

release of ATP into the stroma.

A total of 8 photons, are required to transfer four electrons and protons from two molecules of

water to twomolecules of NADP+.This produces twomolecules of NADPH and onemolecule of

O2. Additionally, four protons are passed in the Q-cycle and additional four protons derive from

water oxidation to build up the proton gradient, eventually casing the formation of approximately

three ATPmolecules from ADP.

1.6 Photocatalyzed Reactions

As nature demonstrates in a very impressive way, it is possible to utilize sunlight for the conversion

of carbon dioxide and water into energy-carrying molecules like sugars and oxygen. Capturing
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an average power of approximately 100 terawatts of sunlight, natural photosynthesis directly and

indirectly provides the basis for nearly all life on earth. G. Ciamician, an important pioneer

of photochemistry research, realized the relevance of that fact (see figure 11). Although his

understanding was certainly basic, he found out that the use of solar energy would help to:[21, 22]

(1) carry out reactions under mild conditions,

(2) look for activation conditions that allow for more direct reactions and thus improve

atom economy,

(3) increase the use of renewable materials or reagents (using directly light rather than

fossil solar energy) and

(4) minimize the use of energy.

Figure 11: Photochemistry pioneer GIACOMO CIAMICIAN, as he watches his reactions, driven by solar

irradiation in flasks on the balcony on top of his laboratory at the University of Bologna, Italy, circa

1910.[4]

Today, these statements are incorporated into the "12 principles" of green chemistry as formulated

by Anastas and Warner.[23]

According to Turro, today it is known that photochemical reactions differ from thermal reactions

in three important respects:[24]
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(1) as opposed to reactions that are mainly activated by heat, activation of

photoreactions occurs mainly by absorption of light

(2) hence, electronic structure as well as nuclear configuration of a photoexcited

molecule differs substantially from those of the thermally activated one

(3) due to the high energy excess, far more thermodynamically favorable products

are accessible to a photoexcited molecule than those accessible to ground state

molecules

Importantly, this excess of absorbed light energy may be used to drive a catalysis in the non

spontaneous (thermodynamically uphill) direction, thus allowing the formation of high-energy

products from low-energy educts or the conversion of light energy into chemical energy, as seen

in nature. IUPAC defines a photocataltic reaction as a change in the rate of a chemical reaction

or its initiation under the action of ultraviolet, visible, or infrared radiation in the presence of a

substance - the photocatalyst - that absorbs light and is involved in the chemical transformation of

the reaction partners.[25] Also according to IUPAC, this photocatalyst is a substance able to produce,

by absorption of ultraviolet, visible, or infrared radiation, chemical transformations of the reaction

partners, repeatedly coming with them into intermediate chemical interactions and regenerating its

chemical composition after each cycle of such interactions.[25]

For the construction of a system that utilizes light energy in the catalytic cycle, different

possibilities are available. According to Chanon, a reaction is considered to be photocatalytic,

when catalytic amounts of photons or chemical substances are enough to allow for the

photochemical conversion of substrates or to accelerate such reactions. It is possible to subdivide

photocatalytic reactions into two groups, according to the catalytic demand of photons or

substances respectively (see figure 12).[26]

While in the first class (photoinduced catalysis) single photon absorption yields the catalytically

active species that lasts several cycles even in the dark, stoichiometric amounts of photons need

to be added in the second case to drive a potentially more endergonic reaction. All reactions

of second class stop right away when light input is blocked. The second class can be further

subdivided according to the role of the excited molecule in the reaction. Three important groups

are also depicted in figure 12.
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Figure12:Classificationofphotocatalytic reactionsby the rateofphotonconsumption. S: substrate,

P: product, C: catalyst, M: transition metal complex, *: excited state.[26]

In the first case, photocatalyzed catalytic reaction, the (pre)catalyst possesses the chromophore

and forms the true catalyst upon excitation, which eventually falls back to the ground state after

one turnover. Furthermore, in a catalyzed photoreaction, (b) in figure 12, the substrate holds the

chromophore, but photoreaction with formation of P needs to be catalyzed. And in the case of

catalytic photosensitization, (c) in figure 12, catalytic amounts of sensitizer molecules C hold the

chromophore, and excitation is only passed on to a substrate, thus driving the catalysis.

Classifying photosynthesis according to this concept, it is obvious that this is a matter of a light-

driven catalytic reaction that runs a thermodynamically uphill reaction under stoichiometric

consumption of photons (class 2). It consists of two subprocesses which accomplish on one side

the reduction of NADP+ under use of electrons and protons which are produced on the other

side by water oxidation. Considering PS II, including substructures like P680 andOEC, to be one

supramolecular catalyst, photosynthetic water oxidation has to be put into group (a), the photo

catalyzed catalytic reaction. Here water is the substrate that becomes oxidized under release of

molecular oxygen.
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So the reduction sidePS I, including substructures likeP700 andFNR, assumed to be one catalyst,

photosynthetic NADP+ reduction has to be put into group (a). Considering the functionality of

light harvesting complexes with energy transfer toward the special pair, we have to deal with group

(c) because excitation is only passed on to the special pairs. Reactions of type (b) cannot play a

role, because water is no chromophore in the visible light region.

1.7 Mimicking Photosynthesis

Since the efficient conversion of solar energy into fuels has become a topic of general interest,

photosynthesis as well as photocatalysis research have a significant upturn.Natural photosynthesis

demonstrates how to use solar energy cost-efficiently, stably, nontoxically and renewably.

Nevertheless, it uses most of the captured energy to sustain the plants’ life instead of providing

fuels for man and it is limited to aqueous media and a small temperature range.[18] Synthetic

catalysts are often very efficient, less limited to physiological conditions and bio-available metal

centers but in many cases expensive, toxic or not sustainable. A combination of these two spheres

of knowledgemay potentially result in an artificial system that outflanks natural photosynthesis in

efficiency, using most of the captured energy for synthetic fuel production but retains the positive

effects such as low cost or sustainability.

Several approaches try to combine synthetic catalysts with natural systems to access new

reactivities and products.[12] Other approaches focus on the development of models, mimicking

key processes of natural energy production for their better understanding. In addition, genetic

altering of organisms can be used to tune the natural bio reactions.[27] All of these efforts may

help to identify an access to solar fuels and can be summarized in the category of artificial

photosynthesis research.

According to IUPAC definition, artificial photosynthesis is the photocatalytic production of

substances from simple compounds (e.g., H2 and O2 from water, H2 from hydrogen sulfide, etc.)

using ultraviolet, visible, or infrared radiation absorbed by chromophoric systems, often included

in microheterogeneous media, mimicking the action of antennas and reaction centers in natural

photosynthetic organisms (compare figures 13 and 14).[25]

Especially the development of techniques which allow for the direct formation of fuels fromwater

in a light-driven, non-polluting and sustainable cycle of energy capture, energy storage and energy
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Figure 13: Carbon free cycle for solar energy utilization by photocatalytical hydrogen production

from water.

extracting (depicted in figure 13) is a main focus of current research. Ingenious is the fact that the

raw material as well as the combustion product is cheap and abundant water, whereat valuable

hydrogen gas will be the product as depicted for the one-electron process:

2H2O

[photosynthesis]

hν + [solar cell + electrolysis]

[dye + catalyst]
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ 2H2(g) +O2(g), ∆G = +1.23 eV

The energy that is required for hydrogen and oxygen formation by water splitting is equivalent

to the energy that is released during combustion of hydrogen (∆fG
 = -272,9 kJ/mol). This is

equivalent to an electric potential of -1.23V in solution or to photons with an energy higher than

hν > 1.23 eV, and accordingly to a wavelength shorter than 1008 nm (IR).

However, water is no chromophore and cannot be split by absorption of light. Otherwise an

electrode reaction against a high overpotential is necessary to drive the thermodynamically

not accessible reaction without direct use of visible light energy. Hence, solar water splitting is

accessible by electrolysis, an inefficient (5%) and expensivemethodwhen powered by photovoltaic

cells.[28, 29] The process is pH dependent and occurs at standard conditions at the following

potentials (vs. NHE):

2H+(aq) + 2 e− → H2(g), E

1/2(pH 0) = 0.00V

2 H2O→ 4H+(aq) +O2(g) + 4 e−, E

1/2(pH 0) = +1.23V
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2H2O + 2 e− → H2(g) + 2OH−(aq), E

1/2(pH 14) = -0.83V

4OH−(aq) → O2(g) + 2H2O + 4 e−, E

1/2(pH 14) = +0.40V

The use of a catalyst at the electrode can help to improve the efficiency of the process, reducing the

overpotential of the redox or electrode reaction.[28, 30] An advanced approach is the formation of

oxyhydrogen fromwater at room temperature with the help of a photoredox catalyst which allows

for the direct capture and conversion of light energy into redox energy to drive the above reaction.

Figure 14: Half reactions of artificial water splitting (a and b); interplay (green arrow) of oxidation

catalyst (COx), photocenter (P), and reduction catalyst (CRed).

Accordingly, a light reaction inspired multicomponent catalyst with two coupled redox-processes

of water oxidation (a) and water reduction (b) can be imagined to accomplish oxyhydrogen

formation, as depicted in figure 14.

1.8 Formalisms of Photocatalytic Systems

As described before, a great variety of potentially important processes interacts in natural

photocatalytic systems. The identification and categorization of functional components and

separate catalysis cycles in natural systems is a general starting point for the development of

new artificial systems. Based on that, a subsummarization of similar processes (chains) and a

judicious choice of substitutes can be made to manage the complexity of a resulting artificial
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multicomponent system and to ease the handling thereof. Table 1 lists a series of important

functional units which may be identified in natural photocatalytic systems.

Table 1: Important components of (artificial) photosynthetic systems according to functionality

function substructure abbreviation

visible light absorption, directional energy propagation antenna pigment AP

visible light absorption, conversion into redox energy photocenter P

irreversible charge separation, unidirectional transfer electron relay RQ/D/A

center for concerted (multi-electron) redox reaction catalyst COx/Red

irreversible electron donor/acceptor (sacrificial) substrate SQ/D/A
structural support, linking, spacing, embedding scaffold (bridge) BN

Q) quencher, D) electron donor, A) electron acceptor, Ox) for oxidation, Red) for reduction,

N) photochemically not directly involved.

Through appropriate combination of the desired functionalities or functional units respectively it

is possible to project a scheme for any artificial photosynthetic system (e.g. for water splitting as

depicted in figure 15), similar to the ones, observed in nature.
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Figure 15:Derived from natural photosynthesis: a simplified catalytic cycle for light induced water

splitting capable of visible light absorption and conversion into redox energy (a), unidirectional

electron transfer (t) and concerted redox reactions for water reduction (b) and oxidation (c).

Furthermore, it is possible to focus on a particular sub-process (a and b in figure 14) at a time

to reduce side reactions and complexity of the resulting artificial photosynthetic systems to

characterize, understand and optimize the interplay within the system in detail.

Complete catalytic systems (or complex substructures thereof) as well as interesting processes

can also be described in a simplified notation. A catalytic system is expressed in double brackets
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“J K”, in which contact pairs of independent substructures are separated by a “/” and covalently

linked substructures within the same superstructure are separated by a “:”, external substrates

are written on the outside of the system. Using the previously described half reactions of the

natural photosynthetic system as an example and adapting the notation according to table 1 it

is possible to express the arrangement of components as well as relevant processes (e.g. initial

vector of quenching and charge separation) in the following formalism:

H2O JCOx / RD /
1) e−ÐÐÐÐÐÐ→

P * / RQ,A / ... K SA, (water oxidation)

SD J ... / 1) e−ÐÐÐÐÐÐ→
P * / RQ,A / RA / ... / RA / CRed KNADP+, (NADP+ reduction)

As described before, both half reactions are initiated through the oxidative quenching of the

excited photocenter (P*) by an accepting quencher (RQ,A) which may also act as redox shuttle.

This is followed by multiple redox-steps with an overall electron flow from the donor substrate

(SD/H2O), being irreversibly oxidized at the oxidation catalyst (COx), toward the acceptor

substrate (SA/NADP+, eventually irreversibly reduced at a reduction catalyst (CRed).

1.9 Multicomponent Systems from Fundamental Building Blocks

From the above discussions it is clear that a photochemical reaction can supply the required

energy (E = 1.23 eV) to drive an artificial system for water splitting, Therefore a suitable

photosensitizer is needed. It is also obvious that a simple system has to exhibit two reaction sites

with opposing potentials to allow for oxidation as well as reduction. Furthermore, two different

charge separation- and electron transportmechanisms (mediators, chains) between chromophore

and reaction centers have to be established to design a simple system. Two different aspects of

importance can be attached to the resulting half reactions, so that it is possible to focus on the

desired subprocess:

The half reaction of light-driven water oxidation is particularly interesting because in general

it deals with the exploration of cheap and sustainable “sacrificial” electron donors SD (water)

and an efficient mechanisms to deprive the electrons thereof as well as to provide them for fuel

production. The two essential steps that have to be simulated are water oxidation with the help

of a catalyst COx and electron transfer of the received electrons to the chromophore. To generate
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a catalytic cycle an external electron accepter as well as an electron mediator might need to be

added to give the following three component system:

H2O JÐÐÐÐÐÐ→COx / R / P K SA.
The subprocess of light-driven water reduction has great importance because it generally

represents the exploration of suitable acceptor substrates SA (such as water, but also for H2S,

CO2
[31] or NADP+) and efficient mechanisms to power the storage of electrons along with the

formation of fuels. In this case, the easiest system accomplishes electron transfer away from P and

water reduction by CRed. Here as well, an external electron donor and some mediator need to be

added to close the cycle:

SQ,D JÐÐÐÐÐÐ→P /R /CRed KH2O.

To translate these basic catalytic cycles into working systems, several parameters have to be

considered. The use of a one-pot reaction in homogeneous media is a good starting point. This

allows for the easy and fast build-up ofmulticomponent systemswhere each function is fulfilled by

one molecule (compare figure 15). Concentration dependent statistical collision processes ensure

that the corresponding reaction partners will find each other. Therefore, no specific geometry

has to be applied because the complete catalytic cycle will “self-assemble” statistically, although

solubility problems or undesired side reactions like charge recombination, radical chains, or

irreversible redox reactions may appear to some extend.

Particular advantages arise from the fact that this kind of setup allows for easy adjustments or

replacements within the system. This way, it is possible to screen libraries of suitable electron

donors, chromophores, redox shuttles and catalysts to find suitable candidates for a system

with defined geometry. Furthermore, a separation of catalyst and product, often difficult in

homogeneous catalytic systems, is not a problem because gas bubbles will evolve, which can be

detected in the headspace of the catalysis setup.

Indeed, the first working systems were based on this intermolecular setup as was reported in the

1970s.[32, 33, 34, 29] Since then many model systems of hydrogen production or oxygen production

from water have been proposed. In this scope an enormous amount of data on new dyes, electron

relays or catalysts was presented.[29, 35] A closer analysis of the presented systems reveal the
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specific requirements of each component according to its predetermined functionality in the

photocatalytic system.

1.9.1 Photosensitizers - Light Energy Conversion

The exploration of suitable photosensitizers (P) is the initial step for the modeling of artificial

photosynthetic processes.

P P*

P-

visible
light

QD

QD
+

A-

A

PA*

PA

visible
light

Q

Q*

Figure 16: Energy conversion of redoxactive photosensitizers in a tree-step excitation – electron

transfer – ground state regeneration cycle (left, reductive quenching mechanism is not depicted)

and two-step excitation – energy transfer cycle of sensitizers with antenna function (right).

As depicted on the left side in figure 16, photosensitizers have to accomplish three important

functionalities: First, light absorption with formation of an excited species (P *), second, energy

conversion and electron transfer by a quenchingmechanism and, third, ground state regeneration

via redox reaction. Photosensitizers or antenna pigments (AP), that accomplish excitation transfer

can be used to increase the effective absorption area.

To match the requirements, needed for the use in photocatalytic water reduction according to

the basic catalytic cycle, the photosensitizer has to possess several essential properties. These

properties are according to Balzani:[36]

(1) reversible redox behavior

(2) suitable ground and excited state potentials (EOx, ERed, EOx*, ERed*)

(3) stability toward thermal and photochemical decomposition

(4) intense absorption in a suitable spectral region (ϵ, λ, PA)
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(5) small energy gap between relevant excited states

(6) high efficiency of population of the reactive excited state (η)

(7) suitable lifetime of the reactive excited state (τ )

(8) high energy content of the reactive excited state (E0-0)

(9) good kinetic factors for outer sphere electron transfer reactions (kET).

In the research of multicomponent systems for photocatalytic water reduction, many

chromophores, including acridine dyes, metalloporphyrins, metallophthalocyanines, and

transition metal complexes of Os, Cr, Ir or Ru were screened.[29, 37, 35] Because of their outstanding

properties, especially ruthenium complexes with polypyridine ligands, and [Ru(bpy)3]2+ in

particular, may be considered as prototype workhorse-chromophores (see figure 17 for examples).

N

N

N

Ru
N

N

N

N

N
NRu

N

N

N

N

N

N

Ru N
N

N

a b c

2+ 2+ 2+

Figure 17: Representative ruthenium polypyridine chromophores: a) [Ru(bpy)3]2+,[36]

b) [Ru(tpy)2]2+,[38] c) [Ru(bqp)2]2+[39].

For a better understanding of the capacity of this type of complex, it is important to understand the

ground state, excited state and redox characteristics.Therefore, it is useful to consider itsmolecular

orbitals, instead of being uniformly distributed across the molecule, to be localized on a specific

part of it. According to the localized molecular orbital approximation, molecular orbitals of the

complex derive from orbitals of its precursor components (metal ion and free ligand). In general,

upon complex formation, energies of the existing orbitalswill be shifted, but their positions remain

predominantly localized onwhethermetal fragment (M) or ligand (L). As a result of that, although

slightly changed, several features of the components will be retained in the resulting complex (e.g.

possible electronic transitions).[40]

|24|



|1.9 Multicomponent Systems from Fundamental Building Blocks|

Therefore, metal centered (MC, e.g. d-d-transition) as well as a ligand centered transitions (LC,

e.g. π-π*-transition), possible in the precursors, may be observed in the resulting complex as well.

In addition, new electronic transitions, involving two localized orbitals on different moieties of

the complex will be possible. Importantly, such transitions result in charge transfer (CT) between

the involved substructures of the molecule. The resulting electronic structure yields a biradical-

type situation with high dipole momentum and comes along with oxidation as well as reduction

potential of the excited molecule, hence it allows for further light into redox energy conversion

by further charge separation. Metal to ligand charge transfer (MLCT), ligand to metal charge

transfer (LMCT) or ligand to ligand charge transfer (LLCT) are typical examples. Intra ligand

charge transfer (ILCT) and charge transfer to coordinated solvent molecules (CTTS) may also be

observed.

Furthermore, the population of an excited state of a chromophore (P*) typically competes

with several depopulation pathways. Radiative deactivation processes involve spin allowed

fluorescence (F) and spin forbidden phosphorescence (P). Nonradiative deactivation processes

(nr) such as internal conversion (IC), intersystemcrossing (ISC, e.g. through conical intersections)

as well as vibronic relaxation (VR) are also possible.Themost important nonradiative deactivation

processes in the scope of artificial photosynthesis are quenching processes such as energy transfer

(EnT) and photo electron transfer (PET) processes.

The energy positions of the MC, LC, MLCT and other excited states depend on the ligand

field strength, the redox properties of metal and ligands, and intrinsic properties of the ligands,

respectively. Furthermore, the excited-state energy ordering in the spin-allowed and spin-

forbidden manifolds may be different from each other. The occupation probability and lifetime

thereof depends on many factors, e.g. differences in energy between relevant states, Franck-

Condon factor, spin states or kinetics of the occurring deactivation processes.[40]

Octahedral ruthenium(II) polypyridine complexes are 18-electron systems with a low spin

πM(t2g)6-configuration of the metal center due to the strong σ-donating ligands. The

photophysical behavior of these complexes (absorption and emission bands in UV-vis spectra

of such complexes, e.g. orbital energy ordering and deactivation kinetics) is very similar and

can be explained with the help of a Jablonski diagram.[36] Figure 18 depicts a typical absorption

and emission spectrum and the corresponding Jablonski diagram of octahedral ruthenium(II)

polypyridine complexes.
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Figure 18: Typical absorption (blue) and emission (orange) spectrum of [Ru(bpy)3]2+-type

complexes following from the orbital positions, depicted in the related Jablonski diagram (right).

Absorption bands found between 250 and 350 nm in the UV region of the spectrum such as

ruthenium centered d-d-transitions as well as bipyridine centered π-π*-transitions are inherited

from the precursors.

However,more interesting is the strong absorption band (requirement 4) between 400 and 500 nm

with a maximum at about 450 nm and extinction coefficients as high as ϵ= 14 600 l/(mol cm). In

the case of ruthenium(II) polypyridine complexes this band typically refers to the HOMO-LUMO

transition, because the LC π*L-orbitals are lower in energy than the MC σ*M orbital.[41]

As depicted in the Jablonski diagram, for most Ru(II) polypyridine complexes, the lowest excited

state is a 3MLCTwhich is reached from the initial 1MLCTunder spin flip (∆E1MLCT/3MLCT ≈ 0.64 eV,
requirement 5).This intersystem crossing is very efficient because of a strong spin-orbit interaction

in these complexes and occurs within femtoseconds in quantitative yield (requirement 6, compare

example a and c in figure 17). With respect to energy conversion and excited state chemistry,

it is important that this CT state undergoes relatively slow radiationless transitions and thus

exhibits long lifetime (τ ∼1µs, requirement 7). The excited state energy of this triplett is still high

(E3MLCT ≈ 2 eV, requirement 8) and results in an intense luminescence emission at wavelengths

around 600 nm (requirement 8). However, the luminescence quantum yield is rather small with

only 2%.

In other cases (b in figure 17), with respect to excited state chemistry, an undesired 3MC state is the

lowest excited state, which is reached via IC from the a very short living 3MLCT state (τ < 1 ns).
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Table 2: Selected properties of important ruthenium polypyridine chromophores.

[Ru(bpy)3]2+ [36] [Ru(tpy)2]2+ [36, 39] [Ru(bqp)2]2+ [42]

λ a
max, Abs. [nm] 452 474 490

ϵ aMLCT [l/mol cm] 14 600 14 600 14 000

λ a
max, Em. [nm] 590 628b 700

E a
0-0 3MLCT [eV] 2.12 1.98b 1.77

τ a
3MLCT [ns] 870 < 0.5b 3000

ϕa
Em. [%] 8 2

E a,c
Ox [V] +0.8 +0.82 +0.71

E a,c
Red [V] -1.76 -1.85 -1.70

geometry octahedral distorted octahedral octahedral

symmetry D3 (chiral) D2d (achiral) D2 (chiral)
a measured at room temperature in acetonitrile under inert conditions if not stated otherwise
b measured in water
c referenced vs. Fc/Fc+

The energy ordering of the various excited states, and, importantly, the orbital nature of the

lowest excited state can be controlled by a judicious choice of the ligands. For example, the

2,2’;6’,2”-terpyridine ligand (tpy) in [Ru(tpy)2]2+ can only achieve a severely distorted octahedral

surrounding of the ruthenium center and, thus, changes energy ordering of the d-orbitals. This

opens up a nonradiative deactivation pathway of the 3MLCT via the thermal population of the

lower lying 3MC state, resulting in a lifetime of this excited state of 0.26 ns and a luminescence

quantum yield near 0%. Otherwise, using the 2,6-bis(8’-quinolinyl)pyridine ligand (bqp) fulfills

the criteria of octahedral coordination and increases the energy gap between the 3MLCT and
3MC states. Thus [Ru(dqp)2]2+ exhibits a very long lifetime (τ ∼3µs), and intense luminescence

emission with a quantum yield of about 2% (see table 2).

As can be concluded by comparison of the complexes in table 2, it is possible to design complexes

possessing, at least to a certain degree, the desired properties to play the role of energy donor,

electron donor, or electron acceptor in the excited state.[36] In the case of [Ru(bpy)3]2+ and

[Ru(bqp)2]2+, the 3MLCT states live long enough (see table 2) to encounter other solute molecules

and allow for excited state chemistry.
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Figure 19: Relevant energy and electron transfer processes of [Ru(bpy)3]2+. After photoexcitation

the spin allowed 1MLCT state **[Ru(bpy)3]2+ is reached. *[Ru(bpy)2(bpy-)]2+ represents the long-

living spin-forbidden 3MLCT state which is existent after intersystem crossing. During the lifetime

of 600 ns different quenching processes may occur by the reaction with a quencher Q, followed

by ground state redox chemistry with a substrate S. The redox potentials are given in aqueous

solution, referenced vs. SCE.[36]

The correlation between spectroscopy and electrochemistry is depicted in figure 19. It is known

that the energy available to the 3MLCT-excited *[Ru(bpy)3]2+ (E0-0 = 2.12 eV) by far exceeds the

energy necessary for over all water spitting (1.23 eV per transfered electron). This energy can be

tapped during the lifetime of the excited state via different quenchingmechanisms and leads to the

regeneration of the ground state species of the sensitizer, if the quenching process involves only

energy transfer processes (EnT). The biradical nature of the MLCT results at the same time in a

fairly high oxidizing and reducing power (+0.84 and -0.86V in water vs. NHE) of the excited

complex. Therefore, it is also possible to tap the excited state energy in an electron transfer
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reaction (ET) which leads to the formation of the groundstate sensitizer in an oxidized (oxidative

quenching) or reduced form (reductive quenching). These redox reaction involving quenching

mechanisms lead to the formation of charge pairs and, hence, represent a particularly important

step toward long term charge separation.

In accordance to the HOMO-LUMO 1MLCT-absorption, also ground state redox chemistry

typically involves the metal centered HOMO and the LUMO which is localized on the ligand.

Hence, electrochemical GS-oxidation of [Ru(bpy)3]2+-type complexes takes place at the metal

fragment with simultaneous formation of a complex with πM(t2g)5-configuration (compare

figure 19). Whereas GS-reduction takes place at a ligand centered orbital with retention of the

πM(t2g)6-configuration of the metal fragment.[40] The oxidation and reduction potential of the

ground state ions (-1.28 and +1.26V in water vs. NHE) are stronger than that of the excited

biradical species and may also be used to oxidize or reduce water.

It is important that these processes are quasi reversible so that a reductively or oxidatively

quenched chromophore can be regenerated without decomposition (requirement 1). This

regeneration of the Ru(II) chromophore by a second component Smay complete the hypothetical

light-driven catalytic electron transfer cycle (excitation, quenching, regeneration), e.g. in the

photoreduction of water.

It follows that *[Ru(bpy)3]2+ is at the same time a fairly good energy donor, electron acceptor,

and electron donor.[36] Whereas the potentials of charged quenching products are very high

and are definitely sufficient to oxidize or reduce water respectively. Although its excited state

*[Ru(bipy)3]2+ is thermodynamically capable of both oxidizing and reducing water at neutral pH,

this has not been found to occur.

1.9.2 Redox Systems for Charge Separation

As described before, light excitation increases both the oxidizing and the reducing power of a

chromophore.Therefore, light excitation of P can often be utilized by subsequent electron transfer

(ET) processes. Unfortunately, a direct oxidation or reduction of water by *[Ru(bipy)3]2+-type

complexes has not been found to occur. Thus, suitable redox mediators R have to account for the

fast and irreversible charge separation via quenching mechanisms to gather or deliver electrons

from or to the chromophore. Furthermore, such redox ferries have the function to mediate the
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unidirectional electron transfer between electron donorD and acceptor A via ground state redox

processes (see figure 20).

R

R-
D+

D A-

A

Figure 20: Reversible redox cycle of an electron ferry which can be used in a multicomponent

system to allow for long distant charge separation and electron transfer between distant reactants,

such as D and A in fluid media.

According to Lehn et al., a suitable shuttle species in a multicomponent setup for water reduction

should have the following characteristics:[34]

(1) reversible redox behavior;

(2) suitable redox potentials;

(3) ability to accumulate multiple electrons;

(4) ability to accumulate multiple protons;

(5) good kinetic factors for outer sphere electron (and proton) transfer reactions;

(6) stability toward thermal and photochemical decomposition;

Depending on the particular quenching mechanism, it should be reducible by the excited

chromophore P* or by the photoreduced species P− in the catalytic system (e.g. *[Ru(bpy)3]2+ or

[Ru(bpy)3]+). And secondly, the shuttle species itself must be able to reduce water or the reduction

catalyst (-0.86(-1.28) V < E0 < -0.41 V, at pH 7 vs. NHE) to takeover transfer functionalities

in the reduction half reaction. The converse argumentation applies for the water oxidation

half reaction. To be a proper redox shuttle in the reduction chain, it can be helpful if the

mediator is able to accumulate two or more electrons at about the same reduction potential to

potentially allow for dielectronic reduction. According to natural systems it can also be helpful

if reversible combination with protons can be coupled to the reduction reaction (e.g. quinones

in photosynthesis or homogeneous hydrogenation catalysts). Proton coupled electron transfer

offers a route to compensate charge effects in intercomponent ET reactions. In addition this may

|30|



|1.9 Multicomponent Systems from Fundamental Building Blocks|

potentially provide a pathway for hydrogen release from an intermediate hydride.[34] In the case

of pure redox shuttles it would also be helpful if docking groups such as -CN, COOH, -pyridy are

present which can be ligated to the involved species (chromophore, catalyst) allow for a directed

electron transfer.

Commonly uses mediators are bipyridinium ions (methylviologens like diquat and paraquat),

phenanthrolinium ions, metal ions such as Eu3+, V3+ or Cr3+, metal complexes of Rh, Co, and

proteins like cytochrome c3.[29] The compounds depicted in figure 21, represent commonly used

redox shuttles with suitable redox potentials and in some cases also the property to combine

reversibly with hydrogen.
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[Rh(bpy)3]3+
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Figure 21: Representative electron mediators.[29, 34, 37]

Additionally, it may be necessary to use sacrificial electron donors (tertiary amines like

EDTA, triethylamine (TEA) or triethanolamine (TEOA), reduced metal complexes like Eu2+-

salts or other reducing agents like ascorbate, H2S or NADPH) as well as sacrificial electron

acceptors (peroxo species like K2S2O8 or oxidizing complexes such as [CeIV(NH3)2(NO4)6]
or [CoIII(NH3)5Cl]Cl2) to represent the second half reaction which is not relevant respective.

Sacrificial substrates are also used as fast quenchers to increase the efficiency of electron transfer

and importantly to make the back-reaction (charge recombination) less likely. In the case of

TEA/TEA−H+ it is speculated that the (tertiary amine) buffer may serve both as electron donor

and proton source[32]

A quantitative theory of ET was developed by Rudolph A. Marcus, who for this achievement

was eventually honored with the Nobel Prize in 1992.[43, 44] This powerful theory describes a

number of important processes in chemistry and biology, including ground state electron transfer

reactions as well as photoinduced electron transfer processes (PET), chemiluminescence and
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charge recombination processes.

Upon reduction or oxidation of a molecule, multiple reorganization processes therein take place

(bond lengths and angles as well as position and orientation of surrounding solvent molecules

change). Therefore, for an electron exchange reaction to take place, transition state energies and

geometries of the involvedmolecules (redox partners, interveningmediumaswell as field strength

of solvent cage) have to represent a minimum on a multidimensional potential energy surface.

intersection

(h )n

D*- A D   - A
. -+ .

E

q

DG
++

DGET

l

2HAB

D - A D - A--

optical

transition

Figure 22: Profiles of the many-dimensional potential surfaces of reactants plus surrounding

medium before and after an electron transfer reaction. Dotted lines indicate splitting due to

electronic interaction of reactants. The minima denote nuclear coordinates for an equilibrium

configuration of reactants and products. The saddle point denotes the nuclear configuration at the

intersection of the two potential-energy surfaces.[43, 44]

Marcus was able to abstract this to a two-dimensional problem, combining all parameters into a

single reaction coordinate q, which represents the motion of all the atomic nuclei. The Gibbs free

energy is used to account for the nuclear motion of solvent molecules as well as reaction partners

of the system. This way, it is possible to represent the potential energy surface of the reactants in

the shape of two simple parabolas (see figure 22). One for the initial state (electron is still on the

donormolecule/group), and another one for the final state (after the electron has been transferred
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to the acceptor).

Nonradiative electron transfer is only possible at an intersection of the potential energy surfaces,

which means that the nuclear coordinates of the involved molecules are the same in the initial

state as well as in the resulting state (usually accessible with the help of fast rearranging solvent

molecules). Otherwise, ET processes will always be vertical transitions under absorption or

emission of photons, following the Franck-Condon-principle.

The position of the parabolas is characterized by three parameters: The first is the free activation

energy barrier ∆G‡ (represents the activation enthalpy necessary to stimulate nuclear motion of

solvent molecules as well as reaction partners, required to reach the intersection). The second

is the free reaction enthalpy ∆GET released upon electron transfer, and the third is λ, which

is a reorganization term called reorganization energy. It represents the energy that would be

required to reorganize the nuclear positions of solvent molecules and reaction partners for the

product situation (after the electron is transfered) to fit the initial conformation (represented

by the potential minimum of the initial situation), without making the charge transfer (vertical

transition). Thus it involves the distance between the reaction partners as well as the dielectric

constant of the solvent andmeasures the absolute change in structure of the overall system during

the ET process.

The interaction of the parabolas is defined by ∣HAB∣ which represents the electronic coupling

between the initial and final states.

According to the Arrhenius transition state theory a rate constant kET can be derived for the

depicted ET process (arrow passing through intersection in figure 22).

kET = A exp {−∆G‡

kBT }

Theprefactor A is based on the electronic coupling between the initial and final state and depends

on the type of electron transfer reaction (e.g. inter- or intramolecular transfer). It also describes

the frequency of nuclear movement as well as the transmission coefficient of this reaction or the

fraction of back reaction.

A =
2π
h̷

H2
AB√

4πλkBT

Importantly, due to the simplifications and parabola approximation it is also possible to find a
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formula for the activation energy ∆G‡, based on the reorganization energy λ and free reaction

enthalpy∆GET.

∆G‡ =
(∆GET + λ)2

4λ

Interestingly, the quadratic relationship between∆G‡ and∆GET causes a dependency of the rate

constant for the ET to pass through a maximum kET, max in the case of -∆GET = λ (∆G‡ = 0).

Otherwise, in the case of -∆GET > λ or -∆GET < λ the ET reaction will be slower, even though

the reaction will be very exergonic. This consequence of the Marcus theory is termed Marcus

inverted region.

A combination of the above reaction gives the basic equation of Marcus theory:

kET =
2π
h̷
∣ HAB ∣

2 1√
4πλkBT

exp {−(∆GET + λ)2

4λkBT
}

After having covered photophysical, photochemical and electron transfer aspects the essential

influence of the catalytic centers on the over all efficiency shall be discussed.

1.9.3 Oxidation Catalysts - Solar Fuels

From the above discussion it is clear that the cleavage of water into oxygen and hydrogen

represents a four-electron redox reaction which can be subdivided into oxidation and reduction

half-reactions andwhich requires an energy of 1.23 eV per transferred electron. Themain problem

is the large overpotential (activation energy) for the multi-electron processes which has to be

applied to the electrodes in an electrochemical setup in addition to the required energy of the

thermodynamically uphill process.[45, 28] A key step for light-induced water splitting will be the

discovery of an efficient catalystwhich achieves a stepwise one-electron transfer oxidation reaction

and, therefore, bears a lower overpotential toward water oxidation (see figure 23).

Suchmolecules have to bemultiply reducible or have to exhibit multiple electron “holes” to gather

up to four electrons. Between the binding of H2O and the release of O2, three ideal intermediates

have to be considered to be involved in the water oxidation reaction at the catalyst: COx–OH,

COx=O and COx–OOH. Accordingly, fitting binding sites and fine-tuned redox potentials of the

involved processes have to be present in the catalyst.

Plants, algae, and cyanobacteria oxidize water with the help of solar energy and a µ-oxo bridged
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Figure 23:Oxidation catalyst for the multi-electron oxidation of water.

Mn4Ca cluster which represents the active site in the OEC to bind two water molecules.[20, 46]

Figure 24 depicts the successive removal of protons and electrons from the Mn4Ca cluster with

coordinated water (S) in ten steps.
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Figure 24: Extended S-state cycle model. Electrons and protons are removed alternately from the

Mn4Ca-cluster. The nine intermediate states of the Mn complex are denoted as S+/ni where the

subscript denoted the number of accumulated oxidizing equivalents and the superscript indicates

the relative charge: positive (+) or neutral (n) relative to the dark-stable S1-state.[28]

This mechanism has not been completely explained until today but it is known that it involves

the successive oxidation of separate Mn-centers within the cluster by tyr •+ upon illumination and

concerted release of protons from themanganese coordinated water molecules to the liquid phase

(see figure 25-d for the structure of the active site).

In addition to the biocatalytic water oxidation in photosynthesis, different artificial approaches

to water oxidation exist. They include heterogeneous electrocatalysis at electrode surfaces (e.g.

cobalt phosphates referred to asCoPi
[47]), heterogeneous photocatalysis by oxidic bulkmaterials in

colloidal form or deposited on electrodes (e.g. metal oxides such as TiO2, IrO2, Co3O4, Mn3O4
[48])
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and homogeneous photocatalysis by transition metal complexes.[28, 29]

Nevertheless, only a relatively small number of homogeneous molecular water oxidation catalysts

is hitherto known and the prediction of suitable molecular structures for water oxidation catalysis

at low overpotentials is rather difficult. Based on the multinuclear structure of the OEC and the

discovery of the “blue dimer” byMeyer et al. in 1982, it is expected that amultinuclear structure is

required (at least in the transition state) to accomplish the mechanistically demanding oxidative

coupling of two water molecules to yield oxygen.[49] As a result several binuclear catalysts that

allow for high oxidation states of the metal center have been proven to be active catalysts for water

oxidation (compare figure 25).
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Figure 25: Important molecular oxidation catalysts: (a) “blue dimer” [(µ-O){RuIII(H2O)(bpy)2}2]4+

MEYER et al.[49], (b) [(µ-bpp){RuII/III(H2O)(tpy)}2]3+ LLOBET et al.[50] (bpp = bis(2-pyridyl)-3,5-

pyrazolate), (c) [(µ-HOHOH){RuIV(dcbpy)(pic)2}2]3+ SUN et al.[51] and (d) active center of the

OEC as confirmed by BARBER et al. through X-ray analysis.[52, 53]

However, water oxidation catalyzed by the blue dimer is nowadays explained by amechanism that

involves only a single ruthenium site. Therefore, water oxidation catalysis must also be possible

with mononuclear metal complexes.[28, 54, 55]

A common motif is [Ru(L̂LLL)(L)2]n+, which contains a planar tetradentate L̂LLL-ligand
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(e.g. rings systems like porphyrines) to exclude other chelating (tightly binding) ligands from

coordinating themetal center and, therefore, allows for the ligation of H2Oduring catalysis. Open

L̂LLL-ligands may distort the octahedral coordination geometry around the central ion and ease

the access for water in the ligand plane.[56] In the research on mononuclear catalysts Sun et al.

choose carboxy-substituted bipyridine as an L̂LLL. Interestingly, the sterically less demanding

ligand opens up a fifth coordination site at the ruthenium center in the bipyridine plane.[51, 57, 58] In

this way they succeeded in crystallizing a possible intermediate structure on the oxidation reaction

with a µ-HOHOH-bridge between two of these complexes with a very unusual heptacoordinated

ruthenium center (see figure 25 c).

Complex (b) in figure 25, prepared by Llobet et al. represents another commonly used structural

motif: [Ru(L̂LL)(L̂L)(H2O)]n+, exhibiting a combination of tightly bound trisdentate L̂LL and

bisdentate L̂L ligands. Furthermore, a mobile monodentate ligand is present in the precursor

which is predetermined to leave the complex to generate an open reaction site for water

oxidation.[50, 56, 54]

Finally, in addition to the commonly used ruthenium complexes a number of mono and

olegonuclear manganese, osmium and iridium complexes with different catalytic sites are known

to catalyze the water oxidation reaction.[28]

Generally, hard ligands with strong σ-donating properties (e.g. µ-O, -COO−, halides or N-donor

ligands) or strong-field ligands (e.g. cyclopentadienyle or phosphines) are part of the catalytic

center to stabilize high oxidation states of the involved metal centers during the redox reaction.

1.9.4 Reduction Catalysts - Solar Fuels

The reduction of two protons under formation of molecular hydrogen is a two-electron reduction

reaction. Similar to the water oxidation reaction, here as well an overpotential has to be applied

to overcome the barriers in this multi-electron reaction within an electrocatalytical system.

Undoubtedly, hydrogen evolution from water (protons) is less complex as compared to the

evolution of oxygen which is a four-electron process. Nevertheless, it involves several catalyst

adsorbed intermediates at different redox potentials, which may contribute to voltage and

efficiency losses and need to be optimized (see figure 26).
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Figure 26: Reduction catalyst for the multi-electron reduction of protons (water).

According to Bolton, systems for the reduction half reaction can be subdivided into

photochemical systems, semiconductor systems[48, 59], photobiological systems[60], hybrid systems

and thermochemical systems.[61] The different approaches include heterogeneous electrocatalysis

at electrode surfaces (e.g. platinized platinum electrodes). Examples for heterogeneous catalysis by

oxidic bulk materials in colloidal form or deposited on electrodes are metal oxides such as RuO2,

IrO2
[62], PtO2, PdO2 or Fe2O3 and supported materials like RuO2 + IrO2 on zeolite. Furthermore,

photocatalysis with colloid metals and metal powders of Ir, Pt, Ni, Au, Ag, Pt, partially in situ

generated from suitable salts like K2PtCl6 as well as core/shell-structured nanoparticles (noble

metal/metal oxide core and Cr2O3 shell) is known.[29, 48]

The biological example catalysts for water reduction can be found in hydrogenases, enzymes

found in several microorganisms such as bacteria, protozoa or fungi.[63, 60, 64] Three types of

hydrogenases with different functions are known to date: iron-only-hydrogenases ([FeFe]),
nickel-iron-hydrogenases ([NiFe]) and the so called “metal-free”-hydrogenases ([Fe]). Iron-only-
hydrogenases which mediate the formation of hydrogen from protons and electrons or in other

cases the back reaction with extremely high efficiency as a part of themicroorganismsmetabolism

are of particular importance for the reversible production and consumption of fuels. From X-

ray crystallographic and FTIR spectroscopic experiments it is known that the reaction center of

the [FeFe]-hydrogenases consists of a [Fe2S2]-subcluster with a free coordination site for proton

reduction, linked to one or several heterocubane [Fe4S4]-subclusters with intermediate electron

storage capacity (compare figure 27).[63] Impressive is the precisely fine-tuned, structurally and

electronically flexible ligand environment around the dinuclear reaction site which exhibits

mobile and soft carbonyle, cyanide and thiolate ligands, predominantly to stabilize low spin

configuration and low oxidation states of the iron centers and to facilitate the binding and

formation of hydrogen or protons.[60]
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As a result, a large number of bio-inspired hydrogenase models were prepared. They typically

reproduce the [Fe2S2]-motif, in addition, a variety of carbonyl and other ligands is added to

account for open or closed reaction sites (compare figure 27).[65, 66]
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Figure27:Natural [FeFe]-hydrogenase fromClostridiumpasteurianum (a)[67] andbioinspiredmimics

with occupied (b) or vacant coordination site (b’) at the second iron center.[64, 68]

In not hydrogenase inspired homogeneous photo and electrocatalysis, commonly transitionmetal

complexes of cobalt(I/III) or rhodium(0/II) are used (figure 28).[37]
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Figure 28:Different reduction catalysts (a) NOCERA[69],(b) ARTERO[37], (c) SUN[70], (d) RAU[71]

In principle, catalysts for proton reduction should be constituted similar to hydrogenation

catalysts or catalysts for organic coupling reactions which exhibit low valent metal centers and

vacant coordination sites to intermediately allow for the formation of hydrido-complexes that

can be protonated to form hydrogen. Important ligands that stabilize low valent metal centers are

phosphines andN-heterocyclic carbenes (NHC) as can be easily concluded from the development

of the first and second generation of Grubbs catalysts for metathesis reactions. Interestingly, not

many examples for molecular catalysts are known in which phosphine or NHC-ligands are used

to stabilize themetal. In figure 28, two examples for active hydrogen evolving catalysts with NHC-

ligands are presented.

|39|



|1.10 Intramolecular Photoredoxcatalysts|

1.10 Intramolecular Photoredoxcatalysts

From the discussion about intermolecular catalysis, it is clear that working systems can be easily

assembled from the available building blocks with respect to the desired functionality that shall be

generated. The main focus of attention for the optimization of an artificial photosynthetic system

is the improvement of charge separation and electron transfer processes. However, intermolecular

electron transfer processes are naturally dependent ondiffusion and collision processes.Therefore,

usage of a multicomponent systems in a one-pot setup will increasingly generate problems the

more “condiments” are added. Considering a system of independent components such as electron

donor, photosensitizer, electron mediator, catalytic center and water in a supporting media, e.g.

SD JÐÐÐÐÐÐÐ→P /RA / CRed KH2O, a variety of aspects has to be taken into account to understand all possible

side reactions (e.g. P− JÐÐÐÐ→P* / RA KP+ or P+ +P− Ð→ 2P+hν) and the involved mechanisms,to

plan and perform the experiment respectively. Especially undesired electron transfer reactions

or radical reactions (e.g. R•+ +R•− Ð→ R-R) are difficult to control.

To avoid diffusion generated problems a preorientation or linking of the reaction partners without

changing their functionalities is necessary.[40]According to the constitution of natural systems and

based on pioneering work of D. J. Cram, C. J. Pedersen and J.-M. Lehn who were honored with

the Nobel Price in 1987 for the development and use of molecules with structure-specific interactions

of high selectivity, this is best achieved in a supramolecular structure.[72, 73, 74] The great advantage

of such supramolecular systems is the localization of orbitals on specific substructures due to

small interaction energies between them (see figure 29). Therefore, although slightly shifted,

partial charges, involved redox processes and electronic transitions featured by the molecular

components will be maintained in a resulting superstructure. This generates functional subunits

which may act more or less independent of the rest of the molecule, whereat communication is

improved in comparison to the bimolecular case.

In general, the classification of a compound according to figure 29 is not completely

strict but gradual. Communication (delocalization/orbital overlap) between the components

A and B changes with the distance and bond type of : between them and increases in

the following order: electrostatic interaction < hydrogen bonds < host guest interaction <

coordinative bonds < covalent bonds. Furthermore, shuttle type building blocks (e.g. molecular

bridges/bridging ligands) can be used to establish a connection between distant substructures
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Figure 29: According to BALZANI the photochemical and electrochemical properties featured by

supramolecular species and large molecules (left)[40] and representation of strong (a) intermediate

(b) andweak (c) communication between different components of compoundA:B in dependence

of the electronic coupling and resulting energy barrier between them (right).

to allow for inner sphere electron transfer in addition to the outer sphere electron transfer.

Thus, fast and directed intramolecular electron transfer processes may take place between

the compartments, which dramatically reduces intermolecular side reactions. Importantly,

in difference to intermolecular reactions, in the ground state any intercomponent electron

transfer is, by definition, energetically uphill and must always be induced externally, e.g.

by MLCT-excitation of an incorporated sensitizer.[75] Starting from intermolecular working

systems, the development toward intramolecular systems for the overall water splitting (e.g.

H2O JCOx :RD :Ð→P :RA :CRed KH2O) proceeded in stages and is not finished yet. First

constructions of supramolecular systems focused on energy and electron transfer properties (e.g.

orbital energies and positions, ET/EnT-kinetics, distance dependency or quenching processes)

in simple supramolecular structures, constituted of photocenter and electron donor or acceptor

respectively.[36]

JP:RQ/D/A K, JP : BN : RQ/D/A K
Later, research focused on long-term charge separation and on donor-acceptor assemblies:[76]

JRD : P:RA K, JP :R1
A :R2

A K or JR2
D :R1

D : P K
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In addition, antenna like systems and other supramolecular structures for intramolecular electron

and particularly energy transfer were investigated:[77]

J (AP)n : P: RD/A K or JAP : BN : P K
Working intramolecular photocatalysts, consisting of photocenter and catalyst to perform a

complete half-reactionwere developed very late in the case of water reduction or are still unknown

as in the case of water oxidation:[35]

JP:BN :COx/Red KH2O or JP:RQ/D/A :COx/Red KH2O

It turned out that in addition to organic systems, especially oligonuclear coordination compounds

(dyads, triads, tetrads, ...) possess ideal properties to investigate the desired processes in

supramolecular systems and to reproduce concepts of nature.

1.10.1 Oligonuclear Coordination Compounds

The necessary charge separation for redox-catalysis can be generated with organometallic

chromophores P which represents one component of supramolecular catalyst. In addition, a

second metal center will serve as redox-catalyst C. The use of fine-tuned bridging ligands B will

increase the range and thus the lifetime of the charge separation in the first place. Furthermore, it

will allow for an unidirectional inner sphere electron transfer toward the second metal to allocate

the electrons for consecutive reactions. In general, three different processes exist which transform

the absorbed excitation energy into redox-energy that can be tapped by the catalyst metal (see

figure 30): (a) energy transfer, (b) photoinduced electron transfer and (c) photoinduced charge

separation.

Electronic energy transfer (EnT) is equivalent to electron transfer between different intra-

component-LUMOs and parallel “hole transfer“ between different intracomponent-HOMOs via

Förster and Dexter mechanisms and shifts the localization of excited state energy to an

energetically lower lying excited state on a different component. Photoinduced electron transfer

(PET) shifts an excited electron from a high intracomponent-LUMO (LUMO+1) toward a lower

lying LUMO (Kasha’s rule) which is localized on a different component. This can be seen as a

intraligand electron transfer process from a high MLCT+1-state which populates a lower MLCT-
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Figure 30: Charge separation by different types of photoinduced electron transfer processes (PET)

and energy transfer processes (EnT) within a covalently linked system.

state when a direct HOMO-LUMO transition by MLCT-absorption is not possible due to a weak

electronic coupling of the involved orbitals. Photoinduced charge shift occurs after reductive or

oxidative quenching and refers to intercomponent redox-processes in the ground state. Especially

when compared to figure 19, it becomes obvious that the increased efficiency of charge separation

along with increased lifetimes is at the expense of a decreased redox-energy available for the

desired process.

Particularly the chemical nature of the bridge which not only acts as passive spacer to provide for

structural support, but rathermediates the electronic coupling between the involved substructures

at the same time is of great interest. Accordingly, the degree of electronic communication can

be fine-tuned by changing the distance between the metal centers, using innocent bridges (BN)

with high rigidity. Another possibility of fine-tuning is to change the role of the bridge by

introducing functional groups or complexation of different metal centers. They determine the

intracomponent HOMO and LUMO energies and electron withdrawing or releasing capacity as

well as intracomponent redox potentials and the resulting function in the superstructure (see

figure 31). Thus, a bridge can play the role of quencher (BQ), donor and depot (BD), acceptor

and storage(BA) or molecular wire for ET and EnT processes between two components. Aromatic

bridges (e.g. tetrapyridophenazine) behave as efficient mediators of energy and electron transfer

between metals.

From a the above discussion the following list of requirements for the design of an optimal

bridging ligand can be derived:
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(1) intrinsic and intercomponent stability toward thermal, photo- and electrochemical

decomposition and reaction products or intermediates

(2) reversible redox behavior

(3) distance control of the interlinked metal centers

(4) suitable electronic coupling between the components

(5) suitable intracomponent HOMO and LUMO energies (redox-, ground state- and

excited state potentials)

(6) unidirectional charge separation or long lifetimes of the charge-separated state

(7) sufficiently small energy gap between relevant excited/redox states to guarantee for

(6), while conserving maximal redox activity

(8) high energy/potential of the reactive excited/redox state

(9) good kinetic factors for inner sphere electron transfer reactions for:

(10) electron storage capacity

(11) high efficiency of population of the reactive (excited) redox state at the catalyst site

Nevertheless, it is difficult to predict the properties of a single component, the bridging ligand in

particular, without considering the other components on the supramolecular structure.

The series of [Ru(bpy)2(tpphz)]-type complexes (tpphz = tetrapyrido[3,2-a:2’,3’-c:3”,2”-h:2”’,3”’-

j]phenazine) in figure 31 nicely exemplifies the difficult interdependences and interactions in a

supramolecule.

Interestingly, the bridging ligand tpphz exhibits two types of empty π*-orbitals in close energetic

proximity, the LUMObpy, which is mainly localized on the bipyridine like moieties and the

LUMOpz which is localized on the pyrazine moiety of the molecule. The orbital energies of these

LUMOs will be shifted in dependence of the oxidation state and the type of metal fragments,

coordinated to it. As a result of that, differently localized LUMO orbitals will be involved in the

charge transfer processes and charge separated states between the attachedmetals and the bridging

ligand which will be indicated by MLCTbpy and MLCTpz in the following passages.

Themononuclear complex [Ru(phen)2(tpphz)]2+ (Ru(tpphz), phen = 1,10-phenanthroline) shows
the typical 1MLCTbpy-absorption between 400 and 500 nm and MLCTbpy-emission from its

LUMObpy (λmax = 625 nm, τ = 1.25ms,Φ= 0.07, depicted in orange).The electron-transfer process

after excitation of the molecule, leading to deactivation of MLCTbpy and population of MLCTpz
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Figure 31: Idealized Jablonski diagram of photoinduced intercomponent energy- and

electrontransfer processes, in competition with intracomponent decay in a supramolecularJP: B: C K dyad (top). The different types of bridges can be subdivided according to their

relative intracomponent LUMO-orbital energies (LUMOB) in (a) not involved, (b) mediating and (c)

trap ligands. Example complexes with Ru(bpy3)-type chromophores and tpphz bridges (bottom).

The color coded π-systems refers to the diagram above.

(depicted in red) is according to Campagna et al. an endoenergetic process (∆G=+0.2 eV, case

(a) in figure 31).[78]

In contrary, the dinuclear complex [(phen)2Ru(µ-tpphz)Ru(phen)2]4+ (Ru(tpphz)Ru) exhibits

unchanged LUMObpy (depicted in orange) but a lowered LUMOpz (depicted in green) which

results in an intraligand charge transfer to the pyrazine moiety (case (c) figure 31) to populate
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a MLCTpz-like state. This process traps the electron on the bridge and gives rise to a weak, red

shifted, short living MLCT-emission (λmax = 710 nm, τ = 0.10ms, Φ= 0.005) when compared to

the mononuclear complex Ru(tpphz). It is to note, that a direct singlet MLCTpz excitation into

the LUMOpz is inefficient due to the low oscillator strength of the transition.[78]

In the case of [(bpy)2Ru(µ-tpphz)Os(bpy)2]4+ (Ru(tpphz)Os) two different chromophores are

attached to the bridge, therefore twodifferent 3MLCTbpy and two 3MLCTpz-like states are available.

As experiments show, after excitation of an electron into the LUMObpy from the ruthenium

center the system will eventually equilibrate to the lowest excited state which is the 3MLCTpz that

involved the osmium fragment (type (c) figure 31) and relax to the ground state from there. In

between, two possible pathways which lead to this result exist. The differ only in the succession

of the following two processes, (a) ruthenium to osmium energy transfer and (Ru3+(tpphz-)Os2+

Ð→ Ru2+(tpphz-)Os3+) (b) 3MLCTbpy to 3MLCTpz relaxation. Which pathway is followed by the

system is according to the Marcus theory solvent-dependent. Whereat process (a) is followed by

(b) in dichloromethane, process (b) is followed by (a) in acetonitrile.[79]

The complex [(tbbpy)2Ru(µ-tpphz)PdCl2]2+ (Ru(tpphz)Pd) exhibits the LUMOpz at an

intermediate energy level between the LUMObpy and the accepting orbital at the palladium center

(type (b) figure 31). As a result, a rapid population of MLCTpz and subsequent electron transfer

toward the palladium component takes place after initial excitation of the well-known MLCTbpy

which completely quenches the emission of the complex.[80, 81]

1.10.2 State of the Art Systems

Pioneering efforts to develop complete supramolecular catalysts which mimic essential

subreactions of water splitting with the help of metal complexes were described in detail by Sun

et al. in 2001, particularly for the water oxidation half reaction.[18] For the water reduction side,

the first intramolecular photocatalysts were presented by the work groups of Nocera, Sakai and

Rau.[69, 82, 80] Until today a series of intramolecular photocatalytic systems for the energetically

unfavorable activation of small molecules (water reduction and oxidation or CO2 reduction) and

other redox reactions are known.[83, 35]

Figure 32 depicts the general scheme of intramolecular working systems for hydrogen evolution.
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As can be seen, an array of sensitizer, molecular bridge and catalyst gives rise to an activeJP ∼B ∼CK-type superstructure.

visible
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photo-
center

catalysis
center

SD 2 H+

H2
3MLCT

bridging ligand
as

redoxmediator
sacrificial

donor
electron
acceptor

2 x e-

SD
+
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Figure 32:Model of a bimetallic intramolecular catalyst for hydrogen generation fromwater under

irradiation with visible light. Important building blocks for this functionality are the organometallic

chromophore P (charge-transfer complex for charge separation), the second metal complex C

(redox active catalyst) and the bridging ligand B (connection of photo- and reaction center,

intramolecular pathway for the directed electron and energy transfer).

