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Zusammenfassung 
 

Im Rahmen dieser Arbeit wurden verschiedene glaskeramische Materialien hergestellt und 

mit verschiedenen Methoden charakterisiert, wobei der Schwerpunkt auf Untersuchungen 

mittels EBSD lag. Besonders die Untersuchung von Oberflächenkristallisation zeigte, dass 

bisherige Modelle über die Bildung orientierter Schichten auf diesem Weg falsch bzw. 

unvollständig waren und ermöglichte eine korrektere Beschreibung der auftretenden 

orientierten Schichten und deren Entstehung. 

Auch die Untersuchung von Glaskeramiken die mittels elektrochemisch induzierter 

Keimbildung hergestellt wurden führte zu neuen Erkenntnissen wie z.B. der Detektion von 

abweichend orientierten Kristallen in den sonst extrem homogen orientierten Dendtiten. 

Weiterhin wurde festgestellt, dass die Orientierung innerhalb gewachsener Mullitnadeln 

keineswegs homogen ist sondern vielmehr lokal variiert. Die bisher angenommen 

Orientierung der Mullitkristallen konnte auf den experimentellen Aufbau anstatt der Methode 

der Kristallisation zurückgeführt werden.  

Letztlich konnten auch offenstehende Fragen über die Entstehung von Kristallen, die sowohl 

Hämatit als auch Magnetit enthalten, d.h. aus zwei Phasen bestehen, anhand der mit EBSD 

ermittelten Kristallorientierungen der beiden Phasen beantwortet werden. 

Es kann folglich gesagt werden, dass EBSD erfolgreich auf glaskeramische Materialien 

angewendet werden konnte. Für Phasen die in keiner der verfügbaren EBSD-Datenbanken 

(TSL und AMCS) vorhanden waren konnten Materialdateien erstellt und erfolgreich optimiert 

werden. Es wurde gezeigt, dass die Möglichkeit Kristallorientierungen lokal zu messen neue 

Erkenntnisse über Keimbildung und Kristallisation bringen kann. 
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1. Introduction 

 

Glass-ceramics are partially microcrystalline solids combining the properties of crystal phases 

with the properties of the amorphous glass phase surrounding them. They are usually 

produced by the controlled devitrification of glass during thermal annealing. Generally a glass 

is produced by melting the respective raw materials in a furnace and cooling the melt to 

inhibit nucleation and crystal growth. In a second step the amorphous solid is then heated to a 

defined temperature for a defined time during which nucleation and crystal growth occur. 

Many materials with anisotropic properties have important applications, e.g. wood as 

construction material. Glass-ceramics show great potential for creating anisotropic materials 

with individually controlled mechanical, electromechanical or magnetic properties. 

Otherwise, glass-ceramics enable the production of small crystals in a desired size and shape 

if the glass matrix is selectively dissolved, e.g. by using an acid. Crystals in the form of 

needles or plates may increase the tensile and bending strength of glass-ceramic materials [1] 

while nano scale crystals of very narrow size distribution may affect various properties 

without affecting the transparency of the glass [2-4]. 

So called ultratransparent glass-ceramics, e. g. those containing rare-earth-doped metal 

fluoride crystals, are of interest with respect to their fluorescence [5], luminescence [6,7] and 

up conversion properties [8,9]. Crystallizing phases with desirable properties from a glass, 

e.g. fresnoite with its piezoelectric, pyroelectric and surface acoustic wave properties [10,11], 

may enable the fabrication of materials showing desired properties without the need to 

produce macroscopic single crystals. Oriented crystallization is essential if a glass-ceramic is 

meant to show properties similar to a single crystal of the targeted phase, especially if the lack 

of centrosymmetry is essential to achieve the respective properties. 

Three principle routes have been proposed for the preparation of oriented non-metallic 

inorganic materials: kinetic control, mechanical deformation and thermodynamic control [12]. 

