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Zusammenfassung 

 

Marine Makroalgen sind ubiquitär an den Küstenzonen der Ozeane verbreitet. Makroalgen 

sind wichtige Primärproduzenten und werden seit Jahrtausenden von den Menschen als 

Nahrungsquelle genutzt. Die physiologische und ökologische Leistungsfähigkeit dieser 

Organismen wird grundlegend von der umliegenden bakteriellen Gemeinschaft beeinflusst. 

Aufgrund der hohen bakteriellen Abundanz von bis zu 2.5 x 108 Bakterienzellen pro Milliliter 

Seewassser ist es durchaus wahrscheinlich, dass Makroalgen Mechanismen entwickelt haben, 

um die Beschaffenheit der bakteriellen Gemeinschaft zu regulieren. Neueste Untersuchungen 

weisen tatsächlich auf eine gewisse Wirt-Spezifität der bakteriellen Gemeinschaften auf der 

Oberfläche von Algen hin. Weiterhin ist es seit geraumer Zeit bekannt, dass Algen 

Substanzen mit bakteriostatischen und bakteriolytischen Eigenschaften produzieren. 

Umfassende Untersuchungen der ökologischen Funktion dieser Substanzen sind jedoch bisher 

nicht bekannt. Um ein besseres Verständnis der Effekte von Makroalgen auf ihre umliegende 

bakterielle Gemeinschaft zu generieren, habe ich eine Reihe von Feld- und Laborversuchen 

mit der siphonalen Grünalge Dictyosphaeria ocellata als Modelorganismus durchgeführt. 

Zunächst habe ich gezeigt, dass D. ocellata im Vergleich zu einer anderen Grünalge und 

abiotischen Oberflächen eine einzigartige bakterielle Biofilm-Gemeinschaft beherbergt. 

Allerdings variiert diese Gemeinschaft zwischen verschiedenen Standorten, was 

möglicherweise eine Folge der großen Unterschiede der gesamten bakteriellen Gemeinschaft 

an den jeweiligen Standorten ist. Diese Wirt-Spezifität legt nahe, dass D. ocellata 

Mechanismen besitzt, um die Zusammensetzung der umliegenden bakteriellen Gemeinschaft 

zu beeinflussen. Daher habe ich anschließend den Effekt von organischen Extrakten der Alge 

auf die Biofilmbildung untersucht. Ich konnte zeigen, dass mit Methanol extrahierte 

Substanzen die Zellkonzentration der Bakterien in dem Biofilm verringerte und auch die 

Zusammensetzung der bakteriellen Gemeinschaft veränderte. 

Zusätzlich habe ich auch die Effekte auf die planktonisch lebende Bakteriengemeinschaft 

untersucht. Dabei fand ich, dass auch diese bakterielle Gemeinschaft signifikant von der Alge 
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verändert wird. Es war mir allerdings nicht möglich diesen Effekt einer spezifischen im 

Wasser vorkommenden Substanz zuzuordnen. Es scheint daher möglich, dass ein direkter 

Zellkontakt mit der Alge nötig ist oder die verantwortlichen Substanzen instabil sind. Um ein 

besseres Verständnis über die in dieser Interaktion involvierten Mechanismen zu erhalten, 

habe ich weitere Versuche im Labor durchgeführt. Hier habe ich den Effekt der Alge und 

deren Extrakte auf das Wachstum von individuellen, natürlich vorkommenden 

Bakterienstämmen durchgeführt. Ich zeigte, dass verschiedene Bakterien unterschiedlich auf 

die Alge reagierten und verschiedene Faktoren für den Effekt verantwortlich waren. Zum 

Beispiel haben einige Bakterienstämme auf organische Zellextrakte reagiert, während andere 

Stämme nur auf im Meerwasser vorliegende Substanzen eine Reaktion zeigten. 

Zum Schluss habe ich eine Übersichtsanalyse der Aktivität von D. ocellata Extrakten 

gegenüber einer Reihe von natürlich koexistierenden Bakterien durchgeführt. Dabei stellte ich 

überraschenderweise fest, dass durch die Extrakte die Zelldichte der Bakterien in der 

stationären Phase entweder erhöht wurde oder kein Effekt festgestellt werden konnte. Mit 

Hilfe einer Bioassay geleiteten Fraktionierung konnte ich zeigen, dass sich die aktive 

Substanz in der Hexan und Chloroform Fraktion des Algen-Rohextraktes befand. Weitere 

Untersuchungen dieser Fraktionen zeigten die Präsenz einer Reihe von freien Fettsäuren, 

diese sind aber vermutlich nicht die aktive Komponente. Deshalb sind weitere 

Untersuchungen notwendig, um aufzuklären, welche Substanzen für die Aktivität 

verantwortlich sind. 

Diese Ergebnisse zeigen, dass D. ocellata die bakterielle Gemeinschaft sowohl auf ihrer 

Oberfläche als auch im umliegenden Seewasser reguliert. Diese Alge produziert organische 

Substanzen, welche an der Regulation der bakteriellen Gemeinschaft involviert sind. 
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Abstract 

 

Marine macroalgae are widespread throughout the world’s oceans.  They are important 

primary producers and have been used for millennia as food products for humans.  The health 

and ecology of these organisms are greatly affected by the bacterial communities surrounding 

them.   Because bacteria are so abundant in the oceans, as many as 2.5 x 108 bacterial cells per 

milliliter of seawater, it is likely that macroalgae have evolved mechanisms to regulate the 

composition of the bacterial community surrounding them.  In fact, recent studies indicate that 

a certain degree of host specificity exists among bacterial communities on the surface of 

algae.  In addition, it has been known for some time that algae produce compounds with 

bacteriostatic or bacteriolytic properties.  However, a good understanding of the ecological 

roles of these compounds has yet to be established.  In order to better understand the effects of 

macroalgae on their surrounding bacterial community, I performed a series of field and 

laboratory experiments using a green siphonous alga, Dictyosphaeria ocellata, as a model 

organism.  

Initially, I determined that D. ocellata harbors a unique bacterial biofilm community in 

comparison to another green alga and an inanimate surface taken from the same location.  

However, the bacterial community on the surface of D. ocellata is not consistent across 

different locations, which is likely due to the large differences in the overall bacterial 

communities present in these locations.  This host specificity suggested that D. ocellata has 

some mechanisms for regulating the composition of the bacterial community surrounding it, 

and I therefore examined the effects of organic extracts of the algae on biofilm formation.  I 

found that compounds extracted in methanol significantly decreased the abundance of bacteria 

present in the biofilm and also changed the structure of the bacterial community.   

In addition to examining the effect of the alga on biofilm bacteria, I also looked at its 

effect on the bacterioplankton community and found that this is also significantly altered by 

the presence of the alga.  However, I could not attribute this alteration to stable waterborne 

compounds released by the alga, and it therefore appears that these effects may require direct 
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contact with the alga or that the compounds responsible may not be stable.   In order to better 

understand the mechanisms involved in these interactions, I took the system into the 

laboratory setting and examined the effects of the alga and its extracts on the growth of 

individual, naturally co-occurring bacterial strains.  I found that different bacterial strains 

reacted differently to the presence of the alga, and that the factors eliciting a response differed 

between bacterial strains.  For example, some strains responded to the organic whole-cell 

extracts of the alga, while others responded to waterborne compounds.   

Finally, I performed a screening of the activity of D. ocellata extracts against a suite of 

naturally co-occurring bacteria and found, surprisingly, that the extracts either increased the 

stationary phase abundance of these bacteria or had no effect on them.  Based on bioassay 

guided fractionation, I determined that the active compounds were found in the hexane and 

chloroform fractions of the crude extract.  Further examination of these extracts revealed a 

diversity of free fatty acids, however these are not likely the active compounds and further 

investigation is necessary to elucidate what compounds are responsible for the activity.     

These results indicate that D. ocellata regulates the composition of the bacterial 

community on its surface and in the closely surrounding seawater.  Furthermore, that the alga 

produces organic compounds that are involved in the bacterial community regulation.  
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1 Introduction 

1.1 Marine macroalgae: characteristics and importance 
Marine macroalgae, also known as seaweeds, are macroscopic, eukaryotic, photosynthetic 

organisms that live at least partially submerged in water.  They are nonvascular and therefore 

depend on the absorbance of nutrients directly from the surrounding seawater.  They include 

members of the green algae (Chlorophyta), brown algae (Phaeophyta), and red algae 

(Rhodophyta).  The prokaryotic blue-green algae (Cyanophyta) are also sometimes included 

in this group when they form large macroscopic mats.  Macroalgae vary greatly in their 

morphologies, pigments, and carbon storage products, but are grouped together based on their 

similar ecological habitats and roles (van den Hoek et al. 1995, Paul et al. 2001).    

Macroalgae are important economically because of their use in food products, medicine 

and pharmaceuticals, as well as biofilters in aquaculture.  Seaweeds constitute an important 

part of the diet in many Asian cultures and the commercial cultivation of seaweeds has 

become a major factor in the economies of these countries (Nisizawa et al. 1987, Tseng and 

Fei 1987).  Additionally, red and brown macroalgae are harvested for their polysaccharides 

(agars, algins, carrageenans) which are used throughout the world in a variety of commercial 

products as gelling, stabilizing, or texturizing agents (Renn 1997).   Because of their efficient 

uptake of nutrients, economically important macroalgae are also being paired with other 

aquaculture organisms to cleanse waste water of excess nitrogen and phosphorous (Marinho-

Soriano et al. 2009).  In addition to these qualities, it has also been reported that macroalgae 

are a rich source of bioactive compounds and some of these compounds show promising 

potential as pharmaceutical agents including kahalalide F, which is currently in phase II anti-

cancer trials and also shows promise as an HIV drug (Smit 2004, Martin-Algarra et al. 2009).    

In addition to their economic importance, macroalgae are also ecologically important, 

because they act as the main primary producers in many estuarine environments. However, 

algal biomass is often not readily consumed by herbivores and Smith (1981) postulated that 

macroalgae therefore serve as carbon sinks by removing CO2 from the atmosphere and 

trapping it in the algal biomass until it is released by detritivores.   This trapping could have 
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important implications as we face increasing global CO2 levels in the future.  Additionally, 

the ability of algae to act as biofilters also performs the ecological function of cleaning run-off 

water of pollutants as it passes through estuaries.  Furthermore, algae can have a wide variety 

of roles within the ecosystems in which they live, including providing habitat for other 

organisms and producing chemical cues for the settlement of invertebrate larvae (Chemello 

and Milazzo 2002, Steinberg and de Nys 2002, Christie et al. 2009).   

As with most organisms, marine macroalgae are constantly challenged by predators, 

competitors and disease.  However, being marine organisms, they are subjected to the extra 

stress of living in an environment with a high density of bacteria, some of which have the 

potential to be highly detrimental to the health of the alga.  

1.2 Importance of bacteria in algal ecology 
Bacteria play important roles in the health and ecological interactions of marine 

macroalgae and are highly abundant in estuarine environments, with estimates of as many as 

2.5 x 108 bacterial cells per milliliter of seawater (Ducklow and Shiah 1993).    Bacteria can 

not only affect algae directly by acting as pathogens or nutrient sources, but can also have 

indirect effects by impacting other organisms in ways that affect the algae.   

Direct effects 

The most direct way that bacteria affect macroalgae is through pathogenesis, the 

occurrence of which is surprisingly rare considering the high density of bacteria in the 

seawater surrounding algae.  In a recent review of macroalgal-bacterial interactions, Goecke 

et al. (2010) identified 14 examples of bacteria-elicited algal diseases and an additional five 

instances in which algae were affected detrimentally by bacteria but a disease was not 

specified.  One of these examples is the red spot disease found in the economically important 

brown alga Laminaria japonica which has been attributed to the bacterium 

Pseudoalteromonas bacteriolytica (Sawabe et al. 1998).  Another well known example is the 

coralline lethal orange disease (CLOD) which is caused by a conglomerate of five bacteria 

and affects a large variety of coralline red algae (Littler and Littler 1995, Cervino et al. 2005). 
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In addition to causing diseases, bacteria can also directly benefit macroalgae by providing 

them with necessary nutrients and growth factors.  Several species of green macroalgae in the 

genus Codium obtain nitrogen from nitrogen fixing cyanobacteria that live either within the 

algal thallus or on the surface of the algae (Dromgoole et al. 1978, Rosenberg and Paerl 

1981). In another example, Chisholm et al. (1996) identified a heterotrophic bacterium within 

the rhizoids of Caulerpa taxifolia that contains a gene encoding a nitrogenase and suggested 

that this endosymbiont may transform inorganic nitrogen into ammonia for use by the alga.  

Bacteria have also been shown to be necessary for the normal morphogenetic development of 

some macroalgae.  When grown in axenic cultures, these algae lose their natural morphology 

and this can be recovered by the addition of bacteria into the culture (Nakanishi et al. 1999).  

Matsuo et al. (2005) found that a marine bacterium in the Cytophaga-Flavobacterium-

Bacteroides (CFB) group produces a compound called thallusin that induces normal 

morphogenesis in Monotstroma oxyspermum grown under axenic conditions and suggest that 

similar phenomena may be widespread among Ulvacean and Monostromanacean  green algae.   

Indirect effects 

Bacteria can benefit algae indirectly by reducing the settlement of macrofouling 

organisms on their surfaces.  For example, the inhibition of larval attachment and 

metamorphosis caused by waterborne compounds originally thought to be produced by the 

green alga Ulva reticulata was later attributed to an associated bacterium in the genus Vibrio 

(Harder and Qian 2000, Dobretsov and Qian 2002).  In the same study, waterborne 

compounds from five out of seven bacterial strains isolated from the surface of U. reticulata 

inhibited the growth of the diatom Nitzschia paleacea (Dobretsov and Qian 2002).  Rao et al. 

(2007) determined that biofilms of Pseudoalteromonas tunicata, which grows on the surface 

of many sessile marine organisms, inhibited the settlement of spores of the red alga 

Polysiphonia sp. by 90% at ecologically relevant bacterial densities.  Additionally biofilms of 

Phaeobacter sp. isolated from the surface of Ulva australis inhibited settlement of the 

bryazoan Bugula neritina (Rao et al. 2007).     

Bacteria associated with macroalgae also affect the settlement and growth of other 

bacteria and fungi.  Extracts of the brown alga Lobophora variegata contain a potent 

antifungal compound, lobophorolide, which is active against saprotrophic and pathogenic 
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marine fungi (Kubanek et al. 2003).  The structure of lobophorolide is similar to compounds 

known to be produced by cyanobacteria and heterotrophic bacteria.  The authors therefore 

speculate a bacterial origin for this compound.  Numerous studies have also found that 

Pseudoalteromonas spp. isolated from marine macroalgae possess antibacterial and antifungal 

activities against ecologically relevant organisms (Egan et al. 2000, Holmström et al. 2002, 

Bowman 2007).  Additionally, large screenings of bacterial strains isolated from the surfaces 

of macroalgae and marine invertebrates identified more than 150 bacterial strains with 

antimicrobial activity towards human pathogens (Burgess et al. 1999, Penesyan et al. 2009).   

In addition to regulating the biofouling of algal surfaces, bacteria can also provide 

protection from predation.  Although there are no examples to date of feeding deterrent 

compounds from algal associated bacteria, such phenomena have been observed in other 

marine organisms.  For example, larvae of the bryazoan Bugula neritina harbor bacterial 

endosymbionts that produce bryostatins which deter feeding by pinfish (Lopanik et al. 2004).  

Additionally, Lindquist et al. (2005) discovered that some marine isopods harbor 

cyanobacteria that deter feeding by reef fishes.  Given the large number of feeding deterrent 

compounds currently known from marine macroalgae, it is likely that future research will 

discover that at least some of these compounds are actually produced by associated bacteria 

(Paul et al. 2001).      

1.3 Algal associated bacterial communities 
Because bacteria play such important roles in the ecology of marine macroalgae and 

because their abundance is so high in seawater, it is likely that macroalgae have evolved 

mechanisms to regulate the bacterial community surrounding them.  In fact, there is growing 

evidence that the composition of bacterial communities on the surfaces of macroalgae is 

different from that of non-living substrates and in the surrounding seawater.   For example, 

Dobretsov et al. (2006) found that the bacterial community on the surface of Caulerpa 

racemosa differed from that found on rocks collected from the same area.  Additionally, some 

macroalgal species maintain a unique bacterial community across varying geographical 

locations.  Lachnit et al. (2009) found that the surface bacterial communities of six species of 

macroalgae (three brown, two red and one green) differed significantly from each other and 

that the composition of the bacterial community was affected more by the host species than by 
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the location from which the algae were collected (North Sea vs. Baltic Sea).  Nylund et al. 

(2010) likewise found that algae collected from two locations within the North Sea 

maintained a specific surface bacterial community regardless of geography.  Similar patterns 

of bacterial-host specificity have also been described for other sessile marine organisms, 

including sponges and corals (Rohwer et al. 2002, Taylor et al. 2004).  Although these few 

examples indicate that algae may harbor unique bacterial communities, the prevalence of this 

among different algal species and in different geographical locations remains to be 

determined.  Moreover, the mechanisms governing in this type of regulation are still mostly 

unknown, although, macroalgae are known producers of a wide variety of secondary 

metabolites and it is likely that these small molecules are involved in such regulation.   

To date, studies on the effects of macroalgal secondary metabolites on the growth of 

individual bacterial species have mainly focused on the search for highly potent antibacterial 

compounds, in most cases for pharmaceutical use or as antifouling agents (e.g. Reichelt and 

Borowitzka 1984, Freile-Pelegrin and Morales 2004, Salvador et al. 2007, Shanmughapriya et 

al. 2008).  However, the examination of the activity of algal metabolites against ecologically 

relevant bacterial species is increasing.  Engel et al. (2006) and Puglisi et al. (2007) 

determined that organic extracts from 55 out of 103 algal species tested in their studies 

inhibited the growth of a known algal pathogen, Pseudoalteromonas bacteriolytica.  

Furthermore, in a study of the bacteriostatic and bacteriolytic effects of organic extracts from 

the red algae Mastocarpus stellatus, and Ceramium rubrum and the brown alga Laminaria 

digitata on a wide variety of marine bacteria, Dubber and Tilmann (2008) found that bacterial 

strains were differentially susceptible to the algal extracts.  There is also a growing body of 

evidence that several macroalgae produce compounds that interfere with the process of 

communication among bacterial cells known as quorum sensing (e.g. Borchardt et al. 2001, 

Skindersoe et al. 2008).  During the process of quorum sensing bacterial cells release 

signaling molecules that bind to special receptors on the surface of other bacterial cells and 

induce the activation of certain genes, including those responsible for the production of more 

signaling molecules.  The likelihood of a signaling molecule reaching the surface receptor of 

another bacteria increases with increasing bacterial density.  Consequently, a response is only 

produced once the bacteria have reached a minimum density threshold (Nealson 1977, Visick 

and Fuqua 2005).  In one of the most well investigated macroalgal-bacterial interactions, it 
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has been discovered that the red alga Delisea pulchra produces halogenated furanones which 

are secreted onto the surface of the alga by specialized gland cells and mediate the bacterial 

colonization of the algal surface by interfering with quorum sensing (Maximilien et al. 1998, 

Dworjanyn et al. 1999, Manefield et al. 2002).  While these studies indicate that macroalgae 

host a unique bacterial community and that they are capable of producing compounds that 

inhibit the growth of some bacterial strains, they have yet to fully characterize the 

mechanisms involved in regulating the bacterial community on and around the algae.  

Additionally, the bioassays traditionally used to assess the activity of algal extracts against 

bacteria were adapted from the pharmaceutical industry and are biased toward the discovery 

of inhibitory compounds.  It is likely, however, that the growth of some bacterial species is 

selectively promoted by algae, but this has been largely uninvestigated.     

Investigation of the influences of algae and their organic extracts on the naturally 

associated bacterial assemblage, combined with studies of 

their effects on the growth of individual bacterial strains, is 

key to understanding the ways that algae shape the bacterial 

community surrounding them.  Such in-depth analysis 

requires the selection of a model algal species.  Within the 

Bioorganic Analytics lab, we focus on studies of siphonous 

green macroalgae that grow in tropical and subtropical 

areas.  Dictyosphaeria ocellata (M.A. Howe) J.L. Olsen-Stojkovich is a tropical green alga 

that lives in the intertidal zone up to a depth of 1 m, attached to hard substrates (Littler and 

Littler 2000).  It is a siphonous alga that occurs in clusters of macroscopic cells (~ 1-2 mm in 

diameter) (Figure 1).  Little research has been published about D. ocellata and, to the best of 

my knowledge, nothing is known about the secondary metabolism of this alga or about its 

associated bacterial community.  However, a few studies have been reported on other 

members of this genus.  For example, Dictyosphaeria cavernosa has been extensively studied 

because it is a problematic species on Hawaiian reefs (Szmant 2002) and a pair of novel 

polyketides were isolated from a fungus associated with Dictyosphaeria versluyii collected in 

Fiji (Bugni et al. 2004).   

Figure 1: Dictyosphaeria 
ocellata 
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Although D. ocellata will grow in a variety of shallow, hard substrate, tropical 

environments, the main field site used in these experiments was a near shore area along the 

coast of Summerland Key, FL (Figure 2).  At this site the algae were found attached to rocks 

covered by a thin layer of sediment.  Like most benthic macroalgae, D. ocellata is subjected 

to a high abundance of bacteria, but is rarely diseased.  It also remains clean of macrofouling 

organisms, the growth and settlement of which are often controlled by biofilm bacteria (Wahl 

1989).   This suggests that D. ocellata may have evolved mechanisms to regulate the bacterial 

community associated with it and it is therefore a good model organism for investigating 

algal-bacterial interactions.   

In addition to the selection of a model algal species, investigation of the effects of algae 

on the structure of the bacterial community surrounding them requires the use of special 

techniques that provide information on the bacterial species composition of a given sample.  