Typical state of the art systems include bimetallic and polymetallic assemblies (see figure 33).[35]

The incorporated photosensitizers are chosen according to the results from the intermolecular

catalysis to be ruthenium polypyridine complexes with the well behaved photophysics and redox

chemistry. Some examples with iridium, rhodium and other sensitizers are known as well.[69, 85]

Going from intermolecular catalysis to intramolecular systems, a paramount substitution of the

previously used colloids or other heterogeneous catalysts toward molecular well defined catalysts

has to be made. As a result, all catalysts exhibit metal fragments (Pd, Pt, Rh, Co) that are well

known from electrocatalysis or organometallic coupling reactions to allow for multiple electron

uptake and a low valent catalytic species. Furthermore, all catalysts exhibit metastable terminal

ligands at the catalytic center to open up hydrogen binding sites during the catalysis.[29, 35, 83]

Special attention has to be paid to the molecular bridge which has to take over the electron relay

functionality. Interestingly, different kinds of bridging ligands were used in terms of rigidity
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Figure 33: Representative systems for the intramolecular hydrogen evolution, reported by the

workgroups of BREWER (a)[84], SAKAI (b)[82], RAU (c)[80] and ARTERO (d)[85, 86]. The dyads and triads

typically contain a [Ru(bpy)3]2+-type photocenter (orange). A second NN-chelated metal center

(blue) provides redox activity and coordination sites for catalytic hydrogen evolution. Covalent

bridges (bold) constitute the framework of the substructures.

(distance control) and activity in ET and EnT processes.[83] Especially the amide linked bridge

in the Sakai system represents a very flexible bridge which may flip back and forth (allow for

outer sphere ET). The Rau system, based on tpphz, exhibits a very rigid π-system with high

distance control between the metals (forces inner sphere mechanism).[82, 80] Very short distances

with high electronic communication between the metals are achieved in the Brewer system

(metal-metal interaction) whereas the Artero system exhibits the largest distance between the

metal centers (through-bond versus outer sphere mechanism).[84, 87] In addition, the type of the

coordinative bond will influence the integrity (e.g. reversible redox behavior, photostability) of

the supramolecular scaffold during the high energy processes. For historical and photochemical

reasons, typically N-donor ligands are used to bind the photocenter metal in the different redox

states. Catalysis experiments with the JP :B :CRed K systems are very similar to previous

experiments with intermolecular systems in set up and analysis. Usually, a sacrificial electron
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donor is used to support the half reaction, a suitable solvent is used to achieve a good solvatization

of the large molecules and adjustment of the pH value, while water is added to serve as the proton

source for the hydrogen evolution.[29] A proper light source (sunlight, filtered white-light, LED

sources or LASER) is used for the required excitation of the system. The formation of hydrogen

can be detected and quantified by gas chromatography from the headspace of the solution.[88]

Nevertheless, a systematic permutation of CRed or B in a series of photocatalysts with otherwise

unchanged components and conditions to derive structure-activity correlations and possibly

something like a “golden rule” for the purposeful construction of a supramolecular catalyst

has been performed only incompletely and for few examples.[89, 90, 91, 92, 93] At least a number of

problems found in the few catalytic systems known today can be used to yield a starting point for

the development and improvement of intramolecular photocatalysts.

1.10.3 Drawbacks and Starting Points

Amain disadvantagewhichwas supposed to be overcome by going from inter- to intramolecularly

working catalysts is the number of unwanted side reactions which decrease the stability and

quantum yield of the system.

Especially the hardly predictable behavior of the bridging ligand in a superstructure during a

multi-electron redox reaction makes it difficult to choose a proper candidate. Interestingly, often

N-donor ligands are used to bind the catalyst metal as well. This is due to a convenient access

to these systems with high synthetic flexibility and due to the positive results from the good

expertise in dealingwith JP1 :B : P2 K-type polyads. As a consequence, uponmultiple reduction

only limited stability of the acceptor metal (e.g. Pd(0)) can be achieved. With the help of TEM

and XPS experiments in a very similar photocatalytic system Hammarström et al. could show

that photoreduction upon visible light irradiation in the presence of TEA as sacrificial substrate

leads to the cleavage of the N-donor-stabilized palladium metal from the supramolecular array.

Furthermore, appearance of palladium colloids, for a long time known to be catalytically active

themselves, strongly correlates with the formation of hydrogen (see figure 34).[94]

Theproven formation of colloidal palladium emphasizes themajor drawback of the, by definition,

weak interactions between the components in a supramolecular system in general and the use of

N-donor ligands to link low valent catalyst centers in particular. Hence, these findings reopen
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Figure 34: Photoinduced degeneration of the intramolecular homogeneous catalyst (a) to an

intramolecular micro-heterogeneous system (b) and finally an intermolecular operating hetero-

geneous system (c) as observed by HAMMARSTRÖM et al. clouds the true nature of the catalyst.[94]

the compromising question for the true nature of the catalyst in all supramolecular assemblies. To

answer this important question it requires the careful consideration of alternativemechanisms and

improved techniques of investigation. Accordingly, different coordinationmotifs need to be tested

and applied to assure the stability of the scaffold during the high energy photocatalysis processes.

Promising candidates are phosphine or N-heterocyclic carbene ligands (NHC) which can be

adapted from low valent metalorganic catalysis (e.g. Heck reaction catalyst) or the chemistry

of complex hydrides.

Another problem with the molecular bridge is the difficult determination and adjustment of

the properties relevant for interaction between the participating metal centers (compare tpphz

complexes). Using the trial-and-error method causes an intensive cost-, work- and time effort to

accomplish even little progress toward an improved catalyst.

From the economic and environmental point of view the use of expensive materials especially

noble metals for chromophores (Ru, Ir, Os) and catalysts (Pt, Pd, Rh, Au, Ag) is a major drawback

as well as low yielding multistep syntheses of molecular bridges. Screening experiments with

multimolecular and supramolecular catalysts can help to find cheap active compounds (Fe and

|50|



|1.10 Intramolecular Photoredoxcatalysts|

Ni as known from hydrogenases or Co) to substitute the noble metals. The exploration of new

pathways toward easily accessible building blocks is essential to have the chance to make the

overall process short, cost efficient and sustainable.

The final challenge is coupling of the reduction and the oxidation half reaction into an overall

water-splitting device. Until today only a few reduction catalysts are known to tolerate singlett or

triplett oxygen or even to operate under aerobic conditions, generated by the water-oxidation

site. To avoid this problem, a separation of oxidation and reduction half reaction in different

compartments or half cells will be sufficient. This can be realized with surface/electrode bound

photocatalysts as well.[62] Here, molecular anchoring groups (e.g. –COO−, –PO2–
3 or –S−) have to

attach the photocatalyst to the surface and need to allow for electron transfer to the surface to

mediate them between the half reactions.

The artificial photosynthesis research is still in the fledgling stages, as can be seen in the low

turnover numbers (TON) and turnover frequencies (TOF) which nowadays can be achieved in

the separated half reactions. To make the process interesting for applications an increase by at

several orders ofmagnitude is necessary which is accompanied by the elimination of the sacrificial

reagents. Exactly for these reasons, fundamental research is important to increase the knowledge

in this area to have the chance to contribute to the energy supply of future generations.
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2 Scope of the Thesis

The utilization of sustainable energy sources represents one of the major challenges of the future.

In the scope of solar to chemical energy conversion and having the natural photosynthesis in

mind, simple photocatalytic systems shall be generated.

With respect to the potentials of the field of inorganic chemistry, oligonuclear metal complexes,

consisting of a photoredoxactive chromophore P, a bridging ligand B, and a catalyst center C,

shall be prepared. At the same time, a purposeful combination of the individual subunit properties

shall be accomplished to generate new artificial photosynthetic systems (JP ∼B ∼CK-systems, see

figure 35). After visible light excitation of the photo center P a directed electron transfer across the

bridging ligand B toward the catalysis center C shall occur. In this way, the light energy should be

applied two reduce protons from water at the catalyst center to form hydrogen (fuels) during the

lifetime of the charge separated state.

visible
light

photo-
center

catalysis
center

SD 2 H+

H2
3MLCT

bridging ligand
as

redoxmediator
sacrificial

donor
electron
acceptor

2 x e-

SD
+

2 x e-

CP B

Figure 35:Model of a bimetallic intramolecular JP ∼B ∼CK-catalyst for hydrogen generation from

water under irradiation with visible light.

In the envisaged systems, well known [Ru(bpy)3]-type centers shall be incorporated to serve

as photosensitizer. Leaving the chromophore unchanged but focusing on bridging ligand and

reaction center allows characterizing and understanding the nature of electron transfer and

supramolecular catalysis.

Thus, a special interest will be placed on the bridging ligand. Here, particularly new structural
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motifs with high synthetic flexibility and tunable electronic properties shall be generated, applied

and tested. Important is the good stabilization of P and C at the bridge, therefore, old bridging

concepts shall be advanced and new donor functionalities shall be introduced into the binding

sites.This will additionally allow for the application of new catalytically activemetals, to overcome

the drawbacks of the first generation catalysts. In this respect, especially the easy to functionalize

phenanthroline derivatives are of interest, as they can be extended by a second coordination sphere

e.g. by a NHC moiety.

Furthermore, the electron storage/mediating capacity of the bridge is important, thus, different

bridging concepts (conjugated/isolated systems) shall be developed and applied to optimize

the electronic communication across the bridge. The introduction of different groups at the

bridge shall be applied to generate an electronic situation that localizes the excited electron

predominantly on the bridge.

With respect to the catalytic center, a number of differentmetals, e.g. the previously used platinide

metals such as Rh, Re, Pd or Pt shall be applied, but also newmetals with a better availability such

as Co, Fe or Ni shall be considered. A comparison within a series of similar catalysts can be used

to increase the efficiency of the system.

With a complete JP ∼B ∼CK-system in hands, using the establishedmethods from the workgroup

of Rau, detailed catalytic (screening)experiments shall be performed to test their activity in the

light driven hydrogen production and to advance the systems in the future.

Toward these new JP ∼B ∼CK-systems, at first, new methods for the preparation of the new

ligands shall be developed and applied. The intermediately obtained ligands shall be analyzed

and characterized. Furthermore, a number of new ruthenium complexes with these ligands shall

be generated and characterized. Using the prepared ruthenium complexes, particularly those

containing bridging ligands, as starting materials, additional catalyst centers shall be attached

to obtain suitable JP ∼B ∼CK-model systems. In this way different series of ruthenium and

ruthenium/catalyst metal complexes, varying in ligand parameters or catalyst parameters shall

be prepared. Especially with the help of different spectroscopic and electrochemical experiments,

using themono- and oligo-nuclear complexes, detailed insights into the electronic behavior of the

ground and excited state molecules shall be obtained. With respect to the performed changes and

in the scope of an application in catalysis, structure-property relationships shall be revealed.
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3 General Section

Artificial photosynthetic systems for solar fuel production on a molecular level represent a great

challenge for modern chemistry.[9, 29, 35] In this context, especially coordination chemistry offers

a variety of compounds with adequate properties to adopt functionalities similar to biological

enzymes in artificial systems. Supramolecular arrays with incorporated photo- and reaction

center bear the necessary requirements for light energy uptake and proton reduction or oxygen

formation. Especially ruthenium complexes are among the important representatives of a widely

used class of charge transfer chromophores that can be used for light into redox energy conversion.

As mentioned, it is possible to fine-tune their energy and localization of the electronic ground

and excited state by changing the ligand environment around the metal center which influences

the absorption, luminescence and redox properties. In addition, multiple functional units may

be linked in a predesignated order via bridging ligands, which opens the route toward higher

integrated systems capable of processing various interlocking functionalities.[95] Such ligands

have to connect the active sites of the complex to serve as intramolecular pathway for the

directed electron and energy transfer, thus turning a supramolecular array into an operational

photocatalyst. Of paramount importance are bridging ligands with increased synthetic flexibility

and adjustable electronic properties. The following chapters will follow the path, staring from

bridging ligand synthesis, toward fully functional artificial photocatalytic systems. Special interest

will be placed on the detailed characterization of the intermediates and on hydrogen evolution

experiments, using the final catalysts and references.

3.1 Brominated Phenanthrolines - A Gate to new Bridging Ligands

Due to their intense luminescence properties and their ability to interact with DNA in

an intercalative fashion, phenanthroline based compounds have found many applications in

almost all areas of coordination chemistry and supramolecular chemistry, ranging from sensing

application to the use in catalysis.[96]

The most important parameter to influence the properties of the phenanthroline derivatives are

the substitution patterns at themolecular scaffold. Over the years a huge number ofmanipulations

were performed to customize phenanthrolines for the particular application. Figure 36 denotes the
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possible positions that can be used to introduce functional groups.
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Figure 36:Numbering scheme for the positions of the 1,10-phenanthroline backbone.

The 1,10-positions represent the N,N’-coordination site which is accessible to almost all known

metal centers M. Reversible transformation (oxidation, alkylation) in this positions can be used

to protect the binding site or to activate the pyridine rings for further manipulations.[96]

The introduction of substituents in the 2,9-positions is rather simple and, thus, generally used to

influence the metal binding properties. Via the introduction of a variety of functional groups (e.g.

through transformation of the chloro-compound)[97] it is possible to introduce arlyl-[98], pyridyl-
[99, 100], amine-[101, 102], phenole-, and carboxy-groups[103] to expand the coordination sites and to

tailor them for a variety ofmetal ions.The introduction of bulky groups such as extended aliphatic-

or substituted aryl-groups result in a blocking of the coordination site and decrease of the binding

capacity especially for metal fragments with square planar or octahedral geometry.[104] Thus, it is

possible to force tetrahedral coordination geometry or to selectively exclude metal ions.[105]

Introduction of functional groups in the 3,8-positions is particularly interesting because the most

intense electronic transition in phenanthrolines is polarized along the 3-8 axis. Tzalis and Tor

showed very nicely how to increase or decrease the conjugation along this direction in order to

built a new family of highly emissive chromophores with tunable emission wavelength, dictated

by the nature of the substituents at the 3,8-positions.[106, 107, 108]

Substituents in the 4,7 positions have a strong influence on the MLCT-transition in the resulting

metal complexes. The introduction of conjugation-extending aryl-substituents in this position

is best approached by nucleophilic aromatic substitution of halogen atoms in 4,7-dihalo-1,10-

phenanthrolines whose synthesis has been optimized by Schmittel et al.[109] Tor and coworkers

exploited this concept for the development of dual emissive ruthenium complexes.[110, 111]

Interesting are manipulations of the 5,6-positions because they have only a minor influence on

the primary photophysical and photochemical processes of the metal phenanthroline complexes

but allow for a linear alignment of two metal centers in a symmetrical molecule. Furthermore,
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extended 5,6-annulated aromatic systems play an important role in DNA binding and sensing

applications.[112] Important transformations of these positions represent electrophilic substitution

reactions such as nitration or oxidation to generate homo- and heteroditopic ligands such as

tpphz.[113, 114, 115]

In order to further explore this interesting ligand class, concepts have to be implemented

which allow for the introduction of a multitude of potential connecting groups which can be

transformed selectively. But, according to the Bencini et al., it ismore difficult to achieve synthetic
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Figure 37: Important examples of the use of 5- and 5,6- halogenated phenanthrolines in the

synthesis of bridging ligands for extended arrays with multiple chromophores e.g. for the

multi-photon uptake of efficient photocatalysts (a)[116, 117], preparation of anchor ligands for

surface bound (e.g. TiO2) chromophores for the application in dye-sensitized solar cells or

photoelectrochemical cells and heterogeneous catalysis (b), and ligands with thio-functionalities

for the application in [FeFe]-hydrogenase models[118] or for colloid binding (e.g. gold surfaces[119])

in example (c).
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manipulations at the interesting 3,8-, 4,7- and 5,6-positions of the phenanthroline and therefore

much fewer synthetic options are available today.[96]

In this respect, especially bromo-substituted phenanthrolines are especially interesting, as they

have been proven to be extremely flexible and useful starting materials for the preparation

of mononuclear[120] and multinuclear complexes.[40] Thus, predominantly organometallically

catalyzed coupling reactions were applied to quickly generate new terminal ligands and

heterodentate bridging ligands with N-, P-, or S-donor functionalities from halogenated

phenanthrolines (see figure 37 for examples).[108] This opened the route towardmolecular systems

with controlled binding of the interlinked metal centers and surfaces, which is crucial for aspects

such as tuning of the functional center or long term stability thereof.

The results presented below will summarize the efforts to broaden the available synthetic options

for manipulations at the 5- and 6-positions of phenanthroline derivatives. Furthermore, the

synthesis and complete characterization of resulting ruthenium complexes will be presented.

Through the analysis of spectroscopic and electrochemical data a possible influence of the

substituents at the 5,6-positions on the excited state characteristics of the resulting chromophores

was investigated.

3.1.1 Selective Bromination of Phenanthrolines

Despite the interest in the resulting compounds, especially the regioselective bromination in the 5-

and 5,6-position was obviously not sufficiently explored or optimized. Instead, expensive and less

reactive chloro-derivatives had to be used as staring materials in challenging coupling reactions

(a and b in figure 37).[116]

According to Mlochowski et al. it was believed that the direct bromination of 1,10-

phenanthroline would be impossible to be carried out under standard conditions, so that

only very drastic conditions (pressurized sealed tube reaction in 60% oleum, at 120°C) are

necessary to obtain 6-bromo-1,10-phenanthroline (phenBr) in very low yields, or 5,6-dibromo-

1,10-phenanthroline (phenBr2) in moderate yields (20%).[121] Dénes and Chira describe the

formation and extraction of phenBr andphenBr2 in low yields from the resulting productmixture

of phenanthroline bromination in thionyl bromide (24 h).[122] Chan et al. describe for the first

time the nonpressurized formation of phenBr2 in yields as low as 30%.[123] Parallel to this thesis
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research, Hudhomme et al. published the improved preparation of phenBr2 (150°C, 60 h, schlenk

tube, 62%) in 2009.[124]

In the methods described above, usually high temperatures (>120°C), long reaction times (24

to 60 h) and in most cases increased pressure (sealed tube) have been applied to perform the

bromination of phenanthroline in the 5- and 6-position.The result is a difficult to separate product

mixture of up to five different brominated derivatives with a maximum yield of 65% of the desired

product.[121, 122, 123, 124] The use of high reaction temperatures is quite surprising as it is known that

bromine as well as sulfur trioxide have low boiling points (58.8°C and 45°C respectively) and will,

therefore, leave the reaction mixture at evoked temperatures.

Accordingly, a low-temperature regime (lower than the boiling point of SO3) as shown in

the reaction in figure 38 represented an interesting starting point to achieve a more selective

bromination and possibly higher yields.

N

N

N

N Br

N

N Br

Br

(H2SO4 SO3).

Br2

(H2SO4 SO3).

Br2

Figure 38: Synthesis of 5-bromo-1,10-phenanthroline and 5,6-dibromo-1,10-phenanthroline.

The conversion of 1,10-phenanthroline with an excess of elemental bromine in 65% oleum at

room temperature yielded phenBr2 in unexpectedly high yields (>90%) and purity according

to the equation in figure 38 within 16 hours. In this reaction a careful addition of the oleum

to the phenanthroline charged reaction vessel at 0°C avoided preliminary decomposition of the

phenanthroline in the exothermic mixing process. A high concentration of oleum was chosen to

compensate the water of crystallization in commercial phenanthroline or water absorbed from

the atmosphere and to support the electrophilic aromatic substitution at the deactivated ring.

Following the same procedure (method L1) in a second reaction, but using only one half

equivalent of bromine it was possible to stop the consecutive reactions at the intermediate

stage. Vanishing of the brown undissolved bromine drops in the mixture and bromine vapor

in the gas phase after three hours was taken as a sign of the completed reaction. First TLC

experiments indicated the expected impurities phenanthroline and phenBr2 as well as a main

product, eventually identified to be the desired phenBr. Further recrystallization from ether
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was used to remove the educt and recrystallization from chloroform/dichloromethane gave pure

monosubstituted product in 70% yield.

In addition to 1H-NMR and 13C-NMR spectroscopy as well as mass spectrometry was used

for the characterization of the products. Especially the loss of the signals, referring to the

protons in 5- and 6-position in 1H-NMR spectroscopy were good indicators for the completed

transformation. Furthermore, it was as well possible to obtain suitable crystals of both compounds

by recrystallization from chloroform to perform X-ray diffraction experiments. The obtained

molecular structures are depicted in figure 39.

Figure 39: ORTEP representation of the molecular structures of 5-bromo-1,10-phenanthroline

and 5,6-dibromo-1,10-phenanthroline coordinated to the solvent chloroform via hydrogen bonds.

Ellipsoids were drawn at 50% probability level (see table 3 for selected bond lengths and angles).

Both phenanthroline derivatives crystallize in the monoclinic crystal system with the space group

P2(1)/n. An alternating orientation of the phenanthrolines and π-stacking effects of the planar

aromatic systems were prominent in the crystal lattice (“π − π” in table 3, example depicted

in figure 40). Furthermore, via hydrogen bonds coordinated solvent chloroform was found in

the N,N’-coordination site with H-N-distances in the region of d(H1Cl-N) = [2.312 - 2.493Å].

A significant influence of the bromination on the phenanthroline skeleton was not observed by

comparison of the bond lengths and angles (see table 3 on page 62).

After the successful synthesis, it was important to focus on other phenanthroline derivatives such

as bathophenanthroline or 2,9-dimethyl-1,10-phenanthroline to explore this type of reaction with

a broadened palette of possible substrates for future applications.
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Figure 40: Typical stacking pattern of the planar phenBr2 molecules in the crystal lattice due to

π-π interaction, as observed in other crystal structures of substituted phenanthrolines.

Because of the high tolerance of themethyl substituents toward the harsh conditions 2,9-dimethyl-

1,10-phenanthroline was chosen as a substrate for the next test reaction. The bromination was

performed under the identical conditions (method L1), using a surplus (1.05 equivalents) of

bromine to achieve substitution of both, 5- and 6-position. Interestingly, a complete consumption

of brominewas observed according to the lightening of the formerly brown solution (see figure 41).
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Figure 41: Successive bromination of 2,9-dimethyl-1,10-phenanthroline leading to triple

substitution.

The formation of the 5,6-dibromo-2,9-dimthyl-1,10-phenanthroline could be confirmed byNMR-

and DEI-MS-experiments. Characteristic was the isotopic pattern of the molecular ion (M+,

m/z = 364) as well as the patterns of the expected fragments where one or two bromine atoms

were lost ([M-Br]+, m/z = 285 and [M-2Br]+, m/z = 206). In addition, a fraction of 10% of triply

brominated phenanthroline (3,5,6-position) was found in the product mixture, which equals the

surplus of used bromine ([M+Br]+, m/z = 444).Due to the high solubility of themethyl substituted
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compounds and similar chemical properties, it was not possible to completely separate the

brominated products neither by chromatography nor by recrystallization. Nevertheless, suitable

crystals for X-ray diffraction experiments could be obtained by recrystallization from chloroform.

Figure 42:Molecular structures of Me2phenBr2 (left) and Me2phenBr3) (right) with coordinated

solvent, obtained via cocrystallization of the 90:10-mixture from chloroform. Ellipsoids were drawn

at 50% level in this ORTEP representation (see table 3 for selected bond lengths and angles).

A superposition of both compounds was found in the crystal lattice with phenMe2Br3 occupying

10% and phenMe2Br2 90% of the phenanthroline positions. Therefore, it was possible to confirm

both structures by X-ray diffraction (see figure 42 and table 3).Themonoclinic crystal system has

the space group P2(1)/c. An alternating orientation of the phenanthrolines andweak π-stacking of

the planar aromatic systems is prominent in the crystal lattice (not depicted). Again, coordinated

chloroform with hydrogen bond distances of d(H1Cl-N1/N2) = 2.403/2.483Å was present in the N,N’-

coordination site of the phenanthroline derivatives. And again, no significant influence of the

bromination upon the phenanthroline backbone was observed by comparison of the bond lengths

and angles (see table 3).

The important bond length and angles of the brominated phenanthroline ligands are presented in

table 3 (page 62), for comparison with the prepared ruthenium complexes see table 4 (page 70).

Comparison of the phenBr-type structures to each other revealed strong structural similarities

in terms of bond lengths and angles. The phenanthroline systems remain almost unchanged

upon bromination in the 5- and 6-position as a result of this. Therefore, N1-C1/N2-C10 bond
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lengths (1.311(5) – 1.330(4) Å) as well as the N1-C12/N2-C11 bond lengths (1.352(4) – 1.368(4) Å)

differ negligibly. The C5-C6 bond lengths (1.342(5) – 1.357(5) Å) remain completely unchanged

and the Br-C bond lengths (1.886(3) – 1.899(3) Å) are in the range of typical values for this

bond type. The packing of the ligands in the crystal exhibits π-stacking effects with differing π-

π-distances in the range of 3.312(4) to 3.707(4) Å between the planes of the aromatic systems

(given as π-π in table 3). Hydrogen bond formation with differing bond lengths between the

phenanthroline nitrogen atoms and coordinated chloroformwas observed in all crystal structures

(d phenBr
C1Cl-N1/N2 = 3.156/3.229Å, d

phenBr2
C1Cl-N1/N2 = 3.132/3.191 Å, and dMe2phenBr3/3

C1A-N1/N2 = 3.225/3.249Å).

Table 3: Selected bond lengths [Å] and angles [°] of the brominated phenanthroline derivatives

bond length [Å] / angle [°] phenBr phenBr2 phenMe2Br2 phenMe2Br3

Br1 - C5 1.899(3) 1.886(3) 1.890(3) 1.890(3)
Br2 - C6 - 1.891(3) 1.887(3) 1.887(3)
Br3 - C2 - - - 1.837(3)
N1 - C1 1.311(5) 1.327(4) 1.330(4) 1.330(4)
N2 - C10 1.317(5) 1.324(4) 1.318(4) 1.318(4)
N1 - C12 1.361(4) 1.358(4) 1.364(4) 1.364(4)
N2 - C11 1.352(4) 1.352(4) 1.368(4) 1.368(4)
C1 - C2 1.389(5) 1.400(5) 1.405(5) 1.405(5)
C2 - C3 1.376(5) 1.364(5) 1.358(5) 1.358(5)
C4 - C5 1.441(5) 1.439(5) 1.437(5) 1.437(5)
C5 - C6 1.342(5) 1.354(5) 1.357(5) 1.357(5)
C6 - C7 1.432(5) 1.441(5) 1.438(4) 1.438(4)
C11 - C12 1.453(4) 1.464(4) 1.447(4) 1.447(4)
π -π 3.408(4) 3.312(4) 3.707(4) 3.707(4)
H1Cl - N1 2.429(5) 2.312(4) 2.483(4) 2.483(4)
H1Cl - N2 2.493(4) 2.376(4) 2.403(4) 2.403(4)
Cl2a - H13a/H1 - 3.236(4) 3.150(4) 3.150(4)
C1 - C2 - C3 118.1(3) 119.1(3) 120.4(3) 120.4(3)
C4 - C5 - C6 122.4(3) 121.0(3) 121.2(3) 121.2(3)
C5 - C6 - C7 120.6(3) 121.3(3) 121.0(3) 121.0(3)
C10 - N2 - C11 117.8(3) 117.4(3) 118.9(3) 118.9(3)
N2 - C11 - C12 119.1(3) 117.3(3) 118.0(3) 118.0(3)
C11 - C12 - N1 117.8(3) 117.5(3) 117.7(3) 117.7(3)
C12 - N1 - C1 118.0(3) 117.6(3) 118.6(3) 118.6(3)
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To further expand the series of possible phenanthroline backbones bathophenanthroline was used

as substrate in the bromination reaction (see figure 43) according tomethod L1 .

N N N N

Br Br
(H2SO4 SO3).

Br2

Figure 43: Attempted bromination of 2,9-dimethyl-1,10-phenanthroline.

Unfortunately, all attempts to brominate this compound resulted in the complete decomposition

of bathophenanthroline so that no desired product could be isolated after the reaction.

These results render the picture of a very selective and stepwise bromination of phenanthrolines

usingmethod L1 with highest reactivity at the 5- and 6-positions and lower reactivity at the 3,8-

positions which need to be activated, e.g. by alkyl groups in the 2,9-positions. Aryl-groups in

the 4,7-positions do not tolerated the harsh conditions, so that this type of reactions can only be

applied to a limited number ob substrates. It can be assumed that 5-chloro-phenanthroline can

be brominated to yield 5-bromo-6-chloro-1,10-phenanthroline derivatives which are ideal for the

application in selective coupling reactions for consecutive substitution reactions. In summary it

was possible to simplify the reaction conditions, to increase the selectivity and to improve the

workup for the 5,6-bromination of phenanthrolines.

3.1.2 RutheniumComplexes with Brominated Phenanthrolines

To explore and understand the influence of the 5,6-bromination at the phenanthrolines on their

ligating properties a set ofmodel compoundswith permutation of the number of phenBr2-ligands

like [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 1,2,3) was prepared to compare these complexes to each other

and to other complexes.

A second important reason for the preparation of such complexes was the fact that a common

route for the derivatization of halogenated phenanthroline ligands uses the complexes as

substrates for coupling reactions.[108] They have a protecting group in the phenanthroline

coordination sphere to avoid catalyst metal coordination therein.

Finally, the exploration of the coordination affinity of the 5,6-halogenated phenanthroline

derivatives toward the positively charged metal is important since it is known from experiments
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with inequivalently halogenated tpphz derivatives that halogenation causes lower coordination

affinity at the brominated phenanthroline sphere due to the electron withdrawing effect of these

groups. This results in a selective ruthenium coordination into the unsubstituted N,N’ pocket of

tpphz.[125, 126]

Furthermore, it is known from experiments by Rau et al. that 3,5,6,8-tetrabromophenanthroline

(phenBr4) has a low coordination tendency toward ruthenium.[127] The attempts to prepare the

series [Ru(tbbpy)3-n(phenBr4)n]2+ (n = 1,2,3) succeeded only for n = 1 while the intermediates and

products toward the complexes with n = 2, 3 could not be prepared (even with longer reaction

times) or isolated, so that their characterization remains incomplete.

In the first attempt, simple model complexes were prepared which consist of a number of the

well known, solubility providing 4,4’-tert-butyl-2,2’-bipyridine (tbbpy) ligands at the ruthenium

center and a brominated ligand for metalorganic coupling reactions (see figure 44).

N

N

BrN

N

N

N

Ru

Cl

Cl

N

N

N

N

Ru

N

N

Br

+
MW, 2h, reflux

(EtOH/H2O)R R

R = H, Br

2+

Figure 44: Synthesis of the ruthenium complexes with one phenBr-type ligand.

The synthesis of heteroleptic ruthenium polypyridine complexes of the type [Ru(L̂L)2(L̂L
′)]2+

is typically achieved from the cisoidal dichloro complex [Ru(L̂L)2Cl2] and can be performed

according to the procedure of the work group of Rau et al. (method C1). Thereby a special

microwave reaction was used which allows for high yields and short reaction times.[120]

First, the startingmaterials [Ru(tbbpy)2Cl2] and tbbpy were prepared according to thementioned

procedures. Then, following the protocol of method C1, one equivalent of brominated

phenanthroline derivative was used in a microwave reaction together with [Ru(tbbpy)2Cl2] to
prepare the desired complexes. The end of the reaction was indicated by a color change from

dark purple to bright red after refluxing the mixture for two hours in ethanol/water (4:1). Directly
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after removal of the ethanol a solution of NH4PF6 was added to exchange the chloride ions

and to precipitate the desired product from the reaction mixture. Application of this procedure

yielded [Ru(tbbpy)2(phenBr)]2+ (Ru(phenBr)) and [Ru(tbbpy)2(phenBr2)]2+ (Ru(phenBr2)) in

high yields (>90%) and high purity.

Figure 45: Solid state structures of Ru(phenBr) (left) and Ru(phenBr2) (right). Counter ions,

coordinated solvents and hydrogen atoms were omitted for clarity. Ellipsoids were drawn at 60%

level in this ORTEP representation.

For the characterization of the products 1H- and 13C-NMR methods were applied. In the case of

Ru(phenBr2) nine signals in the aromatic region of the 1H-NMR spectrum and two signals in the

aliphatic region were observed which indicated a dissimilar magnetic environment around the

pyridine units of the tbbpy-ligand as expected. In the 13C-NMR spectrum, all carbon atoms could

be assigned according to COSY, HMBC and HSQC methods. Electrospray mass spectrometry

(ESI MS) exhibited a molecular ion at m/z = 1121.9 which corresponds to the fragment [M-PF6]+

and matches the calculated isotopic pattern of (C48H54N6Br2RuPF6).

For the compound Ru(phenBr) 13 signals in the aromatic region of the 1H-NMR spectrum and

two signals in the aliphatic region were observed. A singlet at δ = 8.612 ppm for the 6-position

and six more aromatic signals were assigned to the phenBr-ligand which indicated a slightly

changed magnetic environment of the two phenanthroline halves due to the bromination in
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addition to the previously observed shift in the case of the tbbpy-ligand. All 26 carbon atoms

could be assigned in the 13C-NMR spectrum according to a combination of COSY, HMBC and

HSQC methods. ESI MS experiments exhibited two prominent peaks at m/z = 1042.1 and 897.2

which correspond to the fragments [M-PF6]+ and [M-2PF6]+. Both isotopic patterns matched the

calculated patterns for the correct sum formula and thus the desired compounds. The chemical

shifts in the NMR spectrum and the observed molecular ions of Ru(phenBr) are very similar to

the complex [Ru(tbbpy)2(5-chloro-1,10-phenanthroline)] (Ru(phenCl)), peviously prepared by

Rau et al.[116]

In addition, it was possible to obtain suitable crystals for X-ray diffraction of both compounds by

recrystallization from acetone/water and acetonitrile/water respectively as depicted in figure 45.

These data support the assignment of a conventional distorted octahedral coordination sphere for

both complexes.The detailed discussion of the solid state structure can be found in the combined

discussion of all other prepared phenBr-type complexes at the end of this section (page 69 ff.).

The synthesis of the higher phenBr2-substituted complexes [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 2, 3)
required the preparation of the [Ru(L̂L)2Cl2]-derivative (Ru(phenBr2)2Cl2) as depicted in

figure 46.
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Figure 46: Synthesis of the, relating to phenBr-type ligands, homoleptic ruthenium complexes.

When these conditions were applied to the related phenBr4 ligand to prepare the higher

substituted complexes [Ru(tbbpy)3-n(phenBr4)n]2+ (n = 2, 3), no product could be isolated. It has

been speculated that this finding correlated to the electronic structure of phenBr4, i.e. a reduced

electron density at the N-donor set of the phenanthroline.[127]

The required precursor for this synthesis [Ru(cod)Cl2]n was prepared according to literature
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procedures.[128] Using this starting material and two equivalents of phenBr2 in a microwave

reaction in dry DMF according to an adapted literature procedure the formation of a blue, almost

insoluble compoundwas observed. After the removal of the solvent and washing with water it was

possible to extract the solid with methylene chloride and to precipitate the product with ether.

Characterization of the solid by 1H-NMR spectroscopy in CD2Cl2 exhibited two sets of three

signals in the aromatic region of the spectrum with partly very far low-field shifted signals which

corresponds to the protons in the 2,9-positions at the corresponding phenanthroline halves.

Carbon-NMR spectroscopy as well as mass spectroscopy could not be applied due to the poor

solubility in the applied solvents. Slow recrystallization from dichloromethane yielded black

crystals which were taken for X-ray diffraction experiments (compare figure 47). A detailed

discussion follows in section 3.1.3 on page 69 ff.

Figure 47: ORTEP representations of the molecular structures of Ru(phenBr2)2Cl2 (left) and the

homoleptic complexRu(phenBr2)3 (right). Counter ions, coordinated solvent andhydrogen atoms

were omitted for clarity. Ellipsoids were drawn at 50% level.

If the same reactionwas performedwith tree equivalents of phenBr2 in amixture of ethanol/water

over the period of 16 hours at reflux temperatures, the formation of a red solution was observed.

Precipitation of the PF6-salt yielded the trishomoleptic complex Ru(phenBr2)3 in good yields.

Hydrogen NMR spectroscopy revealed a very simple spectrum with three signals in the aromatic

region due to the high symmetry of this complex. In the 13C-NMR spectrum all six chemically
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inequivalent carbon atoms could be assigned by HMBC- and HSQC-methods. Electrospray mass

spectroscopy exhibited a prominent peak at m/z = 1259.2 which exactly fits the calculated isotopic

pattern of the fragment [M-PF6]+. Recrystallization from acetonitrile yielded orange crystals

which could be used for X-ray diffraction experiments (compare figure 47). A detailed discussion

follows in section 3.1.3.

The preparation of [Ru(tbbpy)(phenBr2)2] (Ru(phenBr2)2) succeeded by adaptation of the

microwave reaction protocolmethodC1, taking tbbpy andRu(phenBr2)2Cl2 as startingmaterials

(see figure 48).
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N

N

N

N

Ru

Br

Br

Br

Br

N
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Figure 48: Synthesis of Ru(phenBr2)2.

1H-NMR spectroscopy revealed two sets of three phenBr2-signals and one set of three tbbpy-

signals in the aromatic region. With the help of two-dimensional methods (COSY, HMBC,

HSQC) it was possible to assign all carbon signals in the 13C-NMR spectrum. Electrospray

mass spectroscopy exhibited two prominent peaks at m/z = 1190.5 and 522.8 which exactly

fit the calculated isotopic patterns for the fragments [M-PF6]+ and [M-2PF6]2+ respectively.

Recrystallization from acetonitrile/water yielded orange crystals which were used for X-ray

diffraction experiments (compare figure 49). The detailed discussion is given in the following

section.

It is clearly evident that 5,6-dibromo-1,10-phenanthrolines can be employed as conventional

N,N’-chelating ligands for the preparation of all possible [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 1,2,3)

complexes. This result suggests that for phenBr2 a more conventional electronic situation may be

expected in contrast to phenBr2.
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Figure49:ORTEP representation of themolecular structure of Ru(phenBr2)2. Counter ions, solvent

molecules and hydrogen atoms were omitted for clarity. Ellipsoids were drawn at 50% level.

3.1.3 Structural Analysis

The important distances and angles are given in table 4 for comparison of all prepared ruthenium

complexes. Comparison of the phenBr-type complexes revealed strong structural similarities in

terms of bond lengths and angles.

As well, comparison of the phenanthroline backbones did not show relevant structural changes,

when going from the free to the coordinated ligands. As a result of this, typical Ru-N1/N2 bond

lengths (phenanthroline ligand) are found to be between 2.062(4) and 2.081(4) Å and typical Ru-

N3/N4/N5/N6 bond lengths (bipyridine ligand) are found to be between 2.042(4) and 2.065(4) Å

in all examined [Ru(bpy)3]2+-type complexes, which exactly matches the known bond lengths

of the mother compounds [Ru(tbbpy)2(phen)]2+ (Ru(phen)) and [Ru(tbbpy)2(phenBr4)]2+

(Ru(phenBr4), with phenBr4 = 3,5,6,8-tetrabromophenanthroline) prepared by Rau et al.[120, 108]

Only the cisoidal chloro complexRu(phenBr2)Cl2 represents an exceptionwith slightly shortened

Ru-N3 bond lengths of 2.027(4) Å which can be attributed to the trans effect of the chlorido

ligands.

The phenanthroline systems remain almost unchanged upon coordination if compared to
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the free ligands. Interestingly, complexation of the ligands to the ruthenium fragment did

not influence the C-N bond angles at the coordination sites. Therefore, N1-C1/N2-C10 bond

Table 4: Selected bond lengths [Å] and angles [°] of the bromo-phenanthroline complexes.
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Ru - N1 2.068(4) 2.073(3) 2.066(4) 2.069(7) 2.059(4) 2.040(5)

Ru - N2 2.081(4) 2.070(3) 2.062(4) 2.067(7) 2.027(4) 2.058(5)

Ru - N3 (Cl1) 2.055(3) 2.049(3) 2.060(4) - 2.4405(12) 2.049(4)

Ru - N4 2.042(4) 2.061(3) 2.063(4) - - 2.048(5)

Ru - N5 2.045(4) 2.051(3) 2.061(4) - - 2.047(5)

Ru - N6 2.062(3) 2.065(3) 2.062(4) - - 2.052(4)

Br1 - C5 (C2) 1.906(5) 1.895(4) 1.881(6) 1.888(9) 1.882(6) 1.886(7)

Br2 - C6 (C9) - 1.885(4) 1.887(3) 1.887(5) 1.893(6) 1.888(7)

C5 - C6 1.346(8) 1.357(6) 1.368(8) 1.365(14) 1.348(8) 1.377(13)

N1 - C1 1.332(6) 1.333(5) 1.338(6) 1.328(10) 1.315(7) 1.355(8)

N2 - C10 1.332(6) 1.333(5) 1.329(6) 1.349(10) 1.341(7) 1.338(8)

N1 - C12 1.370(6) 1.364(5) 1.365(6) 1.369(11) 1.371(7) 1.362(8)

N2 - C11 1.363(6) 1.360(5) 1.370(6) 1.362(11) 1.375(7) 1.368(8)

C11 - C12 1.431(7) 1.433(5) 1.437(7) 1.444(11) 1.427(7) 1.437(10)

N1 - Ru - N2 79.80(15) 79.24(12) 79.60(15) 79.8(3) 79.99(17) 79.7(2)

N3(Cl1) - Ru - N4 (Cl1i) 78.18(14) 78.30(12) 79.18(16) - 92.99(6) 78.49(18)

N5 - Ru - N6 78.13(14) 78.17(11) 78.37(16) - - 78.38(18)

Br1 - C5 - C6 119.1(4) 120.8(3) 121.6(4) 120.7(7) 121.5(4) -

Br2 - C6 - C5 - 120.9(2) 121.0(3) 120.5(4) 121.0(4) -

C4 - C5 - C6 122.9(5) 122.5(4) 121.0(5) 122.0(9) 121.7(5) 121.3(7)

C5 - C6 - C7 120.3(5) 120.5(4) 121.5(4) 121.1(9) 121.8(5) 121.4(7)

C10 - N2 - C11 118.2(4) 118.3(3) 117.7(4) 118.3(7) 117.1(5) 117.5(5)

C12 - N1 - C1 117.6(4) 117.9(3) 117.8(4) 117.4(7) 118.3(5) 116.6(6)

N2 - C11 - C12 116.6(4) 116.7(3) 116.3(4) 116.4(7) 115.8(5) 115.9(5)

C11 - C12 - N1 116.9(4) 116.9(3) 116.0(4) 116.1(7) 116.0(5) 115.7(5)
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lengths (d complexes
(N1-C1/N2-C10) = [1.328(10) - 1.349(10)] Å) as well as the N1-C12/N2-C11 bond lengths

(d complexes
(N1-C12/N2-C11) = [1.360(5) - 1.370(6)] Å) are slightly elongated in the ruthenium complexes, when

compared to the ligands (d lignds
(N1-C1/N2-C10) = [1.311(5) - 1.330(4)] Å and d lignds

(N1-C12/N2-C11) = [1.352(5) -

1.368(4)] Å). The C5-C6 bond lengths (d complexes
(C5-C6) = [1.346(8)-1.368(8)] Å) and the Br-C bond

lengths (d complexes
(C-Br) = [1.881(6)-1.906(6)] Å) remain completely unchanged, fluctuations can be

assigned to packing effects.

Independent of the nature of the ligand, typically N-Ru-N’ bite angles of 78-80° can be observed

within the series of ruthenium complexes. Due to the small bite angle which is considerably less

than 90°, it is not possible to achieve perfect octahedral geometry around the ruthenium fragment,

so that the ligands are somewhat flexible, which can be seen in a distortion (see figure 50).

Figure 50:Coordination geometry around the ruthenium centers of the prepared complexes. View

along the bisecting line of the N1-Ru-N2 angle.

The two chloride ligands in Ru(phenBr2)Cl2 are arranged in a 93.0° angle. In difference to the

packing in the ligand crystals, generally no special packing effects upon π-stacking or hydrogen

bond formation were observed in the ruthenium complexes.

3.1.4 Photophysical Behavior

The following presented data arose from a cooperation project with K. Peuntinger of the group

of Prof. Dr. D. Guldi (University of Erlangen).
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A first analysis of the absorption and emission properties of the new complexes of the two

series [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3) and [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4),

the precursor Ru(phenBr2)2Cl2 was excluded, revealed a typical [Ru(bpy)3]2+-like behavior (see
table 5 for the obtained data and selected references).

Table5:UV/vis absorptionandemissiondataof selected references and the two series of ruthenium
complexes [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3) and [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4).

Complex Solvent λmax, abs ϵλmax λmax, em Φ τ a τb

[nm] [lmol-1cm-1] [nm] [ns] [ns]

[Ru(tbbpy)3]2+ DCM 464 16 000 607 248[90] 609[90]

ACN 458 17 900 615 107[90] 730[90]

Ru(phen)c, [120, 125] DCM 455 19 000 602 0.03 272
ACN 454 16 000 610 211 1 423

Ru(phenCl) DCM 450 16 600 620
ACN 446 18 700 633

Ru(phenBr) DCM 451 13 500 621 452
ACN 449 17 800 630 139

Ru(Br2phen)[125] DCM 440 18 000 638 0.05 525
Ru(phenBr2) DCM 452 17 500 621 438

ACN 449 14 300 631 140 1 347
Ru(phenBr4)[108, 125] DCM 440 19 000 657 0.05 591

ACN 441 15 000 672 100 1 336
Ru(phenBr2)2 DCM 433 20 500 611 573

ACN 434 22 200 621 196 2 190
Ru(phen)3[108] DCM 448 17 000 578 460

ACN 450 18 200 593 150
Ru(phenBr2)3 DCM 451 19 000 587 353

ACN 450 18 200 600 247 1 380
Ru(Br2phen)3[129] ACN 424 8 700 599 126

a) aerated, b) deaerated, c) Ru(phen) = [Ru(tbbpy)2(phen)]2+

All substances exhibit the relevant strong 1MLCT-absorption band between 400 and 500 nm in

acetonitrile and dichloromethane solutions as well as the typical strong emission between 600

and 800 nm in both solvents respectively (compare figures 51 – 53).

In the series [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3) all complexes exhibit a strong absorption
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band with the typical “camel hump” shaped structure which is the result of the superposition of

several 1MLCT-absorption bands with slightly differing energies, localized on different ligands.
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Figure 51:Absorption spectra of the [Ru(tbbpy)3-n(phenBr2)n]2+-series (n = 0, 1, 2, 3) in acetonitrile

and corresponding concentration independent relative emission upon excitation at 467 nm.

[Ru(tbbpy)3]2+: Abs. (—), Em. (- -), Ru(phenBr2): Abs. (—), Em. (- -), Ru(phenBr2)2: Abs. (—),

Em. (- -), Ru(phenBr2)3: Abs. (—), Em. (- -).

A rough trend in the absorption behavior, being followed in both solvents, can be observed

as the molar extinction coefficients increase with the number n of phenBr2-ligands from

ϵ(n = 0) ∼16 000 lmol-1cm-1 in [Ru(tbbpy)3]2+ to ϵ(n = 3) ∼19 000 lmol-1cm-1 in [Ru(phenBr2)3]2+

(e.g. in acetonitrile, see figure 51). In acetonitrile, absorption energies increase in the same

direction with increasing number of phenBr2-ligands (n) as can be seen best in the blue shift

of the center of the absorption bands and particularly in the shift of the hypsochromic flanks of

the absorption bands (e.g. λ(n = 0, 1)
flank, ACN = 420 nm > λ(n = 2)

flank, ACN = 400 nm > λ(n = 3)
flank, ACN = 380 nm) (see

figure 51). In dichloromethane, as well, the center of the MLCT-absorption band (full width

at half maximum) is successively shifted by about 5 nm toward higher energies when tbbpy

ligands are stepwise exchanged by phenBr2 ligands (λ(n = 0)
1/2, DCM = 449 nm > λ(n = 1)

1/2, DCM = 443 nm >

λ(n = 2)
1/2, DCM = 439 nm > λ(n = 3)

1/2, DCM = 432 nm. This can be explained by the increased contribution

of phenanthroline-centered MLCT-absorption. The maximum of the 1MLCT band as well as
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Figure 52: Absorption spectra of the [Ru(tbbpy)3-n(phenBr2)n]2+-series (n = 0, 1, 2, 3) in

dichloromethane and corresponding concentration independent relative emissionuponexcitation

at 467 nm. [Ru(tbbpy)3]2+: Abs. (—), Em. (- -), Ru(phenBr2): Abs. (—), Em. (- -), Ru(phenBr2)2:
Abs. (—), Em. (- -), Ru(phenBr2)3: Abs. (—), Em. (- -).

the bathochromic and hyprochromic shoulders are slightly sensitive to the solvent and thus

suggests an instantaneous sensing of the formation of the dipolarity of the excited structure

[Ru3+(L̂L)2(L̂L
−)]2+. The “camel hump” shape of the band can be expained by a combination of

effects which result of the distorted octahedral geometry which might influence the energy levels

of theMLCT-involved ruthenium centered t2g-orbitals (as seen in the homoleptic complexes) and

the different ligand centered LUMO(L̂L) energies (in the heteroleptic complexes).

The emission behavior of the [Ru(tbbpy)3-n(phenBr2)n]2+-series in acetonitrile exhibits a similar

tendency. A blue shift of the emission band and an increase in the relative emission intensity can be

observedwith increasing number of the phenanthroline ligands (λ(n = 1)
max = 631 nm>λ(n = 2)

max = 621 nm

> λ(n = 3)
max. = 600 nm). This can be explained by the phenanthroline-centered emission (Kasha’s

rule). Interestingly, the homoleptic complex [Ru(tbbpy)3]2+ exhibits an emission maximum

(λ(n = 0)
max = 615 nm) and an emission intensity which is between the phenBr2-substituted complexes.

Obviously, no lower lying phenanthroline centered 3MLCT emission is available in this complex,

so that emission is only possible from the higher lying tbbpy-centered 3MLCT state (compare
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electrochemistry discussion of these complexes in chapter 3.1.6 on page 78).

The ordering of the emission spectra in dichloromethane solutions follows the same tendency

as observed in acetonitrile solutions. A successive blueshift of the emission maximum can be

observed by going from n= 1 to 3. Again, [Ru(tbbpy)3]2+ with n = 0 represents an exception.

Furthermore, by substitution of acetonitrile by dichloromethane, a two-fold increase in the relative

emission intensities and a 10 nm blue shift of the wavelength of the emission maximum can be

observed.This was attributed to the lower concentration of dissolved oxygen in dichloromethane

solutions (less quenching) and the lower solvent polarity thereof (kET, Marcus theory).

For a better comparison of the characteristic absorption and emission behavior in the series

[Ru(tbbpy)2(phenBrm)]2+ (m= 1, 2), a small quantity of the complex [Ru(tbbpy)2(phenCl)]2+

(Ru(phenCl) with phenCl = 5-chloro-1,10-phenanthroline) was prepared according to literature

procedures and values for the related ruthenium complexes Ru(phen) ([Ru(tbbpy)2(phen)]2+)
andRu(phenBr4) ([Ru(tbbpy)2(3,5,6,8-tetrabromo-1,10-phenanthroline)]2+) were taken from the

literature (compare figure 53 and table 5 on page 72).[116, 108, 120]

All complexes in this series exhibit a similar absorption maximum at 450 nm with exception

of Ru(phenBr4) which shows a hypsochromically shifted absorption maximum at 441 nm.

The molar extinction coefficients at the maxima of the MLCT vary roughly between

14 000 and 18 000 lmol-1cm-1 for the different phenBrm-substituted complexes with two

tbbpy ligands, but is found in the same region, as observed in the reference compounds

Ru(phen) (ϵ(n = 0)λmax.
= 16 000 lmol-1cm-1), Ru(phenCl) (ϵλmax. = 18 700 lmol-1cm-1) and Ru(phenBr4)

(ϵ(n = 4)λmax.
= 15 000 lmol-1cm-1) in acetonitrile solutions.

The emission behavior of the [Ru(bpy)2(phenBrm)]2+ complexes (m= 1, 2) is only slightly

changed by the increasing number m of bromo- or chloro substituents in the 5,6-

positions. These complexes and Ru(phenCl) show similar emission properties with a weaker

emission in acetonitrile (λ(m= 1, 2)
Em., ACN ≈ 630 nm) and a stronger emission in dichloromethane

(λ(m= 1, 2)
Em., DCM ≈ 620 nm) (see figure 53). Emission of these compounds is hypsochromically shifted

by 40 nm, when compared to the reference compound Ru(phenBr4) (λ(m= 4)
Em., ACN = 672 nm) and

bathochromically shifted by 20 nm when compared to Ru(phen) (λ(m= 0)
Em., ACN = 610 nm). From

this result, it can be concluded that substitution of the phenanthroline backbone with halogen

substituents has an (-I) effect on the σ-backbone of the ligand and thus on the orbital energy of the

metal centeredHOMOorbital (making itmore difficult to oxidize) and thus on the excited 3MLCT
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Figure 53: Absorption spectra of Ru(phenCl) and the [Ru(tbbpy)2(phenBrm)]2+-complexes

(m=1, 2) in dichloromethane and corresponding concentration independent relative emission in

dichloromethane and acetonitrile upon excitation at 467 nm. Ru(phenBr): Abs.(DCM) (—), Em.(DCM)

(---), Em.(ACN) (– –), Ru(phenBr2): Abs.(DCM) (—), Em.(DCM) (---), Em.(ACN) (– –) and reference

Ru(phenCl) (phenCl = 5-chloro-1,10-phenanthroline): Abs.(DCM) (—), Em.(DCM) (---) Em.(ACN) (– –) .

state energy of the resulting ruthenium complex. The (-I/+M) effect of the bromo substituents

lowers the energy of the ligand centered π*-orbitals, making them easier to reduce. According to

the emission data, it was figured that substitution in 5,6-position has less influence on the excited

state energy than substitution in the 3,8-position.

3.1.5 Emission Decay Dynamics

Thedetermination of the emission decay dynamics of the 3MLCT states of the complexeswith time

correlated single photon count experiments (TCSPC) in acetonitrile and dichloromethane reflect

the findings of the emission data of increased emission intensity in dichloromethane solutions (see

table 5). Generally, the lifetimes in aerated solutions of dichloromethane (τACN ≈ 450 ns) are longer
than lifetimes in aerated acetonitrile (τDCM ≈ 140 ns), which can be attributed to the dependency

on the quencher (triplet oxygen) concentration in the more polar solvent. A result of this, an

increased lifetime in deaerated acetonitrile (τdeaerated ≈ 1500 ns) was observed due to the decrease
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of concurring quenching processes (see figure 54 for an example).
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Figure 54: Representative emission decays from the time correlated single photon counting

experiment (TCSPC). Depicted are the values forRu(phenBr2)2 in dichloromethane (–), acetonitrile
(–) and inert acetonitrile (–) with 467 nm excitation. The decays are well fitted to a mono-

exponential decay.

The emission decay behavior in aerated solvents of the complexes is slightly changed

by the increasing number of bromo substituents in the 5,6-positions. The complexes

[Ru(tbbpy)2(phenBrm)]2+ (m= 1, 2) show about the same deactivation behavior with shorter

lifetimes in acetonitrile (τ (m= 1, 2)
ACN ≈ 140 ns) and longer lifetimes in dichloromethane (τ (m= 1, 2)

DCM

≈ 450 ns). These compounds have a 40 ns longer lifetime, when compared to the reference

compound Ru(phenBr4) (τ (m= 4)
ACN = 100 ns) and a by 50 ns shortened lifetime when compared

to Ru(phen) (τ (m= 0)
ACN = 211 ns). From this result it was concluded that substitution of the

phenanthroline backbone with halogen substituents (-I/+M effect) has an effect on the excited
3MLCT state lifetime of the resulting ruthenium complex. According to the emission data in

the series [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 1, 2, 3), it can be figured that substitution of the 5,6-

positions has less influence on the excited state energy than substitution in the 3,8-position. The

ordering of the lifetimes within this series of ruthenium complexes is the same as the ordering of

the relative steady state emission intensities in dichloromethane (τ (n = 3)DCM = 353 ns < τ (n = 1)DCM = 438 ns
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< τ (n = 2)DCM = 572 ns) and in acetonitrile (τ (n = 1)ACN = 140 ns < τ (n = 2)ACN = 196 ns < τ (n = 3)ACN = 247 ns). This

correlation between short lifetimes and low emission intensities or long lifetimes and high

emission intensities can be explained by the tolerance of the complexes versus other deactivating

processes such as excited state quenching by oxygen.

Determination of the emission decay dynamics of the [Ru(tbbpy)3-n(phenBr2)n]2+ complexes with

n = 1, 2, 3 in deaerated acetonitrile revealed significantly longer lifetimes (τ (n = 1)deaerated = 1347 ns,

τ (n = 2)deaerated 2190 ns and τ (n = 3)deaerated = 1380 ns). These lifetimes are in close proximity to the determined

values of the available reference compounds Ru(phen) (τ (m= 0)
deaerated = 1423 ns) and Ru(phenBr4)

(τ (m= 4)
deaerated = 1336 ns), except of n = 2 which is even longer.