Kinetic control is based upon the combination of localized nucleation and subsequent 

anisotropic crystal growth, resulting in a kinetic selection and leading to an orientation of the 

crystals in some relationship to the fastest direction of crystal growth. Kinetic control finds 

application in the examples of surface crystallization [13-16], crystallization induced by 

electrochemical  nucleation [17-22] as well as laser induced crystallization [23-26]. 

Mechanical deformation of melts occurs during the extrusion of a partially crystalline melt 

and may also lead to oriented glass-ceramics [27-31]. 
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Thermodynamic control of crystal orientation would mean the crystals are oriented in some 

specific way to minimize their energy during nucleation or subsequent crystallization. While 

it has been reported that thermodynamics might contribute to nucleation at the surface and 

thus leading to a localized nucleation [32], oriented crystals resulting from such a nucleation 

would rather fit the profile of kinetic control as the nucleation itself is not oriented. 

While asymmetric crystal growth can be caused by thermodynamic reasons, an oriented 

crystallization of a glass-ceramic would mean independent crystals are oriented in a specific 

way due to some thermodynamic reason and not simply localized nucleation followed by a 

kinetic selection of orientations through asymmetric crystal growth. Oriented nucleation, 

which would be the basic precondition for such a phenomenon, has not been proven to occur 

so far. 

In order to enable the control and to predict the oriented growth of crystals in glass-ceramics, 

it is necessary to understand the growth mechanism in the respective preparation procedure. 

Concerning the surface crystallization of fresnoite type-crystals, for example, there is no 

consensus on the crystallization mechanism so far. 
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2. Electron Backscatter Diffraction (EBSD) 

 

Utilizing the effect of EBSD to analyze materials in a scanning electron microscope (SEM) is 

based on the evaluation of diffraction patterns obtained from backscattered electrons called 

“electron backscattering patterns” (EBSPs). The patterns are formed by the interference of 

electrons diffracted at the lattice planes of a crystal under the Bragg-angle ΘB. Because the 

physical picture of EBSD is still incomplete the ultimate limitations of EBSD are still being 

debated. The following text is an explanation the author’s current understanding of the basics 

of EBSD-pattern formation without going into mathematical details of the physics involved. 

 

Energy of an Electron 

The voltage U (usually 20 kV for EBSD analysis in a SEM) supplied between the anode and 

cathode of a SEM accelerates electrons to a kinetic energy E given by: 

E = U· e 

where e is the charge of an electron (1.6 · 10-19 C) [35]. E is usually given in electronvolts 

(eV). The kinetic energy of 1 eV is gained if an electron passes through a potential difference 

of 1 V attributing an energy of about 20 keV to an electron accelerated with a voltage of 20 

kV. An accelerating voltage of 20 kV was used in all the measurements featured in this thesis.  

 

Wavelength of an electron 

The energy E of an electron can also be described as the wavelength λ of an electron which is 

given by the de Broglie relation 

λ = h / p 

where h is Planck’s constant and p is the momentum. In classic theory this leads to  

         

Taking relativistic effects into account leads to  

         

where m0 is the rest mass of an electron (9.1091·10-31 kg) and E0= m0·c
2, c being the velocity 

of light. Because discrepancies between the wavelengths resulting from the classic and 

relativistic approaches are small at 20 keV (0.97 % relative difference) but become large for 

electrons with an energy over 1000 keV (4.77 % relative difference), the classic approach is 

an acceptable simplification when considering electrons contributing to EBSD.  
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Diffraction in a crystal lattice 

The diffraction of electrons in a crystal lattice is described by Bragg’s law [33]: 

nλ = 2dhkl · sinΘ 

where nλ are n multiples of the electron wavelength λ, dhkl is the spacing of the respective 

lattice planes and Θ is the angle under which diffraction occurs. For EBSD the Bragg angle 

ΘB is of special importance because here diffraction occurs in the form of reflection at the 

lattice plane, thus enabling the constructive interference of the reflected electrons. Only one 

Bragg-angle ΘB can occur for a specific lattice plane spacing dhkl and a specific wavelength λ. 