Traditionally the study of bacterial communities has been limited by the methods available to 

identify the bacterial strains present within a sample.  Microbiologists identified bacterial 

species based on their physiological and biochemical traits, which required the cultivation of 

the organism in the laboratory.  However, it has since been discovered that the bacterial 

Figure 2:  Field site at Summerland Key, FL, USA
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strains which are cultivable using current techniques represent only a small fraction (< 1 %) 

of the total number of bacterial species present within a given sample (Amann et al. 1995).  

This highlights the need for culture-independent methods for determining bacterial species 

richness and diversity and has led to the development of a number of DNA and RNA 

sequence based methods.   

Perhaps the most in-depth method currently used to investigate the species composition of 

bacterial communities within environmental samples is metagenomics (Xu 2006).  This 

approach involves sequencing genomic DNA within an environmental sample and using this 

information to determine not only which organisms are present, but also what their metabolic 

capabilities are by analyzing genes with known functions.  However, metagenomics is 

expensive and the analysis is time consuming.  Alternatively, there are a variety of methods 

that examine bacterial species in an environmental sample based on ribosomal RNA (rRNA) 

gene sequences as opposed to investigating entire genomes.  16S rDNA is often used for the 

phylogenetic comparison of bacterial strains because it contains both highly conserved and 

highly variable regions (Olsen et al. 1986).  This allows for the universal amplification of 

nearly all bacterial strains by using primers that anneal to highly conserved regions.  

Furthermore, primers can be chosen that amplify a highly variable region of the gene and 

these sequences can then be used for phylogenetic differentiation.  Amplified 16S rDNA can 

be used to create clone libraries which can be sequenced and used to identify the source 

organism.  Unfortunately, this approach is still relatively expensive and time consuming. 

Bacterial fingerprinting techniques, however, can be useful in cases where it is more 

important to know if the bacterial community is changing as opposed to what species are in 

the community.    

The two most commonly used bacterial community fingerprinting techniques are terminal 

restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel 

electrophoresis (DGGE) (Felske and Osborn 2005).  For T-RFLP analysis, DNA is amplified 

using fluorescently labeled primers.  The amplified DNA is then digested using one or more 

restriction enzymes resulting in a number of DNA fragments.  The terminal fragments retain 

the fluorescent label from the primers and are separated using capillary electrophoresis.  This 

is generally carried out on an automated DNA sequencer and an electropherogram is produced 
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in which the position of the peak relates to the fragment size and the intensity of the peak 

corresponds to the number of fragments present.  Restriction enzymes are chosen so that the 

size of the resulting terminal fragments can be used to distinguish between phylogenetically 

different organisms, each peak representing one individual bacterial phylotype (Liu et al. 

1997).   

Similarly, DGGE produces a fingerprint of the bacterial community present in a sample, 

but does so based on the melting behavior of the DNA.  With this technique, the 16s rRNA 

gene is amplified from environmental DNA using universal bacterial primers that produce 

fragments with the same length.  The DNA is then separated on a vertical acrylamide gel 

containing denaturing agents in an increasing concentration gradient from top to bottom.  As 

the DNA moves through the gel the double stranded conformation will begin to denature.  

Generally, primers are designed to add a 40 bp section of guanine and cytosine nucleotides 

known as a “GC clamp” to one end of the sequence.  The GC clamp inhibits the DNA from 

completely denaturing into two single strands, which would move easily through the gel.  

Instead, an inverted Y shape is formed which retards the DNA’s movement through the gel 

(Figure 3) (Muyzer et al. 1993).   

The melting behavior of the DNA is dictated by its sequence data.  Guanine and cytosine 

are bound by three hydrogen bonds as opposed to adenine and thymine which are bound 

together by only two hydrogen bonds.  Consequently, bonds between quanine and cytosine 

(G-C bonds) are more resistant to denaturing than bonds between adenine and thymine (A-T 

bonds).  Therefore, sequences with a higher G-C content will move further through the gel 

compared to those with a higher A-T content.  This results in a community fingerprint in 

which each band represents a fragment of DNA with a unique sequence and is therefore 

considered as an individual bacterial phylotype.   
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Unfortunately, with both of these methods, bacterial strains with highly similar DNA 

sequences are unlikely to be distinguished from one another.  Additionally, due to sampling 

and PCR bias, bacterial strains that make up < 1 % of the total community are unlikely to be 

detected (Felske and Osborn 2005).  However, both methods offer a relatively quick and 

inexpensive means for comparing the major components of bacterial communities.  DGGE 

has the advantage that bands can be excised and sequenced for identification, but databases 

are developing that aid in the identification of bacterial strains based on T-RFLP 

fragmentation patterns, as well (see review by Schutte et al. 2008).  T-RFLP, on the other 

hand,  has been reported in some cases to be more sensitive than DGGE, identifying a higher 

Figure 3:  Schematic representation of the principle behind the separation of DNA 
fragments using DGGE. 
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number of bacterial phylotypes from the same sample (Moeseneder et al. 1999), but Felske 

and Osborn (2005) suggest that this may be dependent on the skill and experience of the 

researcher.  T-RFLP also has the advantage of being highly reproducible whereas DGGE 

profiles are dependent on the casting and staining of the gel and may vary slightly between 

gels.  Although including known standards and adjusting band position and intensity in 

relationship to these can accommodate for this variation, it is still often difficult to compare 

samples across multiple gels.  As a result, this limits the number of samples that can be 

compared at one time.   

The objective of my PhD research was to determine if macroalgae affect their surrounding 

bacterial community and whether these effects could be attributed to organic compounds 

extracted from or released by the algae.  To determine this, I performed a series of field 

experiments in which I examined the effects of a model alga, D. ocellata and its organic 

extracts on the composition of natural biofilm and planktonic bacterial assemblages.  In these 

experiments I used bacterial community fingerprinting techniques to profile the bacterial 

communities under different conditions.  I also investigated the effects of D. ocellata and its 

organic extracts on the growth of ecologically relevant marine bacteria in a unique bioassay 

that allowed for the observation of both growth promoting and growth inhibiting effects.  

Furthermore, the effects of direct contact with the live algae on the growth of individual 

bacterial cultures were determined with this assay and this has rarely been looked at in the 

past.    

 





Chapter 2 Results and Discussion 

- 17 - 

 

2 Results and Discussion:  Effects of D. ocellata and its 

extracts on natural bacterial assemblages in the field 

A series of field experiments were performed using bacterial fingerprinting to determine if 

and how green algae affect the bacterial community surrounding them using the green alga 

Dictyosphaeria ocellata as a model species (see Introduction Section 1.3).   

2.1 Bacterial community analysis 
For the purposes of this study, it was important to understand if bacterial communities 

were different under different conditions, but not what bacteria were present in the 

communities.  I therefore chose to use a bacterial community fingerprinting technique, DGGE 

(see Introduction, Section 1.3).  DGGE was chosen because of its relative quickness, ease, and 

inexpensiveness compared to other techniques and because interesting bands could be excised 

and identified as necessary.  Additionally, the most common alternative to DGGE, T-RFLP, 

requires the use of an automated DNA sequencer, which was not easily available to me.  In 

brief, bacterial DNA was amplified using universal bacterial primers 357f and 907rM, which 

amplify a 550 bp section of the 16S rRNA gene.  The 357f-907rM primer set was first 

described by Muyzer et al. (1995) for use in DGGE analysis, and was later identified as the 

preferential primer set for the routine DGGE analysis of marine bacteria (Sanchez et al. 

2007).  This primer set straddles a highly variable region of the 16S rRNA gene and produces 

DNA fragments small enough to run on a DGGE gel but large enough to contain a sufficient 

number of base pair differences to separate the DNA fragments (Muyzer et al. 1995).  As is 

common practice in DGGE analysis, a 40 bp GC clamp was added to the 357f primer so that 

the resulting DNA fragments would not completely denature during the DGGE.   The PCR 

protocol was optimized based on the protocol from Kirchman et al. (2001) using a mixture of 

known bacterial strains as well as samples of algal culture water.   

The PCR protocol was optimized for the amplification of bacterial DNA from 

polycarbonate membrane filters.  The optimized method was subsequently determined to be 

applicable to samples of bacterial DNA isolated from cotton swabs as well.  To generate the 

greatest amount of amplified product without unspecific amplification of non target areas of 
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the DNA, different concentrations of the PCR reagents and different thermal cycling 

conditions were tested (Table 1, Appendix I).  Reaction master mix #3 from Table 1 was 

chosen because it consistently resulted in a high concentration of DNA and had a small 

amount of unspecific product, determined after separation on an agarose gel (Appendix I).   

Master mix: 1 2 3 4 

Buffer (10x) 5 µl 5 µl 5 µl 5 µl 

dNTP mix (10mM) 1 µl 1 µl 1 µl 1 µl 

357GC (10 µM) 2 µl 1 µl 2 µl 2 µl 

907rM (10 µM) 2 µl 1 µl 2 µl 2 µl 

BSA (20mg/ml) 1.5 µl 1.5 µl 1.5 µl 1.5 µl 

DreamTaq (5 units/µl) 0.25 µl 0.25 µl 0.5 µl 0.25 µl 

MgCl2 (25 mM) - - - 5 µl 

 

The DNA concentration was determined by comparison to the GeneRuler™ Express DNA 

Ladder (Fermentas) run on a 1% agarose gel.  Because all target DNA had the same molecular 

weight, any extra bands seen on the agarose gel were the result of unspecific amplification 

and the amount of unspecific product was determined visually based on the number and 

intensity of extra bands.  As described by Muyzer et al. (1993) a touchdown PCR method was 

used starting at an annealing temperature of 65 °C and cycling down to 55 °C, which is the 

expected annealing temperature for these primers.  The efficacy of these annealing 

temperatures was verified by performing gradient PCR using the reaction master mix #3 at 

temperatures ranging from 54 °C – 66 °C (Appendix II).  Furthermore, the optimal total 

number of PCR cycles was determined for reaction mixture #3.  A total of 35 cycles (10 

Table 1: PCR reaction mixtures tested for optimal amplification of marine bacterial 
DNA.  Blue shading indicates the mix that produced the largest amount of DNA with a 
minimum amount of unspecific product.  Bold numbers indicate differences between the 
reaction mixtures. 
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touchdown cycles followed by 25 cycles at an annealing temperature of 55 °C) produced the 

highest DNA concentration with the lowest amount of unspecific product (Appendix I).   

Amplified DNA was separated on a denaturing gel to produce a profile within each lane in 

which each band represented an individual bacterial phylotype.  The DGGE conditions (time, 

voltage, acrylamide concentration, and denaturant concentration) were optimized based on the 

protocol outlined by Muyzer et al. (1993) using the PCR amplified DNA of known bacterial 

strains to produce a profile containing bands that were well separated and well defined.  In 

order to analyze the profiles, gels were stained and digitally photographed.  The digital 

photographs can be analyzed using a number of different gel analysis programs.  For these 

experiments I used either GelCompar II from Applied Maths or BioDoc Analyze from 

Biometra.  Both of these programs generate a densitograph for each lane that plots the average 

gray value (U) against the position as defined by the pixel number resulting in a densitometric 

curve (Figure 4).  For every pixel, a gray value between 0 and 255 is assigned with 0 

representing true black and 255 representing true white.  In my experiments, the grey value 

was a measure of the fluorescence because the gels were stained with a fluorescent pigment.   

The height of the peak is related to the amount of DNA found in each band, and because each 

band represents one bacterial phylotype, peak height can be used as proxy for bacterial 

species abundance.  Additionally, the volume of each band can be determined as sum of the 

gray values within a given area, and these values can also be used for the comparison of 

relative species abundance between samples.   
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Fingerprints (banding patterns or densitometric curves) produced as a result of DGGE can 

be compared either based on the presence/absence of individual bands or on the relative 

intensities of the bands present.  The latter includes quantitative information about the relative 

abundance of species within the community, but it should be noted that this is only a semi-

quantitative technique because PCR bias inhibits us from determining absolute values.  

However, this information is still useful because differences in the relative intensity of a band 

between samples indicate differences in the amount of the corresponding bacterial strain. 

During the analysis of fingerprint profiles, the initial step is to generate a similarity or 

dissimilarity matrix based on the original fingerprint.  For a review of commonly used 

similarity and dissimilarity coefficients see Rademaker & de Bruijn (2004) or Quinn & 

Keough (2002).  The choice of a similarity/dissimilarity coefficient is based on the quality of 

the original data, design of the experiment and hypotheses being tested.   They can be divided 

into two groups, those that compare presence/absence data (binary coefficients) and those that 

measure continuous variables and incorporate abundance data. The most commonly used 

binary coefficients used in the analysis of bacterial community fingerprints are the Jaccard 

and the Dice coefficients which differ only in the amount of weight given to presence values 

(Rademaker and Bruijn 2004).  The Bray-Curtis coefficient was developed for use in plant 

ecology but has been adopted by microbial ecologists because it is a good measure of species 

Figure 4:  Example densitograph with the associated DGGE lane shown beneath. 
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abundance data (Quinn and Keough 2002).  In the case of community fingerprints, each band 

represents a species and the intensity of the band is a measure of abundance.  Another 

commonly used coefficient for the analysis of fingerprint data is the Pearson correlation 

(Rademaker and Bruijn 2004).  While the previously described coefficients require the prior 

assignment of bands, which can be difficult in complex communities, the Pearson correlation 

takes into account the entire densitometric curve.   Therefore, this correlation reduces 

subjective bias that is introduced when the selection of bands is made (Rademaker and Bruijn 

2004).  Rademaker & Bruijn (2004) suggest that this is preferential method, however, not all 

gel analysis software provide this option.   

After a coefficient has been selected and a similarity/dissimilarity matrix has been 

generated, the data can be analyzed in a number of ways depending on the goals of the study.  

For hypothesis testing, analysis of similarity (ANOSIM) is most commonly used, but non-

parametric or permutation multivariate analysis of variance (PERMANOVA) is gaining 

popularity.  ANOSIM is a statistical test often applied to ecological studies that compares 

species composition between different communities (Rademaker and Bruijn 2004).  It has 

been adopted into the field of microbial ecology as a method to compare bacterial community 

profiles produced from such techniques as DGGE and TRFLP.  ANOSIM is a test that ranks 

the dissimilarities between samples and compares the average rank dissimilarities between 

objects within a group (rw) to the average rank dissimilarities between objects in different 

groups (rb)(Quinn and Keough 2002).   

 

The resulting R value can theoretically range from –1 to 1, but most ecological studies do 

not result in an R value of less than 0.  An R value of 0 indicates that objects within a group 

are as similar to objects in other groups as they are to each other.  An R value > 0 indicates 

that objects within a group are more similar to objects from the same group than they are to 

individuals from other groups.    

The significance of the R value can be determined by calculating a given number of 

random permutations (usually at least 999) and comparing the observed R value to the 
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permuted R values. A significant result is determined by the probability of getting the 

observed outcome in relation to the random permutations calculated (Figure 5).  A drawback 

of permutation tests is that, because the random permutation values are calculated by all 

possible combinations of objects, the number of possible permutations is determined by the 

number of objects in the study.  In principle, this means that studies with a low number of 

replicates are less likely to produce significant results.    

 

 

PERMANOVA is similar to ANOSIM although, it does not require the ranking of 

dissimilarities prior to analysis.  PERMANOVA calculates an F value analogous to that of 

analysis of variance (ANOVA), but the data is not restricted by the same assumptions.  

Essentially, this test compares the variance among objects within a group (SSW) and compares 

that to the variance between groups (SSA) when a is the number of groups and N is the total 

number of observations (Anderson 2001).   

 

Figure 5: Histograms of random R value permutations where the observed R value is 
significantly different than that expected by random permutation (A) and where the 
observed R value is not significantly different than that expected by random 
permutations (B).      
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As with ANOSIM, significance of the F value must be determined by calculating 

permutations (Anderson 2001).  Quinn and Keough (2002) suggest that this is a promising 

method for ecological studies because it is widely applicable to complex experimental designs 

but requires the careful choice of an appropriate randomization test.   

In addition to hypothesis testing, classification methods can be used to group similar 

samples together based on their banding patterns (Quinn and Keough 2002).  Fingerprint 

profiles are most often analyzed using cluster analysis which is a technique that forms 

groupings of samples based on their degree of similarity to each other and represents them in 

a hierarchical tree.  The formation of clusters are commonly determined by one of three 

methods: single linkage (nearest neighbor), complete linkage (furthest neighbor), or 

unweighted pair-group average using arithmetic averages (UPGMA) although other less 

commonly used methods exist.   

The single linkage method calculates the distance between clusters based on the two most 

similar samples in different clusters.  Alternatively, the complete linkage method calculates 

the distance between clusters as the largest difference between individuals in different 

clusters.  The UPGMA method determines the distance between clusters as the average 

distance between all pairs of individuals in two different clusters.  This last method is robust 

to instances when objects form distinct clusters as well as instances when longer chain-like 

trees are formed.   

In addition to cluster analysis, another common technique used to find patterns in the 

similarity data of DGGE profiles is non-metric multidimensional scaling (NMDS).  NMDS 

plots objects in multidimensional space so that the distances between objects in space closely 

represent the distances calculated in the similarity or dissimilarity matrix.  It provides a good 

graphical representation of the relationships among individuals based on the chosen 

similarity/dissimilarity matrix.  

In the experiments presented here, I created similarity matrices based on either the  

Pearson correlation or the  Bray-Curtis measure of dissimilarity because these two methods 

are useful when comparing relative abundances of each species (band intensity) within a 

sample.  Although DGGE is not a quantitative method, differences in the relative intensities 
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of individual bands between samples indicate differences in the abundance of these bacterial 

phylotypes and I believe this information should also be taken into account during the 

comparison of bacterial communities.  The choice of similarity/dissimilarity coefficient was 

based on the software available.   Early experiments were analyzed with the GelCompar II 

software using the Pearson correlation, but later this software was no longer available to me 

and the remaining experiments were analyzed with the BioDoc Analyze software using the 

Bray-Curtis measure of dissimilarity.  The resultant similarity matrices were then subjected to 

multivariate statistical analysis.  For my experiments I used either cluster analysis or NMDS 

to graphically represent the data obtained from the DGGE profiles because these are the most 

commonly used classification methods for these types of studies.  I also performed statistical 

comparisons of treatments using analysis of similarity (ANOSIM).   

2.2 Comparison of surface­associated bacterial communities within 

and between locations. 

In order to determine if D. ocellata influences the species composition of bacteria on its 

surface, I compared the bacterial community profiles of biofilms taken from D. ocellata to 

those from another species of green alga and from a reference surface, a rock, at three 

locations along the Florida Keys (Figure 6).  I also compared the biofilms on D. ocellata 

individuals from different locations to determine if they retain a similar bacterial community 

regardless of geography.   

2.2.1 Experimental design 
I chose to compare the bacterial community on the surface of D. ocellata to that of another 

green macroalgae in order to determine if there was a difference in the bacterial communities 

associated with similar organisms growing in the same location.  A difference in the 

communities would indicate a high degree of host specificity and the likelihood of factors 

present within the algae that regulate the structure of the bacterial community.  Within each 

location, I chose a second green alga that was abundant and similar in size to D. ocellata.  For 

the Summerland Key and Long Key locations, the second alga was Batophora oerstedii and at 

Bahia Honda it was Cladophoropsis macromeres.  I also compared the bacterial communities 

associated with these algae to those taken from a rock at the same location.  The rock was 
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used as a reference surface which should have a limited influence on the settlement and 

growth of biofilm bacteria and therefore represent the pool of bacteria available to form 

biofilms on surfaces in the area. 

In addition to comparing the bacterial communities on different objects taken from within 

one location, I compared the bacterial communities of D. ocellata individuals across all three 

locations.  I hypothesized that if the alga regulates the composition of its associated bacterial 

community, then the bacterial communities should be consistent between different locations.    

I also compared the bacterial communities on rocks taken from all three locations to 

determine the baseline amount of variation in the composition of biofilm communities.   

The three objects were collected from three locations along the Florida Keys (Figure 6).  I 

chose sites that had different environmental conditions in order to reduce the likelihood of 

obtaining similar bacterial communities on algae from different locations by chance alone.  

The Summerland Key site was a shallow, low wave action, subtidal zone fringed by 

mangroves.  The substrate was rocky and covered with a thin layer of sediment.  D. ocellata 

was abundant in this location and grew in clusters attached to rocks and mangrove prop roots 

The clusters ranged in size from ∼1 – 3 cm in diameter.  This site was used as the main field 

site throughout the course of these experiments due to the ease of access, abundance of D. 

ocellata and its close proximity to the Mote Tropical Research Laboratory on Summerland 

Key, which was the base from which all field studies were performed.   On Bahia Honda I 

chose a high wave action, rocky shore with tide pools.  The algae were growing in very small 

clusters, sometime as few as two or three cells, within the tide pools.  At Long Key the objects 

were collected from the bank of a mangrove canal.  The water here was low wave action as in 

Summerland Key, but based on the color of the water, contained an obviously high amount of 

tannins.  D. ocellata also grew here in very small clumps in the crevices of rocks along the 

bank.   
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2.2.2   Within­site comparisons 

DGGE profiles revealed between 54 and 63 total bacterial phylotypes present on objects 

collected from each site.  Cluster analysis of the bacterial communities on the surfaces of 

rocks, D. ocellata, and Batophora oerstedii within Summerland Key and Long Key, showed 

that the three objects formed distinct clusters in both locations, with the exception of one D. 

ocellata replicate from Summerland Key that clustered with B. oerstedii (Figure 7). 

