
Tomáš Bezák

Usage of IEC 61131 and IEC 61499 Standards for
Creating Distributed Control Systems

Scientific Monographs in Automation and
Computer Science

Edited by
Prof. Dr. Peter Husar (Ilmenau University of Technology) and
Dr. Kvetoslava Resetova (Slovak University of Technology in
Bratislava)

Vol. 3

USAGE OF
IEC 61131 AND IEC 61499 STANDARDS

FOR CREATING
DISTRIBUTED CONTROL SYSTEMS

Tomáš Bezák

Universitätsverlag Ilmenau
2012

Impressum

Bibliographic information of the German National Library
The German National Library lists this publication in the German national
bibliography, with detailed bibliographic information on the Internet at
http://dnb.d-nb.de.

Author’s acknowledgement to Jana Green for translation.

This scientific monograph originated from the author's dissertation thesis defended
at the Slovak University of Technology in Bratislava, Faculty of Materials Science
and Technology in Trnava.

Reviewers:

Peter Husár, Professor, Ph.D.
Aleš Janota, Professor, Ph.D.
Augustín Gese, Ph.D.

Author’s contact address:

Tomáš Bezák, Ph.D.
Slovak University of Technology in Bratislava
Faculty of Materials Science and Technology in Trnava

Ilmenau Technical University / University Library
Universitätsverlag Ilmenau
Postfach 10 05 65
98684 Ilmenau
www.tu-ilmenau.de/universitaetsverlag

Production and delivery
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster
www.mv-verlag.de

ISSN 2193-6439 (Print)
ISBN 978-3-86360-015-0 (Print)
URN urn:nbn:de:gbv:ilm1-2012100032

Titelfoto: photocase.com

5

Abstract

This publication deals with the application of standards for industrial

automation during distributed control systems design. Control systems

design consists of a choice between two approaches based on the standards,

IEC 61131 and IEC 61499. The question is which of the standards to use for

distributed control systems design. The most commonly used standards are

briefly listed in the introduction section. Then follows a more detailed

description of the IEC 61131 and IEC 61499 standards, future development

of the IEC 61499 standard and its usage during the creation of distributed

control systems. Further on are lists and descriptions of existing commercial

and research software tools, which are necessary in implementing this

standard. The main section deals with the methodology for standard

application comparison and criteria selection for comparing. This

methodology is then verified on real control systems. The final section

includes methodology generalization for suitable approach selection,

resulting in recommendations for which standard to choose during creation

of distributed control systems.

Key words

distributed control system(s), IEC 61131, IEC 61499

6

LIST OF ACRONYMS

IEC - International Electrotechnical Commission

ISO - International Organization for Standardization

BSI - British Standards Institution

UKAS - United Kingdom Accreditation Service

SWEDAC - Swedish Board for Accreditation and Conformity Assessment

GAMP - Good Automated Manufacturing Practice

ISPE - International Society for Pharmacoepidemiology

IT - Information Technology

GxP - Good Practice Quality Guidelines and Regulations

PLC - Programmable Logic Controller

MAP - Manufacturing Messaging Services

IPMCS - Industrial Process, Measurement and Control System

XML - Extensible Markup Language

OPC - Object Language Embedded for Process Control

ST - Structured Text

LAD - Ladder Diagram

IL - Instruction List

SFC - Sequential Function Chart

FBD - Function Block Diagram

FORTRAN - Formula Translation

FB - Function Block

ECC - Execution Control Chart

FAT - Factory Acceptance Test

SAT - Site Acceptance Test

HMI - Human Machine Interface

7

CBA - Component Based Automation

SIFB - Service Interface Function Blocks

ODECE - Open Distributed Embedded Control Environment

FBDK - Function Block Development Kit

FBRT - Function Block Runtime

NCES - Net Condition / Event Systems

OPC - Open Connectivity

PN - ProfiNet

CPU - Central Processor Unit

DI - Digital Input

DO - Digital Output

AI - Analog Input

PS - Power Source

DP - Decentralized Periphery

IP - Internet Protocol

HW - Hardware

OB - Organization Block

FC - Function

SFB - System Function Block

SFC - System Function

DB - Data Block

TCP - Transmission Control Protocol

ACK - Acknowledge

RAM - Random Access Memory

EPROM - Erasable Programmable Read-Only Memory

8

LIST OF SYMBOLS

Tcelk - Total response time of remote system

Tpoz - Requirement delivery time

Tsprac - Requirement processing time

Todp - Response delivery time

Tcyklu - Total time of PLC cycle

Tvstup - Input processing time

Tprogram - Program execution time

Tvýstup - Output processing time

Pcelk - Overall PLC memory consumption

Pprog - Program memory consumption

Pprac - Work memory consumption

Psyst - System memory consumption

9

INTRODUCTION

Distributed management was not taken into account by control system

design. Therefore even the standards which these systems follow do not

offer direct options for how such systems should be designed. They have

come more and more to the forefront in the present day. Based on this fact,

it is necessary to create new standards, which are primarily designed for

distributed system development.

When creating the distributed control systems, we can choose one of

two possible approaches based on IEC 61131 and IEC 61499 standards. The

first of them has been used for a long time in the PLC sphere, but it does not

directly support the creation of extensive distributed systems. That is why it

is quite difficult to design such systems using the IEC 61131 standard. The

more difficult the system is, the more problems that can occur. Sometimes it

can be quite impossible to create a system because it is just too big. More

difficult operations obviously increase the costs needed for system design,

in some cases they can even exceed the hardware costs. The second of the

standards, IEC 61499, offers a direct solution for distributed control system

creation. That is the reason why it is more widely preferred. The truth is that

it is a new standard, which is why it is supported by only a few device

manufacturers. Most programming tools are intended for research purposes

only. Also, most of the people who develop these systems do not have any

experience with the IEC 61499 standard. This raises the question of which

approach and which standard is more effective and suitable for individual

system designing.

10

The publication focuses on:

- IEC 61131 and IEC 61499 standards analysis and prognosis of their

development;

- Analysis of existing application of these standards in practice;

- Criteria determination to compare the suitability for system use,

designed on the base of both standards;

- Preparation of the model distributed system by using both approaches;

- To compare the influence of the chosen approach on selected criteria;

- Comparing the suitability of both approaches for real distributed

system creation based on quality parameters.

11

1. CURRENT STATUS IN INDUSTRIAL AUTOMATION
STANDARDS

Each industry sector will soon come to the development point when it

is necessary to unify different approaches. Without creating the standards,

development cannot progress.

Usage of the standards enables the following:

- To reduce installation and startup costs – installation and startup of the

systems based on the same standard is identical, or similar.

- To reduce the need to keep high level of stocks – standard devices are

widely available even after several years from placing on the market

- Components compatibility – new device should be easily compatible

with any other device built on the same standard

- Safety increase

Usage of the standards in industry:

- Improves communication

- Provides practical usage of professional skills

- Represents years of experience and reduces the need to start each

project from scratch

1.1 IEC standards

The international industry community accepted that it is necessary to

design new standards for programmable logic controllers. The International

Electrotechnical Commision (IEC) was founded in order to design and

standardize programmable controllers, including hardware design,

installation, testing, documentation, programming and communication. As

12

a result of its activities, IEC 61131 and IEC 61499 were designed as well,

which together with new technologies have a dramatic impact and influence

on design and implementation of the industrial control systems.

These two standards are closely connected and create the base for

control system development in the present, as well as in progressive

technologies in the near future.

Fig. 1 Technology development for industrial control [24]

F
un

ct
io

na
li

ty

IEC 61131

IEC 61499

Progressive technology

Mechanical
control

Continuous
control

Numerical
control

Functional
distribution

Integration
tool

Protection
independent
functionality

13

1.1.1 IEC 61131 standard

IEC 61131 standard is based on well-tested techniques [25], which are

at present used in various forms and in many control products. It

comprehensively defines the whole software design process for

programmable logic controllers, possibly control systems [11], including

programming languages, implementation, communication and technical

documentation.

This standard is used for the whole complex of problems related to

programmable controllers and it is devided into 8 parts:

- IEC 61131-1 Basic information – basic terminology and terms are

defined in this part;

- IEC 61131-2 Hardware requirements and its testing – electronic and

mechanical structure and verification tests;

- IEC 61131-3 Programming languages – structure of PLC software,

languages and program performance;

- IEC 61131-4 User instructions – instructions for selecting, installation

and maintenance of programmable controllers;

- IEC 61131-5 Message specification – software resources for

communication between devices based on MAP (Manufacturing

Messaging Services);

- IEC 61131-6 Communication through industrial networks – PLC

software resources for communication using IEC Fieldbus;

- IEC 61131-7 Fuzzy control programming – software resources

including standard; function blocks for operation with fuzzy logic in

PLC;

14

- IEC 61131-8 Directives for languages implementation used for PLC –

application and implementation directives for IEC 1131-3 languages.

1.1.2 IEC 61499 standard

IEC 61499 was developed especially as a methodology for distributed

control system modelling. It defines concepts and models in a way where

software implemented in the form of mutually concurrent function blocks

can be used to define distributed control system behaviour. Function blocks

within the industrial systems represent the basic concept for definition of

robust, reusable software components. Each function block has its own set

of input parameters, which are evaluated by internal algorithms during

processing. Algorithm results are recorded in block outputs. Complex

applications can be created from function block networks, which are formed

through their input –output connection.

Fig. 2 Function block connection

IEC 61499 standard, based on the function blocks concept, which are

defined in the language standard of the programmable controllers IEC

61131-3, provide together with the application layer of the communication

fieldbus, the software interface. This interface enables cooperation between

remote function blocks by using an industrial network.

15

IEC 61499 standard consists of 2 parts. Firstly, it includes the function

block architecture and concepts for block–oriented systems design and

modelling. This part includes the following spheres:

General requirements – contain introduction, focus and normative

references (for other standards as well), definitions and reference models:

- rules for the function block type declaration and the instances

behaviour of function block types,

- rules for function block usage in configuration of distributed industrial

control system (IPMCS),

- rules for function block usage in connection with communication

requirements of distributed industrial control system,

- rules for function block usage in application, resource and device

management in IPMCS,

- Requirements for system and standard compatibility.

Second part defines software tool requirements for definition design of

the function block types and management of the function block libraries. It

contains an extending supplement for type definition of XML documents

used for the function block design exchange between software tools from

different suppliers. This part focuses mainly on design, implementation,

usage and maintenance of industrial distributed control systems constructed

with architectural usage and concepts defined in the first part. The XML

language is used to store and access the function block definitions, which

enables design transmission through the internet and offers an opportunity

to browse them by using internet browsers and save different attributes,

including the information about the version and allocation of the graphic

details.

16

Faced with a large number of industrial standards remains the issue of

which norm or standard is the best solution for our application. Each

standard contains precise rules for system creation, but only in theory. It

would be a waste of time to look for a specific recommendation for real

systems usage in the standards. When creating the distributed control

systems, there are several alternatives [24] for how to proceed. It is not

simple to select a specific solution without the knowledge of appropriate

standards and issues.

17

2. IEC 61131 AND IEC 61499 STANDARDS
AND THEIR FUTURE DEVELOPMENT

IEC-61131 [6] standard for PLC programming was widely adopted by

suppliers and users of automation technologies. However, IEC 61131-1

restrictions play more and more of an important role for achievement of

automation systems' elasticity and flexibility. Although all major PLC

suppliers design their product according to the IEC 61131 standard, some

differences between the various PLC brands are the reason for not allowing

the replacement of one PLC brand with another one. The need for

decentralized management is growing for many reasons such as flexibility

and reliability (a centrally-managed system represents a single point of

failure, in case of failure of any system part). The International

Electrotechnical Commission (IEC) developed a new standard, IEC 61499,

in order to make the automation systems reconfigurable, interoperable and

portable. IEC 61499 standard is based on function blocks conception.

Function block type IEC 61499 is in contrast to the event driven function

block type IEC 61131. IEC 61499 is an innovation, but has great potential

for future growth. Modularity and re-usability are currently more and more

important for PLC programming. Modular code offers greater efficiency

and time saving, especially for medium- and small-sized businesses.

