Eisen in Alumosilicatschmelzen

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena

von Dipl.-Chem. Achim Wiedenroth geboren am 02. Mai 1965 in Gifhorn, Niedersachsen

Gutachter:

- 1. Prof. Dr. C. Rüssel
- 2. Doz. Dr. Ehrt

Tag der öffentlichen Verteidigung: 12. Nov. 2003

Inhaltsverzeichnis

1	Ein	lleitung und Zielstellung	1
2	Sqı	are-Wave Voltammetrie in Glasschmelzen	3
	2.1	Grundlagen der Thermodynamik des Fe ³⁺ /Fe ²⁺ -Redoxgleichgewichts	3
	2.2	Die Square-Wave Voltammetrie (SWV) als Messmethode	5
	2.3	Diffusionskontrollierte Ströme	6
3	Ex	perimenteller Teil	8
	3.1	Aufbau der SWV-Messzelle und der Ofenanlage	8
	3.2. 3.2. 3.2. 3.2.	2 Leitfähigkeitsmessung	n.10 10
	3.3	Viskositätsmessung	12
4	Str	uktur von Alkali-Erdalkali-Alumosilicatgläsern und –schmelzen	14
	4.1	Einbau von Alkali- und Erdalkali-Ionen	14
	4.2 4.2. 4.2. 4.3	2 [Al ₂ O ₃]/[RO] ≈l – Tectosilicate	15 17 18
	4.3. 4.3.	2, 2,	
	4.4	Vergleich der Struktur von Fe ³⁺ - und Al ³⁺ -Ionen in Silicaten	
5	The	ermodynamik des Fe ³⁺ /Fe ²⁺ -Redoxgleichgewichts	23
	5.1	Die Temperaturabhängigkeit des Fe ³⁺ /Fe ²⁺ -Redoxgleichgewichts	23
	5.2	Einfluss der Zusammensetzung auf das Fe ³⁺ /Fe ²⁺ -Redoxgleichgewicht	
	5.2.		
	5.2. 5.2.		

6	Eis	en-Diffusionskoeffizienten	37
	6.1	Bestimmung der Eisen-Diffusionskoeffizienten	37
	6.2.		39
	6.2.		
7	Vis	kositäten	49
	7.1	Temperaturabhängigkeit der Viskositäten	49
	7.2	Einfluss der Zusammensetzung auf die Viskositäten	49
	7.2.	1 Einfluss der Aluminiumoxidkonzentration	49
	7.2.		
	7.2.	3 Einfluss der Magnesiumoxidkonzentration	55
8	Vis	kositätsbezogene Eisen-Diffusionskoeffizienten	56
	8.1	Einfluss der Zusammensetzung auf die viskositätsbezogenen Eisen-	
		ionskoeffizienten	
	8.1. 8.1.		
	8.1.		
9	Dis 9.1	kussion der Thermodynamik des Fe ³⁺ /Fe ²⁺ -Redoxgleichgewichtes Temperaturabhängigkeit des Fe ²⁺ /Fe ³⁺ - Redoxgleichgewichtes	
	9.2	Einfluss der Zusammensetzung auf das Fe ³⁺ /Fe ²⁺ -Redoxgleichgewicht	64
	,	1 Einfluss der Aluminiumoxidkonzentration	
	9.2.		
	9.2 9.2.	ϵ	
	9.3	Erstellung empirischer Gleichungen zur Berechnung der Peakpotentiale	
	9.4	Zusammenfassung zur Thermodynamik des Fe ³⁺ /Fe ²⁺ -Redoxgleichgewichts	82
10	0 Dis	kussion der Viskositäten	84
	10.1	Temperaturabhängigkeit der Viskosität	85
	10.2	Einfluss der Zusammensetzung auf die Viskosität	85
	10.2	=	
	10.2		
	10.2		
	10.2		
	10.3	Zusammenfassung zur Viskosität der Schmelzen	93

11 Dis	skussion der Eisen-Diffusionskoeffizienten	95
11.1	Temperaturabhängigkeit der Eisen-Diffusionskoeffizienten	95
11.2	Viskositätsbezogene Eisen-Diffusionskoeffizienten	95
11. 11. 11.		96 99 100
12 Ei	nfluss der Kristallisation	105
12.1	Einfluss der Kristallisation auf die Temperaturabhängigkeit der Peakpot	entiale106
12.2 Diffus	Einfluss der Kristallisation auf die Temperaturabhängigkeit der Eisensionskoeffizienten	107
13 Zu	sammenfassung	108
Literat	turverzeichnis	112

1 Einleitung und Zielstellung

Die Konzentration und das Redoxgleichgewicht polyvalenter Elemente beeinflussen viele Eigenschaften wie z.B. die Farbe, die Viskosität und das Kristallisationsverhalten von Glasschmelzen und den fertigen Glasprodukten.

Das Fe³⁺/Fe²⁺-Redoxgleichgleichgewicht ist für die Glastechnologie von großer Bedeutung, da Eisen einerseits als häufigste Verunreinigung in den natürlichen Rohstoffen vorkommt und andererseits auch als Zusatzstoff zur Färbung von Gläsern eingesetzt wird. Somit ist die Kontrolle und die Einstellung des Redoxgleichgewichtes in den entsprechenden Produktionsprozessen ein wesentlicher Faktor.

Die Bestimmung des Redoxgleichgewichtes eines polyvalenten Elementes kann prinzipiell auf zwei verschiedenen Wegen erfolgen. Bei der einen Methode werden die Schmelzen bei bestimmten Temperaturen und definierter Ofenatmosphäre mit bekanntem Sauerstoffpartialdruck äquilibriert und dann schnell abgekühlt. Die erkalteten Gläser werden anschließend anhand chemischer und physikalischer Analysen untersucht, und das Redoxgleichgewicht bestimmt [1, 2]. Der Nachteil dieser Methode liegt in einer möglichen Veränderung des Oxidationszustandes beim Abkühlprozess durch Reaktionen sowohl mit weiteren in der Schmelze vorhandenen polyvalenten Elementen als auch mit physikalisch gelöstem Sauerstoff [3,4].

Die zweite Möglichkeit ist die direkte Untersuchung des Redoxverhaltens der polyvalenten Elemente in den Glasschmelzen. Unter der Vorraussetzung, dass die Leitfähigkeit der Schmelze ausreichend hoch ist, sind dazu insbesondere voltammetrische Verfahren gut geeignet.

Die Square-Wave Voltammetrie (SWV) ist bezüglich der Untersuchung in Glasschmelzen in den letzten Jahren das am häufigsten angewandte Messverfahren [5-20]. Die dabei aufgenommenen Strom-Spannungskurven erlauben sowohl Aussagen zur Thermodynamik der Redoxgleichgewichte als auch zu den Diffusionskoeffizienten der polyvalenten Elemente in der Schmelze. Wesentliche Vorteile dieser Methode gegenüber den anderen elektrochemischen Verfahren wie z.B. Cyclovoltammetrie sind die höhere Empfindlichkeit und Auflösung [13,19]. Dies erlaubt die quantitative Bestimmung [14,15] und die parallele Untersuchung von mehr als einem polyvalenten Element in der Schmelze [18,20].

Im Rahmen dieser Arbeit werden für eine Reihe von Schmelzen im System Na₂O/CaO/MgO/Al₂O₃/SiO₂ die Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichtes und die Eisen-Diffusionskoeffizienten ermittelt. Durch systematische Veränderungen der Glaszusammensetzung sollen die dabei erhaltenen Ergebnisse mit strukturellen Vorstellungen zum Einbau der Eisen-Ionen in den Silicat-Schmelzen korreliert werden.

Im Einzelnen soll die Variation des Al₂O₃-Gehaltes zeigen, ob und wie sich der unterschiedliche Einbau der Al³⁺-Ionen als Netzwerkbildner bzw. –wandler auswirkt.

Die Änderung der Natriumoxid-Konzentration und der Einfluss des Gehaltes an Calcium- und Magnesiumoxid werden untersucht. Dabei soll der Einfluss des unterschiedlichen Einbaus der Natrium- und Erdalkali-Ionen einerseits und zwischen den Calcium- und Magnesium-Ionen andererseits geklärt werden. Insbesondere werden deswegen auch Zusammensetzungen untersucht, die gleichzeitig beide Erdalkalien in variablen Verhältnissen enthalten.

Die parallele Bestimmung der Viskositäten der Schmelzen (zwischen 1150 und 1450 °C) erlaubt Aussagen zum Anteil der Trennstellensauerstoffe im Silicatnetzwerk und damit auch zum Gehalt der in der Schmelze als Netzwerkwandler vorliegenden Komponenten in Abhängigkeit von der Zusammensetzung.

Dadurch ist es auch möglich den Einfluss der Zusammensetzung auf die Eisen-Diffusionskoeffizienten bezogen auf die gleichen Viskositäten (und damit nicht bei derselben Temperatur) zu diskutieren.

Schließlich sollen anhand der erhaltenen thermodynamischen Daten empirische Gleichungen aufgestellt werden, die es ermöglichen die Peakpotentiale des Fe³⁺/Fe²⁺-Redoxgleichgewichtes in Abhängigkeit von der Glaszusammensetzung zu berechnen.

2 Square-Wave Voltammetrie in Glasschmelzen

2.1 Grundlagen der Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichts

Die Fe³⁺- und Fe²⁺-Ionen liegen in Glasschmelzen bei hohen Temperaturen im Gleichgewicht mit dem physikalisch gelösten Sauerstoff vor:

$$Fe^{3+} + \frac{1}{2}O^{2-} \iff Fe^{2+} + \frac{1}{4}O_2$$
 (2.1)

Aus dem Massenwirkungsgesetz ergibt sich mit den Aktivitäten a_i der jeweiligen Ionen für die temperaturabhängige Gleichgewichtskonstante K(T):

$$K(T) = \frac{a_{Fe^{2+}} \cdot a_{O_2}^{1/4}}{a_{Fe^{3+}} \cdot a_{O_2^{-}}^{1/2}}$$
 (2.2)

Die Sauerstoffionenaktivität a_{o^2} in der Schmelze ist gegenüber den Aktivitäten der polyvalenten Ionen und des physikalisch gelösten Sauerstoffs groß und kann während der konstant angesehen Sie Redoxreaktion als werden. wird darum die Gleichgewichtskonstante $K^*(T)$ mit einbezogen. Bei geringen Eisen-Konzentrationen sind die Aktivitätskoeffizienten des Fe³⁺/Fe²⁺-Redoxpaares unabhängig von der Konzentration und ihr Verhältnis wird als unabhängig von der Temperatur angesehen. Damit lassen sich die Eisen-Ionenaktivitäten durch die entsprechenden Konzentrationen ersetzen. Unter der Annahme der Äquilibrierung mit der umgebenden Atmosphäre kann die Sauerstoffaktivität durch den Sauerstoffpartialdruck p_{o_2} ersetzt werden. Damit ergibt sich für die Gleichgewichtskonstante $K^*(T)$:

$$K*(T) = \frac{[Fe^{2+}] \cdot p_{O_2}^{1/4}}{[Fe^{3+}]}$$
 (2.3)

Für dieses Gleichgewicht nimmt die Nernstgleichung folgende Form an:

$$E = E^{0} + \frac{R \cdot T}{F} \ln \frac{[Fe^{3+}]}{[Fe^{2+}] \cdot p_{O_{2}}^{1/4}}$$
(2.4)

 E^0 ist dabei das Standardpotential bezogen auf eine Referenzelektrode. Über die Temperaturabhängigkeit der Standardpotentiale $E^o(T)$ für den Fe³⁺/Fe²⁺-Redoxübergang lassen sich die thermodynamischen Kenngrößen und die Gleichgewichtskonstante $K^*(T)$ bestimmen. Es gelten folgende Beziehungen:

$$\Delta G^{0} = -F \cdot E^{o}(T) = -RT \ln K * (T) = \Delta H^{0} - T\Delta S^{0}$$
 (2.5)

Für $\ln K^*(T)$ ergibt sich somit:

$$\ln K * (T) = E^{o}(T) \frac{F}{R \cdot T} = -\frac{\Delta H^{0}}{R \cdot T} + \frac{\Delta S^{0}}{R}$$
 (2.6)

Für die Bereiche linearer Temperaturabhängigkeit von $E^0(T)$ können die Standardreaktionsenthalpie ΔH^0 und Standardreaktionsentropie ΔS^0 wie folgt berechnet werden:

$$\Delta S^{0} = F \left(\frac{\delta E^{o}(T)}{\delta T} \right) \tag{2.7}$$

$$\Delta H^{0} = F \left(T \left(\frac{\delta E^{o}(T)}{\delta T} \right) - E^{o}(T) \right)$$
 (2.8)

Unter der Annahme dass ΔH^0 von der Temperatur unabhängig und die Schmelze mit der Atmosphäre äquilibriert ist, verschiebt sich das Fe³⁺/Fe²⁺-Redoxgleichgewicht mit zunehmender Temperatur auf die Seite der Fe²⁺-Ionen.

Bei elektrochemischen Untersuchungen in Glasschmelzen wird als Referenzelektrode eine Pt/ZrO₂-Elektrode eingesetzt. Für den Fe³⁺/Fe²⁺-Redoxübergang gilt folgender Zusammenhang [26]:

$$E = E_p + \frac{R \cdot T}{F} \ln \frac{[Fe^{3+}]}{[Fe^{2+}] \cdot p_{O_2}^{1/4}}$$
 (2.9)

Dabei steht p_{o_2} für den Sauerstoffpartialdruck des Gases mit dem die Pt/ZrO₂-Referenzelektrode umspült wird (in dieser Arbeit Luft mit p_{o_2} = 0.21 bar). Die Peakpotentiale

 E_p sollten gleich den Standardpotentialen E^0 (siehe Gl. 2.4) sein, wenn als Referenzgas reiner Sauerstoff verwendet wird [21]. Damit gilt zwischen den Peakpotentialen E_p und Standardpotentialen E^o folgender Zusammenhang:

$$E^{o} = E_{P} + \frac{R \cdot T}{4 \cdot F} \ln p_{O_{2}}$$
 (2.10)

2.2 Die Square-Wave Voltammetrie (SWV) als Messmethode

Die Square-Wave Voltammetrie (SWV) wurde 1958 von Barker [22] vorgestellt. Erst Ende der 70er Jahre wurde die Methode von Osteryoung und Mitarbeitern [23,24,25] wieder aufgegriffen, weil zu diesem Zeitpunkt eine entsprechend schnelle Digitaltechnik zur Datenaufnahme vorhanden war.

Bei der SWV erfolgt die Messung des Stromes als Funktion eines zeitabhängigen Elektrodenpotentials. Der Potential-Zeit-Verlauf ist in Abbildung 2.1 schematisch dargestellt.

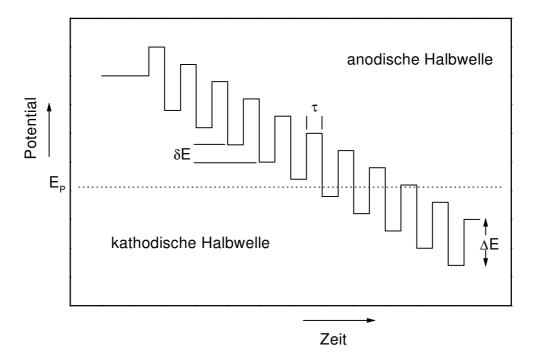


Abb. 2.1: Zeitabhängiger Potentialverlauf bei der SWV-Messung.

Der stufenförmig abfallenden Potentialrampe mit der Stufenhöhe δE wird eine Rechteckspannung mit der Amplitude ΔE so überlagert, dass ein Rechteckimpuls genau einer

Stufe entspricht. Die Dauer einer Halbwelle ist durch die Stepzeit τ gegeben. Die Strommessung erfolgt jeweils am Ende einer Halbwelle, da dann der an der Elektrode durch die Aufladung der elektrochemischen Doppelschicht auftretende kapazitive Strom gegenüber dem Faradayschen Strom weitgehend abgeklungen ist. Der Faradaysche oder Durchtritts-Strom tritt auf, wenn das der Redoxreaktion entsprechende Peakpotential von mindestens einem polyvalenten Element im durchfahrenen Potentialbereich liegt. Dabei wird an der Elektrode die reduzierte in die oxidierte Spezies, bzw. umgekehrt, umgesetzt. Zur Unterdrückung des Migrationsstromes wird bei allen voltammetrischen Messungen ein monovalenter Grundelektrolyt zum Ladungstransport zugesetzt. In Glasschmelzen übernehmen in der Regel die frei beweglichen Alkaliionen diese Aufgabe. Der Transport der polyvalenten Ionen zur Elektrode - und damit auch der daraus resultierende Faradaysche Strom - ist damit ein diffusionskontrollierter Prozess.

2.3 Diffusionskontrollierte Ströme

Die Square-Wave Voltammetrie erlaubt auch die Ermittlung der Diffusionskoeffizienten der polyvalenten Spezies in der Schmelze. Dazu muss die Redoxreaktion an der Elektrode reversibel und diffusionskontrolliert sein. Am Startpotential sollten die polyvalenten Spezies vorwiegend in ihrer oxidierten Form vorliegen ($c_0 \approx c_{ox}$), und $\Delta E < \frac{RT}{nE}$ sein.

Für den jeweils am Ende einer Halbwelle gemessenen Strom I_i gilt dann [25]:

$$I_{j} = nFAc_{0} \left(\frac{D}{\pi \tau}\right)^{\frac{1}{2}} \sum_{m=1}^{j} \frac{Q_{m-1} - Q_{m}}{\sqrt{j - m + 1}}$$
 (2.11)

mit
$$Q_m = \frac{\varepsilon_m}{1 + \varepsilon_m}$$
 (2.12)

und
$$\varepsilon_m = \exp\left(\frac{nF(E_m - E^0)}{RT}\right) \tag{2.13}$$

Dabei ist A die Oberfläche der in die Schmelze eingetauchten Arbeitselektrode, D der Diffusionskoeffizient des Ions im jeweiligen Oxidationszustand und E_m das Potential der entsprechenden Stufe. Der Differenzstrom $\Delta I_j = I_j - I_{j+1}$ (mit j = 1, 3, 5...) der kathodischen und anodischen Halbwelle wird gegen das mittlere Potential $E_i = \frac{1}{2} (E_j + E_{j+1})$ der jeweiligen Stufe aufgetragen.

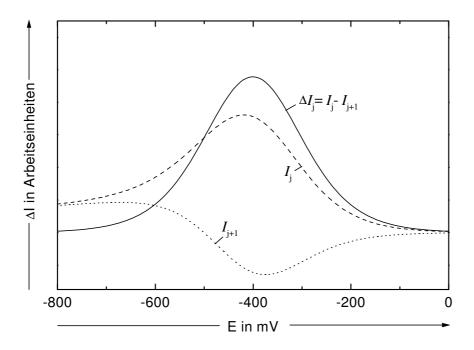


Abb. 2.2: Theoretisches Voltammogramm mit den beiden Teilströmen.