Figure 6: Maps showing the location of field sites.  A: North America with the Florida 
Keys indicated by the blue box, B: Florida Keys with stars indication the location of the 
field sites, C: field sites along the Florida Keys with arrows indicating the collection 
sites.  Pictures are from Google Earth.   
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Figure 7: Comparison of the bacterial communities on the surface of D. ocellata, a 
second alga, and rocks taken from Summerland Key, Bahia Honda, and Long Key. In 
Summerland Key and Long Key the second alga is B. oerstedii, in Bahia Honda it is C. 
macromeres. A) DGGE profiles, S = standard.  B) UPGMA cluster analysis of DGGE 
banding patterns based on the Bray Curtis distance measure.   
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The differences between these groups were significant according to ANOSIM (R = 

0.5162, p = 0.0015 and R = 0.3727, p = 0.0011 respectively, Table 2), but pairwise 

comparisons showed significant differences only between D. ocellata and B. oerstedii in 

Summerland Key (R = 0.9271, p = 0.0276) and between B. oerstedii and rocks in Long Key 

(R = 0.4271, p = 0.0277, Table 2).  However, the R values for all pairwise comparisons are 

relatively high and this indicates that the groups may be different but fail to meet the 

significance levels of this test due to low numbers of replicates (Table 2).  As discussed in the 

in Section 2.1, the significance level is limited by the number of permutations that can be 

calculated and this is determined by the number of samples in each group.  Therefore, in some 

cases you can obtain a relatively high R value that indicates separation of the groups from one 

another, but because the number of replicates is low, the value fails to be significant.  Because 

the R values are relatively high for all pairwise comparisons and cluster analysis shows 

separate clusters for each group, it is likely that these indeed form separate groups, but failed 

to meet the test for significance due to the low number of replicates (n = 4).   

The host specificity of bacterial communities on the surface of algae from Summerland 

Key and Long Key supported my hypothesis that green algae are capable of regulating their 

surface associated bacterial communities.  Similar results were found by Lachnit et al. (2009) 

and Nylund et al. (2010) who both determined that bacterial communities varied among 

different species of temperate macroalgae collected from one location.  Furthermore, my 

Table 2: Analysis of similarity (ANOSIM) comparison of bacterial communities on the 
surfaces of D. ocellata, a second alga, and rocks taken from Summerland Key, Bahia 
Honda, and Long Key.  R values are given for pairwise comparisons and the global R 
with p values in parentheses.  Bold numbers indicate significance at p < 0.05.  
Significance levels for pairwise comparisons were not subjected to Bonferroni 
corrections.  n = 4.   
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results concur with those of Dobretsov et al. (2006), who found that the bacterial community 

on the surface of the green alga Caulerpa racemosa was different than that found on rocks.   

Contrary to the results from Summerland Key and Long Key, both cluster analysis and 

ANOSIM show no distinct grouping of the bacterial communities on the surface of different 

objects within Bahia Honda (R = 0.1700, p = 0.1201, Figure 7, Table 2).  There was no B. 

oerstedii present at the Bahia Honda site, and Cladophoropsis macromeres was therefore used 

as the second green alga at this site.  The lack of significant differences in bacterial 

community composition between the three objects from this site may be related to the usage 

of C. macromeres instead of B. oerstedii.  Lachnit et al. (2009) found that individuals within 

the same genus, but different species, had similar surface-associated bacterial communities.  

While C. macromeres and D. ocellata are not in the same genus, they are in the same order 

(Siphonocladales) as opposed to B. oerstedii which is in the order Dasycladales.  Perhaps the 

closer phylogenetic relationship resulted in the decreased difference in the surface-associated 

bacterial communities of these two algal species.   

 

Examination of the presence of individual bacterial phylotypes showed that 29 of the 63 

different phylotypes found on the surfaces of objects from Summerland Key are specific to 

the algae (Figure 8).  Of these, only two are shared by the two algal species, leaving twelve 

that are unique to D. ocellata and fifteen that are unique to B. oerstedii (Figure 8).  Of the 44 

Figure 8: Venn diagram comparison of the number of bacterial phylotypes present on 
the surface of D. ocellata, a second alga, and rocks taken from Summerland Key, Bahia 
Honda, and Long Key.  Numbers within the area where circles cross indicate the 
number of phylotypes shared by these objects.   
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phylotypes found on the surfaces of rocks, 10 were eliminated specifically by D. ocellata, 6 

by B. oerstedii, and 17 by both algae (Figure 8).  In Bahia Honda, 19 out of 61 phylotypes 

were found only in algae, 8 of which were found on both algae, 7 only on D. ocellata and 4 

only on Cladophoropsis macromeres (Figure 8).  Forty-two phylotypes were found on the 

surfaces of rocks, eleven of which were eliminated on the surfaces of both algae (Figure 8).  

An additional six phylotypes were eliminated by D. ocellata and five by C. macromeres 

specifically (Figure 8).  Of the 54 phylotypes found in Long Key, 20 were found only on 

algae, 4 specific to D. ocellata, 10 specific to B. oerstedii, and 6 present on both algae.  Of the 

34 phylotypes found on the surfaces of rocks, 3 were eliminated by D. ocellata, 5 by B. 

oerstedii, and 13 by both (Figure 8).  These numbers represent phylotypes found in at least 

one replicate within each group, but not necessarily common to all replicates within a group.  

This information serves as simplified overview of the data present within the bacterial 

community fingerprints and is useful in examining patterns, in addition to the statistical 

testing and cluster analysis.   

Algae release dissolved organic carbon and other nutrients into the surrounding seawater.  

It is therefore not surprising that the surfaces of algae would be colonized by bacteria not 

found on inanimate surfaces (Cole et al. 1982, Jensen 1985, Smith et al. 2006, Wada et al. 

2007).  However, the fact that some bacteria are found on only one species of alga and not the 

other indicates the presence of some regulatory process, which acts to selectively attract or 

eliminate specific phylotypes (Figure 8).   Between 11 and 17 bacterial phylotypes were 

found only on the surfaces of rocks (Figure 8).  If we assume that the rock provides a neutral 

surface, lacking in chemical deterrents or attractants to bacterial growth or settlement, then the 

algae are actively eliminating these bacterial phylotypes.  In addition, there were between 

three and ten phylotypes that were found on the surfaces of both rocks and one algal species, 

but were specifically eliminated by the other alga (Figure 8).  These data provide evidence 

that the algae are selectively promoting and deterring the growth of bacterial species on their 

surfaces.   Dobretsov et al. (2006) found similarly that some bacterial phylotypes found on 

stones were absent on the surface of C. racemosa while others were found only on the alga.  

Studies of the effects of macroalgae on the planktonic bacterial community have also found 

that individual bacterial phylotypes were eliminated in the presence of the algae and that these 
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results could in some cases be attributed to compounds released from the algae into the 

seawater (Lam et al. 2008). 

2.2.3 Between­site comparisons 

To determine if D. ocellata maintains the same bacterial community across locations, I 

reanalyzed the samples from the previous experiments, loading samples taken from the 

surfaces of D. ocellata from all three locations onto one gel.  I did the same for the samples 

taken from the surfaces of rocks.  This was necessary because the comparison of samples 

across different gels was found to be unreliable in other experiments (see Section 2.3.1).  The 

bacterial communities on the surface of the green alga D. ocellata collected at three sites 

along the Florida Keys differed significantly according to analysis of similarity (ANOSIM) (R 

= 0.7449, p = 0.0060, Figure 9, Table 3).  Although cluster analysis showed distinct clusters 

for all three locations, pairwise comparisons failed to reveal any significant differences among 

pairs of locations (Table 3).  However, as in the previous experiment, the R values for all 

pairwise comparisons are large and likely indicated differences between these samples.  This 

is contrary to my hypothesis that D. ocellata regulates it associated bacterial biofilm 

community and should therefore have a similar community on its surface regardless of 

location.  However, the surfaces of rocks taken from different locations also harbored 

different microbial communities indicating that the pool of bacteria available to settle on the 

surface of the alga differed among locations (R = 0.2755, p = 0.0076, Figure 9, Table 3).  

Therefore, it was impossible for these algae to have the same surface associated bacterial 

communities at these locations.   
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Figure 9: Comparison of the bacterial communities on the surface of rocks and D. 
ocellata from Long Key (LK), Bahia Honda (BH), and Summerland Key (SK).  A) 
DGGE profiles S = standard.  B) UPGMA cluster analysis of DGGE banding patterns 
based on the Bray Curtis distance measure.  
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Pairwise comparisons of the different locations revealed a significant difference in the 

bacterial community compositions of rocks from Bahia Honda and Long Key (R = 0.4688, p 

= 0.0283), as well as between Summerland Key and Long Key (R = 0.3021, p = 0.0264, 

Table 3).  However, there was no significant difference in the communities found on the 

surfaces of rocks from Bahia Honda and Summerland Key (R = 0.1250, p = 0.2828, Table 3).  

The differences seen in the bacterial communities among locations is congruent with the 

finding that sediment bacterial communities in Florida Bay, which is bounded by the Florida 

Keys, differ between the eastern-central regions and the western region (Ikenaga et al. 2010).  

Ikenaga et al. (2010) attributed this difference to variations in salinity and nutrients based on 

the source and amount of run-off from the Florida Everglades that the area was exposed to.  In 

my case, the difference in bacterial communities among sites was likely due to the vastly 

different environment conditions at each location (see Section 2.2.1).   

It has been shown that some corals and sponge species harbor similar bacterial 

communities in different locations.  However, these studies observed communities either 

within the coral mucus or inside the sponges, but not from the biofilm on the surfaces of these 

organisms (Rohwer et al. 2002, Taylor et al. 2005). It has also been shown that some 

temperate macroalgae retain a specific surface-associated bacterial community regardless of 

geographic location (Lachnit et al. 2009).  Lachnit et al. (2009) examined the bacterial 

communities on the surfaces of a variety of macroalgae collected from the Baltic Sea and 

compared them to individuals of the same species collected from the North Sea.  They found 

Table 3: Comparison of bacterial communities on the surfaces of rocks and D. ocellata 
collected from three locations; Bahia Honda (BH), Long Key (LK), and Summerland 
Key (SK).  R values are given for the global R and pairwise comparisons with p values in 
parentheses.  Bold numbers indicate significant differences between locations (p < 0.05).  
Significance levels for pairwise comparisons were not subjected to Bonferroni 
corrections.  n = 4 for rocks and n = 3 for D. ocellata. 
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that the phylogeny of the algae had a greater affect on the structure of the bacterial 

community than the location from which the algae were collected.  This is not the case for D. 

ocellata, at least amongst the sites that we surveyed.  Compared to the study by Lachnit et al. 

(2009), in which algae maintained a similar bacterial community even in such diverse 

environments as those in the North Sea vs. the Baltic Sea, it is surprising that the biofilm 

community of D. ocellata varied within a relatively close geographical area (Figure 6).  

However, my research was performed in a tropical environment as opposed to the temperate 

environment studied by Lachnit et al. (2009).  To my knowledge this is the first study to 

compare the bacterial communities on the surfaces of tropical macroalgae collected from 

different locations.  Further investigation is necessary to determine if there are different trends 

in the host specificity of macroalgal biofilms between tropical and temperate environments.  It 

would also be interesting to examine the bacterial community in terms of function as opposed 

to phylogeny because it is possible that algae from different environments would harbor 

bacterial species that fill similar functional niches even when the pool of available bacterial 

phylotypes differs.  

2.3  Effects of algal extracts on the surface­associated bacterial 

community  

In order to determine if the observed differences in bacterial community composition 

could be attributed to organic compounds found on the surface of or within D. ocellata, I 

tested the effects of algal extracts on bacterial biofilm formation.  In February 2008, I 

collected D. ocellata from my field site on Summerland Key.  I took both surface and whole-

cell extracts of the alga and tested these extracts for their effects on the formation of bacterial 

biofilms on test surfaces.   

2.3.1 Surface extracts 
Surface extracts were obtained using the hexane dipping method described by de Nys et 

al. (1998).  Briefly, this method involves dipping the algae in solvent for a minimal amount of 

time (~ 30 s) so as to avoid rupturing the cells and which would result in the extraction of 

compounds from within the algae in addition to those on the surface.  This method is limited 

to the use of highly nonpolar solvents because more polar solvents tend to disrupt the algal 
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cells.  Therefore, it limits the range of compounds that can be extracted.  However, there is a 

paucity of methods available for the extraction of compounds from the surface of algae, and 

the hexane dipping method remains the most commonly used despite its limitations.   

The extracts were coated onto the surface of polystyrene Petri dishes so that the amount of 

extract was equivalent to that found on the same surface area of the alga.  Control surfaces 

were prepared by coating Petri dishes with hexane.  The solvent was allowed to evaporate 

from the surface and the coated Petri dishes were placed into the field.  Six control and 6 

treatment dishes were collected every day for five days.  These were swabbed and the 

bacterial community profiles were analyzed as previously described (Section 2.1).  According 

to two-way analysis of similarity (2-way ANOSIM) there was no effect of treatment on the 

bacterial community profiles (R = 0.064, p = 0.181), however there was a significant effect of 

time (R = 0.134, p = 0.009).  When analyzing these data, samples were randomly distributed 

among DGGE gels and then gels were aligned using internal standards.  However, I noticed 

that cluster analysis revealed that samples from the same gel tended to cluster together, 

separate from samples in other gels.  I therefore reanalyzed the samples loading all extracts 

and controls onto one gel.  Because one gel has space for only 13 samples I could only 

compare one set of samples per gel.  I chose to analyze the samples taken after 48 hours 

because this was the minimum amount of time necessary to produce a difference between 

treatments in enclosure experiments described below (Section 2.4).   

The reanalysis confirmed the results of my initial analysis.  Surface extracts of D. ocellata 

had no significant effect on the composition of the bacterial community (Figure 10).  Banding 

patterns of samples treated with extracts showed no groupings in cluster analysis and were not 

significantly different from controls according to ANOSIM (R = 0.1907, p = 0.0932, Figure 

10).  The lack of activity exhibited here might indicate that there are no active compounds on 

the surface of the alga, but might also result from incomplete extraction of the compounds 

from the algal surface or loss of compounds from the surface of the Petri dishes in the water.  

The surface of the alga was extracted in hexane and this method excludes the extraction of 

very polar compounds.  Furthermore, in order to avoid disrupting the cells, the algae were 

only subjected to the solvent for 30 s which may result in a lower concentration of metabolites 

in the extract than are actually present on the surface of the alga.  In addition to the limitations 
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of the extractions procedure, compounds extracted may have different affinities for the 

surface of the Petri dish.  Because I am dealing with crude extracts here, it was not possible to 

determine the amount of compound remaining on the dishes after 48 hours in the field and the 

lack of activity may be due to a loss of compounds from the surfaces of the Petri dishes.  

Because the algae may contain active compounds that cannot be adequately extracted by 

surface extractions methods, I also performed a more extensive extraction using hexane, ethyl 

acetate and methanol.  This cannot be done without disrupting the algal cells; therefore these 

extracts were taken from ground algae to produce whole-cell extracts.   

 

2.3.2 Whole­cell extracts 
I extracted the algae sequentially in hexane and ethyl acetate by placing whole algal cells 

in hexane and blending with a commercial blender, removing the hexane layer, and then 

extracting the remaining cell debris in ethyl acetate.  These extracts were incorporated into 

Phytagel™ plates at concentration that were volumetrically equal to the alga.   This method 

was originally described for testing the antifouling activity of sponge extracts (Henrikson and 

Pawlik 1995).  Briefly, extracts are incorporated into a hard gel matrix (Phytagel™) that is 

capable of remaining stable while submerged in seawater for a prolonged period of time.  The 

Figure 10: Comparison of bacterial communities on artificial surfaces treated with 
surface extracts of D. ocellata. A) DGGE profiles S = standard.  B) UPGMA cluster 
analysis of DGGE banding patterns based on the Bray Curtis distance measure. 
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incorporation of extracts in such a matrix allows for the continuous diffusion of compounds 

into the surrounding seawater without affecting the physical properties of the surface 

(Henrikson and Pawlik 1995).  Because the gel remains stable under water, this method can 

be used to test the effects of extracts in the field.  The Phytagel™ method has been used most 

often for testing effects of extracts on the settlement of macrofouling organisms, but has also 

recently been coupled with bacterial fingerprinting techniques to monitor the effects of 

extracts on the formation of bacterial biofilms (Dobretsov et al. 2005, Lachnit et al. 2010).   

Phytagel™ plates incorporating hexane and ethyl acetate extracts of D. ocellata were 

placed underwater at the field site and bacterial biofilms were allowed to form for 2, 4, 7, or 

10 days.  The biofilms were then harvested using sterile swabs and the bacterial communities 

analyzed as previously described (Section 2.1).   

The bacterial communities on the surface of plates containing hexane extracts were 

compared to solvent control plates containing hexane alone.  According to two-way analysis 

of similarity (2-way ANOSIM), there was no effect of either treatment or time on the bacterial 

community composition (p = 0.075 and 0.171, respectively).  Solvent was removed from 

ethyl acetate extracts under vacuum and the resultant solid material was dissolved in methanol 

prior to addition to Phytagel™ plates.  These ethyl acetate extracts were compared to solvent 

controls containing only methanol.  The Phytagel™ mixtures containing methanol (ethyl 

acetate extract and methanol solvent control) failed to gel properly and produced clumps of 

Phytagel™ in the plates as opposed to a smooth layer.  In several of these samples the 

Phytagel™ had floated out of the plates before the plates were brought into the lab for 

analysis.  The remaining plates and any pieces of Phytagel™ remaining were swabbed and 

included in the analysis.  The results indicated that there was no effect of either ethyl acetate 

extract treatment or time on the structure of the bacterial community, however due to the 

problem with incorporating methanol into the Phytagel™ these experiments were repeated in 

December, 2009 with some alterations.   

Algae were collected from the same location as in February, 2008.  This time the algae 

were extracted in both ethyl acetate and methanol.  The extracts were dried and dissolved in 

dimethyl sulfoxide (DMSO) prior to incorporation into Phytagel™ plates.  Extracts were 

again incorporated at levels volumetrically equivalent to the algae.  Solvent controls were 
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prepared with an equal amount of DMSO alone.  The bacterial community was sampled and 

analyzed as in 2008 except that the Phytagel™ plates were sampled only once, after 48 hours 

in the field.  Additionally, cores were taken from the center of each plate and the number of 

bacterial cells present was determined using fluorescence microscopy.   

There was a significant treatment effect on the banding patterns of samples taken from 

Phytagel™ plates containing whole cell extracts of D. ocellata (R = 0.2130, p = 0.0446, 

Figure 11, Table 4).   

 

With the exception of one sample, bacterial communities on the surface of plates 

containing the methanol extract of D. ocellata formed a separate cluster from the solvent 

control (Figure 11).  Ethyl acetate extracts clustered with both methanol extracts and solvent 

controls (Figure 11).  Pairwise comparisons showed a significant difference between 

methanol extracts and solvent controls (R = 0.5000, p = 0.0304, Table 4).  There was no 

significant difference between the ethyl acetate extract and solvent control or methanol extract 

(R = 0.1458, p = 0.1434 and R = 0.0000, p = 0.4860 respectively, Table 4).   

Figure 11: Comparison of bacterial communities on artificial surfaces treated with 
whole cell methanol (MEOH) and ethyl acetate (EtOAc) extracts of D. ocellata after 48 
hours in the field.  A) DGGE profiles, S = standard.  B) UPGMA cluster analysis of 
DGGE banding patterns based on the Bray Curtis distance measure. 
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Eighteen of the 50 bacterial phylotypes found on the Phytagel™ plates were found 

exclusively on plates treated with algal extracts (Figure 12).  Five were found on both ethyl 

acetate extract and methanol extract plates, 8 only on ethyl acetate extract plates, and 5 only 

on methanol extract plates (Figure 12).  Of the 32 phylotypes present on solvent control 

plates, 3 were eliminated by both algal extracts, 6 by only the methanol extract, and 3 by only 

the ethyl acetate extract (Figure 12).   

Figure 12: Venn diagram comparison of the number of bacterial phylotypes present on 
artificial surfaces treated with whole cell methanol (MeOH) and ethyl acetate (EtOAc) 
extracts of D. ocellata and the solvent control (SC).  Numbers within the area where 
circles cross indicate the number of phylotypes shared by these surfaces.   

Table 4: Analysis of similarity (ANOSIM) comparison of bacterial communities on 
artificial surfaces treated with whole cell methanol (MeOH) and ethyl acetate (EtOAc) 
extracts of D. ocellata and a solvent control (SC).  R values are given for the global R 
and pairwise comparisons, p values are given in parentheses.  Bold numbers indicate 
significant differences between treatments (p < 0.05).  Significance levels for pairwise 
comparisons were not subjected to Bonferroni corrections.  n = 4.   
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The methanol extract of D. ocellata also caused a decrease in the number of bacterial cells 

found on the surface of the Phytagel™ when compared to solvent controls (p = 0.012, Figure 

13).   However, there was no significant difference in the number of bacteria present on the 

surface of Phytagel™ plates containing ethyl acetate extract and the solvent control (p = 

0.430, Figure 13).   

These results indicate that there are organic compounds that are extractable by methanol, 

but less so by ethyl acetate, and not at all by hexane, that effect the composition of the 

bacterial community on the surface of D. ocellata.   It is likely that these compounds are at 

least slightly polar and are therefore extracted by a more polar solvent like methanol than a 

highly non-polar solvent like hexane.  The polarity of ethyl acetate is between methanol and 

hexane and this may explain why there is slight activity seen in the ethyl acetate extracts.    

Researchers have been investigating the antibacterial properties of macroalgal extracts for 

nearly a century (see review by Goecke et al. 2010).  The majority of these investigations 

focused on the antibacterial activity of algal extracts on individual bacterial strains, often 

important human or marine pathogens.  For example, Engel et al. (2006) and Puglisi et al. 

(2007) performed a large survey of the activity of algal extracts against a marine pathogenic 

Figure 13: Bacterial cell counts on artificial surfaces treated with whole cell ethyl acetate 
(EtOAc) and methanol (MeOH) extracts of D. ocellata and solvent controls (SC). Bars 
indicate mean ± standard error, asterisks indicates significant differences between 
treatments according to one-way ANOVA (p < 0.05), n = 5.   
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bacterium, Pseudoalteromonas bacteriolytica.  In these studies they found that extracts of 

over half of the algal species tested inhibited the growth of P. bacteriolytica at ecologically 

relevant concentrations.  They tested both lipophilic and hydrophilic extracts and found that 

for each algal species the bacteria most often responded to one fraction or the other, but not 

both.  This indicates that some algal species produce highly polar compounds that have 

antibacterial properties, while others rely on more non-polar compounds.  The methanol 

extract of D. ocellata reduced the overall bacterial abundance on the surface of Phytagel™ 

plates indicating that antibacterial compounds from D. ocellata are polar (Figure 13).  