3.1.6 Electrochemical Characterization

The electrochemical behavior of the two series of the [Ru(tbbpy)3-n(phenBr2)n]2+ complexes

(n = 0, 1, 2, 3) and [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4) was determined in 0.1M solutions of

Bu4NPF6 in dry acetonitrile under argon atmosphere in a glove box. All values were determined

with a glassy carbon working electrode and platinum counter and reference electrodes. The

measured values were referenced versus the redox couple Fc/Fc+ set at E1/2 = 0V. Table 6 contains

the collected electrochemical data as well as selected references from the literature.[120, 108]

Table 6: Selected redox potentials E1/2 (V) of the two series of ruthenium complexes

[Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3) and [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4), referenced

vs. Fc/Fc+ in a 0.1M solution of Bu4NPF6 in dry acetonitrile under argon atmosphere.

Complex E1/2(L̂L
3
) [V] E1/2(L̂L

2
) [V] E1/2(L̂L

1
) [V] E1/2(Ru2+/3+) [V]

[Ru(tbbpy)3]2+[90] -2.28 -2.02 -1.82 0.73

Ru(phen)[108, 120] -2.23 -1.99 -1.80 0.78

Ru(phenBr) -2.23 -1.98 -1.78 (-1.65, ir) 0.83

Ru(phenBr2) -2,32 -2.00 -1.79 (-1.68/-1.58, ir) 0.85

Ru(phenBr2)2 -2.27 -1.99 -1.89(-1.67 ir) 0.90

Ru(phenBr2)3 -2.18 (ir) -1.79 (ir) -1.54 (ir) 0.95

Ru(phenBr4)[108] - - - 0.92

For Ru(Br2phen) and for Ru(Br2phen)3 no literature data were available.

Within the series of ruthenium complexes [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3) an interesting
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shift of the potentials of the ruthenium centered oxidation (E1/2(Ru2+/3+)) toward higher values

with increasing number n of phenBr2-ligands was observed (E(n = 0)
1/2 = 0.73V < E(n = 1)

1/2 = 0.85V

< E(n = 2)
1/2 = 0.90V < E(n = 3)

1/2 = 0.95V). In addition, all complexes in this series (except for n = 3)

exhibited three quasi reversible reduction potentials at E1/2(L̂L
1) ≈ -1.8 V, E1/2(L̂L

2) ≈ -2.0V and

E1/2(L̂L
3) ≈ -2.3 V which were assigned to the three ligand centered reductions. Furthermore, a

number of irreversible reductions were observed which increased with the number of bromine

atoms in the molecule (see figure 55 for an example). Therefore, it was be assumed that these

irreversible reductions account for the irreversible reduction of bromine atoms with subsequent

dehalogenation of the ligand.

Within the series of ruthenium complexes [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4) a similar shift

of the potential of the ruthenium centered oxidation (E1/2(Ru2+/3+)) toward higher values was

observed with an increasing number n of bromo substituents at the phenanthroline backbone

(E(m= 0)
1/2 = 0.74V < E(m= 1)

1/2 = 0.83V < E(m= 2)
1/2 = 0.85V < E(n = 4)

1/2 = 0.92V).The complexes of this series

exhibited three quasi reversible reduction potentials at E1/2(L̂L
1) ≈ -1.8 V, E1/2(L̂L

2) ≈ -2.0V and
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Figure 55: Cyclic voltammograms of Ru(phenBr) (–) and Ru(phenBr2) (–) in a 0.1M solution of

Bu4NPF6 in dry acetonitrile under argon atmosphere, referenced vs. Fc/Fc+, scan rate 20mV/s.
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E1/2(L̂L
3) ≈ -2.3 V which were assigned to the three ligand centered reductions.

A correlation of the ground state redox properties of a compound A and the emission properties

(one electron potential corresponding to the zero-zero excited state energy) allows a first

approximation of the redox potentials of excited state couples according to the following

equations:[130]

E(A+/A*) ≈E(A+/A) –E0-0

E(A*/A−) ≈E(A/A−) +E0-0

This correlation for the series of ruthenium complexes [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3)
is depicted in figure 56.
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Figure 56: Combination of the redox potentials of the 3MLCT excited states that can be tapped

via oxidative quenching mechanism (E(A+/A*)), the ground state redox potential for the oxidation

of the complexes (E(A+/A)) and the emission energies (E0-0) of the series of ruthenium complexes

[Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3).

It can be seen that the excited state oxidation potential remains unchanged at a value of about

1.1 V in the case of n = 1, 2, 3 although the ground state ruthenium centered oxidation potential

is shifted toward higher potentials with increasing number of phenBr2-ligands. Furthermore, the

reduction potential of the excited state in the complex with n = 0 (phenBr2-free complex) is about

-0.16V higher.This leads to the conclusion that the energy of the phenBr2-centered 3MLCT-state
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is independent of possible influences which result from other ligands around the ruthenium ion.

Therefore, the phenBr2-localized 3MLCT-states represent the emitting excited states (Kasha’s

rule) in all complexeswith n = 1, 2, 3 because they are about 0.16 eV lower in energy than the tbbpy-

centered 3MLCT-states. These findings explain as well the unexpected emission properties in the

case of n = 0 within this series very well. A statement about the oxidation potentials of the excited

states is difficult because reductive quenching mechanism will probably lead to a dehalogenation

reaction upon formation of the reduced species as observed in electrochemical measurements.

If this interpretation is correct, [Ru(tbbpy)3-n(phenBrm)n]2+-type complexes would be of limited

value as photoredoxactive centers as they would decompose during electron transfer processes.

Note: A correlation of the stokes shifts within this series is rather difficult because the number of

overlapping 1MLCT absorption bands gives rise to several hard to separate stokes shifts for each

complex which cover the particular phenanthroline centered shift.

The corresponding correlation for the series [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4) is depicted

in figure 57 and focuses on the influence of the number bromo substituents at the phenanthroline

backbone on photochemical properties of the complex.
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Figure 57: Combination of the redox potentials of the 3MLCT excited states that can be tapped

via oxidative quenching mechanism (E(A+/A*)), the ground state redox potential for the oxidation

of the complexes (E(A+/A)) and the emission energies (E0-0) of the series of ruthenium complexes

[Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4).

Unfortunately, no emission data for Ru(Br2phen) in acetonitrile was available. Nevertheless it
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can be seen that the ground state ruthenium centered oxidation potential is shifted toward higher

potentials with increasing numberm of bromo substituents.The excited state oxidation potentials

change with increasing m as well. From this correlation it becomes clear that bromination of the

phenanthroline ligand reduces the excited state oxidation potential which is centered thereon.

Therefore, a lowering in energy for the phenBrm-centered 3MLCT is the result, eventually causing

emission from this state.These findings clearly demonstrate the photochemical importance of the

5,6-position in the phenanthroline system for the redox and emission properties of the resulting

ruthenium complexes.

3.1.7 Concluding Remarks to phenBr-Ligands

With respect to the importance of starting materials for the design and adjustment of bridging

ligands, a number of interesting ligands and complexes were prepared. The selective bromo-

functionalization of phenanthrolines in the 5- and 6-position, thus, enables a high synthetic

flexibility for the introduction of new functional groups via catalyzed cross coupling reactions.

Especially the synthesis of the series of ruthenium complexes [Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0,
1, 2, 3) allowed to picture the potential of the obtained ligands.

Figure 58: The possible directions for an expansion of the ligand structure.

As depicted in figure 58, it should be possible to apply these complexes to obtain linear or branched

three dimensional arrangements and, thus, molecular devices with multiple functionalities and

directed intercomponent electron transfer.
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3.2 Bisphenanthroline: A SuitableMolecular Bridge?

The investigation of molecular artificial photosynthetic systems for hydrogen evolution from

water, in the context of an efficient solar into chemical energy conversion, represents a main goal

of this thesis.[9, 12, 29] The required JP ∼B ∼CK-systems (P= photocenter and C= catalytic center)

typically bear bridging ligands (B) which do not only connect photo and reaction center but serve

as intramolecular pathways for the directed electron and energy transfer.[35]

An easy access to tunable molecular bridges represents the transformation of halogenated

ligands into bridging ligands via catalyzed coupling reactions. With respect to the subsequent

transformation into [Ru(bpy)3]2+-type chromophores (a massively applied class of “workhorse

chromophores”), especially brominated bpy- or phen-type ligands represent viable candidates.

In the previous chapter, an optimized synthesis for brominated phenanthrolines was presented.

Furthermore, the influence of the substitution pattern, especially at the 5-position of

the phenanthroline skeleton, was demonstrated using a variety of phenBr-type ligands

and complexes. In addition, the introduction of bipyridine type coordination spheres into

phenanthroline systems was demonstrated as previously demonstrated by Rau et al. (compare

figure 37 on page 56).[116, 127]

In this context a very interesting bridging ligand motif has been prepared by Campagna and

coworkers.[131] It was found that the redox potentials of the homobinuclear complexes of Ir,

Ru and Os (e.g. in [(bpy)2Ru(µ-phenphen)Ru(bpy)2]4+) account for simultaneous two-electron

reductions of the bridging ligand spheres instead of separate one-electron reductions.

Thus, use of the symmetric 5,5’-bi-1,10-phenanthroline bridge (phenphen) is very interesting

because it exhibits two diazadiene coordination spheres which are linked by a single bond in the

electronically somewhat shielded 5-position. Additionally, atropisomers of this ligand are formed

due to the hindered rotation about the single bond. This interesting effect disturbs the extended

π-system due to the skew-whiff arranged and electronically weakly coupled coordination spheres

in the ground state.

Nevertheless, it is possible that heterobinuclear systems with limited electronic communication

in the ground state display a considerable communication in the excited state.[75] Therefore, it

is an aim to obtain a better understanding of the processes in the bridging ligand as a part of a

[Ru(bpy)3]2+-type chromophore after photo excitation.
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Furthermore, phenphen has no electron storagemoiety which compares to the pyrazinemoiety of

the tpphz ligand. According to Campagna et al., this results inmore negative reduction potentials

for the bridge in [(bpy)2M(µ-phenphen)M(bpy)2]4+ (M = Ru, Os, Ir), when compared to tpphz

complexes.[131]

These two facts, missing electron storage capacity and negative reduction potentials, hold the

potential that a reduction of othermetal centers such as Pt(II), Rh(III) orCo(III) would be possible

after excitation of the MLCT in a heteronuclear phenphen-bridged complex.

Thus, the use of phenphen shall be applied in heteronuclear JP ∼B ∼CK-type systems. Leaving

the chromophore unchanged but focusing on the bridging ligand and reaction center allows

characterizing and understanding the nature of charge separation and electron transfer in the

supramolecular catalyst. Therefore, one of the two [Ru(bpy)3]-type centers at the binuclear

phenphen bridged ruthenium complex of Campagna et al. may represent the chromophore

which offers high synthetic flexibility, high stability and well understood photophysical and redox

properties. The second metal center has to be replaced by a variety of reaction centers such as

noble metals Rh, Re, Pd, Pt or other metal centers such as Co or Ni which have been found to be

suitable for different kinds of redox catalysis.[88]

With respect to the resulting JP ∼B ∼CK-system, twomajor drawbacks were identified until today

which reduce the quantum yield of the overall reaction:

On the one hand, decomplexation processes of the catalyst-systems with possible colloid

formation or chromophore decomposition are side reactions that may occur after photo

reduction.[94, 132] On the other hand, it is difficult but essential to tune the kinetic and

thermodynamic properties of the bridging ligand (e.g. electronic communication/insulation or

electron storage to a greater or lesser extent as previously discussed for the tpphz ligand) because

these factorsmay potentially limit the type of reduciblemetal centers and the rate of side reactions

or charge recombination.[80]

In the following section, the synthesis of mononuclear and hetero-dinuclear phenphen-bridged

complexes will be presented. The characterization of the photo- and electrochemical properties

will be discussed toward the application potential within JP ∼ phenphen ∼CK-type systems in light

driven catalysis. Special emphasis will be placed on the characterization of stereoisomers.
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3.2.1 Preparation of phenphen and Related Complexes

The synthesis of 5,5’-bi-1,10-phenanthroline (phenphen) was performed according to a procedure

described by Thummel et al. using a Ni-mediated homocoupling reaction. Scale up of this

reaction and application of the previously prepared phenBr as substrate instead of the otherwise

used 5-chloro-1,10-phenanthroline resulted in the formation of phenphen in moderate yields (see

figure 59).[131, 133]

N

N
N

N

N

N

Br
1. Ni(PPh3)4/Zn

2. KCN

(DMF)
2

Figure 59: Synthesis of phenphen from phenBr.

Thescheme in figure 60 gives an overviewof the applied synthesis steps toward the heterobinuclear

photocatalyst and important reference compounds.

In a first attempt it was possible to prepare the homobinuclear phenphen-bridged ruthenium

complex [(tbbpy)2Ru(µ-phenphen)Ru(tbbpy)2]4+ (Ru(phenphen)Ru) in quantitative yield via

reaction of phenphen and [Ru(tbbpy)2Cl2] in 1:2-stoichiometry through the protocol for the

preparation of ruthenium complexes from the Rau group (method C1).[120] This complex

is very similar to the complex of Campagna et al. which contains bpy-ligands instead of

tbbpy-ligands but in contrary, was not prepared via [Ni(PPh3)4]-mediated cross-coupling of

[(bpy)2Ru(5-chloro-1,10-phenanthroline)]2+ as described there.[131]

The samemicrowave reaction was applied to the 1:1 mixture of phenphen and [Ru(tbbpy)2Cl2] for
the mononuclear ruthenium complex Ru(phenphen) ([(tbbpy)2Ru(phenphen)]2+). But counter
ion exchange with NH4PF6 and work up yielded a mixture of the desired mononuclear complex

Ru(phenphen) and the binuclear ruthenium byproduct Ru(phenphen)Ru, as first indicated

by TLC-experiments and later supported by 1H-NMR-experiments. Using a solvent mixture

of KNO3/water/ACN (very polar), it was possible to separate the two products by column

chromatography over silica and to obtain the mononuclear complex in 65% yield.

Platinum was chosen as active metal at the reaction center due to its increased stability

under reductive conditions in a NN-coordination sphere and, furthermore, because platinum
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Figure 60: Synthesis of the homo- and binuclear ruthenium and platinum complexes

Ru(phenphen), Ru(phenphen)Ru and Ru(phenphen)Pt from phenphen. i) [Ru(tbbpy)2Cl2],

(EtOH/H2O), 2 h, microwave, reflux. ii) K2PtCl4 (DMF), 28 h, reflux, 36%.

compounds display about the same high catalytic activity as their related palladium

compounds.[82, 134, 135] In this way the system would be protected from decomposition by colloid

formation after the photoreductionwith retention of the catalytic activity of the palladiumcatalyst.

For this synthesis, Ru(phenphen) was treated with K2PtCl4 for 28 hours in a two-phase system

of dichloromethane/water and later DMF to obtain the hetero-binuclear ruthenium-platinum

complex [(tbbpy)2Ru(µ-phenphen)PtCl2]2+ (Ru(phenphen)Pt) in 36% yield according to the

reaction pathway in figure 60.
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3.2.2 Identification and Characterization

To characterization the obtained products, detailed NMR-experiments were performed. For the

better understanding of the obtained NMR-data a short excursus will be given to recall some

structural features of phenphen and its derived complexes.[136]

An interesting effect is the formation of different atropisomers of phenphen due to the hindered

rotation about the single bond which connects the two equivalent phenanthroline moieties in the

5,5’-positions (see figure 61).

RaSa

Figure 61: Enantiomeric pair of the atropisomers of phenphenwith the Sa- and Ra-conformation.

This results in a frozen rotation about this C-C-single bond on the NMR-timescale and causes,

in combination with a second stereo-center such as a stereogenic ruthenium fragment in a

tris(chelate) environment, the peculiarity of four inisochronic sets of phenanthroline protons in

the resulting 1H-NMR-spectrum of Ru(phenphen) and Ru(phenphen)Pt, whereas phenphen

exhibits one set because no additional stereocenters are present, and thus the two phenanthroline

moieties experience the same field anisotropy effects (see figures 61 and 62).

D
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D

O O

O

OO
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Ra

katrop.

D

a b c d

Figure 62: The on the NMR-timescale slow atropisomerization between the Sa- and Ra-conformers

of phenphen in combinationwith the second stereo center in∆/Λ-conformationof the octahedral

metal in Ru(phenphen) or Ru(phenphen)Pt shifts the field anisotropy (symbolized by orange

arrows) around the phenanthroline moieties (black rectangles) and results in the occurrence of

four inisochronic sets of phenanthroline signals (a, b, c, d) in the resulting 1H-NMR-spectrum of the

racemic mixture.
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Note: A related atropisomerism of an axis chiral ligand (4,4’-biquinazoline), bound to an

octahedral ruthenium complex has been discussed by Constable and coworkers.[137]

Theaddition of the differentΛ-conformers to themixture of Sa,∆- andRa,∆-conformers (depicted

in figure 62) will give the complete racemic product mixture but will not result in additional

sets of phenanthroline signals in the NMR-spectra because the ∆-set comprises the isochronic

enantiomers of the Λ-set (see figure 63).
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O
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O

Ra

a b b a

c d d c

Figure 63: Two pairs of enantiomeres with (Λ,Sa)/(∆,Ra)-conformation and (∆,Sa)/(Λ,Ra)-confor-

mation respective represent all possible stereoisomers of Ru(phenphen) or Ru(phenphen)Pt.

For a combination of two stereogenic octahedralmetal fragments such as {Ru(L̂L)2}2+ and the axis
chiral bridging ligand phenphen, as in the case of Ru(phenphen)Ru, in principle eight differently

configured stereoisomers can be found in the racemic mixture (see figure 64). If all terminal

ligands are equivalent and the bridging ligands exhibits two C2-axes along the axes of chirality,

this number decreases to six in a 1:2:1-ratio because the molecules with (Λ,Sa,∆)- and (∆,Sa,Λ)-

conformation become identical for symmetry reasons.This effect decreases as well the number of

inisochronic sets of phenanthroline signals in the resulting NMR-spectra, as can be derived from

figure 64.

For the elucidation of the 1H-NMR spectra of the Ru(phenphen)M-series, especially two-

dimensional NMR methods were used as exemplarily depicted in figure 65 for the mononuclear

complex Ru(phenphen).
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Figure 64: Three pairs of enantiomers with (Λ,Sa,Λ)/(∆,Ra,∆)-conformation, (Λ,Sa,∆)/(∆,Ra,Λ)-

conformation and (∆,Sa,∆)/(Λ,Ra,Λ)-conformation respectively represent the six possible

stereoisomers of Ru(phenphen)Ru and give rise to four homotopic/isochronic sets of seven

phenanthroline signals each (a, b, c, d) in a 1:1:1:1-ratio in the 1H-NMR spectrum of the racemate.

The existence of meso-forms and symmetry equivalent molecule sides prevents a further splitting

of the phenphen NMR-signals beyond four sets. In the first place, it was possible to identify sets

of hydrogen signals with similar chemical shift due to the fact that asymmetric phenphen ligand

displays very similar signals e.g. for the hydrogen atoms in 2-, 9-, 2’- and 9’-position, slightly

shifted by the asymmetric surrounding in each of the stereoisomers.

Nevertheless, according to the coupling constants and by comparison of the different complexes

(see figure 64), it was possible to distinguish the phenphen-related sets of signals which refer

to the 2/9- (a-position, ( ), dd, 3J = 5.4Hz, 4J = 1.2Hz), 3/8- (b-position ( ), dd, 3J =
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Figure 65: H,H-COSY NMR spectrum (400MHz) of racemic Ru(phenphen) in dichloromethane-d2
with denoted couplings of the free- (—) and ruthenium coordinated phenanthroline signals (—)

plus terminal bipyridine ligand signals (—).

8.2Hz, 3J = 5.4Hz), and 4/7-position (c-protons ( ), dd, 3J = 7.2Hz, 4J = 1.2Hz) of the

rutheniumbound (Ru), platinumbound (Pt), and free (f) phenanthroline sphere-hydrogen atoms.

Two dimensional NMR spectroscopy further supported the assignment of the proton signals.

Temperature dependent NMR experiments in acetonitrile-d3 at 60°C or dimethylformamide-d7
at 80°C did not result in a change or even simplification of the observed spectra. To clearly decide
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about the purity of the particular complexes the dominant singlet signals, resulting from isolated

protons in 6-position (d-position, ) were the most useful.

The racemic mixture of the homobinuclear Ru(phenphen)Ru-complexes represents the example

with high chemical resemblance of the phenanthroline moieties. In this case, all differences in

terms of chemical shifts in the NMR-spectra of Ru(phenphen)Ru with respect to a specific

phenanthroline proton result from a differing field anisotropy in the different stereoisomers. For

example, in acetonitrile-d3 two sets of, in each case, four closely spaced similar proton signals

were identified in the 1H-NMR spectrum for the characteristic phenanthroline c-position with
3J = 8.0Hz and 4J = 1.6Hz (4 × dd, δ Ru

C(4) = [8.66 – 8.78] ppm and 4 × dd, δ Ru
C(7) = [8.10 - 8.30] ppm)

which refer to the 4- and 7-positions of the four inhomotopic phenphen-moieties (a, b, c, d

in figure 64). The widest scattering of proton signals (∆δ Ru
C = 0.2 ppm) in Ru(phenphen)Ru is

found for the eight protons in the phenanthroline-c-positions which experience the strongest

field anisotropy due to the chiral environment/conformational differences within this set of

stereoisomers.

The monometallic ruthenium complex Ru(phenphen) exists according to figure 63 in two

inisochronic variants which might interconvert at a low rate. For the ruthenium coordinated

side, chemical shifts were observed which were very similar to the Ru(phenphen)Ru-shifts. The

formal loss of a {Ru(tbbpy)2}2+-fragment gives rise to a second pair of phenanthroline signals (f)

which roughly resemble the chemical shifts of phenphen. For example, the far low-field shifted

positions of the a-protons were found in the same region as the phenphen-signals (δ f
A(2) = [9.20 –

9.26] ppm ≈ δ phenphen
A(2) = 9.20 ppm, and δ f

A(9) = [9.14 – 9.22] ppm ≈ δ
phenphen
A(9) = 9.13 ppm respectively).

The same accounts for the slightly low-field shifted b-protons and the high-field shifted c-protons

(see table 7).

In Ru(phenphen)Pt the achiral, square planar, neutral {PtCl2}-fragment is present at the

formerly free phenanthroline sphere of Ru(phenphen). This results in a retention of the possible

stereoisomers as discussed for Ru(phenphen). Furthermore, only slight changes in the chemical

shift of the platinum substituted coordination sphere, in comparison to the unsubstituted

phenanthroline moiety, are the result. The most significant difference in the 1H-NMR-spectra

between Ru(phenphen) and Ru(phenphen)Pt is the typical low-field shift of the signals in a-

position (δ f
A(2) = [9.20 – 9.26] ppm < δ Pt

A(2) = [9.22 – 9.28] ppm, and δ f
A(9) = [9.14 – 9.22] ppm <

δ Pt
A(9) = [9.28 – 9.38] ppm) due to platinide coordination.[138] Furthermore, the chemical shift of
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Table 7: Selected 1H-NMR-shifts of phenphen-compounds in acetonitrile-d3.

Signal Coordinated phenphen Ru(phenphen)Ru Ru(phenphen) Ru(phenphen)Pt

(Position) Fragment δ [ppm] δ [ppm] δ [ppm] δ [ppm]

A (2) f / Pt 9.20 9.20 - 9.26 9.22 - 9.28

Ru 8.15 - 8.20 8.12 - 8.16 8.06 - 8.10

A (9) f / Pt 9.13 9.14 - 9.22 9.28 - 9.38

Ru 8.08 - 8.15 8.04 - 8.10 8.00 - 8.04

B (3) f / Pt 8.43 7.92 - 7.98 7.84 - 7.90

Ru 7.80 - 7.90 7.80 - 7.86 7.72 - 7.78

B (8) f / Pt 7.84 7.62 - 7.74 7.66 - 7.76

Ru 7.54 - 7.72 7.52 - 7.56 7.46 - 7.52

C (4) f / Pt 7.78 8.66 - 8.70 8.76 - 8.84

Ru 8.66 - 8.78 8.60 - 8.66 8.54 - 8.50

C (7) f / Pt 7.49 8.00 - 8.14 8.18 - 8.30

Ru 8.10 - 8.30 8.00 - 8.04 8.08 - 8.20

f = free coordination sphere, Pt = {PtCl2}, Ru = {Ru(tbbpy)2}2+.

the platinum atom of Ru(phenphen)Pt was determined by 195Pt-NMR experiments to be at -

2334 ppm which is exactly in the expected region for [Pt(bpy)Cl2]-type complexes.[138, 139]

The interpretation of the 13C-NMR spectra was difficult because of the closely lying peaks due to

stereoisomerization and the extensively broadened signals in the related two dimensional HMBC

and HSQC spectra and, thus, did not lead to a further-reaching understanding of the structural

properties of the prepared compounds.

For the identification and affirmation of the purity of all prepared compounds, as well as for

further characterization of the obtained products, different mass spectrometric experiments were

performed. The examination of the three ruthenium complexes with the ESI method revealed

very clear mass spectra which allowed for the straight forward assignment of the obtained

signals according to the match in shape and intensity between calculated and measured isotopic

patterns. Predominant in all spectra are the strong signals for the molecular ions [M-PF6]+,

where one or two counter ion were lost ([Ru(phenphen)-PF6]+ = 1141.1m/z, [Ru(phenphen)Ru-

PF6]+ = 2069.2m/z and [Ru(phenphen)Pt-2 PF6]+ = 1261.1m/z).
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Figure 66: Aromatic region of the 1H-NMR spectra of phenphen and the resulting ruthenium

complexes Ru(phenphen)Ru, Ru(phenphen) and Ru(phenphen)Pt in acetonitrile-d3.
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3.2.3 Structural Analysis

Fortunately, after the synthesis X-ray suitable crystals of phenphen and Ru(phenphen) were

obtained from solvent mixtures of water and ethanol (see figure 68).

Figure 67: Molecular structure of phenphen (left) and Ru(phenphen) (right). Hydrogen atoms,

solvent molecules and anions were omitted for clarity. The torsion angle between the rotational

hindered phenanthroline moieties is 65.7(2)° in phenphen and 83.9(3)° in the ruthenium complex

respectively.

Most prominent is the fact that both crystal structures emphasize the twisted nature of the

bridging ligand. The determined torsion angles θ about the C-C-single bonds between the

two phenanthroline spheres differ from each other (θ phenphen = 65.7(2)° < θ Ru(phenphen) =

83.9(3)°) but this may be attributed to packing effects according to the low energy barrier

for the rotation. The bond length of the bridging C-C-single bond remains unchanged

upon complexation (d phenphen
(C5-C5’) = 1.489(3) Å in phenphen and d Ru(phenphen)

(C5-C17) = 1.500(4) Å in the

mononuclear complex) but turns out to be slightly longer than the typical C(sp2)-C(sp2)

bond length of 1.47Å, possibly due to the torsion. All Ru-N distances in Ru(phenphen)

differ slightly but remain in the range of 2.053 - 2.070Å, which is expected for ruthenium

complexes with bipyridine or phenanthroline-type ligands.[120, 108, 140, 125] Comparison of the

different coordination sites exhibits the same values for the bond lengths and angles in phenphen

and in the free coordination sphere of Ru(phenphen). The ruthenium containing coordination
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Figure 68: Detail of the crystal structure which contains the enantiomeric pair of Ru(phenphen)

in close proximity to each other. The complex on the left has (∆,Ra)-configuration whereas the

complex on the right has (Λ,Sa)-configuration.

Table 8: Selected bond lengths [Å] and angles [°] of phenphen and Ru(phenphen).

distance [Å] phenphen Ru(phenphen) angle [°] phenphen Ru(phenphen)

Ru1 - N1 2.066(3) N1 - Ru1 - N2 79.60(11)

Ru1 - N2 2.070(3)

Ru1 - N5 2.069(3) N5 - Ru1 - N6 78.41(11)

Ru1 - N6 2.057(3)

Ru1 - N7 2.053(3) N7 - Ru1 - N8 78.53(10)

Ru1 - N8 2.065(3)

C5 - C5’(17) 1.489(3) 1.500(4) θ 65.68(13) 83.9(3)

C11 - C12 1.449(3) 1.427(4)

C23 - C24 1.455(4)

C11 - N2 1.361(2) 1.374(4) N1 - C12 - C11 118.11(16) 116.8(3)

C12 - N1 1.358(2) 1.368(4) N2 - C11 - C12 117.91(16) 116.1(3)

C23 - N4 1.379(4) N3 - C24 - C23 118.9(3)

C24 - N3 1.356(4) N4 - C23 - C24 116.9(3)

sphere differs significantly from the free phenanthroline sphere. Especially a shortening of the

C11-C12-bond (d phenphen
(C11-C12) = 1.449Å > d Ru(phenphen)

(C11-C12) = 1.427Å) and decrease of the N1-C12-C1-angle

(∠phenphen
N1,C12,C1 = 118.11° > ∠Ru(phenphen)

N1,C12,C1 = 116.8°) and of the N2-C11-C12-angle (∠phenphen
N2,C11,C12 = 117.9° >

|95|



|3.2 Bisphenanthroline: A SuitableMolecular Bridge?|

∠Ru(phenphen)
N1,C12,C1 = 116.1°) was observed upon complexation. For other interesting values for bond

lengths and angles see table 8.

Most impressive is the fact that four complex molecules are present in the unit cell of

Ru(phenphen) but only one pair of enantiomers (in particular the molecules with (∆,Ra)/(Λ,Sa)-

configuration) can be found in the crystal structure.The second set of possible atropisomers with

(∆,Sa)/(Λ,Ra)-configuration is missing in the crystal structure (compare figure 68).

This lucky strike opened the possibility to determine the rate constant for the interchange of

sterically hindered atropisomers. Due to the fact that the obtained crystals contain only one

enantiomeric pair of Ru(phenphen), it can be expected that only one set of signals would be

found in the resulting 1H-NMR spectrum.

For this experiment one small single crystal

of Ru(phenphen) was dissolved in dichloromethane-d2 (to exclude impurities, in particular the

second pair of enantiomers). Subsequent observation of the chemical shifts exhibited a simplified

spectrum with only one set of signals after 15 minutes (see figure 69).

9,4 9.0 8.6 8.2 7.8 7.4 7.0

d / ppm

1.4 1.3

intensity x 5

960 min

186 min

91 min

15 min

Figure69:Changes in the aromatic and aliphatic region of the 1H-NMR spectrumof Ru(phenphen)

during 16 hours upon formation of the racemic mixture of rotamers from the formerly

diastereomeric-pure (∆,Ra)/(Λ,Sa)-configured compound (single crystal).

Long term tracking of the NMR signals resulted in the slow appearance of the second set of

signals, best indicated by the change of the four tert-butyl-signals (δtBu = [1.3 - 1.4] ppm) or by the

singlets for the protons at d-position (δD = 8.05 ppm/8.20 ppm). As a result of 60 time-correlated
1H-NMR experiments, peak separation, observation of three different sets of signals, and fitting

with first order kinetics, a rate constant of katrop. = 9.68×10-5 s-1 and a observed half-life of t1/2, atrop. =
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1.99± 0.07 h at 25°C in dichloromethane-d2 could be determined (see figure 69). The determined

value is greater than the half-life of 1000 seconds for one rotamer, which is, according to Kuhn,

required for true atropisomers.[141] Note: Simple circular dichroism (CD) spectroscopy can be

considered rather useless in this case because a set of enantiomers crystallized.

3.2.4 Photophysical Behavior

The detailed characterization of the interactions with light for the phenphen based compounds

was performed in order to establish their potential as light driven catalysts.

The following presented data arose from a cooperation project with Roger-Jan Kutta from

the group of Prof. Dr. B. Dick (University of Regensburg). Stationary as well as time resolved

spectroscopy data on the phenphen-bridged ruthenium and platinum complexes does not only

yield insight into electronic states but also into their chemical reactivity. Special focus was placed

on a possible formation of reactive species, arise after photo excitation of these compounds.

UV/vis, excitation and emission spectroscopic studies were performed in acetonitrile with and

without oxygen in solution. Analysis of the absorption and emission properties of the described

complexes revealed the expected [Ru(bpy)3]2+-like behavior (see figure 70 for the spectra and

table 9 for the complete data).

Table 9: UV/vis absorption and emission data of selected references and phenphen-bridged
ruthenium complexes.

Complex λmax, abs ϵλmax λmax, em Φ τ a τb

[nm] [lmol-1cm-1] [nm] [ns] [ns]

[Ru(tbbpy)3]2+ 458 17 900 615 107[90] 730[90]

Ru(phen)c, [120, 125] 454 16 000 610 211 1 423
Ru(phenphen) 455 15 500 630 0.20 127 2 000
Ru(phenphen)Ru 454 34 500 630 0.20 133 1 800
Ru(phenphen)Pt 453 10 000 630 0.21 139 2 000

a) aerated, b) deaerated, c) Ru(phen) = [Ru(tbbpy)2(phen)]2+

In the series [(tbbpy)2Ru(µ-phenphen)M]2+ (f: M= vacant, Ru: M= {Ru(tbbpy)2}2+, and Pt:

M= {PtCl2}) all complexes exhibit similar peak shapes andmaxima. Relevant is the typical broad
3MLCT-absorption band between 400 and 500 nm (λ(M= f)

max = 455 nm ≈ λ(M=Ru)
max = 454 nm ≈ λ(M=Pt)

max
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Figure 70: Absorption spectra of the ruthenium phenphen-complexes in acetonitrile and

corresponding normalized relative emission upon excitation at 450 nm. Ru(phenphen): Abs.

(—), Em. (● ● ●), Ru(phenphen)Ru: Abs. (—), Em. (● ● ●), Ru(phenphen)Pt: Abs. (—), Em. (● ● ●).

= 453 nm) which agrees exactly with the value of the reference Ru(phen) (λRu(phen)
max = 454 nm). In

the case of Ru(phenphen)Ru a doubling of the absorption coefficients can be detected compared

to Ru(phenphen) which results from the second chromophore. The absorption of the platinum

compound is the least intense (ϵ(M=Ru)
max = 34 500 lmol-1cm-1 > ϵ(M= f)

max = 15 500 lmol-1cm-1 > ϵ(M=Pt)
max

= 10 000 lmol-1cm-1). The biggest deviations in shape of these two are in bands at the higher

energetic transitions. The additional prominent peaks in the UV-region of the spectra refer to

ligand centered π-π*-transitions (λ(M= f)
π-π* = 285 nm (ϵ(M= f)

π-π* = 67 700 lmol-1cm-1), λ(M=Ru)
π-π* = 268 nm

(ϵ(M=Ru)
π-π* = 128 600 lmol-1cm-1), λ(M=Pt)

π-π* = 286 nm (ϵ(M=Pt)
π-π* = 49 000 lmol-1cm-1)).

The excitation spectra of the compounds (not depicted) of Ru(phenphen), Ru(phenphen)Pt,

rebuild their corresponding absorption spectra. That means that, independent of the excitation

wavelength, the system ends up in the emitting MLCT-state for a certain quantum yield. In

contrast to that the compound Ru(phenphen)Pt does not show 100% independence. Here, the

excitation into the higher energetic state does not completely follow to the emitting state in the

same amount as excitation into the lower energetic state does, whichmight be a result of platinum
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involving absorption not giving rise to ruthenium centered emission.

Determination of the emission behavior exhibited strong emission bands between 600 and 800 nm

with the same maximum at λ(M= f,Ru,Pt)
em = 630 nm for all three complexes. Interestingly, emission

of the reference Ru(phen) is by 20 nm hypsochromically shifted (λRu(phen)
em = 610 nm), which may

be attributed to the +M-effect of the substituent at the 5-position. Furthermore, the quantum

yields were determined with the integrating spheremethod.Moreover, all complexes show similar

emission quantum yields of Φ(M= f,Ru,Pt)
em = 0.20 in oxygen-free acetonitrile which is a very high

value.

3.2.5 Excited State Dynamics

For the determination of the emission decay dynamics in a TCSPC-experiment a Horiba

Fluorolog-3 was used. As an excitation light source a N2-laser (λex = 375 nm, ∆t = 4 ns) was

used and emitted photons of λobs = 630 nm were observed. UV/Vis, excitation and emission

spectroscopic experiments were performed with and without oxygen in solution.

Figure 71 shows the emission decays that were measured in oxygen saturated (exposed to air)

acetonitrile for the determination of the lifetimes.

As can be seen, all oxygen saturated samples of the phenphen-bridged ruthenium complexes

exhibited very similar lifetimes (τ (M= f)
aerated = 127 ns ≈ τ (M=Ru)

aerated = 133 ns ≈ τ (M=Pt)
aerated = 139 ns). The

determined values differ from Ru(phen), which exhibits a ∼60 ns longer lifetime (τRu(phen)aerated =

211 ns). Subsequent measurements with the oxygen free samples showed the expected strong

increase of the excited state lifetimes. This is due to the removal of oxygen, which is known

to deactivate the MLCT-state. Again, all complexes show very similar emission decay dynamics

with a slightly shorter lifetime in the case of the binuclear compound Ru(phenphen)Ru (τ (M= f)
degassed

= 2.0µs ≈ τ (M=Ru)
degassed = 1.8µs ≈ τ (M=Pt)

degassed = 2.0µs). The lifetimes are rather long, especially when

compared to Ru(phen) (τRu(phen)degassed = 1.4µs) but remain in the expected range for well degassed

samples of [Ru(tbbpy)3]2+-type complexes.

For the two-dimensional transient absorption experiments a pulsed Nd:YAG-Laser (third

harmonics, t ≈ 10 ns) was used as excitation light source. And for spectra measurement of the

transient species a pulsedXe-lampwas applied as a light source and a combination of spectrograph

and streak camera was utilized to transform the temporal profile of a sample-passing light pulse
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Figure 71: Fitted emission decay plots of Ru(phenphen): (● ● ●), Ru(phenphen)Ru: (● ● ●),
Ru(phenphen)Pt: (● ● ●) in oxygen saturated acetonitrile (top) and residue (bottom).

into a spatial profile on the detector to obtain the two dimensional spectra.

The false color plot in figure 72 shows exemplarily the two-dimensional spectra of the binuclear

complex Ru(phenphen)Ru in oxygen saturated and oxygen free acetonitrile. Laser excitation

at t = 0 (blue spot at λ= 355 nm) results in the formation of an 3MLCT-excited species which

possesses a different absorption spectrum. The color code indicates the observed change of the

optical density of the sample during the experiment. The ground state bleach in the region

between 400 and 500 nm is the result of the decreased concentration of not excited ground state

Ru(phenphen)Ru upon transition of a fraction of Ru(phenphen)Ru-molecules into the excited

state (blue and green areas). Furthermore new absorption bands of the excited species between 300

and 400 nm and between 500 and 700 nm become prominent (red and orange areas). After few

microseconds the excited molecules relax to the ground state and the initial differential spectrum

with no change in optical density (baseline) results.
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Figure 72: False color plots showing the change in optical density during the decay of the 3MLCT-

excited Ru(phenphen)Ru species in oxygen saturated (top) and degassed (bottom) acetonitrile

after the laser excitation at 355 nm (∼3mJ/pulse, seen as blue spot at t = 0, 100 accumulations).

Yellow and red areas refer to an increase of the optical density (excited-state absorption), green and

blue areas represent a decrease of the optical density (ground state depletion) and black regions

show no change compared to the initial solution. The denoted brackets indicate the regions that

were used for decay kinetics and differential spectra (compare figure 73 and see text for details).
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Repetition of the experiment and averaging over a selected short time range gives rise to the

excited state absorption spectra (see figure 73 right). The light blue graph refers to the excited

probe and the orange to the probe after relaxation, whereat positive values indicate excited

state absorption and negative values indicate ground state bleach or stimulated emission if no

absorption band of the ground state molecules is present in this region. Furthermore, averaging

over selected wavelength ranges, but the whole time range, affords the time dependent spectra

with decay dynamics (see figure 73 left).

The lifetimes of the ruthenium phenphen-complexes (streak camera experiment: absorption

wavelength region between 435 - 465 nm), determined through the excited state absorption

experiment, nicely resemble the values which were determined in the emission decay experiment

(TCSPC experiment, emissionwavelength 630 nm).Thus, about the same short lifetimes (∼150 ns)
are found for the aerated samples whereas the degassed probes exhibit longer lifetimes (∼2µs).
Observation of the differential spectra directly after excitation yielded very similar characteristics

for all compounds (M= f, Pt, Ru). Very prominent was the expected ground state bleach of

the 3MLCT absorption band in the wavelength region between 400 - 520 nm with a minimum

at 465 nm. Furthermore, a new absorption band rises in the high energy region of the spectra

between 300 - 400 nm with a maximum at ∼360 nm. Also in the low energy region a new broad

absorption bandwas detected in the region between 520 - 630 nm.These characteristic bandswere

assigned to the absorption of the *[RuIII(L̂L)2(L̂L
-I)]2+-species and vanish after return of the probe

into the ground state (compare examples on top in figure 73).[142]

Surprisingly, in the case of the oxygen-free samples of Ru(phenphen)Ru and Ru(phenphen)

a different behavior was observed. After the relaxation time of the *[RuIII(L̂L)2(L̂L
-I)]2+-species

related characteristics the initial absorption spectra (baseline in the differential spectrum) was

not retained. Instead, two new absorption bands and a remaining ground state bleach region were

present (compare examples on bottom in figure 73) even after very long recording times (80µs).

The new absorption bands were found in both cases between 315 - 400 nm with a maximum at

355 nmand between 490 - 570 nmwith amaximumat 515 nm. Importantly, from the time resolved

analysis it becomes clear that this is a very long-living product of a consecutive reaction (compare

blue decay, bottom left in figure 73). Unfortunately, nothing is known about this species, but it

can be speculated that the reduction of the bridging ligand or effects of a two-photon absorption

during the lifetime of the MLCT excited species may be involved in this process. This kind of
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process can only be observed in the oxygen free samples which gives rise to the speculation, that

possible slow radical reaction or irreversible bridging ligand transformation might occur.
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Figure 73: Derived time resolved (left) and wavelength resolved (right) excited state absorption

spectra of Ru(phenphen)Ru in oxygen saturated (top) and degassed (bottom) acetonitrile, λexc =

355 nm (∼3 mJ/pulse); mean over 100 shots (compare figure 72). The denoted brackets indicate

the regions that were used for corresponding decay kinetics and differential spectra.
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3.2.6 Electrochemical Characterization

The following presented data of the electrochemical data on the phenphen-bridged ruthenium

and platinum complexes (see table 10 for the gathered data) does not only give insights into the

redox properties of the prepared complexes, but may also help to shine light in the nature of the

observed products which arose after photoexcitation in the previous chapter. It will be investigated

if, possibly, reduced or oxidized species will arise after ground state oxidation or reduction of these

compounds.

Table 10: Selected redox potentials E1/2(V) of the series of ruthenium complexes

[Ru(tbbpy)2(phenphen)M]2+ (M= free, {Ru(tbbpy)2}2+, and {PtCl2}) and selected references,

referenced vs. Fc/Fc+ in a 0.1M solution of Bu4NPF6 in dry andoxygen free acetonitrile under argon.

Complex E1/2(L̂L
3
) [V] E1/2(L̂L

2
) [V] E1/2(L̂L

1
) [V] E1/2(Ru2+/3+) [V]

[Ru(tbbpy)3]2+ -2.28 -2.02 -1.83 0.73

Ru(phen)[120] -2.25 -1.98 -1.77 0.74

Ru(phenphen) -2.26 -1.99 -1.71 0.81

Ru(phenphen)Pt -2.26 -2.00 -1.77 ir / -1.53 0.81

Ru(phenphen)Ru -2.26 -1.99 -1.70 ir 0.84

Ru’(phenphen)Ru’ b, [131] -2.25 -1.94 -1.73 0.84

Os(phenphen)Os c, [131] -2.24 -1.93 -1.73 0.39

[Pt(phen)Cl2][143] -1.83 -1.25 0.30a

a E1/2(Pt2+/3+), b Ru’(phenphen)Ru’ = [{(bpy)2Ru}2(µ-phenphen)], c Os(phenphen)Os =

[{(bpy)2Os}2(µ-phenphen)]

In the series of ruthenium complexes [Ru(tbbpy)2(phenphen)M]2+ (M= free, {Ru(tbbpy)2}2+,
{PtCl2}) typical similarities in the potentials of the ruthenium centered oxidation (E1/2(Ru2+/3+))

were observed (E(M= f)
1/2 (Ru2+/3+) = 0.81 V < E(M=Ru)

1/2 (Ru2+/3+) = 0.84V > E(M=Pt)
1/2 (Ru2+/3+) = 0.81 V).

These values are about 0.1 V higher than the determined values for Ru(phen) or [Ru(tbbpy)3]2+.

No dependence of the redoxpotentials on the nature of the second metal was observed.

Interestingly, in the homobinuclear compound Ru(phenphen)Ru, no separated one-electron

oxidations were found, which could be expected for binuclear complexes with metal ions that

influence one another. Only a slightly broadened and more intense redox wave was present.

As in the references Ru(phen) and [{(bpy)2Ru}2(µ-phenphen)], all complexes in this series
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exhibited three similar reduction potentials at E1/2(L̂L
1) ≈ -1.7 V, E1/2(L̂L

2) ≈ -2.0V and E1/2(L̂L
3) ≈ -

2.3 V which were assigned to the three ligand centered reductions. The two reductions at

very negative potentials are quasi reversible and very similar for all three complexes but the

L̂L1-reduction waves (assigned to the phenphen-ligand based on comparison with data from

literature[131]) differ within this series of complexes (see figure 74).
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Figure 74: Cyclovoltammograms of the ruthenium complexes with phenphen ligands, measured

in a 0.1M solution of Bu4NPF6 in dry acetonitrile under argon atmosphere, referenced vs. Fc/Fc+,

E1/2 = 0.00 V. Ru(phenphen) (—), Ru(phenphen)Ru (—), Ru(phenphen)Pt (—),.

In the case of Ru(phenphen) three fully reversible one-electron reduction waves were found but

no reduction of the free phenanthroline moiety.

Furthermore, in Ru(phenphen)Ru all redox potentials were assigned to two-electron reductions

of the equivalent sides of the molecule. Therefore, an irreversible two-electron L̂L1-reduction

was found in the CV which may refer to a double bond formation or other side reaction

upon reduction. Interestingly, for the related compounds [{(bpy)2Ru}2(µ-phenphen)] and

[{(bpy)2Os}2(µ-phenphen)], no irreversible peaks were reported.[131]

The heteronuclear complex Ru(phenphen)Pt exhibits in the same region two (in combination

irreversible) one-electron waves at differing potentials which potentially correlate to the
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inequivalent sides of the phenphen-bridge. Interestingly, a reversible one electron reduction of

the bridge is observed for the more positive redox wave (compare detail in figure 74) as observed

for single reduction of Ru(phenphen). On contrary, a consecutive double reduction of the bridge

is irreversible, as oberrved for Ru(phenphen)Ru. Based on the comparison of the complexes,

the more positive, reversible wave was assigned to the platinum coordinated sphere (-1.53V),

the lower wave (-1.77V) was assigned to the ruthenium coordinated sphere. From this result it

can be concluded that a photoreduced bridge at the ruthenium moiety (one-electron reduction

during MLCT excitation) has the potential to reduce the platinum sphere at the bridge without

irreversible effects. However, a comparison with [Pt(phen)Cl2] showed only minimal similarities

between the two compounds as the first and second reduction potentials differ by more than

0.30V and 0.05V, respectively.[143] However, as the authors state there, the redox chemistry of

[Pt(phen)Cl2] is characterized by highly irreversible processes, complicating correct assignment.

3.2.7 Application in Light Driven Catalysis

Based on the electrochemical and photophysical results Ru(phenphen) and Ru(phenphen)Pt

were tested as JP∼B∼CK-type photocatalysts (P: photocenter, B: bridging ligand C: catalysis

center) for hydrogen formation. Therefore, oxygen free, nitrogen saturated stock solutions (cC
= 7.0×10-5 M) were prepared in the dark. Filling of 2ml samples into GC-vials under inert

conditions gave a number of probes for the determination of the catalytic activity. Irradiation of the

compoundswith visible light (LED-array, λecx = 470 nm, suitable to excite in theMLCT-band) was

carried out under identical conditions in a water/triethylamine/acetonitrile (2:6:12/v:v:v) mixture

as previously described by the work group of Rau et al. (see figure 75).[80, 88]

During the course of several hours considerable amounts of hydrogen gas were formed by

Ru(phenphen)Pt, as quantified in repeat determinations (two different samples for each data

point) by GC-TCD. Moderate turn-over-numbers were observed for Ru(phenphen)Pt (TON =

7 after 10 hours) at a decreasing frequency of less than one turnover per hour. The increasingly

heterscedasticity after 10 hours represents the end of catalysis due to side and consecutive reactions

and may be a result of increasing leakage of the reaction vessels over long periods. On the

other hand, the control experiments with the mononuclear Ru(phenphen) complex showed no

hydrogen production at all. Furthermore, differing concentrations of water (0, 5, 10, 20 and 30%)
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Figure 75: Time dependency of the catalytic activity of Ru(phenphen)Pt (c = 7.0×10-5M) in a 2M

solution of triethylamine in acetonitrilewith 5%water content. TON (●), TOF (●) and fitted curve (—).

were applied to obtain data on the water-concentration dependency of the catalytic activity as it

has been shown for related catalytic systems to be relevant (see figure 76).[116, 80, 88, 139]
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Figure 76: Water concentration dependency of the catalytic activity of Ru(phenphen)Pt (c =

7.0×10-5M) in a2Msolutionof triethylamine in acetonitrile after 12hours indoubledeterminations.
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After twelve hours, the most active samples were found to be the ones with a fraction of 5% water

added. Interestingly, even without water in the catalyst mixture, hydrogen was formed. Similar

results were observed by Rau et al.[80]

Comparison of these results to similar experiments in our group, using the platinum comlpex

[(tbbpy)2Ru(µ-tpphz)PtCl2]2+ under similar conditions showed a very similar catalytic behavior

with similar tunrover numbers in the same time frame.[139] In contrast to the extremely similar

system [(bpy)2Ru(µ-phenphen)PtCl2] by Sakai et al., a low but significant catalytic hydrogen

evolution could be detected (note: no turnover in the hydrogen formation reaction could

be observed in the Sakai system as published in 2011 without any data on preparation,

characterization, purity or catalysis details).[144]

The observed results support the assumption that phenphen can be seen as a step toward suitable

molecular bridges with sufficient electronic communication for intramolecular photocatalysis.

Nevertheless, in these first attempts, only unoptimized catalytic conditions were applied as can

be derived from the generally low TONs.

In this scope, it can be expected that a tuning of these conditions will have a positive influence on

the activity of the catalyst. The possibilities to increase the formerly moderate turnover numbers

by purposeful tuning of the solvent mixture (e.g. change of the pH value by exchange of alkaline

electron donor triethylamine by acidic acsorbate) or by synthetic manipulations of the catalyst,

as demonstrated by Rau et al., give important stimuli for the future development of phenphen-

derived photocatalysts. Finally, future investigations may help to correlate the photophysical and

electrochemical data with a possible in situ formation of a new catalytic species and to clearly

decide about the intermolecular reaction mechanism while a bimolecular platinum catalyst is

proposed by Sakai and coworkers.[144]

3.2.8 Concluding Remarks on phenphen-Bridged Complexes

The observed results lead to the conclusion that, in the ground state, the substituent in the

second phenanthroline coordination sphere has only a limited influence on the photophysical

and electrochemical behavior of the ruthenium chromophore in the first coordination sphere.

Importantly, this means that almost very little electronic communication across the C-C-single

bond between the different ligand halves is existent in the MLCT-excited state. Instead, the two
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metal centers in a binuclear phenphen-complex will retain most of their independent properties.

Binuclear phenphen-complexes, therefore, belong to the Robin-Day class I.[145]

In the discussion in chapter 1.10.1, a list of requirements for the design of an optimal bridging

ligand was formulated (points 1-11 on page 42). As was demonstrated, a number of requirements

from this list are fulfilled by the phenphen bridge:

The intrinsic and intercomponent stability toward thermal, photo- and electrochemical decompo-

sition and reaction products or intermediates of the bridge (1) is fulfilled to some extend as seen

e.g. in reversible one-electron reduction of phenphen in Ru(phenphen)Pt, in Ru(phenphen)

or in the binuclear reference, presented by Campagna et al.[131] A reversible redox behavior (2)

and a possible electron storage capacity (10) of the bridge is arguable based on electrochemical

analysis. The irreversibility of the reduction waves upon double reduction of the bridge in might

as well be signs of the formation of new compound from pre-catalysts such as Ru(phenphen)Pt.

Furthermore, time resolved excited state spectroscopy support the active role of the bridge as

best seen in Ru(phenphen)Ru. A well defined distance control of the interlinked metal centers

(3) is present as observed in the crystal structure. Using phenphen bridged complexes, only

limited electronic coupling between the components (4) across the 5,5’-positions was found in

spectroscopic experiments, nevertheless, suitable intracomponent HOMO and LUMO energies

(redox-, ground state- and excited state potentials) are present especially for Ru(phenphen)Pt

(5). This causes long lifetimes (∼2.0µs) of the charge-separated states, so that unidirectional

charge separation (ruthenium centered bridging ligand reduction is more negative than platinum

centered) (6) may be achieved. The small energy gaps between relevant (excited) redox states

guarantee for the above mentioned aspects and a conservation of the redox activity (7) in the

phenphen complexes. This as was proven in the catalysis experiments, using Ru(phenphen)Pt.

Conclusions about the energies or the potentials of the reactive redox state (8) or about the kinetic

factors for inner sphere electron transfer reactions (9) are difficult to draw. Nevertheless, a certain

efficiency of the population of the reactive redox state at the catalyst site (11) was found as the

complex Ru(phenphen)Pt was tested for photocatalytic hydrogen generation from water and the

formation of fair amounts of hydrogen was observed.

It can be summarized that the unique structural features of the bridging ligandmay (possibly after

a foregoing transformation process) lead to new interesting properties such as directed eT in the

excited state with a minimum of charge recombination in a Ru(phenphen)Cat complex.
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3.3 NN-NHC-Ligand bbip: Toward Second Generation Catalysts

To improve the efficiency of photoredox catalysis, it is essential to turn intermolecular electron

transfer processes between multiple components of a catalytic mixture into unidirectional

intramolecular electron transfer processes of a stable supramolecular catalyst. Therefore,JP ∼B ∼CK-type photocatalysts with integrated photocenter P and catalytic active site C were

developed.

Important is the electronic communication between these two. Therefore, a suitable bridging

ligand B has to be applied to allow for intramolecular electron transfer between the charge

transfer complex and the redox active catalytic moiety during the lifetime of the excited state.

In this context, 5,5’-bisphenanthroline bridged JP ∼B ∼CK-systems were introduced in the

previous chapter. Unfortunately, only low turnover numbers could be achieved with the catalyst

Ru(phenphen)Ptwhichwas partially assigned to the in situ formation of an active catalytic species

and to the limited electronic communication across the bridging single bond.

As expected for Ru(phenphen)Pt, Rau et al. could show that a photochemical reduction of

the platinide metal center is essential for the production of hydrogen for the similar catalyst

[(tbbpy)2Ru(tpphz)PdCl2]2+.[88] Toward these findings, Hammarström et al. pointed out that

the monomolecular nature of the catalyst was still arguable, as it could be demonstrated in a

similar JP ∼B ∼CK-system that generally used N,N’-donor-stabilized platinide metals may as well

be cleaved from the ligand (or supramolecular array) after the photoreduction (see figure 34 on

page 50). In addition to the appearance of palladium colloids, which are known to be catalytically

active themselves, a strong time correlation with the formation of hydrogen was found.[94]

For these two reasons, it has become very important to consider new design concepts of the

bridge to generate alternative structures with increased stability and electronic communication.

Furthermore, it has become of paramount importance to develop new analysis methods and

improved catalyst concepts in order to overcome the drawbacks of the first generation (see

previous chapter). Therefore. it is necessary to challenge new analysis methods in addition to

the TEM and XPS experiments, used by Hammarström et al. to analyze the photocatalytic

systems, to answer the compromising question for the true nature of the catalyst in the particular

supramolecular assembly.

In addition, a major drawback of the, by definition, weak interactions between the components in
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a supramolecular system was pointed out by the formation of colloidal palladium.The particular

problem is the general use of N-donor ligands to attach the low valent catalyst centers in the

first generation of JP ∼B ∼CK-type systems (compare figure 33 on page 48). Accordingly, different

coordination motifs such as in phosphines or thioles need to be tested and applied to assure the

stability of the scaffold during the high energy redox processes.The very promising candidates for

this task are N-heterocyclic carbene ligands (NHCs) which can be adapted from other low valent

metalorganic catalysis (e.g. Heck reaction catalyst) or complex hydrides.[146]

3.3.1 NHCs and NHC Complexes

Carbenes are electron-deficient molecules that contain a divalent neutral carbon atom with

an electron sextet. For several decades, great efforts were made to design and examine such

species without success, as pioneering works of the scientists prove (compare table 11). Already

Staudinger and others tried to generate disubstituted carbenes (:CR2) from diazo-compounds

by cleavage of nitrogen between 1911 in 1916. As none of the attempts to isolate a carbene was

successful over the years, they were finally thought to be too reactive and short living and therefore

could not be isolated.