Productivity is much more improved thanks to the introduction of IEC

61499 function blocks. Small companies will be able to incorporate their

intellectual property collected in IEC 61499 functional blocks into

components libraries used in the future.

For configuration according to IEC 61131-3, the program

implementation is processed by periodical or non-periodical events. When

18

activated, function block instances are performed in a pre-defined order.

Function block instance activation in the distributed system can be carried

out according to a predefined cyclical plan as well. However, IEC 61499

supports a more generalized model, where the central mechanism provided

by the activation under the plan, cannot exist at all. Function block

execution is controlled by events and is very fast, but can be cyclical as

well. This is important for many control programs in modern devices.

Communication and input-output functions in the IEC 61131-3 model

are only loose-bounded to the variables, which are called in program by the

"access channels" mechanism and "global and direct represented variables".

There are no communication function blocks available between systems for

industrial fieldbusses. OPC (Object language embedded for Process

Control) is used to create communication links independently from the

application. IEC 61499 contains communication function blocks, which can

be implemented very easily and support different network access, so the

function blocks can be easily distributed to network devices. Function block

model according to IEC 61499, allows the existence of several alternative

algorithms in the function block body, which are selected according to

defined external events or conditions (e.g. initialization algorithm, standard

algorithm and algorithm called when failure or defect occurs). All this is

possible because, IEC 61499 function blocks can be designed by different

programming languages. There is only limited flexibility in the case of

fieldbus, because only basic function blocks can be used.

As the production management becomes more and more distributed,

the attributes like encapsulation and the function block reusable possibility

by end users, device suppliers and system integrators, become increasingly

19

important and widespread. As an extension of the programming languages

IEC 61131-3 supports, IEC 61499 not only uses the algorithm

encapsulation, but subprograms or even system applications as well. The

system designer, without any programming experience, is able to design

applications and use them again in the future. Such technology does not

exist for use of industrial fieldbus.

Because of adaptation to frequent changes in product composition and

volume, as well as the frequent introduction of new technologies, the

industrial processes will offer more opportunities for physical reuse in the

future. There are no doubts that thanks to the use of the IEC 61499 [58]

concept, the technical costs will be reduced and systems will be more

flexible and better maintained.

2.1 IEC 61131

As defined in IEC 61131-3 [6], standard programming languages for

PLC are: Structured Text (ST), Ladder Diagram (LAD), Instruction List

(IL), Sequential Function Chart (SFC) and Function Block Diagram (FBD)

[18]. PLC manufacturers implement programming languages on the base of

IEC 61131-3 standard, but not equally. This causes compatibility problems.

For example, a program in LAD language from a certain manufacturer,

although seeming similar, cannot be imported to PLC from another

manufacturer.

Function block IEC 61131-3 is a subprogram with parameters and

local data. But the syntax of specific implementation [1] can contain many

different details. Function block does not need to contain all programming

languages (e.g. SFC is not supported in add-on instructions of Allen-

20

Bradley, Implementation of Rockwell function blocks). Access to memory

also varies between individual manufacturers. Some PLC support only

variables (attributes) assigned to a block (local attributes), while others can

access the global variables as well.

Languages IEC 61131-3 [12]:

a) text

 Structured Text Language (STL) – high-level programming

language supporting structured programming. It has strong

language structure similar to PASCAL.

Fig. 3 Partial program record in STL

 Instruction List (IL) – low–level programming language similar to

languages used in modern PLT controllers.

21

Fig. 4 Record of program function block call in IL

b) graphic

 Ladder Diagram (LAD) [59] – graphic language based on relay

logic, technique used for programming in present generation of

PLC controllers.

Fig. 5 Program flow record in LAD

 Function Block Diagram (FBD) – language describing signals and

data flows through functional block links – reusable software

elements.

22

Fig. 6 Program flow record in FBD

 Sequential Function Chart (SFC) – graphically illustrates

sequential behaviour, control program sequence running. It is used

to define time or event based control sequences.

Fig. 7 Record by using SFC

S1

S2

S3

S4

S5

S6

N Initialization

N Loading

N Heating

N Fermentation

N Unloading

N Cleaning

23

 One of the main features of this standard is to use function blocks -

parts of the control program [14], which are limited so they can be used in

different parts of the same program, or in other programs or projects as

well. Function blocks can store data or algorithms. That is a great advantage

over other similar concepts in programming languages (e.g. FORTRAN, C).

The function block describes the data flow as well as its structure.

Fig. 8 Example of function block definition

Main parts of the IEC software model are pictured in Figure 8. These

parts are needed for the PLC software environment. The model consists of

several layers, each layer absorbs features located inside of it.

24

Fig. 9 IEC 61131-3 software model

The main elements of the IEC software model are:

a) Configuration – is a top layer defined as a language element, which

corresponds with a programmable control system.

b) Means – in each configuration are one or more resources, which

provides support for all elements needed for program execution.

c) Program – can be created by multiple different software elements,

each of them can be written in one of the different languages listed in

IEC. Program consists of a number of interrelated function blocks,

which enable data exchange through software connections. Program

Variable
access
channel

Control
implementation
channel

Configuration

Resource

Task Task

Program Program
FB FB

Resource

Task Task

Program Program
FB FB

Global and local variables

Access channel

Communication function

Function
block

Variables

FB

25

can read and write the input-output variables and communicate with

other programs.

d) Task – can be configured to control the program group or function

blocks, which are executed, based on periodicity or event.

e) Function block – This concept is one of the most important elements

of IEC 1131-3 standard for software support of the hierarchical design.

Using the function blocks, it is possible to create a program from

smaller, easily controlled blocks. Each block can be programmed

through using other function blocks - clear, hierarchically structured

programs can be created this way. Function blocks in distributed

systems form the base for the IEC 61499 standard. Function blocks

consist of two parts: data, which defines the inputs and outputs and the

part where the algorithm is defined; code time, which always runs

during function block execution.

f) Functions - are software elements that provide one result based on

required inputs.

g) Global and local variables – standard allows declaring of variables in

different software elements. Global variables are available to any

software elements inside the program, while the local variables are

available only for included software elements.

h) Accurately representing variables – enables the data to be recorded in

and read from known memory area in PLC.

i) Access channels – are the last element of the model. They provide

resources for data and information transmission between different

configurations. Each configuration contains variables that are

accessible to other remote configurations.

26

The concept of the application itself [1] [27] [31] [38] is not defined

by the standard. Application must contain all control requirements for

activation, control and finish. Control is necessary for physical sensors and

actuator handling, event scheduling, and interaction with operating

terminals. Because the standard allows the resources to be activated

independently, large-scale PLC system can handle multiple independent

applications simultaneously (Fig. 10).

Fig. 10 Assigning application to resource

Standard [25] describes programs, function blocks and functions as

program organization units – software elements, important attributes that

could be called in different application parts. Behaviour and structure of

such program organization units is defined by type declaration. The

function blocks copies made from particular types are identified as function

block instances.

One of the important characteristics of IEC 61131-3 standard is

a strong emphasis on the hierarchical design of the application. A program

can be seen as a network of function blocks and functions. Each function

block is a copy or an instance of the type definition. (Figure 11).

Configuration

 Resource Resource Resource Resource Resource

Program Program Program ProgramProgram Program

Application A Application B C

27

Fig. 11 Hierarchical structure decomposition

Program instance A1 of program type A

Function block,
instance R1 type R

Function block type R,
definition

Function block,
instance X1, type X

Function block type X,
definition

28

2.2 IEC 61499

IEC 61499, IEC introduced in 2005, is considered to be the next

generation in improvements for PLC system engineering. The basic

principle of IEC 61499 consists of event controlled function blocks (FB),

which are called only if some of their event inputs are activated. Relevant

data inputs are updated at the same time. FB stays inactive during the

remaining operating time. This will significantly improve efficiency,

reducing energy consumption and workload of the communication channel.

Also, use of function blocks as a top-level representation provides

a complete system overview of all devices, communication layers and

programs. It is very easy to transfer the project with function blocks to other

devices. Function encapsulation into function blocks increases the

possibility of reuse. As a result, the library of standard component

completed from function blocks maximizes the efficiency during project

revision.

There are three types of function blocks [15]: basic, composite and

service. Basic function block is an elementary component in the IEC 61499

function block system. Basic block must contain Execution Control Chart

(ECC) [60] – state controller with conditional jumps and relevant

algorithms running on conditions. IEC 61499 function blocks have two

kinds of input and output based on event or data. Function block is

performed only if the event input is activated. All associated data inputs and

outputs (assignment is marked as a vertical line connecting event and data

input/output) are updated at the same time. According to the definition

in IEC 61499, function block inner algorithm can be written in several

29

languages, for example in languages included in IEC 61131 (ST, LAD, IL,

SFC, FBD) [55] and in high-level languages as well (e.g. C or Java).

A network of basic and composite function blocks creates a body of

composite function blocks. Hierarchical structure, which assures the code's

reuse, can be built in this way. The composite blocks have their own

interface as well as the basic function blocks. Inputs and outputs of the

composite function block can be directly connected with inputs (outputs) of

the composite function blocks.

The result is an application formed by a network of basic and

composite function blocks. System configuration combines application

logic with the device topology, abstract definition of communication

networks and accurate assignment of function blocks to the devices. Service

interfaces [6] are designed to cover hardware dependencies of the

applications. Service interface is a "Black Box". Internal logic definition of

the service interfaces is not limited much by the standard. Service interface

is defined by multiple sequence of event specifications, which describe

interaction between hardware resources and function blocks. This method of

specification can be useful for documenting the service interface operation,

especially if this interface is hidden, or created in low-level programming

languages. Service interfaces can be used for implementation of various

communication protocols, database interfaces or Human Machine Interfaces

(HMI).

IEC 61499 standard defines the basic model and methodology for a

function block describing in form, which is independent from

implementation. Standard is the first step in providing design methodology

for distributed application development and modelling. Methodology can be

30

used by system designers to build distributed control systems. System is

defined in terms of logically connected function blocks running on different

process resources. Use of the IEC 61499 standard consists of two stages in

distributed control system designing:

 function design phase – function requirements are represented as

a series of blocks, defining the basic features of software components

and their main connections.

 functional distribution phase – is necessary to define distribution

management to process resources. Standard provides models and

concepts to define the distribution functionality of the function blocks

into connected function blocks.

Standard enables the function blocks, which include software

functionality and algorithm to be defined in a standard form. Standard

defines the range of the communication blocks as server and client blocks,

which are used to formalize data exchange between blocks in physically

different process resources.

Programming using this standard requires similar use of function

blocks as objects in object-oriented software programming, which model

entity and concepts behaviour in real-world settings. That is why they share

many advantages from software object use:

 objects reflect the real world - during design the applications are more

natural and intuitively display the real world entities associated with

applications as objects.

 Objects are stable - objects demonstrate software elements that are not

changing significantly. In many cases identical object classes within a

wide application range are developed and used.

31

 Objects reduce difficulty – programmer can work with objects without

knowing and understanding how these two objects operate from the

inside. Application is being developed through creating and linking

references – it is not necessary to understand the objects in detail,

specifically their inside.

 Objects are reusable – immediately after object development and

testing, it can become a part of the implementation tools, or library.

It is a great advantage [16] for system developers and end users

because function blocks share many of these features:

 control software range developed for the application is reduced by

functional block usage

 time needed to develop management systems is minimized

 control system using identical types of the functional blocks shows

more consistent behaviour

 control system quality improves

Usage of the tested and validated blocks speed up the application

testing in FAT or SAT.

2.2.1 System design

Designing the software for any project can be very difficult and it

includes multiple aspects of distributed management, including the software

running on different software resources. There is a requirement for multiple

graphic design previews, which allow it to be defined and analysed in terms

of other aspects. Some of the previews express abstract design aspects,

some are needed to see the system's physical structure, or its software

32

organisation. The most complex design requires at least four different

design previews and set of scenarios. This architectural form is known as

4+1 preview model, which is used for design previews of object–oriented

software and is equally applicable for creating the same design previews

used for distributed control systems (Figure 12).