However, the compounds found in the methanol extract of D. ocellata did not affect all 

bacterial strains equally as evidenced by the presence of some bacterial phylotypes 

exclusively on plates containing this extract (Figure 12).      

Unlike traditional assays that examine the inhibitory effects of algal extracts on the growth 

of bacteria, this experiment looked at the alteration of the bacterial community composition 

caused by algal extracts.  My results indicate that D. ocellata contains compounds that 

promote the growth of some bacteria while inhibiting the growth of others.  Similar results 

were found in a study of the effects of crude sponge extracts on bacterial biofilm formation 

(Dobretsov et al. 2005).  Additionally, Lachnit et al. (2010) recently demonstrated that the 

incorporation of lipophilic algal extracts into Phytagel™ along with the continuous release of 

hydrophilic compounds resulted in the formation of a bacterial community highly similar to 

that found on the surface of the alga.  These studies support the idea that algae regulate the 

composition of the bacterial communities on their surfaces through the production of organic 

compounds.   

It should be noted that it has been suggested that using whole-cell extracts may lead to 

misleading results because the compounds within the alga may not be present at the surface 

where they would affect the formation of biofilms (Nylund et al. 2006).  However, the 

methods for extracting compounds from the surfaces of algae are limited to the use of highly 

non-polar solvents such as hexane (de Nys et al. 1998).  As there is greater activity in the 

methanol extract compared to the ethyl acetate extract it is likely that the active compounds 

may be too polar to be quantitatively extracted by the hexane dipping method used for the 

surface extraction (de Nys et al. 1998).  This could explain the lack of activity seen in analysis 
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of surface extract (Section 2.3.1).  Here whole-cell extracts were incorporated into Phytagel™ 

so as to be volumetrically equal to the alga.  Therefore, if the compounds were found 

ubiquitously throughout the algal cells, this method will represent the natural condition.  

Furthermore, if the compounds are enriched on the surface, then the natural activity would 

even be more pronounced than the one observed here.  However, the degree to which the 

extracts leached from the Phytagel™ into the surrounding seawater was not determined and 

therefore, the concentration of compounds encountered by biofilm bacteria cannot be 

quantified.  Further identification of active compounds and elucidation of their concentrations 

and location within the alga are necessary to determine if these compounds are responsible for 

structuring the bacterial community on the surface of D. ocellata.   

There are few examples in which the role of algal secondary metabolism in structuring the 

surface-associated bacterial community has been well investigated.  In the last section (2.2), I 

presented evidence that D. ocellata harbors a distinct bacterial community when compared to 

other objects in the same environment.  Here I also determined that organic compounds 

extracted from the alga affect the formation of bacterial biofilms on treated surfaces.  This 

indicates that the regulation of the species composition and bacterial abundance on the surface 

of D. ocellata may be, at least partially, due to compounds produced by the alga.  As the 

bacterial biofilms present on the surfaces of benthic marine organisms are important 

determinants of further macrofouling, continued investigation of the factors that shape the 

surface-associated bacterial communities of these organisms is essential to understanding 

their relationships within their communities.  

2.4 Effects of D. ocellata on the natural planktonic bacterial 

assemblage  

In order to further investigate how D. ocellata affects the species composition of the 

bacterial community surrounding it, I performed a series of enclosure experiments.  In these 

experiments, I compared the bacterial community in seawater from enclosures containing D. 

ocellata to those with no algae.  The experiments were developed over the course of three 

field trips to Mote Tropical Research Laboratory in Summerland Key, FL.  The protocol was 

altered each time in order to optimize the experimental design.   
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2.4.1 Field trip #1: February, 2008 
In February 2008, the initial field enclosure experiments were performed in Summerland 

Key, FL.  These experiments were designed to monitor the effects of D. ocellata on the 

planktonic bacterial community in a setting as close to its natural environment as possible.  To 

accomplish this, algae were placed in sterile one L square bottles made from polyethylene 

terephthalate copolyester (PETG) which has a transparency of ~ 80 % (Tsai et al. 2008).  The 

bottles were filled with seawater from the field site and placed under the water at the same 

site.  This allowed enclosures to be exposed to light and temperature conditions nearly 

identical to those of the alga’s natural environment.  A relatively small amount of algae was 

added to each bottle (~ 5 - 15 g wet weight) in order to prevent the water from becoming 

hypoxic during the time of the experiment.  This small amount was also used to prevent the 

algae from becoming stressed due to self-shading.  As the algae appeared healthy at the end of 

the experiment, this amount was increased in subsequent experiments.  The lids of the bottles 

contained septa which allowed for sterile sampling.  In order to determine the time it takes for 

an effect to be seen, samples were taken every 24 hours over the course of six days.  At each 

sampling time, 1 ml samples were filtered onto 0.2 µm membranes which were subjected 

directly to PCR according to the method described by Kirchman et al. (2001).  The bacterial 

community present in each sample was profiled using DGGE (see Section 2.1).  Because the 

number of samples that can be loaded on a DGGE gel is limited, banding patterns were 

compared across different gels.  I found that this experimental set-up resulted in very low 

amounts of DNA after PCR amplification in some of the samples.  I had to exclude these 

samples from DGGE analysis because this method requires a minimum of 200 ng DNA for 

reliable analysis, which in my DGGE set-up was equivalent to a minimum of 10 ng DNA µl-1.  

Although Kirchman et al. (2001) found positive amplification with samples as small as 25 µl 

of coastal seawater, 1 ml appeared to be too small of a sample volume for my system.   

After analyzing the samples that contained at least 10 ng DNA µl-1, I found that the 

bacterial community composition was significantly affected by both treatment and time 

according to ANOSIM (p = 0.038 and p = 0.001, respectively, Table 5).  However, when 

compared at individual time points, the bacterial communities were significantly different 

only after 144 hours (p = 0.003, Table 5).  Additionally, I performed technical replicates by 

analyzing three sections from each filter in order to examine variations within samples.  
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Cluster analysis revealed that these technical replicates sometimes produced very different 

bacterial community profiles (e.g. Figure 14).  It appears that the samples were not evenly 

distributed across the surfaces of the filters, and this might be due to the low sample volume.   

 

 

2.4.2 Field trip #2: February, 2009 
In an attempt to improve the experiment and address the problems discussed above in 

Section 2.4.1, a second enclosure experiment, with several adjustments to the experimental 

design, was performed at the same field site in February 2009.  

Algae are surrounded by a thin boundary layer known as the diffusion boundary layer 

(DBL) which limits molecular exchange with the surrounding seawater (Hurd 2000).  In the 

case of D. ocellata, this exchange is particularly limited due to the structure of the alga.  As 

Figure 14: UPGMA cluster analysis of DGGE bacterial community profiles of water 
samples from enclosure with (D) and without (C) D. ocellata based on the Pearson 
Correlation measure of similarity. Numbers indicate replicates, lower case letters 
indicate technical replicates.  Labels in bold indicate an example of three technical 
replicates which did not cluster together using this method.  
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described in the introduction, this siphonous alga is a composite of bubble shaped cells, each 

reaching several millimeters in diameter.  Between these cells, exchange with the external 

seawater is minimal.  Interactions between macroalgae and the bacterioplankton most likely 

occur within the DBL, however sampling seawater from within the DBL of an alga is 

technically difficult.  In the previous study (Section 2.4.1), enclosure experiments were 

designed to mimic the limited molecular exchange that occurs between the thin boundary 

layer of water surrounding the macroalga and the ambient seawater. The water contained in 

the bottles had no molecular exchange with the outside seawater and thereby acted to 

concentrate compounds released from the alga, similar to the condition within the DBL.  

Sampling the water within the enclosures allowed for the investigation of the bacterial 

community within a stagnant environment similar to that of the DBL, while avoiding the 

technical difficulties involved in sampling the actual DBL.  In order to better represent the 

conditions in the thin boundary layer surrounding D. ocellata, the algae to seawater ratio 

within the bottles was increased.  Since the previous experiment indicated that the algae were 

not obviously stressed by enclosure within the bottles, the amount of algae in the enclosures 

was increased from ~5 - 15 g wet weight to ~ 100 g wet weight, in order to increase the 

concentration of any effects and further approximate the conditions within the DBL. 

The results from the 2008 experiment (Section 2.4.1) also indicated that the sample 

volume was too small.  I therefore increased the sample volume to 10 ml per sampling event, 

and took fewer samples over a shorter period of time in order to reduce the effect of sampling 

on the community within the bottle.  Again, I found that both treatment and time significantly 

affected the bacterial community compositions of samples (p < 0.001 for both, Table 5).  

There was also a significant difference between treatments and controls after 48 and 96 hours 

(p < 0.001 for both, Table 5).   
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  Treatment  Time  Pairwise comparisons 

      24 hrs  48 hrs  96 hrs  120 hrs  144 hrs 

2008 
0.084 

(p = 0.038) 

0.639 

(p = 0.001) 

‐0.102 

(p = 0.883) 

0.083 

(p = 0.160) 

0.004 

(p = 0.387) 

0.012 

(p = 0.387) 

0.452 

(p = 0.003) 

      0 hrs  7 hrs  24hrs  48 hrs  96 hrs 

2009 
0.431 

(p = 0.001) 

0.278 

(p = 0.001) 

0.519 

(p = 0.086) 

0.315 

(p = 0.131) 

0.019 

(p = 0.385) 

0.606 

(p = 0.002) 

0.553 

(p  0.002) 

 

 

Table 5: Effects of D. ocellata on bacterial communities within enclosure experiments conducted in two consecutive winters according to 
2-way ANOSIM.   Pairwise comparisons of enclosures with and without algae at each sampling time.  R values are given with p values in 
parentheses.  Significant differences are indicated in bold.   
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Figure 15: UPGMA cluster analysis of DGGE bacterial community profiles of water 
samples from enclosure with (D) and without (C) D. ocellata based on the Pearson 
Correlation measure of similarity. Numbers indicate replicate number and the day the 
sample was taken, lower case letters indicate technical replicates. Gel # indicates the 
DGGE gel on which the samples were run. 
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Because I was comparing samples on multiple DGGE gels, I examined how the gel 

affected the clustering of the samples and noticed that samples from the same gel often 

clustered together (e.g. Figure 15).  Additionally, technical replicates failed to cluster 

together in some cases, similar to the data described in Section 2.4.1 (Figure 15).  Although, 

when loaded onto the same gel technical replicates tended to cluster together indicating that 

the increased sample volume resulted in a better distribution of the sample on the filter.  In 

order to verify that the differences observed between treatments and controls were actually a 

result of differences between samples and not an artifact of comparing samples across gels, I 

performed a third enclosure experiment in December, 2009.   

2.4.3 Field trip #3: December, 2009 
The experiment from February 2009 was repeated in December 2009, but with a few 

changes.  One hundred grams of algae was again added to each treatment bottle and all bottles 

were filled with seawater from the site.  However, the sampling volume was again increased 

from 10 ml to 30 ml in an attempt to get better PCR amplification.  It was determined in the 

previous experiment that within enclosures containing 100 g of algae, 48 hours was sufficient 

time to see a change in the bacterial community (Table 5).  Because increasing the sample 

volume was likely to affect the community remaining in the enclosure, sampling was 

performed at only one time point (48 hours).  Comparing the treatments at only one time point 

also allowed me to analyze the communities within one gel instead of across gels, and this 

eliminated biases due differences in the gels.   

In a second experiment, the effects of algal treated water on the bacterioplankton 

community within the bottles were examined to determine if the changes seen in the bacterial 

communities could be attributed to waterborne compounds released from the algae.  Natural 

seawater collected from the field site was conditioned either with or without algae for 24 

hours in glass aquariums.  The algae to water ratio was the same as that used for the enclosure 

experiment (100 g algae L-1).  The water was then sterile-filtered and used to fill sterile one L 

bottles.  The sterile algal- and non algal-treated water was inoculated with 30 ml of natural 

seawater and the bacterial communities within the bottles were compared after 24 hours.  This 

set-up allowed me to test the effects of waterborne compounds released by the alga into the 
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seawater while avoiding changes in factors such as dissolved oxygen and pH that can result 

from the normal metabolism of the alga (Irwin and Davenport 2002, Larkum et al. 2003). 

Bacterioplankton communities were significantly different in enclosures with algae 

compared to those without algae (R = 0.988, p = 0.0073, Figure 16).  DGGE revealed 24 total 

bacterial phylotypes, seven found exclusively in the absence of algae (bands #7, 14, 15, 16, 

18, 22, and 24), five found exclusively in the presence of algae (bands #4, 9, 12, 21, and 17), 

and 12 shared by both (Figure 16).   As in the Venn diagrams from Sections 2.2 and 2.3, 

these numbers represent the presence of a bacterial phylotype in at least one replicate, and 

should be considered in addition to the statistical significance determined by ANOSIM.  

However, it should be noted that band #17 was found in all algal containing enclosures and 

was absent from all control replicates.  Further investigation of this bacterial phylotype and its 

relationship to D. ocellata would be interesting. The selective elimination and promotion of 

bacterial phylotypes by D. ocellata supports my previous findings (Section 2.2) that the alga 

harbors a unique bacterial community on its surface and further supports the idea that algae 

are able to selectively control the growth of bacteria.  

These results are similar to those found by Lam et al. (2007) who determined that several 

species of  temperate macroalgae affected the richness of the surrounding bacterioplankton 

community by promoting the growth of some phylotypes and inhibiting the growth of others.  

However, algal-treated seawater had no affect on the composition of the bacterioplankton 

community (R = -0.03704, p = 0.5012, Figure 17).  This indicates that waterborne 

compounds released from the algae are not responsible for the change in bacterial community 

or that these compounds are volatile or unstable (e.g. reactive oxygen species) and were 

therefore lost during the vacuum filtration of the algal-treated seawater (Potin et al. 1999, 

Küpper et al. 2002).   Macroalgae are known to release volatile compounds into seawater.  

Some of these volatiles exhibit antibacterial activity and may therefore play a role in 

regulating the bacterial community (Gschwend et al. 1985, Duque et al. 2001, Karabay-

Yavasoglu et al. 2007).  Nevertheless, the ecological role of these compounds in benthic 

marine interactions has been largely unexamined.  
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It is also possible that the compounds responsible for the alteration of the bacterioplankton 

community by D. ocellata are found at the surface of the alga as opposed to being released 

into the water.  Lam et al. (2008) found that in some cases alterations in the bacterioplankton 

community could be attributed to waterborne compounds while in others, direct contact with 

the alga was necessary to elicit an effect.   In a study of the red macroalga Bonnemaisonia 

hamifera, Nylund et al. (2008) demonstrated that compounds on the surface of the alga 

inhibited the growth of marine bacteria at natural concentrations.  Alternatively, the observed 

changes in the bacterial communities of algae containing enclosures may be the result of 

factors other than algal metabolites.  For example, the presence of algae will cause changes in 

many physical parameters of the closely surrounding seawater including an increase in 

dissolved oxygen and pH (Irwin and Davenport 2002, Larkum et al. 2003).  The algae may 

also compete with bacteria for limiting nutrients, therefore shifting the bacterial community to 

one dominated by those strains best able to compete.  Further investigation of the physical 

environment surrounding D. ocellata will aid in the understanding of the complex processes 

affecting the bacterial community surrounding this alga.   

Figure 16: DGGE bacterial community profile (A) and non-metric multidimensional 
scaling (NMDS) plot (B) of enclosures containing D. ocellata (+Algae, open squares) and 
those without D. ocellata (Control, filled squares).  Standard lanes are marked with an S 
and numbers indicate bands identified and used in analysis.  NMDS was performed 
using the Bray-Curtis similarity measure with 95% confidence ellipses. Two 
dimensional stress = 0.1336. 
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Figure 17: DGGE bacterial community profile (A) and non-metric multidimensional 
scaling (NMDS) plot (B) of enclosures containing algal-treated seawater (ATW, open 
triangles) and non algal-treated seawater (Control, filled triangles).  Standard lanes are 
indicated with an S.  NMDS was performed using the Bray-Curtis similarity measure. 
Two dimensional stress = 0.0000.    
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3 Results and Discussion: Effects of D. ocellata and its organic 

extracts on the growth of marine bacteria in co­culture 

In field experiments it was determined that D. ocellata harbors a distinct bacterial 

community on its surface and that the composition and abundance of bacteria can be affected 

by organic extracts from the algae.  Furthermore, the bacterioplankton community is also 

altered by the presence of D. ocellata.  Based on these findings, a series of laboratory co-

culture experiments were performed in order to further understand the mechanisms behind the 

regulation of the bacterial community by D. ocellata.  In these experiments a number of 

individual bacterial isolates were grown in direct co-culture with D. ocellata and the effects of 

the algae on the growth of the bacteria were monitored.  Additionally, the effects of organic 

extracts from D. ocellata on the growth of individual bacterial species were also examined.   

3.1 Development of co­culture experiment 
Co-culture experiments were optimized using readily available bacteria provided by 

Gunnar Gerdts and Antje Wichels from the Alfred-Wegner Institute for Polar and Marine 

Research prior to testing the effects of D. ocellata on naturally co-occurring bacteria from the 

Florida Keys.  Few studies have investigated the effects of algae on bacterial growth in direct 

contact; most have focused on the effects of algal extracts on bacterial growth (see review by 

Goecke et al. 2010).  Here bacterial cultures were grown in either sterile-filtered natural 

seawater (FSW) or sterile artificial seawater (ASW) in 200 ml Erlenmeyer flasks.  Algae (~ 5 

g) were added to half of the flasks and the effects of the algae on bacterial growth were 

monitored by spectrophotometric analysis of samples taken over the course of seven days.  

The algae in these experiments were not sterilized; therefore any reference here to D. ocellata 

includes the alga and its associated microflora.  Most studies to date have designated activity 

as a difference in bacterial abundance at one time point post inoculation (Kubanek et al. 2003, 

Engel et al. 2006, Puglisi et al. 2007).  During my initial studies, the efficacy of measuring 

inhibition at one time point as opposed to continuous monitoring of the growth curve when 

elucidating subtle algal-bacterial interactions was examined.  To do this, the bacterial 

abundance over a long period of time (up to seven days) was monitored and the growth of 
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different treatments was compared by designating growth as either change in bacterial 

abundance 24 hours post inoculation, largest slope (µ) between two points on the growth 

curve (maximum growth rate), or overall growth curve.  

When activity was measured as a change in bacterial density 24 hours after inoculation, all 

three species were significantly reduced in the presence of D. ocellata.  Micrococcus sp. was 

reduced by 29% (t = 13.81, p = 0.002), Pseudoalteromonas tetraodonis by 57% (t = 7.794, p 

= 0.0015) and Cytophaga sp. by 22% (t = 3.592, p = 0.0229, Figure 18).   

 

However, when activity was measured as a change in maximum growth rate there was no 

significant effect on either Micrococcus sp. (p = 0.1362, Figure 19) or Pseudoalteromonas 

tetraodonis (p = 0.2952, Figure 19).  In contrast, the growth of Cytophaga sp. was completely 

inhibited for the first 10 hours, after which the culture began to grow but at a reduced rate (µ 

= 1.577 x 10-2 ± 1.891 x 10-3) compared to the initial growth rate of the control (µ = 1.392 x 

10-1 ± 4.4421 x 10-3, p < 0.001, Figure 19 andFigure 20C).  

Figure 18: Bacterial abundance of Micrococcus sp., Pseudoalteromonas tetraodonis, and 
Cytophaga sp. 24 hours post inoculation in culture with (red bars) and without (blue 
bars) D. ocellata.  Bars indicate mean ± standard error, different letters indicate 
significant differences between treatments within one bacterial strain according to the 
Student’s t-test.  P < 0.05, n = 3.   
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Comparisons of the overall growth curves showed that there was a significant effect of D. 

ocellata on the bacterial growth for all three bacterial strains (Figure 20).  Micrococcus sp. 

grown in the presence of the alga had a consistently lower abundance compared to controls 

without algae (p < 0.0001, Figure 20).  The differences were significant starting 6 hours after 

inoculation and continuing until the end of the experiment (p < 0.001, Figure 20).  Although 

the bacteria never reached the same abundance in the presence of the alga as it did in control 

treatments, it did follow a similar growth pattern for the first 36 hours after which there was a 

sharp decline in the abundance.  No such decline was seen in the bacteria grown alone during 

the time period of the experiment (156 hours).  While the relevance and cause of this early 

decline remain unknown, it is a pattern that is worth further investigation and would not have 

been detected using a single time point method of detecting differences.   

Figure 19: Maximum growth rates of bacterial strains grown in cultures with (red bars) 
and without (blue bars) D. ocellata.  Bars indicate mean ± standard error, different 
letters indicate significant differences between treatments within one bacterial strain 
according to the Student’s t-test.  P < 0.05, n = 3.   
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Figure 20: Growth curves of Micrococcus sp., P. tetraodonis, and Cytophaga sp. in 
cultures with (red) and without (blue) D. ocellata.  Symbols = mean absorbance, error 
bars = standard error, n = 3.    



Chapter 3 Results and Discussion 

- 57 - 

 

Similar to Micrococcus sp., P. tetraodonis grown in the presence of algae had lower 

abundances than controls throughout the experiment (Figure 20B).  These differences were 

significant starting 23 hours after inoculation and continuing to the end of the experiment (69 

hours) (p < 0.001, Figure 20B).  However, unlike Micrococcus sp., the general shape of the 

growth curve of P. tetraodonis in co-cultures with algae was similar to cultures without algae 

(Figure 20B).  Both reached a peak absorbance after 23 hours and then began declining 

(Figure 20B).   

While there was a significant difference between the growth curves of Cytophaga sp. 

grown with and without algae, the difference was less pronounced than that seen in 

Micrococcus sp. and P. tetraodonis (p < 0.0001, Figure 20C).  As discussed above, the 

growth of Cytophaga sp. was completely inhibited for the first 10 hours, at which time it 

began to grow and eventually surpassed the controls in terms of abundance (Figure 20C).  