Instead of isolating them, the inorganic chemists Fischer and Wanzlick succeeded in binding

different carbenes to metal centers in the 1960s.[147, 148] The resulting transition metal carbene

complexes were later subdivided into two groups according to their structure, electronic

properties and reactivity (see figure 77).[146, 149]
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Figure 77: Comparison of FISCHER- and SCHROCK-type carbene-metal complexes.[149, 150]

The Fischer-type carbenes have singlet character (S) and feature strong π-acceptor properties

at the metal and exhibit electrophilic carbene carbon atoms. Schrock-type carbenes on the

contrary, have triplet character (T) andmay be characterized bymore nucleophilic carbene carbon

centers. These species typically feature higher valent metals. In 1968, also the first NHC metal
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complexes (Fischer type complex) were prepared by Öfele and Wanzlick (see figure 78 a) but

only little attention was paid to these results.

In 1991, a breakthrough was achieved. Arduengo et al. obtained crystals of a colorless

intermediate product during their synthesis. These crystals with a melting point of 240°C turned

out to be the first known, isolated, stable, free carbene, a NHC (see figure 78 b).[151] From then on

a great number of chemists started to direct their attention to NHCs.

This “new” class of ligands also reopened an old area in the field of inorganic and organometallic

chemistry. And already in 1995, the firstNHCmetal complexwas successfully applied in transition

metal catalysis.[152] Nowadays, N-heterocyclic carbenes and metal complexes thereof are very well

understood and research extends into a number of other fields (see figure 78 c).[153]

Table 11:Historical stages in the field of carbene chemistry.

Year Workgroup Development

1835 Dumas hypothesis: methanol was seen as adduct of methylene and water,

attempted removal by strong acids failed[154]

1862 Geuther chloroform was considered as dichlorocarbene adduct of HCl and

dichlorocarbene would be involved in the alkaline hydrolysis thereof[155]

1912 Staudinger reactions of methylene by thermolysis of diazomethane[156]

1926 Scheibler proposed synthesis of tetraethoxyethylene and diethoxycarbene thereof[157]

1942 Meerwein decomposition of diazomethane under irradiation yields reactive

methylene, directly adding to R-H compounds[158]

1954 Doering addition of dichlorocarbene to olefins,

identification by products such as 7,7-dichloronorcarane[159]

1956 Woodworth identification of the structure of methylene, :CH2
[160]

1962 Wanzlick theoretical equilibrium of imidazolyl-2-ylidene and tetraaminoethene[161]

1964 Fischer first transition metal (tungsten) complex of a carbene[147]

1968 Wanzlick first NHC mercury complex directly from azolium salt[148]

Öfele unexpected reaction: synthesis of the chrome NHC complex

instead of dihydroimidazole π-complex[162]

1991 Arduengo isolation of a stable, crystalline carbene: NHC with adamantyl groups[151]

1995 Herrmann first NHC metal complex in transition metal catalysis[152]

1999 Grubbs application of NHCs in olefin metathesis (Grubbs II catalyst)[153]

From the huge amount of data it was derived that the electronic stabilization, which results from
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Figure 78: Structures of the first metal NHC complex (a) by WANZLICK et al.[148], the first isolated

carbene (b) by ARDUENGO et al.[151], the GRUBBS II catalyst (c)[153], and a palladium complex with a

ligand, combining bipyridine and NHC binding sites by KUNZ et al. (d).[163]

the mesomeric interaction between the non-bonding nitrogen electron pairs and the empty p-

orbital of the sp2-hybridized carbon atom, is the reason for the exceptional stability of NHCs.

This fact furthermore explains the nucleophilic character of NHCs compared to other carbenes

which are typically electrophiles.

The resulting NHC metal complexes are far less reactive than the classical representatives

of two types of carbene ligands. Due to the strong stabilization by π-donating substituents,

NHCs are found to be good σ-donors, but in contrast to the classical carbene ligands, NHCs

do not necessarily require π*-backdonation from the metal into pπ-orbitals in order to form

stable compounds. Therefore, NHC complexes of almost all elements are known.[149] From

computational and experimental data it was possible to derive a general idea of the different orbital

contributions in metal-NHC complexes (see figure 79).

It was found that group 10 metal centers in d10-configuration (Ni0, Pd0 and Pt0) as well as their

isoelectronic group 11 metal centers (Cu+, Ag+ and Au+) form stable two-coordinated complexes

while d8-configured metals such as Pd2+ form tetra-coordinated square planar complexes.

Furthermore, it could be confirmed that the main bonding occurs through σ-donation from the

NHC lone pair into the metal hybrid (dz2 + s) orbital (compare figure 79), which suggests a very

low π-contribution to the M-NHC bond.[149, 150]

According to Glorius and Nolan, NHCs challenge the well-established tertiary phosphine-

based ligands in organic synthesis. Like them, NHCs generally serve as spectator ligands that may

influence the catalysis, combining a number of advantageous properties such as:[146, 164]

(1) strong σ-donation of the electron rich ligand resulting in exceptionally stable M-C bonds and
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Figure 79: Different orbital contributions to the d-series metal-NHC bond (left) with average

percentage of σ- and π-contributions to the orbital interaction energy based on data for 36

M-(NHC) model complexes (right).[149, 150]

thus high thermal and hydrolytic durability of the complex, (2) easy accessibility of ligand and

complexwithout isolation of the free carbene, (3) no need for an excess of the ligand (excess costly)

during the catalysis and strict control of the metal/ligand ratio (optimally 1:1) , (4) tunable steric

shielding pattern which is higher than in phosphines, allowing for both stabilization of the metal

center and enhancement of its catalytic activity, (5) very easy derivatization ofNHC ligands for the

use in water-soluble catalysts (twophase catalysis), immobilized catalysts, or chiral modifications,

and (6) redox stability.

Noticeable examples for metal-NHC catalysis are found in the fields of olefinmetathesis (Grubbs

II catalyst, see figure 78 c) or Pd-catalyzed C-C coupling reactions.[153, 165] Additionally, NHC-

ligands lead to unexpected reactivity as in the case of Au-catalyzed reactions.[164]

The great applicability of NHC complexes in d8- and d10-configuration, even in hydrogenation

catalysts, sets the basis for an application in hydrogen evolving catalysts.[144] For the use inJP ∼B ∼CK-type systems it is necessary to create bridging ligands, which combine bipyridine-like

structures and NHC-type structures. For such compounds only, very few examples are known

(see figure 78 d).[163, 166] Therefore, a new concept will be presented in the following section.
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3.3.2 Imidazophenanthrolines: Toward Redox Stable Bridges

In this section, the first steps toward the synthesis of heteroditopic NHC-NN-bridging ligands

and possibly resulting photoredoxactive carbene complexes will be presented. Furthermore, a

complete characterization of the prepared intermediates and products will allow further insights

into the properties of the bridge and into the interdependence of photocenter and reaction

center. Using the NN-NHC-building block, it will be investigated, if it is possible to prepare a

number of heterometallic intramolecular photocatalysts of the type JP ∼B ∼CK and to determine

their activity in photocatalytic hydrogen evolution. Detailed photophysical and electrochemical

investigations of the oligonuclear complexes will help to analyze and interpret the results of the

catalysis.

Inspired by the π-conjugated nature of the tpphz ligand[80] and by the annulated phenanthroline-

systems, used by Artero et al.[85, 86], 1H-imidazo[4,5-f][1,10]phenanthroline (ip, see figure 80)

represented an interesting starting point for the development of a new type of bridge. Using ip

as backbone for a ligand would allow a combination of the well explored phenanthroline-type

N,N’-binding site (7,8-position) for {Ru(L̂L)2}2+-fragments and a second NHC-type binding site

(2-position) for a variety of redox active catalyst metals.
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Figure 80: Synthesis of ip from 1,10-phenanthroline-5,6-dione (left) and numbering scheme of the

imidazophenanthroline-based ligands and complexes (right).

Furthermore, a linear arrangement of two metal centers M1 and M2 with a controlled distance

and minimized steric and electronic interference between them can be achieved. Nevertheless,

high redox activity in terms of electron storing or mediating potential could be expected from

the electron deficient, π-conjugated bridge in a binuclear complex.[167] The steric effect, typically

generated by purposeful choice of the R1- and R2-substituents, is less relevant in proton reduction

reactions, but R1 and R2 may potentially be used to introduce additional donor functionalities into
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the ligand to obtain chelating ligands for a higher stability of the intermediately reduced catalyst

metal as demonstraded by Lee and others.[168, 169, 170, 171, 172, 173]

In the beginning, a simple functionalization of both imidazole nitrogens with aryl- or alkyl

groups, to yield an 1,3-substituted 1H-imidazo[4,5-f][1,10]phenanthrolinium salt, was taken as

the selection criterion for the feasibility of this concept although there was a chance of undesired

side reactions in the substitution reaction with organic halogenides which could lead to undesired

side reactions at the phenanthroline sphere of ip.

The starting material ip was prepared in good yields by the adaptation of the available protocol,

which is already literature known since 1943 in a condensation reaction of 1,10-phenanthroline-

5,6-dione (phenO2), hexamine and ammonium acetate in glacial acetic acid (see figure 81).[174, 175]

The first approach on the bridging ligand synthesis included the introduction of an aliphatic

rest into the 1-position of ip after the deprotonation of the insoluble compound with NaH in

dry DMF and under inert conditions (method L2). After dissolution of the sodium imidazolide

salt of ip, benzyl bromide was added for the substitution reaction. For a related reaction

see Herrmann et al.[176] This reaction resulted in the formation of 1-benzyl-1H-imidazo[4,5-

f][1,10]phenanthroline (bip). Addition of a second equivalent of benzyl bromide to the highly

soluble bip in DMF yielded the symmetric disubstituted product 1,3-bibenzyl-1H-imidazo[4,5-

f][1,10]phenanthroliniumbromide (bbip) as a white precipitate whichwas collected in good yields

after 24 hours at 80°C (see figure 81).

N

N N

H
N N

N N

N
N

N N

N
Br

ip bip bbip

method L2 method L3

Br Br

Figure 81: Two step synthesis of bbip from ip; method L2: NaH, (DMF), 80°, 12h; method L3:

(DMF), 80°, 12h.

The 1H-NMR and 13C-NMR spectroscopic investigation of the different compounds reflects nicely

the transformations performed at the imidazole moiety of the ip-system. Especially the four

signals for the A-, B-, C-, and D-positions in the spectra of ip and bbip reflect the symmetric

nature of the molecules, whereas the intermediate bip exhibits an asymmetric NMR-spectrum
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due to the substitution pattern. Prominent is the shift of the singlet-signal of the 2-proton e.g.

the +I-effect upon the imidazole system in bip and the increasing deshielding of the N-CH-N-

proton in bbip after double-alkylation and accompanying salt formation (δ ip
(2) = 8.87 ppm, δ bip

(2) =

8.02 ppm, and δ bbip
(2) = 11.94 ppm). With the help of H,H-COSY-, HMBC- andHSQC-experiments

it was possible to assign all carbon signals of the prepared compounds.The 13C-NMR-experiments

of the different imidazophenanthroline derivatives showed no strong influence on the carbon

in 2-position by means of the substitution pattern (δ ip
(2) = 141.55 ppm, δ bip

(2) = 143.54 ppm, δ bbip
(2) =

143.64 ppm.

Furthermore, the typical imidazolium salt properties of bbip were revealed. In methanol-d4 bbip

shows fastH/D-exchange of the active 2-protonwhich is typical for carbene precursors of this type.

Bymeasuring the decrease of the relative peak area of theN-CH-N-proton in the 1H-NMR-spectra

over the period of three days a rate constant for this typical H/D exchange was determined (kH/D

= 2.36(±0.01)×10-5 s-1, t½ = 490(±2)min, 25°C), fitting the signal decay with a first order kinetics

(see figure 82).[146]
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Figure 82:Decay of the 1H-NMR signal intensity of the bbip-2-proton (δ bbip
(2) = 11.94 ppm, 1H, s) in

relation to the other proton signals.

EI- and DEI-Mass spectrometry further supported the formation of the organic compounds.
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3.3.3 Structural Characterization of ip-Type Ligands

Slow recrystallization yielded suitable crystals for X-ray diffraction experiments of all prepared

organic compounds in this series of imidazophenanthroline derivatives (see figure 83). The

relevant distances and angles are gathered in table 12 on page 119.

Figure 83:Molecular structures of the prepared imidazophenanthroline derivatives: protonated ip

(left), bip (center) and bbip (right). Selected bond lengths and angles can be found in table 12.

The structural features observed for the organic compounds combine both, the general patterns of

phenanthrolines and those of the benzimidazole derivatives, respectively.Therefore, it is useful to

focus on the two coordination sites for the structural characterization of the new ip-type ligands

(the same numbering scheme was applied to all ip-type ligands in this thesis). With respect to the

phenanthroline coordination site, all ligands exhibit a number of typical similarities which can

be found in other phenanthroline derivatives as well (see chapter 3.1.1). As expected, the N,N’-

coordination environment with respect to the bond lengths and angles remains unaffected by the

changes at the imidazole part of the ligands.

Thus, the N1-C12 bond lengths and N2-C11 bond lengths are generally equidistant in this series

and vary only in the range between 1.352(2) Å and 1.367(9) Å. The C11-C12 distances vary

between 1.454(10) Å and 1.468(4) Å respectively without significant deviations. Furthermore,

minor variations in the C1-N1-C12 and the C10-N2-C11 bond angles between 117.2(2)° and

118.38(15)° were found in all ip derivatives. Between the N1-C12-C11 and the N2-C11-C12 bond
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Table12:Selectedbondlengths [Å]andangles [°]of the imidazole-moietyandtheN,N’-coordination

sphere of ip, bip and bbip.

bond length [Å] or angle [°] ip×CF3COOH bipa bbipb

N3 - C13 1.330 (4) 1.357 (2) 1.330 (9)

N4 - C13 1.331 (4) 1.315 (3) 1.322 (8)

N3 - C5 1.392 (3) 1.391 (2) 1.400 (8)

N4 - C6 1.391 (3) 1.387 (2) 1.391 (9)

C5 - C6 1.365 (4) 1.378 (3) 1.386 (9)

N1 - C12 1.356 (3) 1.352 (2) 1.367 (9)

N2 - C11 1.360 (3) 1.357 (2) 1.358 (8)

C11 - C12 1.468 (4) 1.463 (3) 1.454 (10)

H1N3 -O1 1.722 (4) - -

N3 - C13 - N4 110.1 (2) 113.60 (16) 110.9 (6)

C13 - N3 - C5 107.9 (2) 106.09 (16) 108.1 (6)

C13 - N4 - C6 107.8 (2) 104.28 (16) 107.7 (6)

N3 - C5 - C6 106.9 (2) 105.47 (15) 105.8 (6)

C5 - C6 - N4 107.2 (2) 110.56 (16) 107.5 (6)

C1 - N1 - C12 117.6 (2) 118.38 (15) 117.7 (6)

C10 - N2 - C11 117.2 (2) 117.30 (16) 117.8 (6)

N1 - C12 - C11 117.7 (2) 116.59 (15) 116.2 (6)

N2 - C11 - C12 117.0 (2) 117.03 (16) 116.5 (6)
arefers to the first bipmolecule in the unit cell, indicated by the letter a.
brefers to the second bbip in the unit cell without packing defects, indicated by the letter b.

angles only minor variations between 116.2(6)° and 117.7(2)° were observed in this series.

Comparison of the changes at the imidazolemoieties in this series of ligands reflect the performed

changes. In general, it could be expected that a certain degree of asymmetry is present in the

imidazole rings of ip and bip due to the contribution of the resonance structures with a double

bond between C13 and N4. Otherwise, the (at the imine nitrogen N3) protonated form of ip was

found in the crystal structure (which was crystallized from an NMR sample in D2Owith addition

of CF3COOD to dissolve ip), so that the resulting imidazolium salt of ipwas foundwhich is rather

similar to bbip. Note: the very similar crystal structure of the perchlorate salt of N1-protonated ip

is literature known.[177] This structural relationship between the two compounds was supported
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by the findings, that all equivalent bond angles and distances in ip and bbip show insignificant

differences. As a result of that they will be discussed together.

The X-ray data indicated that the imidazole rings in ip/bbip and bip have identical C5-N3 and

C6-N4 distances in the range between 1.387(2) Å and 1.400(8) Å as well as C5-C6 in the range

between 1.365(4) Å and 1.386(9) Å. A significant asymmetry with shortening of the C13-N4 bond

and elongation of the C13-N3 bond is present in bip (d bip
(C13-N4) = 1.315(3) Å < d bip

(C13-N3) = 1.357(2) Å)

which can be explained by the partial double bond character between C13 and N4 in this 1H-

imidazole derivative.This effect is even visible when compared to ip and bbip (d bip
(C13-N4) = 1.315(3) Å

< d ip
(C13-N4) = 1.331(4) Å ≈ d bbip

(C13-N4) = 1.322(8) Å, and d bip
(C13-N3) = 1.357(2) Å < d ip

(C13-N3) = 1.330(4) Å ≈
d bbip
(C13-N3) = 1.330(9) Å), which are symmetric and therefore exhibit equidistant C13-N3 and C13-N4

bond lengths.

The higher symmetry of ip and bbip is further supported by the similar angles at N3 and N4

which vary between 107.7(6)° and 108.1(6)°, and as well at C5 and C6 atoms which vary between

105.8(6)° and 107.5(6)°. In bip, these opposing angles differ in contrary (∠bip
(C13,N3,C5) = 106.9(16)°

> ∠bip
(C13,N4,C6) = 104.28(16)° and even more: ∠bip

(N3,C5,C6) = 105.47(15)° < ∠
bip
(N4,C6,C5) = 110.56(15)°) and

as a result of that, they significantly differ from the corresponding angles in ip/bbip. Prominent

is the decrease of the angle at C13 in the imidazolium salts ip and bbip in comparison to the

uncharged bip which can be attributed to the mentioned changes in π-character of the C13 and

decreased delocalization in the imidazolium salts (∠bip
(N3,C13,N4) = 113.60(16)° >∠

ip
(N3,C13,N4) = 110.1(2)°

≈∠bbip
(N3,C13,N4) = 110.9(6)°).

The various twist angles of the benzyl groups in bip and bbip and transoid orientation thereof

in the latter indicate that mainly crystal packing forces are responsible for the observed

conformations in the structures. In addition to the conformational changes of the benzyl

functionalities, a number of packing effects were observed in the crystal lattice of ip, bip and

bbip (for an example see figure 84).

In the crystal lattice of ip, hydrogen bonds between the protons at the N3 atom and the O1

of the carboxy functionality of trifuoroacetic acid and further between the O2 of the carboxy

functionality and the N4-proton of the next ipmolecule (d ip
(N3-O1) = 2.671 Å and d ip

(N4-O2) = 2.659Å)

form helical chains with an alternating order of ipH+ and CF3COO− molecules, here both

molecules act as bridges (see figure 83 (left) on page 118). Furthermore, π-π-interactions

(d ip
(π-π) = 3.297Å) between the opposingly directed planar aromatic phenanthroline systems cause
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Figure 84: Detail of the crystal structure of bbip, showing packing effects of the two inequivalent

bbip-ions in the crystal matrix (relevant distances are denoted orange/magenta). Bromine counter

ions canbe found in closeproximity to thedelocalizedpositive chargesof the imidazoliummoieties,

water molecules coordinate to the phenanthroline spheres via hydrogen bonds, π-stacking effects

of the aromatic core are present and arbitrary rotation of the benzyl groups decreases the required

space in the cell.

columnar stacking of the ip molecules and, furthermore, an interlocking of the different helices

to form fence like planes on interlinked helices.

In the crystal of bip, three symmetry inequivalent molecules of water and twomolecules bipwere

found. Interestingly, parallel, via hydrogen bonds connected, linear chains of water molecules run

through the crystal. The distances of the water molecules in the chain vary between 2.656 and

2.774Å. Attached to this water lattice are the bipmolecules, which are coordinated via hydrogen

bonds either to the N,N’-coordianation sites (d bip
(N1A-O3w) = 2.889Å and d bip

(N1B-O2w) = 2.936Å) or to

N4 of the imidazole ring (d bip
(N4A-O1w) = 2.865Å), so that the chain is surrounded by bip molecules

(see figure 83 (center) on page 118).˙ Furthermore, π-π-interactions (d bip
(π-π) = 3.406Å and 3.253Å)

between pairs of bipmolecules with the same symmetry were found.

The crystal of bbip contains four symmetry inequivalent molecules of water and two molecules
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bbip (see figure 84). Packing effects due to π-π-interactions between the two inequivalent bbip-

ions were found (d bbip
(π-π) = 3.265Å). The negatively charged bromide counter ions were found in

close proximity to the delocalized positively charged imidazolium moieties. Furthermore, as in

the case of bip, water molecules coordinate to the phenanthroline spheres via hydrogen bonds

with N-O distances between 2.878 and 3.141 Å.

3.3.4 N,N’-Coordinated ip-Type Complexes

To investigate whether the N,N-coordinating properties of the potential bridge are similar to

the parent phenanthroline, a series of new ruthenium complexes with the obtained ligands was

prepared (see figure 85).
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Figure85:Synthesis of theN,N’-coordinated rutheniumcomplexes of theprepared ligands through

reaction with [Ru(tbbpy)2Cl2] and subsequent counter ion exchange.

The synthesis of the ruthenium complexes was performed according to the protocol method

C1 through stoichiometric reaction of one equivalent of [Ru(tbbpy)2Cl2] and one equivalent

of L̂L-ligand (ip, bip or bbip) in a solvent mixture of ethanol/water in a microwave reaction.

After counter ion exchange with NH4PF6, the complexes [Ru(tbbpy)2(ip)][PF6]2 (Ru(ip)),

[Ru(tbbpy)2(bip)][PF6]2 (Ru(bip)), and [Ru(tbbpy)2(bbip)][PF6]3 (Ru(bbip)) were obtained in
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95%, 95%, and 65% yields, whereat in the case of Ru(bbip) a longer reaction time of 5 hours

had to be applied to force the reaction between the positively charged ruthenium center and the

positively charged ligand. Chromatographic workup with KNO3/water/acetonitrile yielded pure

Ru(bbip), so that all complexes could be obtained as pure compounds.

The characterization by 1H-NMR- (see figure 86) and 13C-NMR-spectroscopy and mass

spectrometry supported the formation of the expected products.
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Figure 86: Aromatic region of the 1H-NMR-spectra of Ru(ip), Ru(bip), Ru(bbip), and Ru(bbip)Ag

in acetonitrile-d3 with assigned signals.

Most obvious is the pattern of ligand relatedA-, B- andC-proton signals which refers to symmetric

ligands in the case of Ru(ip) and Ru(bbip) and to the asymmetry of Ru(bip) which exhibits
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two sets of A-, B-, C-signals. The CH2-signals of the benzyl moieties indicate the performed

changes just as well (δ Ru(bip)
4H(CH2) = 5.97 ppm and δ Ru(bbip)

4H(CH2) = 6.16 ppm). Comparison of the resonance

frequencies of the N-CH-N-protons (D-position) in acetonitrile-d3 exhibited the same tendency

in the chemical shifts upon formal addition of one or two benzyl moieties as in the case of the

pro-ligands (δ Ru(ip)
H(2) = 8.42 ppm, δ Ru(bip)

H(2) = 8.45 ppm, and δ Ru(bbip)
H(2) = 9.07 ppm). The strongest

deshielding effect upon the 2-proton was found in the imidazolium complex Ru(bbip) and the

weakest in Ru(ip).

Determination of the rate constant for the H/D-exchange of the active 2-proton of Ru(bbip)

in methanol-d4 was not possible because the exchange was already completed before the first
1H-NMR experiment could be performed. This observation of a very fast H/D-exchange is very

interesting because it reflects the increased acidity of the imidazolium proton and the increased

tendency toward carbene formation which was induced by combination of a positively charged

ruthenium fragment and a positively charged ligand.

Observation of the 13C-NMR-signal of the carbon atom at the 2-position resembles the findings

of the ruthenium free compounds and displays the weak influence of the substitution pattern at

the 1,3-positions on the chemical shift of the N-CH-N-carbon atom (δ Ru(ip)
C(2) = 143.31 ppm, δ Ru(bip)

C(2)

= 147.48 ppm, and δ Ru(bbip)
C(2) = 144.49 ppm).

Mass spectroscopy confirmed the formation of the prepared complexes with prominent peaks

and matching isotopic pattern between calculated and observed signal for the [M-PF6]+ species

in all complexes ([Ru(ip)+PF6]+ = 1003.1 m/z (40%,), [Ru(bip)+PF6]+ = 1093.2 m/z (100%), and

[Ru(bbip)+2 PF6]+ = 1329.3 m/z (100%)).

Furthermore, it was possible to isolate suitable crystals for X-ray diffraction experiments of Ru(ip)

(ethanol/water), Ru(bip) (acetonitrile/water), and Ru(bbip) (dichloromethane/chloroform). The

discussion on distances and angles is found later in this section (see figures 92 and 93 on page 132

for the structures).

3.3.5 NHC-Coordinated ip-Type Complexes

At this stage, transformation of the imidazolium salt into the corresponding carbene derivative

became interesting for the subsequent use as precursors for the synthesis of NHC-metal

complexes. In this context, a number of different methods for the preparation of metal-

|124|



|3.3 NN-NHC-Ligand bbip: Toward Second Generation Catalysts|

NHC complexes are known from literature.[178] These strategies include isolation of the free

carbene with subsequent complexation to an unsaturated metal fragment, cleavage of the

tetraaminoetene-derivatives (from the Wanzlick equilibrium) with suitable metal precursors,

preparation of a carbene transfer agent for transmetalation or the synthesis of the NHC-ligand at

the metal center.[179, 180, 181, 182, 183] Several different synthetic routes where studied, attempting the

transformation of the imidazolium substructure into the NHC unit.

The deprotonation of the imidazolium salt represented the first attempt to isolate a free carbene

species (see figure 87).
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Figure87:Attempteddeprotonation of the imidazolium salt for the preparation of theNHC-species

of Ru(bbip).

A metal hydride reacts irreversibly with the loss of hydrogen to give the desired carbene, with

the inorganic salt by-products and excess hydride being removed by filtration.[179] Unfortunately,

deprotonation in dry THF under inert conditions at -80°C with NaH as base did not lead to a

persistent carbene, as experienced by other work groups.[184] This case, the reaction was possibly

too slow in tetrahydrofuran due to the relative insolubility of the metal hydride and the salt.

Otherwise, a fast consecutive reaction of the highly reactive carbene with traces of impurities

could disguise its intermediate formation. Performance of this reaction in the presence of the

previously prepared carbene complex precursor [Mo(thf)CO5] (to trap the carbene intermediate)

did not yield the desired carbene complex (see figure 88).

The second attempt aimed at the recently reported preparation of the NHC⋅B(Et)3 adduct. This

method was developed by Yamaguchi and Ito et al. and yielded in their case a stable adduct

in moderate yields (46 - 80%) as could be confirmed through X-ray analysis. Furthermore, the
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Figure 88: Attempted Mo complexation at the NHC-coordination site at Ru(bbip).

manipulation of B(Et)3 adducts of NHCs are considered to be very easy due to their stability

toward air and moisture.[181] Nevertheless, application of this method to solutions of Ru(bbip)

or bbip in THF at -78°C resulted in a darkening of the solutions but did not yield the desired

product in our hands (see figure 89). On contrary, in both cases the formation of the hydrogenated

products was the result of the Li[HB(Et)3]-addition as could be confirmed by 1H-NMR-analysis.

The strongest indication for the formation of the corresponding 1,3-substituted 2,3-dihydro-1H-

imidazole derivatives was the shift of the protons in 2-position toward higher field strength

and a doubling of the relative peak area which refers to two hydrogen atoms after the reaction

(δRu(bbip) +H
-

CH2(2) = 4.95 ppm and δbbip +H
-

CH2(2) = 4.76 ppm). Furthermore, in the 11B-NMR spectra, the

expected characteristic singlets at δ ∼ -13 ppm were not observed.The analogous formation of the

NHC⋅BF3 adduct was not attempted because such complexes are less reactive in transmetalation

reactions.[181]

Another powerful method for the preparation of carbene transfer agents represents the

formation of metastable carbene silver halogenide complexes (e.g. [(tbbpy)2Ru(µ-bbip)AgX]2+

= Ru(bbip)Ag, [{(tbbpy)2Ru(µ-bbip)}2Ag]5+ = Ru(bbip)Ag(bbip)Ru, or [(bbip)AgX] =

(bbip)Ag), using Ag2O as base for the reaction with an imidazolium salt typically in dry and

oxygen free dichloromethane solutions. One of the most useful properties of silver carbene

complexes is their tendency toward transmetalation reactions (with silver halogenide formation

as driving force). Nevertheless, a known from literature, possible sensitivity of the formed silver

complexes toward visible light (photographic process) had to be considered, so that all reactions

were eventually performed in the dark. Furthermore, addition of molecular sieves to the reaction
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Figure 89: Attempted complexation of B(Et)3 to the NHC-coordination site of bbip (top) and

Ru(bbip) (bottom).

is necessary due to the high sensitivity of silver carbene complexes toward moisture.

The application of this concept was very promising but did not succeed right away. A direct

reaction of bbip and Ag2O under argon atmosphere in dry dichloromethane was not sufficient

due to the very low solubility of the reaction partners in the solvent. The second problem

represented the existence of the phenanthroline coordination sphere which enables the formation

of inhomogeneous products or even very insoluble coordination polymers (see figure 90).[185]

As a result, a fine gray precipitate in a colorless solutionwas present at all times during the reaction.

Thus, it was impossible to indicate the end of the reaction by visible changes. After the mixture
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was stirred for 7 days, it was filtered through dry celite because of the expected higher solubility of

the neutral complex compared to the ionic compounds. Removal of the solvent from the colorless

solution gave a thin film of precipitated white solid in very low yields (< 1%). From this small

quantity of product, it was only possible to obtain a weak 1H-NMR-spectrum in dry chloroform-

d under inert conditions. Nevertheless, the loss of the singlet signal for the proton in 2-position

(at δbbipH(2) = 11.945 ppm) and retention of the symmetric A-, B-, C-proton pattern with only slight

field shifts indicated a possible formation of the corresponding carbene complex [(bbip)AgBr]

(bbip)Ag. Furthermore, no signals of the starting material bbip, slightly soluble in chloroform,

were found in the spectrum. Due to the small amount of the obtained soluble product and the

general insolubility of the remaining precipitate, unfortunately, no other analysis method could

be successfully applied, so that a clear identification of the product was not possible.

In the next step, the same protocol for the synthesis of the silver carbene complex was applied

to Ru(bbip). Due to the good solubility of the different starting material in dichloromethane a

positive influence on the course of the reaction was expected. The transformation of the PF6-

salt of Ru(bbip) with silver oxide in dichloromethane was traced over several days by 1H-NMR-
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experiments without a sign of a successful conversion. Finally, the low driving force of AgOH- or

AgPF6-formationwas identified as disadvantage for a successful reaction, yielding [(tbbpy)2Ru(µ-

bbip)AgX][PF6]2 (X = OH, PF6) or [(tbbpy)2Ru(bbip)Ag(bbip)Ru(tbbpy)2][PF6]5.

The application of higher reaction temperatures (60°C), exchange of the solvent by acetonitrile and

longer reaction times (two weeks) gave the first reaction mixture, where 1H-NMR experiments

gave a clear indication at least for a partial formation of the desired product. The prominent

sign for the performed complexation is the appearance of a new set of signals in the 1H-NMR

spectrum which can be assigned to a second Ru(bbip)-type complex in the reaction mixture,

indicated by slightly shifted signals and one missing signal which refers to the N-CH-N-proton

in 2-position. Rather unclear is the constitution of the new complex [(tbbpy)2Ru(µ-bbip)AgX]3+

with respect to the second ligand at the silver center (X=OH−, {(µ-bbip)Ru(tbbpy)2}2+ or [PF6]−).
The formation of the hydroxo complex from silver oxide is the most plausible interpretation of

the result, because [PF6]− is considered to be a noncoordinating anion and the complexation

of a second metal fragment is sterically more demanding. Nevertheless, according to the NMR-

spectrum no clean product but a 20:80-mixture of starting material and product was obtained

after two weeks, therefore, a different technique had to be applied.

To increase the driving force the chloride salt of Ru(bbip) was prepared. Counter ion exchange

of [PF6]-salt of Ru(bbip)with (Bu)4NCl in acetone/ethyl acetate gave the corresponding chloride
salt [(tbbpy)2Ru(bbip)]Cl3 in quantitative yield.The reaction theRu(bbip)-chloride together with

silver oxide and a sufficient amount ofmolecular sieves in dry dichloromethane, finally succeeded.

After stirring themixture for 16 hours in the dark, the chloride salt of [(tbbpy)2Ru(µ-bbip)AgCl]2+

(Ru(bbip)Ag) was obtained with full conversion (see figure 90 on page 128) as determined by 1H-

MNR. Separation of the precipitates and the molecular sieve beads and removal of the solvent

gave the pure product as indicated by NMR spectroscopy and mass spectrometry.

Disappearance of the characteristic 1H-NMR-signal of the proton at 2-position (see figure 86

on page 123) and the typical high field shift in the 13C-NMR of the N-CH-N-carbon signal

(196.50 ppm) supports the proposed carbene complex formation.

The detailed mass spectrometric analysis were performed in cooperation with Jing Li from the

group of Prof. Dr. T. Drewello (Erlangen).

This assumption of the successful carbene complex formation was further confirmed by detailed

ESI-MS and MSn studies. An example is shown in figure 91 for the relevant fragment ion
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Figure91:Measuredandcalculated isotopicpatternof {Ru(bbip)Ag+Cl}+ in theESI-MSexperiment.

Finally, it was possible to obtain X-ray suitable crystals of Ru(bbip)Ag by crystallization from

chloroform/dichloromethane under inert conditions. The detailed discussion is given in the

following chapter (see figure 93 on page 132 and table 13 on page 133).

3.3.6 Structural Characterization of Ruthenium ip-Type Complexes

Due to the fortunate fact that ruthenium complexes of all stages of the ligand transformation

were obtained it was possible to identify trends and tendencies within the series Ru(ip), Ru(bip),

Ru(bbip), and Ru(bbip)Ag (see figures 92 on page 131 and 93 on page 132 for the solid state

structures and table 13 on page 133 for relevant data) and to compare them to the series of pre-

ligands ip, bip, and bbip (compare chapter 3.3.3 on page 118).

The structural features observed for the ruthenium complexes combine both, the general

patterns of other ruthenium NN-complexes and that of the performed transformations at

the imidazole part of the ligands respectively. For the characterization of the new ip-type

complexes it is useful to focus on the two coordination sites. Therefore, important distances
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Figure 92:ORTEP drawing of the solid state structures of Ru(ip) (left) and Ru(bip) (right). Ellipsoids

were drawn at the 70% probability level, counter ions, solvent molecules, and hydrogen atoms

except for the imidazole moieties were omitted for clarity.

and angles from the N,N’-chelating site and from the imidazole/carbene site will be discussed.

With respect to the phenanthroline coordination site, all complexes exhibit a number of

typical similarities which can be found in other ruthenium bipyridine/phenanthroline-type

complexes as well. The Ru-N1 and Ru-N2 bond distances vary in a narrow range between

2.055(4) Å and 2.067(5) Å. Even in the complex Ru(bbip) no significant influence on the

Ru-N distances was found although it bears a positively charged ligand. Furthermore, the

resulting N1-Ru-N2 angle varies insignificantly between 79.18(16)° and 80.15(17)° in all complexes

of this series. The coordination environment with respect to the nearby bond lengths and

angles remains unaffected by the changes at the imidazole part of the ligands. Thus, the

N1-C12 bond lengths and N2-C11 bond lengths vary between 1.363(7) Å and 1.385(7) Å and

the C11-C12 distances vary between 1.421(8) Å and 1.449(7) Å, respectively. In the N1-C12-C11

and the N2-C11-C12 bond angles only minor variations between 115.1(5)° and 117.4(5)° were

observed. Comparison of the N,N’-coordination site in series of ruthenium complexes and

in the respective pre-ligands revealed no or only very slight (not in every case significant)

changes in the corresponding distances and angles.The tendency goes towardmore acute N1-C11-

C12 /N2-C12-C11 angles (e.g.∠ip
(N2,C12,C11) = 117.0(2)° ≥∠

Ru(ip)
(N2,C12,C11) = 115.8(5)°), longer C12-N1 / C11-

N2 bond lengths (e.g. d ip
(N2-C11) = 1.360(3) Å < dRu(ip)

(N2-C11) = 1.385(5) Å) and shorter C11-C12 distances
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Figure 93: ORTEP representation of the molecular Structure of Ru(bbip) (top) and Ru(bbip)Ag

(bottom). Anions, solventmolecules and protons were omitted from the X-ray structures for clarity.

(e.g. d bip
(C11-C12) = 1.463(3) Å > dRu(bip)

(C11-C12) = 1.421(8) Å) in the ruthenium complexes.

Comparison of the changes in the imidazole ring of this series reflect the performed changes. It

can be expected that a certain degree of asymmetry is present in the imidazole rings of Ru(ip)

and Ru(bip) due to the contribution of the resonance structures with a double bond between

C13 and N4. Furthermore, a stepwise increase of the π-character of the carbene carbon and a

stepwise decrease of the π-delocalization on the imidazole rings can be expected with respect

to the starting imidazole Ru(bip) and transformation into the imidazolium salt Ru(bbip) and

subsequent carbene complex formation.
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Table 13: Selected bond lengths [Å] and angles [°] of Ru(ip), Ru(bip), Ru(bbip), and Ru(bbip)Ag

bond length [Å] or angle [°] Ru(ip) Ru(bip) Ru(bbip) Ru(bbip)Ag

Ag1 - C13 - - - 2.080 (6)

Ag1 - Cl1 - - - 2.3214 (16)

Ru1 - N1 2.060 (4) 2.064 (5) 2.057 (4) 2.055 (5)

Ru1 - N2 2.058 (4) 2.055 (4) 2.056 (4) 2.067 (5)

N4 - C13 1.336 (8) 1.308 (7) 1.318 (7) 1.357 (9)

N3 - C13 1.338 (8) 1.368 (7) 1.323 (7) 1.357 (9)

N3 - C5 1.361 (7) 1.376 (7) 1.395 (7) 1.395 (7)

N4 - C6 1.376 (7) 1.376 (7) 1.395 (7) 1.386 (7)

C5 - C6 1.373 (8) 1.379 (8) 1.380 (8) 1.379 (9)

N1 - C12 1.367 (7) 1.372 (7) 1.363 (7) 1.373 (7)

N2 - C11 1.385 (7) 1.364 (8) 1.375 (7) 1.372 (7)

C11 - C12 1.443 (8) 1.421 (8) 1.449 (7) 1.442 (9)

C13 - Ag1 - Cl1 - - - 178.9 (2)

N1 - Ru1 - N2 80.15 (17) 79.43 (17) 79.18 (16) 79.32 (19)

N3 - C13 - N4 112.5 (5) 113.5 (5) 111.0 (5) 105.7 (5)

C13 - N3 - C5 107.5 (5) 105.9 (5) 107.8 (5) 110.6 (5)

C13 - N4 - C6 103.7 (5) 104.1 (5) 107.9 (5) 111.0 (5)

N3 - C5 - C6 105.5 (5) 105.4 (5) 106.6 (5) 106.4 (5)

N4 - C6 - C5 110.7 (5) 111.1 (5) 106.6 (5) 106.4 (5)

N1 - C12 - C11 116.3 (5) 115.1 (5) 115.8 (5) 116.0 (5)

N2 - C11 - C12 115.8 (5) 117.4 (5) 114.9 (5) 115.3 (5)

TheX-ray data indicated that the imidazole rings inRu(ip) andRu(bip) have identical C-N andC-

C distances and equivalent bond angles at the analogical positions. A significant asymmetry with

shortening of the C13-N4 bond with respect to the C13-N3 bond due to the partial double bond

character in 1H-imidazoles is present in Ru(bip) (dRu(bip)
(C13-N4) = 1.308(7) Å < dRu(bip)

(C13-N3) = 1.368(7) Å).

Furthermore, differences in the opposing C-N-C angles and N-C-C angles of the imidazole

rings are present in Ru(ip) and Ru(bip) as well. Thus, both complexes exhibit by ∼5° wider
N4-C6-C5 angles than N3-C5-C6 angles (e.g. ∠Ru(bip)

(N4,C6,C5) = 111.1(5)° > ∠Ru(bip)
(N3,C5,C6) = 105.4(5)°).

Additionally, Ru(ip) exhibits a more acute angle at the N3 atom when compared to the N4 atom

(∠Ru(ip)
(C13,N3,C5) = 107.5(5)° > ∠

Ru(ip)
(C13,N4,C6) = 103.7(5)°). The N3-C13-N4 angles are the widest angles of
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the imidazole ring in both complexes (∠Ru(ip)
(N3,C13,N4) = 112.5(5)° =∠

Ru(bip)
(N3,C13,N4) = 113.5(5)°).

In Ru(bbip) and Ru(bbip)Ag, only insignificant changes of the bond lengths in the imidazole

system were found when compared to Ru(ip) and Ru(bip). Surprisingly, the expected elongation

of the C-C bond distances in the imidazolium salt and carbene complex were not observed.

Nevertheless, a clear evidence of the increasing symmetry with extraordinary small deviations

between the bond corresponding lengths (e.g. C13-N4 and C13-N3 or C6-N4 and C5-N3) and

angles (e.g. N4-C6-C5 and N3-C5-C6 or C13-N3-C5 and C13-N4-C6) is present in Ru(bbip)

and Ru(bbip)Ag. The N-C-N angles and C-N-C angles represent the mentioned changes

in π-character and delocalization. Prominent is the stepwise decrease of the angle at C13

(∠Ru(bip)
(N3,C13,N4) = 113.5(5)° >∠

Ru(bbip)
(N3,C13,N4) = 111.0(5)° >∠

Ru(bbip)Ag
(N3,C13,N4) = 105.7(5)°) and the increasing angle at

the N3 and N4 atoms (e.g.∠Ru(bip)
(C13,N4,C6) = 104.1(5)° <∠

Ru(bbip)
(C13,N4,C6) = 107.9(5)° <∠

Ru(bbip)Ag
(C13,N4,C6) = 111.0(5)°).

The C13-Ag1 distance (dRu(bbip)Ag
(C13,Ag1) = 2.080(6) Å) as well as the Ag1-Cl1 distance (dRu(bbip)Ag

(Ag1-Cl1) =

2.3214(16) Å) lie in the expected region for [Ag(NHC)Cl]-type complexes. Furthermore the

expected linear coordination geometry is present (∠Ru(bbip)Ag
(C13,Ag1,Cl1) = 178.9(2)°) and no indication

for a possible dimer formation was found in the crystal structure (For similar X-ray structures

of [Ag(NHC)X]-type complexes (X = Br−/I−) compare Roland, Alexakis et al.[186, 187] and

Bouwman for dimeric complexes[188]).

Comparison of all ruthenium complexes with their corresponding ligands with respect to the

imidazole ring shows nearly constant values for all distances and angles which is in accordance

with a negligible influence of the coordination at the phenanthroline site. Only in the case of ip

and Ru(ip) slight differences can be found which are most likely results of the protonation of ip

in the crystal structure. As mentioned above, ip exhibits distances and angles which are rather

consistent with the imidazolium salt Ru(bbip).

In general, the structural features observed for Ru(ip), Ru(bip), Ru(bbip) and Ru(bbip)Ag

combine both, the common patterns of other ruthenium NN-complexes and that of silver-NHC-

complexes and the prior imidazole derivatives respectively.

3.3.7 Preparation of bbip-Bridged Catalysts

The main advantage of silver carbene complexes is their general applicability as carbene transfer

agents which allows to transfer the coordinated NHC ligands to almost any kind of catalyst

|134|



|3.3 NN-NHC-Ligand bbip: Toward Second Generation Catalysts|

metal center in a transmetalation reaction.[182, 173, 189, 190] Thus, it is possible to apply the previously

obtained silver-NHC carrying ruthenium complex Ru(bbip)Ag to obtain new heterobinuclear

bbip-bridged complexes which potentially represent new intramolecular JP ∼B ∼CK-type (P =

photocenter, B = bridge, C = catalytic center) catalysts (see figure 94).
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Figure94:Synthesis of Ru(bbip)Rh (top) andRu(bbip)Pd (bottom) fromRu(bbip)Agby treatment

with [PdCl2(ACN)2] or [Rh(cod)Cl]2, respective (COD = 1,5-cyclooctadiene; X = coordinated solvent

or {(µ-bbip)Ru(tbbpy)2}2+).

By the reaction of Ru(bbip)Ag with Pd(CH3CN)2Cl2 in dichloromethane, as generally described

bymethod C3 in the experimental section, an insoluble AgCl-precipitate was formed, indicating

the formation of the palladium-NHC complex [(tbbpy)2Ru(µ-bbip)PdCl2X]2+ (Ru(bbip)Pd, X =

coordinated solvent or {(µ-bbip)Ru(tbbpy)2}2+, see figure 94). Removal of the precipitates and of

the remaining solvent yielded the symmetric compound, as indicated by 1H-NMR experiments.

Characterization by 1H-NMR- and ESI-MSn-experiments gave evidence for the formation of the
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Figure95:Aromatic regionof the 1H-NMRspectraof Ru(bbip)and the seriesof prepared ruthenium

carbene complexes Ru(bbip)Ag, Ru(bbip)Pd, and Ru(bbip)Rh in acetonitrile-d3

desired complex which is in equilibrium with a dimeric form of the Ru-Pd-complex. Especially

the solvent dependent splitting of the 1H-NMR signals into two sets gives rise to the assumption of

an asymmetric complex, possibly similar to ones found in literature.[165] Interestingly, in nonpolar

and weakly coordinating solvents such as dichloromethane, the two CH2-groups split into three

independent signals with two protons showing diastereotopic splitting (δRu(bbip)PdCH2
= 7.04 ppm (d,

1H, 2J = 20Hz), δRu(bbip)PdCH2 ’ = 6.83 ppm (d, 1H, 2J = 20Hz), δRu(bbip)PdCH2” = 5.80 ppm (s, 2H)), whereas

in polar acetonitrile no additional splitting of the CH2-signals could be observed (δRu(bbip)PdCH2
=

6.90 ppm (d, 2H, 2J = 20Hz), δRu(bbip)PdCH2 ’ = 7.30 ppm (d, 2H, 2J = 20Hz), compare figure 95).

ESI-mass spectrometry in methanol reveals triply and quadruply charged peaks which refer to
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Figure 96: ESI-MS spectrum of Ru(bbip)Pd measured in methanol and representative match

of the calculated and measured isotopic patterns of the fragment ions. The main peaks

belong to the following fragment ions: m/z = 1235.1, {(tbbpy)2Ru(µ-bbip)Pd(H2O)Cl2}+;
821.9 {[{(tbbpy)Ru(µ-bbip)}2{Pd2Cl4}][Cl]}3+; 810.9 [{(tbbpy)2Ru(µ-bbip)}2{Pd2Cl4}]3+; 563.3
[{(tbbpy)2Ru(µ-bbip)}2{PdCl2}]4+; and 528.4 {[Ru(tbbpy)2(bbip)](H2O)}2+.
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Figure 97: ESI-MS spectrum of Ru(bbip)Rhmeasured in methanol and a representative match of

the calculated and measured isotopic patterns of the fragment ions. The denoted peaks belong

to the following fragment ions: m/z = 1567.2 [{(tbbpy)2Ru}(µ-bbip){Rh(cod)Cl}2Cl]+, 1463.2
[{(tbbpy)2Ru}(µ-bbip){Rh(cod)Cl}{AgCl}Cl]+, 1319.3 [{(tbbpy)2Ru}(µ-bbip){Rh(cod)Cl}Cl]+,
642.3 [{(tbbpy)2Ru}(µ-bbip){Rh(cod)Cl}]2+, 519.4 [Ru(tbbpy)2(bbip)]2+.

a dimeric tetranuclear {Pd2Cl2}-bridged species (Ru(bbip)Pd-Pd(bbip)Ru) and a monomeric

trinuclear {PdCl2}-bridged species (Ru(bbip)Pd(bbip)Ru) (see figure 96).
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In addition to the preparation of the palladium complex, the silver precursor was used to

synthesize a rhodium-NHC-complex [(tbbpy)2Ru(µ-bbip)Rh(cod)Cl]2+ (Ru(bbip)Rh) using

[Rh(cod)Cl]2 (COD = 1,5-cyclooctadiene) for the transmetalation reaction. Similar work-up gave

a red solid compound which was characterized byNMR- and MS-methods. In this case all CH2-

signals of the benzyl group are shifted with respect to the asymmetric NHC-bound {Rh(cod)Cl}-
metal fragment so that all four protons give independent signalswith the characteristic 2J-coupling

to the respective geminal proton (δRu(bbip)RhCH2
= 7.20 ppm (d, 1H, 2J = 20Hz), δRu(bbip)RhCH2 ’ = 6.75 ppm

(d, 1H, 2J = 20Hz) and δRu(bbip)RhCH2” = 7.05 ppm (d, 1H, 2J = 20Hz), δRu(bbip)RhCH2”’ = 6.95 ppm (d, 1H,
2J = 20Hz), see figure 95) in contrast to the silver complex (δRu(bbip)AgCH2

= 6.50 ppm, (s, 4H)).

Additionally, it was possible to identify the COD-related signals which further supported the

formation of the desired compounds.

Mass spectrometric analysis revealed the characteristic pattern (for details see figure 97)

which correspond to the calculated isotopic patterns for the expected binuclear complex

Ru(bbip)Rh. Furthermore, unexpected peaks which refer to AgCl-adducts and Rh(cod)Cl-

adducts of Ru(bbip)Rh were found. It was concluded that undesired soluble [AgCl2]− or higher
AgCl-cluster counter ions which did not precipitate from the solution were still present in the

product, which is a common problem in transmetalation reactions with formation of silver

halogenides.[188, 191] Unfortunately, it was not possible to remove the impurities from the mixture

by further work up steps such as dissolving the complex in dichloromethane and reprecipitation

with diethyl ether. Counter ion exchange with a [PF6]-salt did not succeed.

3.3.8 Spectroscopic Characterization

For the series of this new ruthenium chromophores photophysical properties were determined.

Special interest was placed on the influence of the electronic transformations at the imidazole

moiety in the N,N’-coordinated ruthenium complexes with the new ip-type ligands. Preliminary

insights were derived from steady-state absorption and emission studies in dichloromethane and

acetonitrile (see figures 98 and 99, compare table 14 on page 143).

At first glance, all described complexes show the typical broad 1MLCT absorption between 400

and 500 nmwhich give rise to similar 3MLCT emission in the 550 to 800 nm range (for an example

see figure 98).[36] Upon closer analysis, however, subtle changes become visible as the ligand

|138|



|3.3 NN-NHC-Ligand bbip: Toward Second Generation Catalysts|

300 400 500 600 700 800 900
0

l / nm

e
m

is
si

o
n

 /
 a

.u
.1.0

0

10 000

20 000

30 000

40 000

e
/ 

l m
o

l
cm

-1
-1

0.5

Figure 98: Absorption spectra of the monometallic ruthenium imidazophenanthroline-type

complexes in acetonitrile and corresponding relative emission, normalized upon extinction at

excitation wavelength (λ=450 nm). Ru(ip): Abs. (—), Em. (---), Ru(bip): Abs. (—), Em. (---),

Ru(bbip): Abs. (—), Em. (---).

composition is altered. Interestingly,Ru(ip) andRu(bip) exhibit slightly bathochromically shifted,

but almost similar absorption properties with absorption coefficients of ϵ ∼17 000 lmol-1cm-1

and similar shapes compared to the parent compound without an annulated imidazole moiety

[Ru(tbbpy)2(phen)]2+ (Ru(phen)) in acetonitrile and dichloromethane (e.g.: λRu(phen)
abs, ACN = 454 nm <

λRu(ip)
abs, ACN = 460 nm = λRu(bip)

abs, ACN = 460 nm). The emission properties follow the same tendency with

similar maxima as well (e.g.: λRu(phen)
em,DCM = 602 nm < λRu(ip)

em,DCM = 604 nm ≈ λRu(bip)
em,DCM = 608 nm). It is

unclear if the electron rich ip-type ligand is involved in the emission properties of Ru(ip) or

Ru(bip) because the absorption and emission properties compare very well to [Ru(tbbpy)3]2+.
Thus, a significant effect of the annealing of the imidazole moiety could not be observed which

is in accordance with the findings observed by Jing et al. for the complex [Ru(ip)(bpy)2]2+ and

Barton et al. for [Ru(dppz)(bpy)2]2+.[192, 193]

On the contrary, in the case of the positively charged azolium salt Ru(bbip), a dominantly

broadened absorption band with a 30 nm hypsochromically shifted absorption maximum and a

pronounced shoulder between 470 and 490 nm with a bathochromically shifted flank (especially
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Figure 99: Absorption spectra of the monometallic ruthenium imidazophenanthroline-type

complexes in dichloromethane and corresponding relative emission, normalized on extinction

at excitation wavelength (λ=450 nm). Ru(ip): Abs. (—), Em. (---), Ru(bip): Abs. (—), Em. (---),

Ru(bbip): Abs. (—), Em. (---).

in acetonitrile) can be observed when compared to Ru(phen), Ru(ip), or Ru(bip) (e.g.:

λRu(phen)
abs, ACN = 454 nm≫ λRu(bbip)

abs, ACN = 435 nm).

In acetonitrile as well as in dichloromethane, the concentration independent emission intensities

(emission intensity divided by the absorbance of the sample at the excitation wavelength

of λ= 450 nm) decrease in the order Ru(ip) > Ru(bip) > Ru(bbip), whereat emission in

dichloromethane is generally stronger as in acetonitrile which is a result of the lower

quencher concentration (oxygen) in these solutions. Interestingly, Ru(bbip) exhibits a by ∼50 nm
bathochromically shifted emission band when compared to the very alike complexes Ru(phen),

Ru(ip), or Ru(bip) (e.g.: λRu(phen)
em,ACN = 610 nm ≪ λRu(bbip)

em,ACN = 663 nm). The best explanation for the

observed characteristic of Ru(bbip) is the influence of the positive charge at the imidazole moiety

of the extended ligand, causing a decreased delocalization in the fivemembered ring and a lowered

π*-orbital of ip. This possibly results in an injection of the excited electron into a different LUMO

orbital when compared to the uncharged compounds and, thus, in a bbip-centered emission.

Prior to the photophysical characterization of Ru(bbip)Ag, experiments were performed to
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determine the light sensitivity of this complex, as it is known that some silver-NHC complexes

tend decompose under visible light irradiation (photographic process). For the photostability

experiment a sample of the ruthenium complex was dissolved in dry acetonitrile-d3 under argon

atmosphere and an initial 1H-NMR-spectrum was measured. Then, the Young-tube was placed

into the irradiation device and was illuminated with the previously used LED array (λexc = 470

nm). After different irradiation times (1, 2, and 24 h) additional NMR spectra were measured.

During the whole experiment no visible changes of the sample or changes in the NMR spectrum

were detected.

On the contrary, an exposure of the NMR sample to air led to the decomposition of the complex

as indicated by AgCl precipitation and new emerging signals in the NMR spectra.

The impact the nature of the second metal in the bridged Ru(bbip)M complexes (M= f: metal

free, Ag: silver, Pd: palladium, Rh: rhodium) exerts on absorption and emission properties is

illustrated in figure 100 and figure 101 as well as in table 14 on page 143.
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Figure 100:Normalized absorption spectra of the bimetallic bbip-bridged complexes in deaerated

acetonitrile and corresponding normalized relative emission upon excitation at 450 nm. Ru(bbip):

Abs. (—), Em. (---), Ru(bbip)Ag: Abs. (—), Em. (---), Ru(bbip)Pd: Abs. (—), Em. (---), Ru(bbip)Rh:

Abs. (—), Em. (---).

For the bbip bridged carbene complexes and the azolium salt Ru(bbip), very similar 1MLCT
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Figure 101:Normalized absorption spectra of the bimetallic bbip-bridged complexes in deaerated

dichloromethane and corresponding normalized relative emission upon excitation at 450 nm.

Ru(bbip): Abs. (—), Em. (---), Ru(bbip)Ag: Abs. (—), Em. (---), Ru(bbip)Pd: Abs. (—), Em. (---),

Ru(bbip)Rh: Abs. (—), Em. (---).

absorption spectra, having maxima around λmax = 440 nm and only slight differences in the

intensity of the bathochromic shoulder aroundλshoulder = 475 nmwere obtained in acetonitrile and

dichloromethane. Due to the inert handling of the samples it was not possible to determine exact

extinction coefficients. Nevertheless, the palladium and rhodium complexes exhibit the more

intense shoulders aroundλshoulder = 475 nm, whereas the imidazolium salt exhibits the least intense

shoulder in both solvents. With respect to the observations between Ru(bip) and Ru(bbip) it can

be assumed that the more bathochromic shoulder reffers to the 1MLCT absorption, involving the

carbenoid bridging ligand with a lowered π*-orbital. Thus, the relative increase of the shoulder in

the series of bbip containing complexes (in the order f < Ag < Rh < Pd in acetonitrile and f < Ag

< Rh ≈ Pd in dichloromethane) refers to the increase in carbene character of these complexes.