Die Stromdifferenz ΔI_j wird für das Peakpotential E_p (siehe Abbildung 2.2) maximal, weil dann die größte Anzahl an kathodisch reduzierten Ionen im anschließenden anodischen Puls wieder oxidiert wird. Für diesen Peakstrom ΔI_p gilt [25]:

$$\Delta I_{p} = 0.31 \frac{n^{2} F^{2} A c_{0} \Delta E}{RT} \left(\frac{D}{\pi \tau}\right)^{\frac{1}{2}}$$
 (2.14)

Die Diffusionskoeffizienten können berechnet werden, wenn die Peakströme ΔI_p proportional zu $\tau^{-0.5}$ sind und die Elektrodenoberfläche A und die Gesamtkonzentration der polyvalenten Ionen c_0 bekannt sind.

Die Temperaturabhängigkeit der Diffusion lässt sich über einen Arrhenius-Ansatz beschreiben:

$$D = D_0 \cdot e^{-\frac{E_D}{RT}} \tag{2.15}$$

Über die lineare Abhängigkeit von log D zu T^{-1} lassen sich die Aktivierungsenergie E_D und der präexponentielle Faktor D_0 ermitteln.

Neben den Peakpotentialen und Peakströmen als charakteristische Größen erlaubt die Halbwertsbreite HWB des Peaks eine Abschätzung wie viele Elektronen n in einem Schritt übertragen werden.

$$HWB = 3.53 \frac{RT}{nF} \tag{2.16}$$

3 Experimenteller Teil

3.1 Aufbau der SWV-Messzelle und der Ofenanlage

Die Messzelle zur Durchführung der voltammetrischen Messungen ist als Dreielektrodenanordnung aufgebaut. Die Arbeitselektrode bestand aus einem Platindraht mit 1 mm Durchmesser. Über ein durch ein Al₂O₃-Röhrchen geführten Platindraht (Durchmesser: 0.5 mm) wurde sie kontaktiert. Die Gegenelektrode war ein Platinblech mit einer Oberfläche von ca. 2 cm², die analog zur Arbeitselektrode kontaktiert wurde. Bei der Referenzelektrode handelt es sich um einen Y₂O₃-stabilisierten ZrO₂-Festelektrolyten der gegenüber Glasschmelzen bis etwa 1600 °C stabil ist und ein konstantes Potential im untersuchten Temperaturbereich hat. Die zylinderförmige ZrO₂-Elektrode (Länge: 3 cm; Durchmesser: 1 cm) wurde mit einem Keramikkleber (WH 1800 Firma Rath, München) an eine Al₂O₃-Röhre befestigt. Durch diese Röhre wurde ein weiteres Al₂O₃-Röhrchen geschoben, das als Führung für einen Platindraht (Durchmesser: 0.5 mm) diente, mit dem die Kontaktierung der ZrO₂-Elektrode über die der Schmelze abgewandten Seite erfolgte. Außerdem wurde die Referenzelektrode über dieses Al₂O₃-Röhrchen durch eine externe Pumpe mit Luft gespült. Dadurch konnte der Sauerstoffpartialdruck (p_{o_2} = 0.21 bar) während der gesamten Messung konstant gehalten werden. In der Abbildung 3.1 ist der Aufbau der Messanordnung schematisch dargestellt.

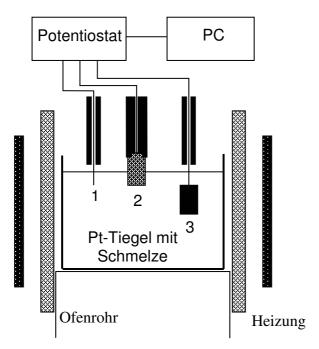


Abb. 3.1: Schematischer Aufbau der Messapparatur: 1: Pt-Arbeitselektrode; 2: Pt/ZrO₂-Referenzelektrode; 3: Pt-Gegenelektrode.

Der widerstandsbeheizte Vertikalrohrofen (MoSi₂) ermöglichte mit einer Gleichstromversorgung eine störungsfreie Messung über den gesamten Temperaturbereich. Die Elektroden wurden durch eine Halterung fixiert, die am oberen Ofenrohrende an einem dort befestigten wassergekühlten Flansch angebracht wurde. Der Pt-Messtiegel (Durchmesser ca. 40 mm, Volumen ca. 60 cm³, befüllt mit etwa 45 cm³ Glas) mit der Schmelze wurde relativ zu den Elektroden bewegt, und konnte über eine Mikrometermessuhr auf 0.1 mm genau vertikal verschoben werden.

Mit einem Potentiostaten (Bank Elektronik Modell 75 L) der über Digital/Analog- und Analog/Digital-Wandler mit einem PC verbunden war, wurde das Potential zwischen der stromlos geführten Referenzelektrode und der Arbeitselektrode so eingestellt, dass es der über dem PC vorgegebenen Sollspannung entsprach. Der daraus resultierende Strom zwischen Arbeits- und Gegenelektrode wurde gemessen. Die Messanordnung ist ausführlich in [26] beschrieben.

3.2 SWV-Versuchsdurchführung

3.2.1 Herstellung und Vorbereitung der Schmelzen für die SWV-Untersuchungen

Folgende Glaszusammensetzungen (jeweils in mol %) wurden im Rahmen dieser Arbeit hergestellt:

• $5 \text{ Na}_2\text{O} \cdot 15 \text{ CaO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ x = 5, 10, 12.5, 15, 20, 25• $5 \text{ Na}_2\text{O}$ · 15 MgO · $x \text{ Al}_2\text{O}_3$ · $(80 - x) \text{ SiO}_2$ x = 0, 5, 10, 15, 20• 5 Na₂O· 10 MgO· 5 CaO· x Al₂O₃· (80 - x) SiO₂ x = 0, 5, 7.5, 10, 15• $5 \text{ Na}_2\text{O} \cdot 5 \text{ MgO} \cdot 10 \text{ CaO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ x = 0, 5, 10, 15• $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ x = 5, 10, 15, 20• $x \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 10 \text{ Al}_2\text{O}_3 \cdot (80 - x) \text{ SiO}_2$ x = 5, 15, 20• $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{ SiO}_2$ x = 5, 15, 20• 10 Na₂O₂ x MgO₂ 15 Al₂O₃ (75 - x) SiO₂ x = 15, 20• $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot (90 - \text{x}) \text{SiO}_2$ x = 15, 20

Alle Schmelzen wurden aus den Rohstoffen (Na₂CO₃, CaCO₃, MgCO₃, Al(OH)₃ und SiO₂) in einem Platintiegel bei 1600 °C in einem widerstandsbeheizten MoSi₂-Ofen erschmolzen und durch Fritten in Wasser homogenisiert. Die zerkleinerten Gläser wurden jeweils mit Fe₂O₃-Pulver vermischt und im Pt-Meßtiegel ebenfalls bei 1600 °C im MoSi₂-Ofen eingeschmolzen. Die Homogenisierung erfolgte durch zweimaliges Fritten und Wiederaufschmelzen der jeweiligen Probe. Nach Erkalten der Schmelze wurde diese in den Messofen überführt, dort kurz unterhalb der drei Messelektroden eingestellt und erneut aufgeschmolzen. Nach Erreichen der Zieltemperatur (1600 °C) wurden die Elektroden in die Schmelze eingetaucht.

3.2.2 Leitfähigkeitsmessung

Wie in Kap. 2.3 dargelegt, muss zur Berechnung der Diffusionskoeffizienten die Oberfläche der Arbeitselektrode bekannt sein. Als Messgröße eignet sich die Leitfähigkeit der Schmelze die proportional zur Konzentration und Beweglichkeit der Ladungsträger sowie zur Elektrodenoberfläche ist. Zur Messung der Leitfähigkeit wird an die Glasschmelze eine hochfrequente Rechteckspannung (10 kHz) angelegt, so dass während der gesamten Pulsdauer

ein kapazitiver Ladestrom fließt. Nach dem Eintauchen der Elektroden in die Schmelze wird die Eintauchtiefe der Arbeitselektrode in definierten Schritten verändert. Die absolute Eintauchtiefe und daraus auch die Fläche der eingetauchten Arbeitselektrode lässt sich aus dem linearen Zusammenhang zwischen Leitfähigkeit und der Veränderung der Eintauchtiefe ermitteln [21].

3.2.3 SWV-Messung und Auswertung

Die Aufnahme der Square-Wave-Voltammgramme erfolgt nach Beendigung Leitfähigkeitsmessung von 1600 °C abwärts in Temperaturschritten von 50 oder 25 K. Der untersuchte Temperaturbereich umfasste Werte bis zu 1000 °C. wobei bei Kristallisationserscheinungen in den Schmelzen die Messung schon bei höheren Temperaturen abgebrochen wurde. Die Variation der Stepzeit τ erfolgte zwischen 10 und 400 ms. Die Höhe der einzelnen Stufenpotentiale $\delta E = 5$ mV und die Amplitude der überlagerten Welle $\Delta E = 100 \text{ mV}$ wurde bei allen SWV-Messungen konstant gehalten.

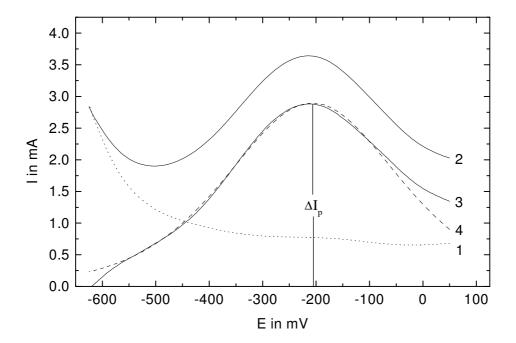


Abb. 3.2: Auswertung der Square-Wave Voltammogramme für die Schmelze 5 Na₂O · 10 MgO · 5 CaO · 10 A½O₃ · 70 SiO₂ (T = 1500 °C und τ = 200 ms): 1: Grundglas; 2: dotiert mit 0.25 mol % Fe₂O₃; 3: Differenzkurve (2-1); 4: theoretische Kurve.

Zur Auswertung der Voltammogramme wurden, wie in der Abbildung 3.2 dargestellt, neben den mit Fe₂O₃ dotierten Gläsern jeweils auch die undotierten sogenannten "Grundgläser"

12

vermessen. Durch Differenzbildung der entsprechenden Strom-Potential-Kurven konnten somit Matrixeffekte eliminiert werden. Die Differenzkurven wurden nach der Methode der kleinsten Fehlerquadrate mit theoretisch berechneten Kurven gefittet [15]. Anhand dieser theoretischen Kurven wurden die jeweiligen Peakpotentiale E_p und Peakströme ΔI_p ermittelt.

Wie in Kap. 2 beschrieben, können über die lineare Abhängigkeit der Standardpotentiale von der Temperatur die thermodynamischen Kenngrößen bestimmt werden.

Die Eisen-Diffusionskoeffizienten wurden nach Gl. 2.14 für die Peakströme berechnet, die jeweils linear proportional zu $\tau^{-0.5}$ waren.

3.3 Viskositätsmessung

Die Viskositäten der Schmelzen wurden durch ein Rotationsviskosimeter (Bähr VIS 403) in einem Temperaturbereich von 1450 – 1150 °C bestimmt. Die Gläser (jeweils 13.8 cm³) wurden dazu in einem Pt/Rh-Tiegel in einem widerstandsbeheizten Vertikalrohrofen eingeschmolzen. Nach Erreichen der Zieltemperatur von 1450 °C wurde der zylindrische Pt/Rh-Rotor von oben in die Schmelze eingetaucht. Die Rotationsgeschwindigkeit und die dabei auftretenden Kräfte wurden über einen Computer kontrolliert. Die Viskosität der Schmelze wurde bei einer Abkühlrate von 10 K/min bezogen auf die jeweilige Temperatur aufgezeichnet. Die Viskositätskurven wurden bezogen auf das DGG1 Standard Glas korrigiert.

Die Temperaturabhängigkeit der Viskosität kann für kleine Temperaturintervalle durch einen Arrhenius-Ansatz beschrieben werden:

$$\eta = \eta_0 \cdot \exp\left(-\frac{E_\eta}{RT}\right) \tag{3.1}$$

Durch Auftragung von log η gegen 1/T sollte sich ein linearer Verlauf ergeben. Da aber die Aktivierungsenergie der Viskosität nicht unabhängig von der Temperatur ist, wird zur

13

Beschreibung des gesamten Temperaturbereiches die empirische Vogel-Fulcher-Tammann-Gleichung herangezogen:

$$\eta = A \cdot \exp\left(\frac{B}{T - T_0}\right) \tag{3.2}$$

Anhand der Parameter A, B und T_0 können die Viskositäten der Schmelzen auch außerhalb des experimentell untersuchten Temperaturbereiches extrapoliert werden.

4 Struktur von Alkali-Erdalkali-Alumosilicatgläsern und -schmelzen

4.1 Einbau von Alkali- und Erdalkali-Ionen

Eine Reihe von Untersuchungen belegt, dass sowohl die Alkali-Ionen Na⁺ und K⁺ als auch die Erdalkali-Ionen Ca²⁺, Ba²⁺ und Sr²⁺ als Netzwerkwandler in sechsfacher oder höherer Koordination in das Silicat-Netzwerk eingebaut werden [27-34]. Dabei wird der Vernetzungsgrad der Netzwerkbildner durch die gebildeten Trennstellensauerstoffe herabgesetzt [27,28,29]. Die Konzentration und die Kationenart beeinflussen in starkem Maße die physikalisch chemischen Eigenschaften der Gläser und Schmelzen (z. B. Dichte, Viskosität) [27,28,29].

Die Rolle der Mg²⁺-Ionen ist hingegen immer noch nicht eindeutig geklärt. So wird diskutiert, dass sie unter verschiedenen Bedingungen als vier-, fünf- oder sechsfach koordinierte Kationen im Silicatnetzwerk vorliegen [27,32,35-41]. Ein wesentlicher Grund dafür ist die höhere Kationenfeldstärke der Mg²⁺-Ionen (Z/a² = 0.45 mit Z = Wertigkeit des Kations und a = Abstand zwischen Kation und Sauerstoff-Ion [29]) im Vergleich zu den anderen Erdalkali-Ionen (mit Ausnahme der Be²⁺-Ionen) [27,28,29,42]. Die Mg-O-Bindungen haben darum einen höheren kovalenten Bindungsanteil [40,42]. Das Magnesiumoxid wird deswegen der Gruppe der sogenannten "Zwischenoxide" zugeordnet, zu der auch unter anderen Al₂O₃ und Fe₂O₃ gehören [29].

4.2 Einbau der Aluminium-Ionen

Der Quotient der Ionenradien von Al^{3+}/O^{2-} von etwa 0.43 liegt an der Grenze zwischen vierfacher und sechsfacher Koordination für die Al-O-Bindungen [43]. Das Al_2O_3 gehört somit wie MgO zu den sogenannten "Zwischenoxiden", die je nach Zusammensetzung des Glases entweder als Netzwerkbildner oder als Netzwerkwandler in das Silicatnetzwerk eingebaut werden [27,28,29,44,45,46]. Ein wesentlicher Faktor ist dabei das Konzentrations-Verhältnis von $[Al_2O_3]/[RO]$ (mit RO = Alkali- und Erdalkalioxid) [27,28]. Dabei können drei Bereiche unterschieden werden [27]:

- Der peralkalische Bereich mit [Al₂O₃]/[RO] < 1,
- $[Al_2O_3]/[RO] = 1$ (entspricht der Zusammensetzung von Tectosilicaten)
- und der peralumische Bereich mit $[Al_2O_3]/[RO] > 1$.

In den folgenden Kapiteln wird der Einbau der Al³⁺-Ionen für diese drei Bereiche insbesondere im Hinblick auf den unterschiedlichen Einfluss der Alkali- bzw. Erdalkalioxide beschrieben.

4.2.1 Der peralkalische Bereich: $[Al_2O_3]/[RO] < 1$

Beim Einbau der Al³⁺-Ionen als Ersatz von Si⁴⁺-Ionen bilden sich die formal negativ geladenen [AlO_{4/2}]⁻-Tetraeder [27,28]. Dadurch kann sich die Rolle der Alkali- [47-53] und Erdalkali-Ionen [27,31,33,51,54,55,56] vom Netzwerkwandler zum Ladungskompensator wandeln [27,57] (siehe Abbildung 4.1), was zu einer Abnahme der Konzentration der Trennstellensauerstoffe im Silicat-Netzwerk führt [27].

Die Hypothese, dass in Alkali-Alumosilicat-Gläsern bei kleinen [Al₂O₃]/[RO]-Verhältnissen Al³⁺-Ionen auch in sechsfacher Koordination vorliegen sollen [58,59,60], ist hingegen umstritten [61,69].

Der ladungsstabilisierende Effekt der Kationen nimmt mit steigender Kationenfeldstärke bei konstantem [Al]/{[Al] + [Si]}-Verhältnis in der Reihenfolge $K^+ > Na^+ > Li^+ > Ca^{2+} > Mg^{2+}$ ab [27,62]. Auf das jeweilige Kation bezogen sinkt der Kompensationseffekt mit zunehmendem [Al]/{[Al] + [Si]}-Verhältnis [27].

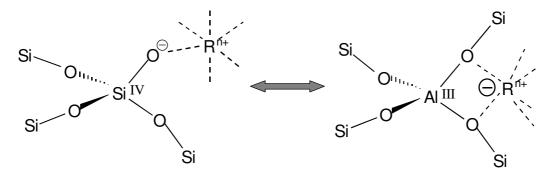


Abb. 4.1: Alkali-Ionen R in Silicatgläsern als Netzwerkwandler oder als Ladungskompensator für die $[AlO_{4/2}]$ -Tetraeder bei der formalen Substitution von Si^{4+} - durch Al^{3+} -Ionen.

Im Folgenden soll der unterschiedliche Einfluss der Alkali- (insbesondere der Na⁺-Ionen) und der Erdalkali-Ionen (besonders die Mg²⁺- und Ca²⁺-Ionen) auf den Al³⁺-Einbau in Silicat-Gläsern näher betrachtet werden.

Für die Alkali-Alumosilicate (R= Alkali) bilden sich folgende Struktur-Einheiten [53]:

$$x R_2O + y Al_2O_3 + z SiO_2 \rightarrow 2yAlO + (4.1)$$

Die [$AlO_{4/2}$]-Tetraeder ersetzen bevorzugt die Q^3 -Einheiten ([$SiO_{4/2}$]-Tetraeder mit drei Brückensauerstoffen und einem Trennstellensauerstoff) [63,64] und wirken so als Netzwerkbildner. Die Anzahl der Trennstellensauerstoffe pro [$SiO_{4/2}$]-Tetraeder sinkt mit zunehmendem [Al_2O_3]/[RO]-Verhältnis [50,65].