Comparison of treatments and controls at individual time points reveals a significant 

difference at the initial time point and at 79 and 101 hours post inoculation (p < 0.01, p < 

0.01, and p < 0.001, respectively, Figure 20C).   Additionally, the abundance of Cytophaga 

sp. was generally lower than that of the other two bacterial strains tested here throughout its 

growth curve.  This may indicate that the conditions used here were not optimal for the 

growth of this strain.  Since D. ocellata strongly inhibited the growth of this bacterial strain at 

early time points, it would be interesting to determine if this effect remains when the strain is 

grown in more conducive conditions. 

Although the designation of growth as the abundance 24 hours post inoculation indicated 

an effect of D. ocellata on the growth of all three bacterial strains, it failed to reveal the 

differences in the effects among bacteria.  Neither Micrococcus sp. or P. tetraodonis exhibited 

a reduced maximum growth rate in the presence of D. ocellata, however D. ocellata caused a 

reduction in the abundance of both bacteria throughout their respective growth curves.   This 

is quite different from the response of Cytophaga sp. to the alga.  The growth of Cytophaga 

sp. was completely inhibited for the first 10 hours in the presence of the alga, after which time 

the bacteria recovered and surpassed the controls in terms of abundance.   It appears that the 

alga elicits a species-specific effect that would not have been discernable by measuring the 

growth at a single time point.   
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Furthermore, understanding the response of bacteria to algae throughout their growth 

curve may be important in understanding the complex interactions occurring within the 

bacterial community.  These co-culture experiments examine the effects of D. ocellata on 

only one bacterial strain at a time, however in the natural setting there are a vast number of 

other players involved including competitors, predators, and alternate nutrient sources.  One 

might imagine that a bacterial strain that has a higher growth rate during the exponential 

phase could out-compete those with lower growth rates.  Additionally, a strain that is slower 

growing, but is able to maintain higher stationary phase abundance may have other 

competitive advantages.  The full understanding of how these factors play out in nature is 

extremely complex and cannot be determined by the results found here.  It is mentioned 

merely to point out the importance of understanding the effects of algae on bacterial growth in 

a more holistic manner than is traditionally used.   

In order to determine if the growth inhibition of Cytophaga sp. resulted from the 

production of active metabolites, the growth was monitored in the presence of both media 

extracts and whole cell algal extracts. Organic compounds from the media of the co-culture 

experiments were extracted using solid phase extraction and eluted using methanol/THF.  

Algae were flash frozen in liquid nitrogen and extracted using methanol/THF.  Solvents were 

removed from all extracts and the remaining residue was dissolved in DMSO, and 

incorporated into ASW.  Extracts were concentrated by a factor of five in order to 

accommodate for possible loss of compounds during the extraction process.  Solvent controls 

were prepared by the addition of only DMSO.  This new media incorporating either extracts 

or solvent was inoculated with Cytophaga sp. and the growth was monitored as before.  

Because DMSO was used as a carrier solvent, the effects of DMSO at concentrations ranging 

from 1% to 10 % (v/v) were tested on the growth of marine bacteria.  It was found that while 

DMSO inhibited the growth of bacteria at high concentrations, it had a minimal effect at 1 % 

(v/v) (Appendix III).  Extracts were therefore always added to co-cultures so that the amount 

of DMSO did not exceed 1% (v/v).   

Media extracts had no effect on the maximum growth rate of Cytophaga sp.  (p = 0.1162, 

Figure 21A). However, there was a significant effect on the overall growth curve (p < 0.0001, 

Figure 21A). 



Chapter 3 Results and Discussion 

- 59 - 

 

   

 

The abundance of Cytophaga sp. exposed to media extracts of cultures with and without 

algae were significantly lower than solvent controls starting at 24 hours and continuing to the 

end of the experiment (p < 0.001 for all, Figure 21A).  Whole cell extracts of algae 

previously exposed to Cytophaga sp. completely inhibited the growth of the bacteria in terms 

Figure 21: Growth curves and initial growth rates (insets) of Cytophaga sp. in response 
to extracts of the culture media (A) and of the algae used during the co-culture (B). 
Symbols = mean absorbance, bars = mean growth rate, error bars = standard error, n = 
3.  Different letters above the bars indicate significant differences between treatments (p 
< 0.05).   
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of maximum growth rate (p = 0.0069, Figure 21B).   However, there was no difference in the 

overall growth curves of the different treatments (p = 0.7990).  As in the co-culture 

experiment, the major effect of D. ocellata on the growth of Cytophaga sp. was seen in the 

first 10 hours.  Because no similar inhibition was seen in bacteria exposed to media extracts, it 

is likely that growth inhibition seen in co-cultures is caused by an organic compound found 

within the alga that is not released into the surrounding media.  The compound may be found 

at the surface of the alga and requires direct contact for activity, however I did not test surface 

extracts.  Further studies are necessary to characterize the active compound or compounds and 

to determine their location within the alga.    

After determining that my experimental design was sufficient for examining the effects of 

D. ocellata on the growth of individual bacterial strains, I began a set of experiments to 

determine the effects of D. ocellata on bacterial strains that naturally occur in the environment 

of the alga.   
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3.2 Effects of D. ocellata and its organic extracts on the growth of 

naturally co­occurring marine bacteria 

To test the influence of Dictyosphaeria ocellata on bacteria that are found in its natural 

environment, I isolated and cultured three planktonic and one surface-associated strain from 

the field site at Summerland Key.  Planktonic strains (KSW1, KSW2, and KSW3) were 

isolated directly from seawater samples and the surface associated strain (S3) was isolated 

from the surface of a glass microscope slide that had been placed in the water at the field site.  

Sequencing and alignment of the16S rDNA indicated that all isolated bacteria belong to the 

genus Pseudoalteromonas (Figure 22).  Briefly, 16S rDNA was amplified from liquid 

cultures of the bacterial strains using universal bacterial primers 27F and 1390R.  The 

amplified DNA was sent to GATC Biotech for sequencing and the resulting sequences were 

compared to known bacterial sequences using the GenBank database.  Since comparisons 

with the GenBank database indicated that all four strains belonged to the genus 

Pseudoalteromonas, their positions within this genus were determined by the alignment of 

their sequences to other strains within the genus based on the tree presented in Holmström and 

Kjelleberg (1999). 
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.   

Figure 22: Phylogenetic affiliation of isolated bacterial strains within the genus 
Pseudoalteromonas.  Tree is a modification of that seen in Holmström and Kjelleberg 
(1999).  Isolated strains are shown in bold with GenBank accession numbers in 
parentheses. 
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The isolated bacteria were used to challenge D. ocellata in five-day co-culture 

experiments using maximum growth rate and the overall growth curve as measurements of 

growth because the previous experiment demonstrated the value of such detailed examination 

of bacterial responses to D. ocellata.  The experimental set-up was the same as described in 

the previous section with the addition of a control containing algae, but no bacteria to 

examine the contribution of algal associated bacteria to the overall bacterial abundance in co-

cultures.  In KSW1 and KSW2 co-cultures, the algae alone control exhibited minimal 

bacterial growth, reaching a maximum average absorbance of 0.074 ± 0.012 OD550 and 0.058 

± 0.010 OD550, respectively.  Therefore the contribution of algal-associated bacteria to the 

overall bacterial abundance in the algal-bacterial co-cultures was negligible.  In both KSW3 

and S3 co-cultures, the algae alone treatment was obviously contaminated, having the 

characteristic colors associated with these bacteria (pink and yellow respectively).  The 

bacterial abundances in these treatments were therefore a result of contamination and not that 

of the growth of the alga’s naturally associated bacterial community and were excluded from 

further analysis.  Despite the fact that high cell counts were reached in the co-culture 

experiments, none of the bacteria exhibited any obvious algicidal effects.  D. ocellata 

exhibited its natural shape and texture after the co-culturing 

Following co-culturing, the bacterial strains that were affected by the presence of D. 

ocellata were also tested against different parts of the co-culture system (media filtrates, 

media extracts, and algal extracts) to elucidate where the active properties lay.   Briefly, co-

culture media was sterile filtered to remove bacteria and divided in half.  One half was 

reinoculated with the same bacterial culture, and the bacterial growth was monitored as before 

to determine if the algae released active properties into the surrounding medium or caused a 

change in the metabolites excreted by the bacteria. To investigate the activity of extractable 

waterborne compounds released by the algae, organic compounds were extracted from the 

other half using solid phase extraction followed by elution with methanol/ethyl acetate.  

Extracts were incorporated into FSW so that the concentration was volumetrically equal to the 

co-culture experiment and this medium was inoculated with the same bacterial culture from 

which the extracts were taken.  Algae used in the co-cultures were freeze dried and extracted 

with methanol/dichloromethane, and algal extracts were investigated in the same manner as 

media extracts to determine if there were active compounds within the algae that were not 
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released into the media.  Additionally, extracts of algae that had not been previously used in 

the co-culture experiments were also tested to determine if subjecting algae to the co-culture 

set-up altered their production of active metabolites.  In all cases the extracts of non co-

culture algae caused similar affects to those elicited by extracts of algae previously used in the 

co-culture experiments.      

 

 

Of the four bacterial isolates tested, the growth of the three planktonic isolates (KSW1, 

KSW2, and KSW3) was affected by the presence of D. ocellata (Figure 23), while that of the 

one surface-associated isolate (S3) was not (p = 0.6477 and 0.6493 for overall growth and 

maximum growth rate of S3 respectively).  S3 was therefore excluded from further analysis.   

The three planktonic isolates studied were affected at different times in their respective 

growth curves and by different components of the co-culture system.  The growth of KSW1 

was inhibited by D. ocellata during its exponential phase (p = 0.0004, Figure 24).  A similar 

Figure 23: Growth curves of bacterial strains KSW1, KSW2, KSW3, and S3 in co-
cultures with (red) and without (blue) D. ocellata. Symbols = mean absorbance, error 
bars = standard error, n = 5.  
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inhibition was seen in KSW1 cultures exposed to algal extracts (p < 0.0500), but not media 

extracts (p = 0.3252), indicating that the alga is producing a growth inhibiting compound (or 

compounds) that is either not released into the water or is not stable (Figure 25).  Such 

compounds could affect the bacteria during co-culturing because the bacteria have direct 

contact with the surface of the alga.  Also, unstable compounds may be continuously released 

by the alga and/or affect the bacteria prior to breaking down.  Additionally, organic 

compounds have varying levels of affinity to solid phase extraction matrices and the 

compounds that affect the growth of KSW1 may not be extractable with the material used in 

this experiment.  However, this lack of active waterborne compounds was also seen in the 

field enclosure experiments discussed above (Section 2.4).  As discussed there, activity of 

volatile compounds that would be lost during the vacuum filtration process could not be 

excluded.  

 

 

Co-culture with D. ocellata also initiated an earlier and more rapid decline in KSW1 

abundance compared to bacteria alone controls (p <0.0001, Figure 23A).  A similar pattern 

was seen in media extracts of both bacteria + algae and algae alone co-cultures, although there 

was no significant effect according to 2-way RM ANOVA (p = 0.5321, Figure 25A).  These 

results suggest that the causative agents of this early decline are compounds that cannot be 

quantitatively extracted by the method used here.    

Figure 24: Maximum growth rates of bacterial strains KSW1, KSW2, KSW3, and S3 in 
co-cultures with (red) and without (blue) D. ocellata.  Bars = mean growth rate, error 
bars = standard error, n = 5.  Different letters above the bars indicate a significant 
difference between the two treatments (p < 0.05).   
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In contrast to KSW1, algae had no effect on the maximum growth rate of either KSW2 or 

KSW3 (p = 0.3635 and p = 0.9166 respectively, Figure 24).   Although there was no effect of 

D. ocellata on the maximum growth rate of KSW2, the algae caused a rapid decline in KSW2 

abundance starting 48 hours after inoculation similar to that seen in KSW1 (p < 0.0001, 

Figure 23A and B). There was no effect seen on the declining phase of KSW2 in response to 

any of the co-culture components tested, however, the media filtrate of the bacteria + algae 

obtained after prolonged co-culturing dramatically inhibited the growth of the bacteria 

throughout the growth curve (p < 0.0001, Figure 26).  Interestingly, there was no effect of the 

algae alone or bacteria alone media filtrates on the growth curve of KSW2 (p > 0.0500 for 

both), indicating a production of compounds in response to the interaction between algae and 

bacteria (Figure 26A).   

It appears that the alga or algal associated microflora is producing defensive compounds 

in response to the presence of the bacteria, however I cannot currently rule out the possibility 

that the bacteria are producing an autotoxic compound in response to the presence of the alga.  

Studies of brown algae (Laminariales) and red algae in the genus Gracilaria have shown that 

these algae respond to the degradation products of their own cell walls by producing reactive 

oxygen species (ROS), which in turn confer resistance to the algae against pathogenic bacteria 

(Küpper et al. 2002, Weinberger et al. 2005, Weinberger 2007).  However, this is a relatively 

fast and short-term response not comparable to the processes observed in my assays (Küpper 

et al. 2002, Weinberger et al. 2005).  The inhibition of KSW2 growth by the media filtrate of 

the bacteria + algae co-culture persists for the entire period of the experiment (72 hours), 

indicating something other than ROS as a causative agent (Figure 26A).  While several 

studies have shown the production of antibiotic compounds by macroalgae, none to my 

knowledge have demonstrated the production or activation of these compounds in response to 

the presence of individual bacterial species (Engel et al. 2006, Paul et al. 2006, Nylund et al. 

2008) 
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Figure 25: Growth curves and initial growth rates (inset) of bacterial strain KSW1 in 
response to extracts of the culture media (A) and of the algae used during the co-culture 
(B). Symbols = mean absorbance, bars = mean growth rate, error bars = standard error, 
n = 5.  Different letters above the bars indicate significant differences between 
treatments (p < 0.05).   
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Figure 26: Growth curves and initial growth rates (inset) of bacterial strain KSW2 in 
response to sterile filtrates (A) and extracts of the culture media (B) and of the algae 
used during the co-culture (C). Symbols = mean absorbance, bars = mean growth rate, 
error bars = standard error, n = 5.  Different letters above the bars indicate significant 
differences between treatments (p < 0.05). 
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Figure 27: Growth curves and initial growth rates (inset) of bacterial strain KSW3 in 
response to sterile filtrates (A) and extracts of the culture media (B) and of the algae 
used during the co-culture (C). Symbols = mean absorbance, bars = mean growth rate, 
error bars = standard error, n = 5.  Different letters above the bars indicate significant 
differences between treatments (p < 0.05). 
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Media extracts of both bacteria + algae and algae alone significantly inhibited the 

maximum growth rate of KSW2, but had no effect on overall growth curve (p < 0.0500 and p 

= 0.1299 respectively, Figure 26B).  The algal extracts of all treatments also significantly 

inhibited the maximum growth rate of KSW2 (p < 0.0500, Figure 26C).  While the growth of 

KSW2 was inhibited during the exponential phase by media extracts of algae containing co-

cultures and all algal extracts, this inhibition was relatively short-term compared to the effects 

of the media filtrate on this bacterial strain (Figure 26).  This indicates that, while some 

active compounds were extracted from both the media and the algae, the major cause of 

activity in the media filtrate could not be extracted using these methods.    

The inhibition of the maximum growth rate of KSW2 by algal extracts appears to be 

contradicted by the higher absorbance values of treatments containing algal extracts compared 

to solvent controls for the first 6 hours (Figure 26C).  During this time the optical density was 

significantly higher in all algal extract treatments than the solvent control (p < 0.0001, Figure 

26C).  However, this increase in absorbance is present at the time of inoculation (time = 0) 

and is likely to be caused by colored compounds found in the algal extract as opposed to 

actual differences in bacterial density.  The maximum growth rate was determined as a change 

over time and is therefore not affected by the discrepancy in starting values between 

treatments.  A similar pattern was seen in the growth of KSW3 in response to algal extracts 

(Figure 27C). 

As with KSW2, D. ocellata did not affect the growth of KSW3 in the exponential phase (p 

= 0.9166), however, it did affect the overall growth curve causing a lower abundance at 24 

and 72 hours post inoculation (p = 0.0464, Figure 23C and Figure 24). Although there was 

only a limited effect of D. ocellata on bacterial growth in the co-culture experiment, there 

were significant effects of media filtrates and algal extracts on growth in exponential phase as 

well as the overall growth curve (Figure 27).  Contrary to KSW2, media filtrates of bacteria + 

algae cultures significantly increased the maximum growth rate of KSW3 (p < 0.0500, Figure 

27A).  Media filtrates from the bacteria + algae treatment also increased the overall 

abundance of KSW3 compared to the seawater control and compared to filtrate from bacteria 

alone starting two and four hours after inoculation respectively (p < 0.0001, Figure 27A).   
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Filtrates from the bacteria alone treatment also increased the abundance of KSW3 

compared to the seawater control starting four hours after inoculation but to a lesser extent 

than the bacteria + algae filtrate (p < 0.0001, Figure 27A). While there was a significant 

effect of media extract on the overall growth of KSW3, comparison of individual treatments 

revealed a significant difference only at 24 hours post inoculation, at which time the bacterial 

abundance was higher in both treatments compared to the solvent control (p = 0.0121, Figure 

27B).  Neither the bacteria alone nor bacteria + algae media extracts affected the maximum 

growth rate of KSW3 (p > 0.0500, Figure 27B).  Extracts of algae from the bacteria + algae 

and algae alone treatment inhibited the maximum growth rate of all KSW3 (p < 0.0500, 

Figure 27C), but the optical density of algal extract treatments was higher than solvent 

controls during the first 6-24 hours (p < 0.0001, Figure 27C).  This increase in optical density 

is likely due to colored compounds in the algal extract as discussed with KSW2.   

It is interesting that media filtrates of bacteria + algae promoted the growth of KSW3 in 

exponential phase while algal extracts inhibited it (Figure 27).  It is likely that these opposing 

effects cancel each other out in the co-culture (Figure 23C).  It is known that algae release 

dissolved organic carbon (DOC) into the water column and that this can be used as a nutrient 

source for bacteria (Cole et al. 1982, Jensen 1985, Smith et al. 2006, Wada et al. 2007).  It is 

possible that compounds (perhaps DOCs) released by D. ocellata could promote the growth 

of KSW3 and that inhibitory compounds found in the algal extracts are necessary to maintain 

an acceptable abundance of KSW3. 

These results demonstrate that individual bacterial strains respond differentially to the 

presence of D. ocellata and that different factors are responsible for eliciting these responses.  

Although studies of the differential effects of algal extracts on the growth of individual 

bacterial strains are rare, there are a couple of examples.  For instance, similar to the results 

presented here, Ribalet et al. (2008) found that bacterial strains responded differentially to 

polyunsaturated aldehydes produced by diatoms.  Additionally, Maximilien et al. (1998) 

determined that furanones extracted for the red alga Delisea pulchra elicited species-specific 

responses from individual bacterial strains.  The differential effects of D. ocellata and its 

extracts on the growth of individual bacterial strains demonstrated here provide a possible 
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means by which the alga is able to selective regulate the composition of the bacterial 

community surrounding it.   

While it is clear that individual bacterial strains are differentially affected by D. ocellata, 

and that these effects are brought about by different components of the co-culture system, the 

exact mechanisms involved remain unknown.  The activity of organic extracts of the alga and 

the media indicate that secondary metabolites may be involved in these interactions, but other 

factors must also be considered.  Further studies are necessary to fully characterize the 

mechanisms by which algae affect the surrounding bacterial community.  

 

3.3 Bioassay guided fractionation of whole­cell D. ocellata extracts. 

3.3.1 Crude extracts 
The co-culture experiments discussed above indicate that there are compounds within D. 

ocellata that affect the growth of marine bacteria.  In an attempt to characterize any active 

metabolites, a screening assay of the activity of algal extracts at different concentrations was 

performed against 13 bacterial strains that were isolated from the Florida Keys, including 

KSW2, KSW3, and S3.  KSW1 was not tested here because the culture failed to grow.  These 

experiments were performed in 96-well plates, which allowed me to include treatments and 

controls within one plate with a high number of replicates (n = 8-12).  The use of 96-well 

plates also allowed for rapid absorbance measurements using a microplate reader, which 

enabled me to measure more variables and more replicates than could be done in larger 

volumes.  Treatments were set up as described in the previous section, but at a volume of 200 

µl.  Extract concentrations were chosen to reflect the amount of algae used during the co-

culture experiments (see Section 3.1).  The 1x concentration was equivalent to the amount of 

extract obtained from 5 g wet weight of D. ocellata dissolved in a total of 150 ml media.  

Hereafter, I will refer to this as the co-culture concentration.  A range of relative 

concentrations spanning three orders of magnitude were tested to determine the minimum 

active concentrations, as well as to accommodate for loss of compound during the extraction 

and handling processes.  In addition, a treatment containing antibiotics (+) was added to each 

trial as a positive control.  In all trials the bacterial abundance was significantly reduced in 
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antibiotic treatments (Figure 28).  These bacterial cultures were compared in terms of their 

stationary phase abundance, which was measured as optical density 24 hours after 

inoculation.  Although, as discussed in Section 3.1, a more detailed examination of the growth 

in terms of maximum growth rate and overall growth curve would be preferable, this was not 

possible here due to high fluctuations in abundance during the exponential phase.  This 

fluctuation may be a result of the experimental set-up using 96-well plates.  Further 

optimization is necessary to correct this problem.  However, the stationary phase abundances 

were stable and we therefore used these to measure the effects of algal extracts on the growth 

of bacterial cultures.  All absorbance values were transformed to give the relative percent 

increase or decrease compared to the solvent control. 

Surprisingly I found that the algal extracts either promoted bacterial growth or had no 

effect.  In no case did they inhibit the growth of bacteria as was seen during the co-culture 

experiments (see Section 3.2).  This finding could be a result of the change in analysis.  In this 

set of experiments I often saw erratic fluctuations in bacterial abundances during the 

exponential phase and therefore based my analysis on differences during the stationary phase.  