In the emission properties a clear trend is visible as all carbene complexes have 20-30 nm

hypsochromically shifted emission wavelengths (λM=Ag, Pd
em,ACN ≈ 640 nm and λM=Ag, Pd, Rh

em,DCM ≈ 620 nm)

when compared to the azolium salt Ru(bbip), but roughly 20-30 nm bathochromically shifted

emission wavelengths when compared to Ru(phen), Ru(ip), and Ru(bip). Ru(bbip)Rh exhibits
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Table14:UV/vis absorption and emission data of Ru(bbip), Ru(bbip)Ag, Ru(bbip)Pd, Ru(bbip)Rh

and [Ru(tbbpy)3]2+ measured in deaerated acetonitrile at room temperature.

Complex Solvent λmax, abs λshoulder, abs λmax, em Φa τ τ a,b τ a,c

[nm] [nm] [nm] [ns] [ns] [ns]

[Ru(tbbpy)3]2+[90] ACN 458 433 613 107 730

DCM 461 437 604 248 610

Ru(phen)[108, 125] ACN 454 431 610 211 1 400

DCM 455 602 0.03 272

Ru(ip) ACN 460 431 616

DCM 460 431 604

[Ru(ip)(bpy)2]2+[192] ACN 453 425 623 0.14 150 726

[Ru(ip)(phen)2]2+[194] DCM 451 570

Ru(bip) ACN 460 429 618

DCM 462 429 608

Ru(bbip) ACN 435 481 663 0.26 192 920 1 000

DCM 440 473 654 556 1 300

Ru(bbip)Ag ACN 440 474 646 0.34 (183) 1 450

DCM 449 473 625 (404) 1 400

Ru(bbip)Pd ACN 440 475 646 0.39 1 100 1 000

DCM 471 441 620 1 400

Ru(bbip)Rh ACN 440 473 625 0.17 430

DCM 471 441 620 900
a oxygen free, b emission experiments, b transient absorption experiments

a small deviation in acetonitrile (λM=Rh
em,ACN ≈ 625 nm). These intermediate emission wavelengths

represent the influence of the phenanthroline fused NHC moiety on energy of the 3MLCT-

emission involving LUMO(L̂L)s in bbip. Seemingly, this differs from the 1MLCT-absorption

involved LUMO(L̂L) as they are relatively unperturbed by the change of the nature of the second

sphere.This observation is very similar to the findings of the tpphz and dppz containing complexes

(see discussion in chapter 1.10.1 on page 42 ff.). Based on this similarity, it can be assumed that a

(phenanthroline)/bipyridine centered π*-orbital (LUMO(bpy)) and a (benz)imidazole centered π*-

orbital (LUMO(im)) exists in such complexes. Furthermore, it can be speculated that the LUMO(bpy)

ismainly involved in the absorption process and that is is only little influenced by the imidazole (all
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absorption bands, ranging from Ru(ip) to Ru(bbip)Pd, are rather similar to [Ru(bpy)3]2+) while
the strongly imidazole-influenced LUMO(im) is mainly involved in the emission of Ru(bbip) and

theRu(bbip)M complexes, as strong shifts of the emission were observed (see figure 102). In these

later two cases a significant degree of carbene character can be assigned to the imidazole moiety.
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Figure 102: Representation of the proposed LUMO(L̂L)-situation in the complexes with ip-derived

ligands. The 1MLCT-absorption involved bipyridine centered LUMO(bpy) is depicted in orange, the

higher lying (benz)imidazole LUMO(im) in ip is denoted in red and the lower lying LUMO(im) in

Ru(bbip) and Ru(bbim)M complexes are denoted in green and blue.

All observations in the Ru(bbip)M complexes can be explained by the decreased +M and -I effect

in the carbene complexes. In detail, a stepwise increase of the π-character of the carbene carbon

and a stepwise decrease of theπ-delocalization on the imidazole rings can be expectedwith respect

to the starting imidazole Ru(bip) and transformation into the imidazolium salt Ru(bbip) and

subsequent carbene complex formation.

According to the bathochromically shifted emission in Ru(bbip)M complexes with respect to the

Ru(ip)-type complexes a localization (storage) of the excited electron on the bridge, in particular

in the imidazole-centered orbital near the second metal can be expected. Thus, a positive effects

on the application of the Ru(bbip)M-type complexes in reduction catalysis can be proposed.

Finally, quantum yields were determined in acetonitrile and dichloromethane. The emission

quantum yields follow the tendency: Φ(M=Pd) = 0.39 > Φ(M=Ag) = 0.34 > Φ(M= f) = 0.26 >

Φ(M=Rh) = 0.17 in oxygen free acetonitrile. In dichloromethane ordering of the relative emission

intensities are different (Ag > Rh > f > Pd), which might be assigned to impurities such as oxygen

in the palladium sample or the formation of a dimeric complex, which exhibits an unexpected

low emission intensity. Still, even for the weakest emitting new complex a significantly higher

quantum yield emerges relative to that reported for the parent complex [Ru(bpy)3]2+. In short,
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ground and excited states for all complexes reveal very similar features in terms of reactivity and

stability regardless of the absence or presence of Ag, Rh, or, most importantly, Pd at the NHC-

coordination sphere of the Ru(bbip)M complexes.

3.3.9 Excited State Dynamics of the bbip-Containing RutheniumComplexes

In addition to the steady state experiments, time-resolved transient emission and absorption

measurements were performed for the series of Ru(bbip)M complexes (M= f: metal free, Ag:

silver, Pd: palladium, Rh: rhodium). The following photophysical results were obtained in a

cooperation with Katrin Peuntinger from the work group of Prof. Guldi (FAU Erlangen-

Nürnberg) and might be found in her PhD thesis in a similar form.

With the help of transient emission experiments it was possible to determine the emission

lifetimes in oxygen free acetonitrile and dichloromethane (see table 14). In acetonitrile, the

Ru(bbip)-derived silver and palladium complexes exhibit, with deviations, quantitatively similar

lifetimes as observed for Ru(phen) (τM=Pd
ACN = 1100 ns, τM=Ag

ACN = 1450 ns, and τRu(phen)ACN = 1400 ns).

The parent compound Ru(bbip) and the rhodium complex possess significantly shorter lifetimes

(τM=Rh
ACN = 430 ns and τM= f

ACN = 920 ns). In oxygen free dichloromethane, only the rhodium complex

exhibits a significantly shortened lifetime (τM=Rh
DCM = 900 ns < τ

M=Pd,Ag,f
ACN ≈ 1400 ns). Data from

aerated samples were collected for Ru(bbip) and Ru(bbip)Ag, but are not necessarily reasonable

for the air and moisture sensitive silver complex. Nevertheless, lifetimes of roughly 200 ns were

determined in acetonitrile and values of 550 and 400 ns were found in dichloromethane for the

mono- and binuclear complex, respectively.These values are in good accordance to the previously

determined values of Ru(phen).

The transient absorption experiments were startedwith a comparative study of 1MLCT absorption

behavior of themonometallic complexRu(bbip) and the potential bimetallic catalystRu(bbip)Pd.

Using femtosecond experiments (see figure 103) shed light exclusively onto the early stages

of the MLCT excited state formation (i.e., 480 nm, 150 fs). In line with literature results (cf.

[Ru(bpy)3]2+[41]), it was observed in both complexes how the initial formed 1MLCTexcited states of

Ru(bbip) and Ru(bbip)Pd rapidly underwent intersystem crossings to the corresponding triplet

manifold (τRu(bbip)ISC ≈ τRu(bbip)PdISC < 150 fs, as observed at λ= 560 nm). Absorption characteristics of

the former include the typical minima (ground state bleach) at λ= 443 nm and maxima (excited
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Figure 103: Derived time resolved (left) and wavelength resolved (right) excited state differential

absorption spectra of Ru(bbip) (top) and Ru(bbip)Pd (bottom) in deaerated acetonitrile with

femtosecond resolution, λexc = 480 nm. The denoted arrows indicate the regions that were used

for corresponding decay kinetics and differential spectra.

state absorption) at λ= 560 nm, respectively. As expected, the recorded transient absorption

spectra did not give rise to any appreciable decay on the 3 ns scale.
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Figure 104: Derived time resolved (left) and wavelength resolved (right) excited state differential

absorption spectra of Ru(bbip) (top) and Ru(bbip)Pd (bottom) in deaerated acetonitrile with

nanosecond resolution, λexc = 480 nm. The denoted arrows indicate the regions that were used for

corresponding decay kinetics and differential spectra.

Extension of the timescale to the microsecond detection window (i.e. λ= 532 nm, tobserved = 6 ns)

revealed the 3MLCT excited state features with minima andmaxima, similar to those seen toward

|147|



|3.3 NN-NHC-Ligand bbip: Toward Second Generation Catalysts|

the end of the femtosecond experiments (see figure 104). However, a significant difference is that

the 610 nm to 780 nm range of both transient species is now dominated by 3MLCT centered

emission with emission maxima at λ= 660 nm. The deviation from the determined emission

maxima can be explained by the overlay of the absorption band of the excited species. For

Ru(bbip)Pd, minima were registered at 460 nm and 665 nm as well as a maximum at 560 nm.The
3MLCT excited states of both complexes decay back to the ground state with lifetimes of τ = 1.0µs,

which is quantitatively similar to the observations of the time-resolved emission experiments in

the absence of molecular oxygen. In theses experiments, strict first order kinetics evolve (see

figure 104 left). Importantly, no residual transitions, neither bleachnor positive absorption, remain

at delay times beyond 20µs. In Ru(bbip), and most relevant for catalytic aspects, in Ru(bbip)Pd

an increased quantum yield of formation and lifetime of the excited state under retention of

properties typical for ruthenium complexes were observed.

3.3.10 Electrochemical Characterization

The electrochemical investigations of the series of ruthenium complexes with ip, bip, bbip and

(bbip)Ag ligands illustrate the rather small influence of the imidazole system on the redox

potentials of the phenanthroline-type ligands and coordinated ruthenium centers (see table 15

and figure 105).

Table 15: Selected redox potentials E1/2 (V) of the complexes Ru(ip), Ru(bip), Ru(bbip),

Ru(bbip)Ag, and references [Ru(tbbpy)3]2+ and Ru(phen) (referenced vs. Fc/Fc+, E1/2(Fc/Fc+)

= 0.00 V in a 0.1M solution of Bu4NPF6 in dry acetonitrile under argon atmosphere).

Complex E1/2(L̂L
3
) [V] E1/2(L̂L

2
) [V] E1/2(L̂L

1
) [V] E1/2(Ru2+/3+) [V]

[Ru(tbbpy)3]2+[90] -2.28 -2.02 -1.82 0.73

Ru(phen)[108, 120] -2.23 -1.99 -1.80 0.78

Ru(ip) -2.43 -2.09 -1.89 0.78

Ru(bip) -2.23 -1.99 -1.76 0.81

Ru(bbip) -2.25 -1.96 -1.76 0.86

Ru(bbip)Ag -2.22 -1.96 -1.64, 1.29 (ir) 0.87

Typically, a fully reversible metal-based oxidation (E1/2(Ru2+/3+)) is observed at redox potentials

in the region between +0.78V and +0.87V with more positive values for the electron deficient
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Figure 105: Cyclovoltammograms of ruthenium complexes with imidazophenanthroline derived

ligands, measured in a 0.1M solution of Bu4NPF6 in dry acetonitrile under argon atmosphere,

referenced vs. Fc/Fc+, E1/2 = 0.00 V. Ru(ip) (—), Ru(bip) (—), Ru(bbip) (—), and Ru(bbip)Ag (—).

azolium salt Ru(bbip) and the carbene complex Ru(bbip)Ag. Furthermore, in all new ruthenium

complexes three independent and quasi reversible redox waves were observed for the three

reductions of the coordinated ligands (E1/2(L̂L
1,2,3) at roughly -1.8 V, -2.0V, and -2.2 V respectively.

These findings are in accordance with other trisleptic [Ru(bpy)3]2+-type complexes such as

Ru(phen) or [Ru(tbbpy)3]2+. Among the complexes, themost significant differences exist between

the first ligand-based reductions which can be attributed to the imidazophenanthroline systems.

While the electron rich complex Ru(ip) exhibits a slightly more negative first reduction potential

(E1/2(L̂L
1) = -1.89V), more positive ligand reductions were observed in Ru(bip) (E1/2(L̂L

1) =

-1.76V) and Ru(bbip) (E1/2(L̂L
1) = -1.76V), respectively. Interestingly, square wave experiments

revealed an unusual behavior of Ru(ip) which could be attributed to irreversible reduction of the

protonated ligand in the reduction wave with formation of neutral Ru(ip) which exhibits a fully

reversible electrochemistry (see figure 106).

Furthermore, the first ligand centered reduction in Ru(bbip) is not fully reversible which

can be explained by reduction and possibly hydrogenation of the imidazolium moiety (see

|149|



|3.3 NN-NHC-Ligand bbip: Toward Second Generation Catalysts|

-2.6 -2.4 -2.2 -2.2 -1.8 -1.6

-10

-5

0

5

10

potential / V

-10

-5

0

5

10

cu
rr

e
n

t 
/ 

µ
A

Figure 106: Change in the square wave voltammogram with respect to the three ligand centered

reduction waves of Ru(ip) due to irreversible reduction of the formerly protonated complex within

five cycles (scan rate 25Hz).

figure 105).[195] In the case of Ru(bbip)Ag additional irreversible reductions (E1/2(îr) = -1.29V)

and oxidations (E1/2(ôx1) = -0.38V, and E1/2(ôx2) = +0.90V) were found. A plausible explanation

for the irreversible reduction is the decomposition of the NHC-Ag-Cl moiety of the complex,

which results in the liberation of Cl− and Ag+ ions near the electrode surface. After the complex is

altered, first irreversible oxidation peak appear which might be assigned to the Ag/Ag+ stripping

potential at the electrode.The very prominent irreversible oxidation around +0.90Vwas assigned

to the oxidation of the chloride counter ions of the complex.

After one completed cycle, additional irreversible signals are caused by decomposition remains

at the electrode. In accordance to the results of the lifetime determinations, none or only

little influence of the redox potentials by extension of the phenanthroline system by imidazole

derivatives was observed.

The electrochemical characterization of the other binuclear complexes Ru(bbip)Pd and

Ru(bbip)Rh was difficult and is not shown due to the negative effect of the Cl− counter ions and

deposition of reduced silver (from complex counter ions) and other metals on the electrodes.

Using Ru(bbip), in addition, spectroelectrochemical reduction (-1.1 V) and oxidation (+1.4 V)

were performed. The oxidation results in the expected bleach of the MLCT absorption, while the

reduction gives rise to the growth of a broad band with two maxima at 525 nm and 600 nm.
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3.3.11 Application in Catalysis: Prove of Concept

Based on these results, indicating a retention of the [Ru(bpy)3]2+-type chromophore properties

and a moderate electronic communication between the metal centers in bbip-bridged complexes,

all four described Ru(bbip)M complexes (M: f = free, Ag = silver, Pd = palladium, Rh= rhodium)

were tested as intramolecular JP ∼B ∼CK-type photocatalysts (P= photocenter, B= bridge,

C= catalyst) for hydrogen formation. Funded on the positive results of Hansen, using

[Ru(bpy)3]2+ and Pd-NHC complexes in intermolecular systems, similar intermolecular catalysis

experiments were performed.[71] In these, Ru(bbip) was tested for its capability to serve

as chromophore together with [Pd(ACN)2Cl2] or [Rh(cod)Cl]2 as catalysts in JP ∼R /CK-
type systems (R= redox shuttle). The water concentration dependency, as well as the catalyst

concentration dependency was tested. Finally, dynamic light scattering (DLS) experiments were

performed to investigate a possible formation of colloids and other particles in the catalytic

mixtures.

The photohydrogen production experiments were carried out in a home-built air-cooling

apparatus for maintaining room temperature (22°C) and constant irradiation of the sample at a

wavelength of λ = 470 nm (using LED sources suitable to excite theMLCT transition).[116] 5ml GC

vials with a known headspace/solution ratio (3:2) were used as reaction vessels. Directly before the

irradiation experiments, fresh stock solutions of the respective samples with solvent mixtures of

acetonitrile, triethylamine and water with the desired concentrations of ruthenium complex were

prepared in the dark under nitrogen atmosphere. Gas samples from the headspace were analyzed

by GC-TCD after the irradiation to quantify the amounts of hydrogen gas which were formed. All

experiments were repeated once for each reaction time and catalyst concentration.

In the beginning, mixtures of acetonitrile (solvent), triethylamine (electron donor) and water

(proton source) in a 6:3:1-ratio (v:v:v), containing samples of the series of bimetallic catalyst with

a known catalyst concentration of 250µM, were examined (see figure 107).

The catalysis results for the ruthenium bbip-complexes during the course of five hours illustrate

the catalytic activity of the palladium and rhodium complex. Surprisingly, even the silver complex

exhibits a certain activity for photocatalytic hydrogen formation, whereas the starting material

Ru(bbip) without a second metal center is inactive.

The highest turnover numbers (TONs) were observed forRu(bbip)Pdwith 30 turnovers after five
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Figure 107: Time dependency of the catalytic activity in a 2M solution of triethylamine in

acetonitrile with 5% water. Determined turnover numbers (TONs) and fitted plots of the hydrogen

generation of Ru(bbip)Pd (–●–), Ru(bbip)Rh (–●–), Ru(bbip)Ag (–●–), and reference Ru(bbip)

(–●–) (ccomplex =250µM).

hours at a constant turnover frequency (TOF) of 6 turnovers per hour. Important is the linearity

of the hydrogen production during that time. Furthermore, in contrast to other intramolecular

photoredoxcatalysts like [(tbbpy)2Ru(µ-tpphz)PdCl2]2+, no induction period was observed since

hydrogen could be detected already after a few minutes of irradiation. Between five and ten hours

a plateau is slowly reached. This effect is commonly explained by the gas exchange through the

septum of the GC-vials (not designed for such catalysis experiments) or by side reactions in the

catalyticmixture, e.g. reactions which consume the produced hydrogen or alter the chromophore-

bridge-catalyst structure.

Importantly, the catalytic activity of the Ru(bbip)Pd catalyst is concentration independent as

supported by independent studies with different concentrations (c = 10µM, 25µM, 100µM and

250µM, see figure 108) while and the intermolecular systemRu(bbip) + [Pd(ACN)2Cl2] losses its
activity when low concentrations are applied.

The photocatalyst Ru(bbip)Rh (c = 250µM) reaches a lower TON of 16 after 5 hours, whereas the

plateau is reached and no further increase in the TON can be detected after longer irradiation
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Figure 108: Catalysis concentration dependency of the intramolecularly working system

Ru(bbip)Pd. Denoted error bars represent the 3σ region of the GC accuracy.

times. The concentration dependency of Ru(bbip)Rh was measured, but due to the low activity

and the resulting very small concentrations of hydrogen gas in the headspace, the detection limit

of the GCmethod was reached for lower catalyst concentrations (detection limit is 0.05% of H2 in

the GC sample, compare error bars in figure 108). Hence, it was not possible to separate the signal

from the noise, so that no clear statement about a possible catalyst concentration dependency of

the hydrogen production could be made.

Surprisingly, even the silver complexRu(bbip)Ag showed some catalytic activity with 4 turnovers

within five hours (compare figure 107). Again, no concentration dependency could be determined

because of technical limitations. Finally, the control experiments, using themononuclear complex

Ru(bbip) show, as expected, no hydrogen production.

The observed constant turnover frequency, the missing induction phase and the concentration

independency support the proposed intramolecularmechanism of the hydrogen formation, using

Ru(bbip)Pd. To affirm this presumption, further investigations were performed.

Using Ru(bbip) as chromophore and [Pd(ACN)2Cl2] as pre-catalyst in a JP ∼B /CK-system,

intermolecular control experiments were performed in the next step (see figure 109). All other

parameters (light source, solvent mixture, catalyst concentration) were left unchanged.
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Figure 109: Fitted TONs and TOFs of hydrogen production with a 250µM solution of Ru(bbip)Pd

(TON: –●– and TOF: —) and the control experiment (mixture of Ru(bbip) and [Pd(ACN)2Cl2]),
respectively, (TON: –●– and TOF: —) in acetonitrile/water/triethylamine during the course of four

hours. Later data was excluded from the fits.

In this control experiment, considerable amounts of hydrogen gas were found in the head space

of the reaction vessels, which proves the photoredoxactivity of the Ru(bbip) chromophore. Upon

the more detailed investigation, a very different activity could be observed for the intermolecular

system in comparison to Ru(bbip)Pd, as can bee seen in figure 109. A very fast rise in hydrogen

production (TOF= 60 h-1 after 20minutes) was detected and, furthermore, higher TONs (55)were

detected within the first two hours. After 20 minutes, a beginning collapse of the catalytic activity

(TOF= 10 h-1 after two hours) was observed in the multi-component system which eventually led

to a complete loss of the catalytic activity within four hours (see figure 109, the green function

denotes the derivative of the fitted TONs and thus represents the differential TOF). In comparison,

a constant TOF of 6 h-1 is retained in Ru(bbip)Pd over six hours (see figure 109, the blue graph

denotes the constant TOF).

In the intermolecular control experiments with Ru(bbip) and [Rh(cod)Cl]2 (c = 250µM)

turnover numbers with a maximum of 6 turnovers were found during the course of four hours.

No further raise upon prolonged catalysis times could be observed. These values are low in
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comparison to the intramolecular system Ru(bbip)Rh which produces 16 moles of hydrogen per

mole of catalyst in the same time.

To further investigate the true nature of the catalyst and to obtain insights into the effect of colloid

formation on the catalytic activity, dynamic light scattering (DLS) experiments were performed.

As depicted in figure 110, catalytic mixtures of Ru(bbip)Ag, Ru(bbip)Pd and Ru(bbip) +

[Pd(ACN)2Cl2] which were similar (inert cuvette instead of GC-vials) to the previously used

hydrogen formation experiments were in situ examined during catalysis.
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Figure 110: Particle sizes in the catalysis mixtures of Ru(bbip)Ag (–●–), Ru(bbip)Pd (–●–), and
Ru(bbip) + [Pd(ACN)2Cl2] (–●–) during the first two hours of catalysis as determined by DLS.

The results prove the suitability of this method to detect and trace the formation of particles

in the catalysis samples. Very prominent is the fast formation of large colloidal silver particles

in the mixture of triethylamine, acetonitrile and water from Ru(bbip)Ag during irradiation.

It can be expected that processes, similar to the photographic process, with reduction of

silver(I) lead to particle formation.This observation corresponds to the electrochemical results of

Ru(bbip)Ag, where irreversible redox processes were detected. Interestingly, no decomposition

of the complex in the catalytic mixture was detected in the dark under otherwise unchanged

conditions. Furthermore, light stability experiments in pure acetonitrile-d3 show no signs of

decomposition after irradiation of the NMR-sample for several hours (compare chapter 3.3.8
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on page 141). From these facts it can be concluded that a combination of MLCT excitation and

irreversible reduction by triethylamine have to take place in order to induce the colloid formation

from Ru(bbip)Ag. Furthermore, it can be assumed that small silver colloids, which are known

catalysts for hydrogen production, are responsible for the photocatalytic hydrogen production in

corresponding experiments.[196]

The DLS experiments with the intermolecular catalyst Ru(bbip) + [Pd(ACN)2Cl2] show as well

considerable particle formation during the first two hours of the catalysis (see figure 111).
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Figure 111: Short term (sample 1 (–●–), sample 2 (–●–)) and long term DLS results (sample 3

(–●–)) of intermolecular catalysis experimentswith themixture of Ru(bbip)+Pd(ACN)2Cl2 during

the course of two hours (ccat. =50µM) and TOF of hydrogen production (---) of a similar mixture.

The different samples show slightly differing particle sizes with different growth behavior, but in

all cases a plateau is reached after roughly 45 minutes. By that time, particle diameters of several

hundred nanometers (d = 400 - 800 nm) are reached. A correlation of the particle size with the

catalytic activity (TOF) of the samples identifies the most active catalytic time span in a region

where the particles still grow.Thus, the numerous small colloids in solution present a large surface

area during this early phase. The important conclusion that can be drawn here is that obviously

small colloids (<400 nm) which were formed upon photoreduction represent the active catalysts

in this mixture and that the catalytic activity breaks down as the colloids grow beyond a value
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where the surface/volume ratio becomes disadvantageous.[32, 34, 94]

Finally, DLS experiments with Ru(bbip)Pdwere performed. Also in this case a clear formation of

particles could be observed (see figure 112).
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Figure112:DLS results (–●–) of intramolecular catalysis experimentswithRu(bbip)Pdduring the

course of five hours (ccat. = 250µM) and TON of hydrogen production (–●–) of a similar mixture.

In contrast to the results obtained for Ru(bbip) + [Pd(ACN)2Cl2], first particles form after 15

minutes of irradiation, while no particles were present in the beginning. Furthermore, here

diameters reach a plateau at very small average diameters of ∼60 nm after roughly one hour and

maintain at this value at least for the following five hours. A correlation between the catalytic

activity and the particle diameter may be possible because hydrogen is formed while particles

were detected. However, DLS does only yield size distributions and an average diameter while

numbers of particles cannot be detected, at least two different aspects need to be discussed.

On the one hand, it can be assumed that the particles refer to active catalysts, as the 60 nm colloids

are formed after 15 minutes. For the first hour of catalysis small total volumetric amounts of

hydrogen are present in the vials, leading to some uncertainties in the assignment of catalytic

activity. Furthermore smaller colloids, causing the early catalytic activity (0 - 1 h) could not be

detected. As a the detection limit of the DLS is 0.6 nm, this is rather unlikely. The late catalytic
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activity (1 - 5 h) could be explained by a stabilization of the catalytically active colloids in the

mixture, which was found to be active at a constant rate for at least five hours.

On the other hand, it can be assumed that the particles represent an inactive species. Thus, it

is possible that remaining complex silver counter ions in solution (found as impurities already

in Ru(bbip)Rh, see page 137), decompose upon irradiation and leads to the observed particles.

Therefore, it is possible to assign the complete catalytic activity (0 - 5 h) to the intramolecular

catalyst Ru(bbip)Pd. As the catalysis shows very little correlation to the detected particle growth

kinetics, they do not seem to be involved in catalytic turnover.

A third explanation for the detected particles could be the formation of hydrogen bubbles with a

diameter of roughly 80 nm in the active mixture which would interfere with the detectionmethod

and which would be hidden in the other experiments due to the detection of larger particles.

Several relevant conclusions can be drawn from these facts. First, Ru(bbip) serves as photocenter

in inter- and intramolecular systems with three different catalytic centers.

Second, in the case of Ru(bbip)Ag, a correlation between visible light irradiation, catalytic

hydrogen formation and colloid formationwith steadily growing diameter in the catalyticmixture

(in the presence of triethylamine) draws the picture of a photodecomposition reaction of this

species, whereas the early formed particles exhibit a limited catalytic activity.

Third, in the case of Ru(bbip)Rh and the intermolecular control experiment, only a limited

catalytic activity with alike low TONs could be observed.

Fourth, the intermolecular catalyst Ru(bbip) + [Pd(ACN)2Cl2] shows a considerable particle

formation which causes, as observed in the case of Ru(bbip)Ag, hydrogen formation with a very

high activity during the early phase of catalysis.

And fifth, especially for Ru(bbip)Pd the lack of an induction phase, the catalyst concentration

independence of the activity, the constant turn over frequency and the lack of large particle

formation support the assumption of increased chemical stability of the catalyst and importantly

a possible intramolecular hydrogen formation mechanism. As no further particle growth was

observed, indicating a stabilization in size, an intermolecular mechanism which involves an

equilibrium of particle formation and destruction (Ru(bbip) is not active itself, palladium

particles grow up to 800 nm) could not be ruled out completely.

Finally, with respect to the DLS experiments, it was proven that this new analysis method can be

used to quickly and easily obtain on-line insights into important aspects of the catalysis such as
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particle formation kinetics and size distributions. Nevertheless, a combination and correlation

of DLS and other methods such as TEM and XPS may be necessary to clarify the complete

mechanism of the catalysis.

3.4 Outlook, Exploratory Investigations and Perspectives

After the completed work with the binuclear bbip-bridged complexes, a number of preliminary

results and exploratory work will be presented in this following chapter of the thesis. A number

of experiments were performed to fathom future developments of the imidazophenanthroline

containing systems. To receive an impression of the potential thereof, it was attempted to increase

the already high quantum yields of the ruthenium bbip-complexes. Furthermore, it was tried

to change the electronic properties of the bridge, particularly of the electron storage capacity

of the 3MLCT-involved LUMO, by the introduction of electron withdrawing groups. Finally, an

extension of the bridge was attempted to allow for additional chromophores or catalyst centers in

the resulting oligonuclear photocatalyst.Note: it is not claimed that a complete characterization of

the prepared substances or a full evaluation or explanation of observed resultswas given, therefore,

only selected data will be presented.

3.4.1 Manipulations, Involving the bbip-System

With bbip in hands, it was an interesting starting point to further explore the effect of this ligand

on ruthenium type chromophores. From section 3.3.8 (page 138) it was known that Ru(bbip) has

interesting photophysical properties such as far bathochromically shifted emission wavelength

(λRu(bbip)
em., ACN = 663 nm) and very strong emission intensity (ΦRu(bbip)

ACN = 0.26).

The usually high quantum yields of Ru(bbip) obviously correlate with the presence of one bbip

ligand. Based on the developed synthetic expertise, it was attempted to prepare the trishomoleptic

complex [Ru(bbip)3]2+ (Ru(bbip)3) which should be even more electron deficient than Ru(bbip)

and thus should show higher emission quantum yields. Furthermore, a reference compound

would be generated to compare the photophysical and electrochemical characteristics (see

figure 113). The reaction was performed with an excess of bbip to avoid an incomplete formation.

[Ru(cod)Cl2] and bbip were taken up in DMF and were heated for 2h in the microwave. Already

after severalminutes a colorchange into bluewas observed, which is typically the indication for the
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Figure 113: Attempted synthesis of [Ru(bbip)3]2+.

formation of the [Ru(L̂L)Cl2]-type complexes. After two hours, DMF was removed and a mixture

of ethanol/water was added to the dark residue. Refluxing for two more hours in the microwave

according tomethod C1 gave a bright red product which was analyzed by 1H-NMR spectroscopy

(see figure 114).
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Figure 114: 1H-NMR spectrum of Ru(bip)3 in methanol-d4.

The analysis of the obtained product gives clear evidence for the decomposition of the
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ligand structure since integration of the phenyl ring-related protons does not sum up to 30

but rather 15 protons and, furthermore, a typical spectrum of a complex with asymmetric

imidazophenanthroline moiety was found instead of the expected highly symmetric one. Further

attempts to obtain ruthenium complexes withmultiple NN-NHC bridging ligands were not made

because it was concluded, that possibly the high charge of the resulting compound in combination

with the applied high temperatures (153°C) might be the reason for the decomposition of the

product (bbip was prepared from bip in DMF at 60-80°C). The alkylation of [Ru(bip)3]2+ might

open the access to such complexes, but was not tried.

3.4.2 Electron Deficient bbip-Systems

From the results in chapter 3.1 (page 54 ff.) it was known that bromo substituents at

the phenanthroline backbone result in a lowering of the particular ligand LUMO orbital

in a [Ru(L̂L)3]-type complex. This may be the reason that the resulting 3MLCT state in a

heteroleptic tris-chelate complex is predominantly localized on that particular ligand as observed

in bromo substituted tpphz derivatives.[125, 126] Therefore, it is of great interest to design electron

accepting bridging ligands to enforce the unidirectional electron transfer to a second metal

center in a monomolecular JP ∼B ∼CK-type photocatalyst. In a targeting study 1,3-dibenzyl-

5,10-dibromo-1H-imidazo[4,5-f][1,10]phenanthrolinium bromide (Br2bbip) was prepared in a

two step synthesis from 3,8-dibromo-1,10-phenanthroline-5,6-dione (Br2phenO2) according to

a combination of method L2 and method L3 in a similar manner as the case of the previously

prepared ligand bbip (see figure 115).
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Figure 115: Three step synthesis of Br2bbip.

Detection of the product and determination of the product purity was performed, using 1H-NMR
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techniques. The reaction of Br2phenO2 with hexamine and ammonium acetate in acetic acid

gave 5,10-dibomo-1H-imidazo[4,5-f][1,10]phenanthroline (Br2ip) -very similar to ip in color and

solubility- in 70% yield. A clear indication for the formation was the singlet signal of the proton

in 2-position at δ Br2ip
(2) = 8.90 ppm in combination with a symmetric 1H-NMR-spectrum, similar

to that of ip but without signals for the 5,10-positions.

Subsequent benzylation if Br2ip was performed according to a combination of method L2

and method L3 in a one pot reaction. Workup of the product gave a pure compound in an

overall yield of 57% as indicated by 1H-NMR studies. The NMR-spectrum showed similar peak

patterns with the expected symmetry of the ip-backbone, the singlet signal of the 2-proton

(δ Br2bbip
(2) = 9.76 ppm) and the aromatic and aliphatic signals of the benzyl groups with the expected

integral values as observed for bbip. Furthermore, no signals of the asymmetric intermediate were

found. Mass spectrometry or 13C-NMR spectroscopy were not available at that time and further

characterizations were set aside after the results of the following step emerged.

Finally, the synthesis of [Ru(tbbpy)2(Br2bbip)]2+ (Ru(Br2bbip)) was attempted next. As previously

described for the synthesis of Ru(bbip), Br2bbip was reacted with [Ru(tbbpy)2Cl2] in a mixture

of ethanol/water in the microwave according tomethod C1 (see figure 116).

For this reaction long irradiation times (5h) had to be applied before the typical color change

into red could be observed. Workup and counter ion exchange with NH4PF6 yielded a dark red

product. Counter ion back-exchange and precipitation with Bu4NCl in aprotic solvents (ethyl

acetate/acetone) was used to remove the dark starting material [Ru(tbbpy)2Cl2] soluble therein.
1H-NMR investigation of the obtained chloride salt exhibited an unexpectedly asymmetric set

of five ip-type signals instead of three. Furthermore, a 50% lower integral value of the aromatic

and aliphatic benzyl signals was observed. These findings were once again strong indicators for a

decomposition of the ligand during the reaction, as observed in the previous case of the attempted

preparation of Ru(bbip)3 which lead to Ru(bip)3 instead.

Recrystallization of the obtained product from a mixture of diethyl ether/chloroform by slow

evaporation gave suitable crystals for X-ray diffraction experiments. The results clearly indicate

the formation of [Ru(tbbpy)2(Br2bip)Cl2]which was not attempted (see figure 117 and see table 16

on page 171). Note: Karnahl et al. have also observed unusual reactions of bromo-substituted

phenanthroline derivatives.[126]

The X-ray data indicated that the imidazole rings in Ru(Br2bip) and the formerly prepared
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Figure 116: Attempted synthesis of [Ru(tbbpy)2(Br2bbip)]2+ (Ru(Br2bbip)), yielding

[Ru(tbbpy)2(Br2bip)]2+ (Ru(Br2bip)) as product of the reaction instead.

Ru(bip) (compare chapter 3.3.6 on page 130 ff.) have identical C-N and C-C distances and

equivalent bond angles at the analogical positions, except for the C13-N4 distance which is

sorter in the brominated compound. In both complexes, differences in the opposing C-N-C

angles and N-C-C angles of the imidazole rings are present. Thus, Ru(Br2bip) exhibits a by ∼7°
wider N4-C6-C5 angle than N3-C5-C6 angle (e.g.∠Ru(Br2bip)

(N4,C6,C5) = 111.4(6)° >∠
Ru(Br2bip)
(N3,C5,C6) = 104.7(6)°).

Additionally, Ru(Br2bip) exhibits a more acute angle at the N4 atom when compared to the N3

atom (∠Ru(Br2bip)
(C13,N3,C5) = 106.3(6)° >∠

Ru(Br2bip)
(C13,N4,C6) = 102.9(6)°).TheN3-C13-N4 angles are thewidest angles

of the imidazole ring in both complexes (∠Ru(Br2bip)
(N3,C13,N4) = 114.7(7)° = ∠

Ru(bip)
(N3,C13,N4) = 113.5(5)°). The

angles of the twisted benzyl functionality differ from the previously observed and are, therefore,

arbitrary due to packing effects. In comparison to the imidazole system, a higher symmetry was

found in the phenanthroline sphere which exhibits identical bond lengths and angles at opposing

positions. A dominant structural influence of the bromo substituents was not observed.The values

for the Ru-N distances are consistent with the previously obtained data and with other ruthenium

phenanthroline complexes.
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Figure 117: Solid state molecular structure of Ru(Br2bbip). Counter ions, hydrogen atoms and

coordinated solvents were omitted for clarity. Ellipsoids were drawn at the 50% probability level.

Compare table 16 an page 171 for selected bond lengths and angles.

3.4.3 NHC-Ligand edip: Further Development of Improved Catalysts

For a further stabilization of the NHC bound metal center and thus to avoid colloid formation

during photoreduction, it is important to expand the coordination sphere around the activemetal.

With respect to the constitution of natural systems, such as the oxygen evolving complex or

the iron hydrogenases it may be helpful to construct multimetallic active sites. Furthermore, it

was shown by Auth et al. that an increased number of photocenters, as observed in natural

photosynthesis, may have a positive effect on the catalytic activity of the catalyst.[116, 117, 95, 19] In

a wider scope, polydentate ligands may lead to a self-assembly of polynuclear coordination arrays

with interesting application potential in catalysis, as shown by Sakai et al., and other fields such as

molecular information storage or molecular magnetism as demonstrated by Lehn et al.[92, 197, 198]

In this context, caliper-like NHC ligands were prepared by Liu et al. to stabilize binuclear silver

complexes.[55] The transmetallation to the resulting palladium complexes was performed in the

work group of Rau (compare figure 28 (d) on page 39). Importantly, the latter was proven to

be an active catalyst for proton reduction in intermolecular photoredox catalyses in mixtures of

acetonitrile/triethylamine/water.[71]

Inspired by this work, the concept of a new bridging ligand was designed (see figure 118) which
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combines the concept of ip-bridges with the binuclear palladium catalyst, so that intramolecular

photocatalysts can be generated which carry two {Ru(L̂L)3}2+-type chromophores. Thus,

purposeful functionalization of the imidazole nitrogens with aryl bridge/spacer was attempted

to yield a suitable 1-substituted, 3-bridged bis-1H-imidazo[4,5-f][1,10]phenanthrolinium salt (see

figure 118).

N

N N
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N N

N N

N
N

N
N

N Br
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method L2 method L3

Br

Br Br

N
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N
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Figure 118: Two-step synthesis of 1,1’-[(2,3,5,6-tetramethylbenzene-1,4-diyl)dimethanediyl]bis(3-

ethyl-1H-imidazo[4,5-f][1,10]phenanthrolinium) dibromide (edip).

The selective introduction of an ethyl moiety into the 1-position of ip was achieved according

to method L2 via the substitution reaction with ethyl bromide to yield 1-ethyl-1H-imidazo[4,5-

f][1,10]phenanthroline (eip) in good yields.

The 1H-NMR-spectrum showed similar peak patterns as ip, with the expected asymmetry of the

ip-backbone, the singlet signal of the 2-proton (δ eip
(2) = 7.96 ppm) as well as the aliphatic signals

of the ethyl group with the correct integral values and similar chemical shifts, as observed in

the case of bip (δ eip
(CH2) = 4.611 ppm (q, 2H, 3J = 7.2Hz) and δ eip

(CH3) = 1.655 ppm (t, 3H, 3J = 7.2Hz)).

Assignment of the 13C-NMR-signals reveals chemical shifts, which are consistent with previous

data (e.g. δ eip
(C2) = 141.98 ppm, compare δ bip

(C2) = 143.54).

After its successful synthesis, eip was used as starting material in the reaction with 4,6-dibromo-

methyldurene according to method L3. This transformation gave 1,1’-[(2,3,5,6-tetramethylbenz-

ene-1,4-diyl)dimethanediyl]bis(3-ethyl-1H-imidazo[4,5-f][1,10]phenanthrolinium) dibromide

(edip) as a white precipitate in 50% yield.The formation of the desired compound was confirmed

via 1H- and 13C-NMR spectroscopy and mass spectrometry. In the 1H-NMR spectrum of

the asymmetric compound all eleven (seven aromatic and four aliphatic) signals were found

(see figure 119 on page 166). Of interest is the characteristic singlet of the proton in 2-

position (δ edip
(2) = 9.04 ppm) and the singlet of the durene methyl groups (δ edip

(CH3-Ar) = 2.25 ppm).
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Figure119:Relevant regionof the 1H-NMRspectraof theseriesofpreparededipcarryingcomplexes

Ru2(edip) and Ru2(edip)Ag2 in acetonitrile-d3 and of the parent compound in methanol-d4 with

denoted peak assignments (signals with black asterisk are solvent impurities).

Furthermore, all signals were assigned in the carbon NMR-spectrum (e.g. δ edip
(2) = 140.07 ppm and

δ edip
(CH3-Ar) = 15.67 ppm). FAB-MS showed the molecular ion [M+H+2Br]+ at 812 m/z.

In addition to theMS andNMR characterization of the products, it was possible to obtain suitable

crystals of the compounds for X-ray diffraction experiments (see figure 120 and compare table 16

on page 171).

The structural features, observed for the organic compounds combine both, the general patterns

of phenanthrolines and that of benzimidazole derivatives, respectively. Therefore, attention was

focused on the two coordination sites in the structural characterization of the new ip-type ligands.
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Figure 120: Solid state molecular structures of eip (left) and edip (right). Ellipsoids were drawn at

the 50% and 70% probability level respectively. Compare table 16 on page 171 for selected bond

lengths and angles.

Furthermore, similar chemical behaviors and good structural relationships exist between eip and

bip, and between edip and bbip respectively, therefore, the same numbering scheme was applied

to all ligands for convenience reasons (see chapter 3.3.3 on page 118).

With respect to bip, no significant changes in distances and angles of the ip-skeleton were

observed in eip. Only the C1-N1-C12 angle of the phenanthroline sphere is slightly increased in

bip, which might be an effect of the coordinated solvent water in the latter (∠ bip
C1,N1,C12 = 118.38(15)°

>∠ eip
C1,N1,C12 = 117.6(2)°).

Furthermore, eip exhibits the same asymmetry of bond lengths and angles in the imidazole ring

of the imidazophenanthroline backbone as observed in bip, which is a result of the partial double

bond character between C13 and N4 and of the asymmetric substitution. Therefore, eip exhibits

a significantly shortened C13-N4 bond in comparison to the C13-N3 bond (d eip
C13-N3 = 1.361(3) Å

> d eip
C13-N4 = 1.314(4) Å). An other effect is that the opposing angles of the imidazole moiety at

C5/C6 andN3/N4 differ significantly (∠ eip
C13,N3,C5 = 105.9(2)° >∠

eip
C13,N4,C6 = 103.7(2)° and evenmore:

∠ eip
N3,C5,C6 = 105.3(2)° <∠

eip
N4,C6,C5 = 111.1(2)°), which was also observed in bip. The opposing sides of

the phenanthroline sphere show no asymmetry which supports the picture of a phenanthroline

sphere which is independent of the variable imidazole moiety.

The imidazolum salt edip is best compared to the imidazolium salt bbip. Although edip exhibits

an asymmetric substitution pattern, a highly symmetric ip-skeletonwith respect to bond distances

and angles was found. The only difference exists between the opposing angles around C5 and C6
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(∠ edip
N3,C5,C6 = 107.8(5)° > ∠

edip
N4,C6,C5 = 105.6(5)°). These effects are possibly due to the loss of double

bond character between C13 and N4 in comparison to eip and sterical or packing effects of the

alkyl moieties. Importantly, no significant changes at all were found between the equivalent bond

lengths and angles, comparing edip and bbip (e.g.∠ bbip
N3,C13,N4 = 110.9(6)° =∠

edip
N3,C13,N4 = 110.8(5)° or

d bbip
C13-N4 = 1.322(8) Å = d edip

C13-N4 = 1.320(7) Å).

The packing in edip crystal is rather interesting. In the unit cell, four symmetry equivalent edip

molecules, 32 watermolecules and four HClmolecules were found. Very prominent is the cisoidal

arrangement of the coplanar (∠ip,ip = 9.4°) imidazophenanthroline moieties which is forced by

hydrogen bond formation between the twoN-CH-N protons of the ligand and one bridging water

molecule.This preoriented bisdentate coordination sphere is very wide (d edip
C13-C26 = 5.991(8) Å) and

is therefore suitable for multicenter fragments (the corresponding C-C distance in the {Pd2Cl4}-

bridged complex by Hansen et al. was found to be equidistant, d Pd(NHC)
C-C = 6.034Å).The sterically

demanding durene moiety is twisted out of the plane of the two ip-moieties (∠ip,durene = 81.8°)

and therefore out of the coordination site. Coordinated water is present in both phenanthroline

spheres, which is not uncommon and was observed previously in other cases as well (e.g. bbip).

The counter ions can be found embedded into a matrix of hydrogen bonded water molecules.

Significant π-stacking effect between neighboring aromatic systems are missing. Therefore, the

edip molecules are arranged in a superstructure of alternating molecules according to steric

effects.

For comparison reasons and to characterize the N,N-coordinating properties of the new ligands

eip and edip, the resulting ruthenium complexes were prepared (see figure 121). Furthermore, the

binuclear edip-bridged ruthenium complex represents the next step toward the target system.

The synthesis of the ruthenium complexes was performed in a similar manner as synthesis of

other ip-type complexes according to the protocolmethod C1 through stoichiometric reaction of

one equivalent of [Ru(tbbpy)2Cl2] and one equivalent of L̂L-ligand (eip, or edip) in a solvent

mixture of ethanol/water in a microwave reaction. After counter ion exchange with NH4PF6,

the mononuclear complex [Ru(tbbpy)2(eip)][PF6]2 (Ru(eip)) and the binuclear edip-bridged

complex [{Ru(tbbpy)2}2(µ-edip)][PF6]6 (Ru2(edip)) were obtained in high yields, whereat in the

case of Ru2(edip) a longer reaction time of 5 hours had to be applied to force the reaction between

positively charged ruthenium center and positively charged ligand. Back and forth counter ion

exchange and reprecipitation with Bu4NCl and NH4PF6 yielded both complexes, Ru(eip) and
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Figure121:Complexationreactionwiththenewligandseipandedip, yieldingtheN,N’-coordinated

ruthenium complexes Ru(eip) (left) and Ru2(edip) (right).

Ru2(edip), as pure compounds in 90% and 60% yield, respectively.

The characterization by 1H-NMR-, 13C-NMR-spectroscopy and mass spectrometry supported the

formation of the expected complexes (for Ru2(edip) see figure 119 on page 166).

Most obvious in the spectra of both compounds are the ligand related double sets of A-, B-

and C-proton signals which refer to the asymmetric ip-backbones in Ru(eip) and Ru2(edip).

In addition, the CH2-signals of the alkyl moieties (Ar/Al) indicate the performed complexation

without ligand decomposition (δ Ru(eip)
(CH2) = 4.77 ppm (q, 2H, 3J = 7.2Hz)) and δ Ru2(edip)

(CH2-Ar) = 6.21 ppm

(d, 2H, 2J = 14.4Hz), δ Ru2(edip)
(CH2-Ar’) = 6.25 ppm, (d, 2H, 2J = 14.4Hz) and δ Ru2(edip)

(CH2-Al) = 5.00 ppm (q, 4H,
3J = 7.0Hz)). Comparison of the resonance frequencies of the N-CH-N-protons (D-position)

in acetonitrile-d3 exhibited the same tendency in the chemical shifts upon formal addition of

one or two benzyl moieties as in the case of the bip and bbip ligands (δ Ru(eip)
H(2) = 8.34 ppm and

δ Ru2(edip)
H(2) = 8.55 ppm) with the stronger deshielding effect in the imidazolium complex Ru2(edip).

Furthermore, all signals of the carbon NMR-spectra could be assigned (e.g. δ eip
(2) = 146.03 ppm

and δ Ru2(edip)
(2) = 140.80 ppm). In addition, FAB-MS showed the molecular ions m/z = 1031.1

(100%, [Ru(eip)–PF6]+) and m/z = 1110.1 (10%, [Ru2(edip)–2 PF6]2+) respectively. Finally, it was

possible to obtain suitable crystals of themononuclear complexRu(eip) by slow evaporation from
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water/acetone to perform X-ray diffraction experiments (see figure 122 and table 16 on page 171).

Figure 122: Solid state structures of Ru(eip). Hydrogen atoms, counter ions and coordinated

solvent molecules were omitted for clarity. Ellipsoids were drawn at 50 percent level. Compare

table 16 an page 171 for selected bond lengths and angles.

Because of the general structural and chemical similarities, it is useful to compare Ru(eip) to the

pre-ligand eip and to the formerly prepared Ru(bip) with respect to the different coordination

sites. A first glance indicated that the imidazole rings in Ru(eip) and the similar complex Ru(bip)

(compare chapter 3.3.6 on page 130) have identical bond lengths and equivalent bond angles at the

analogical positions of the ip-backbone.The obtained data supported furthermore the significant

asymmetry in the imidazole ring system with shortened C13-N4 bonds with respect to the C13-

N3 bond (dRu(eip)
(C13-N4) = 1.269(10) Å< dRu(eip)

(C13-N3) = 1.361(9) Å). InRu(eip), furthermore, differences in the

opposing C-N-C angles and N-C-C angles of the imidazole rings are present, which are similar

to Ru(bip). Thus, it exhibits a by ∼5° wider N4-C6-C5 angle in comparison to the N3-C5-C6

angle (∠Ru(eip)
(N4,C6,C5) = 110.9(6)° > ∠

Ru(eip)
(N3,C5,C6) = 104.8(5)°). The N3-C13-N4 angle the widest angle of

the imidazole ring, as it is in the case of Ru(bip). (∠Ru(eip)
(N3,C13,N4) = 114.5(6)°). In comparison to the

imidazole system, a higher symmetry was found in the phenanthroline sphere which exhibits

identical bond lengths and angles at opposing positions. The values for the Ru-N distances and

the surrounding phenanthroline sphere are consistent with the previously obtained data and with

other ruthenium phenanthroline complexes.
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Table 16: Selected bond lengths [Å] and angles [°] of new ligands and complexes with

imidazophenanthroline backbone.

bond length [Å] or angle [°] eip Ru(eip) edip Ru(Br2bip)

Ru1 - N1 2.060 (5) 2.054 (5)

Ru1 - N2 2.062 (5) 2.064 (6)

N4 - C13 1.314 (4) 1.269 (10) 1.323 (8) 1.319 (10)

N3 - C13 1.361 (3) 1.361 (9) 1.320 (7) 1.345 (10)

N3 - C5 1.384 (3) 1.390 (8) 1.389 (7) 1.380 (9)

N4 - C6 1.385 (3) 1.385 (8) 1.402 (7) 1.379 (10)

C5 - C6 1.379 (4) 1.385 (8) 1.374 (8) 1.390 (10)

N1 - C12 1.353 (3) 1.386 (7) 1.366 (7) 1.362 (9)

N2 - C11 1.360 (3) 1.361 (8) 1.359 (7) 1.370 (9)

N1 - C1 1.315 (3) 1.332 (8) 1.319 (8) 1.324 (9)

N2 - C10 1.327 (3) 1.321 (8) 1.314 (8) 1.328 (10)

C11 - C12 1.477 (4) 1.447 (8) 1.451 (9) 1.443 (10)

N1 - Ru1 - N2 80.0 (2) 79.5 (2)

N3 - C13 - N4 113.9 (3) 114.5 (6) 110.8 (5) 114.7 (7)

C13 - N3 - C5 105.9 (2) 105.7 (6) 107.6 (5) 106.3 (6)

C13 - N4 - C6 103.7 (2) 104.0 (6) 108.2 (5) 102.9 (6)

N3 - C5 - C6 105.3 (2) 104.8 (5) 107.8 (5) 104.7 (6)

N4 - C6 - C5 111.1 (2) 110.9 (6) 105.6 (5) 111.4 (6)

N1 - C12 - C11 117.2 (2) 115.1 (5) 117.1 (5) 115.6 (6)

N2 - C11 - C12 117.4 (2) 117.4 (5) 116.4 (5) 116.0 (6)

C1 - N1 - C12 117.6 (2) 118.0 (5) 119.4 (5) 118.2 (6)

C10 - N2 - C11 117.2 (2) 117.2 (5) 117.9 (5) 118.5 (6)

Comparison of the N,N’-donor site in the ruthenium complex and in the respective pre-ligand eip

revealed only very slight (not in every case significant) changes in the corresponding distances and

angles, which are mainly located at the phenanthroline site.The tendency goes towardmore acute

N1-C11-C12 /N2-C12-C11 angles (e.g.∠eip
(N2,C12,C11) = 117.2(2)° ≥∠

Ru(eip)
(N2,C12,C11) = 115.1(0)°), shorter C12-

N1 / C11-N2 bond lengths (e.g. d eip
(N1-C12) = 1.353(3) Å < dRu(eip)

(N1-C12) = 1.386(7) Å) and longer C11-C12

distances (e.g. d eip
(C11-C12) = 1.477(4) Å > dRu(eip)

(C11-C12) = 1.447(8) Å) in the ruthenium complexes, which

is consistent with the changes that generally occur in such systems upon ruthenium coordination.
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As described for Ru(bbip),a transformation of the imidazolium salt into the corresponding

carbene derivatives of different metal centers is very important. For the subsequent use as starting

material in the transmetallation reactions, formation of the NHC-silver complex of Ru2(edip)

became interesting at this stage. In this context method C2 was applied, using Ag2O as base

for the transformation of the imidazolium salt into the corresponding metal-NHC complex (see

figure 123) as discribed for Ru(bbip).
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Figure 123: Preparation of the tetranuclear heterobimetallic silver NHC-complex of Ru2(edip).

To increase the driving force the chloride salt of Ru2(edip) was prepared. Counter ion exchange

of the [PF6]-salt of Ru2(edip) with (Bu)4NCl in acetone/ethyl acetate gave the corresponding

chloride salt in quantitative yield.The complexation reaction was carried out in dichloromethane.

After stirring Ru2(edip) and Ag2O in the presence of molecular sieves in dichloromethane for 16

hours, the solids were filtered off and the volatiles were removed from the remaining solution.

Analysis of the remaining solid gave clear evidence for a complete conversion into the

pure product [{(tbbpy)2Ru}2(µ-edip){AgCl}2]Cl4 (Ru2(edip)Ag2). The disappearance of the
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characteristic 1H-NMR-signal of the proton at the 2-position (see figure 119 on page 166) support

the proposed carbene complex formation.

An interesting observation is the splitting of the durene CH3-protons, which might be an

indication of the formation of chlorido bridges between the two silver ions which decreases the

degree of freedom in the durene moiety. Note: a similar effect was not observed in the related

compound by Hansen et al. 13C-NMR spectroscopy was not available at that time, so that the

shift of N-CH-N-carbon signal could not be used as indication for the NHC complexation.

Nevertheless, the transformation was further confirmed by detailed ESI-MS and MSn studies.

Four relevant fragment ions with fitting isotopic patterns were identified for Ru2(edip)Ag2 (m/z

= 1143.8 (25%, [M– 2Cl]2+), 751.1 (50%, [M– 3Cl]3+), 715.1 (50%, [M– 3Cl –Ag]3+), and 554.7

(100%, [M– 3Cl]4+)).

Finally, with the formation of the tetranuclear complex Ru2(edip)Ag2, an ideal starting material

was obtained. This compound contains already two ruthenium chromophores and can be used

to introduce a variety of catalyst centers by transmetalation reactions to obtain new oligonuclear

photocatalysts, as exemplary demonstrated by Hansen et al.[71]

3.4.4 Concluding Remarks

In conclusion it can be stated that a number of experiments were performedwhichmay lead to the

future development of new imidazophenanthroline containing catalyst systems. The attempts to

increase the already high quantum yields of the ruthenium bbip-complexes led to an unexpected

reactivities which resulted in the decomposition of the ligand system. Furthermore, it was tried to

change the electronic properties of the bridge, particularly of the electron storage capacity of the
3MLCT-involved LUMO. By the introduction of electron withdrawing bromine groups into the

ip-backbone, three new ligands were obtained. Finally, an extension of the bridge was performed

which allows for multiple chromophores and extended catalyst centers. With this ligand a the

resulting tetranuclear ruthenium/silver complexRu2(edip)Ag2 was prepared which can the easily

transformed into different photocatalysts according to previous results.