ΘB usually assumes values in the order of 0.5° for EBSD [33]. For example a Bragg-angle of 

ΘB ≈ 0.46° occurs for electrons with λ ≈ 0.0088 nm (20 keV electron energy) and 

dhkl ≈ 0.543 nm (d001 in silicon). Because sin Θ can reach a maximum value of 1, Bragg’s law 

only makes sense for λ < 2dhkl. 

 

In the case of EBSD, electrons with a spectrum of energies contribute to the formation of an 

electron backscattering pattern (EBSP) [34] from a number of lattice planes, which means a 

spectrum of Bragg-angles occurs. It has been shown that the main contribution to an EBSP 

comes from electrons with a residual energy of 19.5 keV, if an excitation of 20 keV is used, 

while electrons with 16 keV (an energy loss of 20 %) still contribute to an EBSP [34]. The 

attributed Bragg-angles are 0.457° for 20 keV, 0.463° for 19.5 keV and 0.511° for 16 keV. 

Fig. 1 illustrates the occurring variations in the Bragg-angles by presenting the tenfold values 

of Θ for the given electron energies.  

 

Fig. 2 illustrates how a path difference occurs between the electron beams B1 and B3 due to 

the longer distance traveled. While the beams B1 and B3 can constructively interfere, beam 

B2 leads to extinction due to the angular phase shift by π (which can also be described as a 

wave shift by λ/2), if interference with B1 or B3 occurs. While the constructive interference is 

essential for EBSP-formation, extinction explains why certain lattice plains cannot contribute 

 

Fig. 1: Tenfold angles of Bragg-reflection at the (001) plane of 

Si for electrons of the given energies contributing to an EBSP 
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to an EBSP. Generally extinction occurs if equivalent lattice planes are positioned half way 

between two lattice planes in Bragg-reflection position [33]. In the case of body centered 

crystal structures this is the case e.g. if ∑ (h+k+l) is an odd number [33]. If the result is, 

however, an even number, the electrons can interfere constructively. 

 

Distribution of Backscattered Electrons (BSEs) 

The intensity of the backscatter signal emitted from an Al sample excited by electrons with an 

energy of 20 keV over the tilt angle is presented in Fig. 3 a) [35] and shows a maximum at 

63°. In order to maximize the signal at the detector screen sample is tilted by 70° for EBSD-

analysis. The intensity of the backscatter signal resulting from the sample tilt is outlined in 

Fig. 3 b). The diffraction signal utilized for EBSD is only an approximate 5 % signal on top of 

the forward scattered intensity distribution of 95 % making up the background signal [33].  

 

 

Fig. 2: Extinction and Bragg Reflection at a crystal lattice 

 

 

Fig. 3:  a) Distribution of backscattered electrons over tilt angle [35],  
b) Intensity of the backscattered signal over a sample tilted by 70°  
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EBSP-formation 

A part of the incoming primary electron beam is inelastically scattered in the solid. Because 

of the commonly applied sample tilt of 70° and the fact that most of the electrons contributing 

to an EBSP cannot suffer significant energy loss (the main contribution to an EBSP is from 

electrons with 97 % of the beam energy [34]), the main part of the electrons relevant to 

EBSP-formation are scattered along the original direction of the incoming beam (forward 

scattering). 

It has been stated that the problem “diffraction from a point source inside a crystal” and the 

problem “diffraction of an incoming electron beam by a crystal leading to a certain electron 

intensity at the emitting atoms positions” are equivalent [36] due to the reciprocity principle 

[37]. Thus it can be assumed that localized electron sources emitting in all directions are 

created beneath the surface of the sample by the incoming electron beam. 