Aufgrund der höheren Kationen-Feldstärken der Erdalkali-Ionen im Vergleich zu den Alkali-Ionen [27,29,124] werden in den entsprechenden Silicaten neben den Q³- auch Q²-, Q¹- und Q⁰-Einheiten gebildet [33,31].

Die Ca²⁺-Ionen sind in CaO-Al₂O₃-SiO₂-Gläsern als Netzwerkwandler vorwiegend an Q²-Einheiten gebunden (Tetraeder mit jeweils zwei Trennstellensauerstoffen und Brückensauerstoffen) [31]. Die [AlO_{4/2}]'-Tetraeder werden hingegen bei niedrigen Al₂O₃-Gehalten vorwiegend in Q⁴-Einheiten (also in Tetraedern mit vier Brückensauerstoffen) eingebunden [33,34]. Der Anteil der Al³⁺-Ionen in Q³-Einheiten nimmt aber sowohl mit der Gesamtzahl der in dem Glas vorliegenden Q³-Einheiten als auch mit der Erhöhung des Aluminiumoxidgehaltes zu [34]. Dabei wandelt sich auch zunehmend die Rolle des Ca²⁺ vom Netzwerkwandler zum Ladungskompensator für die [AlO_{4/2}]'-Tetraeder [31]. Im Gegensatz zu den Na⁴-Ionen sollen die Ca²⁺-Ionen aber auch bei hohen Al₂O₃-Gehalten nicht nur als Ladungskompensator für dann jeweils zwei [AlO_{4/2}]'-Tetraeder zu wirken. Sie fungieren bevorzugt gleichzeitig als Ladungskompensator und als Netzwerkwandler [31].

Die Mg²⁺-Ionen haben im Vergleich zu den Alkali- und den Ca²⁺-Ionen die höchsten Kationenfeldstärken [27,29,40,42] und den schwächsten ladungskompensierenden Einfluss auf die [AlO_{4/2}]⁻-Tetraeder [27]. Entsprechend können in Silicaten auch stark negativ geladene Struktureinheiten wie Q⁰-Einheiten (Tetraeder mit vier Trennstellensauerstoffen) entstehen [66]. In Alumosilicaten führt dieser Einfluss zur Auftrennung von einerseits neutralen SiO₂-Bereichen (Q⁴-Einheiten) und andererseits negativ geladenen Aluminiumoxid-Clustern, die bevorzugt durch Mg²⁺-Ionen stabilisiert werden sollen [31].

4.2.2 [Al₂O₃]/[RO] ≈ - Tectosilicate

Die makroskopischen Eigenschaftsänderungen von Alkali- und Erdalkali-Alumosilicaten bei einem Verhältnis von $[Al_2O_3]/[RO] = 1-1.2$ [27,33,43,67,68] wurden mit dem Verschwinden der Trennstellensauerstoffe korreliert [69]. Nach klassischer Sichtweise sollen die Alkali- und Erdalkali-Ionen dabei nur noch als Ladungskompensatoren für die [AlO_{4/2}]-Tetraeder auftreten [27,28,55,70]. Die beobachteten Viskositäts-Maxima bei Verhältnissen von $[Al_2O_3]/[RO] > 1$ (R = Na₂, Ca, Mg) führen aber zu der Annahme das auch bei $[Al_2O_3]/[RO] = 1$ in der Schmelze Trennstellensauerstoffe vorliegen müssen [68,71]. In dem Glas mit der Zusammensetzung 25.5 CaO· 25 Al₂O₃· 49.5 SiO₂ konnten statt der zu erwartenden 0.5 mol % an Trennstellensauerstoffen mittels ¹⁷O-NMR Untersuchungen 5 mol % nachgewiesen werden [72]. Da für diese Gläser aber nur etwa ein Anteil von 1-2 mol % AlO₅- [73] bzw. AlO₆-Einheiten [74] ermittelt wurde, ist die Bildung von (Si, Al)₃O₁₀-Triclustern vorgeschlagen worden [68,71,72]. Diese Tricluster bestehen aus jeweils drei TO₄-Tetraeder (T = Si, Al) die nach dem Modell von Lacy [75] über ein gemeinsames dreifach Sauerstoffatom miteinander verknüpft sind. koordiniertes Der dafür postulierte Bildungsmechanismus ist in Abbildung 4.2 schematisch dargestellt [72].

Abb. 4.2: Bildung von Trennstellensauerstoffen und Triclustern nach Stebbins und Xu [72].

Auch für $Na_2O-Al_2O_3-SiO_2$ -Gläser wurde ein ähnlicher Mechanismus zur Bildung von Triclustern beschrieben [68]. Bei analogen Untersuchungen an MgO-Gläsern zeigen 27 Al-NMR-Daten, dass schon bei $[Al_2O_3]/[MgO] \approx 1$ biszu6 mol % fünffach koordinierte Al^{3+} -Ionen vorliegen sollen, die hauptsächlich Netzwerkwandlereigenschaften aufweisen [76]. Dieser im Vergleich mit den analogen Ca- und Na-Gläsern größere Anteil an höherkoordinierten Al^{3+} -Ionen beruht auf der geringeren Neigung der Mg^{2+} -Ionen, als

Ladungskompensator für [AlO_{4/2}] -Tetraeder zu wirken bzw. auch selbst als Netzwerkbildner in tetraedrischer Koordination aufzutreten [27,131].

4.2.3 Der peralumische Bereich: $[Al_2O_3]/[RO] > 1$

Für die bei Verhältnissen von $[Al_2O_3]/[RO] > 1$ zusätzlich eingebauten Al^{3+} -Ionen sollten keine oder nur sehr wenige Alkali- bzw. Erdalkali-Ionen zum Ladungsausgleich zur Verfügung stehen [27]. Die Al^{3+} -Ionen sollen deswegen zunehmend in fünf- und sechsfacher Koordination mit Netzwerkwandlereigenschaften eingebaut werden [43,54,67,76,77,78]. Im Vergleich zu den Netzwerkwandlern Na^+ und Ca^{2+} werden in den Silicatschmelzen mit Mg^{2+} -Ionen die höchsten Anteile an fünf- und sechsfach koordinierten Al^{3+} -Ionen ermittelt [79]. Auch $Al^{3+}[AlO_{4/2}]^-_3$ -Struktureinheiten sollen entstehen, in denen die Al^{3+} -Ionen als Ladungskompensator für jeweils drei AlO_4 -Tetraeder wirken [51]. Diese Struktur sollte sich bevorzugt bei hohen Al_2O_3/SiO_2 -Verhältnissen bilden [68].

Nach der Interpretation von ²⁷Al-NMR-Ergebnissen hingegen bilden sich hier entweder nur [AlO_{4/2}]⁻-Tetraeder [34], oder die Al³⁺-Ionen liegen in nicht eindeutig bestimmbarer Koordination vor [50,69].

Als weitere Möglichkeit wird die Entstehung von (Si, Al)₃O₁₀-Triclustern [33,56,72,52] erörtert, die schon für [Al₂O₃]/[RO] = 1 postuliert wurde [73,74,76]. Hingegen wird deren Bildung anhand der durch RAMAN-Spektroskopie erhaltenen Ergebnisse ausgeschlossen [49]. Insgesamt gibt es aber nur relativ wenig direkte spektroskopische Nachweise wie z. B. durch ¹⁷O-MAS-NMR [80] für die Bildung von Tricluster-Strukturen.

4.3 Koordination und Redoxgleichgewicht der Eisen-Ionen in Silicat-Gläsern

Die Koordination der Eisen-Ionen und das Fe³⁺/Fe²⁺-Redoxverhältnis hängen einerseits von der Zusammensetzung der Gläser ab, beeinflussen aber andererseits auch selbst die Struktur und makroskopischen Eigenschaften der Gläser und Schmelzen (z. B. die Viskosität) [27,81,82]. In den folgenden zwei Kapiteln wird darum der Einfluss der Zusammensetzung der Gläser auf beide Aspekte erläutert.

4.3.1 Einfluss der Glaszusammensetzung auf die Koordination der Eisen-Ionen

Die Fe²⁺-Ionen sollen überwiegend in oktaedrischer Koordination als Netzwerkwandler in das Silicat-Netzwerk eingebaut werden [27,83,84,85]. Als Belege für den Einbau von Fe²⁺ als Netzwerkbildner in tetraedrischer Koordination wurden Ergebnisse der Röntgen-Absorptionsspektroskopie in Eisen-Silicat- [86] und Eisen-Alkali/Erdalkali-Silicat-Schmelzen [87,88,89] gewertet. Die Ergebnisse der ⁵⁷Fe-Mößbauer- [90] und der Absorptionsspektroskopie [91] werden als Gleichgewicht von Fe²⁺ in oktaedrischer und tetraedrischer Koordination interpretiert.

Eine Reihe von Struktur-Untersuchungen belegt, dass die Fe³⁺-Ionen in Silicaten zwar bevorzugt in tetraedrischer aber auch in oktaedrischer Koordination in das Silicatnetzwerk eingebaut werden können [41,83,84,85,88,91-116]. Es ist aber auch nicht auszuschließen, dass fünffach koordinierte Fe³⁺-Ionen auftreten, wie schon für verschiedene silicathaltige Mineralien nachgewiesen werden konnte [96,117].

Ein entscheidender Faktor für den Einbau der Fe³⁺-Ionen als formal negativ geladene [FeO_{4/2}] -Tetraeder ist die Verfügbarkeit und die Art der ladungskompensierenden Kationenspezies [27,41,85,92,103,110,115,118,119,120]. Mit zunehmender Feldstärke der Metallkationen sinkt der Ladungskompensationseffekt für die [FeO_{4/2}] -Tetraeder in folgender Reihenfolge: Na⁺ > Ba²⁺ > Ca²⁺ > Fe²⁺ > Mg²⁺ [27,41,93,118,119,120]. Insbesondere der geringe ladungskompensierende Effekt der Mg²⁺-Ionen soll dazu führen, dass die Fe³⁺-Ionen auch in oktaedrischer Koordination eingebaut werden [41].

Eine weitere Einflussgröße für die Koordination der Fe³⁺-Ionen ist der Anteil der Fe³⁺-Ionen am Gesamteisengehalt [27,98,106,121]. Bei konstantem Gesamteisengehalt werden die Fe³⁺-Ionen bei einem Verhältnis von Fe³⁺/ΣFe>0.5vorwiegendintetraedrischerKoordinationals Netzwerkbildner eingebaut [27,92,121]. In dem Bereich Fe³⁺/ΣFe=0.5 -0.3 sollen Fe₃O₄-Clustern entstehen, in denen die Fe³⁺-Ionen sowohl tetraedrisch als auch oktaedrisch koordiniert vorliegen [27,92,121]. Die Bildung von Eisen-Clustern wird unabhängig von der Lage des Fe³⁺/Fe²⁺-Redoxverhältnisses auch durch Ergebnisse der ESR- [91,92,122] und Mößbauer-Spektroskopie [92] unterstützt. Für Verhältnisse Fe³⁺/∑Fe<0.3liegenhingegen vorwiegend oktaedrische Fe³⁺-Ionen vor [27,92,121].

Der Anstieg des Gesamteisengehaltes hingegen erhöht tendenziell entweder den Anteil an oktaedrisch koordinierten Fe³⁺-Ionen [85,106,107,112,113] oder es bilden sich Eisen-Cluster [92].

Daneben stabilisiert auch die zunehmende Basizität der Gläser die tetraedrisch koordinierten Fe³⁺-Ionen [85]. Allerdings hat dieser Effekt einen stärkeren Einfluss auf das Redoxverhältnis

zwischen tetraedrisch Fe³⁺- und oktaedrisch koordinierten Fe²⁺-Ionen [85] und soll deswegen im folgenden Kapitel näher erläutert werden.

4.3.2 Einfluss der Glaszusammensetzung auf das Fe³⁺/Fe²⁺-Redoxgleichgewicht

Bei der Abhängigkeit der Fe³⁺/Fe²⁺-Redoxgleichgewichte von der Zusammensetzung der Silicatschmelzen müssen im wesentlichem drei Größen berücksichtigt werden [27,123]:

- Die Ladungskompensation der [FeO_{4/2}] -Tetraeder durch Metall-Kationen,
- der Koordinationswechsel der Fe³⁺-Ionen
- und die Basizität der Schmelzen.

Die im vorherigen Kapitel beschriebenen Faktoren, die zu einer Stabilisierung der [FeO_{4/2}]⁻Tetraeder führen, verschieben auch das Fe³⁺/Fe²⁺-Redoxverhältnis auf die Seite der Fe³⁺-Ionen, da die Fe²⁺-Ionen überwiegend in oktaedrischer Koordination vorliegen [27,83,84,85]. Wenn weniger ladungskompensierende Kationen zur Stabilisierung der [FeO_{4/2}]⁻-Tetraeder zur Verfügung stehen, verschiebt sich einerseits das Fe³⁺/Fe²⁺-Redoxgleichgewicht auf die Seite der oktaedrisch koordinierten Fe²⁺-Ionen [27]. Andererseits können die Fe³⁺-Ionen dann selbst zunehmend in oktaedrischer statt in tetraedrischer Koordination eingebaut werden [27,85]. Da auch mit zunehmender Gesamteisenkonzentration mehr oktaedrisch koordinierte Fe³⁺-Ionen vorliegen, sollte dies auch die Lage des Fe³⁺/Fe²⁺-Redoxgleichgewichtes beeinflussen [106].

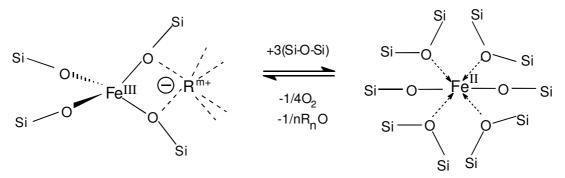


Abb. 4.3: Fe³⁺/Fe²⁺-Redoxgleichgewicht zwischen [FeO_{4/2}]⁻-Tetraedern und oktaedrisch eingebauten Fe²⁺-Ionen in Silicaten.

Die Basizität einer Schmelze beschreibt die Fähigkeit von Sauerstoff als Elektronendonator zu wirken. Sie wird bestimmt von der Polarisierungskraft der Kationen R^{n+} , die festlegt inwieweit die R-O-Bindungen eher als kovalent oder als ionisch anzusehen sind [124,125]. Zur Quantifizierung der Polarisationswirkung werden die optischen Basizitäten der jeweiligen Kationen herangezogen [124,125,126]. Bezogen auf die jeweiligen Oxide nehmen sie in folgender Reihenfolge ab: $K_2O > Na_2O > CaO > MgO > Al_2O_3 > SiO_2$ [124,126]. Durch empirische Gleichungen kann die Basizität einer Zusammensetzung aus den optischen Basizitäten der Bestandteile berechnet werden [124,126].

Für das Fe³⁺/Fe²⁺-Redoxgleichgewicht kann der Einfluss der Basizität durch die Gleichung 4.2 beschrieben werden [27,123,124]:

$$4 \text{ Fe}^{3+} + 2 \text{ O}^{2-} \leftrightarrow 4 \text{Fe}^{-2+} + \text{O}_2$$
 (4.2)

Bei konstanter Temperatur und Sauerstoff-Aktivität erhöht die Basizität des Glases die Aktivität der Oxid-Ionen in Gl. 4.2 [27,124]. Nach dem Prinzip von Le Chatelier bzw. Massenwirkungsgesetz sollte dies aber zu einer Verschiebung des Fe³+/Fe²+-Redoxgleichgewichtes auf die Seite der Fe²+-Ionen führen.[124]. Tatsächlich wird nicht nur für das Fe³+/Fe²+-Redoxverhältnis sondern auch für fast alle anderen polyvalenten Elemente (mit Ausnahme von Cu²+/Cu²+) durch eine Basizitätserhöhung eine Zunahme der oxidierten Ionenform beobachtet [27,124,127]. Zur Erklärung dieses scheinbaren Widerspruchs muss ein weiterer Faktor berücksichtigt werden, der die Zunahme der Aktivität der Oxid-Ionen überwiegt [124]. Diese Größe beruht auf der Erhöhung der Ladungsdichte der Sauerstoffatome die mit den Eisen-Ionen koordiniert sind [124]. Dadurch werden generell sowohl die Fe²+- als auch die Fe³+-Ionen besser stabilisiert [124]. Die optimale Ladungsdichte der Sauerstoffatome liegt aber für die Fe³+-Ionen höher als für die Fe²+-Ionen [124]. Mit steigender Basizität bzw. Ladungsdichte werden somit die Fe³+- gegenüber den Fe²+-Ionen zunehmend stärker stabilisiert [124].

Eine auch quantitativ gute Übereinstimmung zwischen den berechneten Basizitäten der Zusammensetzungen und den beobachteten Verschiebungen der Fe³⁺/Fe²⁺-Redoxverhältnisse konnte allerdings meist nur für einfache binäre Alkali-Silicatsysteme nachgewiesen werden [124,127].

4.4 Vergleich der Struktur von Fe³⁺- und Al³⁺-Ionen in Silicaten

Die Fe³⁺- und die Al³⁺-Ionen haben als amphoterische Ionen dieselbe Ladung und annähernd die gleichen Kationenfeldstärken (Al³⁺ = 56.6 bzw. Fe³⁺ = 54.5) [88]. So üben die Metallkationen den gleichen ladungskompensierenden Effekt auf die [FeO_{4/2}]⁻- bzw. [AlO_{4/2}]⁻-Tetraeder aus [27,92]. Dies bedeutet aber auch, dass die Al³⁺- und Fe³⁺-Ionen um die ladungskompensierenden Ionen konkurrieren [27,92].

Während im peralkalischen Bereich ladungskompensierende Kationen zur bevorzugten Bildung von $[FeO_{4/2}]^-$ bzw. $[AlO_{4/2}]^-$ Tetraedern führen, sollten im peralumischen Bereich sowohl die Al^{3+} - als auch die Fe^{3+} -Ionen zunehmend in oktaedrischer Koordination eingebaut werden können [27,85]. Auch die Möglichkeit des Einbaus der $[FeO_{4/2}]^-$ bzw. $[AlO_{4/2}]^-$ Tetraeder in Tricluster-Strukturen sollte nicht auszuschließen sein.