Hopefully, some of these findings will be useful to develop the next generation of intramolecular

photocatalysts on the way toward a sustainable method of the solar into chemical energy

conversion.
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4 Summary

Against the background of a worldwide increase of energy demand and simultaneous scarcity of

the fossil fuel resources, an increased utilization of solar energy is indispensable. In this scope,

the development of light driven catalysis might enable a direct conversion of solar energy into

storable chemical bond energy. Intramolecular photocatalysis represent a potential route toward

this aim. Therefore, a number of new ligands and metal complexes was prepared with the aim to

obtain heteronuclear JP ∼B ∼CK-type diads or polyads which comprise covalently liked subunits

with the following functionalities:

P: a {Ru(tbbpy)2}2+-type photocenter with well established photophysical and

electrochemical properties, serving as workhorse chromophore,

B: a variable bridging ligand such as phenphen, bbip or edip, which has to assure the

stability of the assembly and the electronic communication between the attached

metals, and

C: a catalytically activemetal complex such as {PdCl2}, {PtCl2}, {Rh(cod)Cl}, or even
{AgCl} for the catalytic redox processes.

These subunits may interact in a purposeful way to operate as supramolecular photocatalysts.

visible
light

photocenter catalysis center

2 SD 2 H+

H2

bridging ligand /
redoxmediator

electron
donor

electron
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2 SD
+
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The preparation, characterization, including structural, photophysical and electrochemical

analysis, of these complexes, their precursors and reference compounds was achieved. Based on

the comparison of the generated JP ∼B ∼CK-catalysts and reference compounds interpretations
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toward a structure-activity correlationwere possible. In addition, photocatalysis experiments with

respect to hydrogen evolution from water were performed with the complexes. Representative

control experiments and in-depth analysis were performed as well.

In detail, the following results were achieved:

1. A low temperature regime synthesis for the selective and efficient bromination of

phenanthrolines in the 5-, and 5,6-positions was developed (method L1) and applied to

1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline. The resulting phenanthroline

derivatives phenBr, phenBr2, Me2phenBr2, and Me2phenBr3 were prepared and fully

characterized, including X-ray analysis of all four potential ligands. Exploration of other

starting materials such as 4,7-diphenyl-1,10-phenanthroline was not successful but gave

important insights into the limitations of this new method for the preparation of precursors

for metalorganic coupling reactions.

2. Off the ligands phenBr and phenBr2, new complexes with a ruthenium core and additional

bipyridine-type ligands (Ru(phenBr), Ru(phenBr2), Ru(phenBr2)2, Ru(phenBr2)2Cl2,

and Ru(phenBr2)3) were prepared according to a modified literature procedure, so that

the two series of ruthenium complexes, [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4) and

[Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3), could be completed.
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The resulting complexes were characterized, especially with respect to the absorption and

emission behavior, electrochemical behavior and structural properties of the [Ru(L̂L)3]-type
compounds. Categorization and comparison with complexes known from literature gave

insights into the way in which the substitution pattern of the bromo substituents influences

the ground and excited state properties of the ruthenium complex. It was concluded that

the phenanthroline π*-LUMO is lowered in energy and that the metal centered oxidation

potential is shifted toward more positive values with increasing number of bromine atoms,

so that tripletMLCT emission involves predominantly that particular ligand centered orbital.

3. In a nickel mediated coupling reaction, the axial chiral, bisdentate ligand phenphen was

prepared from phenBr.Thereof, the newmono- and bridged binuclear ruthenium complexes

Ru(phenphen), Ru(phenphen)Ru and furthermore, the heterobinuclear JP ∼B ∼CK-type
platinum complex Ru(phenphen)Pt were prepared and characterized. The solid state

structures of phenphen and Ru(phenphen) were obtained and used to further support the

spectroscopic results.
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In particular, a detailed isomer analysis with NMR investigations was used to characterize

the inisochronical atropisomers of the ruthenium complexes which are caused by the

sterical hindrance of the rotation about the connecting single bond. In a time-dependent

NMR-investigation, using the obtained single crystals of ∆Ra/ΛSa-Ru(bbip), a half-life

of t1/2 = 1.99 h for the interconversion into the ∆Sa/ΛRa-configured rotamers could be

calculated. The absorption and emission behavior indicated the formation of the typical

[Ru3+(L̂L-)(L̂L)2]-type transient species and additional new photoproducts in the platinum

free complexes upon MLCT excitation.

4. The performed photophysical and electrochemical investigation indicated suitable redox

potentials and a fair electronic communication between the two phenanthroline moieties.

Thus, catalysis experiments with Ru(phenphen)Pt were performed under standard

conditions (in TEA:ACN:H2O / 6:3:1) and moderate amounts of hydrogen were detected.

The observed TONs are still low but lie in the same order of magnitude as observed for the

catalyst [(tbbpy)2Ru(µ-tpphz)PtCl2]2+. Furthermore, a water concentration dependency of

the activity with a maximum at 5% water content was observed.
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5. The development of new procedures was used to create the new ligands bip and the imid-

azolium salt bbip in a stepwise synthesis (method L2 and L3) from ip. Elemental analysis,

mass spectrometry, different NMR techniques and, importantly, X-ray diffraction were used

for the characterization of the new bridging ligand and its precursors. NMR studies were used

to trace and fit the H/D-exchange kinetics of the active N-CH-N-proton at the imidazolium

salt in methanol-d4, whereat a rate constant of k= 2.36×10-5 s-1 and a half life of t1/2 = 490min

were determined. The results indicate that bbip successfully combines two important ligand

motifs, a phenanthroline- and a NHC-type coordination sphere.

6. Off the ip-ligands, the series of mononuclear ruthenium complexes Ru(ip), Ru(bip), and

Ru(bbip), carrying the {Ru(tbbpy)2}2+-fragment, was prepared. The resulting complexes

were fully characterized, but particular attention was paid to solid state structural analysis,

absorption and emission behavior, and electrochemical behavior.
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According to X-ray analysis of the compounds, no significant influence of the imidazolium

sphere on the phenanthroline binding properties was found. However, the imidazole unit

displays similar changes as observed in ip, bip and bbip. Electrochemistry shows the typical

reversible behavior of ruthenium complexes but absorption and emission studies exhibit a

strong influence of the imidazolium system which possesses very high emission quantum

yields and far red-shifted emission wavelengths.

7. Different attempts to access the NHC-coordination sphere of bbip or Ru(bbip), including

deprotonation, complexation with [Mo(thf)(CO)5] or formation of the NHC⋅BEt3 adduct,
weremade. Finally, the preparation of the bridged complexRu(bbip)Ag succeeded according

to a modified literature procedure.

Using this precursor, the JP ∼B ∼CK-type dyads Ru(bbip)Rh and Ru(bbip)Pd were

exemplary prepared to demonstrate the potential of the carbene transfer agent. The

characterization, including X-ray analysis of Ru(bbip)Ag, detailed MS and MSn studies

as well as spectroscopic characterization of the bbip-bridged complexes was achieved. All

Ru(bbip)-complexes display properties of the well known Ru(bpy)3-moiety, like 1MLCT-
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absorption between 430 nm and 500 nm, but surprisingly with very strong 3MLCT-emission

between 600 nm and 700 nm and corresponding redox properties. The comparison of the

complexes with the ip-motif allowed conclusions about the orbital nature of the ligand.

8. Using with Ru(bbip)Pd, Ru(bbip)Rh and the reference compounds Ru(bbip)Ag and

Ru(bbip) a number of intramolecular catalysis experiments were performed.The determined

irradiation time and catalyst concentration dependencies of the hydrogen evolution prove

the activity of the palladium and rhodium complexes. Both dinuclear complexes may be

reviewed as tunable molecular photoredoxcatalysts. Interestingly, even the silver complex

showed some activity, whereat the referenceRu(bbip)was inactive. Control experiments with

intermolecular JP ∼B /CK-type systems of Ru(bbip) and [Pd(ACN)2Cl2] or [Rh(cod)2Cl]2
also showed light-driven hydrogen formation, but gave very different catalysis kinetics, when

compared to the intramolecular systems.
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9. A number of dynamic light scattering measurements was performed with the intramolecular

catalysts and the intermolecular control systems to evaluate the influence of the molecular

structure on colloid formation and catalysis. It was demonstrated thatRu(bbip)Pd complexes

act asmodel compounds for supramolecular photocatalysts, whilst in the case of Ru(bbip)Ag

(photographic process) and Ru(bbip)+ [Pd(ACN)2Cl2] (Pd-black) formation and growth of

particles was detected and a clear correlation between particle ripening and catalytic activity

was demonstrated.
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10. In a explorative investigation on the development of electron deficient compounds such

as Ru(bbip)3 or Ru(Br2bbip), the new ligands Br2ip, Br2bip, and Br2bbip were prepared.

However, application of standard procedures for the complexation resulted in both cases in

an unexpected reactivity of the ligand structure and, interestingly, yielded the compounds

Ru(bip)3 and Ru(Br2bip)3, as first indicated by NMR-analysis.

TheX-ray analysis of the latter exhibited similar properties to the relatedRu(bip). From these

results, an impression of the limitations of the ligand stability and the scope of the synthesis

of electron deficient complexes was received.

11. Starting from ip, the new ligands eip and edip were prepared, using methods developed for

the bbip synthesis, and fully characterized. With this development a bridging ligand with
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additional NN- and NHC-coordination sphere was obtained, opening up the access toward

multimetallic catalyst centers and extended light harvesting systems.

The x-structural analysis of edip exhibits a pre-organized NHC-NHC chelating sphere which

is suitable for multimetallic metal fragments with a diameter of roughly 0.6 nm. From the

ligands, the N,N’-coordinated {Ru(tbbpy)2}2+-type complexesRu(eip), andRu2(edip) could

be prepared and characterized, including X-ray analysis of Ru(eip). In a final exploratory

study the tetranuclear compound Ru2(edip)Ag2, containing the silver NHC moiety was

prepared and characterized by different NMR and MS analysis.

In general, the prepared phenanthroline and imidazophenanthroline ligands such as phenphen,

bbip or edip were found to be suitable starting materials for the further incorporation

into intramolecular photocatalytic systems. Especially the combination of azadiene and NHC

coordination spheres was found to be ideal for the design of stable molecular JP ∼B ∼CK-type
devices in which the catalytic center as well as the photocenter may be widely varied in terms of

metal fragment and co-ligand environment to even allow a change in the nature of the catalytic

reaction, which is driven by light.

There is to hope that these achieved results will pave the way for further research and development

and thus that possibly a contribution was made to the answer the energy problem of the future.
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5 Zusammenfassung

Mit demHintergrund eines weltweit ansteigenden Energiebedarfs bei gleichzeitiger Verknappung

der fossilen Energiereserven wird eine gesteigerte Nutzung der Solarenergie in Zukunft

unausweichlich werden. In diesem Zusammenhang könnte die lichtgetriebene Katalyse einen

Zugang für die direkte Umwandlung von Sonnenlicht in chemische Energie eröffnen. Die

intramolekulare Photokatalyse stellt dabei einen interessanten Weg in diese Richtung dar. Aus

diesem Grund wurde eine Anzahl von neuen Liganden und den resultierendenMetallkomplexen

hergestellt, mit dem Ziel zu heteronuklearen JP ∼B ∼CK-artigen Diaden oder Polyaden zu

gelangen, welche aus kovalent verbundenen Funktionseinheiten bestehen sollen. Dabei sollen die

folgenden drei Komponenten gezielt so zusammengestellt werden, dass ihre Einzelfunktionen im

Zusammenspiel als supramolekularer Photokatalysator fungieren:

P: ein {Ru(tbbpy)2}2+-artiges Photozentrum mit den bereits gut untersuchten und

bekannten photophysikalischen und elektrochemischen Eigenschaften, das als

Arbeitschromophor dient,

B: ein variabler Brückenligand wie zum Beispiel phenphen, bbip oder edip, welcher

die Stabilität derÜberstruktur und die elektronischeKommunikation zwischen den

gebundenen Metallzentren gewährleisten soll, sowie

C: ein katalyseaktives Metallkomplexfragment wie beispielsweise {PdCl2}, {PtCl2},
{Rh(cod)Cl} oder auch {AgCl} an dem der katalytische Redoxprozess abläuft.

sichtbares
Licht

Photozentrum Katalysezentrum

2 SD 2 H+

H2

Brückenligand /
Redoxvermittler

Elektronen-
donor

Elektronen-
akzeptor

2 SD
+

2 e-

CP B
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Die Herstellung, Charakterisierung und der Vergleich, inklusive struktureller, photophysi-

kalischer und elektrochemischer Analyse, einer Anzahl von Komplexen, ihrer Ausgangsver-

bindungen sowie geeigneter Referenzverbindungen wurde erreicht. Zusätzlich wurden

Experimente zur photokatalytischen Wasserstoffentwicklung aus Wasser mit den erzeugten

Komplexen durchgeführt. Ebenso wurden repräsentative Kontrollexperimente und zusätzliche

Analysen für ein tiefergehendes Verständnis durchgeführt. Auf dem Vergleich der hergestellten

Katalysatoren mit ausgewählten Referenzverbindungen beruhend, konnten dann einige

Interpretationen über die Struktur-Eigenschaftsbeziehungen abgeleitet werden. Im Einzelnen

wurden folgende Ergebnisse erreicht:

1. Eine bei niedrigen Temperaturen geführte Synthese für die selektive und effiziente Bromier-

ung von Phenanthrolinderivaten in der 5- und 5,6-Position wurde entwickelt und an

1,10-Phenanthrolin sowie 2,9-Dimethyl-1,10-phenanthrolin angewendet. Die resultierenden

Phenanthrolinderivate phenBr, phenBr2,Me2phenBr2, undMe2phenBr3 wurden hergestellt

und vollständig, inklusive der Röntgenstruktur- aufklärung aller vier potentiellen Liganden,

charakterisiert. Die Ausweitung dieser Methode auf andere Ausgangs- verbindungen wie

beispielsweise 4,7-Diphenyl-1,10-phenanthrolin gelang nicht, erbrachte allerdings wichtige

Einblicke in die Grenzen der neuen Methode zur Herstellung von Liganden, die später als

Ausgangsstoffe für metallorganisch katalysierte Kopplungs- reaktionen verwendet werden

können.

2. Von den genannten Liganden

phenBr und phenBr2 wurden die folgenden neuen Rutheniumkomplexe Ru(phenBr),

Ru(phenBr2), Ru(phenBr2)2, Ru(phenBr2)2Cl2 und Ru(phenBr2)3) mit Rutheniumkern
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und bipyridinartigen Coliganden anhand einer modifizierten Literaturvorschrift hergestellt,

sodass die zwei Serien von Komplexen, [Ru(tbbpy)2(phenBrm)]2+ (m= 0, 1, 2, 4) und

[Ru(tbbpy)3-n(phenBr2)n]2+ (n = 0, 1, 2, 3), vervollständigt werden konnten.

Die resultierenden Komplexe wurden eingehend charakterisiert. Dabei wurde besonderes

Augenmerk auf das Absorptions- und Emissionsverhalten, das elektrochemische Verhalten

sowie auf die strukturellen Eigenschaften der [Ru(L̂L)3]-artigen Verbindungen gelegt. Die

Charakterisierung und der Vergleich mit literaturbekannten Komplexen erbrachte wichtige

Einblicke in die Art und Weise, in der das Substitutionsmuster der Bromosubstituenten

den Grund- bzw. den angeregten Zustand der Rutheniumkomplexe beeinflusst. Es konnte

gefolgert werden, dass mit zunehmender Anzahl an Bromsubstituenten das Phenanthrolin-

lokalisierte π*-LUMO in seiner Energie erniedrigt wird und dass das metallzentrierte

Oxidationspotential zu positiveren Werten hin verschoben wird, sodass an der 3MLCT-

Emission hauptsächlich das jeweilige ligandzentrierte Orbital beteiligt ist.

3. In einer Nickel-vermittelten Reaktion wurde der achsenchirale, bisdentate Ligand phenphen

aus dem zuvor genannten phenBr hergestellt. Weiterhin wurden damit die neuen mono-

und dinuklearen unverbrückten und verbrückten Rutheniumkomplexe Ru(phenphen),

Ru(phenphen)Ru, sowie der heterodinukleare JP ∼B ∼CK-artige Platinkomplex

Ru(phenphen)Pt hergestellt und anschließend charakterisiert, wobei Kristallstrukturen von
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phenphen und Ru(phenphen) gewonnen werden konnten, die die spektroskopischen Daten

weiter unterstützen.

Insbesondere wurde eine detaillierte Isomerenanalyse mittels NMR-Untersuchungen

angewendet, um die inisochronen Atropisomere der Rutheniumkomplexe zu untersuchen,

die aufgrund der sterischen Hinderung der Rotation um die verbrückend

wirkende Einfachbindung hervorgerufen werden. Anhand eines zeitabhängigen NMR-

Experiments von erhaltenen Einkristallen der∆Ra/ΛSa-Ru(phenphen)-Isomere konnte eine

Halbwertszeit von t1/2 = 1.99 h für die Umwandlung in die∆Sa/ΛRa-konfigurierten Rotamere

errechnet werden. Weiterhin konnte aus dem Absorptions- und Emissionsverhalten die

Ausbildung einer typischen [Ru3+(L̂L–)(L̂L)2]-artigen transienten Spezies, sowie neuer

Photoprodukte aus den platinfreien Komplexen beobachtet werden.

4. Da aus den photophysikalischen und elektrochemischen Untersuchungen eine begrenzte

elektronische Kommunikation zwischen den beiden Phenanthrolinsphären, sowie eine

günstige Lage der Redoxpotentiale der enthaltenen Metallzentren abgeleitet werden konnte,

wurden Katalyseexperimente mit Ru(phenphen)Pt und Ru(phenphen) unter geeigneten

Bedingungen (in TEA:ACN:H2O / 6:3:1) durchgeführt. Bei Katalysenmit dem Platinkomplex

wurden beträchtliche Mengen an Wasserstoff detektiert, die zwar gering erscheinen, jedoch

in der gleichen Größenordnung wie mit dem Katalysator [(tbbpy)2Ru(µ-tpphz)PtCl2]2+

liegen. Zusätzlich konnte aus den entsprechenden Messungen eine auf Wasser bezogene

Konzentrations- abhängigkeit der Katalyse beobachtet werden, wobei die optimale

Katalyseaktivität mit 5%Wasserzusatz erreicht wurde.
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5. Durch die Entwicklung einer neuen Vorschrift wurden bip und das Imidazoliumsalz bbip

in einer stufenweise verlaufenden Synthese (method L2 und L3) aus ip

hergestellt. Elementaranalyse, Massenspektrometrie, verschiedene NMR-Techniken und, am

wichtigsten, Röntgendiffraktometrie wurden angewendet, um den neuen Brückenliganden

sowie dessen Vorgängermoleküle zu untersuchen. Anhand von NMR-Kinetikstudien konnte

der H/D-Austausch des aktiven N-CH-N-Protons des Imidazoliumsalzes in Methanol-

d4 verfolgt und gefitted werden, dabei ergab sich eine Geschwindigkeitskonstante von

k= 2.36×10-5 s-1 und eine Halbwertszeit für den Austausch von t1/2 = 490min. Die erhaltenen

Resultate untermauern die Folgerung, dass es sich bei bbip um die erfolgreiche Kombination

der beiden wichtigen Ligandmotive, einer Phenanthrolin- und einer NHC-Koordinations-

sphäre, handelt.

6. Aus der Serie von ip-artigen Liganden wurde die Serie von mononuklearen Ruthenium-

komplexenRu(ip), Ru(bip), undRu(bbip) hergestellt, die alle das bekannte {Ru(tbbpy)2}2+-
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Fragment tragen. Die resultierenden Komplexe wurden vollständig charakterisiert, wobei

das besondere Augenmerk auf der Festkörper- strukturanalyse, dem Absorptions- und

Emissionsverhalten, sowie dem elektrochemischen Verhalten lag.

Aus der Strukturanalyse dieser Verbindungenwurde geschlossen, dass durch den Einfluss der

Imidazolsphäre keine signifikantenUnterschiede an der Chelatsphäre der Phenanthrolinseite

auftreten, wohingegen die Imidazoleinheit selbst ähnliche Veränderungen durchläuft, wie

die zuvor untersuchten Liganden ip, bip und bbip. Elektrochemische Untersuchungen

belegten das Ruthenium-typische reversible Verhalten, wohingegen Absorption- und

Emissionsstudien einen starken Einfluss des Imidazoliumsystems aufzeigen, wobei sehr hohe

Emissionsquanten- ausbeuten und stark rotverschobene Emissionswellenlängen gefunden

wurden.

7. Eine Anzahl von Versuchen wurde unternommen, um zu einer Koordination der

NHC-Seite von bbip oder Ru(bbip) zu gelangen, wobei weder Deprotonierung, noch

Komplexierungmit [Mo(thf)(CO)5] oder Bildung des NHC⋅BEt3 Addukts erfolgreich waren.
Durch die gezielte Modifikation einer Literaturvorschrift (method C2) gelang schließlich

die Herstellung des verbrückten Komplexes Ru(bbip)Ag. Durch die Verwendung dieses

Precursors als Carbentransferagens wurden die JP ∼B ∼CK-artigen Diaden Ru(bbip)Rh

und Ru(bbip)Pd hergestellt, um das Anwendungspotential der Silberverbindung in

Transmetallierungsreaktionen exemplarisch zu zeigen.
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Die Charakterisierung, inklusive detaillierter MS und MSn-Untersuchungen, spektrosko-

pischer Messungen der bbip- verbrückten Komplexe, sowie der Röntgenstrukturanalyse von

Ru(bbip)Ag wurde erzielt. In allen Ru(bbip)-Komplexen wurden die Eigenschaften der gut

bekannten Ru(bpy)3-Untereinheit, wie beispielsweise 1MLCT-Absorption zwischen 430 und

500 nm wiedergefunden, allerdings mit sehr starken 3MLCT-Emissions- banden zwischen

600 und 700 nm, sowie den korrespondierenden Redoxeigenschaften. Dabei erreichen die

Quantenausbeuten Werte bis zu 39%.

8. Eine Anzahl von intramolekularen Katalyseexperimenten wurde mit Ru(bbip)Pd und

Ru(bbip)Rh, sowie den Referenzverbindungen Ru(bbip)Ag und Ru(bbip) durch-

geführt. Aus den ermittelten, auf die Bestrahlungszeit bezogenen sowie auf die Katalysator-

konzentration bezogenenAbhängigkeiten derWasserstoffentwicklung konntenBelege für die

Aktivität der Palladium- und der Rhodiumkomplexe erhalten werden, mit denen weiterhin

das Konzept einer molekularen Photoredoxkatalyse gestützt wird. Interessanterweise wurde

sogar beim Silberkomplex eine gewisse Katalyseaktivität festgestellt, wohingegen die Referenz

Ru(bbip) inaktiv blieb. Anhand der durchgeführten Kontrollexperimente mit inter-

molekularen JP ∼B /CK-artigen Systemen, das heißt mit Ru(bbip) als Chromophor

und [Pd(ACN)2Cl2] oder [Rh(cod)2Cl]2 als Katalysator konnte ebenfalls lichtgetriebene

Wasserstoffbildung demonstriert werden, wobei deutlich verschiedene Katalysekinetiken im

Vergleich zu den intramolekularen Systemen gefunden wurden.
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9. Mit Hilfe eine Reihe von dynamischen Lichtstreuungsmessungen an den intramolekularen

Katalysatoren sowie den intermolekularenKatalyselösungen konnte der Einfluss derMolekül-

struktur auf die Kolloidbildung und auf die Katalyse genau untersucht werden. Es wurde

gezeigt, dass der Komplex Ru(bbip)Pd als Modellverbin- dung für supramolekulare Photo-

katalysatoren angesehen werden kann, während im Fall von Ru(bbip)Ag (photographischer

Prozess) und vonRu(bbip)+ [Pd(ACN)2Cl2] (Pd-Kolloid) deutlicheMengen anwachsenden

Partikeln gebildetwerden, wobei eine klareKorrelation zwischenPartikelwachstumund inter-

molekularer Katalyseaktivität demonstriert wurde.
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10. Im Rahmen von Vorversuchen zur Entwicklung von besonders elektronenarmen Verbin-

dungen wie Ru(bbip)3 oder Ru(Br2bbip) wurden die Liganden Br2ip, Br2bip, und Br2bbip

hergestellt. Die Anwendung der Standardvorschrift zur Komplexierung führte in beiden
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Fällen zur Zersetzung der Ligandsysteme und führte somit zu den Verbindungen Ru(bip)3
und Ru(Br2bip)3, wie anhand von NMR-Untersuchungen gezeigt wurde.

Anhand der Röntgenstrukturanalyse von Ru(Br2bip)3 konnte gezeigt werden, dass diese

Verbindung ähnliche Eigenschaften zum verwandten Ru(bip) aufweist. Diese Resultate

konnten genutzt werden, um einen Eindruck der Grenzen dieser Synthesemethode und der

Ligandstabilität im elektronenarmen Komplex zu gewinnen.

11. Um Zugang zu multimetallischen Katalysezentren und erweiterten Lichtsammeleinheiten

zu schaffen wurde ein Ligand mit einer, um die ip-Einheit erweiterten Koordinationssphäre

entwickelt. Ausgehend von ip wurden die neuen Liganden eip und edip unter Verwendung

der zuvor entwickelten Vorschriften hergestellt und anschließend vollständig charakterisiert.

Wie die Röntgenstrukturanalyse von edip zeigt, enthält dies eine vorgebildete NHC-

NHC Koordinationstasche, die für größere mehrkernige Metallzentren mit einem Durch-

messer von etwa 6,0Å geeignet ist. Weiterhin wurden aus den Liganden die N,N’-

koordinierten {Ru(tbbpy)2}2+-enthaltenden Komplexe Ru(eip) und Ru2(edip) hergestellt

und anschließend charakterisiert, wobei eine Kristallstruktur von Ru(eip) erhalten wurde.
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In einer abschließenden Machbarkeitsstudie wurde der Vierkernkomplex Ru2(edip)Ag2
hergestellt, welcher die Ag-NHC-Carbentransfereinheit aufweist. Die Charakterisierung

erfolgte mittels verschiedener NMR- und MS-Methoden.

Im Allgemeinen konnten die neuen Imidazophenanthrolinliganden, wie beispielsweise bbip

oder edip, als geeignete Ausgangsstoffe für die weitere Entwicklung von intramolekularen

Mehrkernsystemen identifiziert werden. Besonders die Kombination einer Azadien- mit einer

Carbenkoordinationssphäre ist ideal für das Design von stabilen molekularen JP ∼B ∼CK-artigen
Katalysatoren, in denen sowohl Katalysezentrum als auch Photozentrum in weiten Grenzen

variiert werden können. Der besonders einfache Austausch von Metallfragmenten, sowie der

Coligandumgebung am NHC-System, erlaubt in Zukunft möglicherweise sogar die Veränderung

der Natur der jeweiligen katalytischen Reaktion, welche durch Licht angetrieben wird.

Es bleibt zu Hoffen, dass die hier erzielten Resultate den Weg für zukünftige Forschungen ebnen,

und so möglicherweise ein Beitrag zur Lösung des zukünftigen Energieproblems geliefert werden

konnte.
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6 Experimental Section

General

Steady state UV/vis absorption spectroscopy:

Steady state absorption spectra were obtained using a Perkin Elmer Lambda2 UV/vis two-beam

spectrophotometer using a slit width of 2 nm and a scan rate of 480 nm/min. All spectra were

recorded using a quartz glass cuvette of 10⋅10mm.

Steady state emission spectroscopy:

Steady state emission spectra were recorded using a Jasco FP-6200 spectrofluorometer and a

Horiba JobinYvon FluoroMax-3 spectrometer using a slit width of 2 nm for excitation and emission

and an integration time of 0.5 s. The studies were performed in a 10⋅10mm quartz glass cuvette.

Time resolved emission studies:

Emission lifetimes were determined via time correlated single photon counting (TCSPC) on a

Horiba Jobin Yvon FlouroLog-3 emission spectrometer with a Hamamatsu MCP photomultiplier

(R3809U-58). For excitation a laser diode (NanoLED-405L, 403 nm, pulse width = 200 ps,

maximum of repetition rate 100 kHz) was used. All measurements were performed in a 10⋅10mm

quartz glass cuvette.

Electrochemistry:

Electrochemical data were obtained by cyclic voltammetry using a conventional single-compart-

ment three-electrode cell arrangement in combination with a potentiostat “AUTOLAB®, eco

chemie”. As auxiliary and reference electrode two Pt wires were used; working electrode:

glassy carbon. The measurements were carried out in anhydrous and argon saturated

acetonitrile. Tetrabutylammonium hexafluorophosphate (c(TBAPF6) = 0.1M) was used as

supporting electrolyte at ambient temperature (20 (±5)°C). All potentials are referenced to

ferrocene/ferrocenium (E(Fc/Fc+) = 0.00V).
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Spectroelectrochemistry:

Spectroelectrochemical experiments were carried out using a HEKA Elektronik Potentiostat/

Galvanostat PG284 and a SPECORD S600 Analytic Jena spectrophotometer. The measurements

were performed in a homemade three neck cell (d = 0.3 cm) with a platinum gauze (working

electrode), a platinum wire (counter electrode) versus a silver wire (pseudo reference electrode)

under argon atmosphere. Tetrabutylammonium hexaflourophosphate (c(TBAPF6) = 0.2M) was

used as supporting electrolyte.

Femtosecond transient absorption spectroscopy:

Femtosecond transient absorption studies were performed with an amplified Ti/sapphire laser

system (Model CPA 2101, Clark-MXR Inc. - output: 775 nm, 1 kHz and 150 fs pulse width) in

the TAPPS - Transient Absorption Pump / Probe System - Helios from Ultrafast Systems. That is

referred to as a two-beam setup where the pump pulse of 480 nm and 200 nJ, generated out of a

NOPA - noncollinear optical parametrical amplifier, Clark MRX Inc. - is used as excitation source

for transient species and the delay of the probe pulse is exactly controlled by an optical delay rail

of 3.3 ns. As probe beam (white light continuum), a small fraction of 775 nm pulses stemming

from the CPA laser system was focused by a 50mm lens into a 3mm thick sapphire disc. Finally,

the changes in optical density (∆A) are measured against the wavelength in both visible and near-

infrared regions. The transient spectra were recorded in a 2mm quartz glass cuvette.

Nanosecond transient absorption spectroscopy:

For nanosecond transient absorption experiments the samples were excited with the output of the

second harmonic (532 nm) coming from a Nd:YAG laser. Moreover, pulse widths of less than 5 ns

with energies of up to 7mJwere selected. The optical detectionwas based on a pulsed Xenon lamp,

a monochromator, a photomultiplier tube or a fast silicon photodiode with a 1 GHz amplification

and a 500MHz digital oscilloscope. The laser power of every laser pulse was registered using a

bypath with a fast silicon photodiode. The experiments were performed in a 5⋅10mm quartz glass

cuvette.
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Elemantal Analysis

Elemental analysis was performed on a Euro Vector Euro EA.

Mass spectrometry:

The mass spectra were recorded with a SSQ 710 spectrometer (Finnigan MAT). Electrospray

ionization spectra were recorded with aMAT 95 XL (Thermoquest-Finnigan MAT).

NMR-Experiments:

TheNMR spectra were recorded on a Bruker 400MHz spectrometer and on a Jeol EX-270 DELTA

and no a Jeol EX-400 DELTA spectrometer (270/400MHz), respectively.

Crystal-structure Analysis:

The intensity data for the compounds (Ru(bbip)) and (Ru(bbip)Ag) were collected on a Nonius

Kappa-CCD diffractometer, using graphite-monochromated Mo-Kα radiation (λ = 0.71069Å,

graphite monochromator) at -140(2)°C. Data were corrected for Lorentz and polarization

effects, but not for absorption effects.[199, 200] The structures were solved by direct methods

(SHELXS [10.1107/S0108767390000277]) and refined by full-matrix least squares techniques

against Fo2 (SHELXL-97).[201, 202, 203] The hydrogen atoms were included at calculated positions

with fixed thermal parameters. All nonhydrogen atoms were refined anisotropically.[201, 202, 203] XP

(SIEMENS Analytical X-ray Instruments, Inc.) was used for structure representations. The data is

freely available on the internet: www.ccdc.cam.ac.uk/data_request/cif (or can be required under

the following address in Great Britain: Cambridge Crystallographic Data Centre, 12 Union Road,

GBCambridge CB21EZ; Fax:(+44)1223-336-033; or deposit@ccdc.cam.ac.uk): Ru(bbip) (CCDC-

765499), Ru(bbip)Ag (CCDC-796734),

Dynamic Light Scattering Experiments

DLS data were obtained, using a Delsa Nano C particle analyzer from Beckman Coulter. As light

source dual 30mW laser diodes with a wavelength of 658 nm were used. All measurements were

performed at 25°C. For the viscosity a value of 0.58mPas and for the refractive index a value of
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1.3648 was determined for the catalytic mixture. All size calculations were done with standard

calculation methods. All measurements were performed applying 10×10mm quartz SUPRASIL

inert cuvettes fromHellma. All experiments were repeated with three identical solutions to ensure

the reproducibility of the data. Before measuring, the cuvettes were cleaned with aqua regia,

concentrated ammonia, distilled water and filtrated acetonitrile (syringe filter pore size 0.2µm).

After this procedure every cuvette was filled with filtrated acetonitrile and investigated by DLS to

exclude any remaining particles. All solvents were degassed with nitrogen before use.The catalytic

mixtures consisted of 1.2ml acetonitrile (with the photo catalyst), 0.6ml Et3N and 0.2ml water.

The final concentration of the photo catalyst in the catalytic solution was 50µM. This mixture

was filled into the cuvettes through a syringe filter (pore size 0.2µm) under inert conditions. All

solutions were measured immediately. In the beginning every solution was investigated without

irradiation. Each experiment was repeated several times. Between themeasurements the solutions

were irradiated with the previously used led-arrays (λ = 470 nm).

Catalysis Experiments

The photohydrogen production experiments were carried out using a home-built air-cooling

apparatus for maintaining room temperature (22°C) and constant irradiation of the sample. 5

ml GC vials (diameter = 13mm, VWR) with a known headspace of 3ml and a headspace/solution

ratio of 3/2 were used as reaction vessels. Directly before the irradiation experiments, fresh stock

solutions of the respective samples with solvent mixtures of acetonitrile, triethylamine and water

in a 6:3:1 ratio (v:v:v) and with the desired concentrations of ruthenium complex (10µM, 50µM,

100µM and 250µM) were prepared in the dark. Then, the required number of GC vials was

charged in the dark and under nitrogen atmosphere. For the dynamic light scattering experiments

inert cuvetts (10×10mm, quartz glass) were used instead of GC vials. Subsequently, the samples

were irradiated with a LED-array (54 LEDs, exit angle 15°, luminous intensity 14.0 cd each, from

Innotas Elektronik GmbH, Zittau, Germany) at a wavelength of (λ = 470 nm, suitable to excite

in the MLCT-band). After the irradiation, 100µl gas samples were drawn from the headspace

and injected immediately into the GC apparatus. The concentration of evolved hydrogen was

quantified by headspace GC on aGCMS-QP2010S chromatograph from Shimadzu, with a thermal

conductivity detector and aRtx®-5MS (fused silica) column (length 30m, 0.25mm inner diameter,
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layer thickness 0.25µm) with nitrogen as carrier gas (purity 99.999%) an oven temperature of

70°C, a flow rate of 22.5ml/min, a detector temp. of 220°C, and a pressure of 102.1 kPa were

used. The GC was calibrated by mixing different volumes of pure hydrogen (0-100%) together

with nitrogen into a Schlenk vessel. The obtained signal (retention time for H2, tR = 1.95min)

was plotted against the calibration curve and multiplied accordingly to receive the total produced

hydrogen content in the headspace. Irradiation experiments and hydrogen measurements were

repeated several times for each reaction time (between 2 and 12 h) and catalyst concentration.

Used Chemicals:

All chemicalswere reagent grade andwere usedwithout any further purification. Where necessary

all manipulations were carried out by using Schlenk techniques under argon atmosphere. Prior

to use dichloromethane was distilled over CaH2. Acetonitrile was dried and distilled over mole

sieves A 4, methanol was dried and distilled overmagnesium. THF and toluene and triethylamine

were dried over KOH and distilled over Na/benzophenone.

Prepared Chemicals

The following chemicals were prepared according to literature procedures: [Ru(tbbpy)2Cl2][120],

[Ru(tbbpy)3][PF6]2[120], [Ru(tbbpy)2(5-chloro-1,10-phenanthroline)][PF6]2[116], 4,4’-ditertbuthyl-

2,2’-bipyridine[204, 205], 1,10-Phenanthrolin-5,6-dione[206], [Ru(COD)Cl2][128], 3,8-dibromo-1,10-

phenanthrolin-5,6-dione[126], bisbromethyldurene[207], NiCl2(PPh3)2[208], [Pd(Cl)2(ACN)2][208],

[Mo(CO)5(thf)][183],

6.1 Synthesis of the Organic Ligands

6.1.1 Bromination of Phenanthrolines -method L1

To a round bottom flask, charged with 4.0 g of the phenanthroline derivate, 30ml of fuming

sulfuric acid (65%) were added with cooling (0°C). Then a big stir bar was carefully added to the

mixture and the neck of the flask was closed with a watch glass. After stirring complete dissolution

(∼2 hours stirring at 10°C) of the phenanthroline an the desired amount of bromine was added

to the solution in one portion and the mixture was stirred until the brown color of the bromine
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disappeared. Heating of the mixture (60°C) may accelerate the reaction. After the reaction time

themixture was poured onto 200ml of ice and was neutralized (pH 7) with ammonia.The formed

precipitate was extracted with chloroform. Subsequently, the combined organic layers were dried

over Na2SO4 and the solvent was removed under vacuum. Then, the crude was dissolved in hot

toluene and insoluble impurities were filtered off. After removal of the solvent purification was

achieved by recrystallization from (ethanol, chloroform or ether/methylene chloride). Drying in

high-vacuum yielded the desired brominated product.

6.1.2 1-Substitution of 1H-Imidazoles -method L2

Under argon atmosphere the desired amount of the desired 1H-imidazole (∼1.5 g) and 1.1

equivalent of sodium hydride (60% in paraffin) were suspended in 50ml of dry DMF. After

stirring and/or sonicating for several minuted the solids were completely reacted and no further

gas evolution or sold material was observed. Then one equivalent of halogenated compound was

added and the solution. Stirring for several hours at room temperature yielded a tinted solution.

After the reaction time, the solvent was removed completely under vacuum and the residue

was redissolved in chloroform and washed with water. The combined organic phases were dried

over Na2SO4. After removal of the organic solvent the crude product was purified by column

chromatography using chloroform and silica gel 60 as phase system.

6.1.3 3-Substitution of 1-Substituted 1H-Imidazoes -method L3

One equivalent (∼2.0 g) of the desired 1-substituted 1H-imidazoe was dissolved in a mixture of

DMF and an excess of the halogenated compound. The solution was heated to 60-120°C for

one to sixteen hours to form a viscous yellow precipitate, which was collected after cooling and

was washed with toluene or petrol ether and diethyl ether. The crude product was purified by

recrystallization from hot toluene with a small amount of methanol to yield the 1,3-substituted

1H-imidazolium halide as cream colored solid. A combination of method L2 and method L3 is

possible for the prepatation of 1,3-homosubstituted 1H-imidazolium halides without intermediate

workup.
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6.1.4 5,6-Dibromo-1,10-phenanthroline - phenBr2

Following method L1, 30ml of fuming sulfuric acid (65%) were added with cooling to 4.0 g

(20.2mmol) of 1,10-phenanthroline hydrate. After the phenanthroline was completely dissolved (2

hours) an excess of bromine 1.7ml (33.3mmol) was added to the solution. Thismixturewas heated

to 60°C for two hours. This mixture was poured onto 200ml of ice after the reaction time. Upon

neutralization (pH 7) precipitate formed, which was extracted with chloroform. The combined

organic layers were dried over Na2SO4 and the solvent was removed under vacuum. Then the

crude was dissolved in hot toluene, the insoluble dark impurities were filtered of and the solvent

was removed under vacuum. Purification was achieved by recrystallization from chloroform.

After drying at high-vacuum the pure compoundwas obtained aswhite powder. Yield: 90% (6.7 g,

18.2mmol).

phenBr2

N

N

7
8
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Br

2

3

4

Br

1H-NMR (CDCl3, 400MHz): δ = 9.232 (dd, 2H(2/9), 3J = 4.4 Hz, 4J = 1.6 Hz),

8.778 (dd, 1H(4/7), 3J = 8.6Hz, 4J = 1.6Hz), 7.739 (dd, 1H(3/8), 3J = 8.6Hz, 3J = 4.4

Hz) ppm. 13C-NMR(CDCl3, 100MHz): δ = 150.92 (2C(2/9)), 145.09 (2C(10a/10b)),

137.56 (2C(4a/6a/9)), 128.74 (2C(4/7)), 125.27 (2C(5/6)), 124.60 (2C(3/8)) ppm. MS:

338m/z (100%, M+). elementary analysis: calc.: C: 42.64%, H: 1.79%, N:

8.29%, Br: 47.28% found: C: 37.95%, H: 2.71%, N: 8.22%, Br: 46.17%.

Crystals suitable for X-ray diffractionwere obtained from

chloroform. Crystal data for phenBr2: C12H6N2 ×CHCl3,

Mr = 2071.08 g/mol, colorless cuboid, size 0.05 × 0.05 ×
0.04mm3, monoclinic, space group P21/n (No. 14), a =

11.7492(4), b = 11.7577(4), c = 12.3256(4) Å, α = 90.000, β

= 118.106(2), γ = 90.000°, V = 1501.92Å3, T = -90(2)°C,

Z = 4, ρcalcd. = 2.023 g/cm3, µ(Mo-Kα) = 5.920 cm-1, F(000)

= 880, 10426 reflections in h(-15/15), k(-14/15), l(-16/15)

measured in the range 2.55° ≤ Θ ≤ 27.505°, completeness

Φmax = 99.6%, 3429 independent reflections, Rint = 0.0311, 3429 reflections with Fo > 4σ(Fo), 181
parameters, 0 restraints, Robs. = 0.0311, wR2

obs. = 0.0702, Rall = 0.0532, wR2
all = 0.0786, GOOF =

0.959, largest difference peak and hole: 0.572 / -0.487 e/Å3. The data file TT3789 includes the full

crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).
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6.1.5 5-Bromo-1,10-phenanthroline - phenBr

As described inmethod L1, 30ml of fuming sulfuric acid (65%) were added with cooling to 4.0 g

(20.2mmol) of 1,10-phenanthroline hydrate. After the phenanthrolinewas dissolved a slight excess

of bromine (0.6ml, 11.75mmol)was added to the solution in one portion.Upon stirring for 3 hours

at room temperature the reaction mixture turned colorless due to the complete consumption of

bromine. The reaction was not stopped until 16 hours later by pouring the solution on 250ml on

ice and neutralization (pH 5) with ammonia. Extraction with small amounts of chloroform drying

of combined organic phases overNa2SO4 yielded a crude after removal of the solvent. Redissolving

in boiling toluene and hot filtration was used to remove impurities. A crude mixture of phenBr

and phenBr2 with small traces of the starting material phenanthroline was obtained. Purification

by column chromatography did not succeed. Starting material phenanthroline was removed by

stirring in ether over night and subsequent collection of the solids. Slow recrystallization from

chloroform yielded the pure compound (phenBr×CHCl3) as colorless crystals in good yields

(70%, 4.0 g, 14.1mmol). In this way as well suitable crystals for X-ray diffraction were obtained.

phenBr
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1H-NMR (CDCl3, 400MHz): δ = 9.1 (m, 2H(2/9)), 8.526 (dd, 1H(4), 3J = 8.4Hz,
4J = 1.6Hz), 8.034 (dd, 1H(7), 3J = 8.1Hz, 4J = 1.6Hz), 7.979 (s, 1H(6)), 7.624 (dd,

1H(3), 3J = 8.3Hz, 3J = 4.4Hz), 7.520 (dd, 1H(8), 3J = 8.1Hz, 3J = 4.3Hz) ppm.
13C-NMR (CDCl3, 100MHz): δ = 150.89, 150.68, 146.65, 145.67, 135.89, 135.06,

145.09, 129.64, 128.80, 124.00, 123.64, 120.78 ppm.

Crystals suitable for X-ray diffraction were

obtained from chloroform. Crystal data for phenBr:

C12H7N25×CHCl3, Mr = 378.47 g/mol, colorless crystal,

size 0.065×0.065×0.05mm3, monoclinic, space

group P21/n (No. 14), a = 6.9802(2), b = 20.3654(6), c =

9.8052(3) Å, α = 90.000, β = 92.768(2), γ = 90.000°, V

= 1392.23(7) Å3, T = -90(2)°C, Z = 4, ρcalcd. = 1.806 g/cm3,

µ(Mo-Kα) = 35.13 cm-1, F(000) = 744, 9838 reflections

in h(-9/9), k(-25/26), l(-12/10) measured in the range

2.00° ≤ Θ ≤ 27.48°, completeness Φmax = 99.8%, 3182 independent reflections, Rint = 0.0449, 2576

reflections with Fo > 4σ(Fo), 204 parameters, 0 restraints, Robs. = 0.0433, wR2
obs. = 0.1016, Rall =
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0.0583, wR2
all = 0.1080, GOOF = 1.052, largest difference peak and hole: 0.914/-0.486 e/Å3. The data

file TT3588 includes the full crystallographic data and can be obtained from Dr. Helmar Görls

(IAAC, FSU-Jena).

6.1.6 5,6-Dibromo-2,9-dimethyl-1,10-phenanthroline - phenMe2Br2

The title compound was prepared by the application of method L1. After dissolving 1.0 g

(4.9mmol) of 2,9-dimethyl-1,10-phenanthroline in 30ml of fuming sulfuric acid (65%) under

cooling 0.38ml (7.3 mmol) bromine were added. The emulsion was stirred over night at room

temperature and was poured on 45ml of ice after the reaction time. The mixture was neutralized

with ammonia (pH 7) and the formed precipitate was extracted with chloroform. Removal of the

solvent yielded the crude product. For the purification, recrystallization of the crude product form

ethanol, ether, methylenchlorid and other solvents did not succeed. In all cases a mixture of the

5,6-dibromo- (phenMe2Br2) and the 3,5,6-tribromocompound (phenMe2Br3) was obtained.

phenMe2Br2

N

N
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Br
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CH3
1H-NMR (CDCl3, 400MHz): δ = 8.43 (d, 2H(4/7), 3J = 8.6Hz), 7.41

(d, 2H(3/8), 3J = 8.6Hz), 2.83 (s, 6H(CH3)) ppm. 13C-NMR (CDCl3,

100MHz): δ = 150.92 (2C(2/9)), 145.09 (2C(10’/10”)), 137.56 (2C(4’/6’/9)),

128.74 (2C(4/7)), 125.27 (2C(5/6)), 124.60 (2C(3/8)) 25.60 (2C(CH3)) ppm.

MS (DEI): m/z = 338 (100%, M+)

Crystals suitable for X-ray diffraction were obtained from chloroform. Crystal data for

phenMe2Br2/phenMe2Br3: C14H10N2Br2 × 2CHCl3 andC13H10N2Br3 × 2CHCl3, Mr = 610.32 g/mol,

colorless cuboid, size 0.05×0.05×0.05mm3, monoclinic, space group P21/c (No. 14), a =
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9.2640(2), b = 16.4066(5), c = 14.7540(4) Å, α = 90.000, β = 107.931(2), γ = 90.000°, V =

2133.55(10) Å3, T = -90°C, Z = 4, ρcalcd. = 1.900 g/cm3, µ(Mo-Kα) = 46.87 cm-1, F(000) = 1186, 14976

reflections in h(-11/12), k(-21/20), l(-19/18) measured in the range 2.48° ≤Θ ≤ 27.48°, completeness

Φmax = 99.9%, 4882 independent reflections, Rint = 0.0629, 3740 reflections with Fo > 4σ(Fo), 247
parameters, 0 restraints, Robs. = 0.0388, wR2

obs. = 0.0954, Rall = 0.0571, wR2
all = 0.1031, GOOF =

1.041, largest difference peak and hole: 0.689 / -0.795 e/Å3. The data file TT3606 includes the full

crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.1.7 5,5’-Bis-1,10-phenanthroline - phenphen

To a well degassed solution of 2.86 g NiCl2⋅6H2O and 10.5 g PPh3 in 80ml DMF 787mg of zinc

powder were added in one potion. The resulting mixture was stirred for one hour under argon at

60°C forming a bright red precipitate. After the catalyst has formed 2.60 g of phenBr, dissolved

in 20ml of well degassed DMF was added. This mixture was stirred for 14 h at 60°C. After the

reaction time this mixture was poured into 180ml of aqueous ammonia (10%) with 8.0 g KCN

dissolved in it and was stirred for one hour at room temperature. The solids were filtered off and

redissolved in chloroform. After washing of the organic layers with water and drying withNa2SO4

heptanewas added to this solution. By the removal of chloroform from thismixture under vacuum

a precipitate formed. The crude material was filtered off and purified by chromatography using

deactivated (III) alumina and chloroform/hexane 1:3 as eluent. Yield: 650mg (1.81mmol, 18%) of

pale yellow powder. Recrystallization from ethanol yielded crystals suitable for X-ray diffraction.

N
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1H-NMR (CDCl3, 400MHz): δ = 9,260 (dd, 2H(2), 3J = 4.4Hz, 4J = 1.6Hz),

9.190 (dd, 1H(9), 3J = 4.4Hz, 4J = 1.6Hz), 8.274 (dd, 1H(4), 3J = 8.0Hz, 4J

= 1.6Hz), 7.907 (s, 1H(6)), 7.731 (dd, 2H(7), 3J = 8.0Hz, 4J = 1.6Hz), 7.694

(dd, 2H(3), 3J = 8.0Hz, 3J = 4.4Hz), 7.431 (dd, 1H(8), 3J = 8.0Hz, 3J =

4.4Hz) ppm. 13C-NMR (CDCl3, 100 MHz): δ = 150.89, 150.54, 146.25,

146.15, 136.05, 135.30, 134.49, 128.57, 128.09, 127.99, 123.58, 123.14 ppm.
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Crystals

suitable for X-ray diffraction were obtained

from ethanol/water. Crystal data for phenphen:

C24H14N4Ru× 2H2O, Mr = 394.42 g/mol, colorless

crystal, size 0.06×0.06×0.05mm3, monoclinic,

space group C2/c (No. 15), a = 16.979(3), b

= 11.113(2), c = 11.884(2) Å, α = 90.000, β =

121.35(3), γ = 90.000°, V = 1914.8(7) Å3, T = -

90°C, Z = 4, ρcalcd. = 1.368 g/cm3, µ(Mo-Kα) = 0.9 cm-1, F(000) = 824, 6270 reflections in h(-21/20),

k(-14/14), l(-15/15) measured in the range 3.51° ≤ Θ ≤ 27.47°, completeness Φmax = 98.6%, 2167

independent reflections, Rint = 0.0336, 1604 reflections with Fo > 4σ(Fo), 146 parameters, 0

restraints, Robs. = 0.0628, wR2
obs. = 0.1834, Rall = 0.0851, wR2

all = 0.0851, GOOF = 0.970, largest

difference peak and hole: 0.710/-0.202 e/Å3. The data file TT3698 includes the full crystallographic

data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.1.8 1H-Imidazo[4,5-f][1,10]phenanthroline - ip

In a round bottom flask 5.0 g (23.8mmol) of 1,10-phenanthrolindione, 6.7 g (47.6mmol) of

hexamine and 9.2 g (0.12mol) of ammonium acetate were suspended in 70ml of glacial acetic

acid. After refluxing the resultingmixture for twohours, the volatiles were removed under reduced

pressure. The resulting solid was dissolved in water and neutralized with ammonia. Stirring this

mixture over night yielded an off-white precipitate. The solid was filtered off, and washed twice

with water and dried under vacuum. Further purification was be achieved by recrystallization

from water. Yield: 4.45 g (20.2mmol, 85%) of a white powder.

N

N N

H
N

ip

1

2

3

4
5

6

7

8

9
10

11
1H-NMR (200MHz, CDCl3/CF3COOD/CD3OD): 9.28 (dd, 2H(4,11), 4J =

1.3Hz, 3J = 8.4Hz), 9.12 (dd, 2H(6,9), 4J = 1.3Hz, 3J = 5.0Hz), 8.87 (s,

1H(2)), 8.12 (dd, 2H(5,10), 3J = 5.0Hz, 3J = 8.4Hz) ppm. 13C-NMR (400MHz,

D2O/CF3COOD/KNO3) 145.27 (2C(6,9)), 141.55 (1C(2)), 133.33 (2C(5,10)), 132.84

(2C(7’,7”)), 126.56 (2C(3’,1”)), 125.59 (2C(4,11)), 119.67 (2C(3”,11’)) ppm. MS (DEI): m/z

= 220 (100%, M+), 193 (25%, [M-HCN]+). Elementary analysis (C13H8N4⋅2H2O): calc.: C: 60.93%,

H: 4.72%, N: 21.86%, meas.: C: 61.18%, H: 4.41%, N: 21.97%.
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Crystals suitable for X-ray diffraction were obtained

from diluted trifuoroacetic acid. Crystal data for ip:

[C13H8N4]+ × [CF3COO]-, Mr = 334.26 g/mol, colorless

cuboid, size 0.05×0.05×0.04mm3, monoclinic, space

group P11/n (No. 14), a = 13.6042(8), b = 6.9560(6), c =

16.6210(12) Å, α = 90.000, β = 111.634(4), γ = 90.000°, V

= 1462.06(19) Å3, T = -90(2)°C, Z = 2, ρcalcd. = 1.519 g/cm3,

µ(Mo-Kα) = 1.3 cm-1, F(000) = 680, 9652 reflections in h(-

17/17), k(-7/9), l(-21/21) measured in the range 2.64° ≤ Θ
≤ 27.45°, completeness Φmax = 99.3%, 3308 independent

reflections, Rint = 0.0508, 2023 reflections with Fo >
4σ(Fo), 248 parameters, 0 restraints, Robs. = 0.0669, wR2

obs. = 0.1695, Rall = 0.1152, wR2
all = 0.1971,

GOOF = 1.017, largest difference peak and hole: 0.403/-0.341 e/Å3. The data file TT3762 includes

the full crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

In the molecular structure of ip false-ordered fluorine atoms are omitted for clarity. Ellipsoids are

drawn at 70% probability. Selected bond length (Å) and angels (°):

6.1.9 1-Benzyl-1H-imidazo[4,5-f][1,10]phenanthrolin - bip

Following the general procedure according to method L2, 2.0 g (9.1mmol) of ip were

deprotonated with 523mg (13.1mmol) of sodium hydride (60% in paraffin) under argon

atmosphere in 10ml of dry DMF. Then 1.30ml (10.9mmol) of benzyl bromide were added to the

stirred sodium imidazolide solution. After the reaction time of three hours at room temperature

the solvent was removed completely under vacuum and the residue was redissolved in chloroform

and washed with water. The combined organic phases were dried over Na2SO4. Purification was

achieved by column chromatography using chloroform and silica gel 60 as phase system. Yield:

1.9 g (6.1mmol, 74%) of a colorless solid.
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1H-NMR (CDCl3, 400MHz): δ = 9.168 (dd, 2H(6,9), 3J = 4.6Hz, 4J =

1.6Hz), 9.039 (dd, 2H(9,6), 3J = 4.6Hz, 4J = 1.6Hz), 8.999 (dd, 2H(4,11),
3J = 8.2Hz, 4J = 1.6Hz), 8.191 (dd, 2H(11,4), 3J = 8.2Hz, 4J = 1.6Hz),

8.020 (s, 1H(2)), 7.729 (dd, 2H(5,10), 3J = 8.2Hz, 3J = 4.4Hz), 7.413 (dd,

2H(5,10), 3J = 8.2Hz, 3J = 4.4Hz), 7.3 (m, 3H(Ar)), 7.1 (m, 2H(Ar)), 7.3 (m,

3H(Ar)), 5.794 (s, 2H(-CH2)) ppm. 13C-NMR (CDCl3, 400MHz): δ = 149.00 (1C(6,9)), 148.06 (1C(9,6)),

144.68 (1C(3”,11’)), 144.15 (1C(11’,3”)), 143.54 (1C(2)), 137.67 (1C(3’,11”)), 134.99 (1C(C1-Ar)), 130.48 (1C(4,11)),

129.41 (2C(Ar)), 128.74 (1C(C4-Ar)), 128.58 (1C(11,4)), 126.00 (2C(Ar)), 124.38 (1C(11”,3’)), 124.35 (1C(7’,7”)),

123.68 (1C(5,10)), 122.59 (1C(10,5)), 119.58 (1C(7”,7’)), 51.29 (1C(CH2)) ppm.