Previously, I measured growth as either maximum growth rate during the exponential phase 

or overall growth curve.  However, absorbance was either greater than or equal to solvent 

controls in bacterial cultures treated with algal extracts after 24 hours in the previous 

experiments as well (Figure 25B, Figure 26C, and Figure 27C).  I attributed this increased 

absorbance to the presence of colored compounds in the algal extracts that were not present in 

the solvent controls.  The presence of colored compounds was adjusted for in the current 

experiments by subtracting the absorbance of blanks containing algal extracts from the 

absorbance of treatments containing algal extracts and bacteria.  In this way I was confident 

that the absorbance value related to the density of the bacteria within the solution.  I 

considered cases in which the bacterial strain exhibited a dose dependant response to the algal 

extracts as indicative of chemical cues and eliminated those that did not exhibit such a pattern 

from further analysis.   

Of the 13 strains tested, eight were significantly affected by D. ocellata extracts in a dose 

dependant manner (Figure 28).  Bacterial strain KSW3 exhibited a significant increase in 

abundance at half the co-culture concentration with an abundance that was 163 ± 7.19 % 
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higher than solvent controls (p < 0.001, Figure 28A).  The abundance continued to increase 

with increasing extract concentration reaching a maximum of 232 ± 6.28 % at 5x co-culture 

concentration (p < 0.0001, Figure 28A).  At 10x co-culture concentration the abundance was 

not significantly different from the solvent control.   Algal extracts significantly promoted the 

growth of KSW4 at one tenth of the co-culture concentration with an increase of 10.5 ± 8.79 

% over solvent controls (p < 0.0001, Figure 28B).  This effect increased with extract 

concentration to a maximum of 129 ± 6.44 % at 5x co-culture concentration (p < 0.0001, 

Figure 28B).  Although the 10x co-culture concentration treatment also significantly 

increased the abundance of KSW4, it did so to a lesser extent than the 5x treatment (69.6 ± 

4.99 %, p < 0.0001, Figure 28B).  KSW5, S3, and S4 all responded similarly to the algal 

extracts.  They began to exhibit a response at one-tenth the co-culture concentration with 

increases in abundance of 48.4 ± 7.81 %, 47.4 ± 9.18 %, and 47.0 ± 5.23 %, respectively (p < 

0.0001, Figure 28C-E).  The response peaked at 5x co-culture concentration (142 ± 11.1 %, 

161 ± 10.8 %, and 152 ± 4.36 %, respectively, p < 0.0001) and then disappeared at 10x co-

culture concentration (Figure 28C-E).    The decline or disappearance of any effect at the 

highest extract concentration for KSW3, KSW4, KSW5, S3, and S4 is puzzling.  It could be 

that there are both growth promoting and growth inhibiting compounds in the extracts and 

that the effects of inhibitory compounds are masked at low concentration.  The concentrations 

used in this experiment are conservative compared to other studies that have investigated the 

effects of algal extracts on bacteria.  Most studies test extracts at a range of concentrations 

around that which is volumetrically equal to or greater than algal volume (Kubanek et al. 

2003, Engel et al. 2006, Puglisi et al. 2007).  In an attempt to determine the causes of activity 

in previous co-culture experiments that examined the effects of D. ocellata on bacterial 

growth in the surrounding media, I tested concentrations that would be relevant to those 

experiments.  Due to potential loss of compounds during the extraction and experimental set-

up, I may be working in a concentration range that is below the effective concentration of any 

inhibitory compounds.   



Chapter 3 Results and Discussion 

- 75 - 

 

 

Figure 28: Percentage density relative to solvent controls 24 hours post inoculation of 
bacteria exposed to different concentrations of D. ocellata extracts.  Bars indicate mean 
percentage ± standard error during stationary phase (n = 12).  Asterisks indicate 
significant differences from the solvent control (p < 0.05).  Orange bars represent the 
positive control and numbers along the x-axis represent the concentrations of extracts 
tested as a multiple of the co-culture concentration.   
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Bacterial strains S5, D4, and D5 were less sensitive to the algal extracts than other strains, 

requiring higher concentrations for the production of an effect and lacking any change in 

effect at the 10x co-culture concentration level.  They were affected at minimum 

concentrations of one (D5) to five (S5 and D4) times co-culture concentrations (Figure 28F-

H).  At five times co-culture concentration S5 abundance increased by 55.6 ± 5.01 % (p < 

0.0001) and D4 increased by 14.2 ± 2.60 % (p < 0.0500, Figure 28F and G).  Both showed a 

maximum increase in abundance at 10x co-culture concentration (91.1 ± 7.36 % and 59.7 ± 

3.57 %, respectively, Figure 28F and G).   Growth of D5 was significantly promoted at 1x 

co-culture concentration (26.9 ± 7.04 %, p < 0.05, Figure 28H).  Similar to S5 and D4, it also 

reached a maximum increase in abundance at 10x co-culture concentration (120 ± 14.9 %, p < 

0.0001, Figure 28H). In all cases the antibiotics treatment reduced the stationary phase 

abundance of the bacteria relative to the solvent control (Figure 28). 

3.3.2 Fractions 
To further understand the nature of the compounds involved in the promotion of bacterial 

growth by algal extracts, I fractionated the crude extract between hexane, chloroform, ethyl 

acetate and water and tested each fraction for activity (Figure 29).  I left the water fraction 

out of the initial analysis because it contained a high salt content and would have required 

further preparation.  Because I found activity in the other solvent fractions, I did not further 

investigate the water fraction.   
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As with the crude extracts, I saw no inhibition of growth in any of the fractions, but saw 

promotion of growth in some cases.  The chloroform and hexane fractions significantly 

promoted the growth of all the bacterial strains tested in response to at least one 

concentration, with the exception of S3, which did not respond to any of the fractions tested 

(Figure 30D).   

The chloroform fraction caused a dose dependant increase in the bacterial abundance of 

strains KSW3 and D4, increasing from 20.4 ± 1.74 % to 46.1 ± 4.06 % and 13.1 ± 4.16 to 

63.1 ± 4.25 %, respectively, although in both cases the increase was only statistically 

significant at 2x and 5x co-culture concentration (p < 0.05, Figure 30A and G).  KSW4, 

KSW5, S4, and D5 had approximately the same level of response to the chloroform fraction 

regardless of extract concentration indicating that for these strains the compounds responsible 

Figure 29:  Scheme representing the liquid-liquid partitioning of algal extracts into 
hexane, chloroform, ethyl acetate, and water.   
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for the activity seen in the crude extracts are not present in the chloroform fraction (Figure 

30).  It should be noted that while I looked here for a concentration dependant response as an 

indication of the presence of active compounds, instances where the abundance was raised to 

the same level in response to all concentrations may indicated the presence of a growth 

promoting compound that is active at low concentrations but that the growth of the bacteria is 

limited by some other factor.  Additionally, for all strains but S4, the recombination of all 

fractions at 2x co-culture concentration caused a higher increase in bacterial abundance than 

the chloroform fraction alone at the same concentration (Figure 30).  Strain S4 was an 

exception to this pattern, exhibiting no significant response to the combined fractions (p > 

0.05, Figure 30E).  KSW3 abundance increased by 48.5 ± 3.98 % in response to the 

combined fractions as opposed to 31.7 ± 2.51 % from the chloroform fraction and D4 

abundance by 41.5 ± 6.19 % versus 32.1 ± 3.43 %.   The differences between the percent 

increase in abundance in response to 2x co-culture concentration of combined fraction and the 

chloroform fraction of KSW4, KSW5 and D5 were 64.8 ± 3.48 % vs. 34.7 ± 2.12 %, 127 ± 

8.35 % vs. 103 ± 9.86 % and 46.6 ± 4.21 % vs. 33.4 ± 3.66 %, respectively.   

Strains KSW3, KSW4, KSW5, S5, D4 and D5 responded to the hexane fraction in a dose 

dependant manner while S3 was not affected and S4 was affected only at 1x and 2x co-culture 

concentration (Figure 30).  Strain KSW3 abundance was significantly higher than controls at 

2x and 5x co-culture concentration (p < 0.05, 30.7 ± 4.87 % and 36.2± 2.66 %, respectively). 

KSW4, KSW5, S5, D4, and D5 all had significantly higher abundances than the solvent 

control starting at 1x co-culture concentration and increasing to 5x co-culture concentration.  

KSW4 increased by 35.1 ± 3.42 % to 53.8 ± 4.29 % (Figure 30B).  The relative abundance of 

KSW5 ranged from a 101 ±6.88 to 146 ±9.85 % increase over solvent controls (Figure 30C). 

S5 abundance increased by 30.9 ± 3.08 % at 1x concentration up to 69.6 ± 25.8 % at 5x co-

culture concentration (Figure 30F).  D4 and D5 increased by 40.2 ± 6.89 % – 49.7 ± 6.75 % 

and 38.8 ± 4.57 % - 56.3 ± 4.51 %, respectively (Figure 30G and H).   
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Figure 30: Percentage density relative to solvent controls 24 hours post inoculation of 
bacteria exposed to different fractions of D. ocellata extracts.  Bars indicate mean 
percentage ± standard error during stationary phase (n = 8).  Asterisks indicate 
significant differences from the solvent control (p < 0.05).  Orange bars represent the 
positive control and numbers along the x-axis represent the concentrations of extracts 
tested as a multiple of the co-culture concentration.   
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As with the chloroform fraction, the response of strains KSW3, KSW4, KSW5 and S5 to 

the hexane fraction at 2x co-culture concentration was less than that induced by the 

combination of all three fractions at the same concentration (Figure 30).   For KSW3, the 

combined fractions caused a 48.5 ± 3.98 % increase in stationary phase abundance, but the 

hexane fraction caused only a 30.7 ± 2.66 % increase (Figure 30A).  KSW4 abundance 

increased by 64.8 ± 3.48 % in response to combined fractions and 44.8 ±6.94 % in response to 

the hexane fraction (Figure 30B).  KSW5 increased by 110 ± 6.43 % in response to the 

hexane fraction as opposed to 127 ± 8.35 % in response to the combined fractions (Figure 

30C).  And the increase in S5 abundance caused by combined fractions was 69.1 ± 2.8 % as 

opposed to 37.5 ± 5.28 % caused by the hexane fraction (Figure 30F).   

The ethyl acetate fraction caused a significant increase in KSW5 abundance at 2x and 5x 

co-culture concentration (42.2 ± 6.29 % and 56.6 ± 8.79 %, respectively) and in S4 at 5x co-

culture concentration (17.2 ± 4.44 %), but had no significant effect on any of the other 

bacterial strains (p < 0.001, Figure 30).   Although the effect of the ethyl acetate extract on 

KSW5 was significant (p < 0.001), it was a weaker effect than that caused by the chloroform 

and hexane fractions and the combination of all three fractions (Figure 30C).   It appears that 

there is a small amount of growth promoting compounds in the ethyl acetate fraction, but the 

majority of the activity is in the more non-polar hexane and chloroform fractions.   

The presence of activity in both the hexane and chloroform fractions for strains KSW3, 

KSW4, KSW5, and S5 suggests that either more than one compound is active or that the 

compounds were not completely separated into one fraction or the other.  The higher level of 

activity seen in the combination of fractions could be caused by an additive or synergistic 

effect of two or more compounds found within different fractions.   It could also be the result 

of incomplete fractionation which would result in one compound being found in more than 

one fraction and the concentration of the compound, therefore increasing in the combined 

fractions.   

However, for strains D4 and D5, the hexane fraction at 2x co-culture concentration had 

approximately the same impact on the bacterial abundance as the combined fractions (43.0 ± 

7.20 % vs. 41.5 ± 6.19 % and 44.7 ± 5.07 % vs. 46.6 ± 4.21 %, respectively) (Figure 30G 
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and H).  It therefore seems likely that the compounds responsible for the growth promotion of 

these two strains are found primarily in the hexane fraction. 

S3 was not affected by any of the fractions tested individually, but was affected by the 

combination of the three fractions at 2x co-culture concentration (25.3 ± 7.43 %, Figure 

31D).  However, the response of S3 to the combined fractions was much lower than the 

response to the crude extract at the same concentration (139 ± 8.52 %, Figure 28D).   

S4 was significantly affected by the hexane fraction, but only at 1x and 2x co-culture 

concentrations (19.6 ± 2.94 % and 24.9 ± 4.33 % increases, respectively, Figure 31E).  These 

increases and the increases in response to the chloroform fraction (maximum increase of 27.4 

± 1.82 %) are relatively low in comparison to the increases seen in response to crude extracts 

at the same concentrations (141 ± 3.02 % and 152 ± 4.36 %, Figure 28E).  Additionally, the 

combination of all three fractions had no effect on bacterial abundance (p > 0.0500, Figure 

31E).  These results indicate that compounds in the crude extract responsible for the growth 

promotion of bacterial strain S3 and S4 were not present in the fractions tested.   

Overall, the results of the bioassay guided fractionation indicate that the metabolites 

responsible for the activity seen in crude extracts are somewhat nonpolar and can be extracted 

by both chloroform and hexane.  Additionally, responses of individual bacterial strains to 

different fractions varied, suggesting that they may be responding to different compounds 

within D. ocellata.  This further supports my previous findings that D. ocellata has species-

specific effects on individual bacterial strains.   

3.3.3 Sugars and fatty acids 
It is known that heterotrophic bacteria feed on dissolved organic carbons such as sugars 

and lipids released from algae (Bell et al. 1974, Cole et al. 1982).  However, the amount of 

sugar and lipids added to the medium from the algal extracts is minimal compared to the 

nutrients provided in the culture medium.  To determine if the increase in bacterial growth 

seen here in response to algal extracts could be the result of increased nutrients, I added 

glucose and linolenic acid to bacterial cultures of strains KSW4 and KSW5 at various 

concentrations and monitored the growth.  The concentrations of glucose and linolenic acid 

were set so that the mass added was approximately equal to the total amount of crude extract 
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in the treatments above.  This amount is an over-estimation of the actual amount of glucose 

and linolenic acid present in the algal extracts and therefore is likely to produce a greater 

effect than that seen in the experiments above if these are the components responsible for the 

increased growth rate.  However, it is possible that high concentration could result in an 

overdose of these compounds, although this is unlikely.  I also included the hexane fraction 

tested above as a positive control.    

 

Figure 31: Percentage density relative to solvent controls 24 hours post inoculation of 
bacteria exposed to glucose, linolenic acid, and the hexane fraction of D. ocellata extract.
Bars indicate mean percentage ± standard error during stationary phase (n = 8).  
Asterisks indicate significant differences from the solvent control (p < 0.05).  Orange 
bars represent the positive control and numbers along the x-axis represent the 
concentrations of extracts tested as a multiple of the co-culture concentration.   
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Neither glucose nor linolenic acid had any effect on the growth of KSW5 at any of the 

concentrations tested (p > 0.05), but the hexane fraction retained its activity on KSW5, 

indicating that, for KSW5, the growth promoting activity of algal extracts is not likely due to 

the presence of excess sugars or fatty acids (Figure 31A).  Glucose also had no effect on the 

growth of KSW4, however linolenic acid significantly inhibited the growth at 1x and 5x co-

culture concentration (-27.9 ± 3.15 % and -103 ± 9.96 %, respectively), but not at 2x co-

culture concentration (Figure 31B).  In addition the growth promoting effect of the hexane 

fraction seen above was not replicated here for KSW4.  This trial should be repeated to 

validate the results of KSW4, but at the very least I can say that glucose and linolenic acid did 

not promote the growth of KSW5.     

Because most investigations of the effects of algal extracts on bacterial growth are 

designed with the aim of finding antibacterial compounds, examples of growth stimulating 

effects are rare.  In general it is known that bacterial growth and production is enhanced by 

dissolved organic carbons (DOC) released from algae, but the growth promoting activity of 

algal extracts has been largely unexamined (Bell et al. 1974, Cole et al. 1982, Haas et al. 

2010).  However, the concentration of algal extracts added in the experiments presented here 

are low, and it seems unlikely that large increases in stationary phase abundance (nearly 250% 

in one case) could be attributed to the additional food source provided by DOC alone.  In fact, 

KSW4 and KSW5 had no significant increase in abundance when glucose was added in 

concentrations that would represent the situation in which the entire algal extract was made up 

of only glucose.  Recently, Ribalet et al. (2008) demonstrated that polyunsaturated aldehydes 

from marine diatoms have differential effects on marine bacteria.  In a screening of 33 

bacterial strains they found that the growth of some strains was inhibited by the compounds, 

some were stimulated and others were not affected at all (Ribalet et al. 2008).   However, to 

my knowledge no studies have examined the growth promoting activity of marine macroalgae 

on individual bacterial strains.  

Because the majority of the activity seen in this screening was found in the chloroform 

and hexane fractions, I subjected these fractions to proton nuclear magnetic resonance 

spectroscopy (H1 NMR) and gas chromatography coupled with mass spectrometry (GC-MS) 

in an attempt to find any compounds that were likely to be responsible for the effects seen.  
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Extracts were derivitized using (trimethylsilyl)diazomethane and both derivatized and 

underivatized samples were run on the GC-MS.  Derivatized samples contained a number of 

methyl esters of free fatty acids (FFA)(Figure 32).  The underivitized samples did not contain 

fatty acid methyl esters (FAME), indicating that the fatty acids within the extracts are in the 

unmethylated form, but were methylated during the derivatization. Green algae are known to 

contain a number of FFAs, and all of the FFAs seen in D. ocellata extracts are known to occur 

in other green algal species (Khotimchenko et al. 2002).  The hexane and chloroform fractions 

produced similar GC chromatograms, however, NMR data suggest that FFAs are the major 

component of the hexane fraction but are minor components of the chloroform fraction 

(Appendix IV).  

Although these fractions contain a variety of FFAs, it is unlikely that the effects seen in 

these experiments are caused by these compounds.  Most studies on the effects of FFAs on 

bacterial growth indicate that they are inhibitory as opposed to the growth stimulating effects 

seen here (Benkendorff et al. 2005, Desbois et al. 2009).  Furthermore, linolenic acid, which 

was a dominant FFA within the algal extracts, did not increase the abundance of either KSW4 

or KSW5 in the experiment described above (Figure 31).   Continued investigation is 

necessary to characterize the active compounds found in D. ocellata extracts.   
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Figure 32: Gas chromatogram of the derivatized chloroform fraction of D. ocellata 
extracts.  Fatty acid methyl ester (FAME) peaks identified by comparison to standards 
are in bold.  All other identification is based on comparison to chromatogram libraries.  
Asterisks indicate peaks identified as contamination to the sample.    
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4 Conclusions 
The purpose of my doctoral research was to examine if and how green macroalgae 

regulate the species composition and abundance of the bacterial community surrounding 

them.  To accomplish this goal, I chose the siphonous green macroalga Dictyosphaeria 

ocellata as a model organism and performed a series of field and laboratory experiments 

monitoring the alga’s effect on natural bacterial assemblages and individual bacterial isolates.  

Additionally, I examined the role of organic compounds in mediating the effects of the alga 

on the bacterial community.   

Based on my results, I have concluded that D. ocellata is capable of regulating the 

bacterial community surrounding it through the production of a variety of organic compounds 

that differentially affect the growth of bacteria.  D. ocellata harbors a unique bacterial 

community on its surface when compared to that of another green alga Batophora oerstedii 

and reference inanimate surfaces sampled from the same location.  However, the community 

is not significantly different from another, more closely related, green alga Cladophoropsis 

macromeres.  The degree of host specificity of bacterial assemblages on the surface of algae 

may be related to the genetic or morphological similarities of the hosts.  Because C. 

macromeres is more closely related to D. ocellata than B. oerstedii is, it may harbor a more 

similar bacterial community.  Nevertheless, there was an overall pattern of host specificity 

seen in the biofilm community of D. ocellata in comparison to other surfaces in the same 

area.   

Although the biofilm bacterial community of D. ocellata is distinct from other surfaces 

within one location, the alga does not maintain the same bacterial community across different 

locations.  Most of the previous studies indicating that bacterial communities are specific to 

their eukaryotic hosts were focused on endosymbionts or those that can be transferred along 

with the propagules of the host.  Because I analyzed the surface biofilm community, the 

bacterial strains present are likely dependent on the available pool of bacteria within a 

location, and this varied across the locations studied.  Therefore, the bacterial community on 

the surface of D. ocellata varied amongst locations, but within each location harbored a 

unique bacterial assemblage.  Furthermore, methanol extracts of D. ocellata incorporated into 
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Phytagel™ plates altered the composition of the bacterial community and decreased the 

abundance of bacteria that settled and grew on the surface.  This evidence suggests that the 

formation of the unique assemblage of bacteria on the surface of D. ocellata could be, at least 

in part, due to organic compounds found within the alga.    

D. ocellata is also able to alter the composition of the bacterioplankton community 

surrounding it.  However, this effect could not be attributed to waterborne compounds 

released from the alga, suggesting that the bacteria must be in direct contact with the alga in 

order to exhibit a response or that the active compounds are not stable under the conditions 

used here.   

Furthermore, investigations of the effects of D. ocellata on the growth of individual 

bacterial strains in laboratory co-culture experiments revealed that bacterial strains respond 

differentially to the alga.  Examination of the response of bacteria to the presence of the alga 

throughout their respective growth curves allowed me to distinguish that the alga caused 

changes in the maximum growth rate of some strains, but affected the stationary or declining 

phase in others.  Additionally, bacterial strains responded differently to media filtrates and 

organic extracts of the media and alga.  This difference in the responses of bacteria to the alga 

and its metabolites could have important implications when thought of in an ecological 

context in which competition between, and predation on bacterial species must also be 

considered.   