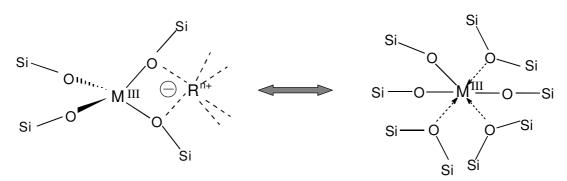


Abb. 4.4: Schematischer Einbau der Fe³⁺- und Al³⁺-Ionen (M = Al, Fe) in tetraedrischer und oktaedrischer Koordination in Silicaten.

Im Umkehrschluss können die Verschiebungen der Fe³⁺/Fe²⁺-Redoxgleichgewichte aufgrund von Zusammensetzungsänderungen insbesondere bezüglich des Al₂O₃-Gehaltes auch mit strukturellen Veränderungen in den Gläsern korreliert werden.

5 Die Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichts

5.1 Die Temperaturabhängigkeit des Fe³⁺/Fe²⁺-Redoxgleichgewichts

In der Abbildung 5.1 sind exemplarisch die aufgenommenen Square-Wave Voltammogramme für den Fe³⁺/Fe²⁺-Übergang in der Schmelze mit der Zusammensetzung 10 Na₂O· 10 MgO· $10 \text{ Al}_2\text{O}_3$ · 70 SiO_2 bei Temperaturen von 1200 bis 1600 °C dargestellt.

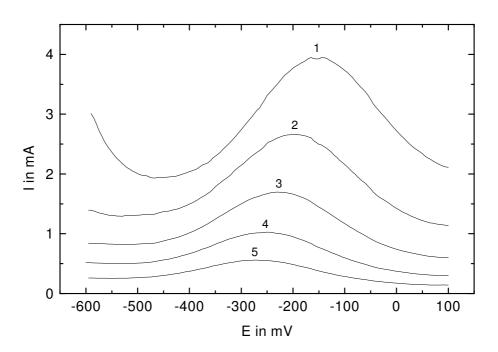


Abb. 5.1: Square-Wave Voltammogramme des Fe³⁺/Fe²⁺-Überganges für die Zusammensetzung 10 Na₂O· 10 MgO· 10 AbO₃· 70 SiO₂ dotiert mit 0.25 mol % Fe₂O₃ für die Temperaturen: $1 = 1600 \,^{\circ}\text{C}$; $2 = 1500 \,^{\circ}\text{C}$; $3 = 1400 \,^{\circ}\text{C}$; $4 = 1300 \,^{\circ}\text{C}$; $5 = 1200 \,^{\circ}\text{C}$; $(\tau = 100 \,^{\circ}\text{ms})$.

Die Maxima der Voltammogramme verschieben sich dabei zwischen 1600 und 1200 °C von -145 mV nach -260 mV. Die beobachtete starke Abnahme der Peakströme mit sinkender Temperatur lässt sich durch die abnehmende Beweglichkeit der Eisen-Ionen in der Schmelze erklären.

Über die lineare Abhängigkeit der Standardpotentiale von der Temperatur (siehe Kapitel 2.1) konnten die thermodynamischen Kenngrößen und die Gleichgewichtskonstante für die Fe³⁺/Fe²⁺-Redoxreaktion bestimmt werden. Die mit steigender Temperatur zunehmenden Potentialwerte korrelieren dabei unter der Bedingung einer mit der Luft äquilibrierten

24

Schmelze mit einer Zunahme des Anteils an Fe²⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht. Bei einigen Zusammensetzungen wurden unterhalb einer für die jeweilige Schmelze charakteristischen Temperatur Abweichungen vom linearen Verhalten beobachtet. Die thermodynamische Auswertung wurde nur mit den Potentialwerten durchgeführt, die oberhalb dieser Temperatur lagen. Die Messung wurde beim Auftreten dieser Abweichung in der Regel abgebrochen, bzw. bei noch niedrigeren Temperaturen nicht mehr durchgeführt.

5.2 Einfluss der Zusammensetzung auf das Fe³⁺/Fe²⁺-Redoxgleichgewicht

5.2.1 Einfluss der Aluminiumoxidkonzentration

Zur Bestimmung der Abhängigkeit des Fe³⁺/Fe²⁺-Gleichgewichts von der Aluminiumoxidkonzentration wurden folgende Zusammensetzungen untersucht:

• $5 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$ x = 0, 5, 10, 15, 20

• $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$ x = 0, 5, 10, 15, 20

• 5 Na₂O· 15 CaO· x A½O₃· (80 - x) SiO₂ x = 5, 10, 12.5, 15, 20, 25

• $5 \text{ Na}_2\text{O} \cdot 5 \text{ MgO} \cdot 10 \text{ CaO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ x = 0, 5, 10, 15;

• $5 \text{ Na}_2\text{O}$ · 10 MgO · 5 CaO · $x \text{ Al}_2\text{O}_3$ · $(80 - x) \text{ SiO}_2$ · x = 0, 5, 7.5, 10, 15

Die Schmelzen mit der Zusammensetzung 5 Na $_2$ O· 15 MgO· x A $_2$ O· (80 - x) SiO $_2$ waren die einzigen die im Rahmen dieser Arbeit mit 0.5 mol % Fe $_2$ O $_3$ dotiert wurden, alle anderen hier vorgestellten Schmelzen wurden mit jeweils 0.25 mol % Fe $_2$ O $_3$ dotiert.

In der Tabelle 1 im Anhang sind die thermodynamischen Kenngrößen und die berechneten Fe³⁺/Fe²⁺-Redoxgleichgewichte für die bei 1300 °C äquilibrierten Schmelzen aufgelistet.

Für die Zusammensetzungen mit 5 Na $_2$ O· 15 MgO· x A $_2$ O· (80 - x) SiO $_2$ in Abbildung 5.2 weichen die Peakpotentiale von der linearen Beziehung zur Temperatur in Richtung positiverer Werte für die Schmelzen mit 20 bzw. 15 mol % Al $_2$ O $_3$ bei Temperaturen kleiner als 1400 °C bzw. 1300 °C und für 5 und 10 mol % Al $_2$ O $_3$ unterhalb von etwa 1250 °C ab. Die Werte der aluminiumoxidfreien Schmelze sinken hingegen unterhalb von etwa 1350 °C ab.

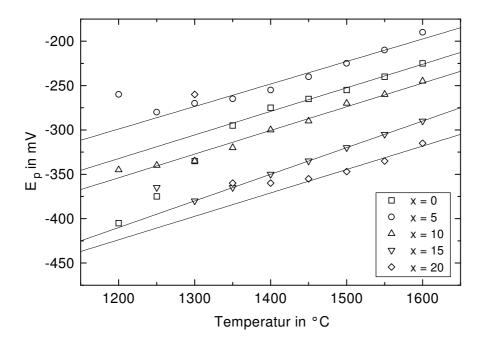


Abb. 5.2: Peakpotentiale (Fehler ±10 mV) in Abhängigkeit von der Temperatur für die Zusammensetzung 5 Na₂O· 15 MgO· x A½O₃· (80 - x) SiO₂ dotiert mit 0.5 mol % Fe₂O₃.

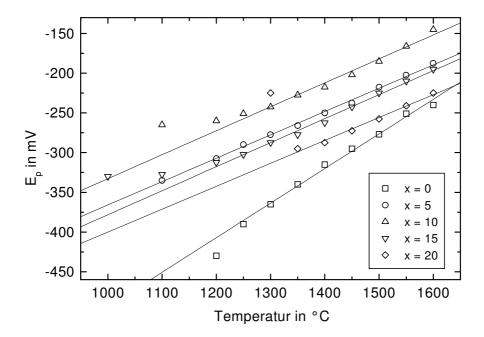


Abb. 5.3: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit von der Temperatur für die Zusammensetzung $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x AbO}_3 \cdot (80 - \text{ x}) \text{SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃.

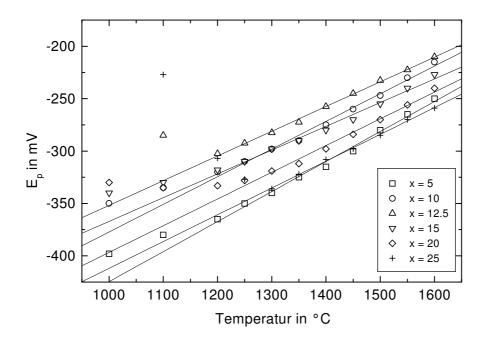


Abb. 5.4: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit von der Temperatur für 5 Na₂O· 15 CaO· x Al₂O₃· (80 - x) SiO₂ dotiert mit 0.25 mol % Fe₂O₃.

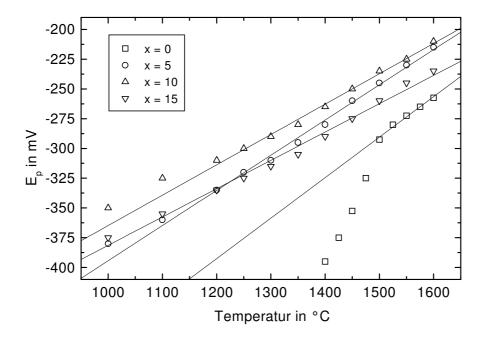


Abb. 5.5: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit von der Temperatur für 5 Na₂O· 5 MgO· 10 CaO· x AbO₃· (80 - x) SiO₂ dotiert mit 0.25 mol % Fe₂O₃.

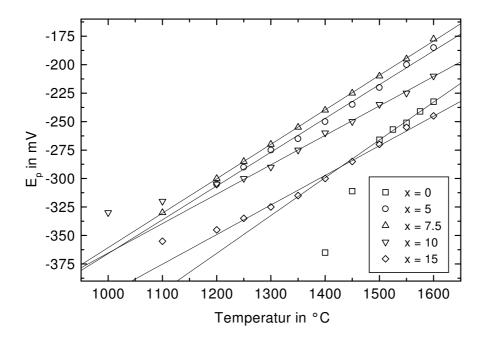


Abb. 5.6: Peakpotentiale (Fehler ±10 mV) in Abhängigkeit von der Temperatur für 5 Na₂O· 10 MgO· 5 CaO· x Al₂O₃· (80 - x) SiO₂ dotiert mit 0.25 mol % Fe₂O₃.

Für die Schmelzen mit $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ in der Abbildung 5.3 sind Abweichungen der Peakpotentiale in Richtung positiverer Werte für 20 mol % Al_2O_3 bei Temperaturen kleiner als $1350\,^{\circ}\text{C}$ und unterhalb von etwa $1200\,^{\circ}\text{C}$ für $15 \text{ mol } \% \text{ Al}_2\text{O}_3$ zu beobachten. Für die Schmelze mit 5 mol % Al_2O_3 trat bis zum Abbruch der Messung bei $1100\,^{\circ}\text{C}$ keine Abweichung auf. Die Peakpotentiale der Schmelze ohne Aluminiumoxid verschieben sich unterhalb von $1250\,^{\circ}\text{C}$ zu negativeren Werten.

Für die Zusammensetzungen mit 5 Na₂O· 15 CaO· x AbO₃· (80 - x) SiO₂ in der Abbildung 5.4 weichen die Peakpotentiale in Richtung positiverer Werte für 25 mol % Al₂O₃ schon unterhalb von 1300 °C, für 20 mol % Al₂O₃ unterhalb von 1250 °C und für die anderen hier aufgeführten Zusammensetzungen jeweils für Temperaturen kleiner als 1200 °C ab.

Für die Peakpotentiale der Zusammensetzungen 5 Na $_2$ O · 5 MgO · 10 CaO · x A $_2$ O · (80 - x) SiO $_2$ in der Abbildung 5.5 und 5 Na $_2$ O · 10 MgO · 5 CaO · x A $_2$ O · (80 - x) SiO $_2$ in der Abbildung 5.6 sind Abweichungen zu negativeren Werten für die Schmelzen ohne Aluminiumoxid schon unterhalb von 1500 °C zu beobachten. Verschiebungen zu positiveren Peakpotentialen werden für die Schmelzen mit 5 mol % MgO und 10 mol % Al $_2$ O $_3$ in der Abbildung 5.5 unterhalb von 1200 °C und in der Abbildung 5.6 für 10 mol % MgO mit 10 und 15 mol % Al $_2$ O $_3$ unterhalb von 1250 bzw. 1200 °C beobachtet.

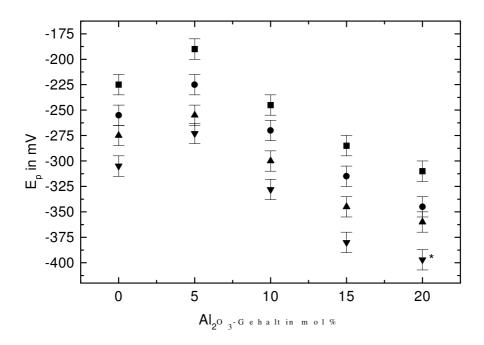


Abb. 5.7: Peakpotentiale in Abhängigkeit vom Al₂O₃-Gehalt der Schmelzen 5 Na₂O· 15 MgO · x Al₂O₃· (80 - x) SiO₂ für die Temperaturen; ■: 1600 °C; ●: 1500 °C; ▲: 1400 °C; ▼: 1300 °C; (*: linear extrapolierter Wert).

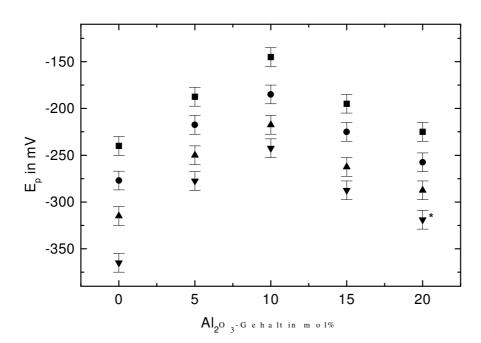


Abb. 5.8: Peakpotentiale in Abhängigkeit vom Al₂O₃-Gehalt der Schmelzen 10 Na₂O · 10 MgO · x Al₂O₃ · (80 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ●: 1500 °C; ▲: 1400 °C; ▼: 1300 °C; (*: linear extrapolierter Wert).

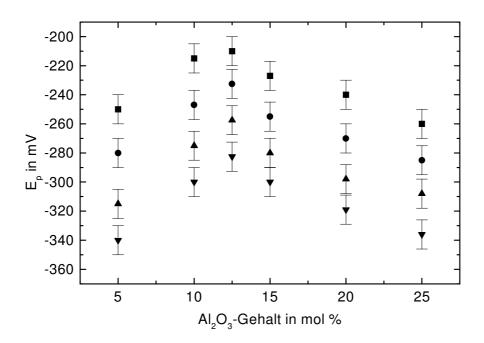


Abb. 5.9: Peakpotentiale in Abhängigkeit vom Al₂O₃-Gehalt der Schmelzen 5 Na₂O· 15 CaO · x Al₂O₃ · (80 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ●: 1500 °C; ▲: 1400 °C; ▼: 1300 °C.

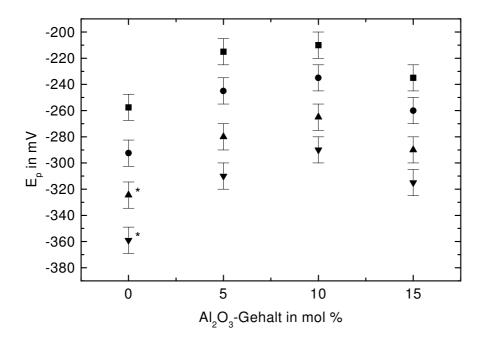


Abb. 5.10: Peakpotentiale in Abhängigkeit vom Al₂O₃-Gehalt der Schmelzen 5 Na₂O · 5 MgO 10 CaO · x Al₂O₃ · (80 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; •: 1500 °C; ▲:1400 °C; ▼: 1300 °C; (*: extrapolierte Potentiale).

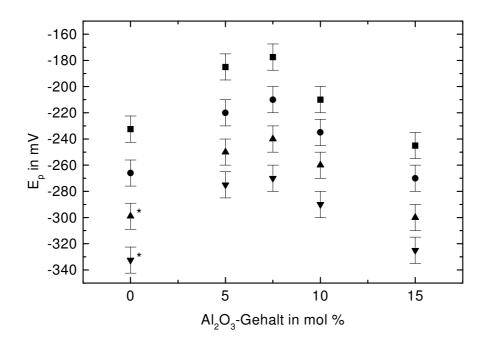


Abb. 5.11: Peakpotentiale in Abhängigkeit vom Al₂O₃-Gehalt der Schmelzen 5 Na₂O · 10 MgO 5 CaO · x Al₂O₃ · (80 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ■: 1500 °C; ■: 1400 °C; ▼: 1300 °C; (* extrapolierte Potentiale).

Wie in den Abbildungen 5.7 bis 5.11 für den Temperaturbereich von $1600-1300\,^{\circ}\mathrm{C}$ dargestellt, verschieben sich die Peakpotentiale mit zunehmender $\mathrm{Al_2O_3}$ -Konzentration zunächst zu positiveren Werten bis zu einem von der Zusammensetzung abhängigen Maximum. Bei weiterer Erhöhung des $\mathrm{Al_2O_3}$ -Gehaltes nehmen sie wieder in Richtung negativere Potentiale ab. Für die Zusammensetzung mit $5~\mathrm{Na_2O} \cdot 15~\mathrm{MgO} \cdot x~\mathrm{Al_2O_3} \cdot (80-x)~\mathrm{SiO_2}$ in der Abbildung 5.7 wird das Maximum bei 5 mol % $\mathrm{Al_2O_3}$ -Gehalt beobachtet. Für die Schmelzen mit $10~\mathrm{Na_2O} \cdot 10~\mathrm{MgO} \cdot x~\mathrm{Al_2O_3} \cdot (80-x)~\mathrm{SiO_2}$ in der Abbildung 5.8 treten die positivsten Peakpotentiale bei $10~\mathrm{mol}$ % $\mathrm{Al_2O_3}$ -Gehalt auf. In der Abbildung 5.9 sind für die Zusammensetzung 5 $\mathrm{Na_2O} \cdot 15~\mathrm{CaO} \cdot x~\mathrm{Al_2O_3} \cdot (80-x)~\mathrm{SiO_2}$ bei $12.5~\mathrm{mol}$ % $\mathrm{Al_2O_3}$ -Gehalt die größten Peakpotentiale zu erkennen Die Potentialmaxima für die Zusammensetzungen mit $5~\mathrm{Na_2O} \cdot 5~\mathrm{MgO}$ $10~\mathrm{CaO} \cdot x~\mathrm{Al_2O_3} \cdot (80-x)~\mathrm{SiO_2}$ treten bei $10~\mathrm{mol}$ % $\mathrm{Al_2O_3}$ -Gehalt und für die Schmelzen mit $5~\mathrm{Na_2O} \cdot 10~\mathrm{MgO}$ $5~\mathrm{CaO} \cdot x~\mathrm{Al_2O_3} \cdot (80-x)~\mathrm{SiO_2}$ bei jeweils $7.5~\mathrm{mol}$ % $\mathrm{Al_2O_3}$ -Gehalt auf.