Fig. 4 a) illustrates how electrons emitted from the source Q would be reflected at the (010) 

and (021) planes of the presented lattice due to diffraction under the Bragg angle ΘB. The 

electrons are reflected at each “side” of the lattice planes, hence producing two maxima close 

to each other on the detector screen.  

Because reflection at the lattice planes occurs in all directions, the locus of the diffracted 

radiation is the surface of a cone at each side of the lattice plane with the half apex angle of 

90- ΘB around the normal of the lattice plane as illustrated by Fig. 4 b) [33]. These cones are 

called Kossel-cones [33]. Due to the flatness of the Kossel-cones their area of interaction with 

the detector screen appears as bands, which were first detected by Kikuchi in 1929 and hence 

named Kikuchi Bands. The two Kossel Cones hence also contribute to the typical “Top Hat”- 

intensity profile of the Kikuchi Bands [33].  

 
Fig. 4: a) Bragg-reflection of electrons from a local electron source Q at the (010) and (021)  

    lattice planes leading to a signal on the detector screen 
b) Position of the Kossel cones of a lattice plane in respect to the detector  
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Geometrical setup of an EBSD-system 

The general principle of the geometric setup of EBSD-analysis is illustrated in Fig. 5: the 

incoming electron beam interacts with the tilted sample in an asymmetrically shaped 

interaction volume, where electron sources emitting in all directions are assumed to form. 

While most of the electrons are actually forward scattered and can be utilized to obtain an 

image through the forward scatter detector, some are diffracted at lattice planes under the 

Bragg angle along two Kossel cones per set of lattice planes. The thus diffracted electrons can 

interfere constructively and thus form a band of high intensity on the phosphor screen serving 

as the detector. An image of this screen is then obtained during a time of exposure defined by 

the user via a CCD-camera positioned behind the phosphor screen. This image is the Electron 

Backscattering Pattern (EBSP) later evaluated by the software. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Electron interaction leading to EBSP formation and arrangement of an EBSD-system  
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EBSD is a powerful tool for the local detection of crystal orientations and for the 

identification of certain crystal phases in the microstructure. The method is based on the 

analysis of Kikuchi bands detected in diffraction patterns obtained from a crystalline sample.  

The information depth of EBSD is limited to 10-50 nm [33, 38-43]. Hence EBSD is a method 

for the surface near characterization of materials. Using a scanning electron microscope 

(SEM) equipped with an EBSD-unit combines the ability of studying the morphology and 

crystallographic relationships of a crystalline solid simultaneously. 

 

Although EBSD became a standard method in mineralogy [44,45], geology [46,47], ceramic 

materials [48-50] as well as metallographic science [51-54] during the past decade, no reports 

of EBSD as a method to characterize glass-ceramics could be found in the literature before 

2009 apart from two papers containing work by Völksch et al. [55,56]. While the further 

development of technology has enabled 3D-analysis of materials via EBSD [57,58], a review 

on the applications of EBSD in materials science published in 2009 [59] does not mention the 

investigation of glass-ceramics. The first application of EBSD to glass-ceramics containing 

hematite/magnetite [55] and mullite [56] showed that it was possible to obtain evaluable 

EBSD-patterns from glass-ceramic materials and initiated further commitment to the field. 

Problems such as polishing procedures and building material files for phases previously not 

analyzed by EBSD could be identified and solved for a number of phases, making the 

application of EBSD to glass ceramic materials a promising field for scientific research. 
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4. Summary 

 

Structural investigations of glass-ceramic materials have been successfully performed using 

EBSD. Material files have been built and optimized for phases not contained in any accessible 

EBSD-database at the time (TSL and AMCS). It has been shown that the ability to measure 

crystal orientations locally can lead to new insights into crystal nucleation as well as crystal 

growth. 