Fig. 12 4+1 System development preview model

Logic preview

This design view is used to show function requirements of the system. It

expresses the software functionality requested by system user. Major

software function blocks and major interfaces between them are reproduced

in distributed system design.

Process preview

Process preview contains many non-functional system requirements,

including performance or system distribution. During application of IEC

61499 standard, which provides the architecture showing the

LOGIC

PREVIEW
DEVELOPMENT

PREVIEW

PROCESS

PREVIEW
PHYSICAL

PREVIEW

SCENARIOS

User system
functionality

Functionality
distribution by
displaying the control
context (IEC 61499
function block)

Software system control
(e.g. function block
libraries)

System topology –
network layout,
devices, controllers

33

implementation preview of the distributed system, a network of

interconnected function blocks is created.

Development preview

Preview shows the organisation of developed software integrated into

a larger system, relations between software components. Creating a large

scale distributed control system includes a number of software libraries and

modules.

Physical view

It shows physical devices in distributed systems and controllers within the

system and reflects different network communication connections between

them.

2.2.2 Models and concepts

The main objective of IEC 61499 is not the programming

methodology, but the architecture and model for distributed systems. The

standard provides concepts and a set of models describing distributed

systems programmed by using function blocks, which describe the

implementation of such control systems in an explicit and formal way. To

have a formal and standardized approach for system description allows

systems to be verified, compared and understood.

The standard uses few models which together form the architecture of

a distributed system oriented on function blocks.

34

System model

Defines relations between communication devices and applications.

Application can exist on a single device or can contain functions distributed

for a larger number of devices. Distributed application is shown as

a function block network.

Device model

Device is able to support one or more resources. The resource of IEC 61499

has similar features as resource defined in IEC 61131-3 standard. The

resource provides independent performance and function block network

control. The model contains the device interface which provides services

that allow resources to exchange data with input-output points on the device

and communication interface providing communication services for data

exchange through external networks with remote device resources.

Resource model

The resource provides equipment and service for performance of single or

multiple function block application fragments. Function blocks of

distributed systems are placed into device resources, which are

interconnected. Resource provides interfaces for communication systems

and for specified process devices. Important feature of the resource is its

support for independent execution – resource can be recorded, configured,

activated or stopped without influencing other resources in the same device,

or network.

35

Fig. 13 Resource model

Application model

IEC 61499 application is defined as a network of interconnected function

blocks depending on event or data flows. Application can be divided and

distributed in multiple resources. Further decomposition is possible inside

of the application by using the subprograms. The application defines

relationship between events and data flows, which are required between

different blocks. The resources on which the function blocks are distributed

must ensure that the events are used for particular algorithm timing in

function blocks with correct priority and time. Resources are responsible for

accumulation of variable values in function blocks between application

callings. The application contains function block instances and connection

definitions.

COMMUNICATION INTERFACE

PROCESS INTERFACE

SCHEDULING FUNCTION

Working
interface

FB

Algorithm
FB

Working
interface

FB

Process

recording

Communication
recording

Events

Data

Local application or distributed
application fragment

36

Fig. 14 Application model

Function block model

Definition of the function block type provides formal description of the data

structure and data assigned algorithms, which exists in different instances.

Function block consists of two parts:

 "Execution management" – top part of the function block records

events in algorithms, provides information about the status between

input, output and algorithm execution events.

 Bottom part of the function block contains algorithms and internal

data, which are hidden inside of the function block. Function block is

Application – distributed
through resources

RESOURCE 1

RESOURCE 2

RESOURCE 2

Work
block

interface

RESOURCE 2

Work
block

interface

Work
block

interface

Work
block

interface
Subprog.

RESOURCE 3

Event flows
Data and events transmitted between
applications through operating interface

Data flows

Subprogram – distributed
through resources

37

a software component type and if it is properly developed, it should

not request detailed understanding of its internal design from the user.

 Function block operates in connection with its resource, which

supplies resources for algorithms scheduling and requests recording

for communication and process interfaces.

An important concept in IEC 61499 is the option to define the function

block type [24], which determines the behaviour and function block

instance interfaces, which are built of that type.

Fig. 15 Function block model

Execution control
(hidden in FB)

Algorithms
(hidden in FB)

Internal data
(hidden in FB)

FB type name

Instance name

Resource abilities
(scheduling, communication, process recording)

Event flow Event flow

Data flow Data flow

Data outputs Data inputs

Event inputs Event outputs

38

2.3 PROFINET CBA

It can be described as a transfer of the IEC 61499 standard elements

into the world of traditional PLC systems. The main element of PROFINET

CBA [2] [35] [36] [37] [60] is a component. Component represents control

functionalities and communicates with other components through its

interface. In the PROFINET environment, each component equals the

control device. PROFINET CBA enables the creation of component

interfaces and relations between them. Individual components are

programmed with tools supplied by device manufacturers. Although several

companies adopted PROFINET CBA (Hilscher, KW Sotfware), the market

accepted PROFINET CBA only on a limited scale, mainly because this

system is complicated to use and some key features of IEC 61499 are

missing (e.g. application model and composite function blocks).

PROFINET is an open standard for automation based on industrial

Ethernet. PROFINET CBA is a part of this standard and is based on IEC

61499-1 – describes technologies for modular and distributed system

implementation on the base of pre-defined components.

"Architecture Description and Profibus Specification" issued by

Profibus International, defines the communication between devices from

different manufacturers, automation and design model based on IEC 61499-

1. The aim is to implement the solutions of distributed management by use

of unified communication on Ethernet network and industrial networks

using the open standards.

Distributed control systems in accordance with IEC 61499-1 standard

have a hierarchical structure and are not based on components. Basic terms

are "System", "Device", "Resource", "Application" and "Function block".

39

Specification of PROFINET CBA is largely in line with the model

described in IEC 61449-1.

BASIC EXPRESSIONS IN IEC 61499-1
AND PROFINET CBA Table

IEC 61499-1 PROFINET CBA

System System

Device Physical device

Resource Logic device

Function block Object/Control function

Application Application

Conjunction Connection

System

System model describes distributed control system as an entity. System is

the top level in architecture hierarchy. It consists of physical devices that

are interconnected through communication network. Current process is

controlled by several applications, which are located in a single device

(Application C), or are divided among several devices (Application

A and B).

40

Fig. 16 System model according to IEC 61499-1 and PROFINET CBA

Device

Device performs within the complex control task as an independent

function. It is a general term for various device types, starting with PLC,

from personal computers to strong programmed devices (embedded

regulators), or intelligent fieldbus devices with specific firmware. All of

them contain a process and communication interface. Devices consist of

single or multiple resources.

System
Communication network

Device 1 Device 2 Device 3

Controlled process

Appl. A

Application B

Appl. C

IEC 61499-1

System
Communication network

Physical
device 1

Controlled process

Profinet CBA

Appl. A

Application B

Appl. C

Physical
device 2

Physical
device 3

41

Fig. 17 Device model according IEC 61449-1 and PROFINET CBA

Resource

The resource performs local applications, also known as function blocks.

These represent the wrap around software needed to run the equipment.

This software includes firmware as well as the control program, which can

be freely programmable. Functional blocks are capable through the

connection of exchanging data with other function blocks. Communication

partners can be in the same device, or located in other devices in the

communication network.

IEC 61499-1 Profinet CBA

Device

Resource 1 Resource 2 Resource 3

Application A

Appl. B

Application C

Communication interface / interfaces

Interface / process interfaces

Communication line / lines

Controlled process

Physical device

Log. device 1 Log. device 2 Log. device 3

Communication interface / interfaces

Interface / process interfaces

Connection / Connections

Controlled process

Application A

Appl. B

Application C

42

Fig. 18 Resource model according to IEC 61449-1 and PROFINET CBA

Function blocks

Function blocks are the basic architecture elements of IEC 61499-1. They

contain interfaces for data receiving and transmitting, as well as containing

internal data and executable algorithms invisible from the outside.

Technological functions of PROFINET CBA are based on the application

oriented Service Interface Function Blocks (SIFB) described in IEC 61499-

1 standard.

Function blocks [32] have a fixed structure, or they are freely

programmable.

As a result of that, these devices can have either:

- fixed functions (e.g. fieldbus devices, drivers, sensors), or

- programmable and recordable functions (e.g. PLC, personal

computers).

Device 1

Resource 1 Resource 2

Function
block a

IEC 61499-1 Profinet CBA

Function
block b

Function
block c

Resource 3

Function
block d

Device 2 Physical device 1

Logic
device 1

Function a

Function b

Function c Function d

Physical dev. 2

Logic
device 2

Logic
device 3

43

2.4 Future development of IEC 61499 standard

Considering the entire life cycle of the automation systems, current

work on IEC 61499 deals with solving only its small part, which are the

creating and activating aspects. These are very important aspects, but for

pioneers of industrial automation technology it is also important that this

system is fully functional, being easily kept in operating status and in case

of any problems (e.g. breakdown), the system can return back to operating

mode immediately. To overcome these problems, research and development

will be necessary in the following areas:

 How to perform the activation and deactivation phase of the

distributed system.

 Distributed control systems monitoring and debugging – how to gain

data, how to present them in the tools and how to detect defects.

 So far, all sample applications have from one up to four devices. How

will the system behave with many nodes (thousands of nodes)?

 Analysis, behaviour tests and system stability tests (e.g. one node will

always be inactive).

 Managing the complexity of distributed systems. Distributed systems

are more complex than centralized systems. They need methods and

tools to help the system designers manage their complexity.

Not completely related to the device operation are the intended

heterogeneous targets of the IEC61499 system. Subject to the requirements

of accuracy, interoperability and configurability appear as a problem of how

to activate control programs on devices from different producers. The

44

reason for these gaps and deficiencies in the standard can be interpreted

differently.

The world of industrial automation and management has changed a lot

since works on the IEC 61499 standard began. Distributed devices,

programmable input/output modules and intelligent drives are more used in

the field of automation systems. Increasing their computing power and

increasing memory allows the control programs to maintain a reasonable

size. Ethernet in industrial and automation practice is another popular

technology of recent years. This technology allows any member of the

communication system to communicate with another. Another element is

the growing complexity of the control programs. Large modular devices

consist of 60 or smaller control devices (such as woodworking and printing

machinery). There are even more devices in the case of the building

automation. Currently available development methodologies and tools

cannot handle such a complex device. The main reason is that the IEC

61131-3 standard is designed for central tightly- bound control systems.

Therefore, it is difficult to build and keep the distributed systems in

operation. Software costs grow rapidly and exceed the price of mechanical

parts of the device.

IEC 61499, as an architecture focused on distributed control systems,

can solve the majority of such problems. Basic knowledge of IEC 61499

must be put under constant technology change and development in area of

industrial automation and control systems. Otherwise the IEC 61499

standard would be a nice concept without longevity. Vyatkin came to the

same conclusion in his essay on the use of IEC 61499 [57]. He also

mentioned the large increase in the number of published works on this

45

subject in recent years. This may be a sign of future recognition of the IEC

61499 standard.

One possibility for how to get the products supporting IEC 61499 on

the market is to help the producers integrate this technology into their

products. As a result, an open source initiative named Open Distributed

Embedded Control Environment (ODECE) [60], currently operating under

the auspices of the OOONEIDA society, was founded.

The next chapter lists the best known programming tools

implementing the IEC 61499 standard, as well as their brief descriptions

and future development prognosis for this standard.

46

3. PROGRAMMING TOOLS SUPPORTING IEC 61499

IEC 61499 has been practiced in research projects for years. Several

research groups [55] around the world participated in case studies research

as well as supporting tools prototypes.

Several programming tools are used according to IEC 61499 standard

(e.g. FBDK, ISaGRAF, Fbench).

3.1 FBDK

FBDK is the first programming tool which follows IEC 61499. It is

written in the Java language and function blocks are implemented as Java

classes.

FBDK [40] consists of a development environment (FBEditor) and

tool for triggering (FBRT). However, usage of Java, even if it is beneficial

for portability, is not in any way conditioned by actual standards. FBDK

was developed by one of the main suppliers of the industrial automation

systems, Rockwell Automation, and played a very important role in the

evaluation, development and teaching of the IEC 61499 standard. It was

never intended to be used in "field" and it´s missing many functions of a

modern automation tool. FBDK is mainly used in academic environments

and development communities.