Die Verschiebungen der Peakpotentiale zu positiveren Werten korrelieren mit einer Zunahme des Anteils der Fe²⁺-Ionen und bei sinkenden Peakpotentialen erhöht sich jeweils der Anteil der Fe³⁺-Ionen im Fe³⁺/Fe²⁺-Gleichgewicht (siehe Tabelle 1 im Anhang).

5.2.2 Einfluss der Natriumoxidkonzentration

Die Abhängigkeit des Fe³⁺/Fe²⁺-Gleichgewichts von der Natriumoxidkonzentration wurde für Schmelzen mit folgender Zusammensetzung untersucht:

•
$$x \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 10 \text{ AbO}_3 \cdot (80 - x) \text{ SiO}_2$$
 $x = 5, 10, 15, 20$

Die ermittelten Peakpotentiale des Fe³⁺/Fe²⁺-Übergangs sind in Abhängigkeit von der Temperatur in der Abbildung 5.12 dargestellt. Für die Schmelzen mit 5 und 10 mol % Na₂O weichen die Peakpotentiale von der linearen Korrelation unterhalb von 1200 °C und für 15 mol % Na₂O für Temperaturen kleiner als 1100 °C jeweils zu positiveren Werten ab.

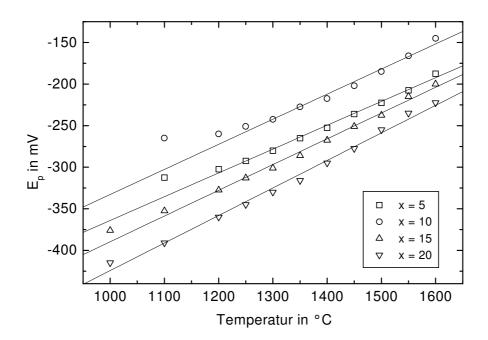


Abb. 5.12: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit von der Temperatur für x Na₂O- 10 MgO- 10 Al₂O₃· (80 - x) SiO₂ dotiert mit 0.25 mol % Fe₂O₃.

In der Abbildung 5.13 sind die Peakpotentiale in Abhängigkeit vom Na₂O-Gehalt für den Temperaturbereich zwischen 1300 und 1600 °C dargestellt. Zwischen 5 und 10 mol % Na₂O-Gehalt verschieben sich die Peakpotentiale in Richtung positivere Werte. Eine weitere Erhöhung des Na₂O-Gehaltes bis 20 mol % Na₂O lässt die Peakpotentiale wieder zu negativeren Werten sinken. Auch die im Anhang in der Tabelle 2 aufgeführten Werte für das Fe³⁺/Fe²⁺-Redoxgleichgewicht verlagern sich analog erst in Richtung Fe²⁺- und ab 10 mol % Na₂O-Gehalt wieder auf die Seite der Fe³⁺-Ionen.

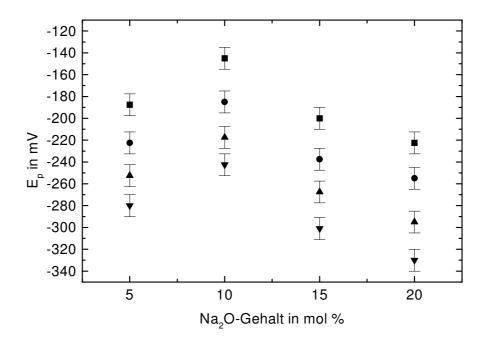


Abb. 5.13: Peakpotentiale in Abhängigkeit vom Na₂O-Gehalt der Schmelzen mit x Na₂O· 10 MgO· 10 Al₂O₃· (80 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ●: 1500 °C; ▲: 1400 °C; ▼: 1300 °C.

5.2.3 Einfluss der Magnesiumoxidkonzentration

Zur Bestimmung der Verschiebung des Fe³⁺/Fe²⁺-Gleichgewichts in Abhängigkeit von der Magnesiumoxidkonzentration wurden Schmelzen mit folgenden Zusammensetzungen untersucht:

• $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$ x = 5, 10, 15, 20

• $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 15 \text{ Ab}_2\text{O}_3 \cdot (75 - \text{x}) \text{SiO}_2$ x = 10, 15, 20

Die Peakpotentiale sind in Abhängigkeit von der Temperatur für die Schmelzen ohne Al_2O_3 in Abbildung 5.14, mit 10 mol % Al_2O_3 in Abbildung 5.15 und mit 15 mol % Al_2O_3 in Abbildung 5.16 dargestellt. In der Tabelle 3 im Anhang sind die berechneten thermodynamischen Kenngrößen und die Fe^{3+}/Fe^{2+} -Redoxgleichgewichte aufgelistet.

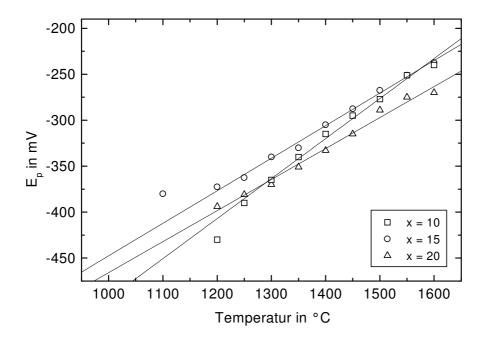


Abb. 5.14: Peakpotentiale (Fehler ±10 mV) in Abhängigkeit von der Temperatur für 10 Na₂O x MgO· (90 - x) SiO₂ dotiert mit 0.25 mol % Fe₂O₃.

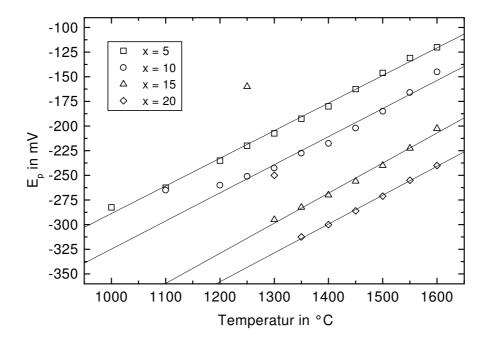


Abb. 5.15: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit der Temperatur für $10 \, \text{Na}_2\text{O} \cdot \text{x MgO} \cdot 10 \, \text{Al}_2\text{O}_3 \cdot (80 - x) \, \text{SiO}_2$ dotiert mit 0.25 mol % Fe $_2\text{O}_3$.

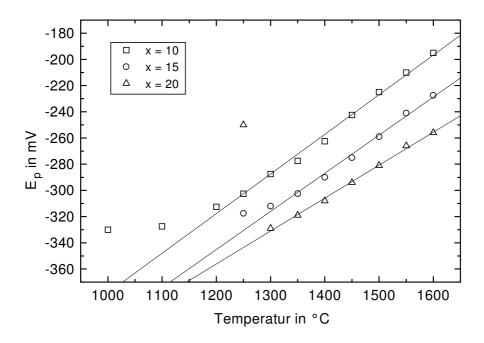


Abb. 5.16: Peakpotentiale (Fehler ±10 mV) in Abhängigkeit von der Temperatur für 10 Na₂O x MgO· 15 Al₂O₃· (75 - x) SiO₂ dotiert mit 0.25 mol % Fe₂O₃.

Für die Schmelzen ohne Aluminiumoxid und mit 10 bzw. 15 mol % MgO verschieben sich die Peakpotentiale unterhalb von 1250 bzw. 1200 °C zu negativeren bzw. positiveren Werten (siehe Abbildung 5.14). Für die Schmelzen mit 10 mol % Al₂O₃ in der Abbildung 5.15 sind Abweichungen der Peakpotentiale für 10 mol % MgO unterhalb von 1200 °C, für 15 mol % MgO unterhalb von 1300 °C und für 20 mol % MgO für Temperaturen kleiner als 1350 °C jeweils in Richtung positiverer Werte zu beobachten. Gleiches gilt auch für die Schmelzen mit 15 mol % Al₂O₃ in Abbildung 5.16, wobei für 10 mol % MgO unterhalb von 1200 °C und für 15 und 20 mol MgO jeweils bei Temperaturen kleiner als 1300 °C die entsprechenden Verschiebungen zu positiveren Peakpotentialen auftreten.

Die Abhängigkeit der Peakpotentiale von der MgO-Konzentration ist in den Abbildungen 5.17 bis 5.19 für den Temperaturbereich zwischen 1300 und 1600 °C dargestellt.

Für die Peakpotentiale der Schmelzen ohne Aluminiumoxid in Abbildung 5.17 ist für 1600 °C zwischen 10 und 15 mol % MgO-Gehalt kein Unterschied festzustellen. Erst für 20 mol % MgO ist eine Abnahme der Peakpotentiale zu beobachten. Ab 1500 °C steigen die Peakpotentiale zwischen 10 und 15 mol % MgO an. Diese Tendenz verstärkt sich mit weiter abnehmender Temperatur. Dieser Potentialverlauf spiegelt sich auch in den für 1300 °C berechneten Fe³⁺/Fe²⁺-Redoxverhältnissen wieder (siehe Tabelle 3 im Anhang).

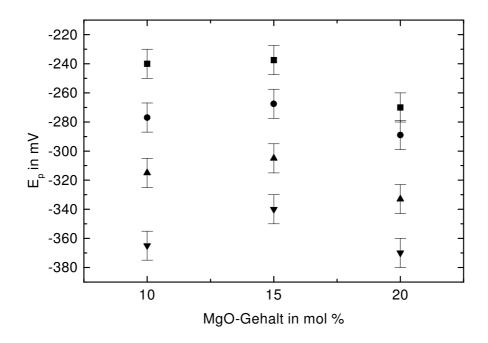


Abb. 5.17: Peakpotentiale in Abhängigkeit vom MgO-Gehalt der Schmelzen 10 Na₂O · x MgO · (90 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ●: 1500 °C; ▲: 1400 °C; ▼: 1300 °C.

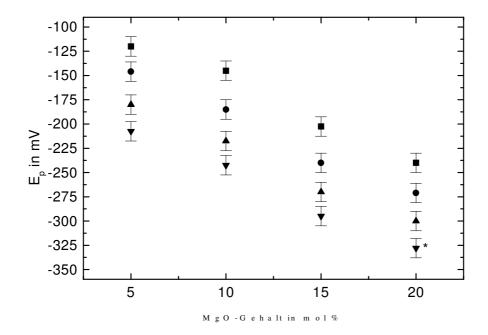


Abb. 5.18: Peakpotentiale in Abhängigkeit vom MgO-Gehalt der Schmelzen 10 Na₂O · x MgO · 10 Al₂O₃ · (80 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ●: 1500 °C; ▲: 1400 °C; ▼: 1300 °C (* = linear extrapolierter Wert).

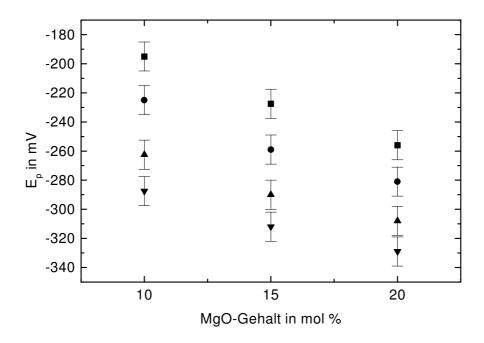


Abb. 5.19: Peakpotentiale in Abhängigkeit vom MgO-Gehalt der Schmelzen 10 Na₂O · x MgO 15 Al₂O₃· (75 - x) SiO₂ für verschiedene Temperaturen: ■: 1600 °C; ●: 1500 °C; ▲:1400 °C; ▼: 1300 °C.

Die Peakpotentiale der Schmelzen mit 10 und 15 mol % Al_2O_3 in den Abbildungen 5.18 und 5.19 verschieben sich mit zunehmendem MgO-Gehalt im Rahmen des Fehlers linear zu negativeren Werten. Für die Schmelzen der Zusammensetzungen $10 \text{ Na}_2O \cdot \text{ x MgO} \cdot 10 \text{ Al}_2O_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ ergibt sich ein mittlerer Wert für die Abnahme der Peakpotentiale bezogen auf die MgO-Konzentration von ca. 8 mV/mol % und für die Schmelzen $10 \text{ Na}_2O \cdot \text{ x MgO} \cdot 15 \text{ Al}_2O_3 \cdot (75 - \text{ x}) \text{ SiO}_2$ von etwa 5 mV/mol %. Die sinkenden Peakpotentiale korrelieren mit einer Zunahme der Anteile der Fe³⁺-Ionen, wie den im Anhang in der Tabelle 3 aufgelisteten Fe³⁺/Fe²⁺-Redoxgleichgewichten zu entnehmen ist.

6 Eisen-Diffusionskoeffizienten

6.1 Bestimmung der Eisen-Diffusionskoeffizienten

In der Abbildung 6.1 sind exemplarisch die Voltammogramme des Fe³⁺/Fe²⁺-Überganges bei 1600 °C für die Zusammensetzungen 10 Na₂O· 10 MgO· 10 A½O₃· 70 SiO₂ bei Stepzeiten zwischen 10 und 400 ms dargestellt. Die Potentiallage der Maxima der Peakströme ist im Rahmen des Fehlers (±10 mV) von der Stepzeit unabhängig. Die Peakströme nehmen hingegen mit steigender Stepzeit ab.

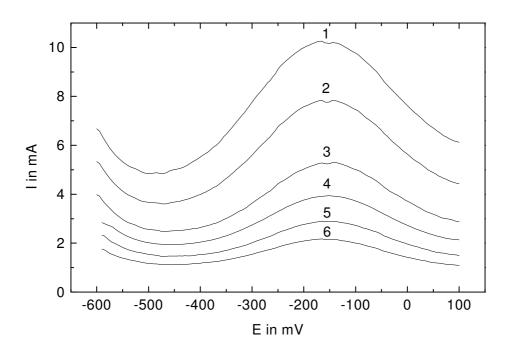


Abb. 6.1: Square-Wave Voltammogramme des Fe³⁺/Fe²⁺-Überganges in der Schmelze mit der Zusammensetzung 10 Na₂O· 10 MgO· 10 A½O₃· 70 SiO₂ dotiert mit 0.25 mol % Fe₂O₃ bei 1600 °C für die Stepzeiten τ : 1: 10 ms; 2: 20 ms; 3: 50 ms; 4: 100 ms; 5: 200 ms; 6: 400 ms.

Wie in Kapitel 2.3 beschrieben, kann die Bestimmung der Eisen-Diffusionskoeffizienten in Schmelzen nur unter der Bedingung erfolgen, dass die Redoxreaktion an der Elektrode diffusionskontrolliert sind. Nach dieser Maßgabe sollten die mittels Square-Wave Voltammetrie bestimmten Peakströme proportional zu $\tau^{-0.5}$ sein (siehe Gl. 2.14). Insbesondere bei kleineren Stepzeiten in alkaliarmen Schmelzen treten Abweichungen von diesem Verhalten auf. Hier kann es dazu kommen, dass der kapazitive Strom noch nicht ganz abgeklungen ist und als zusätzlicher unerwünschter Stromfluss registriert wird. Die

Diffusionskoeffizienten werden darum nur mit den Peakströmen berechnet für die diese lineare Abhängigkeit erfüllt ist. Exemplarisch sind in Abbildung 6.2 die Peakströme bei $1600\,^{\circ}$ C für die Zusammensetzungen $10\,\mathrm{Na_2O}$ · $10\,\mathrm{MgO}$ · $x\,\mathrm{AbO_3}$ · $(80\,\mathrm{-}\,x)\,\mathrm{SiO_2}$ gegen $\tau^{-0.5}$ aufgetragen. Für die Stepzeiten $\geq 100\,\mathrm{ms}$ können die Peaktröme als annähernd linear proportional zu $\tau^{-0.5}$ angesehen werden. Alle hier vorgestellten Eisen-Diffusionskoeffizienten wurden nach Gl. 2.14 jeweils mit den Peakströmen berechnet bei denen diese lineare Beziehung erfüllt ist.

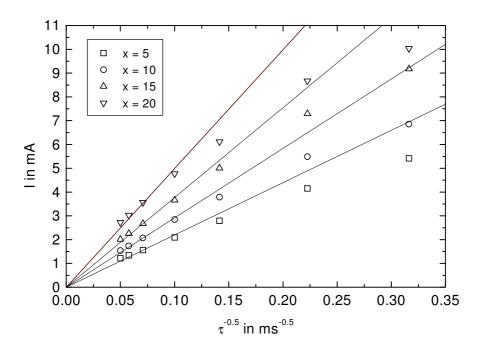


Abb. 6.2: Peakströme in Abhängigkeit von $\tau^{-0.5}$ für die Zusammensetzungen $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ bei T = 1600 °C.

Für die Bereiche mit linearer Abhängigkeit der logarithmischen Eisen-Diffusionskoeffizienten von der reziproken absoluten Temperatur können nach dem Typ der Arrhenius-Gleichung die Aktivierungsenergien der Diffusion E_D und die präexponentiellen Faktoren D_0 berechnet werden (siehe Gl. 2.15). Die entsprechenden Werte sind im Anhang in den Tabellen 4-6 aufgelistet.

6.2 Abhängigkeit der Eisen-Diffusionskoeffizienten von der Zusammensetzung

6.2.1 Einfluss der Aluminiumoxidkonzentration

Zur Bestimmung der Abhängigkeit der Fe³⁺/Fe²⁺-Diffusionskoeffizienten von der Aluminiumoxidkonzentration wurden folgende Zusammensetzungen untersucht:

- $5 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 \text{x}) \text{ SiO}_2$ x = 0, 5, 10, 15, 20
- $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x AbO}_3 \cdot (80 \text{ x}) \text{ SiO}_2$ x = 0, 5, 10, 15, 20
- $5 \text{ Na}_2\text{O}$ · 15 CaO · $x \text{ AbO}_3$ · $(80 x) \text{ SiO}_2$ x = 5, 10, 12.5, 15, 20, 25
- $5 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot x \text{ A}_2\text{O}_3 \cdot (80 x) \text{ SiO}_2$ x = 0, 5, 7.5, 10, 15
- $5 \text{ Na}_2\text{O} \cdot 5 \text{ MgO} \cdot 10 \text{ CaO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 \text{x}) \text{ SiO}_2$ x = 0, 5, 10, 15

Die Zusammensetzungen mit 5 Na₂O· 15 MgO· x A½O₃· (80 - x) SiO₂ waren als einzige mit jeweils 0.5 mol % Fe₂O₃ dotiert. Alle übrigen Schmelzen waren jeweils mit 0.25 mol % Fe₂O₃ dotiert. Zur Berechnung der Eisen-Diffusionskoeffizienten konnten Stepzeiten aus den Bereichen von $\tau \ge 200$ ms bis $\tau \ge 50$ ms ausgewertet werden.