 

4.1 Surface crystallization 

 

Analyzing surface crystallized samples of glass ceramic materials containing Ba2TiSi2O8-type 

fresnoite and rhombohedral BaAl2B2O7-crystals with EBSD lead to results contradicting the 

previously published views on surface nucleation and crystallization of glass. It was 

commonly assumed that oriented crystallized layers are the result of random nucleation 

occurring at or near the surface of the glass. The oriented crystal layers previously detected 

were assumed to be a result of the combination of asymmetric crystal growth and the kinetic 

selection of favorably oriented crystals. Generally the respectively described orientation was 

detected by the occurrence of enlarged peaks in the XRD-patterns (e. g. the (001) peak in 

fresnoite or the (003)-peak in glass-ceramics with BaAl2B2O7 -crystals), which also seemed to 

fit the appearance of the crystal morphology in SEM-micrographs. 

In the case of Ba2TiSi2O8-type fresnoite EBSD-scans of the only conductively coated surface 

showed that the preferred orientation of crystals at the immediate surface of the samples is 

with the [101]-direction perpendicular to the surface allowing the conclusion that oriented 

nucleation occurred instead of random nucleation as previously perceived. 

The side view of these samples showed that the previously described orientation with the 

[001]-direction perpendicular to the surface occurs in a layer from about 7 µm beneath the 

surface until further growth is hindered by crystals resulting from volume crystallization. This 

second layer of surface crystallization is the result of a kinetic selection of the oriented surface 

nucleation due to the preferred crystal growth of fresnoite in the [001]-direction. 

In the case of glass-ceramics containing rhombohedral BaAl2B2O7-crystals, a thick layer of 

over 500 µm of oriented surface crystallization is visible in both optical and SEM-

micrographs. A strong [001] orientation of surface crystallized materials was observed in both 

XRD and EBSD meaning the c-axis is oriented perpendicular to the sample surface. While the 

previous conception was that this [001] orientation occurs within the entire 500 µm thick 
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layer visible in micrographs, EBSD-analysis showed that most of this layer is actually 

composed of crystals oriented with their c-axes more or less parallel to the surface while the 

[001] orientation is limited to a layer only about 20 µm thick at the immediate surface. It 

could also be deducted that the crystal growth velocity of rhombohedral BaAl2B2O7-crystals 

is larger in directions perpendicular to the c-axis than parallel to the c-axis. 

Thus a two layer structure of the surface crystallization was again detected in which oriented 

nucleation occurs at the immediate surface and forms a thin layer of crystals, while a second 

layer of oriented crystals following the fastest direction of crystal growth forms the main part 

of the surface crystallized layer visible in cross sectional micrographs. 

Due to the localized degradation of EBSD-patterns occurring during EBSD-scans of the 

untreated surface but not on polished surfaces, it was concluded that only part of the crystals 

are exposed at the surface while most of the surface crystals are covered by a very thin layer 

of glass. A detailed study of this effect has been submitted recently [60]. 

This was explained by nucleation occurring immediately at the surface. The direction of 

largest crystal growth velocity is the direction parallel to the surface. Since the surface is not 

ideally flat, the crystallization front dives beneath the surface due to the fastest direction of 

growth deviating from the surface at some point. The uneven surface is a result of the 

occurring crystallization which is accompanied by a volume expansion. The degree of surface 

coverage was quantified. 

Oriented nucleation at the surface, itself an example of thermodynamically controlled 

orientation of crystals in glass-ceramics, was thus proven to exist and described in the cases of 

both surface crystallized Ba2TiSi2O8-type fresnoite and rhombohedral BaAl2B2O7. Previous 

models of the crystal orientation and the formation of the orientation of these phases were 

found to be incorrect and alternatives were described. In both cases, the orientation of the 

thermodynamically controlled, topmost crystal layers resulting from the oriented nucleation at 

the surface is changed to kinetically preferred orientations within a couple of micrometers 

from the surface.  