This development software [52] allows a management engineer to

create and test data types, function blocks types, resources, devices and

system configurations according to IEC 61499 standard. It also offers

application–oriented development, has an extensible component software

library and allows the recording of the control program to different devices.

47

FBDK is at present managed by the company, Holobloc Inc., which

provides user training, references and industrial process, measuring and

regulatory systems based on IEC 61499 standard.

3.2 ISaGRAF

The last ISaGRAF 5 version was in addition to its opportunities

with IEC 61131-3, ISaGRAF [55] is the first full-valued automation product

that supports the entire design process. The vendor of this product, ICS

Triplex ISaGRAF, actively promotes this product on the market. It is based

on a well-known IEC 61131 approach.

ISaGRAF was the first development environment that supported all 5

programming languages [30] following the IEC 61131-3 standard for

Windows. Moreover, to achieve the highest performance and flexibility, it

supports ISaGRAF functions and function blocks written in C language and

languages listed in IEC 61131-3.

Extended to support the first set of IEC 61499 models. We speak about

basic and composite function blocks. These blocks can be used in programs

that are present in resources of various ISaGRAF devices [52] within

a distributed automation system. While offering so-called application

overview that shows where the individual application parts are located in

the system, these must be programmed directly on individual devices.

Communication between the program parts is done by using network

variables. Another issue is that the events triggered function blocks of IEC

61499 are executed at the end of the cyclically triggered IEC 61131-3

system, resulting in long delays in triggering and that is why the IEC 61499

application performance is rather low.

48

3.3 FBench

FBench [6] is an open source project initiated by the Canadian non-

profit organization, OOONEIDA. FBench is able to design, develop, debug,

activate and verify the IEC 61499 application. The research group at the

University of Auckland continues with the project. FBench aims to be

a complex tool, which supports programming languages of both IEC 61131

and IEC 61499 standards.

As defined in IEC 61499, to program the function block internal logic

any high-level programming language may be used.

In contrast to design and simulation functions contained in FBDK,

FBench contains tools for local and remote program debugging and project

environment to accelerate function blocks development. In addition,

FBench project development architecture contains the possibility of using

plugins [9], which allows third party developers easily expanding on

FBench abilities without knowing details of its implementation. FBench is

developed in Java as an open-source project according to CPL (Common

Public Licence).

The aim for the future is to add new functions in FBench [8], which

will create a research environment of an industrial scale. Among them is

a possibility of a formal validation of the designed function block system by

using NCES (Net Condition/Event Systems). There is no function block

editor so far that would be supported by this technology.

49

3.4 Tool implementing PROFINET CBA

Component Based Automation is an implementation of Profibus CBA

[32] for control systems Simatic S7 and Simatic NET. These are the

products according to the configuration:

- Simatic Step7 as a development tool for configuration and

programming of Simatic S7 and Simatic NET control systems and also

for creating PROFINET components.

- Simatic IMap as a development tool for distributed systems

configuration and integration for specific program devices,

configuration and diagnostic tools into the PROFINET CBA

development environment.

- Simatic NET OPC Server PN for access to process and HMI data by

using OPC interface.

Engineering tool Simatic IMap is designed for communication

configuration between components from different manufacturers. This

means a great advantage for distributed automation solutions with smart,

programmable fieldbus devices. Program encapsulation or their parts is

performed by Simatic Step 7. Simatic IMap meets the PROFINET standard,

which means it can be used by different manufacturers. PROFINET

components, which were created by programming tools from other

manufacturers and which communicate through ethernet, can be imported

by using open interfaces.

Characteristics of Simatic IMap:

 Simatic IMap built on an open component-based PROFINET

architecture.

50

 Each intelligent machine/operation is represented by PROFINET

component in connection editor. It appears in software function form.

 Simatic IMap combines elements of technology - oriented libraries,

regardless of the manufacturer or functionality.

 On-line functions and communication function diagnostic possibilities

make the startup more simple.

 PROFINET components can be used several times in Simatic IMap

(library components reuse) but only once, if they were designated as

so-called "unique".

 Machine/operation can be hierarchically structured to any depth.

 All variables which are necessary for general data access (e.g.

visualisation requirements) are generated automatically from technical

information.

Simatic IMap in principle includes the following views:

 Project tree – is used to manage all project resources (technological

functions and devices) and to navigate within automated hierarchy of

the operations.

 Technological library – technological software functions, which are

necessary for the project. Library elements must be supplied by device

manufacturers.

 Connection editor – is used to specify the data exchange between

individual technological modules.

 Network and topology view – is used to assign each hardware devices

in typology and for system diagnostics (communication and device

status diagnostics).

51

 Project view – is used for project management and survey of software

features used in the project.

 Graphic view – structured representation of the configurated operation.

Procedure for project designing and launching with IMap [41]

proceeds as follows:

 Creating the software components for each module of

device/operation.

 Linking of the technology software components using the link editor.

 Configuration of assigned devices in the network typology.

 Recording the control programs and communication data into devices.

3.5 Future development of tools implementing IEC 61499

The first commercial implementations of the IEC 61499 standard raise

the question of their subordination to the standard. Here are the outlines of

the issues [55], which need to be cecked:

1. Syntactic consistency can be proved by direct comparison of standard

syntactic elements with individual implementation structure.

2. Semantic consistency can be demonstrated by comparison with

standard definitions, and if they are not sufficient, then with reference

implementations.

3. Compliance with the design model application and workflow.

52

Although the IEC 61499 standard was implemented almost

exclusively in research laboratories, a number of design models were

designed and examined.

At the present time, a majority of these tools is used mainly for

research purposes [6] and not for commercial use because they do not have

sufficient support and are not compatible with most of the PLCs.

Because each implementation of the IEC 61131 or IEC 61499

standards has some weak points for distribution control system designing

(IEC 61131 was primarily not intended for distributed systems designing

and implementation of the IEC 61499 standard are still almost exclusively

intended for research purposes), it is necessary to consider all important

aspects and decide, which standard would be better to use for a particular

distributed system. The issue of choosing the suitable standard is discussed

in the next chapters.

53

4. METHODOLOGY PROPOSAL FOR COMPARISON OF THE
APPLICATION STANDARDS AND CRITERIA SELECTION

IEC 61131 standard is still a base, on which all previously used control

systems are built. This does not include creation of distributed control

systems. Although individual producers solve communication between their

own control systems, it is not a final solution for the problem with

distributed systems design. Although such systems can be created, the

programmer must solve many actions during software creation through

creating their own program blocks and must monitor many aspects [3] [4]

[19] [21] [22] [23] [29], which are ordinarily solved by the IEC 61499

standard, and increase demands on used components and provide much

more work for the programmer.

The IEC 61499 standard is directly dedicated to creating distribution

systems. But this is a new standard (work group, which started with the

standard development was established in year 1990), which is not

implemented in many cases by hardware manufacturers. Some companies

have already started with the implementation of this standard, but so far we

speak only about a few attempts, which do not solve all problems, and can

occur during distributed systems creation. Also the use of software tools

according to the IEC 61131 standard will increase total costs for system

creation because the software tools of IEC 61131 are widespread and long

used. This raises a question of which approach to use when creating the

distributed control systems. By comparing various criteria from both

systems, it is possible to determine which individual approach is suitable for

distributed systems creation of different types and sizes. This chapter is

focused on methodology constitution, which enables the comparison of both

54

mentioned approaches during creation of distributed control systems and

following a selection of suitable approaches for a particular system.

Fig. 19 Procedure for methodology formation

4.1 Platform selection

One basic condition for an objective parameter assessment of the

designed system is to use the same hardware components for both systems.

That will assure that parameter can be influenced only by using different

approaches during distributed system designing and programming. The

majority of the tools for system development according to IEC 61499 are

Platform selection

Physical system criteria

IEC 61131 software system creation IEC 61499 software system creation

Criteria selection for comparing

IEC 61131 system criteria testing IEC 61499 system criteria testing

Comparing the tested criteria

Generalization of the suitable approach

selection methodology

55

still dedicated to research purposes only and are not compatible with the

devices operating under the IEC 61131 standard. It is necessary to choose

system components, which are able to operate under the IEC 61131

standard or under the new IEC 61449 standard.

4.2 Criteria selection for comparing

Since identical devices and communication networks are used for both

cases, the assumption is that the hardware performance of an entire

distributed system will be the same (whether IEC 61131, or IEC 61499).

Selection of programming approach will influence the communication

speed and difficulty and amount of work as well, which must be carried out

by the programmer in order to design the system. The following criteria will

be influenced by approach selection for system creation:

a) Response time of remote system - response time represents the time

when the remote station responds to a call from a local station.

Station 1 Station 2
Request

Response

Fig. 20 Communication between stations

Can be expressed as a sum of communication time and time at which

the remote station processes the request:

Tcelk = Tpoz + Tsprac + Todp (1)

56

Input scan,
input table
update

Program
execution,
output table

Actual output
status update

Cycle time PLC = time needed for one cycle
execution

Typically 3 ‐ 100 milliseconds

It is an important data piece, which corresponds with fast system

response to the status change. It is affected by various hardware

aspects, such as network complexity, used transmission medium,

network utilization influenced by other devices, distance between

stations, line speed and others. In addition, response time can be

largely influenced by used programming approach and selection of

software tools and technologies.

b) Network utilization – Network utilization will vary depending on the

selected system. It represents amount of data transmitted through the

whole network in one second. It is expressed in kB. Various

technologies use various communication transmission protocols that

are reflected in the data frame composition and in the quantity of

transmitted data. Desired status is to reduce network utilization to a

minimum possible value.

c) Program influence on the PLC cycle time - as visible in Figure 21,

PLC executes all operations [7] cyclically.

Fig. 21 PLC cycle time

57

First it sequentially scans input devices and updates the image of their

status in the memory. Then all program blocks will be executed. After

processing the PLC program blocks, the output device status image is

updated in the memory. Finally, it will use the output status image for

a real change in the status of outcome devices.

Cycle time can be expressed as:

Tcycle = Tinput + Tprogram + Toutput (2)

Cycle time is an important piece of data that the programmers try to

reduce to the lowest possible value. This is the time in which PLC will

process all its inputs, program blocks and outputs. If this time is

increased to too high of a value, PLC would not respond soon enough.

It could even be possible that it does not respond to the input state

change [33], when this change takes place during program block

processing in one PLC cycle (Figure 22).

In
pu

t
pr

oc
es

s

O
ut

pu
t

pr
o

c.

In
pu

t
pr

oc
es

s

P
ro

gr
a

m

ex
ec

ut
io

n

In
pu

t p
ro

ce
ss

.

cycle
time

cycle
time

In
pu

t
pr

oc
e.

P
ro

gr
am

ex

ec
ut

io
n

O
u

tp
ut

 p
ro

c.

P
ro

gr
a

m

ex
ec

ut
io

n

O
ut

p
ut

 p
ro

c.

P
ro

gr
am

e

xe
cu

tio
n

O

ut
pu

t
p

ro
c.

In
pu

t p
ro

ce
ss

.

O
u

tp
ut

 p
ro

c.

Input signal

1

0

PROCESS PROCESS DON’T
PROCESS

1 2 3

Fig. 22 Processing the PLC input signals

58

The assumption is that all blocks and service communication blocks

will increase the processing PLC cycle time.

d) Program influence on the size of PLC consumed memory – PLC

memory [39] consists of three basic parts :

1. Program memory – is used to save programs without any

associated names or comments.

2. Work memory – contains all data needed for program running.

3. System memory – contains memory elements, which provide

processor for user program.

Fig. 23 PLC memory organization

Total memory consumption PLC can be expressed as:

Ptotal = Pprog + Pwork + Psyst (3)

Because the memory PLC is limited to a few hundred kilobytes [34]

and also any unnecessary program code prolongs the PLC processing

cycle time, it is important to reduce the program size to a minimum

possible value. This data also represents the amount of the program

PLC Memory

Programs without
associated symbolic

names and comments

Data necessary for
program running

‐ binary memory

‐ counters

‐ timers

‐ program buffer

‐ interrupts buffer

‐ local data buffer

Program memory Work memory System memory

59

code that was necessary by the programmer to generate and implement

within the system.