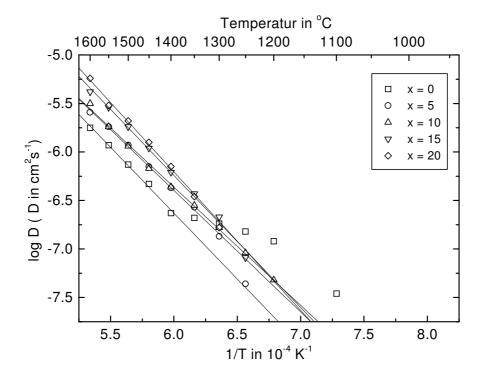


Abb. 6.3: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für die Schmelzen 5 Na₂O· 15 MgO· x A½O₃· (80 - x) SiO₂ dotiert mit 0.5 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Für die Eisen-Diffusionskoeffizienten mit der Zusammensetzung 5 Na $_2$ O· 15 MgO· x A $_2$ O· (80 - x) SiO $_2$ in Abbildung 6.3 weichen die Werte für die Schmelze ohne Aluminiumoxid bereits unterhalb 1400 °C von der linearen Abhängigkeit zur reziproken Temperatur ab. Für 5 und 20 mol % Al $_2$ O $_3$ ist eine lineare Korrelation bis 1300 °C, für 15 mol % Al $_2$ O $_3$ bis 1250 °C bzw. für 10 mol % Al $_2$ O $_3$ -Gehalt bis 1200 °C zu beobachten. Im untersuchten Temperaturbereich nehmen die Diffusionskoeffizienten um etwa zwei Größenordnungen ab. Die berechneten Diffusionsaktivierungsenergien E_D und präexponentiellen Faktoren D_0 (siehe Tabelle 4 im Anhang) sinken bis etwa 10 mol % Al $_2$ O $_3$, um dann wieder bei höheren Al $_2$ O $_3$ -Konzentrationen zuzunehmen. Die Eisen-Diffusionskoeffizienten steigen bei 1600 °C zwischen 0 und 20 mol % Al $_2$ O $_3$ -Gehalt etwa um den Faktor 3.

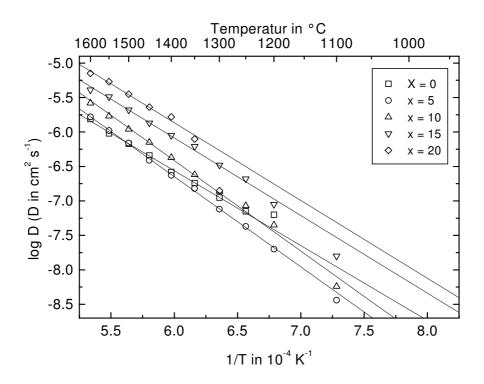


Abb. 6.4: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Für die Diffusionskoeffizienten der Schmelzen mit $10 \, \text{Na}_2\text{O} \cdot 10 \, \text{MgO} \cdot x \, \text{A}_2\text{O}_3 \cdot (80 - x) \, \text{SiO}_2$ weichen in der Abbildung 6.4 die Werte für 20 mol % Al_2O_3 -Gehalt schon unterhalb $1350 \,^{\circ}\text{C}$ von der linearen Korrelation bezogen auf die reziproke absolute Temperatur ab. Die Diffusionskoeffizienten zeigen bis $1250 \,^{\circ}\text{C}$ für die Schmelze ohne Al_2O_3 bzw. bis $1100 \,^{\circ}\text{C}$ mit 5 mol % Al_2O_3 -Gehalt eine entsprechende lineare Abhängigkeit.

Die berechneten Aktivierungsenergien nehmen bei Erhöhung der Al₂O₃-Konzentration von 0 auf 5 mol % Al₂O₃-Gehalt zunächst von 209 auf 258 kJ/mol zu, um dann bis 20 mol % Al₂O₃-

Gehalt wieder auf 216 kJ/mol abzufallen (siehe Tabelle 4 im Anhang). Die präexponentiellen Faktoren steigen im Rahmen des Fehlers zunächst von 0 auf 5 mol % Al₂O₃, um dann bei weiterer Erhöhung der Al₂O₃-Konzentration in etwa gleich zu bleiben.

Die Eisen-Diffusionskoeffizienten bleiben zwischen 0 und 5 mol % Al_2O_3 in etwa gleich bzw. nehmen für Temperaturen unterhalb 1400 °C ab. Die Eisen-Diffusionskoeffizienten erhöhen sich zwischen 5 und 20 mol % Al_2O_3 bei 1600 °C um etwa den Faktor 4, während für 1400 °C ein Anstieg auf etwa dem siebenfachen Wert zu beobachten ist.

Die Eisen-Diffusionskoeffizienten für 5 Na₂O· 15 CaO· x A½O₃· (80 - x) SiO₂ in Abbildung 6.5 korrelieren für alle dargestellten Schmelzen bis 1100 °C linear mit der reziproken absoluten Temperatur. Sie sinken dabei im untersuchten Temperaturbereich mit abnehmender Temperatur um fast vier Größenordnungen.

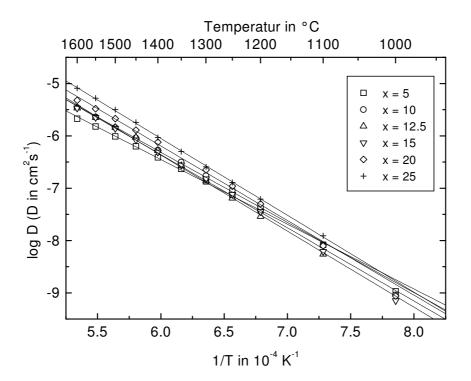


Abb. 6.5: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für $5 \text{ Na}_2\text{O} \cdot 15 \text{ CaO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Von 5 auf 12.5 mol % Al₂O₃ steigen die Aktivierungsenergien dabei zunächst an und bleiben im Rahmen des Fehlers bei weiterer Erhöhung des Al₂O₃-Gehaltes annähernd konstant. Die präexponentiellen Faktoren nehmen zunächst ebenfalls bis 12.5 mol % Al₂O₃ zu. Bei weiterer

Erhöhung auf 15 mol % Al₂O₃-Gehalt ist keine signifikante Änderung zu beobachten. Bis 25 mol % Al₂O₃-Gehalt ist wieder ein signifikanter Anstieg der Werte festzustellen.

Tendenziell nimmt der Gesamtanstieg zwischen 5 und 25 mol % Al₂O₃ mit abnehmender Temperatur ab. Für 1600 °C ist somit eine annähernde Vervierfachung und für 1300 °C nur eine Verdoppelung der entsprechenden Diffusionskoeffizienten zu beobachten.

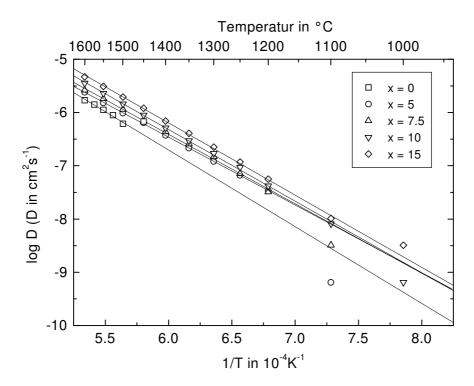


Abb. 6.6: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für $5 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Die Eisen-Diffusionskoeffizienten für die Zusammensetzung 5 Na $_2$ O · 10 MgO · 5 CaO · x Al $_2$ O $_3$ · (80 - x) SiO $_2$ in der Abbildung 6.6 nehmen im untersuchten Temperaturbereich um etwa drei Größenordnungen ab. Für die Schmelzen ohne Aluminiumoxid weichen die Eisen-Diffusionskoeffizienten schon bei Temperaturen unterhalb von 1500 °C von der linearen Korrelation zur reziproken Temperatur ab. Für die Diffusionskoeffizienten der aluminiumoxidhaltigen Schmelzen gilt dieser Zusammenhang mindestens bis 1200 °C, für 10 und 15 mol % Al $_2$ O $_3$ -Gehalt sogar bis 1100 °C.

Die im Anhang in der Tabelle 4 aufgeführten Aktivierungsenergien bleiben im Rahmen des Fehlers nahezu gleich. Die präexponentiellen Faktoren hingegen nehmen zunächst bis 7.5 mol % Al₂O₃ ab, um dann mit zunehmender Al₂O₃-Konzentrationserhöhung wieder zu steigen.

Die Abhängigkeit der Eisen-Diffusionskoeffizienten von dem Al₂O₃-Gehalt zeigt für 1600 bis 1500 °C von 0 auf 15 mol % Al₂O₃ eine Zunahme der Werte um etwa den Faktor 3. Aufgrund der Abweichungen der Eisen-Diffusionskoeffizienten für die Schmelze ohne Al₂O₃ können für Temperaturen kleiner als 1500 °C nur noch Aussagen zum Verlauf zwischen 5 und 15 mol % Al₂O₃-Gehalt getroffen werden Die Zunahme der Eisen-Diffusionskoeffizienten wird dabei tendenziell mit abnehmender Temperatur kleiner.

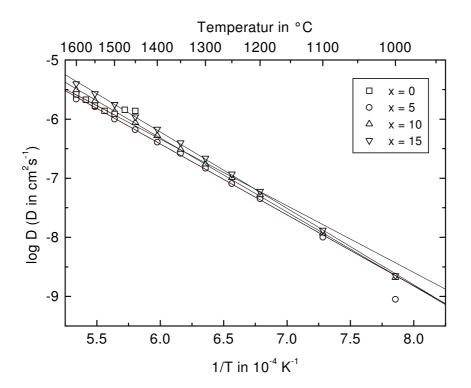


Abb. 6.7: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für $5 \text{ Na}_2\text{O} \cdot 5 \text{ MgO} \cdot 10 \text{ CaO} \cdot \text{ x A}_2^1\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Auch die Eisen-Diffusionskoeffizienten der Schmelzen mit den Zusammensetzungen 5 Na $_2$ O· 5 MgO· 10 CaO· x A $_2$ O· (80 - x) SiO $_2$ in der Abbildung 6.7 nehmen mit sinkender Temperatur um etwa drei Größenordnungen ab. Die Diffusionskoeffizienten der Schmelze ohne Aluminiumoxid zeigen unterhalb von 1500 °C abweichende Werte von der linearen Korrelation. Für die Diffusionskoeffizienten der aluminiumoxidhaltigen Schmelzen ist dieser lineare Zusammenhang für 5 mol % Al $_2$ O $_3$ bis 1100 °C und für die höheren Al $_2$ O $_3$ -Konzentrationen sogar bis 1000 °C gegeben. Die ermittelten Aktivierungsenergien der

Diffusion E_D (siehe Tabelle 4 im Anhang) steigen zwischen 0 und 15 mol % Al_2O_3 von 217 auf 248 kJ/mol an. Die entsprechenden präexponentiellen Faktoren D_0 nehmen von 2.8 auf $36.7 \text{ cm}^2\text{s}^{-1}$ zu.

Für den Temperaturbereich von 1600 bis 1500 °C ist zwischen 0 und 5 mol % Al₂O₃ eine Abnahme der Eisen-Diffusionskoeffizienten zu erkennen. Von 5 auf 15 mol % Al₂O₃ nehmen die Diffusionskoeffizienten hingegen über den gesamten dargestellten Temperaturbereich zu. Die Diffusionskoeffizienten für die Schmelze mit 15 mol % Al₂O₃ sind dabei etwa doppelt so groß wie die entsprechenden Werte für 5 mol % Al₂O₃. Dieser Anstieg wird mit abnehmender Temperatur kleiner.

6.2.2 Einfluss der Natriumoxidkonzentration

Die Abhängigkeit der Eisen-Diffusionskoeffizienten von der Natriumoxidkonzentration wurde in Schmelzen mit folgender Zusammensetzung untersucht:

•
$$x \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 10 \text{ AbO}_3 \cdot (80 - x) \text{ SiO}_2$$
 $x = 5, 10, 15, 20.$

Bei der Bestimmung der Diffusionskoeffizienten ergaben sich als auswertbare Stepzeit-Bereiche von $\tau \geq 100$ ms für die Schmelze mit 5 mol % Na₂O-Gehalt bis zu $\tau \geq 10$ ms für 20 mol % Na₂O-Gehalt. Die berechneten Diffusionskoeffizienten sind als Funktion der reziproken absoluten Temperatur in der Abbildung 6.8 dargestellt.

Für die Schmelzen mit 5 und 10 mol % Na_2O -Gehalt weichen die Diffusionskoeffizienten unterhalb $1200\,^{\circ}$ C von der linearen Korrelation ab. Die Diffusionskoeffizienten der anderen Schmelzen zeigen bis $1100\,^{\circ}$ C für 15 mol % bzw. bis $1000\,^{\circ}$ C mit $20\,\text{mol}$ % Na_2O -Gehalt eine entsprechende lineare Abhängigkeit. Die im Anhang in der Tabelle 5 aufgeführten Aktivierungsenergien der Diffusion E_D verändern sich zwischen 5 und 15 mol % Na_2O -Gehalt nicht signifikant. Erst für $20\,\text{mol}$ % Na_2O -Gehalt ist eine geringe Abnahme zu erkennen. Die präexponentiellen Faktoren D_0 im Rahmen des Fehlers annähernd konstant.

Die Eisen-Diffusionskoeffizienten der Schmelzen mit 5 und 10 mol % Na₂O-Gehalt sind im untersuchten Temperaturbereich annähernd gleich. Für die Diffusionskoeffizienten der Schmelze mit 15 mol % Na₂O-Gehalt ist ein Anstieg zu beobachten, der in etwa zu einer Verdoppelung der Werte führt. Bei einer weiteren Erhöhung Na₂O-Gehaltes auf 20 mol % bleiben die Eisen-Diffusionskoeffizienten annähernd konstant.

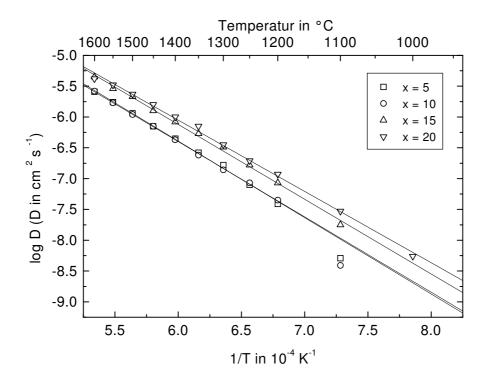


Abb. 6.8: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für $x \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 10 \text{ A}_2\text{O}_3 \cdot (80 - x) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

6.2.3 Einfluss der Magnesiumoxidkonzentration

Die Abhängigkeit der Eisen-Diffusionskoeffizienten von der Magnesiumoxidkonzentration wurde für folgende Zusammensetzungen untersucht:

- $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ AbO}_3 \cdot (80 \text{x}) \text{ SiO}_2$ x = 5, 10, 15, 20
- $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 15 \text{ Al}_2\text{O}_3 \cdot (75 \text{x}) \text{SiO}_2$ x = 10, 15, 20

Die zur Bestimmung der Diffusionskoeffizienten auswertbaren Stepzeiten reichen von $\tau \geq 50$ ms bis zu $\tau \geq 10$ ms für die verschiedenen Zusammensetzungen. Die berechneten Diffusionskoeffizienten sind als Funktion der reziproken absoluten Temperatur für die oben aufgeführten Zusammensetzungen in den Abbildungen 6.9 - 6.11 dargestellt.

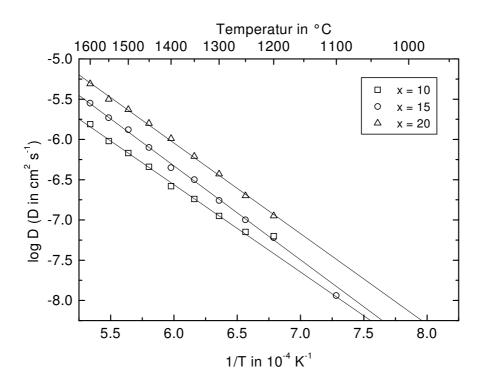


Abb. 6.9: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für die Schmelzen mit $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot (90 - \text{x}) \text{ SiO}_2$ dotiert mit $0.25 \text{ mol } \% \text{ Fe}_2\text{O}_3$ (Fehler für log D: ± 0.06).

Die in der Abbildung 6.9 für die Schmelzen mit der Zusammensetzung $10 \, \text{Na}_2\text{O} \cdot x \, \text{MgO} \cdot (90 - x) \, \text{SiO}_2$ dargestellte Abhängigkeit der Diffusionskoeffizienten von der reziproken Temperatur zeigt eine lineare Korrelation bis $1250\,^{\circ}\text{C}$ für $10 \, \text{mol} \, \% \, \text{MgO}$ und bis etwa $1200\,^{\circ}\text{C}$ für $15 \, \text{mol} \, \% \, \text{MgO}$. Die voltammetrischen Messungen für die Schmelze mit $20 \, \text{mol} \, \% \, \text{MgO}$ wurden nur bis $1200\,^{\circ}\text{C}$ durchgeführt.

Die Aktivierungsenergien (siehe Tabelle 6 im Anhang) nehmen zwischen 10 und 15 mol % MgO-Gehalt von 209 auf 231 kJ mol⁻¹ zu und sinken dann wieder für 20 mol % MgO auf 216 kJ mol⁻¹ ab. Die präexponentiellen Faktoren steigen zwischen 10 auf 15 mol % MgO von 0.9 auf 8.2 cm² s⁻¹, um dann für 20 mol % MgO-Gehalt geringfügig auf 5.4 cm² s⁻¹ abzunehmen. Die Eisen-Diffusionskoeffizienten verdreifachen sich in etwa bei einer Erhöhung von 10 auf 20 mol % MgO. Diese Tendenz gilt annähernd für den Temperaturbereich bis 1250 °C.