It can thus be concluded that kinetic selection is more important for achieving oriented crystal 

structures of significant thickness than oriented nucleation due to thermodynamic reasons as 

the kinetically preferred orientation will always prevail over the latter as crystal growth 

proceeds and the crystals have contact to one another and thus hinder each other during 

crystal growth. 
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4.2. Electrochemically Induced Nucleation/ Crystallization 
 

The EBSD-analysis of dendritic Ba2TiSi2O8-type fresnoite grown via electrochemically 

induced nucleation led to the detection of a small number of slightly deviating crystals within 

the otherwise extremely homogeneously oriented dendrites. These deviating crystals are 

probably the result of dendritic fragmentation. The number of deviating crystals decreases 

with increasing distance from the area of nucleation near the Pt-wire where crystal orientation 

was found to be diverse, indicating randomly oriented nucleation. It was also found that the 

rectangular shape of dendrites cut perpendicular to their main direction of growth is not the 

limit of the crystal orientation of the dendrite but can also be present in the surrounding 

crystals of diverse morphology. 

It was also shown that the crystal structures located between the dendritic crystals are the 

result of a second step of crystallization as they copy the orientation of their respective parent 

crystals through epitaxial growth, even when the latter deviate from the main orientation of 

the dendrite. A Ti-free high temperature phase of barium disilicate (Ba2Si4O10), chemically 

not distinguishable from the low temperature phase sanbornite, could also be identified by 

EBSD through its crystal symmetry. This work has recently been published [61]. 

 

The contribution of EBSD to the analysis of mullite glass-ceramics grown via 

electrochemically induced nucleation began with the information that crystal orientation 

within a cross section of a needle can vary up to 5° and that the c-axis is usually oriented 

toward the area of nucleation, e.g. the platinum wire. In contrast to the previous understanding 

of oriented nucleation near the cathode, random nucleation was shown to occur. The 

orientation of the mullite crystals is only a result of the experimental setup. The needle like 

growth of mullite under the given settings was confirmed, even when the visual impression 

from SEM-micrographs would suggest that curved crystal growth would be possible. It was 

also shown that the orientation of a crystal can change due to interactions with an obstacle 

(e.g. the Pt-wire).  
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4.3. Bulk Crystallization 
 

The EBSD-analysis of glass-ceramics with high iron content showed the peculiar formation of 

a mantle of magnetite crystals around a core of hematite in what was probably a stria in the 

glass. While the hematite core showed an orientation similar to that of glass-ceramics oriented 

through extrusion, no specific orientation could be described for the magnetite mantle. 

Application of the crystallization morphology observed in the sample 1 of publication 2.7 to 

the sample 2 of the same publication lead to the deduction that hematite was the primary 

phase formed during the crystallization of this sample. This was further cemented by the 

findings of EBSD-analysis which enabled the formulation of a strict orientation relation 

between the hematite and magnetite areas of crystals in the sample: it was shown that the 

[0001]-direction of the hematite phase is parallel to the [111]-direction of the magnetite phase 

occurring in the same crystal. Two magnetite orientations, rotated by 60° to one another, 

occur and can be explained by the transformation of the A-B stacking order of hexagonal 

hematite into A-B-C or A-C-B layers of magnetite, respectively. This orientation relationship 

was shown to be valid for a number of independent crystals allowing the conclusion that this 

orientation relationship is valid for all the crystals in the sample. It was further shown that the 

phase transformation is accompanied by a morphological restructuring of the crystals. 
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6. Abbreviations 
 

λ wavelength 

ΘB Bragg angle 

CCD charge coupled device 

CI confidence index 

dhkl lattice plane spacing 

DTA differential thermal analysis 

e elementary charge of an electron 

E energy 

EBSD electron backscatter diffraction 

EBSP electron backscattering pattern 

EDX energy dispersive X-ray spectroscopy 

EPR electron paramagnetic resonance  

FEG field emission gun 

h Planck’s constant 

IPF inverse pole figure 

IQ image quality 

n diffraction order 

OIM orientation image mapping  

p momentum 

PF pole figure 

SEM scanning electron microscope 

U accelerating voltage 

XRD X-ray diffraction 
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