Finally, crude extracts of D. ocellata caused an increase in stationary phase abundance in 

eight out of thirteen bacterial strains tested.  The activity was narrowed to the chloroform and 

hexane fractions of the crude extract indicating that the active compound or compounds is not 

highly polar.  GC-MS and H1 NMR analysis of these fractions revealed a large diversity of 

free fatty acids; however, it is unlikely that these compounds would cause an increase in 

abundance at the low concentrations tested here.  Furthermore, the increased abundance could 

not be triggered by the addition of glucose or linolenic acid to the bacterial cultures indicating 

that the mechanism responsible for this effect is something other than the simple addition of a 

food source for the bacteria. 
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The presence of a unique bacterial biofilm on the surface of D. ocellata in conjunction 

with the alteration of the bacterioplankton community by D. ocellata in field enclosure 

experiments indicates that this macroalga can selectively regulate the bacterial community 

surrounding it.   This conclusion is further supported by the species-specific effects of D. 

ocellata on the growth of various bacterial isolates.  This alga does not revert to universally 

active antibiotics to eliminate the entire bacterial community, but rather influences the 

surrounding organisms specifically and with different modes of action.  In a screening of 33 

marine bacterial strains, Ribalet et al. (2008) found similar differential responses of individual 

bacterial strains to polyunsaturated aldehydes that are known to be released from marine 

microalgae.  Marine bacterial strains also responded to furanones extracted from the red alga 

Delisea pulchra in a species specific manner (Maximilien et al. 1998).  These sorts of 

screening assays against ecologically relevant bacterial species are rare, but these examples in 

addition to the evidence provided here suggest that the differential response of various 

bacterial strains to marine algae may be common.   

Although the mechanisms involved in mediating these interactions in our study remain 

unclear, it appears that different bacterial isolates are differentially sensitive to various 

components of the co-culture system.  The activity of organic extracts tested in co-culture and 

Phytagel™ experiments indicates the possibility of active secondary metabolites, however, 

other physical properties must also be considered.  While I focused here on determining the 

role of organic compounds, it is likely that a combination of factors, including the algal 

morphotype and mechanical properties of the algal surface act together to shape the bacterial 

community surrounding D. ocellata.  More studies of the subtle interactions taking place 

between algae and their associated microbial community and the chemical signals involved 

are needed to elucidate the complex processes occurring in this system. 

As discussed in the introduction, bacteria play important roles in the ecology of 

macroalgae and understanding the mechanisms involved in structuring an alga’s associated 

bacterial community is essential to understanding its relationships within the larger 

community.        
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5      Materials and Methods 

5.1 Field Experiments   

5.1.1 Experimental Design 
 

All field experiments were performed at a field site off the coast of Summerland Key, FL 

(N24°41.043’ W081°26.654) unless otherwise specified.  The site was a shallow subtidal area 

with low wave action that could be reached by wading from the shore.  The area was bordered 

by red mangroves and had a rocky bottom covered in a thin layer of sediment.     

5.1.1.1 Comparison of surface­associated bacterial communities within and 

between locations. 

Algae and rocks were collected between February 27, 2009 and March 3, 2009 from three 

sites along the Florida Keys (Long Key: N24°49.518’ W080°48.776’, Bahia Honda: 

N24°37.43’ W081°16.525, Summerland Key: N24°41.043’ W081°26.654).  At each site six 

clusters of  Dictyosphaeria ocellata (M.A.Howe) J.L.Olsen-Stojkovich cells, six individual 

Batophora oerstedii J.Agardh, and six small rocks (diameter ~ 3 cm) were collected and 

transferred to the lab in a 5 gallon (18.9 L) bucket containing seawater from the collection 

site.  At the Bahia Honda, site there were no B. oerstedii present and Cladophoropsis 

macromeres W.R.Taylor was collected in its place.  Upon returning to the lab, the objects 

were rinsed twice with autoclave sterilized seawater, first dipped into the water then under a 

stream of water from a 20 ml sterile syringe.  A ~ 1 cm2 area of each sample was swabbed 

with a sterile swab which was immediately placed into 800 µl of lysis buffer (1% Triton X-

100, 20 mM Tris HCl pH 8.2)(Dobretsov et al. 2006) in a sterile 2 ml centrifuge tube.   

DNA was extracted from the cotton swabs and subjected to PCR amplification and DGGE 

separation (section 5.2).  Four samples were chosen at random from each group of objects 

except for the comparison of bacterial communities of D. ocellata from different locations, 

from which three samples were chosen for each location.  For each sample, 300 ng of DNA 



Field experiments 

- 92 - 

 

was loaded onto the DGGE gel.   Samples were only compared within one gel, not between 

different gels.  Samples were analyzed according to the BDA method described below 

(section 5.2).  

5.1.1.2 Effects of algal extracts on the surface­associated bacterial community  

Surface Extracts 

Dictyosphaeria ocellata was collected from the surfaces of rocks at the Summerland Key 

field site in February, 2008.  Algae were weighed and then dipped in hexane for 30 s (211.60 

g wet weight algae in 250 ml hexane)(de Nys et al. 1998).  Surface area of the algae was 

determined by using a modified wetting method first described by Harrod and Hall (1962).  

Briefly, the algae blotted dry with a paper towel, weighed, dipped into a detergent/water 

solution, allowed to drip for 20 s, and then weighed again.  The amount of weight gained was 

correlated to the surface area using a regression equation of weight gain to surface area of 

known objects.  The inside bottom surfaces of 90 mm diameter sterile polystyrene Petri dishes 

(Roth) were coated with either 0.9 ml of algal surface extract or 0.9 ml of hexane, so that the 

amount of extract on the surface of the Petri dish was equivalent to that taken from the same 

surface area of algae.  The solvents were allowed to evaporate and Petri dishes (30 extract and 

30 control) were placed in the water at the same site from which the algae were collected.  

They were strung with clear monofilament line and hung from the prop roots of red 

mangroves (Rhizophora mangle L.) so that they hung parallel to the bottom and were 

constantly submerged approximately 2 cm above the bottom.  They were weighted with 1.27 

cm hex nuts to maintain their position.  Six control and six extract dishes were brought into 

the lab each day for 5 days.  Plates were swabbed with sterile cotton swabs and the swabs 

were frozen at -20 °C.  DNA extraction, PCR amplification, DNA quantification, DGGE 

conditions, and gel imaging are described in Section 5.2.   DGGE band pattern analysis was 

performed according to the GelCompar method described below (Section 5.2).  Samples were 

compared between multiple DGGE gels using standard lanes for gel alignment.  Each lane 

contained 300 ng DNA.  Replicates within each treatment and time were distributed among 

the gels to reduce the probability of treatments grouping together because of a gel effect as 

opposed to true similarities in the bacterial communities.  Reanalysis of amplified DNA from 
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48 hour samples was performed by running only these 12 samples on one DGGE gel and 

comparing the bacterial community profiles using the BDA method (Section 5.2). 

Whole-cell Extracts 

Phytagel™ assays were modified from the protocol described by Henrikson and Pawlick 

(1995).  Algae were collected from the field site in February, 2008, rinsed with distilled water 

and 2.88 L (determined by volume displacement) was homogenized in a Waring commercial 

blender with an excess of hexane.  The homogenized cell and hexane mixture was transferred 

into 50 ml Falcon™ tubes and centrifuged for 2 minutes at 3000 rpm in a IEC MultiRF 

centrifuge (ThermoIEC).  The hexane layer was transferred to a glass beaker and the solvent 

allowed to evaporate off.  The remaining cell parts and water were placed in a 2.8 L 

Erlenmeyer flask with 400 ml ethyl acetate and 200 ml methanol.  This slurry was stirred for 

an hour at room temperature and then centrifuged as before.  The ethyl acetate layer was 

transferred to a 500 ml round bottom flask and dried under vacuum.   

The dried hexane and ethyl acetate extracts were dissolved in 16 ml of hexane and 

methanol, respectively.  Extracts and solvent controls were incorporated into Phytagel™   

plates to prepare four separate treatments: hexane extract, hexane control, ethyl acetate extract 

in methanol, and methanol control.  For each treatment 31.2 g Phytagel™ was blended with 

720 ml distilled water in a Waring commercial blender for 5 seconds.  The mixture was 

transferred to a 1 L beaker and microwaved on high until boiling (4-5 min).  The extract or 

solvent control (16 ml) was added to the liquid Phytagel™ and this mixture was immediately 

poured into twenty-four 90 mm diameter sterile polystyrene Petri dishes (Roth).  The resulting 

solidified Phytagel™ plates were placed underwater at the field site as described above 

(Section 5.1.1.1).  Six control and six treatment plates were brought into the lab every 3 days 

for 12 days and swabbed and analyzed as described above for surface extracts.   

In October, 2009, D. ocellata were collected again from the field site on Summerland 

Key. The algae were placed in a cooler filled with seawater from the site and transported 

directly to the Smithsonian Marine Station in Ft. Pierce, FL.  Here they were kept indoors in 

aquariums placed near a window to allow natural light to reach the algae until extraction.  
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Aquariums were filled with natural seawater, aerated with airstones, and covered with 

Plexiglass to reduce evaporation.   

Two hundred forty ml of D. ocellata was freeze-dried (LABCONCO Freezone 6) and 

ground to a fine powder using a mortar and pestle. The dry powder was weighed and divided 

into two equal portions.  One portion was extracted in ~ 250 ml methanol and the other in ~ 

250 ml ethyl acetate overnight.  The extracts were gravity filtered through Whatman no. 1 

filter paper.  Water was removed from the ethyl acetate extract with an excess of sodium 

sulfate, and solvents were removed from both extracts using rotary evaporation.  The dried 

extracts were each dissolved in 15 ml dimethyl sulfoxide (DMSO).  Phytagel™ plates were 

prepared by adding 5.2 g of Phytagel™ to 120 ml of distilled water and blending for 5 

seconds in a blender.  The mixture was then placed in the microwave until boiling.  The entire 

extract (15 ml DMSO in the case of the solvent control) was added to the Phytagel™ solution 

just prior to pouring the solution into 55 mm sterile Petri dishes (n=6).  This process was 

completed three times, once for each treatment: methanol extract, ethyl acetate extract, and 

solvent control.   

The Petri dishes had been strung with monofilament line prior to the addition of 

Phytagel™ so that they could be hung with the exposed side of the Phytagel™ perpendicular 

to the water surface.  Phytagel™ plates were placed in the field for 48 hours.  Each plate was 

tied at the top to a Rhizophora mangle (red mangrove) prop root and weighted below using a 

3/8” (9.5 mm) stainless steel hex nut.  Plates were randomly distributed and tied so that only 

one plate was attached to each root.  Each plate was approximately 4 cm from the bottom, 

constantly submerged.  

Plates were sampled as above except that swabs were stored in 800 µl lysis buffer at room 

temperature as in section 5.1.1.  Additionally, a 6 mm diameter core was removed for 

subsequent bacterial counts prior to swabbing the surface.  Cores were taken from the center 

of each plate using a sterile Kimble borosilicate glass culture tube, placed in microcentrifuge 

tubes containing 1 ml of glutaraldehyde (2.5% in seawater), and kept at room temperature.  

Cores were stained with Sybr® Gold (25 x concentrate, Invitrogen™) for 15 minutes and then 

rinsed by dipping in sterile distilled water.  Bacteria on the surfaces of cores were counted in 

10 randomly chosen fields of view at 400x magnification using a Leica DM IL LED inverted 
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epifluorescence microscope with an excitation wavelength of 495 nm.  The number of 

bacterial cells counted within one sample were combined and transformed to the number of 

cells per mm2.  Treatments were compared using a one-way analysis of variance (ANOVA) 

followed by multiple comparisons testing using the Holm-Sidak method (n = 5).  Prior to 

analysis data were tested for the presence of outliers using Dixon’s Q test (Dixon 1950).  One 

sample of methanol extract treatment was determined to be an outlier and was removed from 

the data set.   ANOVA was performed with SigmaPlot 11.  Bacterial communities were 

analyzed using the BDA method (Section 5.2).   

5.1.1.3 Field enclosure experiments 

Field enclosure experiments were performed in February, 2008, February, 2009 and 

December, 2009.   

February, 2008 

Approximately 5 g of D. ocellata was added to ten 1 L Nalgene® PETG sterile square 

media bottles with septum closures and the bottles were filled with seawater from the field 

site.   Ten control bottles were prepared with only seawater.  Bottles were placed on their 

sides and held underwater at the field site with 5 cm mesh netting held down on the edges 

with rocks.   One milliliter samples were taken every day for seven days using a sterile 2 ml 

syringe with a 21G needle.  Samples were immediately filtered through a 5 µm PVDF 

membrane filter (Millipore™) followed by a 0.2 µm polycarbonate membrane filter 

(Millipore™) that had been placed in Whatman® plastic filter holders and autoclaved at 121 

°C for 15 minutes prior to use.  Filters were rinsed by pushing 10 ml of autoclave sterilized 

distilled water through both filters using a sterile syringe.  The 0.2 µm filters were removed 

from the filter holders, cut in half using sterile scissors, placed in sterile microcentrifuge 

tubes, and stored at -20 °C.    

Bacterial DNA was amplified using the filter PCR method described by Kirchman, et al. 

(2001).  Filters sections were again cut into thirds using sterile scissors resulting in filter 

pieces that were 1/6 of the original filter.  Filter pieces were placed individually into sterile 

0.2 µl PCR tubes.  Filter pieces were subjected directly to PCR amplification (see details in 

section 5.2).  Bacterial community profiles were analyzed using the GelCompar method.   
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February, 2009 

Approximately 100 g wet weight of D. ocellata was added to seven bottles and these plus 

seven control bottles were filled with seawater from the field site.  Bottles were placed in the 

field as above and sampled after 0, 7, 24, 48, and 96 hours.  Ten milliliter samples were taken 

using a 2.5 ml syringe with a 23G needle.  Samples were prepared as above and bacterial 

communities were analyzed using the GelCompar method (Section 5.2).     

December, 2009 

Approximately 700 g wet weight of D. ocellata was collected from the surface of rocks at 

the field site and placed into a five gallon (18.9 L) bucket filled with water from the site.  

Within 30 minutes, ten 1 L Nalgene® PETG sterile square media bottles with septum closures 

were filled with water from the bucket.  Approximately 100 g of algae was added to 5 of the 

bottles to serve as the experimental treatments while the other 5 were used as controls.   Dive 

weights (~ 1.8-2.3 kg) were used to hold bottles in place in the field.  One treatment bottle and 

one control bottle were tied to each weight so that the bottles lay on the bottom, ~ 70 cm deep 

at high tide, and were constantly submerged.  Bottles were brought into the lab after 48 hours 

and 30 ml water samples were taken from each bottle using a sterile syringe under sterile 

conditions.   

Two five gallon (18.9 L) buckets were half filled with water from the field site described 

above.  Approximately 800 g wet weight of D. ocellata was collected at the field site and 

added to one bucket.  The buckets were taken to Mote Tropical Research Laboratory, 

Summerland Key, FL, USA and 7 L of water from each bucket was transferred into clean 10-

gallon (37.9 L) aquariums.  Algae (700 g wet weight) were added to the aquarium containing 

the water from the bucket which originally contained the algae.  Aquariums were aerated with 

airstones and kept under artificial light in a 12:12 light/dark cycle for 24 hours at ambient 

room temperature.  Water from the tanks was then gravity filtered through coffee filters 

followed by vacuum filtration through 0.22 μm GSWP, 47 mm filters (Millipore™) into 

autoclaved 500 ml or 1000 ml vacuum flasks using autoclaved Millipore™ glass filter 

holders.  Algal-treated and non algal-treated filter-sterilized seawater was transferred to 1L 
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Nalgene® PETG sterile square media bottles with septum closures (n=3).  Bottles were 

inoculated with 30 ml of natural seawater by injection through the septum cap and placed in 

the water at the field site as above.  Bottles remained in the field for 24 hours after which 30 

ml samples were taken using a sterile syringe under sterile conditions. 

Samples were prepared as in February, 2008, but were analyzed using the BDA method 

(Section 6.2).   

5.1.2 Bacterial community profiling methodology 

5.1.2.1 DNA Extraction of cotton swabs 

DNA was extracted from swabs using a phenol:chloroform extraction protocol.  Eighty-

eight µl sucrose (67%), 1.6 µl EDTA (0.5 M), and 21 µl lysozyme were added to the 

swab/lysis buffer and shaken at 37 °C for 30 minutes.  Then 83.8 µl TE and 50 µl SDS-TE 

were added and the mixture was shaken at 50 °C for one hour.  The samples were then 

centrifuged for 10 min at 4 °C and 13,000 rpm (Hermile Z 383 K).  The supernatant (~ 700 

µl) was transferred to a clean sterile 2 ml centrifuge tube containing 70 µl NaCl (5 M) and 

700 µl phenol: chloroform: isoamylalcohol (25:24:1).  These tubes were mixed by inversion 

and centrifuged again as above.  The supernatant was transferred to a clean sterile 2 ml 

centrifuge tube containing 700 µl isopropanol and kept overnight at -20 °C.  Tubes were then 

centrifuged for 20 min at 4 °C and 13,000 rpm.  The supernatant was removed and the 

remaining DNA pellet was allowed to air dry under sterile conditions overnight.  The dry 

DNA pellet was dissolved in 30 µl filter-sterilized ChromoSolv water and kept at -20 °C until 

further use.    

5.1.2.2 Polymerase chain reaction (PCR) 

PCR amplification was performed using 16S rDNA bacterial primers 357fGC (CGC CCG 

CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG 

CAG) and 907rM (CCG TCA ATT CMT TTG AGT TT) (Muyzer et al. 1995).  The reagent 

volumes and concentrations are given in Table 6.  For analysis of DNA extracted from cotton 

swabs, an additional 1 µl of DNA extract was added to the reagent solution.  For analysis of 
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bacterial cells retained on 0.2 µm filters, the filters were placed into PCR tubes and subjected 

to direct filter PCR as described by Kirchman et al. (2001). 

Amplification was performed using a Biometra® TGradient thermocycler beginning with 

an initial denaturation step (5 min at 95 °C) followed by 10 touchdown cycles lowering the 

annealing temperature by 1 °C each cycle beginning at 65 °C (1 min at 95 °C, 1 min at 65 °C, 

2.5 min at 72 °C), and then 25 cycles with an annealing temperature of 55 °C (1 min at 95 °C, 

1 min at 55 °C, 2.5 min at 72 °C).  A final extension step at 72 °C for 3 min completed the 

amplification.  PCR products were quantified by comparison to the GeneRuler™ Express 

DNA Ladder (Fermentas) run on a 1% agarose gel.   

Amount  Reagent  Concentration  Supplier 

1.5 µl  Bovine serum albumin (BSA) A7030  20 mg ml‐1  Sigma Aldrich 

1 µl  dNTP mix  10 mM  Fermentas 

5 µl  DreamTaq™ Buffer  10x  Fermentas 

2 µl  Forward primer (357fGC)  10 µM  Biomers.net 

2 µl  Reverse  primer (907rM)  10 µM  Biomers.net 

0.5 µl  DreamTaq™ DNA Polymerase  5 U µl‐1  Fermentas 

to 50 µl  ChromoSolv® water (filter‐sterilized)    Sigma Aldrich 

 

5.1.2.3 DGGE 

Denaturing gradient gel electrophoresis (DGGE) was performed using a DCode™ 

Universal Mutation Detection System (Bio-Rad).  Standards were prepared by combining the 

PCR products of the direct amplification of three known bacterial strains (Cytophaga sp., 

Micrococcus sp., and Pseudoalteromonas tetraodonis) so that each standard lane contained 

200 ng of DNA from each bacterial strain.  These standards were loaded at the sides and the 

Table 6:  Amounts and concentrations of reagents used in PCR amplification of 
bacterial DNA.   
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center of each gel to control for gel smiling and for comparison across gels when needed.  

Samples and standards were loaded onto an 8% acrylamide gel (acrylamide:bis-acrylamide 

ratio 37.5:1) with a denaturant gradient from 20 – 70% denaturant (100% denaturant 

contained 7 M urea and 40% formamide).  Electrophoresis was run for 12 hours at 100 V and 

60 °C.   Gels were stained with Sybr® Gold (Invitrogen™).  Imaging was performed using the 

BioDocAnalyze (BDA) digital system (Biometra®). 

5.1.2.4 Statistical analysis 

DGGE profiles were analyzed in one of two ways.  For the GelCompar method multiple 

DGGE gels were aligned using the program GelCompar II from Applied Maths.  After gels 

were aligned, banding patterns were compared and a similarity matrix formed based on the 

Pearson Correlation.  Treatments were compared statistically with 2-way analysis of 

similarity (ANOSIM) followed by pairwise comparisons when appropriate.  Data were also 

subjected to cluster analysis with unweighted pair-group average using arithmetic averages 

(UPGMA).  ANOSIM and cluster analysis were performed using the Primer 6 statistical 

program.  For the BDA method, band position and volume (area x intensity) were determined 

for all bands present using BDA digital image analysis software (Biometra®).  The volume of 

each band was normalized to the total volume of all bands within one lane to determine the 

percent contribution of each band (bacterial phylotype) to the total species abundance within 

each sample.  Treatments were compared using one-way ANOSIM based on the Bray-Curtis 

distance measure.  Data were also subjected to cluster analysis and non-metric 

multidimensional scaling (NMDS) using the Bray-Curtis measure of similarity for graphical 

representation.  Statistical analyses were performed with the statistics program PAST v. 1.99 

(Paleaontological Statistics)(Hammer et al. 2001).  

5.2  Laboratory Experiments 

5.2.1 Development of co­culture experiment 

5.2.1.1 Algal and bacterial collection and culturing 

Dictyosphaeria ocellata were collected in early February, 2008 from the field site at 

Summerland Key.  The algae were attached to rocks in the intertidal zone and removed from 
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the rocks by hand.  Samples were transported to Mote Tropical Research Laboratory field 

station where they were cleaned of mud and visible epiphytes and stored in flow-through 

tanks until transport to the laboratory in Jena, Germany.  There, the algae were cultured in 

Instant Ocean® Sea Salt (30ppt) at 23°C with a 14:10 hr light: dark cycle until further use.   

Three bacterial cultures, Pseudoalteromonas tetraodonis, Micrococcus sp., and 

Cytophaga sp., were obtained from the collection of Gunnar Gerdts and Antje Wichels 

(Wichels et al. 2004, Wichels et al. 2006).  Cultures were transferred from plates into Difco™ 

Marine Broth 2216 and kept in continuous liquid culture at room temperature.  Glycerol 

stocks of each strain were prepared and stored at -80 °C.   