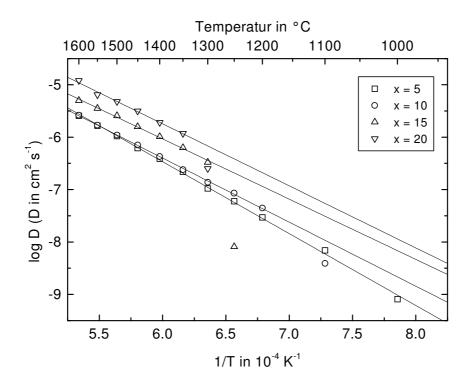


Abb. 6.10: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für die Schmelzen mit $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ AbO}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Für die Eisen-Diffusionskoeffizienten der Zusammensetzungen mit $10~\text{Na}_2\text{O} \cdot x~\text{MgO} \cdot 10~\text{Al}_2\text{O}_3 \cdot (80~\text{-}~x)~\text{SiO}_2$ (siehe Abbildung 6.10) ist für die Schmelze mit 5 mol % MgO-Gehalt eine lineare Abhängigkeit von der reziproken Temperatur bis 1000~°C zu beobachten. Die Diffusionskoeffizienten für die anderen Zusammensetzungen weichen bei Temperaturen unterhalb von 1100~°C für 10~mol % MgO, bei 1300~°C für 15~mol % MgO und unterhalb von 1300~°C für 20~mol % MgO vom linearen Verlauf ab.

Die Diffusionsaktivierungsenergien E_D verschieben sich zwischen 5 und 15 mol % MgO von 263 auf 221 kJ mol⁻¹ und bleiben dann bis 20 mol % MgO im Rahmen des Fehlers konstant (siehe im Anhang Tabelle 6). Die Werte für D₀ sinken bis 10 mol % MgO-Konzentration von 60.7 auf 9 cm² s⁻¹ ab, bleiben für 15 mol % MgO konstant und steigen für 20 mol % MgO wieder auf 23.8 cm² s⁻¹ an. Die Eisen-Diffusionskoeffizienten der Schmelzen mit 5 und 10 mol % MgO sind bis zu einer Temperatur von etwa 1400 °C im Rahmen des Fehlers gleich. Erst für 1300 °C ist der Diffusionskoeffizient der Schmelze mit 10 mol % MgO signifikant größer als der von 5 mol % MgO. Bei weiterer Erhöhung der MgO-Konzentration auf 15 bzw. 20 mol % MgO verdoppeln sich jeweils in etwa die Eisen-Diffusionskoeffizienten.

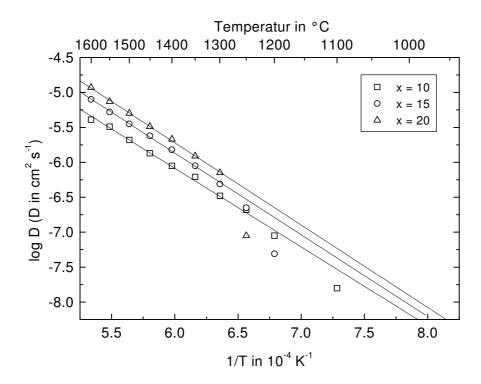


Abb. 6.11: Eisen-Diffusionskoeffizienten bezogen auf die reziproke absolute Temperatur für $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 15 \text{ AbO}_3 \cdot (75 - \text{x}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe₂O₃ (Fehler für log D: ± 0.06).

Auch bei der in Abbildung 6.11 dargestellten Temperaturabhängigkeit der Diffusions-koeffizienten für die Schmelzen der Zusammensetzungen 10 Na₂O⋅ x MgO⋅ 15Al₂O₃⋅ (75 - x) SiO₂ treten Abweichungen vom linearen Verhalten auf. So verschieben sich die Diffusionskoeffizienten für die Schmelzen mit 10 mol % MgO unterhalb von etwa 1200 °C, für 15 mol % MgO ab etwa 1250 °C und für 20 mol % MgO für Temperaturen unter 1300 °C zu negativeren Werten.

Sowohl die Aktivierungsenergien als auch die präexponentiellen Faktoren (siehe Tabelle 6 im Anhang) bleiben zwischen 10 und 20 mol % MgO-Gehalt im Rahmen der jeweiligen Fehler in etwa konstant.

Die Eisen-Diffusionskoeffizienten verdreifachen sich nahezu bei einer Erhöhung von 10 auf 20 mol % MgO-Gehalt für 1600 °C. Dieser Trend nimmt mit sinkender Temperatur ab, sodass für 1300 °C nur noch eine ungefähre Verdoppelung der Werte auftritt.

7 Viskositäten

7.1 Temperaturabhängigkeit der Viskositäten

Die Temperaturabhängigkeit der Viskosität η der untersuchten Schmelzen kann sowohl durch einen Arrhenius-Ansatz als auch durch die Vogel-Fulcher-Tammann-Gleichung beschrieben werden. Bei einigen Zusammensetzungen kommt es zu starken Abweichungen von der annähernd linearen Beziehung von log η zur reziproken absoluten Temperatur. Für die Berechnung der Aktivierungsenergien E_{η} und bei der Bestimmung der Vogel-Fulcher-Tammann-Parameter werden diese Temperaturbereiche deshalb nicht berücksichtigt. Die jeweiligen Werte für beide Ansätze sind in den Tabellen 7 bis 9 im Anhang aufgelistet.

7.2 Einfluss der Zusammensetzung auf die Viskositäten

7.2.1 Einfluss der Aluminiumoxidkonzentration

Für folgende Glaszusammensetzungen wurde die Abhängigkeit der Viskosität von dem Al₂O₃-Gehalt untersucht:

•	5 Na ₂ O⋅	15 MgO·	$x Al_2O_3$ ·	$(80 - x) SiO_2$	x = 0, 5, 10, 15
---	----------------------	---------	---------------	------------------	------------------

•
$$10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$$
 $x = 5, 10, 15, 20$

• 5 Na₂O· 15 CaO·
$$x$$
 A½O₃· (80 - x) SiO₂ $x = 5, 10, 15$

•
$$5 \text{ Na}_2\text{O}$$
· 10 MgO · 5 CaO · $x \text{ A}_2\text{O}_3$ · $(80 - x) \text{ SiO}_2$ $x = 5, 7.5, 10, 15$

•
$$5 \text{ Na}_2\text{O} \cdot 5 \text{ MgO} \cdot 10 \text{ CaO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{x}) \text{ SiO}_2$$
 $x = 5, 10, 15$

Für die Viskositäten der Schmelzen mit 5 Na $_2$ O· 15 MgO· x A $_2$ O₃· (80 - x) SiO $_2$ in der Abbildung 7.1 treten bei der Zusammensetzung mit 5 mol % Al $_2$ O $_3$ unterhalb von etwa 1290 °C Abweichungen von der annähernd linearen Korrelation bezogen auf die reziproke absolute Temperatur auf. Gleiches gilt für die Schmelze ohne Aluminiumoxid unterhalb von ca. 1250 °C.

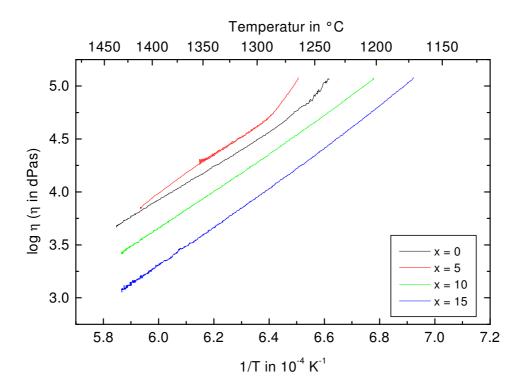


Abb. 7.1: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen 5 Na₂O· 15 MgO· x Al₂O₃· (80 - x) SiO₂ (x = 0, 5, 10, 15).

Werden die Viskositäten für 1300 °C in Abhängigkeit von dem Al₂O₃-Gehalt verglichen, so nehmen die entsprechende Werte zunächst bei einer Konzentrationserhöhung von 0 auf 5 mol % Al₂O₃-Gehalt um etwa 30 % zu. Bei weiterem Ansteigen auf 10 bzw. 15 mol % Al₂O₃-Gehalt sinken die Viskositäten wieder um etwa 50 bzw. 80 % ab. Die Aktivierungsenergien steigen zwischen 0 und 5 mol % Al₂O₃-Gehalt von 305 auf 350 kJ mol⁻¹ an und bleiben bis 20 mol % Al₂O₃ im Rahmen des Fehlers konstant (siehe Tabelle 7 im Anhang).

Für die Viskositäten der Schmelzen mit $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ ist in der Abbildung 7.2 bei den Werten für 20 mol % Al_2O_3 ab einer Temperatur von etwa 1350 °C ein "Abknicken" im Viskositätsverlauf zu erkennen. Für 1375 °C nehmen die Viskositäten zunächst zwischen 0 und 10 mol % Al_2O_3 -Gehalt um mehr als das sechsfache zu. Zwischen 10 und 20 mol % Al_2O_3 -Gehalt sinken die Viskositäten wieder auf die Hälfte ab. Die Aktivierungsenergien (siehe Tabelle 7 im Anhang) nehmen ebenfalls zwischen 0 und 10 mol % Al_2O_3 -Gehalt von 240 auf 305 kJ mol $^{-1}$ zu, bleiben aber bis 20 mol % Al_2O_3 im Rahmen des Fehlers konstant.

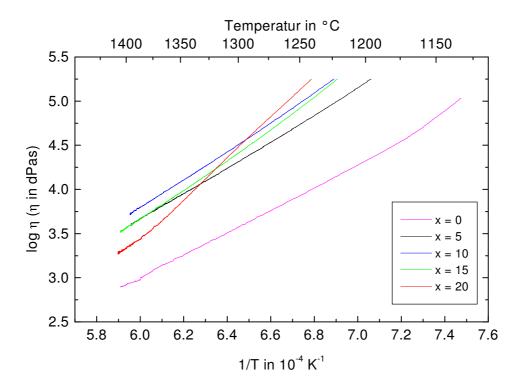


Abb. 7.2: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2 \text{ (x = 0*, 5, 10, 15, 20);}$ * Literaturwert [5].

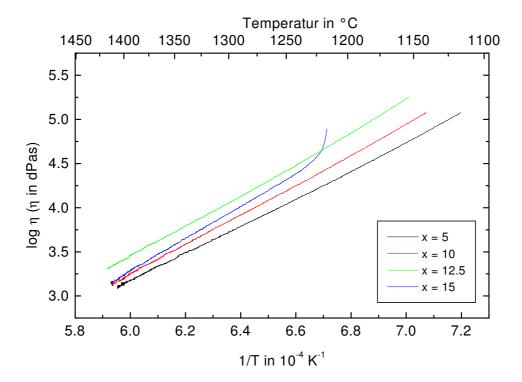


Abb. 7.3: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen 5 Na₂O· 15 CaO· x AbO₃· (80 - x) SiO₂ (x = 5, 10, 12.5, 15).

Die Viskositäten für die Zusammensetzungen 5 Na $_2$ O· 15 CaO· x A $_2$ O· (80 - x) SiO $_2$ in der Abbildung 7.3 weichen für die Schmelze mit 15 mol % Al $_2$ O $_3$ unterhalb von 1240 °C von der annähernden linearen Beziehung zur reziproken Temperatur stark ab. Für 1300 °C steigen die Viskositäten von 5 auf 12.5 mol % Al $_2$ O $_3$ um etwa den doppelten Wert und nehmen dann wieder für 15 mol % Al $_2$ O $_3$ -Gehalt um etwa 30 % ab.

Die im Anhang in der Tabelle 7 aufgelisteten Aktivierungsenergien nehmen kontinuierlich zwischen 0 und 20 mol % Al₂O₃ von 300 auf 349 kJ mol⁻¹ zu.

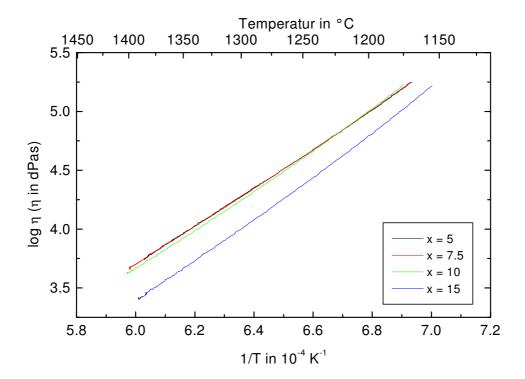


Abb. 7.4: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen 5 Na₂O· $10 \,\mathrm{MgO} \cdot 5 \,\mathrm{CaO} \cdot x \,\mathrm{AbO_3} \cdot (80 - x) \,\mathrm{SiO_2} \,(x = 5, 7.5, 10, 15).$

Die Viskositäten für die Schmelzen mit 5 Na₂O· 10 MgO· 5 CaO· x A $\frac{1}{2}$ O₃· (80 - x) SiO₂ in der Abbildung 7.4 sind über den gesamten Messbereich annähernd linear mit der reziproken Temperatur korreliert. Die Viskositäten für 5, 7.5 und 10 mol % Al₂O₃ haben im untersuchten Temperaturbereich nahezu die gleichen Werte. Erst die Viskositäten der Schmelze mit 15 mol % Al₂O₃ fallen im Vergleich zu den Werten für 10 mol % Al₂O₃ um etwa 50 % ab. Die im Anhang in der Tabelle 7 aufgeführten Aktivierungsenergien bleiben ebenfalls zwischen 5 und 10 mol % Al₂O₃ mit etwa 315 kJ mol⁻¹ im Rahmen des Fehlers konstant und steigen für 15 mol % auf 343 kJ mol⁻¹.

Die Viskositäten für die Zusammensetzung 5 Na $_2$ O· 5 MgO· 10 CaO· x A $_2$ O₃· (80 - x) SiO $_2$ in der Abbildung 7.5 weichen für die Schmelze mit 15 mol % Al $_2$ O $_3$ -Gehalt für Temperaturen kleiner als etwa 1240 °C deutlich vom annähernd linearen Verlauf ab. Für die Schmelze mit 15 mol % Al $_2$ O $_3$ liegen die Viskositäten im Temperaturbereich zwischen 1240 und 1310 °C unterhalb der entsprechenden Werte von 10 mol % Al $_2$ O $_3$ und oberhalb der von 5 mol % Al $_2$ O $_3$. Für Temperaturen größer als etwa 1310 °C nehmen die Viskositäten von 10 über 5 nach 15 mol % Al $_2$ O $_3$ -Gehalt um insgesamt etwa 30 % ab.

Die Aktivierungsenergien nehmen zwischen 5 und 15 mol % Al_2O_3 -Gehalt von 290 auf 329 kJ mol⁻¹ zu (siehe Tabelle 7 im Anhang).

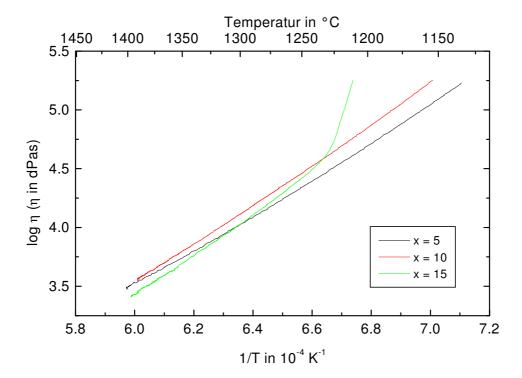


Abb. 7.5: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen 5 Na₂O· 5 MgO· 10 CaO· x A $\frac{1}{2}O_3$ · (80 - x) SiO₂ (x = 5, 10, 15).

7.2.2 Einfluss der Natriumoxidkonzentration

Der Einfluss der Natriumoxidkonzentration auf die Viskosität wurde für folgende Zusammensetzungen untersucht:

•
$$x \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 10 \text{ AbO}_3 \cdot (80 - x) \text{ SiO}_2$$
 $x = 5, 10, 15, 20$

Die Viskositäten in der Abbildung 7.6 sind über den gesamten Messbereich annähernd linear mit der reziproken absoluten Temperatur korreliert.

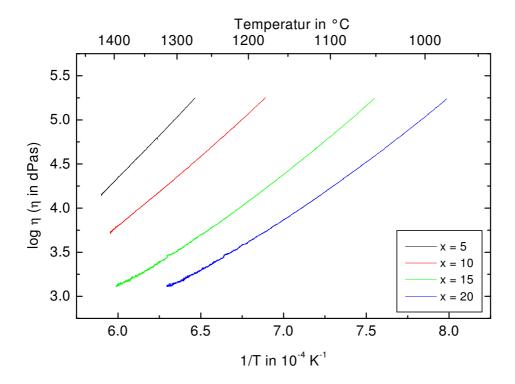


Abb. 7.6: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen x Na₂O· 10 MgO· 10 A $_{2}$ O· (80 - x) SiO₂ (x = 5, 10, 15, 20).

Für 1300 °C erniedrigen sich die Viskositäten der Schmelzen zwischen 5 und 20 mol % Na₂O-Gehalt fast um den Faktor 75. Der größte Sprung ist dabei zwischen 10 und 15 mol % Na₂O zu beobachten, bei der sich die Viskositäten etwa um den Faktor 7 verringert. Die im Anhang in der Tabelle 8 aufgelisteten Aktivierungsenergien nehmen dabei zwischen 5 und 20 mol % Na₂O-Gehalt von 365 auf 230 kJ mol⁻¹ ab.

7.2.3 Einfluss der Magnesiumoxidkonzentration

Der Einfluss der Magnesiumoxidkonzentration auf die Viskosität wurde für folgende Glaszusammensetzungen ermittelt:

•
$$10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ AbO}_3 \cdot (80 - \text{x}) \text{ SiO}_2$$
 $x = 10, 15, 20$

Wie in der Abbildung 7.7 dargestellt, weichen die Viskositäten der Schmelzen mit 15 und 20 mol % MgO für die Temperaturen unterhalb 1200 bzw. 1330 °C von der annähernden linearen Beziehung zur reziproken Temperatur ab. Für 1350 °C erhöhen sich die Viskositäten der Schmelzen zwischen 20 und 10 mol % MgO um etwa den Faktor 15.

Die im Anhang in der Tabelle 9 aufgelisteten Aktivierungsenergien sinken zwischen 10 und 15 mol % MgO-Gehalt von 305 auf 260 kJ mol⁻¹ ab und bleiben für 20 mol % MgO-Gehalt im Rahmen des Fehlers konstant.

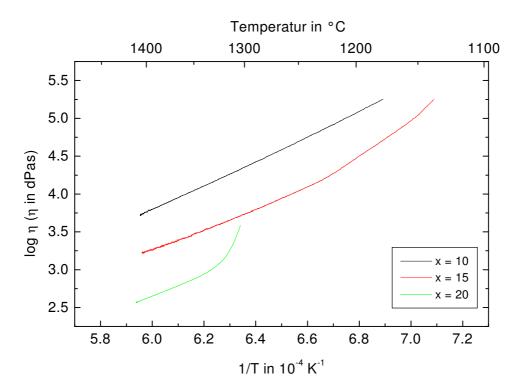


Abb. 7.7: Viskositäten in Abhängigkeit von der reziproken absoluten Temperatur für die Zusammensetzungen $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{ SiO}_2 \text{ (x = 10, 15, 20)}.$

8 Viskositätsbezogene Eisen-Diffusionskoeffizienten

Im Folgenden werden die im Kapitel 6.2 beschriebenen Ergebnisse über die Abhängigkeit der Eisen-Diffusionskoeffizienten von der Zusammensetzung jeweils bezogen auf die gleiche Viskosität dargestellt (also in der Regel nicht für dieselbe Temperatur). Die Werte liegen jeweils in Bereichen in denen die Temperaturabhängigkeiten sowohl der Viskositäten als auch der Eisen-Diffusionskoeffizienten durch einen Arrhenius-Ansatz beschrieben werden konnten. Bei allen hier untersuchten Schmelzen ist eine lineare Abnahme der Eisen-Diffusionskoeffizienten mit zunehmender Viskosität bei einer doppelt logarithmischen Auftragung zu beobachten.