4.3 Creating the distributed system

The first step is a physical creation of the control system consisting of

individual stations and creation of the communication network. First, each

station must be compiled from required modules, then correctly

interconnected and physically configured. If necessary, other devices can be

used during creation of the communication network, such as control

stations, which ensure network functionality. Then follows the software

project setup, in particular the programming tool.

4.3.1 Creating the distributed IEC 61131 system

When creating the software project, the following steps are necessary:

- insert all stations into the programming tool,

- set hardware configuration of all stations and all their modules,

- configuration of the communication network and station

communication interfaces,

- creating the communication program blocks [13] and review of all

events that can occur when communicating,

- creation of station control system itself .

60

4.3.2 Creating the distributed IEC 61499 system

Steps for software project creating:

- Putting a station in the programming tool,

- Setting of the hardware configuration of all stations and their modules,

- Creating the function blocks of IEC 61499,

- Compiling the control program ,

- Interconnection configuration of individual function blocks ,

- Communication network configuration.

4.4 Testing of the selected criteria

4.4.1 Procedure for response time measuring

Measurement is based on transfer of 1000 values between master

station and each of the slave stations. Transmission time of one value is

calculated as an arithmetic average of the total transmission time. To ensure

the most accurate results, each measurement is repeated 10 times. During

this measurement, blocks must be implemented within PLC, which ensure

data transmission between master and slave stations and blocks. These will

record the number of transmitted values and transmission start and end.

4.4.2 Procedure for measuring network utilization

Measuring consists of measuring the device connection within the

distributed system. This device will detect the amount of transmitted data

between master system and slave. PLC stations will have implemented

program blocks to ensure continuous data exchange between stations at the

61

maximum possible speed. Each measurement must last a certain time in

order to evaluate the results as an average value transferred over a period of

time. This excludes short-term deviations from the standard status.

4.4.3 Procedure for measuring the program impact on the PLC cycle time

Measuring proceeds as follows:

- Each PLC will be recorded with a program with the number of active

connections – stations will communicate continuously.

- Only necessary communication program blocks will be located in

PLC, so the processor is not loaded with any other processes.

- Stations will be restarted.

- Master system cycle time will then be read from the programming tool

through connection to the master station (because it is mostly loaded

by the communication).

4.4.4 Procedure for measuring the program impact on the size of PLC
consumed memory

Measuring will run as follows:

- Program with number of active connections will be recorded into each

PLC, stations will communicate continuously.

- Only necessary communication program blocks will be located in

PLC, so the processor is not loaded with any other process.

- Stations will be restarted.

- Memory consumption of PLC will be then read from the programming

tool through connection to the master station (because it is most loaded

by the communication).

62

4.5 Comparing the tested criteria

Based on the results of performed tests, it is necessary to compare the

impact of important system parameters on the monitored criteria change.

Among the important parameters that influence the selection of more

suitable programming approaches are mainly the number of stations and

number of communication channels between the stations. Therefore, it is

important to carry out the tests for various numbers of control stations and

corresponding communication channels. The suitability of each standard

will largely depend on the nature of the designed system. There are systems

for which the most important parameter is speed of communication between

individual stations and processing speed of the control program. In some

systems these parameters are not so important, where more importantly is

the time, or the financial costs necessary to design the control system.

Therefore, it is necessary to consider all these aspects and the selection of

a better approach subject to these aspects.

4.6 Generalizing the methodology for suitable approach selection

The results of the comparison will serve as a basis for methodology,

establishing use for suitable approach selection. This methodology is

designed to recommend the programming approach, thanks to which the

final system meets the requirements for distributed control system

parameters.

63

5. METHODOLOGY VERIFICATION

5.1 Platform selection

One of the first companies that enables the creation of systems in

several ways is Siemens. Programmable logic controllers Simatic S7 were

originally able to only program according to IEC 61131 standard (Simatic

Step7), but Siemens extended the programming tools offered by supplying

iMap, which implements PROFINET CBA based on the principles of IEC

61499. Accordingly, it is possible to use PLC Simatic S7 to design

distributed systems based on the IEC 61131 platform, or on the PROFINET

CBA platform. Although PROFINET CBA does not implement all features

of IEC 61499, basic philosophy of the communication and perception of

individual devices as function blocks, is maintained.

64

Physical system creation

Software station adding Software station adding

Hardware configuration
setting

Communication network
creation

Creation of communication

Creation of control station

Hardware configuration
setting

PROFINET function block
creation

Creation of control program

Communication network

System response time

Network utilization testing

Testing the program
impact on the PLC cycle

i

Testing the program
impact on the PLC

consumed memory size

System response time testing

Network utilization testing

Testing the program impact
on the PLC cycle time

Testing the program impact
on the PLC consumed

memory size

Comparing the tested criteria

Creating the methodology for
suitable approach selection

PROFINET IEC 61131

Fig. 24 Procedure for methodology establishment based

on Siemens Simatic platform

65

5.2 Creating the experimental control system

Model system consists of four identical PLC Siemens Simatic S7-300

that are connected through PROFINET network.

Fig. 25 Model system

PLC Configuration:

- power supply PS 307 5A,

- CPU 315F-2 PN/DP,

- memory card 512 kB,

- digital input module DI16xDC24V,

- digital input module DI32xDC24V,

- digital input / output module DI16/DO16x24V/0,5A,

- digital output module DO16xDC24V/0,5A,

- analog input / output module AI4/AO2x8/8Bit.

66

Each station contains interface PROFINET and ProfiBUS. One station

acts within the system as a "Master" (transmits requirements and processes

responses), while three remaining stations act as a "Slave" (responds to

requests from the Master station).

The initial project design phase of the distributed system is identical

for both approaches. First, you need to create a project by using Step7, to

where all the stations and their hardware sets are configurated. This is done

using the component of Step7 [48], Simatic Manager. The common

procedure ends are discussed in the coming sections of this paper.

5.3 Creating IEC 61131 system

The entire system is created within a single software package Step7.

First, it was necessary to start a new project in Simatic Manager tool. All

four stations were sequentially added to the project.

Fig. 26 Project with added stations

67

5.3.1 Creating the hardware configuration

Each station is a modular system, which base consists of a metal frame

[46], known in English as a "rail". All remaining modules are fixed on this

frame. During design of the hardware configuration, the frame was also

created, and gradually all station modules were added. Subsequently, each

station was assigned an IP address and configuration was saved and

recorded into particular PLC. Hardware configuration is created in HW

Config tool.

Fig. 27 Master system hardware configuration

68

5.3.2 Creating the network interface system

NetPro tool is used to create the network interface system according to

IEC 61131. In this case it was necessary to create individual connections

between stations by using this tool, it means one in each connection. Six

connections were created in total (3 in Master–Slave direction and three in

Slave–Master direction). The maximum you can create are 16

communication channels, so in the case of two-way communication, the

number of stations limited is to 8. Of course, final configuration was

recorded in all system stations.

Fig. 28 Network designed by NetPro tool

5.3.3 Creating the communication blocks

Communication in Step7 is not cyclic, and is realised by using system

functions PUT and GET. Function PUT [44] allows data to be sent to

a remote system. It is called with the parameters such as communication

69

channel number, data address in local system and data address in remote

system. After calling the function, the system waits for a response, it can be

sending a confirmation or an error message. GET function is used to receive

data from a remote system and similar parameters are being called, like for

PUT function. Each of these system functions occupies one communication

channel.

Fig. 29 Calling the GET function

70

Measuring program in master station consists of:

- Program blocks

o OB1 – within this block all function blocks ensuring the

communication are cyclically called; it also monitors the

achieved required number of transmitted data,

o OB100 – initialize the communication by system startup.

- Function blocks

o FB14 – GET communication function,

o FB100 – function block provides data sending and receiving from

the first slave, station, it also provides counting of transmitted

data and saving the information about transmission start and

finish,

o FB101 – identical to FB100, supports the second slave station,

o FB102 – identical to FB100, supports the third slave station.

- Functions

o FC1 – function detecting actual system time,

o FC8 – system time conversion.

- System function blocks

o SFB14 – GET communication function,

o SFB15 – PUT communication function.

- System functions

o SFC20 – BLKMOV, called by function GET and PUT,

o SFC51 – RDSYSST, called by function GET and PUT,

o SFC58 – WR_REC, called by function GET and PUT,

o SFC59 – RD_REC, called by function GET and PUT.

71

- Data blocks

o DB1 – store transmitted data values,

o DB2 – store time values for transmission start and finish,

o DB100 – instance data block automatically created for

communication purposes with first slave station,

o DB101 – instance data block automatically created for

communication purposes, with second slave station,

o DB102 – instance data block automatically created for

communication purposes with third slave station.

Slave stations contain only two blocks:

- program block OB1 – cyclically called, must exist in PLC,

- data block DB1 – save values of the transmitted data.

Fig. 30 Blocks called by GET system function

72

5.4 Creating PROFINET CBA system

The first steps when creating PROFINET CBA system are identical to

creating the IEC 61131 system. The project was designed by using Step7

[42], four stations were added and their hardware configuration set. Unlike

the connection NetPro, the PROFINET CBA works differently. First step is

to create function blocks of PROFINET CBA [41] and particular shared

data blocks. One PROFINET CBA function block was created within each

station, which was associated with a shared DB3 data block. Master station

is in DB3 three input and three output variables (Slave1In, Slave2In,

Slave3In, Slave1Out, Slave2Out, Slave3Out). Slave stations store only one

output variable in DB3.

Fig. 31 Creating PROFINET function and communication interface

73

Master station contains following blocks:

- program blocks

o OB1 – communication variable status is cyclically monitored

within this block, change of their values will increase the value of

transferred data counter. Measuring startup and end time is also

recorded here;

- functions

o FC1 – function detecting correct system time,

o FC8 – system time conversion;

- data blocks

o DB3 – save values of the transmitted data,

o DB2 – save time values of the transmission start and finish.

Fig. 32 Variables assignment for the communication interface

As seen, compared to the classic style of programming [45] without

using iMap, the number of program blocks is much smaller.

74

Slave stations contain the following blocks:

- program block OB1 – cyclically called data generator FC1,

- function FC1 – ensures cyclical values change of transmitted date,

- data block DB3 – save values of the transmitted data.

Fig. 33 FC1 function

75

PROFINET components [47] were subsequently created from

PROFINET CBA function blocks, which contain inputs and outputs

(elements of shared data blocks). These were later implemented into the

Simatic iMap tool. Individual components are in iMap [43], graphically

connected, and that created a network interface for distributed system.

Cyclic communication of each channel with minimum refresh time was

adjusted, which is 8 ms. Then, communication of the whole system was

recorded into each station.

Fig. 34 Project iMap with added components and formed links

5.5 Comparing the response time of the remote stations

The time in which the remote station transferred the information about

system status change was determined in this measurement.

76

5.5.1 Measuring the system response time by Step7 and NetPro

When measuring the response of one slave station, FB101 and FB102

were block calls excluded; when measuring the response of two slave

stations, FB102 block call was excluded. When the measuring started,

current start time was written to DB2 block, when the data transmission

finished, finish time was written individually for each station. The last time

is considered to be the total time of communication.

Fig. 35 Response time for communication with a single station,
one binary value

Fig. 36 Response time for communication with two stations,
one binary value

20

21

22

23

T
im

e
 [

m
s]

24
25
26
27

28
29
30

T
im

e
[m

s]

77

Fig. 37 Response time for communication with three stations,
one binary value

Fig. 38 Response time for communication with three stations,
20 integer values

Fig. 39 Response time, two-way communication with three stations,
20 values

As can be seen in Figure 39, the system measurement summary of the

Step7 system, during transmission of one value through one channel, the

average response time was nearly 22 ms. When another communication

system was added, response time raised by 7 ms. Change of the transmitted

33

34

35

36

T
im

e
[m

s]

33

34

35

36

37

T
im

e
[m

s]

54

55

56

57

T
im

e
[m

s]

78

data types from binary values to integer values did not influence the

response time.