Crystals suitable for X-ray diffraction were obtained

from methanol/water. Crystal data for bip: C20H14N4

× 1.5H2O, Mr = 337.38 gmol-1, colorless cuboid, size

0.06×0.04×0.04 mm3, triclinic, space group P1 (No. 2),

a = 11.2481(3), b = 12.1858(5), c = 12.4532(6) Å, α =

79.993(2), β = 86.406(2), γ = 85.159(2)°, V = 1672.95(11)

Å3, T = -90(2)°C, Z = 4, ρcalcd. = 1.339 gcm-3, µ (Mo-

Kα) = 0.88 cm-1, F(000) = 708, 11572 reflections in h(-

14/14), k(-15/14), l(-16/15) measured in the range 3.18° ≤
Θ ≤ 27.48°, completeness Φmax = 99.2%, 7621 independent

reflections, Rint = 0.0322, 5013 reflections with Fo > 4σ(Fo),
460 parameters, 0 restraints, Robs. = 0.0558, wR2

obs. = 0.1143, Rall = 0.1012, wR2
all = .01331, GOOF =

1.006, largest difference peak and hole: 0.256 / -0.326 eÅ-3. The data file TT3947 includes the

full crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena). In

the ORTEP representation of the molecular structure of bip solvent molecules were omitted for

clarity. Ellipsoids were drawn at 70% probability level.

6.1.10 1,3-Dibenzyl-1H-imidazo[4,5-f][1,10]phenanthrolinium bromide - bbip

As described inmethod L3, 2.00 g (6.44mmol) of bipwere dissolved in 10ml of benzyl bromide.

The solution was stirred at 120°C for one hour, forming a viscous yellow precipitate. Then 5ml of

DMF were added to the stirred solution. After two more hours at 120°C a light yellow precipitate
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was formed. The crude was allowed to cool down, the precipitate was filtered off and was washed

twice with diethyl ether. The crude product was purified by recrystallization from toluene with a

small amount of methanol. Yield: 2.44 g (4.96mmol, 77%) of a white solid. (The crude product

of bip is also a suitable educt for this reaction.)

N
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Ar Ar

ArCH2
1H-NMR (CD3OD, 270MHz): δ = 9.61 (s, 1H(2)), 9.21 (dd, 2H(6/9), 3J =

4.6Hz, 4J = 1.4Hz), 9.06 (dd, 2H(4/11), 3J = 8.6Hz, 4J = 1.5Hz), 7.97 (dd,

2H(5/10), 3J =4.6Hz, 3J =8.6Hz), 7.46 (m, 10H(ph)), 6.37 (s, 2H(CH2)) ppm;
1H-NMR (CDCl3, 400MHz): δ = 11.945 (s, 1H(2)), 9.283 (dd, 2H(6/9),
3J = 4.4Hz, 4J = 1.6Hz), 8.555 (dd, 2H(4/11), 3J = 8.5Hz, 4J = 1.6Hz),

7.685 (dd, 2H(5/10), 3J = 8.5Hz, 3J = 4.4Hz), 7.40 (m, 10H(ph)), 6.456 (s, 2H(CH2)) ppm; 13C-NMR

(CDCl3, 100MHz): δ = 150.64 (2C(6/9)), 143.64 (3C(2//7’/7”)), 134.54 (2C(4/11)), 133.55 (2C(tC-ph)),

130.83 (4C(2/6-ph)), 130.49 (2C(4-ph)), 128.76 (4C(3/5-ph)), 127.64 (2C(3’/11”)), 126.28 (2C(5/10)), 120.10

(2C(3”/11’)), 55.21 (2C(CH2)) ppm;

Crystals suitable forX-ray diffractionwere obtained

from hot toluene/water after cooling. Crystal

data for bbip: [C27H21N4]+[Br]- × 2H2O, Mr =

517.42 gmol-1, colorless crystal, size 0.05 × 0.04

× 0.04 mm3, triclinic, space group P-1 (No. 2),

a = 13.9804(8), b = 14.0396(6), c = 14.3866(9) Å,

α = 65.191(2), β = 74.784(3), γ = 72.977(3)°,

V = 2419.0(2) Å3, T = -140°C, Z = 4, ρcalcd. =

1.421 gcm-3, µ (Mo-Kα) = 17.31 cm-1, F(000) =

1064, 16704 reflections in h(-15/18), k(-18/15), l(-

16/18) measured in the range 2.47° ≤ Θ ≤ 27.45°,

completeness Φmax = 98.2%, 10849 independent reflections, Rint = 0.0682, 6120 reflections with

Fo > 4σ(Fo), 612 parameters, 0 restraints, Robs. = 0.0919, wR2
obs. = 0.2339, R2all = 0.1632, wR2

all =

0.2788, GOOF = 1.036, largest difference peak and hole: 2.448 / -1.054 eÅ-3. The data file TT3958

includes the full crystallographic data and can be obtained from Dr. Helmar Görls (IAAC,

FSU-Jena). In the ORTEP representation of the molecular structure of bbip solvent molecules

were omitted for clarity. Ellipsoids were drawn at 50% probability level.
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6.1.11 Attempted Synthesis of the triethylborane adduct of

1,3-dibenzyl-1H-imidazo[4,5-f][1,10]phenanthroline-2-ylidene - bbipBEt3

For the synthesis, 0.41ml of a 1M solution of HLiB(Et)3 were added to a stirred solution of

100 mg bbip in 20ml of dry tetrahydrofuran under argon atmosphere at -80°C. Upon addition

a darkening of the solution toward yellow was observed. The temperature was raised to room

temperature within 12 hours after the reaction time of 20 minutes at -80°C. After removal of

the solvent and dying under high vacuum 1H-NMR spectra were recorded in dry chloroform-d

and dry acetonitrile-d3. It was observed that the formed product is not sensitive to air. According

to the obtained NMR-spectra it could be concluded that the hydrogenated product was formed.

Indicators are signals for the A-, B-, C-protons which refer to the symmetric ligand, a signal which

refers to the D-position with an peak area of two protons at 4.7 ppm and themissing characteristic

triplet and quartet signals for the ethyl groups at ∼1 ppm.
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1H-NMR (CDCl3, 400MHz): δ = 8.97 (d, 2H(6/9), 3J = 3.6Hz), 8.35 (dd,

2H(4/11), 3J = 8.3 Hz, 4J = 1.0 Hz), 7.62 (dd, 2H(5/10), 3J = 4.5 Hz, 3J = 8.3 Hz),

7.31 (m, 10H(Ar)), 4.76 (s, 2H(2)), 4.25 (d, 2H(CH2), 2J = 23.7 Hz), 4.19 (d,

2H(CH2), 2J = 26.0 Hz) ppm. 1H-NMR (CD3OD, 400MHz): δ = 8.91 (dd,

1H(6/9), 3J = 4.4Hz, 4J = 1.6 Hz), 8.36 (dd, 2H(4/11), 3J = 8.3 Hz, 4J = 1.6 Hz),

7.64 (dd, 2H(5/10), 3J = 8.3 Hz, 3J = 4.3 Hz), 7.29 (m, 6H(Ar)), 7.20 (m, 4H(Ar)), 4.69 (s, 2H(2)), 4.13 (s,

4H(CH2)) ppm.

6.1.12 1-Ethyl-1H-imidazo[4,5-f][1,10]phenanthroline - eip

Under argon atmosphere 1.3 g (5.9mmol) of ip and 260mg (6.49mmol) of sodium hydride (60%

in paraffin) were suspended in 50ml of dry DMF as described in method L2. After stirring

and sonicating for 30min the imidazolide anion was completely dissolved and no further gas

evolution was observed. Then 440µl (5.9mmol) of bromoethane were added and the solution

was stirred for three more hours at room temperature. After the reaction time the solvent was

removed completely under vacuum and the residue was redissolved in chloroform and washed

with water. The combined organic phases were dried over Na2SO4. After removal of the solvent

the crude product was purified by column chromatography using chloroform and silica gel 60 as

phase system. Yield: 1.43 g (5.8mmol, 98%) of a colorless solid.
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1H-NMR (400MHz, CDCl3/DMF): 9.116 (dd, 2H(6/9), 3J = 4.2Hz, 4J =

1.4Hz), 8.929 (dd, 1H(4), 3J = 8.0Hz, 4J = 1.6Hz), 8.488 (dd, 1H(11), 3J =

8.2Hz, 4J = 1.4Hz), 7.959 (s, 1H(2)), 7.675 (dd, 1H(5), 3J = 8.0Hz, 4J = 4.4Hz),

7.649 (dd, 1H(10), 3J =8.0Hz, 3J =4.4Hz), 4.611 (q, 2H(CH3), 3J =7.2Hz), 1.655

(t, 3H(CH2), 3J = 7.2Hz) ppm. 13C-NMR (100MHz, CDCl3/DMF): 148.82

(1C(6)), 147.85 (1C(9)), 144.76 (1C(7”)), 144.10 (1C(7’)), 141.98 (1C(2)), 137.55 (1C(3’)), 130.09 (1C(4)),

128.15 (1C(11)), 124.29 (1C(1’)), 123.70 (1C(11”)), 123.48 (1C(5)), 122.54 (1C(10)), 119.75 (1C(3”)), 42.79

(1C(CH3)) ppm.

Crystals suitable for X-ray diffraction were obtained from

hot toluene. Crystal data for eip: C6H12N4, Mr = 1.419 g/mol,

colorless crystal, size 0.05×0.05×0.05mm3, triclinic, space

group P1 (No. 2), a = 7.9463(5), b = 9.0538(.), c =

17.1468(16) Å, α = 103.419(4), β = 97.861(5), γ = 99.828(5)°,

V = 1162.13(17) Å3, T = -90(2)°C, Z = 4, ρcalcd. = 1.419 g/cm3,

µ(Mo-Kα) = 0.89 cm-1, F(000) = 520, 7840 reflections in h(-

10/9), k(-11/1), l(-22/20) measured in the range 1.24° ≤ Θ

≤ 27.45°, completeness Φmax = 96.2%, 5114 independent

reflections, Rint = 0.0476, 2556 reflections with Fo > 4σ(Fo),
345 parameters, 0 restraints, Robs. = 0.0653, wR2

obs. = 0.1379, Rall = 0.1634, wR2
all = 0.1718, GOOF

= 0.982, largest difference peak and hole: 0.418/-0.278 e/Å3. The data file TT3766 includes the

complete crystallographic data and can be obtained fromDr. HelmarGörls (IAAC, FSU-Jena).

Ellipsoids are drawn at 70% probability in the molecular structure of eip. Selected bond length

(Å) and angels (°):

6.1.13 3,3’-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis-(1-ethyl-1H-

imidazo[4,5-f][1,10]phenanthrolin-3-ium) dibromide - edip

According to the general procedure, described in method L3, 200mg (8005µmol) of eip and

130mg (405µmol) of bisbromethyldurene were dissolved in 50ml of DMF. The reaction mixture

was stirred for 60 h at 80°C. Already after 24 h a bulky was precipitate formed. This precipitate
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was collected after cooling and washed with ether to give 163mg (200µmol, 50%) of the desired

product as white off-white solid. Recrystallization from D2O yielded suitable crystals for X-ray

diffraction.
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1H-NMR (D2O, 400MHz): δ = 9.71 (d, 2H(6/9-ip), 3J

= 8.7Hz), 9.31 (m, 6H(4-ip,6/9-ip,11-ip)), 9.04 (s, 2H(2-ip)),

8.36 (dd, 2H(5/10-ip), 3J = 5.0Hz, 3J = 8.4Hz), 8.30 (dd,

2H(5/10-ip), 3J = 5.1Hz, 3J = 8.4Hz), 6.29 (s, 4H(CH2-Ar)),

4.92 (q, 4H(CH2), 3J = 7.0Hz), 2.25 (s, 12H(CH3-Ar)),

1.57 (t, 6H(CH2), 3J = 7.2Hz) ppm. 13C-NMR (D2O,

100MHz): δ = 147.05 (2C(4/11-ip)), 140.07 (2C(2-ip)), 137.20 (2C(6/9-ip)), 136.73 (4C(2,3,5,6-Ar)), 136.63

(2C(4/11-ip)), 136.07 (2C(6/9-ip)), 128.97 (2C(1,4-Ar)), 126.72 (2C(5/10-ip)), 126.40 (2C(5/10-ip)), 126.03

(2C(7’/7”-ip)), 125.63 (2C(7’/7”-ip)), 120.01 (2C(3”/11’-ip)), 119.46 (2C(3”/11’-ip)), 118.80 (2C(3’/11”-ip)), 113.00

(2C(3’/11”-ip)), 50.64 (2C(CH2-Ar)), 45.97 (2C(CH2)), 15.67 (2C(CH3-Ar)), 14.03 (2C(CH3)) ppm. MS: (FAB)

m/z = 812 (5%, [M+2Br]+), 737 (80%, [M+Br]+), 655 (30%, [M]+), 407 (60%, [M-eip]+), 249 (100%,

[eip]+).

Crystals suitable for X-ray diffraction

were obtained from D2O. Crystal

data for edip: [C42H40N8]2+[Br−]2
×9H2O, Mr = 1014.23 g/mol, colorless

crystals, size 0.05×0.05×0.04 mm3,

monoclinic, space group P21/n (No.

14), a = 14.988(3), b = 20.766(4), c =

16.172(3) Å, α = 90.00), β = 116.51(3),

γ = 90.00°, V = 4504.2(16) Å3, T = 20°C, Z = 4, ρcalcd. = 1.496 g/cm3, µ(Mo-Kα) = 19.22 cm-1, F(000) =

2100, 30434 reflections in h(-19/17), k(-25/26), l(-16/20) measured in the range 2.51° ≤ Θ ≤ 27.52°,
completeness Φmax = 98.6%, 10221 independent reflections, Rint = 0.1049, 5526 reflections with Fo
> 4σFo , 565 parameters, 0 restraints, Robs. = 0.0829, wR2

obs. = 0.2074, R2all = 0.1598, wR2
all = 0.2421,

GOOF = 1.028, largest difference peak and hole: 3.239/-1.511 e/Å3. The data file TT3999 includes

the full crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

In the molecular structure of edip. Hydrogen atoms (except H12a and H28a), solvent molecules

and anions are omitted for clarity. Ellipsoids are drawn at 70% probability.
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6.1.14 5,10-Dibromo-1H-imidazo[4,5-f][1,10]phenanthroline - Br2ip

In a round bottom flask 368mg (1.0mmol) of 3,8-dibomo-1,10-phenanthrolindione, 280mg

(2.0mmol) of hexamine and 385mg (5.0mol) of ammonium acetate were suspended in 10ml

of glacial acetic acid. After refluxing the resulting mixture for two hours, the volatiles were

removed under reduced pressure. The resulting solid was dissolved in a small amount of water

and neutralized with ammonia. Stirring this mixture over night yielded an off-white precipitate.

The solid was filtered off, and washed twice with ethanol and ether and was dried under vacuum.

Yield: 265mg (700µmol, 70%) of a light yellow powder.

N

H
NN

N

2

4
5

6

9
10

11

Br2ip

Br

Br

1H-NMR (400MHz CDCl3/CF3COOD): δ = 12.78 (s, 1H(NH)), 9.36 (d, 1H(A),
4J = 2.0Hz), 9.34 (d, 1H(A), 4J = 2.0Hz), 9.11 (d, 1H(C), 4J = 2.1Hz), 8.90 (s,

1H(D)), 8.37 (d, 1HC, 4J = 2.1Hz) ppm. 1H-NMR (400MHz, DMSO-d) δ = 9.06

(d, 2H(A), 4J = 2.3Hz), 9.00 (d, 2H(C), 4J = 2.3Hz), 8.51 (s, 1H(D)) ppm.

6.1.15 1,3-Dibenzyl-5,10-dibromo-1H-imidazo[4,5-f][1,10]phenanthrolinium bromide -

Br2bbip

According to method L2, 250mg of Br2ip and 55mg of sodium hydride (60% in paraffin) were

suspended in 15ml of dry DMF and were reacted for 30 minutes in the ultrasonic sound bath

until the imidazolide was dissolved. Then, 200µl of benzylbromide were added and the reaction

mixturewas stirred for two hours. After the reaction the typical color change fromdark brown into

a light brownwas observed and 300µl of benzylbromidewere added according tomethodL3. One

NMR-sample was taken inbetween and analyzed. Without isolation of the intermediately formed

monoalkylated product, the mixture was stirred over night at 80°C.The formed yellow precipitate

(product) was collected and washed with ether. Complete removal of the volatiles of the organic

phase in high vacuum gave additional fraction.The residue was dissolved in chloroform, filtrated

and washed with water in an extraction funnel. And the combined organic layers were dried with

Na2SO4. Removal of the solvent gave a yellow powder. Overall yield 57% (mg, µmol) with respect

to Br2ip.
1H-NMR (400MHzDMSO-d6, intermediately formedBr2bip) δ = 9.11 (d, 1H(A), 4J = 2.4Hz), 9.06
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(d, 1H(A), 4J = 2.4Hz), 9.02 (d, 1H(C), 4J = 2.1Hz), 8.63 (d, 1H(C), 4J = 2.2Hz), 7.95 (s, 1H(D)), 7.32

(m, 3H(Ar)), 7.15 (d, 2H(Ar), J = 7.2Hz), 6.10 (s, 1H(CH2)) ppm. 1H-NMR (400MHz methanol-d4,

Br2bbip) δ = 9.76 (s, 1H), 9.15 (d, 2H(A), 4J = 2.0Hz), 8.94 (d, 2H(C), 4J = 2.0Hz), 7.46 (m, 10H(Ar)),

6.32 (s, 4H(CH2)) ppm.

6.2 Synthesis of theMetal Complexes

6.2.1 Synthesis of [Ru(L̂L)2(L̂L′)]2+-type complexes -method C1

One equivalent (∼ 50-300mg) of the cis-[Ru(L̂L)2Cl2] compound and one equivalent of the

desired ligand L̂L′ were dissolved in 100ml of a mixture of ethanol/water (4:1 / v:v). This mixture

was refluxed in the microwave for 60-300 minutes with a power of 150W. Ethanol was removed

after cooling to precipitate impurities from the remaining aqueous solution. After filtration,

9 equivalents of NH4PF6 were added. The formed precipitate was collected after stirring for

30 minutes and was washed with water several times. Purification was either achieved by

recrystallization from mixtures of acetone, acetonitrile or water, or by column chromatography

with mixtures of acetonitrile/sat. solution of KNO3/water. To remove water from the product, it

was dissolved in dichloromethane, dried with Na2SO4 and filtered. After removal of the solvent

under vacuum pure product compound [Ru(L̂L)2(L̂L′)][PF6]2 was obtained. Yield: (70-95%)

6.2.2 Synthesis of [Ag(NHC)X]-type complexes from imidazolium salts -method C2

Under argon atmosphere one equivalent (200µmol) of the imidazolium halogenide, (110µmol) of

silver(I) oxide, and 2 g of drymolecular sieves were suspended in 25ml of dry dichloromethane

(acetonitrile for insoluble compounds). This mixture was stirred in the dark for 16 hours at room

temperature. After the reaction time, the remaining solids were removed by filtration through

oven dried celite.The celite was washed with dry dichloromethane or acetonitrile. A pure product

[Ag(NHC)X] was obtained after removal of the solvent under reduced pressure. Yield: (∼90%) of

a powder, sensitive to air, moisture and possibly light.
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6.2.3 Transmetallation of [Ag(NHC)X]-type complexes -method C3

Under argon atmosphere one equivalent (e.g. 100µmol) of [Ru(tbbpy)2(µ-bbip)AgCl]Cl2 and one

equivalent of the starting complex for the transmetallation reaction were dissolved in 20ml of dry

dichloromethane. After stirring for 2-16 hours at room temperature a colorless precipitate was

formed.The solid was removed by filtration through oven dried celite after the reaction time.The

celite was washed with dry dichloromethane or acetonitrile to obtain remaining product. Finally

the solvent was removed completely under vacuum. The product was obtained as a red powder

which decomposes under air. Yield: (∼95%).

6.2.4 [Ru(tbbpy)2(phen-5-Br)][PF6]2 - Ru(phenBr)

According to method C1, 664mg (936µmol) of [Ru(tbbpy)2Cl2] and 355mg (936µmol) of

phenBr were reacted in the microwave for 90 minutes in 125ml of ethanol/water. After cooling,

ethanol was removed and precipitated impurities were filtered off. Then 916mg (5.62mmol)

NH4PF6 were added and the formed precipitate was filtered collected and was washed with water.

Purification was achieved by recrystallization from acetone/water by slow evaporation. This

yielded also crystals suitable for X-ray diffraction. After removal of water the pure Ru(phenBr)

was obtained as red powder. The yield is 1.07 g (898µmol, 96%).

Ru(phenBr)

N

NN

N

N

N

Ru2+
6

4
3

2
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7

3-bpy 5-bpy

6-bpy
3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

Br

1H-NMR (CD3CN, 400MHz): δ = 8.79 (dd, 1H(4), 3J = 8.2Hz,
4J = 1.2Hz), 8.61 (s, 1H(6)), 8.51 (dd, 1H(7), 3J = 8.2Hz, 4J =

1.2Hz), 8.50 (m, 2H(3-bpy)), 8.46 (m, 2H(3’-bpy)), 8.11 (dd, 1H(2), 3J

= 4.8Hz, 4J = 0.8Hz), 8.07 (dd, 1H(9), 3J = 4.6Hz, 4J = 1.2Hz),

7.83 (dd, 1H(3), 3J = 8.4Hz, 3J = 5.2Hz), 7.67 (dd, 2H(6-bpy),
3J = 6.0Hz, J = 3.0Hz), 7.45 (ddd, 2H(5-bpy), 4J = 1.6Hz, 4J

= 1.8Hz, 3J = 5.8Hz), 7.38 (dd, 2H(6’-bpy), 3J = 5.8Hz, 3J =

4.2Hz), 7.21 (m, 2H(5’-bpy)), 1.43 (d, 18H(t-Bu’), J = 1.0Hz), 1.35

(s, 18H(t-Bu)) ppm. 13C-NMR (CD3CN, 100MHz): δ = 163,73 (2C(4-bpy)), 163,59 (2C(4’-bpy)), 158.05

(2C(2-bpy)), 157.76 (2C(2’-bpy)), 154.00 (1C(2)), 153.67 (1C(9)), 152.28 (2C(6’-bpy)), 152.06 (2C(6-bpy)), 149.73

(1C(10”)), 148.45 (1C(10’)), 137.05 (1C(4)), 136.52 (1C(7)), 132.08 (1C(6)), 131.89 (1C(6’)), 131.44 (1C(4’)),

127.67 (1C(3)), 127.61 (1C(8)), 125.64 (2C(5-bpy)), 125.45 (2C(5’-bpy)), 122.72 (1C(5)), 122.53 (2C(3-bpy)),

122.44 (C(3’-bpy)), 36.36 (2C(7’-bpy)), 36.27 (2C(7-bpy)), 30.52 (3C(8’-bpy)), 30.44 (3C(8-bpy)) ppm.
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Crystals suitable for X-ray diffraction were

obtained from acetonitrile/water. Crystal data

for Ru(phenBr): [C48H55N6BrRu]2+[PF6]−2
× 2CH3CN, Mr = 1269.01 g/mol, red-brown

cuboid, size 0.06×0.06×0.05mm3, triclinic,

space group P1 (No. 2), a = 12.5680(3), b =

13.9694(4), c = 16.9912(4) Å, α = 70.946(1), β

= 75.702(1), γ = 89.332(2)°, V = 2724.56(12) Å3,

T = -90°C, Z = 2, ρcalcd. = 1.547 g/cm3, µ(Mo-Kα) =

11.65 cm-1, F(000) = 1292, 19983 reflections in

h(-16/15), k(-18/16), l(-22/21) measured in the

range 2.37° ≤ Θ ≤ 27.49°, completeness Φmax

= 99.1%, 12387 independent reflections, Rint = 0.0376, 8826 reflections with Fo > 4σ(Fo), 699

parameters, 0 restraints, Robs. = 0.0605, wR2
obs. = 0.1585, Rall = 0.0951, wR2

all = 0.1786, GOOF =

1.024, largest difference peak and hole: 2.767/-1.715 e/Å3. The data file TT3690 includes the full

crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.2.5 [Ru(tbbpy)(phen-5,6-Br2)][PF6]2 - Ru(phenBr2)

300mg (423µmol) of [Ru(tbbpy)2Cl2] and 143mg (423µmol) phenBr2 were reacted in the

microwave according tomethod C1 in 60ml of ethanol/water for 90 minutes. After cooling and

removal of ethanol impurities were filtered off. Then 415mg (2.54mmol) NH4PF6 were added to

precipitate the desired product. Purification was achieved by recrystallization from acetone/water

by slow evaporation. This yielded also crystals suitable for X-ray diffraction. Water was removed

by dissolving the crude product in dichloromethane and drying with Na2SO4 and removal of

the precipitate and solvent. The yield was 466mg (398µmol, 90%) of pure Ru(phenBr2) as red

powder.
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Ru(phenBr2)
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CH3-bpy
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1H-NMR (CD3CN, 400MHz): δ = 8.87 (dd, 2H(4/4’), 3J =

8.6Hz, 4J = 1.2Hz), 8.50 (d, 2H(3-bpy), 4J = 1.8Hz), 8.45 (d,

2H(3’-bpy), 4J = 1.8Hz), 8.12 (dd, 2H(2/2’), 3J = 5.3Hz, 4J =

1.2Hz), 7.81 (dd, 2H(3/3’), 3J = 8.6Hz, 3J = 5.2Hz), 7.67 (d,

2H(6-bpy), 3J = 6.2Hz), 7.45 (dd, 2H(5-bpy), 3J = 6.1Hz, 4J =

2.0Hz), 7.42 (d, 2H(6’-bpy), 3J = 6.0Hz), 7.50 (dd, 2H(5’-bpy), 3J =

6.1Hz, 4J = 2.0Hz), 1.43 (s, 18H(t-Bu’)), 1.35 (s, 18H(t-Bu)) ppm.
13C-NMR (CD3CN, 100MHz): δ = 163.82 (2C(4-bpy)), 163.67

(2C(4’-bpy)), 157.95 (2C(2-bpy)), 157.69 (2C(2’-bpy)), 154.14 (2C(2/9)), 152.36 (2C(6’-bpy)), 152.02 (2C(6-bpy)),

148.68 (2C(10’/10”)), 138.08 (2C(4/7)), 131.96 (2C(4’/6’)), 128.31 (2C(3/8)), 127.22 (2C(5,6)), 125.67 (2C(5-bpy)),

125.44 (2C(5’-bpy)), 122.57 (2C(3-bpy)), 122.47 (C(3’-bpy)), 36.36 (2C(7’-bpy)), 36.27 (2C(7-bpy)), 30.50

(3C(8’-bpy)), 30.43 (3C(8-bpy)) ppm. MS: 1120.9 m/z (100%, {M-PF6}+), 1120.9 m/z (10%, {M-PF6-

Br}+).

Crystals suitable for X-ray diffraction were

obtained from acetone/water. Crystal data

for Ru(phenBr2): [C48H54N6Br2Ru]2+[PF6]−2
× 2CH3COCH3, Mr = 1381.96 g/mol, red-orange

crystal, size 0.04×0.04×0.04mm3, triclinic,

space group P1 (No. 2), a = 10.5859(2), b =

11.7274(3), c = 24.0080(7) Å, α = 90.444(1), β

= 94.113(2), γ = 92.976(2)°, V = 2968.59(13) Å3,

T = -90°C, Z = 2, ρcalcd. = 1.546 g/cm3, µ(Mo-Kα) =

17.46 cm-1, F(000) = 1400, 20454 reflections in

h(-13/13), k(-15/14), l(-31/28) measured in the

range 2.05° ≤ Θ ≤ 27.47°, completeness Φmax

= 98.1%, 13329 independent reflections, Rint = 0.0362, 10002 reflections with Fo > 4σ(Fo), 728

parameters, 0 restraints, Robs. = 0.0507, wR2
obs. = 0.1164, Rall = 0.0797, wR2

all = 0.1317, GOOF =

1.011, largest difference peak and hole: 1.029/-0.718 e/Å3. The data file TT3422 includes the full

crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).
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6.2.6 [Ru(phenBr2)2Cl2] - Ru(phenBr2)Cl2

For this reaction, 280mg (1.00mmol) of [Ru(COD)Cl2]n and 676mg (2.00mmol) of phenBr2
were suspended in 50ml of dry DMF and heated for two hours at 150W in the microwave.

After cooling, the solvent was removed. The remaining solid was dissolved in a small amount

of chloroform heated to reflux very short. Addition of ethanol and recrystallization in the cold

yielded a black precipitate. Removal of the sideproduct Ru(phenBr2)3 was be achieved via

extraction of the methylene chloride solution with water and by column chromatography with

acetone/DMF. After removal of the solvent 400mg (470µmol) of a black and almost insoluble

powder were obtained (Yield = 47%). 1H-NMR (CD2Cl2, 400MHz): δ = 10.550 (d, 2H(2/9), 3J =

4.2Hz), 9.696 (d, 2H(2/9), 3J = 5.2Hz), 8.837 (d, 4H(4/7), 3J = 8.4Hz), 8.124 (dd, 2H(2/9), 3J = 4.2Hz,
3J = 8.4Hz), 7.887 (dd, 2H(2/9), 3J = 5.2Hz, 3J = 8.4Hz) ppm.

Crystals suitable for X-ray diffraction were

obtained from dichloromethane. Crystal data for Ru(phenBr2)Cl2:

[C24H12N4Cl2Br4Ru]× 3CH2Cl2, Mr = 1101.76 g/mol, black crystal,

size 0.06×0.06×0.03mm3, monoclinic, space group C2/c (No. 15),

a = 18.1042(8), b = 16.7210(13), c = 14.0302(9) Å, α = 90.000, β =

125.740(3), γ = 90.000°, V = 3447.4(4) Å3, T = -90°C, Z = 4, ρcalcd.
= 2.123 g/cm3, µ(Mo-Kα) = 57.39 cm-1, F(000) = 2108, 11467 reflections

in h(-23/22), k(-21/21), l(-14/18) measured in the range 1.93° ≤ Θ ≤
27.46°, completeness Φmax = 99.5%, 3929 independent reflections,

Rint = 0.0634, 2688 reflections with Fo > 4σ(Fo), 200 parameters, 0

restraints, Robs. =0.0468, wR2
obs. =0.1075, Rall =0.0834, wR2

all =0.1232,

GOOF = 1.040, largest difference peak and hole: 0.981/-0.738 e/Å3.

Thedata file TT3609 includes the full crystallographic data and can be obtained fromDr. Helmar

Görls (IAAC, FSU-Jena).

6.2.7 [Ru(phenBr2)2(tbbpy)][PF6]2 - Ru(phenBr2)2

Following method C1, 105mg (124µmol) of Ru(phenBr2)2Cl2 and 33,2mg (124µmol) of tbbpy

were reacted in the microwave for 180 minutes in 100ml of ethanol/water. After cooling,

ethanol was removed and dark precipitated impurities were filtered off. Then, 121mg (720µmol)
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of NH4PF6 were added and the formed precipitate was collected and washed with water.

Purification was achieved by column chromatography using acetonitrile/water and subsequent

recrystallization from acetonitrile/water. Careful washing of the obtained crystals with very small

amounts of methylene chloride yielded pure product. This yielded as well crystals suitable for X-

ray diffraction. After removal of water, the pure Ru(phenBr2)2 was obtained as red powder. The

yield was 17mg (12.5µmol, 10%).
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1H-NMR (CD3CN, 400MHz): δ = 8.93 (dd, 2H(4/4’), 3J =

8.8Hz, 4J = 0.8Hz), 8.83 (dd, 2H(4/4’), 3J = 7.6Hz, 4J = 0.8Hz),

8.49 (d, 2H(3-bpy), 4J = 1.8Hz), 8.21 (dd, 2H(2/2’), 3J = 5.3Hz, 4J

= 0.8Hz), 7.93 (dd, 2H(2/2’), 3J = 5.2Hz, 4J = 0.8Hz), 7.87 (dd,

2H(3/3’), 3J = 8.8Hz, 3J = 5.3Hz), 7.62 (dd, 2H(3/3’), 3J = 7.6Hz,
3J = 5.2Hz), 7.48 (d, 2H(6-bpy), 3J = 6.0Hz), 7.23 (dd, 2H(5-bpy),
3J = 6.1Hz, 4J = 2.0Hz), 1.37 (s, 18H(t-Bu)) ppm. 13C-NMR

(CD3CN, 100MHz): δ = 164.14 (2C(4-bpy)), 157.82 (2C(2-bpy)),

154.81 (2C(2/9)), 154.53 (2C(2/9)), 152.68 (2C(6’-bpy)), 148.72 (2C(10’/10”)), 148.49 (2C(10’/10”)), 138.58

(2C(4/7)), 138.45 (2C(4/7)), 132.05 (2C(4’/6’)), 132.00 (2C(4’/6’)), 128.36 (2C(3/8)), 128.18 (2C(3/8)), 127.30

(2C(5,6)), 127.21 (2C(5,6)), 125.51 (2C(5-bpy)), 122.65 (2C(3-bpy)), 36.35 (2C(7-bpy)), 30.47 (3C(8-bpy)) ppm.

MS (ESI): 1190.5 m/z (100%, {M-PF6}+), 522.8 m/z (60%, {M-2PF6}2+).

Crystals suitable for X-ray diffraction were

obtained from acetonitrile/water. Crystal data for

Ru(phenBr2)2: [C42H36N6Ru]2+[PF6]−2 ×CH3CN,

Mr = 1376.47 g/mol, red-brown crystal, size 0.05

× 0.05× 0.04mm3, triclinic, space group P1 (No. 2),

a = 12.0674(4), b = 13.6818(4), c = 16.1755(4) Å,

α = 97.260(2), β = 93.727(2), γ = 98.202(2)°,

V = 2612.73(13) Å3, T = -90(2)°C, Z = 2, ρcalcd.
= 1.750 g/cm3, µ(Mo-Kα) = 35.02 cm-1, F(000) =

1348, 19732 reflections in h(-15/15), k(-17/17), l(-

20/20) measured in the range 2.60° ≤ Θ ≤ 27.45°,
completeness Φmax = 99.3%, 11863 independent
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reflections, Rint = 0.0364, 8038 reflections with Fo > 4σ(Fo), 659 parameters, 0 restraints, Robs.

= 0.0545, wR2
obs. = 0.1422, Rall = 0.0935, wR2

all = 0.1618, GOOF = 1.032, largest difference peak and

hole: 1.730 / -0.919 e/Å3. The data file TT3727 includes the full crystallographic data and can be

obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.2.8 [Ru(phenBr2)3][PF6]2 - Ru(phenBr2)3

For this reaction 131mg (468µmol) of [Ru(COD)Cl2]n and 474mg (1.40mmol) of phenBr2 were

heated in a mixture of ethanol/water over night at reflux and afterwards for two hours in the

microwave (150W). After removal of the solvent and the inwater insoluble side products, NH4PF6
was added. Purification was achieved using column chromatography in acetonitrile/water.

Recrystallization from acetonitrile gave the desired product in high purity. Yield: 17%, 109mg,

31.2µmol. 1H-NMR (CDCl3, 400MHz): δ = 8.876 (dd, 6H(4/7), 3J = 8.2Hz, 4J = 1.2Hz), 8.526 (dd,

1H(2/9), 3J = 5.6Hz, 4J = 1.2Hz), 8.034 (dd, 1H(3/8), 3J = 8.8Hz, 3J = 5.2Hz) ppm. 13C-NMR (CDCl3,

100MHz): δ = 155.14 (6C(4/7)), 148.49 (6C(10’/10”)), 138.80 (6C(2/9)), 131.99 (6C(4’/6’)), 128.21 (6C(3/7)),

127.21 (6C(5/6)) ppm. MS: (ESI) m/z = 1206.2 (100%, [M-PF6]+).

Crystals suitable for X-ray diffraction were

obtained from acetonitrile/water. Crystal data

for Ru(phenBr2)3: [C36H18N6Br6Ru]2+[PF6]−2
× 1.5 CH3CN, Mr = 1394.13 g/mol, red-brown

cuboid, size 0.06×0.05×0.05mm3, hexagonal,

space group P31c (No. 163), a = 18.4621(4), b

= 18.4621(4), c = 21.0210(5) Å, α = 90.000, β

= 90.000, γ = 120.000°, V = 6205.1(2) Å3, T

= -90°C, Z = 4, ρcalcd. = 1.492 g/cm3, µ(Mo-Kα) =

42.11 cm-1, F(000) = 2666, 41120 reflections in

h(-21/23), k(-23/21), l(-27/26) measured in the

range 3.20° ≤ Θ ≤ 27.50°, completeness Φmax

= 99.7%, 4761 independent reflections, Rint = 0.0757, 3113 reflections with Fo > 4σ(Fo), 181

parameters, 0 restraints, Robs. = 0.0929, wR2
obs. = 0.2732, Rall = 0.1334, wR2

all = 0.3151, GOOF =

1.052, largest difference peak and hole: 2.812/-1.127 e/Å3. The data file TT3691 includes the full
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crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.2.9 [{Ru(tbbpy)2}2(µ-phenphen)][PF6]4 - Ru(phenphen)Ru

The title compound was obtained, following method C1. 250mg (352µmol) of [Ru(tbbpy)2Cl2]
and 126mg (352µmol) of phenphen were reacted in the microwave for 120 minutes in 125ml of

ethanol/water. After cooling, ethanol was removed and dark precipitated impurities were filtered

off. Then 300mg of NH4PF6 were added and the formed precipitate was collected and washed

with water several times. Purification was achieved by recrystallization from acetonitrile/water by

slow evaporation. After removal of water the pure Ru(phenphen)Ruwas obtained as red powder.

The yield was 700mg (317µmol, 90%).
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1H-NMR (CD3CN, 400MHz): δ = 8.693

(dd, 0.5H(C), 3J = 8.3Hz, 4J = 1.2Hz),

8.675 (dd, 0.5H(C), 3J = 8.2Hz, 4J =

1.2Hz), 8.655 (dd, 0.5H(C), 3J = 8.2Hz, 4J

= 1.7Hz), 8.638 (dd, 0.5H(C), 3J = 8.2Hz,
4J = 1.7Hz), 8.560 (d, 1H(3), 4J = 1.9Hz),

8.542 (d, 2H(3), 4J = 1.9Hz), 8.527 (d,

2H(3), 4J = 1.9Hz), 8.522 (d, 1H(3), 4J =

1.9Hz), 8.502 (d, 2H(3), 4J = 1.9Hz), 8.423

(s, 0.5H(D)), 8.441 (s, 0.5H(D)), 8.338 (s, 0.5H(D)), 8.324 (s, 0.5H(D)), 8.19 (m, 1H(C)), 8.18 (m, 2H(A)),

8.150 (dd, 1H(A), 3J = 4.3Hz, 4J = 2.0Hz), 8.120 (dd, 0.5H(C), 3J = 8.3Hz, 4J = 1.7Hz), 8.113 (dd,

0.5H(C), 3J = 8.2Hz, 4J = 1.5Hz), 8.096 (dd, 1H(A), 3J = 5.3Hz, 4J = 1.9Hz), 7.867 (dd, 0.5H(B),
3J = 8.3Hz, 3J = 5.2Hz), 7.861 (dd, 0.5H(B), 3J = 8.3Hz, 3J = 5.0Hz), 7.846 (dd, 0.5H(B), 3J =

8.1Hz, 3J = 5.1Hz), 7.835 (dd, 0.5H(B), 3J = 8.1Hz, 3J = 5.1Hz), 7.739 (d, 0.5H(6), 3J = 6.0Hz),

7.721 (d, 0.5H(6), 3J = 5.8Hz), 7.711 (d, 0.5H(6), 3J = 6.0Hz), 7.703 (d, 0.5H(6), 3J = 5.8Hz), 7.654

(dd, 0.5H(B), 3J = 8.3Hz, 3J = 4.2Hz), 7.645 (dd, 0.5H(B), 3J = 8.4Hz, 3J = 5.2Hz), 7.643 (d,

2H(6), 3J = 6.0Hz), 7.585 (dd, 0.5H(B), 3J = 8.4Hz, 3J = 5.2 Hz), 7.574 (dd, 0.5H(B), 3J = 8.3Hz,
4J = 4.1Hz), 7.669 (d, 1H(6), 3J = 6.0Hz), 7.658 (d, 1H(6), 3J = 5.8Hz), 7.50 (m, 4H(5)), 7.46 (d,

2H(6), 3J = 5.8Hz), 7.434 (dd, 1H(5), 3J = 6.0Hz, 4J = 1.9Hz), 7.432 (dd, 1H(5), 3J = 6.0Hz, 4J =

1.8Hz), 7.306 (dd, 1H(5), 3J = 4.6Hz, 4J = 1.9Hz), 7.300 (dd, 1H(5), 3J = 4.6Hz, 4J = 1.9Hz), 1.466
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(s, 4.5H(CH3)), 1.462 (s, 4.5H(CH3)), 1.448 (s, 4.5H(CH3)), 1.438 (s, 4.5H(CH3)) 1.399 (s, 4.5H(CH3)),

1.396 (s, 4.5H(CH3)), 1.389 (s, 4.5H(CH3)), 1.387 (s, 4.5H(CH3)) ppm. 13C-NMR (CD3CN, 400MHz):

δ = 162.751, 162.626, 162.573, 157.299, 157.208, 156.988, 156.941, 156.908, 156.863, 152.924, 152.825,

152.659, 152.580, 152.513, 152.033, 151.925, 151.412, 151.353, 151.145, 148.418, 148.220, 148.172, 136.801,

136.753, 135.763, 135.509, 135.442, 134.972, 131.154, 130.944, 130.486, 130.331, 130.224, 126.593,

126.419, 126.343, 126.163, 126.101, 124.851, 124.705, 124.649, 124.594, 121.635, 121.567, 35.439, 35.365,

29.603 ppm. Elemental Analysis (C60H62N8RuP2F12 × CHCl3): calc.: C: 49.93%, H: 4.79%, N:

7.20%, found: C: 49.57%, H: 4.83%, N: 7.37%. MS: (ESI) m/z = 962.1 (100%, [M-2PF6]2+), 2069.2

(25%, [M-PF6]+).

6.2.10 [Ru(tbbpy)2(phenphen)][PF6]2 - Ru(phenphen)

Title compound was obtained according to method C1, following exactly the preparation of

Ru(phenphen)Ru but using 0.5 equivalents of [Ru(tbbpy)2Cl2] instead of one equivalent. After

removal of ethanol and unreacted [Ru(tbbpy)2Cl2] from the aqueous solution, NH4PF6 was

added. Work up of the crude product mixture (Ru(phenphen)Ru and Ru(phenphen)) was

acchieved by column chromatography (sat. KNO3 : water : acetonitril/5:40:250) and yielded the

desired compound in the second fraction. Yield: 294mg (229µmol, 65%). Crystals suitable for

X-ray diffraction were obtained from ethanol/water. The 1H-NMR spectrum is complicated due

to the two stereo isomers that exist at room temperature due to the hindered rotation of the linked

phenanthroline moieties.
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1H-NMR (CD3CN, 400MHz): δ = 9.176 (dd, 0.5H(A’), 3J

= 4.3Hz, 4J = 2.0Hz), 9.171 (dd, 0.5H(A’), 3J = 4.3Hz, 4J =

2.0Hz), 9.142 (dd, 0.5H(A), 3J = 4.3Hz, 4J = 1.7Hz), 9.102

(dd, 0.5H(A), 3J = 4.3Hz, 4J = 1.7Hz), 8.658 (dd, 0.5H(C”),
3J = 8.3Hz, 4J = 1.2Hz), 8.649 (dd, 0.5H(C”), 3J = 8.2Hz,
4J = 1.2Hz), 8.576 (d, 1H(3), 4J = 1.9Hz), 8.555 (d, 1H(3), 4J

= 1.9Hz), 8.548 (d, 2H(3), 4J = 1.9Hz), 8.536 (d, 1H(3), 4J

= 1.9Hz), 8.530 (d, 1H(3), 4J = 1.9Hz), 8.515 (d, 1H(3), 4J =

1.9Hz), 8.501 (d, 1H(3), 4J = 1.9Hz), 8.468 (dd, 0.5H(C’), 3J = 8.2Hz, 4J = 1.7Hz), 8.434 (dd, 0.5H(C’),
3J = 8.2Hz, 4J = 1.7Hz), 8.385 (s, 0.5H(D)), 8.379 (s, 0.5H(D)), 8.179 (dd, 0.5H(A”), 3J = 5.3Hz, 4J =
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1.9Hz), 8.176 (dd, 0.5H(A”), 3J = 5.3Hz, 4J = 1.9Hz), 8.110 (dd, 1H(A”’), 3J = 5.2Hz, 4J = 1.0Hz), 8.090

(s, 0.5H(D)), 8.053 (dd, 1H(C”’), 3J = 8.5Hz, 4J = 1.0Hz), 8.011 (s, 0.5H(D)), 7.988 (dd, 0.5H(C), 3J =

8.3Hz, 4J = 1.7Hz), 7.864 (dd, 0.5H(C), 3J = 8.2Hz, 4J = 1.5Hz), 7.844 (dd, 0.5H(B”), 3J = 8.3Hz, 3J

= 5.2Hz), 7.836 (dd, 0.5H(B”), 3J = 8.3Hz, 3J = 5.0Hz), 7.781 (dd, 0.5H(B’), 3J = 8.1Hz, 3J = 5.1Hz),

7.770 (dd, 0.5H(B’), 3J = 8.1Hz, 3J = 5.1Hz), 4.06 (m, 2H(6)), 7.669 (d, 0.5H(6), 3J = 6.0Hz), 7.658 (d,

0.5H(6), 3J = 5.8Hz), 7.580 (dd, 0.5H(B), 3J = 8.3Hz, 3J = 4.2Hz), 7.552 (dd, 0.5H(B”’), 3J = 8.4Hz,
3J = 5.2Hz), 7.549 (dd, 0.5H(B”’), 3J = 8.4Hz, 3J = 5.2 Hz), 7.49 (m, 3H(6,5)), 7.485 (dd, 0.5H(B), 3J

= 8.3Hz, 4J = 4.1Hz), 7.364 (dd, 0.5H(5), 3J = 6.0Hz, 4J = 1.9Hz), 7.360 (dd, 0.5H(5), 3J = 6.0Hz,
4J = 1.8Hz), 7.305 (dd, 0.5H(5), 3J = 4.6Hz, 4J = 1.9Hz), 7.303 (dd, 1H(A’), 3J = 6.1Hz, 4J = 1.9Hz),

7.291 (dd, 1H(A’), 3J = 6.1Hz, 4J = 1.9Hz), 1.469 (s, 4.5H(CH3)), 1.465 (s, 4.5H(CH3)), 1.440 (s, 9H(CH3)),

1.419 (s, 9H(CH3)), 1.392 (s, 4.5H(CH3)), 1.386 (s, 4.5H(CH3)) ppm. 13C-NMR (CD3CN, 100MHz): δ

= 162.78, 162.66, 157.28, 157.24, 157.01, 152.61, 152.58, 152.43, 152.39, 151.70, 151.64, 151.29, 151.22,

151.18, 151.13, 150.90, 150.38, 150.32, 148.29, 148.20, 147.99, 146.39, 146.32, 137.56, 136.59, 136.54,

135.24, 135.22, 134.48, 134.21, 133.54, 133.51, 131.32, 131.24, 130.62, 130.59, 129.74, 129.66, 129.22,

128.53, 128.23, 128.21, 126.55, 126.52, 126.03, 125.99, 124.76, 124.71, 124.67, 124.63, 123.91, 123.87,

123.34, 123.24, 121.57, 121.51, 54.35, 35.46, 35.43, 35.40, 35.37, 29.61, 29.57 ppm. Elemental Analysis

(C60H62N8RuP2F12 × CHCl3): calc.: C: 52.13%, H: 4.52%, N: 7.97%, found: C: 52.07%, H: 4.66%,

N: 7.47%.MS: (ESI) m/z = 1141.4 (100%, [M-PF6]+).

Crystals suitable for

X-ray diffraction were obtained

from methanol/water. Crystal

data for Ru(phenphen):

[C60H62N8Ru]2+[PF6]−2
× 2CH3OH, Mr = 1350.27 g/mol,

red-brown cuboid,

size 0.23×0.16×0.05mm3,

monoclinic, space group Cc

(No. 9), a = 28.7888(14), b =

12.5327(9), c = 18.8750(18) Å, α

= 90.000, β = 114.089(5), γ = 90.000°, V = 6217.05Å3, T = -123°C, Z = 4, ρcalcd. = 1.443 g/cm3,
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µ(Mo-Kα) = 0.390 cm-1, F(000) = 2784, 89373 reflections in h(-36/36), k(-16/16), l(-24/24) measured

in the range 3.10° ≤ Θ ≤ 27.10°, completeness Φmax = 99.8%, 13613 independent reflections, Rint

= 0.0717, 13613 reflections with Fo > 4σ(Fo), 855 parameters, 216 restraints, Robs. = 0.0363, wR2
obs.

= 0.0789, Rall = 0.0491, wR2
all = 0.0841, GOOF = 1.020, largest difference peak and hole: 0.574

/ -0.429 e/Å3. The data file DP0901 includes the full crystallographic data and can be obtained

from Dr. Frank Heinemann (IAC, FAU-Erlanen-Nürnberg). In the molecular structure of

Ru(phenphen) hydrogen atoms, solvent molecules and anions are omitted for clarity. Ellipsoids

are drawn at 70% probability level.

6.2.11 [{Ru(tbbpy)2}(µ-phenphen){PtCl2}][PF6]2 - Ru(phenphen)Pt

To a stirred solution of 161mg (0.388mmol) of K2PtCl4 dissolved in 50ml of DMF 414mg

(0.322mmol) of Ru(phenphen) dissolved in 15ml in DMF were added. This solution was stirred

at 100°C for 28 hours. After the reaction time the solvent was removed under vacuum and water

was added to the remaining brown solid. Extraction with dichloromethane yielded the crude

product after drying of the organic layers with Na2SO4, filtration over celite and removal of the

solvent. The crude product was purified by column chromatography using silica gel 60 and a

solvent mixture of acetonitrile/water/saturated KNO3-solution (250:30:5/v:v:v). After removal of

the NKO3 and counter ion exchange with NH4PF6 Ru(phenphen)Ptwas obtained as red powder.

Yield: 167mg (0.108mmol, 34%).

N

N

N

N

N

N

Ru2+
N

N

Pt

Cl

Cl

Ru(phenphen)Pt

3-bpy 5-bpy

6-bpy

CH3-bpy

D

A
B

C

1H-NMR (CD3CN, 400MHz): δ = 9.460 (d, 0.5H(A),
3J = 5.2Hz), 9.387 (d, 0.5H(A), 3J = 5.2Hz), 9.367 (d,

0.5H(A’), 3J = 5.4Hz), 9.341 (d, 0.5H(A’), 3J = 5.4Hz),

8.902 (dd, 0.5H(C’), 3J = 8.3Hz, 4J = 1.0Hz), 8.869 (dd,

0.5H(C’), 3J = 8.3Hz, 4J = 1.0Hz), 8.690 (dd, 0.5H(C”), 3J

= 8.2Hz, 4J = 1.0Hz), 8.675 (dd, 0.5H(C”), 3J = 8.0Hz,
4J = 1.0Hz), 8.609 (s, 0.5H(D)), 8.585 (s, 0.5H(D)), 8.563

(d, 0.5H(3), 4J = 1.8Hz), 8.85-8.51 (m, 2.5H(3)), 8.502

(d, 0.5H(3), 4J = 1.9Hz), 8.488 (d, 0.5H(3), 4J = 1.9Hz), 8.407 (dd, 0.5H(C), 3J = 8.4Hz, 4J = 1.0Hz),

8.350 (s, 0.5H(D)), 8.313 (dd, 0.5H(C), 3J = 8.5Hz, 4J = 1.0Hz), 8.275 (s, 0.5H(D)), 8.270 (dd, 0.5H(C”’),
3J = 8.3Hz, 4J = 1.0Hz), 8.200 (dd, 0.5H(C”’), 3J = 8.4Hz, 4J = 1.0Hz), 8.183-8.165 (m, 1H(A”)), 8.119
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(dd, 0.5H(A”’), 3J = 5.2Hz, 4J = 1.3Hz), 8.115 (dd, 0.5H(A”’), 3J = 5.2Hz, 4J = 1.2Hz), 7.976 (dd,

0.5H(B’), 3J = 8.2Hz, 3J = 6.0Hz), 7.961 (dd, 0.5H(B’), 3J = 8.1Hz, 3J = 6.0Hz), 7.847 (dd, 0.5H(B”), 3J

= 8.2Hz, 3J = 5.0Hz), 7.839 (dd, 1H(B”,B), 3J = 8.3Hz, 3J = 5.3Hz), 7.765 (dd, 0.5H(B’), 3J = 8.4Hz, 3J

= 5.5Hz), 7.74-7.70 (m, 2H(6)), 7.655 (d, 0.5H(6), 3J = 6.0Hz), 7.640 (d, 0.5H(6), 3J = 6.0Hz), 7.594

(dd, 0.5H(B”’), 3J = 8.0Hz, 3J = 5.0Hz), 7.581 (dd, 0.5H(B”’), 3J = 8.0Hz, 3J = 5.0Hz), 7.52-7.45 (m,

3H(5,6)), 7.360 (dd, 1H(5), 3J = 5.9Hz, 4J = 2.0Hz), 7.355 (dd, 1H(5), 3J = 5.9Hz, 4J = 2.0Hz), 7.290 (dd,

1H(5), 3J = 5.9Hz, 4J = 2.0Hz), 7.281 (dd, 1H(5), 3J = 5.9Hz, 4J = 2.0Hz), 1.469 (s, 4.5H(CH3)), 1.466

(s, 4.5H(CH3)), 1.440 (s, 9H(CH3)), 1.417 (s, 9H(CH3)), 1.391 (s, 4.5H(CH3)), 1.386 (s, 4.5H(CH3)) ppm.
13C-NMR (CD3CN, 100MHz): δ = 162.81, 162.67, 157.24, 157.19, 156.97, 152.97, 152.61, 152.56, 151.71,

151.31, 151.17, 151.12, 149.18, 148.95, 148.69, 148.21, 139.56, 137.89, 137.68, 136.74, 135.44, 135.35, 135.26,

134.95, 133.41, 131.00, 130.90, 130.82, 130.71, 130.63, 130.58, 130.43, 130.38, 130.02, 126.3, 126.36,

126.15, 126.11, 124.72, 124.61, 121.60, 121.54, 35.44, 29.60 ppm. 195Pt-NMR (CD3CN, 129MHz): δ =

-2334 ppm. Elemental Analysis (C60H62N8RuPtCl2P2F12 × CHCl3): calc.: C: 43.83%, H: 3.80%,

N: 6.70%, found: C: 43.45%, H: 3.78%, N: 6.95%.MS (ESI): m/z = 1407.0 (100%, [M-PF6]+), 1261.1

(24%M [M-2PF6]+), 1141.1 (6% [M-PtCl2-PF6]+).

6.2.12 [Ru(tbbpy)2(ip)][PF6]2 - Ru(ip)

The title compound was obtained, following method C1. 100mg (141µmol) of [Ru(tbbpy)2Cl2]
and 33.6mg (141µmol) of ip were reacted in the microwave for 90 minutes in 100ml of

ethanol/water. After cooling and removal of ethanol and a dark precipitate six equivalents of

NH4PF6 were added. The formed precipitate was collected and washed with water several times.

Purification was achieved by recrystallization from acetone/ethanol/water by slow evaporation.

After removal of water the pure Ru(ip) was obtained as red powder. The yield was 154mg

(134µmol, 95%) of a red powder.
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N

H
N

N

NN

N

N

N

Ru2+

Ru(ip)

2-ip

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

3-bpy 5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

1H-NMR (CD3CN, 400MHz): δ = 8.92 (d, 2H(ip 4/11), 3J =

8.1Hz), 8.52 (d, 2H(bpy 3/3’), 4J = 1.9Hz), 8.47 (d, 2H(bpy 3’/3),
4J = 1.9Hz), 8.42 (s, 1H(ip2)), 7.99 (dd, 2H(ip6/9), 4J = 0.9Hz,
3J = 5.2Hz), 7.78 (dd, 2H(ip 5/10), 3J = 5.3Hz, 3J = 8.3Hz),

7.69 (d, 2H(bpy 6/6’), 3J = 6.0Hz), 7.46 (dd, 2H(bpy 5/5’), 4J =

2.0Hz, 3J = 6.0Hz), 7.44 (d, 2H(bpy 6’/6), 3J = 6.1Hz), 7.19 (dd,

2H(bpy 5’/5), 4J = 2.0Hz, 3J = 6.1Hz), 1.45 (s, 18H(tBu)), 1.35

(s, 18H(tBu’)) ppm. 13C-NMR (CD3CN, 100MHz): δ = 163.51

(2C(4/4’-bpy)), 163.33 (2C(4’/4-bpy)), 157.99 (2C(2/2’-bpy)), 157.75 (2C(2’/2-bpy)), 152.07 (2C(6/6’-bpy)), 151.93

(2C(6’/6-bpy)), 150.90 (2C(6/9-ip)), 146.97 (2C(7’/7”-ip)), 143.32 (1C(2-ip)), 131.15 (2C(4/11-ip)), 126.86

(2C(5/10-ip)), 125.53 (2C(5/5’-bpy)), 125.37 (2C(5’/5-bpy)), 122.40 (2C(3/3’-bpy)), 122.31 (2C(3’/3-bpy)), 36.29

(2C(tC-bpy)), 36.18 (2C(tC’-bpy)), 30.47 (6C(-CH3-bpy)), 30.37 (6C(-CH3’-bpy)) ppm. C(3’/11”) and C(3”/11’) were

not found.MS: (ESI) m/z = 429.1 (100%, [M-2PF66]2+), 856.2 (65%, [M-2PF6-H]+), 1003.1 (40%,

[M-PF6]+).