5.2.1.2 Co­culture set ­up 

The effect of D. ocellata on the growth of three species of marine bacteria was 

investigated by co-culturing the algae with the bacteria.  The algae were not sterilized prior to 

use, therefore, any reference here to D. ocellata includes both the algae and its naturally 

associated microbial community.  The bacteria Cytophaga sp., Micrococcus sp., and 

Pseudoalteromonas tetraodonis were cultured overnight in Difco™ Marine Broth 2216 so 

that they were in stationary phase prior to use.  For each species, 15 ml of culture were added 

to 135 ml of autoclave-sterilized Instant Ocean® medium (salinity = 30 ppt) in a 200 ml 

Erlenmeyer flask.  D. ocellata (~ 5 g) was added to the flask, and the growth of the bacteria 

was monitored every 2-3 hours for the first 9 hours then at 24 hours and once every 24 hours 

after that until the treatment exhibited an obvious decline in abundance.  Flasks were kept at 

room temperature and constantly shaken.  At each sampling time, 1 ml of media was 

transferred from the flask into a plastic cuvette using an Eppendorf®  pipette under sterile 

conditions.  The bacterial density was then measured spectrophotometrically as optical 

density (OD) at 660 nm (Carl Zeiss Jena Specord M42).  The flasks were sealed with sterile 

cellucotton stoppers, kept at room temperature, and continuously shaken throughout the 

experiment.  Bacterial growth in the presence of D. ocellata was compared to that in controls 

prepared without the addition of algae.  Because the algae were not sterilized prior to the 

experiment, a second control was prepared with the addition of algae to 135 ml of autoclave-

sterilized Instant Ocean® and 15 ml of uninoculated media to monitor the impact of algal-

associated bacteria on the turbidity of the water.   
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After the end of the co-culture experiment, both the media and the algae from the co-

culture experiment were extracted, and the effects of the extracts on bacterial growth were 

investigated.  Media (~140 ml) were extracted using 3 ml solid phase extraction (SPE) 

cartridges (CHROMAbond® Easy, Macherey-Nagel).  Media were vacuum pumped first 

through sand filters and then though the SPE cartridges.  The cartridges were air dried by an 

additional five minutes under vacuum, rinsed with bidistilled water, and the organic 

compounds were eluted with 4 ml methanol/tetrahydrofuran (MeOH/THF) (1:1).  Whole cell 

extracts of the algae employed in co-cultures (~ 5 g wet weight per sample) were prepared by 

grinding the fresh algae in liquid nitrogen and extracting the frozen powder with 4 ml of 

MeOH/THF (1:1).  Solvents were removed from all extracts under a constant stream of 

nitrogen and dissolved in 100 μl of MeOH/THF (1:1).  The 100 µl extracts were added to 27 

ml of autoclave-sterilized Instant Ocean® medium (30 ppt) and inoculated with 3 ml of 

stationary phase bacterial culture in a 50 ml Falcon™ tube (BD Biosciences).  The 

experimental volume was reduced from the 150 ml volumes used in the co-cultures to 30 ml 

in order to accommodate for possible loss of compounds during the extraction process.  

Solvent controls were prepared by adding 100 µl of MeOH/THF (1:1) to 27 ml of sterile 

Instant Ocean® medium (30 ppt) and were inoculated as above.  The tubes were kept at room 

temperature and continuously shaken throughout the experiment.  

5.2.1.3 Statistical analysis 

Bacterial growth was examined in three ways.   1. Change in abundance 24 hours post 

inoculation, 2. Maximum growth rate, or 3. Overall growth curve. First, bacterial abundance 

24 hours after inoculation was compared between treatments and controls using a two-tailed t-

test.  Second, maximum growth rate was designated as largest slope (µ) between two 

consecutive points on the growth curve. 

µ= (lnOD2 – lnOD1)/(t2 - t1) 

Maximum growth rates of different treatments were compared using the Student’s t-test 

when two treatments were compared and using one way analysis of variance (1-way 

ANOVA) followed by the Bonferroni Multiple Comparisons test to compare three or more 

treatments.  All p values for results of the Bonferroni Multiple Comparisons are given as 

either p < 0.05 or p > 0.05.   Growth rates are given as the mean ± standard error.  Similarities 
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of overall growth across time were examined using two-way repeated measures analysis of 

variance (2-way RM ANOVA).  Prior to 2-way RM ANOVA analysis, data were tested for 

sphericity using Mauchly’s test and were corrected when the assumption of sphericity was not 

met using the Greenhouse-Geisser correction (Mauchly 1940, Quinn and Keough 2002).  

Post-hoc comparisons were made using a Bonferroni posttest where required (Neter et al. 

1990).  All analyses were performed using GraphPad Prism 5 except for tests and corrections 

of sphericity, which were performed using Systat 9 (Systat® Software).  For all tests, 

differences were considered significant when p ≤ 0.05. 
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5.2.2 Co­culture experiment 

5.2.2.1 Algal collection and culturing 

Dictyosphaeria ocellata was collected in October, 2009 from the surface of rocks at the 

field site in Summerland Key.  The algae were placed in a cooler filled with seawater from the 

site and transported directly to the Smithsonian Marine Station in Ft. Pierce, FL.  Here they 

were kept indoors in aquariums placed near a window to allow natural light to reach the algae.  

Aquariums were filled with natural seawater, aerated with airstones, and covered with 

Plexiglas to reduce evaporation.  Algae were cleaned before use by rinsing them under a tap 

of natural seawater and then removing macroscopic organisms using forceps. 

5.2.2.2 Bacterial isolation and identification 

Planktonic bacteria were isolated from seawater that was collected at the same place and 

time that the algae were collected.  Seawater was collected in three sterile 50 ml BD Falcon™ 

tubes.  The tubes were placed in a cooler with collected algae and transported to the lab (see 

above).  Upon arrival, 100 μl of seawater was transferred to a Difco™ Marine Broth 2216 1% 

agar plate and spread using a sterile spreader.  This process was repeated for each tube.  Plates 

were kept at room temperature.   

Surface-associated bacteria were isolated from glass slides that had been incubated in 

seawater from the collection site and from the surface of D. ocellata.  Three glass microscope 

slides were sterilized with 70% ethanol and then placed into the cooler with the algae (see 

above).  Upon arrival in the lab, slides were transferred separately into sterile 50 ml BD 

Falcon™ tubes filled with seawater from the cooler. Within 24 hours, slides and algae were 

rinsed with 10 ml of autoclaved sterile seawater using a 10 ml sterile syringe to remove 

loosely associated bacteria and placed onto Difco™ Marine Broth 2216 1% agar plates.  Each 

plate contained one slide or one cluster of algal cells.  Plates were kept at room temperature 

until bacterial colonies could be seen growing (~ 24 hours).   

Individual bacterial colonies were picked from the agar plates using a sterile inoculating 

loop and streaked onto new plates.  This process was repeated until only one colony form was 

seen on a plate.  Bacterial isolates were then transferred to 25 ml of Difco™ Marine Broth 
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2216 using a sterile inoculating loop and grown into dense cultures at room temperature with 

constant shaking.  Liquid cultures were diluted by a factor of 1x104 using filter sterilized 

seawater, and 100 μl samples were spread onto clean agar plates as above.  Individual 

colonies were again picked from the plates using a sterile inoculating loop and transferred to 

30 ml of Difco™ Marine Broth 2216 and allowed to grow for 48 hours.  An aliquot of each 

bacterial culture (850 μl) was added to 150 μl of autoclave sterilized glycerol and stored at -

80 °C.  The remaining liquid bacterial cultures were kept at room temperature on a shaker 

until further use in co-culture experiments. 

For strains KSW2, KSW3, and S3, DNA was extracted from dense liquid bacterial 

cultures (started from glycerol stocks) using the UltraClean™ Microbial DNA Isolation Kit 

from MO BIO Laboratories, Inc.  The DNA extracts were then subjected to PCR 

amplification of a 1363 bp section of the 16S rRNA gene using the 27f (GGG TTT GAT CCT 

GGC TCA G) forward primer and the 1390r (ACG GGC GGT GTG TRC AA) reverse primer 

following the same protocol as in the bacterial community profiling (see Section 5.2).  KSW1 

was amplified directly from the glycerol stock.  PCR products were purified using the 

QIAquick® PCR Purification Kit from Qiagen.  The purified PCR products were then 

submitted to GATC Biotech for sequencing.  The positions of the isolated bacterial strains 

within the genus Pseudoalteromonas were determined by aligning a 1286 bp section of the 

16S rRNA gene of these strains with those of known Pseudoalteromonas spp. as in 

Holmström and Kjelleberg (1999) (Figure 22).  Sequences of known Pseudoalteromonas spp. 

were obtained from GenBank and the alignment was performed with ClustalW.  Sequences 

obtained from bacterial isolates are available at GenBank under accession numbers 

HQ164445 - HQ164448. 

5.2.2.3 Experimental design 

The effect of D. ocellata on the growth of three planktonic (KSW1, KSW2, and KSW3) 

and one glass slide surface-associated (S3) bacterial isolate was investigated by co-culturing 

the algae with the bacteria as in section 5.3, but with some changes to improve the setup.  The 

bacterial isolates were cultured overnight in Difco™ Marine Broth 2216 so that they were in 

stationary phase prior to use.  For each isolate, 15 ml of culture was added to 135 ml of filter-

sterilized natural seawater in a sterile 200 ml Erlenmeyer flask.  Flasks were sealed with 
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sterile stoppers made of cotton surrounded by cheese cloth.  D. ocellata was rinsed with 20 ml 

of autoclaved seawater using a 60 ml sterile syringe.  Five grams (wet weight) of algae was 

added to the flask (bacteria + algae) and the growth of the bacteria was monitored by 

measuring optical density at 550 nm (Shimadzu UV-Visible spectrophotometer) every 2 hours 

until the culture reached stationary phase then at 24 hour intervals after that for five days or 

until the treatment exhibited an obvious decline in bacterial abundance.  Bacterial growth in 

the presence of D. ocellata was compared to that in controls prepared without the addition of 

algae (bacteria alone).  An additional control was prepared to ensure that the contribution of 

algal associated bacteria to the overall abundance in the co-cultures was negligible (algae 

alone).  Five grams of algae (prepared as above) was added to 135 ml of filter-sterilized 

seawater.  Fifteen milliliters of each respective bacterial culture was sterile filtered to remove 

bacteria and added to the algae alone treatment to control for the effects of added nutrients on 

the growth of the naturally associated bacterial community.  Co-cultures and controls were 

continually shaken at room temperature under natural light.  All treatments contained five 

replicates unless otherwise stated.   

Directly following the last measurement of the co-culture experiments, the medium from 

each replicate was vacuum-filtered through a 0.22 μm GSWP, 47 mm filter (Millipore™) into 

an autoclaved 500 ml or 1000 ml vacuum flask using a Millipore™ glass filter holder.  Thirty-

six ml of the sterile filtrate was transferred to a sterile 50 ml BD Falcon™ tube and frozen at -

20 °C until further use.  Organic compounds were extracted from the remaining filtrate using 

a Varian MegaBond Elut C18 cartridge (6 cc).  The filtrate was passed through the cartridge, 

the cartridge was allowed to dry for 5 minutes, and organic compounds were eluted 

sequentially with 2 ml of methanol and 2 ml ethyl acetate, all under vacuum.   The methanol 

and ethyl acetate eluates were combined, dried in a speed vac at 37 °C (SPD SpeedVac 

ThermoSavant), and stored at -20 °C.  Cartridges were rinsed with 6 ml of distilled water 

followed by 6 ml of methanol and then another 6 ml of distilled water and allowed to dry for 5 

minutes under vacuum prior to the first use and after each subsequent use.  They were reused 

a maximum of five times.  

Algae from the co-culture experiments were rinsed in distilled water, patted dry with 

paper towels, and freeze dried (LABCONCO® Freezone 6).  Dried algae were ground to a fine 
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powder using a mortar and pestle.  The dry powder was weighed and extracted in 4 ml of 

methanol:dichloromethane (1:1) for 30 minutes.  The extracts were centrifuged to remove cell 

debris and the supernatant was transferred to 6 ml glass vials.  Solvents were allowed to 

evaporate from the extracts under the fume hood at room temperature.  Dry extracts were 

stored at -20 °C. 

In addition, 100 g (wet weight) of D. ocellata that had not been used in the co-culture 

experiment was extracted in order to determine if the co-culturing affected the activity of the 

algae against the bacteria.  The alga was rinsed, dried, and ground as above.  It was extracted 

in 80 ml of methanol:dichloromethane (1:1) for 30 minutes and then processed as above.   

Filtered culture media, media extracts, and algal extracts were tested for activity against 

the same bacterial strain that they were originally exposed to in the co-culture experiment.  

Filtered culture media samples (see above) were allowed to thaw at room temperature before 

use.  Seawater controls were prepared by adding 36 ml of filter sterilized natural seawater to 

five 50 ml BD Falcon™ tubes.  Four milliliters of stationary phase bacterial culture was 

added to each replicate.   

Both media and algal extracts from co-cultures were dissolved in dimethyl sulfoxide 

(DMSO, 300 µl and 500 µl respectively).  The fresh algal extract, not previously exposed to 

the bacterial cultures, was dissolved in 10 ml DMSO.  Extracts (100 μl) were added to 50 ml 

BD Falcon™ tubes containing 27 ml of sterile filtered natural seawater.  The solutions were 

shaken and inoculated with 3 ml of stationary phase bacteria culture.  The final concentrations 

of the extracts in solution were volumetrically equivalent to those of the original co-culture 

experiments. Solvent controls were prepared by adding 100 μl of DMSO to 27 ml of sterile 

filtered natural seawater prior to inoculation with 3 ml of bacterial culture.  Tubes were 

continually shaken at room temperature.   

5.2.2.4 Statistical analysis 

Bacterial cultures (abundance measured as OD) were compared in terms of maximum 

growth rate (exponential phase) and similarity of overall growth across time as described in 

Section 5.3.2.
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5.2.3 Bioassay guided fractionation of D. ocellata crude extracts 

5.2.3.1 Preparation of crude extract 

D. ocellata (1195 g wet weight) was rinsed in distilled water, patted dry with paper 

towels, and freeze dried (LABCONCO®
 Freezone 6).  Dried algae were ground to a fine 

powder using a mortar and pestle.  The dry powder was weighed and extracted in 

methanol:dichloromethane (1:1) at a volumetric ratio of 2:1 solvent to algal powder overnight.  

The extracts were gravity filtered through Whatman® no. 1 filter paper.  The solvent was 

removed from the filtrate using rotary evaporation.  Dry extracts were stored at -20 °C. 

Prior to use in the bioassay, the dry extract was dissolved in 20 ml methanol:ethyl acetate 

(1:1).  One milliliter was transferred to a 4 ml vial and dried under a constant stream of 

nitrogen and then dissolved in 580.32 µl DMSO.  This sample was designated as the 10x 

concentration and was diluted with DMSO to produce 5x, 2x, 1x, 0.5x, and 0.1x 

concentrations.   

5.2.3.2 Bioassay set­up 

Bioassays were performed in sterile 96-well cell culture plates (Cellstar®, Greiner Bio-

one).  Plates were sealed with Breathe-Easy™ gas permeable sealing film.  Each plate was 

used for one bacterial strain.  Thirteen bacterial strains isolated from the Florida Keys (see 

5.4.2) were tested (KSW2, KSW3, KSW4, KSW5, KSW6, D1, D3, D3.2, D4, D5, S3, S4, and 

S5).   Each of the eight rows contained one treatment and each treatment contained 12 

replicates.  In addition to the five concentrations listed above, there was a solvent control (0x) 

with only DMSO and a positive control (+) containing penicillin (10 mg/ml), gentamycin (2.5 

mg/ml), and germanium dioxide (0.2 mg/ml).  Each well contained 178 µl of sterile-filtered 

ASW, 2 µl of treatment (extract, solvent, or antibiotics), and 20 µl of stationary phase 

bacterial culture.  An additional plate was prepared as a blank containing only ASW and the 

treatment, but no bacteria.   

5.2.3.3 DMSO test 

The effects of three concentrations (1%, 5%, and 10%) of DMSO on the growth of the 

same 13 bacterial strains were determined using the same set up as above (Section 5.5.2).  
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These treatments were compared to a control that contained no DMSO.  Tests were performed 

in triplicate. 

5.2.3.4 Bioassay analysis 

Absorbance of bacterial cultures within 96-well plates was measured at 470 nm using a 

Mithras LB 940 microplate reader (Berthold Technologies).  Absorbance was measured every 

hour for the first 8 hours and then at 24 hours post inoculation and every 24 hours after that.   

Absorbance values for the blank plate were averaged for each treatment and subtracted from 

the absorbance values of the respective treatments in plates containing bacteria.  Significant 

effects of treatment on the absorbance 24 hours after inoculation were determined using one-

way ANOVA or the Kruskal-Wallis test when data failed to meet the assumption of equal 

variance.  These tests were followed by either Dunnett’s or Dunn’s Multiple Comparison 

Test, respectively.  Differences were considered significant when p < 0.05.  Statistical tests 

were performed using GraphPad Prism 5.     

5.2.3.5 Fractionation 

Crude extracts were divided into fractions using liquid-liquid partitioning according to the 

method described by Kupchan et al. (1975) (Figure 29).  One milliliter of crude extract from 

above was dried under nitrogen and dissolved in 200 ml mixture of hexane:methanol:water 

(10:9:1).  This mixture was shaken in a separatory funnel and the hexane fraction was 

removed.  The remaining methanol:water mixture was adjusted to a ratio of 6:4, and 150 ml 

chloroform was added.  This mixture was again shaken and the chloroform fraction was 

removed.  The methanol was removed from the remaining methanol:water fraction using 

rotary evaporation.  The remaining water and 75 ml of ethyl acetate were shaken in the 

separatory funnel and the two layers removed separately.  Solvents were removed from the 

resulting four fractions (hexane, chloroform, ethyl acetate, and water) using rotary 

evaporation to produce a volume of approximately 2-4 ml.  Each was divided equally into two 

4 ml glass vials and the remaining solvents were removed under a constant stream of nitrogen.  

One vial was stored at -20 °C for later chemical analysis and the other was dissolved in 1 ml 

DMSO.  The stock solutions were used to prepare 1x, 2x, and 5x concentrations as above 

(Section 5.5.1).  The hexane, chloroform, and ethyl acetate fractions were tested against 

bacterial strains KSW3, KSW4, KSW5, S3, S4, S5, D4 and D5. Additionally, a combination 
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of the three fractions at 2x concentration, a solvent control (DMSO alone), and a positive 

control (antibiotic mix, see Section 5.5.2) were also tested.   The bioassay set-up was the same 

as above with a few modifications.  Each of the 12 columns contained one treatment, and each 

treatment contained 8 replicates.  The bioassay was analyzed as above (Section 5.5.4).   

5.2.3.6 Glucose and linolenic acid test 

Solutions of glucose and linolenic acid were prepared in DMSO to a 10x concentrated 

solution (60 mg/ml).  These were diluted in DMSO to 5x, 2x, and 1x concentrated solutions, 

which were tested against bacterial strains KSW4 and KSW5 as in Section 5.5.4. 

5.2.3.7 Chemical analyses 

GC-MS and 1H NMR were performed on the hexane and chloroform fractions.  Dried 

extracts were dissolved in deuterated chloroform and subjected to 1H NMR using a Bunker 

400 MHz Bruker Advance NMR spectrometer.  Samples for GC-MS analysis were 

derivatized with (trimethylsilyl)diazomethane.  Dried extracts were dissolved in ~ 200 µl 

methanol. Approximately 100 µl of (trimethylsilyl)diazomethane was added and the solution 

stood at room temperature for 1 hour.  Solvents were removed from derivatized extracts under 

a constant stream of nitrogen and both derivatized and underivatized extracts were dissolved 

in hexane for GC-MS analysis.   

Derivatized and underivatized samples were analyzed with GC-MS using an Agilent 

6890N gas chromatograph (GC) with a DB-5ms column (Agilent) coupled to a Waters GCT 

Premier™ orthogonal time-of-flight (oTOF) mass spectrometer (MS).  The GC column had 

an internal diameter of 0.25 mm and a film thickness of 0.25 µm.  GC parameters used during 

these experiments are listed in Table 7.  Mass spectra were produced using electron impact 

ionization (70 eV) in the positive mode.  Samples were injected with an Agilent 7683B 

autosampler.   
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Injection 10 µl   

Injector 280 °C   

Carrier gas Helium   

Flow rate 1.0 ml/min   

Split ratio 1   

Oven program Time (min) 

0.0 

3.0 

17.0 

19.0 

39.0 

Temp (°C) 

60.0 

60.0 – 200.0 

200.0 

200.0 – 300.0 

300.0 

Ramp rate (°C/min) 

Hold 

10.0 

Hold 

5.0 

End 

 

Table 7: GC parameters
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Appendices 

 

 

Appendix I:  Agarose gels of PCR amplified DNA fragments amplified with different 
reaction mixes and for different thermal cycling protocols.  The number of PCR cycles is 
listed across the top, and the reaction mix used, down the left side.  Unlabeled lanes 
contain amplified DNA from known bacteria, b indicates no bacteria added to the PCR 
mixture.  Each treatment contains a GeneRuler Express DNA ladder.  The protocol 
chosen for further use is outlined in blue.  The reagents and concentrations used for 
different reaction mixtures are given in the table below.   
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Appendix II: Agarose gels of PCR amplified DNA fragments amplified using varying 
annealing temperatures (°C).    
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Appendix III: Effects of different concentrations of DMSO on the growth of marine 
bacterial strains.  Values are mean ± standard error, n = 3.   
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Appendix IV:  H1 NMR spectrum of the hexane fraction of D. ocellata crude extract
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Appendix V:  H1 NMR spectrum of the chloroform fraction of D. ocellata crude extract.
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