Fig. 40 Overview of the average response times by using Step7 and NetPro

5.5.2 Measuring the system response time by iMap

When begun, current start time was written into DB2 block, when

finished with data transmission, finish time was written for each station

individually. The last time is considered to be the total communication time.

Cyclic communication with cycle time of 8 ms was set for the system.

0

10

20

30

40

50

60

T
im

e(
m

s)

Response time for communication with a single station, one binary value is transmitted

Response time for communication with two stations, one binary value is transmitted

Response time for communication with three stations, one binary value is transmitted

Response time for communication with three stations, 20 integer values are transmitted

Response time for two-way communication with three stations, 20 integer values are
transmitted

79

Fig. 41 Response time for communication with a single station,

one binary value

Fig. 42 Response time for communication with two stations,

one binary value

Fig. 43 Response time for communication with three stations,

one binary value

As possible to see from measurement results for the iMap system,

change in the number of communication channels has no major impact on

22

23

24

25

26

T
im

e
[m

s]

20

21

22

23

24

25

T
im

e
 [m

s
]

20
21
22
23
24
25
26
27
28

T
im

e
 [

m
s

]

80

response time, as it still fluctuates around the value of 24 ms. Set cycle

value of 8 ms was not reached, PLC reached for both communication types,

minimum time 22 to 24 ms. This is probably the lowest communication

cycle time reached with this type of processor.

Fig. 44 Overview of the average response times by using iMap

As seen in the results, a distributed system created only by using Step7

is influenced by number of active connections. Any additional connection

increased the response time of about 8 ms. Changing the transmitted data

type does not affect response time. Number of connections is limited to 16.

A distributed system created by using iMap is not affected by the

number of active connections.

Response time is kept to a limit of 24 ms and number of connections is

not limited.

5.6 Comparing the network utilization

Since individual stations are connected to the network by a network

switch, which operates on the principle of sending the address data to the

20
21
22
23
24
25
26

T
im

e
(m

s)

Response time for communication with a single station, one binary value is transmitted
Response time for communication with two stations, one binary value is transmitted
Response time for communication with three stations, one binary value is transmitted

81

end device, it is not possible to determine the utilization through connection

of measuring device (in our case, computer with installed software for

network monitoring and catching of data packets) to the network by the

same way. An alternative is to replace the network switch by hub, which

sends received data to all connected devices, but PROFINET CBA network

cannot communicate when using a hub. One functional solution offered was

to connect measuring computer between computer and switch and master

station as a transparent bridge. For this role, it is necessary to equip the PC

with two network interfaces.

To catch the packets, clear operation system Windows XP with all

unnecessary services turned off and Wireahark software, was used. Each

measuring lasted 5 minutes.

Fig. 45 System scheme with connected transmittance meter

82

First measuring was performed with distributed system, which was created

by Step7.

Fig. 46 Measuring the network utilization by using Step7 and NetPro

As confirmed by measurements, network utilization during master

system communication with one of the slaves was about 25kB/s. When

adding another communication channel, utilization raised to approximately

29kB/s and stayed stable afterwards. Based on response speed measuring,

the addition of each communication channel was increasing the response

time, therefore, with each channel, data was transmitted with less frequency.

From this we can conclude that utilization of 29kB/s is probably the

maximum reachable value. When reaching this value it is compensated by

decrease in number of transmitted data by increasing the remote system

response time.

Another two measurements were performed by distributed system

created using Simatic iMap.

0

10

20

30

40

1 31 61 91 121 151 181 211 241 271
Time [s]

T
ho

ug
hp

ut
 [

kB
/s

]

Thoughout for communication with a single station
Thoughout for communication with two stations
Thoughout for communication with three stations

83

Fig. 47 Measuring the network utilization by using iMap, 8 ms cycle time

As seen in Figure 47, network utilization was increasing linearly when

adding more communication channels, each channel caused a utilization

increase about 8kB/s. When communicating with three stations, the

utilization was approximately 24kB/s when using iMap, when using only

Step7 it was approximately 29kB/s. However, the response time of the

system created by iMap was approximately 24 ms and for the system

created by Step7 it was approximately 35 ms. This shows that a system

created by iMap can transmit smaller data packets. For that reason, another

measurement was done by using a system designed by iMap, and the cycle

time increased to 32 ms.

0

5
10

15

20

25

30

1 31 61 91 121 151 181 211 241 271
Time [s]

T
hr

ou
gh

pu
t

[k
B

/s
]

Thoughout for communication with a single station
Thoughout for communication with two stations
Thoughout for communication with three stations

84

Fig. 48 Measuring the network utilization by using iMap, 32 ms cycle time

As seen in Figure 48, change of the cycle time radically decreased data

transfers between the stations, and the actual response time was

approximately 50 ms. Every communication channel to follow increased the

data transfer by 2kB/s.

Because of the apparent difference in number of transmitted data, an

analysis of transmitted packets was performed by using both

communication methods.

There is a record of transmitted datas between two system stations

created in Step7 on Figure 49. As shown, two-way communication TCP/IP

is running between the stations. Master system is cyclically sending data

packets to the slave system. The slave system responds, and after successful

sending of the whole data frame, it confirms by sending ACK packet to the

master system. Then the master system confirms that the frame was

received.

0

1

2

3

4

5

6

7

8

1 31 61 91 121 151 181 211 241 271
Time [s]

T
ho

ug
hp

ut
 [

kB
/s

]

Thoughout for communication with a single station
Thoughout for communication with two stations
Thoughout for communication with three stations

85

Fig. 49 System communication record generated in Step7

The record of transmitted data between two system stations, created in

iMap is shown in Figure 50. As shown, it is a one-way communication.

When the network communication is created and recorded in all PLCs, data

are automatically sent in specified intervals to the end stations. In this

particular case, the slave system is sending the information to the master

system every 8 ms. They do not have to communicate using TCP/IP

protocol, but rather PROFINET CBA protocol.

86

Fig. 50 System communication record generated in iMap

The system created in Step7 communicated in a bidirectional manner

in each processor cycle. This time is not affected by number of operations,

which must be executed in one cycle by PLC. This value range is standardly

from 1 to 10 ms. That is why the amount of transferred data in this way is

higher, even though the response times are higher than by the iMap system.

In contrast, iMap system transmissions are executed only at specific times,

therefore the total data flow is lower even for lower response time.

An interesting fact is that although the slave station is sending

information every 8ms, they are processed by the master system

approximately every 24 ms. Also, the minimum response value reached by

the Step7 system was 22 ms, although the processor processed the program

every 3 ms. This difference of about 16-19 ms is probably the time required

for processing the processor network interface data.

87

5.7 Comparing the program impact on the PLC cycle time

Data were collected through the Hardware Config tool. This enables

the monitoring of current PLC status, including the cycle time.

Fig. 51 Cycle time for Step7 system, communication with a single station

During communication of Step7 system with one station, the longest

cycle lasted 2ms, average was 1 ms and lowest value was 0 ms.

88

Fig. 52 Cycle time for Step7 system, communication with two stations

During communication of Step7 system with two stations, the longest

cycle lasted 3ms, average was 2 ms and lowest value was 1 ms.

89

Fig. 53 cycle time for Step7 system, communication with three stations

During communication of Step7 system with three stations the longest

cycle lasted 4ms, average was 3 ms and lowest value was 2 ms.

The results show that each active PUT or GET communication block

increases the cycle processing time by approximately 1ms; this means for

maximum number of connections it can be up to 16 ms more.

90

Fig. 54 Cycle time for iMap system, communication with a single station

During communication of iMap system with one station the longest

cycle lasted 2ms, average was 1 ms and lowest value was 0 ms.

91

Fig. 55 Cycle time for iMap system, communication with two stations

During communication of iMap system with two stations the longest

cycle lasted 2ms, average was 1 ms and lowest value was 0 ms.

92

Fig. 56 Cycle time for iMap system, communication with three stations

During communication of iMap system with three stations the longest

cycle lasted 2ms, average was 1 ms and lowest value was 0 ms.

The analysis results show that communication interface and channels

created by using iMap do not affect program processing speed in PLC. This

is because PLC is not burdened by communication function blocks, as was

the case for a system created by Step7.

93

5.8 Comparing the program impact on the PLC memory size

Data was collected using the Hardware Config tool. It allows for the

monitoring of the current state of PLC, including the size of memory

consumption.

Fig. 57 PLC Memory consumption without the program, only with recorded

HW configuration

As shown in Figure 57, even PLC in basic status contains information

saved in memory. It is mainly about the device hardware configuration

(Load memory RAM + EPROM). Also, an empty block QB1, which is

necessary to activate PLC, takes few bytes (38 bytes of work memory).

94

Fig. 58 PLC memory consumption programmed by Step7, one connection

Creating one communication channel using NetPro and all necessary

program blocks in Step7 increased the memory consumption EPROM to

10% (13672 B), work memory to 3% (7996 b) and retentive memory to

0,61% (802 b).

95

Fig. 59 PLC memory consumption programmed by Step7, two connections

Creating two communication channels using NetPro and all necessary

program blocks in Step7 increased the memory consumption EPROM to

12% (15598 b), work memory to 4% (9244 b) and retentive memory to 1%

(1396 b).

96

Fig. 60 PLC memory consumption programmed by Step7, three connections

Creating three communication channels using NetPro and all

necessary program blocks in Step7 increased the memory consumption

EPROM to 13% (17524 b), work memory to 4% (10492 b) and retentive

memory to 2% (1990 b).

97

Fig. 61 PLC memory consumption, iMap, one connection

Creating one communication channel and all necessary program

blocks in iMap increased the memory consumption EPROM to 4%

(5560 b), work memory to 0,37% (974 b) and retentive memory to 0,06%

(84 b).

98

Fig. 62 PLC memory consumption, programmed by iMap, two connections

Creating two communication channels and all necessary program

blocks in iMap increased the memory consumption EPROM to 4%

(5660 b), work memory to 0,41% (1072 b) and retentive memory to 0,07%

(88 b).

99

Fig. 63 PLC memory consumption, programmed by iMap, three
connections

Creating three communication channels and all necessary program

blocks in iMap increased the memory consumption EPROM to 4%

(5752 b), work memory to 0,44% (1162 b) and retentive memory to 0,07%

(92 b).

100

Fig. 64 Comparing the memory consumption

The comparing results show that a system created by Step7 is

substantially larger than a system created by iMap. iMap communication

system elements occupy the memory in size of bytes. Creating

a communication interface with a single connection required approximately

3 kb of memory, each additional channel increased memory occupation by

approximately 200 bytes. Communication elements and blocks of the Step7

system increase memory requirements by whole kilobytes. Creating

communication blocks and one channel increased the program by nearly 19

kb, every other channel by 4 kb. When using the maximum number of

channels, communication would need some 80 kb of the memory, only 6 kb

is needed when using iMap.

The next chapter takes into account all comparison criteria and

methodology generalization for selection of a suitable approach used for

distributed control system design.

0

5

10

15

20

25

30

35

without
program

Step 7
1 conn.

Step7
2 conn.

Step7
3 conn.

iMap
1 conn.

iMap
2 conn.

iMap
3 conn.

M
e

m
o

ry
 c

o
n

s
u

m
p

tio
n

 [
kb

]

EPROM work memory retentive memory

101

6. METHODOLOGY GENERALIZATION FOR SUITABLE
APPROACH SELECTION

When deciding which standard to use in designing of distributed

control system, it is necessary to consider several aspects. Very important

are required parameters of the designed system.

6.1 Size of the distributed system

Basic parameter during decision making regarding the use of IEC

61131 standard, or PROFINET CBA is the size of designed distributed

system. When using IEC 61131 approach and programming tool Step7, it is

possible to create a distributed system, which has a maximum of 16

communication channels. It means in practice:

e) Creation of the system with maximum number of 16 channels, which

are using one-way communication;

f) Creation of the system with maximum number of 8 stations, which are

using two-way communication.

Each sizable system must be created by PROFINET CBA standard

and iMap tool.

Size of the distributed system affects other system parameters, which

are critical factors in choosing a better approach to design of the system.

These include:

g) remote system response time,

h) network utilization,

i) program impact on PLC cycle time,

j) program impact on PLC memory consumption,

102

k) system hardware network resources,

l) costs.