Crystals suitable for X-ray diffraction were

obtained fromacetone/ethanol/water. Crystal

data for Ru(ip): [C49H56N8Ru]2+[PF6]−2
× 2.5 C2H5OH, Mr = 1256.18 g/mol, red crystal,

size 0.05×0.05×0.04mm3, orthorhombic,

space group P21/n (No. 29), a = 40.0363(6),

b = 12.1313(3), c = 12.4471(3) Å, α = 90.00, β

= 90.00, γ = 90.00°, V = 6045.5(2) Å3, T =

183(2) K, Z = 4, ρcalcd. = 1.380 g/cm3, µ(Mo-Kα) =

0.395 cm-1, F(000) = 2596, 32336 reflections in

h(-51/50), k(-12/15), l(-16/16) measured in the

range 2.64° ≤Θ ≤ 27.48°, completenessΦmax = 99.7%, 13558 independent reflections, Rint = 0.0512,

13558 reflections with Fo > 4σ(Fo), 716 parameters, 1 restraint, Robs. = 0.0633, wR2
obs. = 0.1658, Rall

= 0.0934, wR2
all = 0.1837, GOOF = 1.025, absolute structure parameter: 0.02(4); largest difference

peak and hole: 1.229/-0.554 e/Å3. The data file FO3797 includes the full crystallographic data and

can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).
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6.2.13 [Ru(tbbpy)2(bip)][PF6]2 - Ru(bip)

FollowingmethodC1, 190mg (268µmol) of [Ru(tbbpy)2Cl2] and 83.2mg (268µmol) of bipwere

brought to reaction for 90 minutes to yield 154mg (134µmol, 95%) of the desired complex as red

powder. The product was recrystallized from an toluene/dichloromethane mixture and could be

purified by column chromatography using dichloromethane/acetone (5:1) as solvent and silicagel

60 as stationary phase. Crystals for suitable for X-ray crystallography were obtained from an

acetonitrile/water/methanol mixture (20:2:1).

N

N

N

NN

N

N

N

Ru2+

Ru(bip)

2-ip

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

ph ph

ph

CH2

3-bpy 5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

1H-NMR (CD3CN, 400MHz): δ = 9.080 (dd, 1H(4/11-bip),
3J = 8.2Hz, 4J = 1.2Hz), 8.580 (dd, 1H(11/4-bip), 3J =

8.6Hz, 4J = 1.2Hz), 8.508 (d, 1H(3/3’-bpy), 4J =2Hz), 8.482

(d, 1H(3/3’-bpy), 4J = 2Hz), 8.463 (d, 1H(3’/3-bpy), 4J = 2Hz),

8.463 (s, 1H(2-bip)), 8.436 (d, 1H(3’/3-bpy), 4J = 2Hz), 8.001

(dd, 1H(6/9), 3J = 5.3Hz, 4J = 1.3Hz), 7.923 (dd, 1H(9/6), 3J

= 5.3Hz, 4J = 1.1Hz), 7.790 (dd, 1H(5/10), 3J = 8.3Hz, 3J

= 5.3Hz), 7.66 (dd, 2H(5/5’-bpy), 3J = 5.9Hz, 4J = 7.1Hz),

7.58 (dd, 1H(10/5), 3J = 8.5Hz, 3J = 5.3Hz), 7.452 (dd, 1H(5’/5-bpy), 3J = 5.4Hz, 4J = 2.0Hz), 7.438

(dd, 1H(5’/5-bpy), 3J = 5.4Hz, 4J = 2.0Hz), 7.394 (d, 1H(6/6’-bpy), 3J = 6.2Hz), 7.389 (d, 1H(6/6’-bpy), 3J =

6.2Hz), 7.33 (m, 3H(Ar)), 7.21 (m, 2H(Ar)), 7.184 (d, 1H(6’/6-bpy), 3J = 6.2Hz), 7.178 (d, 1H(6’/6-bpy), 3J =

6.2Hz), 5.984 (s, 2H(CH2)), 1.44 (s, 9H(CH3)), 1.43 (s, 9H(CH3)) 1.35 (s, 9H(CH3)), 1.34 (s, 9H(CH3)) ppm;
13C-NMR (CD3CN, 400MHz): δ = 163.55 (2C(4/4’-bpy)), 163.42 (2C(4’/4-bpy)), 157.97 (2C(2/2’-bpy)),

157.78 (2C(2’/2-bpy)), 152.11 (2C(5/5’-bpy)), 151.92 (2C(2’/2-bpy)), 151.29 (1C(6/9-bip)), 150.75 (1C(9/6-bip)),

147.48 (1C(2-bip)), 147.22 (1C(8’/8”-bip)), 147.04 (1C(8”/8’-bip)), 139.01 (1C(3’/11”-bip)), 136.47 (1C(tC-ph)), 131.27

(1C(4/11-bip)), 130.60 (1C(11/4-bip)), 130.20 (2C(ph)), 129.27 (1C(ph)), 127.58 (1C(11”/3’-bip)), 127.37 (2C(ph)),

127.26 (1C(5/10-bip)), 126.29 (1C(10/5-bip)), 125.59 (2C(6/6’-bpy)), 125.40 (2C(6’/6-bpy)), 122.80 (1C(3”/11’-bip)),

122.46 (2C(3/3’-bpy)), 122.40 (1C(3’/3-bpy)), 122.12 (1C(11’/3”-bip)), 51.71 (1C(CH2-bip)), 36.33 (2C(tC/tC’-bpy)),

36.26 (2C(tC’/tC-bpy)), 30.49 (6C(CH3/CH3’-bpy)), 30.41 (6C(CH3’/CH3-bpy)) ppm; MS (ESI) m/z = 474.2

(40%, [M-2PF6]2+), 848.2 (5%, [M-2PF6]+), 1093.2 (100%, [M-PF6]+);
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Crystals suitable for X-ray diffraction were

obtained from acetonitrile/water. Crystal

data for Ru(bip):

[C56H62N8Ru]2+[PF6]−2 ×CH3CN, Mr

= 1279.20 g/mol, red-brown rhombus, size

0.04×0.04×0.04mm3, orthorhombic,

space group Pca21 (No. 29), a = 38.6452(8),

b = 11.8866(2), c = 12.7938(3) Å, α =

90.000, β = 90.000, γ = 90.000°, V =

5877.0(2) Å3, T = -140°C, Z = 4, ρcalcd. =

1.446 g/cm3, µ(Mo-Kα) = 4.06 cm-1, F(000) = 2632, 26981 reflections in h(-48/50), k(-15/15), l(-

16/15) measured in the range 2.33° ≤ Θ ≤ 27.49°, completeness Φmax = 92.6%, 9804 independent

reflections, Rint = 0.1153, 8354 reflections with Fo > 4σ(Fo), 752 parameters, 1 restraint, Robs. =

0.0570, wR2
obs. = 0.1331, Rall = 0.0719, wR2

all = 0.1411, GOOF = 1.045, largest difference peak and

hole: 0.717/-1.069 e/Å3. The data file TT3949 includes the full crystallographic data and can be

obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.2.14 [Ru(tbbpy)2(bbip)][PF6]3 - Ru(bbip)

As described inmethodC1, 367mg (518µmol) of [Ru(tbbpy)2Cl2] and 250mg (518µmol) of bbip

were dissolved in 200ml of ethanol/water (4:1/v:v). This mixture was refluxed for 5 hours in a

microwave. After cooling, the solvent was removed under vacuum and the product was taken up

in 50ml of water. The undesired solids were filtered off and 760mg NH4PF6 dissolved in 5ml of

water were added to obtained a red precipitate. The crude was filtered off and washed with water

several times. After redissolution in dichloromethane removal of water a red solid was obtained.

Purification was achieved via column chromatography (silica gel 60 with gradient elution). Using

acetonitrile/water (95:5/v:v) (Rf [Ru(tbbpy)2Cl2] = 0.5) and later acetonitrile/water/sat. KNO3-

solution (50:6:1/v:v:v) (Rfbbip = 0.2) the pure product (RfRu(bbip) = 0.8) was obtained after counter

ion exchange and drying. Purification could be achieved as well via back and forth counter

ion exchange with Bu4NCl and NH4PF6 as described in the case of Ru2(edip). Yield: 496mg

(337µmol, 65%) of the desired pure complex.

|225|



|6.2 Synthesis of theMetal Complexes|

N

N

N
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N

N

N
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Ru(bbip)

2-ip

4-ip
5-ip
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9-ip
10-ip

11-ip

ph ph

ph

CH2

3-bpy 5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

1H-NMR (CDCl3, 400MHz): δ = 8.81 (d, 2H(4,11-ip),
3J = 8.6Hz), 8.26 (d, 2H(3-bpy), 4J = 1.7Hz), 8.21 (d,

2H(3’-bpy), 4J = 1.3Hz), 8.15 (d, 2H(6,9-ip), 3J = 5.2Hz),

7.98 (s, 1H(2-ip)), 7.80 (dd, 2H(5,10-ip), 3J = 5.4Hz, 3J =

8.5Hz), 7.66 (d, 2H(6-bpy), 3J = 6.0Hz), 7.51 (dd, 2H(5-bpy),
3J = 6.0Hz, 4J = 1.8Hz), 7.35 (dd, 2H(5’-bpy), 3J = 6.1Hz,
4J = 1.7Hz), 7.38 (m, 12H(ph,6’-bpy)), 6.01 (d, 1H(CH2),
2J = 14.7Hz), 5.95 (d, 1H(CH2), 2J = 14.6Hz), 1.43 (s,

18H(tBu-bpy)), 1.34 (s, 18H(tBu’-bpy)) ppm; 1H-NMR (CD3CN, 400MHz): δ = 9.071 (s, 1H(2-ip)) 8.831

(d, 2H(4,11-ip), 3J = 8.4Hz), 8.489 (d, 2H(3-bpy), 3J = 2.0Hz), 8.448 (d, 2H(3’-bpy), 4J = 2.0Hz),

8.167 (d, 2H(6,9-ip), 3J = 5.2Hz), 7.770 (dd, 2H(5,10-ip), 3J = 5.4Hz, 3J = 8.4Hz), 7.604 (d, 2H(6-bpy),
3J = 6.0Hz), 7.44 (m, 12H(ph,5-bpy)), 7.74 (dd, 2H(6’-bpy), 3J = 6.0Hz), 7.195 (dd, 2H(5’-bpy), 3J

= 6.6Hz, 4J = 2.0Hz), 6.152 (2, 2H(CH2)), 1.417 (s, 18H(CH3-bpy)), 1.341 (s, 18H(CH3’-bpy)) ppm;
13C-NMR (CD3CN, 100MHz): δ = 163.96 (4C(4,4’-bpy)), 163.58 (4C(4’,4-bpy)), 157.80 (4C(2,2’-bpy)),

157.71 (4C(2’,2-bpy)), 154.03 (2C(6,9-ip)), 152.27 (4C(6,6’-bpy)), 151.92 (4C(6’,6-bpy)), 148.82 (2C(7’,7”-ip)),

144.49 (1C(2-ip)), 132.53 (2C(1-ph)), 131.66 (2C(4,11-ip)), 130.66 (4C(2,6-ph)), 130.51 (2C(4-ph)), 128.79

(4C(3,5-ph)), 128.16 (2C(3’,11”-ip)), 127.69 (2C(5,10-ip)), 125.73 (4C(5,5’-bpy)), 125.46 (4C(5’,5-bpy)), 122.66

(4C(3,3’-bpy)), 122.60 (4C(3’,3-bpy)), 121.81 (2C(3”,11’-ip)), 55.10 (2C(CH2)), 36.38 (2C(C-bpy)), 36.30

(2C(C’-bpy)), 30.50 (6C(CH3-bpy)), 30.43 (6C(CH3’-bpy)) ppm;MS (ESI) m/z = 1329.3 (100%, [M-PF6]+),

1183.3 (80%, [M-2PF6-H]; Elementary analysis (Ru(bbip)[PF6]3⋅0.5 H2O): calc.: C: 51.01%, H:

4.76%, N: 7.55%; meas.: C: 50.99%, H: 4.76%, N: 7.48%.
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Crystals suitable for X-ray diffraction were

obtained from dichloromethane/chloroform.

Crystal data for Ru(bbip): [C63H69N8Ru]3+,

3[PF6]- × 5CHCl3, Mr = 2071.08 g/mol, red-

brown cuboid, size 0.05×0.05×0.04 mm3,

triclinic, space group P1 (No. 2), a = 13.0496(5),

b = 17.8884(6), c = 20.1331(7) Å, α = 105.144(2),

β = 101.312(2), γ = 101.134(2)°, V = 4297.7(3)

Å3 , T = -140°C, Z = 2, ρcalcd. = 1.600 gcm-3,

µ (Mo-Kα) = 7.89 cm-1, F(000) = 2088, 29924

reflections in h(-16/15), k(-23/22), l(-26/26)measured in the range 2.86°≤Θ≤ 27.45°, completeness

Θmax = 98%, 19232 independent reflections, Rint = 0.0486, 12542 reflections with Fo > 4σ(Fo), 1029
parameters, 0 restraints, Robs. = 0.0766, wR2

obs. = 0.1813, Rall = 0.1262, wR2
all = 0.2124, GOOF =

1.026, largest difference peak and hole: 2.712 / -1.715 e Å-3. The Cambridge Crystallographic Data

Centre file CCDC-765499 includes the full crystallographic data. In the molecular structure of

Ru(bbip). Hydrogen atoms (except H13a), solvent molecules and anions are omitted for clarity.

Ellipsoids are drawn at 70% probability.

6.2.15 [Ru(tbbpy)2(bbip)]Cl3

For the counter ion exchange 425mg (1.53mmol) of NBu4Cl were

dissolved in 20ml of acetone/ethyl acetate (1:1/v:v). After this a solution of 250mg (170µmol)

of [Ru(tbbpy)2(bbip)][PF6]3 dissolved in 10ml of acetone/ethyl acetate (1:1/v:v) was slowly added

to the stirred chloride salt solution. The resulting suspension was stirred for 30min. Thereafter,

the precipitate was filtered off and washed with 10ml of acetone/ethyl acetate (1:1/v:v) and twice

with 20ml of ethyl acetate. After drying under vacuum, 192mg (99%) of the desired product were

obtained. No changes in the NMR spectra were detected with respect to the hexafluorophosphate

salt of Ru(bbip).
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6.2.16 Attempted Preparation of [(bbip)AgBr]n - (bbip)Ag

For the complexation reaction 100mg of imidazolium bromide bbip and one equivalent of Ag2O

were suspended under inert conditions in dry dichloromethane according to method C2. Then

the mixture was stirred for 7 days. Due to the general insolubility of both compounds a no visible

change of the reaction mixture during this time. After this time, the reaction mixture was filtered

through celite under inert conditions because of the expected higher solubility of the neutral

complex compared to the ionic compounds. Removal of the solvent from the colorless solution

gave only a thin film of precipitated white solid in very low yields (< 1%). By dissolution of the

precipitate in dry chloroform-d under inert conditions it was possible to obtain a weak 1H-NMR-

spectrum.

N

N N

N

Ag Br

6-ip
4-ip

5-ip

9-ip
10-ip

11-ip CH2

CH2
Ar

Ar
1H-NMR (CDCl3, 400MHz): δ = 9.07 (dd, 2H(6/9), 3J = 4.3Hz, 4J =

1.3Hz), 8.40 (dd, 2H(4/11), 3J = 8.5Hz, 4J = 1.3Hz), 7.48 (dd, 2H(5/10),
3J = 8.5Hz, 3J = 4.3Hz), 7.22 (m, 6H(Ar)), 7.05 (m, 4H(Ar)), 6.21 (s,

4H(CH2)) ppm. Due to the small amount of the obtained product, no

other analysis method could be used.

6.2.17 [{(tbbpy)2Ru}(µ-bbip){AgCl}]Cl2 - Ru(bbip)Ag

According to method C2, 200mg (175µmol) of [Ru(tbbpy)2(bbip)]Cl3, 40.0mg (175µmol) of

silver(I) oxide and 2 g of drymolecular sieves were suspended in 20ml of dry dichloromethane

under argon atmosphere. This solution was stirred for 16 hours at room temperature. After

the reaction time, the remaining solids were removed by filtration through oven dried celite.

Remaining product was washed from the celite with dichloromethane or acetonitrile. The pure

product is obtained after removal of the solvent under reduced pressure. Yield: 197mg (157.5µmol,

90%) of a red powder sensitive to air and moisture.
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N

N

N

NN

N

N

N

Ru2+ Ag Cl

Ru(bbip)Ag

2-ip

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

ph ph

ph

CH2

3-bpy 5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

1H-NMR (400MHz, CD3CN): δ = 8.81 (dd, 2H(4/11-ip),
3J = 8.7Hz, 4J = 1.1Hz), 8.62 (d, 2H(3-bpy), 4J = 1.9Hz),

8.57 (d, 2H(3’-bpy), 4J = 1.8Hz), 8.02 (dd, 2H(6,9-ip), 3J

= 5.3Hz, 4J = 1.0Hz), 7.66 (dd, 2H(5,10-ip), 3J = 8.7Hz,
3J = 5.4H), 7.60 (d, 2H(6-bpy), 3J = 6.0Hz), 7.42 (dd,

2H(5-bpy), 3J = 6.1Hz, 4J = 2.0Hz), 7.33 (d, 2H(6’-bpy),
3J = 6.0Hz), 7.32 (m, 10H(ph)), 7.17 (dd, 2H(5’-bpy), 3J =

6.0Hz, 4J = 1.9Hz), 6.51 (s, 4H(CH2)), 1.42 (s, 18H(CH3)),

1.33 (s, 18H(CH3’)) ppm. 1H-NMR (400MHz, CDCl3): δ = 8.83 (d, 2H(4/11-ip), 3J = 8.7Hz), 8.36

(d, 2H(3-bpy), 4J = 1.8Hz), 8.30 (d, 2H(3’-bpy), 4J = 1.8Hz), 8.22 (d, 2H(6,9-ip), 3J = 5.2Hz), 7.99

(dd, 2H(5,10-ip), 3J = 5.3Hz, 3J = 8.6Hz), 7.72 (d, 2H(6-bpy), 3J = 6.0Hz), 7.60 (d, 2H(6’-bpy),
3J = 6.0Hz), 7.54 (dd, 2H(5-bpy), 3J = 6.1Hz, 4J = 1.9Hz), 7.36 (dd, 2H(6’-bpy), 3J = 6.1Hz, 4J

= 1.9Hz), 7.28 (m, 10H(ph)), 6.47 (d, 2H(CH2), 2J = 17.2Hz), 6.40 (d, 2H(CH2), 2J = 17.0Hz),

1.44 (s, 18H(CH3)), 1.35 (s, 18H(CH3’)) ppm; 13C-NMR (CDCl3, 100MHz): δ = 196.5 (1C(2-ip)),

162.89 (2C(4,4’-bpy)), 162.73 (2C(4’,4-bpy)), 156.47 (2C(2,2’-bpy)), 152.26 (2C(2’,2-bpy)), 152.10 (2C(6,6’-bpy)),

151.85 (2C(6’,6-bpy)), 151.22 (2C(6,9-ip)), 146.06 (2C(7’,7”-ip)), 134.23 (2C(1-ph)), 131.08 (2C(4,11-ip)), 129.69

(4C(2,6-ph)), 128.77 (2C(3’,11”-ip)), 128.33 (2C(4-ph)), 127.84 (2C(5,10-ip)), 126.19 (4C(3,5-ph)), 125.96

(4C(5,5’-bpy)), 120.91 (2C(3,3’-bpy)), 120.75 (2C(3’,3-bpy)), 120.53 (2C(3”,11’-ip)), 56.17 (2C(CH2)), 35.80

(2C(C-bpy)), 35.70 (2C(C’-bpy)), 30.54 (6C(CH3-bpy)), 30.43 (6C(CH3’-bpy)) ppm; MS: (ESI) m/z = 1216.9

(100%, [M-Cl]+), 1180.7 (80%, [M-2Cl-H]+), 1073 (30%, [M-Ag-2Cl]+), 519 (80%, [M-Ag-3Cl]2+).

Crystals suitable for X-ray diffraction

were obtained under inert conditions

from a mixture of dichloromethane

and chloroform with the slow

evaporation method. Crystal data for

Ru(bbip)Ag: 2[C63H68AgClN8Ru]2+,

3.5 CH2Cl2 ×9.8 CHCl3 × 3Cl- ×OH-,

Mr = 1976.85 g/mol, red plate,

size 0.12×0.12×0.12 mm3, monoclinic,

space group C2/c, a = 50.774(6), b =
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14.4053(16), c = 32.847(2) Å, α = 90°, β = 127.021(6)°, γ = 90°, V = 19182(3) Å3 , T = 183(2) K, Z = 8,

ρcalcd. = 1.369 g/cm3,µ (Mo-Kα) = 9.78 cm-1, F(000) = 7982, 153628 reflections in h(-64/64), k(-18/18),

l(-41/41)measured in the range 2.83° ≤Θ ≤ 27.00°, completenessΘmax = 99.7%, 20872 independent

reflections, Rint = 0.0762, 20872 reflections with Fo > 4σ(Fo), 926 parameters, 0 restraints, R1obs.
= 0.0854, wR2obs. = 0.2415, R1all = 0.1197, wR2all = 0.2771, GOOF = 1.039, largest difference peak

and hole: 2.233 / -1.816 e Å-3. The Cambridge Crystallographic Data Centre file CCDC-796734

includes the full crystallographic data.

6.2.18 Attempted Synthesis of [{(tbbpy)2Ru(µ-bbip)}2Ag][PF6]5 - Ru(bbip)Ag(bbip)Ru

For the attempted reaction, 147.4mg (0.1mmol) of [(tbbpy)2Ru(bbip)][PF6]2 and 23.2mg

(0.1mmol) of Ag2O were dissolved in 20ml of dry and oxygen free acetonitrile (method C2).

Then the mixture was stirred for two weeks at room temperature with exclusion of light. After

one day and after two weeks small portions of the reaction mixture were separated (syringe with

filter). Removal of the solvent and addition of inert acetonitrile-d3 gave suitable NMR-samples.

Chloroform was not a good solvent for NMR-experiments due to the low solubility. It is not clear

which product was formed since hexafluoro phosphate ions coordinate only very weak, possible

also the formation of [(tbbpy)2Ru(µ-bbip)AgOH][PF6]2 instead of the title compound. According

to the NMR-spectrum no clean product but a 20:80-mixture of starting material and product was

obtained.

N

N

N

NN

N

N

N

Ru2+ Ag+

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

ph

ph
ph

CH2

N

N

N

N N

N

N

N

Ru2+

Ru(bbip)Ag(bbip)Ru

3-bpy5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

1H-NMR (CD3CN, 400MHz):

δ = 8.70 (dd, 2H(4/11-ip), 3J =

8.7Hz, 4J = 1.1Hz), 8.47 (d,

2H(3-bpy), 4J = 1.7Hz), 8.43 (d,

2H(3’-bpy), 4J = 1.6Hz), 8.03 (dd,

2H(6/9-ip), 3J = 5.3Hz, 4J =

1.0Hz), 7.65 (dd, 2H(5/10-ip), 3J

= 8.7Hz, 3J = 5.4H), 7.59 (d,

2H(6-bpy), 3J = 6.1Hz), 7.42 (dd, 2H(5-bpy), 3J = 6.1Hz, 4J = 2.0Hz), 7.29 (d, 2H(6’-bpy), 3J = 6.0Hz), 7.3

(m, 10H(ph)), 7.16 (dd, 2H(5’-bpy), 3J = 6.1Hz, 4J = 2.0Hz), 6.21 (s, 4H(CH2)), 1.41 (s, 18H(CH3-bpy)), 1.33

(s, 18H(CH3 ’-bpy)) ppm.
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6.2.19 Attempted Synthesis of [(tbbpy)2Ru(bbipBEt3)][PF6]2 - Ru(bbipBEt3)

For the synthesis, 0.03ml of a 1M solution of HLiB(Et)3 were added to a stirred solution of 37mg

Ru(bbip) in 20ml of dry tetrahydrofuran under argon atmosphere at -80°C. Upon addition a

darkening of the solution toward red-brown was observed. The temperature was slowly raised to

room temperature after the reaction time of 20 minutes at -80°C. After removal of the solvent

and dying under high vacuum 1H-NMR spectra were recorded in dry chloroform-d and dry

acetonitrile-d3. It was observed that the formed product is not sensitive to air. According to

the obtained NMR-spectra it could be concluded that the hydrogenated product was formed.

Indicators are signals for the A-, B-, C-protons which refer to the symmetric ligand, a signal which

refers to the D-position with an peak area of two protons at 4.p5 ppm in chloroform-d and the

missing signals for the ethyl groups at ∼1 ppm.

N

N

N

N

N

N

N

N
Ru2

+
H

H

6-ip 4-ip

5-ip

9-ip

10-ip

2-ip

11-ip CH2

CH2
Ar

Ar

6-bpy

3-bpy

5-bpy

tBu

1H-NMR (CD3CN, 400MHz): δ = 8.50 (d, 2H(3-bpy), 4J =

1.6 Hz), 8.47 (d, 2H(3’-bpy), 4J = 1.8 Hz), 8.42 (dd, 2H(4/11-ip),
3J = 8.6 Hz, 4J = 1.2 Hz), 7.82 (dd, 2H(6/9-ip), 3J = 5.2

Hz, 4J = 1.2 Hz), 7.67 (d, 2H(6-bpy), 3J = 6.0 Hz), 7.52 (dd,

2H(5/10-ip), 3J = 5.2 Hz, 3J = 8.6 Hz), 7.45 (d, 2H(6’-bpy), 3J =

6.0Hz), 7.44 (dd, 2H(5-bpy), 3J =6.0Hz, 4J =2.1Hz), 7.31 (m,

12H(5’-bpy/Ar)), 4.95 (s, 2H(2-ip)), 4.45 (d, 2H(CH2), 2J = 15.6

Hz), 4.39 (d, 2H(CH2), 2J = 15.7 Hz), 1.43 (s, 18H(tBu-bpy)),

1.38 (s, 18H(tBu’-bpy)) ppm. 1H-NMR (CDCl3, 270MHz): δ = 8.27 (dd, 2H(4/11-ip), 3J = 8.5Hz, 4J =

1.0Hz), 8.19 (d, 2H(3-bpy), 4J = 1.7Hz), 8.16 (d, 2H(3’-bpy), 4J = 1.5Hz), 7.86 (dd, 2H(6/9-ip), 3J = 5.2Hz,
4J = 0.9Hz), 7.72 (d, 2H(6-bpy), 3J = 6.0Hz), 7.58 (dd, 2H(5,10)-ip, 3J = 8.6Hz, 3J = 5.2Hz), 7.53 (dd,

2H(5-bpy), 3J = 6.0Hz, 4J = 1.9Hz), 7.49 (d, 2H(6-bpy), 3J = 6.0Hz), 7.37 (dd, 2H(5’-bpy), 3J = 6.1Hz, 4J

= 1.7Hz), 7.31 (m, 10H(Ar)), 4.95 (s, 2H(2-ip)), 4.60 (d, 2H(CH2), 2J = 16.0Hz), 4.42 (d, 2H(CH2 ’), 2J =

16.0Hz), 1.41 (s, 18H(tBu)), 1.37 (s, 18H(tBu)) ppm.

6.2.20 [{Ru(tbbpy)2}(µ-bbip){Rh(cod)Cl}]Cl2 - Ru(bbip)Rh

Under argon atmosphere 100mg (87.3µmol) of Ru(bbip)Ag and 21.6mg (43.6µmol) of

[Rh(cod)Cl]2 were dissolved in 20ml of dry dichloromethane and stirred for 16 hours at room

temperature (methodC3). A colorless precipitate formed after 30min. After the reaction time the
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solid were removed by filtration through oven dried celite. Remaining product was washed from

the celite with dichloromethane and acetonitrile. Finally the solvent was removed under vacuum

and the crude was redissolved in THF. The pure product was precipitated by slow addition of

diethyl ether. The solid was filtered off and was dried under vacuum. Yield: 103mg (74.2µmol,

85%) of a red powder, sensitive to air and moisture.

N

N

N

NN

N

N

N

Ru2+

Ru(bbip)Rh
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Cl
2-ip

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

Ar Ar

Ar

CH2

3-bpy 5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

COD

COD

CODCOD

1H-NMR (400MHz, CDCl3): δ = 8.62 (dd, 1H(4ip),
4J = 1.0Hz, 3J = 8.6Hz), 8.59 (dd, 1H(11ip), 4J =

1.0Hz, 3J = 8.6Hz), 8.53 (d, 1H(3bpy), 4J = 1.8Hz),

8.50 (d, 2H(3’bpy, 3”bpy), 4J = 1.8Hz), 8.45 (d, 1H(3”’bpy),
4J = 1.8Hz), 7.98 (dd, 1H(6ip), 4J = 1.0Hz, 3J =

5.3Hz), 7.95 (dd, 1H(9ip), 4J = 1.0Hz, 3J = 5.3Hz),

7.60 (d, 2H(6,6’bpy), 3J = 5.9Hz), 7.55 (dd, 1H(5ip),
3J = 5.3Hz, 3J = 8.7Hz), 7.57 (dd, 1H(10ip), 3J =

5.1Hz, 3J = 8.5Hz), 7.43 (dd, 1H(5bpy), 4J = 2.1Hz, 3J = 6.0Hz), 7.41 (dd, 1H(5’bpy), 4J = 2.1Hz,
3J = 6.0Hz), 7.35 (m, 11H(Ar+6”bpy)), 7,232 (d, 1H(6”’bpy), 3J = 6.0Hz), 7.23 (dd, 1H(5”bpy), 4J =

1.9Hz, 3J = 6.0Hz), 7.14 (dd, 1H(5”’bpy), 4J = 2.0Hz, 3J = 6.1Hz), 7,05 (d, 1H(CH2), 2J = 17.4Hz),

7,01 (s, 2H(CH2)), 7,00 (d, 1H(CH2), 2J = 17.4Hz), 4.99(s, 2H(COD)), 4.03 (s, 2H(COD)), 3.41 (m,

2H(COD)), 2.31 (m, 4H(COD)), 1.79 (m, 2H(COD)), 1.41 (s, 9H(CH3)), 1.41 (s, 9H(CH3’)), 1.36 (s,

9H(CH3”)) ppm. MS (ESI): m/z = 1567.2 (15%, [{(tbbpy)2Ru}(bbip){Rh(COD)Cl}2]2+[Cl]-), 1463.2

(35%, [{(tbbpy)2Ru}(bbip){Rh(COD)Cl}⋅{AgCl}]2+[Cl]-), 1319.3 (12%,

[{(tbbpy)2Ru}(bbip){Rh(COD)Cl}]2+[Cl]-), 642.3 (100%, [{(tbbpy)2Ru}(bbip){Rh(COD)Cl}]2+),

519.4 (45%, [(tbbpy)2Ru(bbip)]2+), all with well matching isotopic pattern.

6.2.21 [{Ru(tbbpy)2}(µ-bbip){PdCl2}]Cl2 - Ru(bbip)Pd

Under argon atmosphere 100mg (87.3µmol) of [Ru(tbbpy)2(µ-bbip)AgCl]Cl2 and 26,7mg

(87.3µmol) of [Pd(acetonitrile)2Cl2] were dissolved in 20ml of dry dichloromethane and were

stirred for 16 hours at room temperature (methodC3). A colorless precipitate formed after 30min.

After the reaction time the solid was removed by filtration through oven dried celite. Remaining

product was washed from the celite with dichloromethane and acetonitrile. Finally the solvent was

removed completely under vacuum.Theproduct was obtained as a red powderwhich decomposes
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under air. Yield: 106mg (82.9mmol, 95%).
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1H-NMR (400MHz, CD3CN): δ = 8.81 (dd, 2H(4-ip,11-ip),
3J = 8.8Hz, 4J = 0.8Hz), 8.68 (d, 2H(3bpy), 4J = 1.9Hz),

8.64 (d, 2H(3bpy’), 4J = 1.8Hz), 8.10 (dd, 2H(6-ip,9-ip), 3J =

5.3Hz, 4J = 0.8Hz), 7.70 (dd, 2H(5-ip,10-ip), 3J = 5.3Hz,
3J = 8.9Hz), 7.66 (d, 2H(6-bpy), 3J = 6.1Hz), 7.54 (dd,

2H(5-bpy), 3J = 6.1Hz, 4J = 2.0Hz), 7.50 (d, 4H(Ar), 3J =

7.4Hz), 7.34 (m, 8H(Ar+6-bpy’)), 7.27 (dd, 2H(5-bpy’), 3J =

6.1Hz, 4J =2.0Hz), 7.14 (d, 2H(CH2), 2J = 17.7Hz), 6.96

(d, 2H(CH2’), 2J = 17.6Hz), 1.43 (s, 18H(CH3)), 1.35 (s, 18H(CH3’)) ppm. MS (ESI): m/z = 1235.1

(20%, [{(tbbpy)2Ru}(bbip){Pd(H2O)Cl2}]+), 821.9 (35%, [{(tbbpy)Ru(bbip)}2{Pd2Cl4}]4+[Cl]-),

810.9 (35%, [{(tbbpy)2Ru(bbip)}2{Pd2Cl4}]3+), 563.3 (100%, [{(tbpy)2Ru(bbip)}2{PdCl2}]4+), 528.4

(25%, [{(tbbpy)2Ru(bbip)}(H2O)]2+), all with well fitting isotopic pattern.

6.2.22 Attempted Synthesis of [Ru(tbbpy)2(Br2bbip)][PF6]2 - Ru(Br2bbip)

As described in method C1, 147.3mg (208µmol) of [Ru(tbbpy)2Cl2] and 100mg (208µmol) of

Br2bbip were dissolved in 200ml of DMF/water (4:1/v:v). This mixture was refluxed for 5 hours

in a microwave. After cooling, the solvent was removed under vacuum and the product was taken

up in 50ml of water. The undesired solids were filtered off and 760mg NH4PF6 dissolved in 5ml

of water were added to obtained a red precipitate.The crude was filtered off andwashedwith water

several times. After redissolution in dichloromethane removal of water a red solid was obtained.

Purification was achieved via back and forth counter ion exchange with Bu4NCl and NH4PF6 as

described in the case of Ru2(edip). Yield: 158mg (135µmol, 65%) of the wrong product.The pure

complex turned out to be Ru(Br2bip).
1H-NMR (acetonitrile-d3, 400MHz): δ = 9.22 (d, 1H(4/11-ip), 4J = 1.9Hz), 8.70 (d, 1H(11/4-ip),
4J = 1.8Hz), 8.60 (d, 1H(3-bpy), 4J = 1.9Hz), 8.57 (d, 1H(3’-bpy), 4J = 1.9Hz), 8.57 (d, 1H(3”-bpy),
4J = 1.9Hz), 8.56 (s, 1H(2-ip)), 8.54 (d, 1H(3”’-bpy), 4J = 1.9Hz), 7.94 (d, 1H(6/9-ip), 4J = 1.9Hz), 7.85 (d,

1H(9/6-ip), 4J = 1.7Hz), 7.60 (d, 2H(5,5’-bpy), 3J = 6.0Hz), 7.44 (m, 4H(6,6’-bpy,Ar-ip)), 7.36 (m, 3H(Ar-ip)),

7.24 (d, 2H(5”/5”’-bpy), 3J = 6.6Hz), 7.21 (dd, 1H(6”-bpy), 4J = 2.1Hz, 3J = 4.0Hz), 7.19 (dd, 1H(6”’-bpy),
4J = 2.0Hz, 3J = 4.0Hz), 6.04 (s, 1H(CH2-ip)), 1.43 (s, 1H(CH3-bpy)), 1.42 (s, 1H(CH3 ’-bpy)), 1.37 (s,
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1H(CH3”-bpy)), 1.36 (s, 1H(CH3”’-bpy)) ppm.

Crystals suitable for X-ray diffractionwere

obtained from diethyl ether/chloroform.

Crystal

data forRu(Br2bip): [C56H60N8Br2Ru]Cl2
× 3.5 CHCl3 × C2H5OC2H5,

Mr = 1668.82 g/mol, red-brown cuboid, size

0.46× 0.30× 0.24mm3, monoclinic, space

group C2/c (No. 15), a = 28.494(2),

b = 16.7022(14), c = 30.867(3) Å, α =

90.000, β = 96.8970(10), γ = 90.000°, V

= 14583(2) Å3, T = 100K, Z = 8, ρcalcd. =

1.520 g/cm3, µ(Mo-Kα) = 1.815 cm-1, F(000) =

6760, 65649 reflections in h(-34/32), k(-20/19), l(-37/37) measured in the range 2.07° ≤Θ ≤ 25.35°,
completeness Φmax = 99.4%, 13274 independent reflections, Rint = 0.0420, 13274 reflections with

Fo > 4σ(Fo), 1014 parameters, 393 restraints, Robs. = 0.0711, wR2
obs. = 0.1853, Rall = 0.1019, wR2

all =

0.2087 , GOOF = 1.087 , largest difference peak and hole: 2.106 / -1.586 e/Å3. The data file dp1004

includes the full crystallographic data and can be obtained from Dr. Frank Heinemann (IAC,

FAU-Erlangen-Nürnberg).

6.2.23 [Ru(tbbpy)2(eip)][PF6]2 - Ru(eip)

The title compound was obtained, following method C1. 104mg (146µmol) of [Ru(tbbpy)2Cl2]
and 36.4mg (146µmol) of eip were reacted in the microwave for 90 minutes in 50ml of

ethanol/water. After cooling and removal of ethanol and a dark precipitate 142mg (870µmol) of

NH4PF6 were added. The formed precipitate was collected and washed with water several times.

Purification was achieved by recrystallization from acetone/ethanol/water by slow evaporation.

After removal of water the pure Ru(eip) was obtained as red powder. The yield was 155mg

(132µmol, 90%).
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N

N

N

NN

N

N

N

Ru2+

Ru(eip)

2-ip

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip
CH2

3-bpy 5-bpy

6-bpy

3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

CH3

1H-NMR (CD3CN, 400MHz): δ = 9.04 (dd, 1H(4/11-ip), 3J

= 8.2Hz, 4J = 1.1Hz), 8.88 (dd, 1H(4/11-ip), 3J = 8.6Hz, 4J =

1.1Hz), 8.50 (dd, 1H(3-bpy), 4J = 2.0Hz, 4J = 2.0Hz), 8.46

(dd, 1H(3’-bpy), 4J = 1.8Hz, 4J = 1.8Hz), 8.34 (s, 1H(2-ip)), 7.99

(dd, 1H(6/9-ip), 3J = 5.4Hz, 4J = 1.2Hz), 7.98 (dd, 1H(6/9-ip), 3J

= 5.3Hz, 4J = 1.2Hz), 7.80 (dd, 1H(5/10-ip), 3J = 5.4Hz, 3J =

8.2Hz), 7.78 (dd, 1H(5/10-ip), 3J = 5.3Hz, 3J = 8.4Hz), 7.69 (d,

1H(6-bpy), 3J = 6.1Hz), 7.67 (d, 1H(6-bpy), 3J = 6.1Hz), 7.47 (dd,

1H(5-bpy), 3J = 5.7Hz, 4J = 2.7Hz), 7.46 (dd, 1H(5-bpy), 3J = 5.5Hz, 4J = 2.4Hz), 7.42 (dd, 1H(6’-bpy),
3J = 6.0Hz), 7.41 (dd, 1H(6’-bpy), 3J = 6.0Hz), 7.19 (d, 2H(5’-bpy), 3J = 6.0Hz), 4.77 (q, 2H(CH2), 3J

= 7.2Hz), 1.65 (t, 3H(CH3), 3J = 7.2Hz), 1.44 (s, 18H(CH3-bpy)), 1.35 (s, 18H(CH′3-bpy)) ppm. 13C-NMR

(CD3CN, 100MHz): δ = 163.48 (2C(4-bpy)), 163.31 (2C(4’-bpy)), 157.89 (2C(2-bpy)), 157.70 (2C(2’-bpy)),

151.90 (2C(6-bpy)), 151.83 (2C(6’-bpy)), 150.95 (1C(6/9-ip)), 150.41 (1C(6/9-ip)), 146.99 (1C(7’/7”-ip)), 146.73

(1C(7’/7”-ip)), 146.03 (1C(2-ip)), 131.20 (1C(4/11-ip)), 130.59 (1C(4/11-ip)), 127.52 (1C(3”/11’-ip)), 127.11 (1C(5/10-ip)),

126.06 (1C(5/10-ip)), 125.97 (1C(3”/11’-ip)), 125.62 (2C(5-bpy)), 125.42 (2C(5’-bpy)), 123.05 (2C(3’/11”-ip)), 122.40

(2C(3-bpy)), 122.29 (2C(3’-bpy)), 43.77 (1C(CH2)), 36.30 (2C(C-bpy)), 36.19 (2C(C’-bpy)), 30.54 (6C(CH3-bpy)),

30.44 (6C(CH3 ’-bpy)), 15.99 (1C(CH3)) ppm.MS (ESI): m/z = 1031.1 (100%, [M-PF6]+).

Crystals suitable for X-ray diffraction

were obtained from water/acetone.

Crystal data for Ru(ebip):

[C51H60N8Ru]2+[PF6]−2 × 3CH3COCH3,

Mr = 1350.31 g/mol, red-brown plate, size

0.05×0.05×0.03mm3, triclinic, space

group P1 (No. 2), a = 13.429(3), b =

14.934(3), c = 19.146(4) Å, α = 107.11(3),

β = 96.87(3), γ = 96.58(3)°, V =

3407.7(12) Å3, T = -90(2)°C, Z = 2, ρcalcd.
= 1.315 g/cm3, µ(Mo-Kα) = 3.56 cm-1, F(000)

= 1400, 20389 reflections in h(-17/17), k(-18/19), l(-23/21) measured in the range 3.96° ≤Θ ≤ 27.49°,
completenessΦmax = 92.4%, 14481 independent reflections, Rint = 0.0396, 9212 reflectionswith Fo >
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4σ(Fo), 760 parameters, 0 restraints, Robs. = 0.0894, wR2
obs. = 0.2298, R2all = 0.1440, wR2

all = 0.2703,

GOOF = 1.029, largest difference peak and hole: 1.311 / -0.740 e/Å3. The data file TT3757 includes

the full crystallographic data and can be obtained from Dr. Helmar Görls (IAAC, FSU-Jena).

6.2.24 [{Ru(tbbpy)2}2(µ-edip)][PF6]6 - Ru2(edip)

The title compound was obtained, following method C1. 104mg (141µmol) of [Ru(tbbpy)2Cl2]
and 58mg (70µmol) of edip were reacted in the microwave for 300 minutes in 75ml of

ethanol/water. After cooling and removal of ethanol and a dark precipitate 12 equivalents of

NH4PF6 were added. The formed precipitate was collected and washed with water and dissolved

in methylene chloride. After drying with Na2SO4 and removal of the solvent a crude product

was obtained. Purification was achieved ion exchange. The crude was dissolved in 10ml of

acetone/ethyl acetate (1:1) and was slowly added to a stirred solution of Bu4NCl in 40ml of

acetone/ethyl acetate (1:1). The formed precipitate was collected and washed with small amounts

of acetone/ethyl acetate to yield pure [{Ru(tbbpy)2}2(µ-edip)]Cl6. After ion-back-exchange with

NH4PF6 and removal of water pure Ru2(edip) was obtained as red powder. The yield was 243mg

(85µmol, 60%).

N

N

N

NN

N

N

N

Ru2+

Ru2(edip)

2-ip

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

Ar

CH2

3-bpy5-bpy

6-bpy
3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

N

N

N

N N

N

N

N

Ru2+

CH3

1H-NMR (CD3CN, 400MHz): δ

= 9.404 (dd, 2H(4-ip), 3J = 8.2Hz,
4J = 0.9Hz), 8.994 (dd, 2H(11-ip),
3J = 8.2Hz, 4J = 0.9Hz), 8.552 (s,

2H(2-ip)), 8.525 (m, 4H(3/3’-bpy)),

8.485 (m, 4H(3’/3-bpy)), 7.976 (dd,

2H(5-ip), 3J = 8.2Hz, 3J = 5.5Hz),

7.934 (dd, 2H(9-ip), 3J = 8.2Hz, 3J = 5.5Hz), 7,668 (d, 2H(6/6’-bpy), 3J = 7.7Hz ), 7,660 (d, 2H(6/6’-bpy),
3J = 7.7Hz ), 7.467 (m, 4H(5/5’-bpy)), 7.415 (d, 2H(6’/6-bpy), 3J = 6.0Hz), 7.408 (d, 2H(6’/6-bpy), 3J =

6.0Hz), 7.219 (m, 4H(5’/5-bpy)), 6.245 (d, 2H(CH2-Ar), 2J = 14.4Hz), 6.210 (d, 2H(CH2-Ar), 2J = 14.4Hz),

5.00 (q, 4H(CH2-Al), 3J = 7.0Hz), 2.353 (s, 12H(CH3-Ar)), 1.652 (t, 6H(CH3-Al), 3J = 7.3Hz), 1.436

(s, 18H(tBu)), 1.431 (s, 18H(tBu)), 1.344 (s, 18H(tBu)), 1.342 (s, 18H(tBu)) ppm; 13C-NMR (CD3CN,

100MHz): δ = 163.05 (4C(4-bpy)), 162.91 (4C(4’-bpy)), 156.90 (4C(2-bpy)), 156.82 (4C(2’-bpy)), 152.98

(2C(6/9-ip)), 151.28 (4C(3-bpy)), 151.05 (4C(3’-bpy)), 147.79 (2C(6’-ip)), 147.70 (2C(6”-ip)), 140.80 (2C(2-ip)),
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137.34 (2C(2,3,5,6-Durol)), 131.49 (2C(4-ip)), 130.74 (2C(11-ip)), 129.38 (2C(1,4-Durol)), 127.50 (2C(3’)), 127.14

(2C(5)), 126.96 (2C(11”)), 126.74 (2C(10)), 124.82 (4C(5-bpy)), 124.58 (4C(5’-bpy)), 121.75 (8C(6/6’-bpy)),

121.66 (2C(3”-ip)), 121.03 (2C(11’-ip)), 51.00 (2C(CH2-Ar)), 46.42 (2C(CH2-Al)), 35.48 (2C(C-tBu)), 35.37

(2C(C-tBu)), 29.58 (12C(CH3-tBu)), 29.49 (12C(CH3-tBu)), 16.19 (4C(CH3-Ar)), 14.33 (2C(CH3-Al)) ppm. MS

(ESI): m/z = 1110.2 (10%, [M - 2 PF6]2+) 1031.1 (100%, [Ru(eip)+PF6]+).

6.2.25 [{(tbbpy)2Ru}2(µ-edip){AgCl}2]Cl4 - Ru2(edip)Ag2

According tomethodC2, 200mg (93µmol) of the chloride salt of Ru2(edip), 25.0mg (220µmol)

of silver(I) oxide and 2 g of drymolecular sieves were suspended in 20ml of dry dichloromethane

under argon atmosphere. This solution was stirred for 16 hours at room temperature. After

the reaction time, the remaining solids were removed by filtration through oven dried celite.

Remaining product was washed from the celite with dichloromethane and acetonitrile. The pure

product is obtained after removal of the solvent under reduced pressure. Yield: 190mg (80µmol,

86%) of a red powder which is sensitive to air and moisture.

N

N

N

NN

N

N

N

Ru2+

Ru2(edip)Ag2

4-ip
5-ip

6-ip

9-ip
10-ip

11-ip

Ar

CH2

3-bpy5-bpy

6-bpy
3'-bpy

5'-bpy
6'-bpy

CH3-bpy

CH3'-bpy

N

N

N

N N

N

N

N

Ru2+

CH3

Ag
AgCl

Cl

1H-NMR (CD3CN,

400MHz): δ= 9.50

(d, 2H(C),
3J = 8.4Hz), 9.03 (d,

2H(C’), 3J = 8.6Hz),

8.58 (d, 2H(3-bpy), 4J

= 1.8Hz),

8.58 (d, 2H(3’-bpy), 4J

= 1.8Hz), 8.54 (d, 2H(3”-bpy), 4J = 2.0Hz), 8.54 (d, 2H(3”’-bpy), 4J = 1.8Hz), 8.20 (dd, 2H(A), 3J = 5.3Hz,
4J = 0.7Hz), 8.18 (dd, 2H(A’), 3J = 5.4Hz, 4J = 0.8Hz), 7.91 (dd, 2H(B), 3J = 8.8Hz, 3J = 4.8Hz), 7.90

(dd, 2H(B’), 3J = 8.7Hz, 3J = 5.1Hz), 7.72 (d, 2H(6-bpy), 3J = 6.1Hz), 7.70 (d, 2H(6’-bpy), 3J = 6.1Hz),

7.49 (m, 2H(5,5’,6”-bpy)), 7.45 (d, 6H(6”’-bpy), 3J = 6.1Hz), 7.26 (m, 4H(5”,5”’-bpy)), 6.10 (d, 2H(CH2-Ar), 2J =

13.1Hz), 6.05 (d, 2H(CH2-Ar), 2J = 14.3Hz), 5.06 (q, 4H(CH2-Al), 3J = 6.8Hz), 2.30 (dd, 12H(CH3-Ar), J

= 23.9Hz, J = 6.2Hz), 1.70 (t, 6H(CH3-Al), 3J = 7.1Hz), 1.46 (s, 36H(tBu)), 1.38 (s, 36H(tBu)) ppm. MS

(ESI): m/z = 1143.8 (25%, [M– 2Cl]2+), 751.1 (50%, [M– 3Cl]3+), 715.1 (50%, [M– 3Cl –Ag]3+),

554.7 (100%, [M– 3Cl]4+).
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* excited state

: covalently linkedJ K photocatalytic system

A acceptor

abs. absorption, absolute

ACN acetonitrile

AP antenna pigment

a.u. arbitrary units

b broad

B bridge

bbip 1,3-dibenzyl-1H-imidazo[4,5-
f][1,10]phenanthrolinium
bromide

(bbip)Ag [Ag(bbip)Br]

bbipBEt3 triethylborane adduct of
1,3-dibenzyl-1H-imidazo[4,5-
f][1,10]phenanthroline-2-ylidene

bip 1-benzyl-1H-imidazo[4,5-
f][1,10]phenanthroline

bpy 2,2’-bipyridine

Br2bip 1-benzyl-5,10-dibromo-1H-imidazo[4,5-
f][1,10]phenanthroline

Br2phen 3,8-dibromo-1,10-phenanthroline

C catalyst

COD cyclooctadiene

COSY correlation spectroscopy

conc. concentrated

CT charge transfer

cyt f cytochrome f

d dublett

D donor

DCM dichloromethane

dd dublett of dubletts

ddd dublett of dubletts of dubletts

DEI desorption electron ionization

DMF N,N-dimethlyform-amide

DMSO dimethylsulfoxide

DNA deoxyribonucleic acid

dppz dipyrido[3,2-a:2,3-c]phenazine

dqp 2,6-bis(8’-quinolinyl)pyridine

EI electronic ionization

edip 3,3’-(2,3,5,6-tetramethyl-1,4-
phenylene)bis(methylene)bis-(1-ethyl-1H-
imidazo[4,5-f][1,10]phenanthrolinium)
dibromide

eip 1-ethyl-1H-imidazo[4,5-
f][1,10]phenanthroline

em. emission

ESI electro-spray ionization

eT electron transfer

ET energy transfer

et al. et alii

EtOH ethanol

F fluorescence

FAB fast atom bombardment

Fc ferrocene

Fd ferredoxin

FeS membrane bound iron sulfur protein

ff. and the following

FNR ferredoxin-NADP reductase

FTIR fourier transform infrared

GC gas chromatography

GS ground state
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HPLC high pressure liquid chromatography

HMBC heteronuclear multiple bond coherence

HSQC heteronuclear single quantum coherence

IC internal conversion

IEA International Energy Agency

ISC inter system crossing

ip 1H-imidazo[4,5-f][1,10]phenanthroline

IR infrared

L (monodentate) ligand

LC ligand centred

LH I/II light harvesting complex I and II

L̂L bisdentate ligand

L̂LL trisdentate ligand

L̂LLL tetradentate ligand

LMCT ligand to metal charge transfer

m multiplett

M mol/l

MC metal centered

MeOH methanol

MLCT metal to ligand charge transfer

MS mass spectrometry

MV methylviologene

N noninvolved

NHE normal hydrogen electrode

Me2phenBr2 5,6-dibromo-2,9-dimethyl-1,10-
phenanthroline

Me2phenBr3 3,5,6-tribromo-2,9-dimethyl-1,10-
phenanthroline

NMR nuclear magnetic resonance

m/z mass-charge ratio

NADP nicotinamide adenine dinucleotide
phosphate

Nd:YAG neodymium-doped yttrium aluminum
garnet (Nd:Y3Al5O12)

nr nonradiative

OEC oxygen evolving complex

OECD Organisation for Economic Co-operation
and Development

Os(phenphen)Os [{Os(bpy)2}2(µ-phenphen)]4+

Ox oxidation

p. pages

P phosphorescence

P photosensitizer

P 680/700 special pairs with λ= 680/700 nm

PC plastocyanine

PET photoinduced electron transfer

phen 1,10-phenanthroline

phenBr 5-bromo-1,10-phenanthroline

phenBr2 5,6-dibromo-1,10-phenanthroline

phenBr4 3,5,6,8-tetrabromo-1,10-phenanthroline

phenCl 5-chloro-1,10-phenanthroline

phenphen 5,5’-Bis-1,10-phenanthroline

Pheo pheophytin

ppm parts per million

PQ plastoquinone

PS I/II photosystem I/II

Q quencher, quenching

Red reduction

RT room temperature

Ru(eip) [Ru(tbbpy)2(eip)]2+

Ru2(edip) [{Ru(tbbpy)2}2(µ-edip)]6+

Ru2(edip)Ag2 [{Ru(tbbpy)2}2(µ-edip){AgCl}2]4+

Ru(ip) [Ru(tbbpy)2(ip)]2+

Ru(bbip) [Ru(tbbpy)2(bbip)]3+

Ru(bbipBEt3) [Ru(tbbpy)2(bbipBEt3)]3+
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Ru(bbip)Ag [Ru(tbbpy)2(µ-bbip)AgCl]2+

Ru(bbip)Pd [Ru(tbbpy)2(µ-bbip)PdCl2]2+

Ru(bbip)Rh [Ru(tbbpy)2(µ-bbip)Rh(cod)Cl]2+

Ru(bip) [Ru(tbbpy)2(bip)]2+

Ru(Br2bip) [Ru(tbbpy)2(Br2bip)]2+

Ru(Br2bbip) [Ru(tbbpy)2(Br2bbip)]2+

Ru(Br2phen) [Ru(tbbpy)2(Br2phen)]2+

Ru(phen) [Ru(tbbpy)2(phen)]2+

Ru(phenCl) [Ru(tbbpy)2(5-chloro-1,10-
phenanthroline)]2+

Ru(phenBr) [Ru(tbbpy)2(phenBr)]2+

Ru(phenBr2) [Ru(tbbpy)2(phenBr2)]2+

Ru(phenBr4) [Ru(tbbpy)2(phenBr4)]2+

Ru(phenBr2)2 [Ru(tbbpy)(phenBr2)2]2+

Ru(phenBr2)2Cl2 [Ru(phenBr2)2Cl2]

Ru(phenBr2)3 [Ru(phenBr2)3]

Ru(phenphen) [Ru(tbbpy)2(phenphen)]2+

Ru(phenphen)Pt
[Ru(tbbpy)2(µ-phenphen)PtCl2]2+

Ru(phenphen)Ru
[{Ru(tbbpy)2}2(µ-phenphen)]4+

Ru’(phenphen)Ru’ [{Ru(bpy)2}2(µ-phenphen)]4+

Ru(tpphz) [Ru(phen)2(tpphz)]2+

Ru(tpphz)Os [Ru(bpy)2(µ-tpphz)Os(bpy)2]4+

Ru(tpphz)Pd [Ru(tbbpy)2(µ-tpphz)PdCl2]2+

Ru(tpphz)Pt [Ru(tbbpy)2(µ-tpphz)PtCl2]2+

Ru(tpphz)Ru [{Ru(phen)2}2(µ-tpphz)]4+

S, s singulett

S (sacrificial) substrate

SCE saturated calomel electrode

sh shoulder

T, t triplett

tbbpy 4,4’-di-tertbutyl-2,2’-bipyridine

TCD thermal conductivity detector

THF tetrahydrofuran

TLC thin layer chromatography

TOF turnover frequency

TON turnover number

tpphz tetrapyrido[3,2-a:2’,3’-c:3”,2”-h:2”’,3”’-
j]phenazine

tpy the 2,2’;6’,2”-terpyridine

UV ultraviolet

v volume

Vis, VIS visible

vs. versus
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