6.2 Remote system response time

Remote system response time is data that describes station reaction

time to change of the system status. Systems designed by both methods

behave as follows:

- System designed according to IEC 61131 standard has minimum

reaction time (in case of single communication channel) of

approximately 22 ms. Any other communication channel increases the

response time constantly, approximately about 7 ms. When achieving

the maximum number of communication channels, the reaction time of

the stations will be approximately 120 ms. This time is not dependent

on the volume or data transmitted through the communication channel.

- System designed according PROFINET CBA standard has a reaction

time of the remote stations of approximately 24 ms. Reaction time is

not dependent on the number of communication channels. This time is

not affected by the volume or transmitted data type through the

communication channel.

When the system is small (consisting of max. of 5 stations), then the

system response time is according to IEC 61131, still on the acceptable

level. For a system with multiple stations, this time increases and therefore

it is better to design systems according to the PROFINET CBA standard. In

the case of any large distributed system, in which one of the most important

103

parameters represents the system reaction time, it is necessary to use the

PROFINET CBA standard.

6.3 Network utilization

This is a parameter that determines the data amount transmitted

through the communication network. The aim is to minimize this quantity to

a minimum value. Smaller amount of transmitted data means less chance for

error occurrence during transmission (even if the transmission protocols

deal directly with the errors) and that shorten the system reaction time.

- System designed according to the IEC 61131 standard has the network

utilization on the level of 25 – 30 kB/s, which is low enough data, but

it is a maximal number of data that the system can transfer per second.

Every other communication channel represents more data to be

delivered to the end station. Because the transmission band is limited,

it will adversely affect the system reaction time.

- System designed according to the PROFINET CBA standard has for

comparable communication time much lower data transmission

(transmission of each channel is approximately 2 kB/s). Although the

data transfer is much lower than for a system according to the IEC

61131 standard, for both approaches we speak about relatively minor

data transfers. Increasing the number of communication channels for

the PROFINET CBA system by higher number of channels means

small data transfer. However, it does not negatively influence the

system reaction time.

104

6.4 Program impact on the cycle time PLC

It is data that indicates the time for which the PLC process its entire

program only one time. Of course, increasing the cycle time means delayed

station reactions to system status change. By default, this time varies within

milliseconds. The following lines describe the impact of communication

method between the stations on the outcome PLC cycle time. That time

does not include the impact of the control program itself, for both systems it

is approximately the same time.

 For a system designed by IEC 61131 standard the minimum

achievable time for one communication channel is approximately 1

ms. Every next communication channel will increase the response time

about 1 millisecond. For a system with the maximum number

o communication channels, the cycle time will be increased to about

16 ms.

 Increasing the number of communication channels does not have any

impact on PLC cycle time for systems designed with PROFINET CBA

standard. Communication takes 1 ms for any number of stations and

communication channels in the system.

For systems where the cycle time is not very important, a system

designed by IEC 61131 is acceptable. For systems where the reaction time

is an important parameter, it is better to use a system designed by the

PROFINET CBA standard.

105

6.5 Program impact on memory consumption for PLC

This is a parameter that determines how much memory of PLC will be

taken by program blocks, which are necessary for distributed system

designing. The more memory communication blocks utilize, the less

memory remains for the control program itself and obviously, the total

performance of the system decreases. The PLC memory capacity is usually

limited to a few MB and memory cards are standardly supplied in the size

of few hundred kilobytes.

 Blocks necessary to ensure communication with one station and blocks

necessary for PLC running will take some 23 kB of memory for the

test system designed by the IEC 61131 standard. Each subsequent

communication channel increases the memory consumption by

approximately 4 Kb. For sixteen communication channels it will be

some 80 Kb of memory consumed only by communication blocks. For

example, using 256 kB of memory card means a significant memory

reduction for the control program itself.

 Blocks necessary to ensure communication with one station and blocks

necessary for PLC running will take some 6 KB of memory for a

system designed by PROFINET CBA standard. Each communication

channel to follow increases the memory consumption by about 200

bytes. For example, for sixteen communication channels it is some 9

kB of consumed memory, which is roughly nine times less than by

using the IEC 61131 standard.

If it is a distributed system where the control program is simple and

takes only a small part of the station memory, or when large memory cards

106

are available in the stations, it is possible to use the system according to the

IEC 61131standard as well. If it is a high-volume program, or where the

hardware memory size is limited, it is necessary to design the system under

the PROFINET CBA standard.

6.6 System hardware network resources

The decision of which standard to use in distributed system

development is influenced by hardware resources used in the system

communication network.

When using the IEC 61131 standard, the communication is through

TCP/IP protocol. This enables the building of such a system on any network

resource that meet TCP/IP criteria.

 When using the PROFINET CBA standard, it is not a standard

communication under TCP/IP protocol, but the PROFINET CBA

industrial protocol is used. It has specially evaluated safety risks,

arising from the nature of the control systems (require maximum

possible system reliability), but it needs devices able to work with

PROFINET CBA for its running. This protocol is not supported, for

example, by network hubs. WiFi routers are functioning on the hub

principle as well. When the network is using such elements, the

PROFINET CBA system will not work. One option is to use either the

IEC 61131 standard or network element replacement.

107

6.7 Costs

Using a different approach for system design means that financial

costs may vary:

 When using IEC 61131 standard, it is necessary to buy a software

package, Step7, that has been used for many years and each company

working with Simatic devices must have already purchased this

package. Additional investments in other program packages are not

necessary. However, increased complexity of system design means

higher labour costs.

 When using the PROFINET CBA standard, it is necessary in addition

to the Step7 package to buy another software package, iMap. Its price

ranges within hundreds of euros. Because this is a relatively new tool,

most companies do not own it as of yet. It must be remembered that

only a few people are skilled in using this tool and all others must be

trained. In contrast, the resulting program is much simpler and

therefore, the development costs are lower than those generated by a

system designed according to the IEC 61131 standard.

6.8 Selecting the suitable standard

The entire decision-making process can be depicted as follows:

108

Distributed system size

More than 16
channels

Important
parameter

Remote system response time

More than 5
stations

Network utilization

PLC cycle time

PLC memory consumption size

Start

YES

NO

Important
parameter

Important
parameter

YES

YES

YES

YES

NO

NO

NO

NO

109

Network
contains hub

Financial costs

Experience
with IEC
61499

Usage of IEC Usage of IEC

NO

NO YES

YES

End

Hardware network
resources

Memory size
< 512 kB

YES

Important
parameter

YES

NO

NO

110

As shown, in most of the criteria the IEC 61499 standard achieves better

results. It is not always possible to use one of the latest approaches when

using some of the older network components. Also, in the case of small

systems, the financial costs related to purchasing of important development

tools and developers' training may determine if the IEC 61131 standard

should be used.

111

CONCLUSION

This publication deals with norms and standards for industrial

automation, mainly regarding the IEC 61131 and IEC 61449 standards and

their application in practice by distributed control systems design. In the

beginning, these standards were described in detail and their further

development was indicated. Subsequently, the criteria for each standard was

looked at as it plays a significant role in determining which standard is

better to use. Based on the criteria proposal, the methodology for

application comparison for both standards used by distributed control

system design in practice, was formed. This methodology was verified on

a real control system that was created by using both systems. Based on the

system test results, methodology for suitable approach selection was

generalized and a procedure for suitable standard selection was determined.

The main criteria taken into account were: remote station response

time, network utilization, affect of the approach on consumed memory size

and processor cycle time. During the verification, another factor occurred

when hardware incompatibility was detected. It is the selection of hardware

network components. The last evaluation criterion was the costs of both

systems.

As a model system of interconnected devices the Simatic S7-300

devices made by Siemens were chosen because these can work under the

IEC 61131 standard as well as under the PROFINET CBA standard, which

represents implementation of the IEC 61499 standard for Siemens. All

mentioned criteria were tested for the chosen system. IEC 61499 standard

showed better results in almost all areas. When older network components

112

were used within the network, it was not possible to use this standard in

some cases. Differences were not great when small distributed control

systems were created. With the increase in the number of stations, the IEC

61131 standard still showed worse results. The disadvantage of the IEC

61499 is that it is still not widespread. System developers need to be trained

and gain experience, which requires considerable financial costs and a large

amount of time. Also, the majority of developers do not own the tools

needed for system development according to the IEC 61499 standard. That

is why it is necessary to purchase them and their prices vary from hundreds

to thousands of euros. Therefore, for small systems with low output

requirements, it still seems better to use the IEC 61131 standard. Once the

IEC 61499 standard is widely used on a global scale, use of the IEC 61131

standard for development of distributed control systems will taper off. This

is not expected to happen for several years.

This is just one view of the complex problem with distributed control

systems. To make the comparison more simpler, only components made by

single manufacturer were used. Distributed systems may be formed from

the devices made by different manufacturers and it does not necessary to

only be programmable logic controller. Also, robustness of the distributed

control systems can be much greater. Theoretically, it can consist of

hundreds of cooperating control stations located in multiple areas. This also

offers the opportunity for future research on this topic. For that reason, the

next activities should focus on:

- distributed systems consisting of devices from multiple manufacturers

and multiple types

- distributed systems consisting of more devices,

113

- distributed systems where individual stations are divided into multiple

communication networks.

114

REFERENCES

[1] BAKSHI, V. U. Control Systems. Pune: Technical Publications.
2008. ISBN 81-8431-289-X

[2] BÉLAI, I., DRAHOŠ, P. The Industrial Communication Systems
PROFIBUS and PROFINET. In Proceedings of Applied Natural
Sciences 2009. Trnava: Univerzita Sv. Cyrila a Metoda, 2009. ISBN
978-80-8105-127-2

[3] BOLTON, W. Programmable Logic Controllers. Burlington:
Newnes, Elsevier Ltd., 2009. ISBN 978-85617-751-1

[4] BOLTON, W. Instrumentation and Control Systems. Burlington:
Newnes, Elsevier Ltd., 2004. ISBN 978-7506-6432-5

[5] BOSCH REXROTH CORPORATION. Understanding the
IEC61131-3 Programming Languages [online] [cit. 18.7.2010]
Available online at
<http://www.automation.com/pdf_articles/IEC_Programming_Thaye
r_L.pdf>

[6] DAI, W.W., VYATKIN V. A Case Study on Migration from IEC
61131 PLC to IEC 61499 Function Block Control. In Proceedings of
Industrial Informatics, 2009. INDIN 2009. 7th IEEE International
Conference. Cardiff, Wales, 2009. pp. 79–84. ISBN 978-1-4244-
3759-7

[7] ELECTRO CAM CORP. Scan Times: PLC vs. PLuS. [online] [cit.
19.7.2010] available online at
<http://www.electrocam.com/pdf/tech/SCANTIME.PDF>

[8] FBench description, [online] [cit. 19.7.2010] Available on online at
<http://fbench.wikispaces.com/>

[9] FBENCH PROJECT TEAM. FBench Project homepage. [online]
[cit. 19.7.2010] Available online at
<http://www.ece.auckland.ac.nz/~vyatkin/fbench/index.html>

[10] Good Automated Manufacturing Practice, [online] [cit. 19.7.2010]
Available online at
<http://www.appliedintegration.co.uk/services/gamp/>

[11] IEC. IEC 61131-1 Programmable Controllers – Part 1: General
Information. Geneva: International Electrotechnical Commision,
2003. ISBN 2-8318-7039-9

115

[12] IEC. IEC 61131-3 Programmable Controllers - Programming
Languages. Geneva: International Electrotechnical Commision,
2003. ISBN 2-8318-6653-7

[13] IEC. IEC 61131-5 Programmable Controllers – Part 5:
Communications. Geneva: International Electrotechnical
Commision, 2000. ISBN 2-8318-5510-1

[14] IEC. IEC 61131-8 Programmable Controllers – Part 8: Guidelines for
the application and implementation of programming languages.
Geneva: International Electrotechnical Commision, 2003. ISBN 2-
8318-7210-3

[15] IEC. IEC 61499-1: Function blocks - Part 1: Architecture. Geneva:
International Electrotechnical Commision, 2005. ISBN 2-12-
4869111-6

[16] IEC. IEC 61499-1: Function blocks - Part 2: Software tool
requirements. Geneva: International Electrotechnical Commision,
2005.

[17] ISPE launch GAMP 5 Good Automated Manufacturing Practice,
[online] [cit. 19.7.2010] Available online at <http://tern-
quay.com/Docs/GAMP5_is_here.pdf>

[18] JOHN, K-H., TIEGELKAMP M. IEC 61131-3: Programming
Industrial Automation Systems. Regensburg, German: Springer-
Verlag, 2001. ISBN 3-540-67752-6

[19] JOHNSON, C. D. Process Control Instrumentation Technology.
Pearson/Prentice Hall, 2006. ISBN 978-0131194571

[20] KALUŽA, F. Methodologies, Metrics and Evaluation criteria for
effective ISMS. Part II. In Security revue, 2008. ISSN 1336-9717

[21] KALSI, H. S. Electronic Instrumentation. New Delhi: Tata McGraw-
Hill Publishing Company Limited, 2004. ISBN 978-0-07-058370-2

[22] KAMEN, E. W. Industrial Controls and Manufacturing. San Diego:
Academic Press, 1999, ISBN 0-12-394850-9

[23] LEONARD, J. Systems Engineering Fundamentals: Supplementary
Text. Fort Belvoir, Virginia: Defense Systems Management College
Press, DIANE Publishing, 2001. ISBN 9781428996113

[24] LEWIS, R. Modelling control systems using IEC 61499. London:
The Institution of Engineering and Technology, 2001. ISBN
0852967969

[25] LEWIS, R. Programming industrial control systems using IEC 1131-
3 Revised edition. London: The Institution of Electrical Engineers,
1998. ISBN 0852969503

116

[26] MAJOR, L. Standardisation and Quality management systems in
software and systems engineering. In ATP Journal 7/2004, pp. 100-
103. Bratislava: HMH. ISSN 1335-2237

[27] MILLER, R., MILLER, M. R. Industrial Electricity and Motor
Controls. New York: McGraw-Hill Professional, 2007. ISBN 978-
07-154476-4

[28] MORAVČÍK, J. Directive GAMP – Forms processing and
presentation. The Thesis, 2010. Trnava: UIAM MTF STU, pp. 10-
11.

[29] NAGRATH, I. J. Control Systems Engineering. New Delhi: New
Age International, 2006. ISBN 81-224-1775-2

[30] OEM Technology Solutions PTY LTD. ISaGRAF v3.5 overview,
[online] [cit. 19.7.2010] Available online at
<http://www.rabbit.com/documentation/docs/appkits/EmbeddedPLC
/ISaGRAF35_Overview_V1.pdf>

[31] PESSEN, D. W. Industrial automation: circuit design and
components. Wiley-IEEE, 1989. ISBN 0-471-60071-7

[32] PIGAN, R., METTER. M. Automating with PROFINET: Industrial
communication based on Industrial Ethernet. Erlangen: Publicis
Publishing, 2008. ISBN 978-3-89578-294-7

[33] PLC LADDER. Scan Time of PLC. [online] [cit. 19.7.2010]
Available online at <http://program-plc.blogspot.com/2010/02/scan-
time-of-plc.html>

[34] PHIPPS, C. A. Fundamentals of electrical control. The Fairmont
Press, Inc. Lilburn, GA, USA. 1998. pp. 119-124. ISBN 0-88173-
312-1

[35] PROFIBUS Working Group "Communication Function Blocks".
PROFIBUS Communication and Proxy Function Blocks acc. To IEC
61131-3. Karlsruhe: PROFIBUS Nutzerorganisation e.V., 2001

[36] PROFIBUS Working Group 10 "PROFINET CBA". PROFINET
CBA – Architecture Description and Specification, Karlsruhe:
PROFIBUS Nutzerorganisation e.V., 2004

[37] REAL TIME AUTOMATION. PROFINET CBA – An Innovative
Distributed Automation Solution, [online] [cit. 18.7.2010] Available
online at
<http://www.rtaautomation.com/profinetcba/ProfiNet_CBA_Overvie
w_R2.pdf>

[38] ROHNER, P. Automation With Programmable Logic Controllers.
Sydney: UNSW Press, 1996. ISBN 86840-287-7

117

[39] SAMK. S7 Memory Areas, [online] [cit. 19.7.2010] Available online
at <http://www.tp.spt.fi/~salabra/ha/Automaatiotekniikka/S7-
Memory.pdf>

[40] SARDESAI, A. R., MAZHARULLAH, O., VYATKIN, V.
Reconfiguration of Mechatronic Systems enabled by IEC 61499
Function Blocks. [online] [cit. 2010-07-19] Available online at
<http://www.araa.asn.au/acra/acra2006/papers/paper_5_24.pdf>

[41] SIEMENS AG. Component based Automation Creating PROFINET
Components. Nürnberg: Siemens AG Nürnberg. 2003.
A5E00248719-01

[42] SIEMENS AG. Component based Automation Commissioning
Systems. Nürnberg: Siemens AG Nürnberg. 2003. A5E00248818-01

[43] SIEMENS AG. Component based Automation Configuring Plants
with SIMATIC iMap. Nürnberg : Siemens AG Nürnberg. 2003.
A5E00248797-01

[44] SIEMENS AG. Programming with STEP 7 - Manual. Nürnberg:
Siemens AG Nürnberg. 2006. A5E00706944-01

[45] SIEMENS AG. Statement List (STL) for S7-300 and S7-400
Programming - Reference Manual. Nürnberg: Siemens AG
Nürnberg. 2006. A5E00706960-01

[46] SIEMENS AG. Configuring Hardware and Communication
Connections with STEP7 - Manual. Nürnberg : Siemens AG
Nürnberg. 2006. A5E00706939-01

[47] SIEMENS AG. SIMATIC iMap STEP 7 AddOn Creating
PROFINET Components. Nürnberg : Siemens AG Nürnberg. 2008.
A5E00716547-02

[48] SIEMENS AG. Tools for configuring and programming SIMATIC
Controllers.

[49] Brochure. Nürnberg: Siemens AG Nürnberg. 2009. 6ZB5310-
0MM02-0BA6

[50] SIEMENS AG. Engineering communications – across all
boundaries: SIMATIC iMap. [online] [cit. 2010-07-19]. Available
online at <http://www.automation.siemens.com/>

[51] SPE Glossary of Pharmaceutical and Biotechnology Terminology
Glossary of Applied Terminology for the Pharmaceutical Industry,
[online] [cit. 2010-07-19]. Available online at
<http://www.ispe.org/glossary?term=Good+Automated+Manufacturi
ng +Practice+%28GAMP%29>

118

[52] STRASSER, T., MULLER, I., SCHUPANY, M., EBENHOFER, G.,
MUNGENAST, R., SUNDER, C., ZOITL, A., HUMMER, O.,
THOMAS, S., STEININGER, H. An Advanced Engineering
Environment for Distributed & Reconfigurable Industrial
Automation & Control Systems based on IEC 61499. [online] [cit.
2010-07-19]. Available online at
<http://conference.iproms.org/sites/conference.iproms.org/files/PID1
55260.pdf>

[53] SWAINSTON, F. A Systems Approach to Programmable
Controllers. Albany, New York: Cengage Learning, 1992. ISBN 0-
8273-4670-0

[54] TICKIT SCHEME, [online] [cit. 19.7.2010] Available online at
<http://www.tickit.org/scheme.htm>

[55] VYATKIN, V. IEC 61499 Function Blocks for Embedded and
Distributed Control Systems Design. Ottawa, Canada: O3NEIDA –
Instrumentation Society of America, ISBN 978-0-9792343-0-9

[56] VYATKIN, V., CHOUINARD, J. On comparisons of the ISaGRAF
implementation of IEC 61499 with FBDK and other
implementations. In Proceedings of Industrial June 2008, pp. 289–
294. ISBN 978-1-4244-2170-1

[57] VYATKIN, V. The Potential Impact of the IEC 61499 Standard on
the Progress of Distributed Intelligent Automation. In International
Journal of Manufacturing Technology and Management, 2006, vol.
8, pp. 107-125. ISSN 1368-2148

[58] YANG, W. Implementation of IEC61499 Distributed Function Block
Architecture for Industrial Measurement and Control Systems
(IPMCS). [online] [cit 2010-07-19] Available online at
<http://www.holobloc.com/stds/iec/tc65wg6/meetings/fla03/yangwei
.pdf>

[59] ZIMMERMAN, G. P. Programmable Logic Controllers and Ladder
Logic. Rapid City: Dr. Alfred R. Boysen, Department of Humanities,
South Dakota School of Mines and Technology, 2008

[60] ZOITL, A. Real-Time Execution for IEC 61499. Ottawa, Canada:
O3NEIDA – Instrumentation Society of America. ISBN 978193439-
4274

119

[61] ZOITL, A., STRASSER, T., HALL, K., STARON, R., SUNDER,
CH., FAVRE-BULLE, B. The Past, Present, and Future of IEC
61499, Holonic and Multi-Agent Systems for Manufacturing. In
Third International Conference on Industrial Applications of
Holonic and Multi-Agent Systems. Regensburg, German: Springer-
Verlag, 2007. pp 1-15. ISBN-10 3-540-74478-9

120

CONTENTS

Abstract 5
LIST OF ACRONYMS 6
LIST OF SYMBOLS 8
INTRODUCTION 9
1. CURRENT STATUS IN INDUSTRIAL AUTOMATION

STANDARDS 11
1.1 IEC standards 11
1.1.1 IEC 61131 standard 13
1.1.2 IEC 61499 standard 14
2. IEC 61131 AND IEC 61499 STANDARDS
 AND THEIR FUTURE DEVELOPMENT 17
2.1 IEC 61131 19
2.2 IEC 61499 28
2.2.1 System design 31
2.2.2 Models and concepts 33
2.3 PROFINET CBA 38
2.4 Future development of IEC 61499 standard 43
3. PROGRAMMING TOOLS SUPPORTING IEC 61499 46
3.1 FBDK 46
3.2 ISaGRAF 47
3.3 Fbench 48
3.4 Tool implementing PROFINET CBA 49
3.5 Future development of tools implementing IEC 6149951 54
4. METHODOLOGY PROPOSAL FOR COMPARISON

OF THE APPLICATION STANDARDS AND CRITERIA
SELECTION 53

4.1 Platform selection 54
4.2 Criteria selection for comparing 55
4.3 Creating the distributed system 59
4.3.1 Creating the distributed IEC 61131 system 63
4.3.2 Creating the distributed IEC 61499 system 60
4.4 Testing of the selected criteria 60
4.4.1 Procedure for response time measuring 60

121

4.4.2 Procedure for measuring network utilization 60
4.4.3 Procedure for measuring the program impact on the PLC

cycle time 61

4.4.4 Procedure for measuring the program impact on the size

of PLC consumed memory 61
4.5 Comparing the tested criteria 62
4.6 Generalizing the methodology for suitable approach selection 62
5. METHODOLOGY VERIFICATION 63
5.1 Platform selection 63
5.2 Creating the experimental control system 65
5.3 Creating IEC 61131 system 66
5.3.1 Creating the hardware configuration 67
5.3.2 Creating the network interface system 68
5.3.3 Creating the communication blocks 68
5.4 Creating PROFINET CBA system 72
5.5 Comparing the response time of the remote stations 75
5.5.1 Measuring the system response time by Step7 and NetPro 76
5.5.2 Measuring the system response time by iMap 78
5.6 Comparing the network utilization 80
5.7 Comparing the program impact on the PLC cycle time 87
5.8 Comparing the program impact on the PLC memory size 93
6. METHODOLOGY GENERALIZATION FOR SUITABLE

APPROACH SELECTION 101
6.1 Size of the distributed system 101
6.2 Remote system response time 102
6.3 Network utilization 103
6.4 Program impact on the cycle time PLC 104
6.5 Program impact on memory consumption for PLC 105
6.6 System hardware network resources 106
6.7 Costs 107
6.8 Selecting the suitable standard 107
CONCLUSION 111
REFERENCES 114