8.1 Einfluss der Zusammensetzung auf die viskositätsbezogenen Eisen-Diffusionskoeffizienten

8.1.1 Einfluss der Aluminiumoxidkonzentration

Die Abhängigkeit der viskositätsbezogenen Eisen-Diffusionskoeffizienten von dem Al₂O₃-Gehalt wird für folgende Zusammensetzungen dargestellt:

- $5 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 \text{ x}) \text{ SiO}_2$ x = 0, 5, 10, 15
- 10 Na₂O· 10 MgO· x A½O₃· (80 x) SiO₂ x = 5, 10, 15, 20
- $5 \text{ Na}_2\text{O}$ · 15 CaO· $x \text{ Al}_2\text{O}_3$ · $(80 x) \text{ SiO}_2$ x = 5, 10, 15
- $5 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot \text{ x A}_2\text{O}_3 \cdot (80 \text{x}) \text{ SiO}_2$ x = 5, 7.5, 10, 15
- $5 \text{ Na}_2\text{O}$ · 5 MgO · 10 CaO · $x \text{ A}_2\text{O}_3$ · $(80 x) \text{ SiO}_2$ x = 5, 10, 15

Für die viskositätsbezogenen Eisen-Diffusionskoeffizienten der Zusammensetzungen 5 Na $_2$ O · 15 MgO · x A $_2$ O · (80 - x) SiO $_2$ in der Abbildung 8.1 sind die Steigungen der linearen Regressionsgeraden für 5 bis 15 mol % Al $_2$ O $_3$ -Gehalt annähernd gleich. Für die Schmelze ohne Aluminiumoxid ist hingegen eine signifikant größere Steigung zu beobachten. Bei einer Erhöhung von 0 auf 5 mol % Al $_2$ O $_3$ nehmen die Diffusionskoeffizienten um den Faktor 2 bis 2.5 zu. Bis 15 mol % Al $_2$ O $_3$ -Gehalt sinken die Diffusionskoeffizienten wieder auf bis zu 50 % des entsprechenden Wertes für 5 mol % Al $_2$ O $_3$.

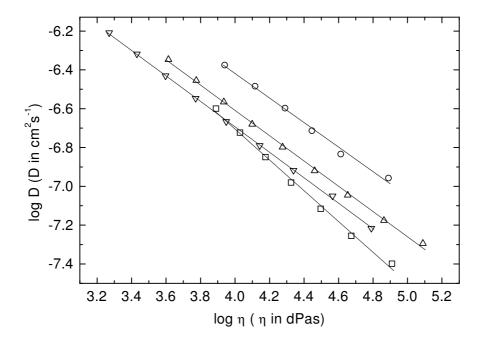


Abb. 8.1: Eisen-Diffusionskoeffizienten für Schmelzen mit 5 Na₂O · 15 MgO · x A½O₃ · (80 - x) SiO₂ in Abhängigkeit von der Viskosität: \Box : x = 0; \circ : x = 5; Δ : x =10; ∇ : x = 15 (Fehler für log D: ± 0.06).

Für die viskositätsbezogenen Eisen-Diffusionskoeffizienten der Zusammensetzung 10 Na₂O· 10 MgO· x Al₂O₃· (80 - x) SiO₂ in der Abbildung 8.2 liegen für 20 mol % Al₂O₃-Gehalt ab $\log (\eta/dPa \text{ s}) = 3.75$ nur linear extrapolierte Werte vor. Hier treten unterhalb von etwa 1350 °C sowohl bei den Diffusionskoeffizienten als auch bei den Viskositäten starke Abweichungen von den jeweiligen linearen Korrelationen zur reziproken Temperatur auf (siehe Kapitel 6.2.1 und 7.2.1).

Die Eisen-Diffusionskoeffizienten steigen bei einer Viskosität von log $(\eta/dPa\ s)=3.75$ zwischen 0 und 10 mol % Al_2O_3 -Gehalt auf etwa den siebenfachen Wert. Zwischen 10 und 20 mol % Al_2O_3 ist hingegen nur noch eine ungefähre Verdoppelung der entsprechenden Werte zu erkennen. Für die Viskositäten größer als $log(\eta/dPa\ s)=3.75$ steigen unter Einbeziehung der extrapolierten Werte für 20 mol % Al_2O_3 -Gehalt die Eisen-Diffusionskoeffizienten zwischen 0 und 20 mol % Al_2O_3 -Gehalt nur geringfügig stärker an.

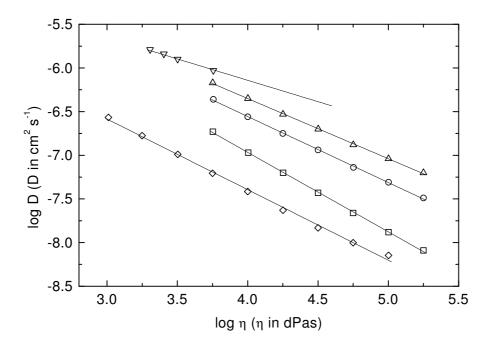


Abb. 8.2: Eisen-Diffusionskoeffizienten in Abhängigkeit von der Viskosität für die Zusammensetzungen $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x AbO}_3 \cdot (80 - \text{ x}) \text{ SiO}_2; \quad \Box: \text{ x = 5}; \quad \bigcirc: \text{ x = 10};$ $\Delta: \text{ x = 15}; \quad \nabla: \text{ x = 20 und } \Diamond: \text{ x = 0*} \quad (*: \text{ Viskositäten aus [5]}); \text{ Fehler für log D: } \pm 0.06.$

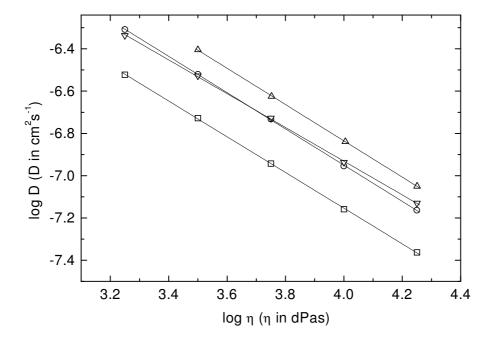


Abb. 8.3: Eisen-Diffusionskoeffizienten für Schmelzen mit 5 Na₂O · 15 CaO · x A½O₃ · (80 - x) SiO₂ in Abhängigkeit von der Viskosität; \Box : x = 5; \bigcirc : x = 10; Δ : x =12.5; ∇ : x = 15; Fehler für log D: ±0.06.

Für die Schmelzen mit der Zusammensetzung 5 Na₂O· 15 CaO· x Al₂O₃· (80 - x) SiO₂ verdoppeln sich in etwa die viskositätsbezogenen Eisen-Diffusionskoeffizienten bei einer Erhöhung von 5 auf 12.5 mol % Al₂O₃-Gehalt (siehe Abbildung 8.3). Für 15 mol % Al₂O₃-Gehalt sinken die entsprechenden Wert wieder. Dieser Verlauf ist für den Viskositätsbereich von log $(\eta/dPa\ s) = 3.5$ –4.25 annähernd gleich.

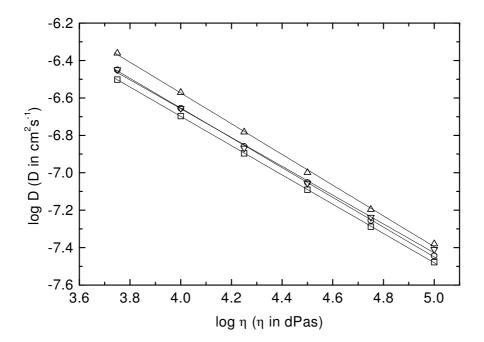


Abb. 8.4: Eisen-Diffusionskoeffizienten in Abhängigkeit von der Viskosität für $5 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot \text{ x A}_2\text{O} \cdot (80 - \text{ x}) \text{ SiO}_2$; \square : x = 5; \bigcirc : x = 7.5; \triangle : x = 10; ∇ : x = 15; Fehler für log D: ± 0.06 .

Für die Eisen-Diffusionskoeffizienten der Zusammensetzung $5 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot \text{x Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{ SiO}_2$ in der Abbildung 8.4 unterscheiden sich die Steigungen der Regressionsgeraden für die verschiedenen Al $_2\text{O}_3$ -Gehalte nur geringfügig. Die Diffusionskoeffizienten sinken im dargestellten Viskositätsbereich jeweils um mehr als eine Größenordnung ab. Die viskositätsbezogenen Eisen-Diffusionskoeffizienten nehmen signifikant zwischen 5 und 10 mol % Al $_2\text{O}_3$ um etwa 30 % zu. Bei weiterer Erhöhung auf 15 mol % Al $_2\text{O}_3$ sinken die Diffusionskoeffizienten wieder um etwa 20 %. Dies liegt aber innerhalb des Fehlerbereiches.

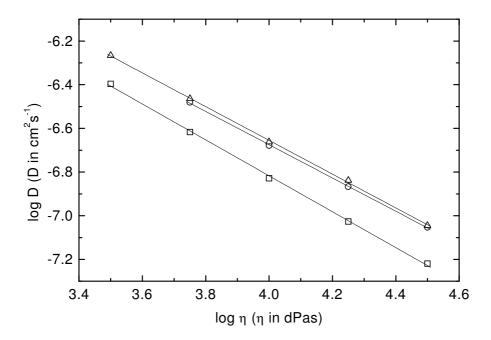


Abb. 8.5: Eisen-Diffusionskoeffizienten in Abhängigkeit von der Viskosität für Schmelzen mit 5 Na₂O· 5 MgO· 10 CaO· x A½O₃· (80 - x) SiO₂; \Box : x = 5; \odot : x = 10; : Δ : x = 15; Fehler für log D: ± 0.06 .

Für die Eisen-Diffusionskoeffizienten der Zusammensetzung $5 \text{ Na}_2\text{O} \cdot 5 \text{ MgO} \cdot 10 \text{ CaO} \cdot \text{x Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$ in der Abbildung 8.5 nehmen die Eisen-Diffusionskoeffizienten von 5 auf 10 mol % Al $_2\text{O}_3$ -Gehalt um etwa 60 % zu. Bei weiterer Erhöhung auf 15 mol % Al $_2\text{O}_3$ -Gehalt bleiben die Werte im Rahmen des Fehlers annähernd konstant. Analoge Verläufe sind für alle hier dargestellten Viskositäten zwischen log $(\eta/dPa\ s) = 3.75$ und log $(\eta/dPa\ s) = 4.5$ zu beobachten.

8.1.2 Einfluss der Natriumoxidkonzentration

Die Abhängigkeit der viskositätsbezogenen Eisen-Diffusionskoeffizienten von dem Na₂O-Gehalt wird für folgende Zusammensetzungen dargestellt:

• $x \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 10 \text{ AbO}_3 \cdot (80 - x) \text{ SiO}_2$ x = 5, 10, 15, 20

In der Abbildung 8.6 ist für die Eisen-Diffusionskoeffizienten nur eine relativ geringe Änderung der Steigungen der entsprechenden Regressionsgeraden für die unterschiedlichen Na₂O-Gehalte zu erkennen.

Die Zunahme von 5 auf 20 mol % Na₂O-Gehalt führt für den Viskositätsbereich von log (η /dPa s) = 4.25-5.0 jeweils zu einer Abnahme der viskositätsbezogenen Diffusionskoeffizienten auf etwa 5 % des jeweiligen Ausgangswertes.

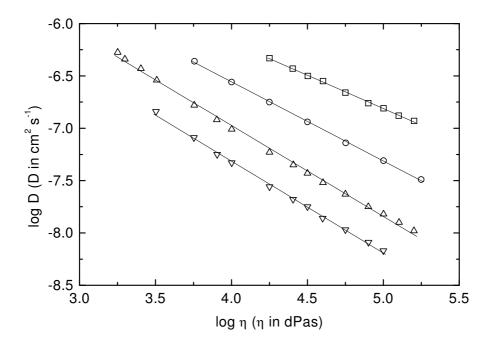


Abb. 8.6: Eisen-Diffusionskoeffizienten für Schmelzen mit x Na₂O· 10 MgO· 10 A½O₃· (80 - x) SiO₂ in Abhängigkeit von der Viskosität; \Box : x = 5; \bigcirc : x = 10; Δ :x=15; ∇ : x = 20; Fehler für log D: ±0.06.

8.1.3 Einfluss der Magnesiumoxidkonzentration

Die Abhängigkeit der viskositätsbezogenen Eisen-Diffusionskoeffizienten von dem MgO-Gehalt wird in der Abbildung 8.7 für folgende Zusammensetzungen dargestellt:

• $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ Ab}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$ x = 10, 15, 20

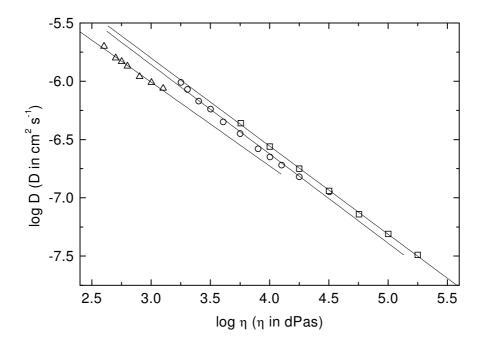


Abb. 8.7: Eisen-Diffusionskoeffizienten für Schmelzen mit 10 Na₂O· x MgO· 10 Al₂O₃· (80 - x) SiO₂ als Funktion der Viskosität; \Box : x = 10; \bigcirc : x = 15; \triangle :x=20 ; Fehler für log D: ± 0.06 .

Da für die Schmelzen mit 20 mol % MgO zur Auswertung nur ein eingeschränkter Viskositätsbereich zur Verfügung steht (siehe Kapitel 7.2.3), kann ein Vergleich der Eisen-Diffusionskoeffizienten nur anhand linear extrapolierter Werte erfolgen. Dabei nehmen die Eisen-Diffusionskoeffizienten von 10 auf 20 mol % MgO-Gehaltes um etwa 30 % bezogen auf die jeweiligen Viskositäten ab.

9 Diskussion der Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichtes

9.1 Temperaturabhängigkeit des Fe²⁺/Fe³⁺- Redoxgleichgewichtes

Wie in Kapitel 5 beschrieben, verschieben sich die Peakpotentiale mit zunehmender Temperatur in der Regel annähernd linear in Richtung positiverer Werte. Dieser Effekt tritt mit Ausnahme von Silber [8] bei allen polyvalenten Elementen in den bisher voltammetrisch untersuchten Schmelzen auf [6,7,9-12,15,128]. Daraus ergibt sich unter der Annahme, dass sich die Schmelze im Gleichgewicht mit der umgebenden Atmosphäre befindet, mit zunehmender Temperatur eine Erhöhung des Anteils der Fe²⁺-Ionen. Die gleiche Tendenz zeigt sich bei den Ergebnissen der Mößbauer-Spektroskopie [29,111]. Auch die größere thermodynamischen Stabilität von FeO gegenüber Fe₂O₃ bei steigender Temperatur lässt diesen Verlauf erwarten [129]. Ebenso wie die oktaedrisch koordinierten Fe²⁺-Ionen sollte aber mit steigender Temperatur auch der Anteil der oktaedrisch koordinierten Fe³⁺-Ionen gegenüber den [FeO_{4/2}] -Tetraedern zunehmen [85,111]. Allerdings sprechen die hier in dieser Arbeit vorliegenden Eisen-Konzentrationen von 0.5 bis 1 mol % überwiegend für einen tetraedrischen Einbau der Fe³⁺-Ionen, sodass die durch die größere thermodynamische Stabilität der Fe²⁺-Ionen hervorgerufene Verschiebung das Fe³⁺/Fe²⁺-Redoxgleichgewicht hier dominieren sollte.

Die in dieser Arbeit für eine Reihe von Schmelzen beobachteten Abweichungen von dem linearen Verlauf können mit der Bildung von Kristallphasen in der Schmelze erklärt werden [9]. Durch diesen Effekt verändert sich die Zusammensetzung der Schmelze insbesondere in der Nähe der Elektroden bei elektrisch induzierter Keimbildung. Eine veränderte Zusammensetzung der Schmelze aber beeinflusst sowohl die Fe³⁺/Fe²⁺-Redoxverhältnisse als auch die Eisen-Diffusionskoeffizienten. Die Erörterung dieses Kristallisations-Effektes erfolgt erst im Anschluss an die Diskussion der Einflüsse der Zusammensetzung auf die Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichtes und die Eisen-Diffusionskoeffizienten (siehe Kapitel 12).

9.2 Einfluss der Zusammensetzung auf das Fe³⁺/Fe²⁺-Redoxgleichgewicht

9.2.1 Einfluss der Aluminiumoxidkonzentration

In der Abbildung 9.1 sind die Peakpotentiale bei 1600 °C für die in Kapitel 5.2 aufgeführten Zusammensetzungen in Abhängigkeit vom Aluminiumoxidgehalt aufgetragen. Auf eine Darstellung des Fehlers (±10 mV) wurde hier bis einschließlich Abbildung 9.5 aus Gründen der Übersichtlichkeit verzichtet. Mit zunehmender Al₂O₃-Konzentration werden die Peakpotentiale zunächst für alle hier untersuchten Zusammensetzungen in Richtung positiverer Werte verschoben. Nach Erreichen eines Maximums sinken die Potentiale bei weiterer Erhöhung des Al₂O₃-Gehaltes wieder.

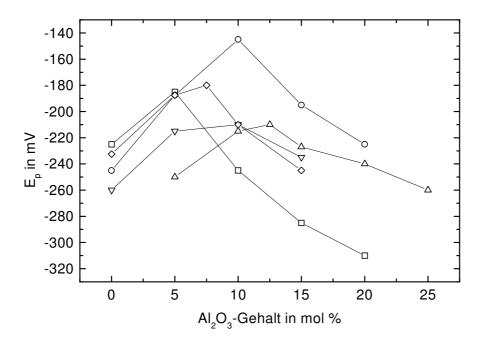


Abb. 9.1: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit vom Al₂O₃-Gehalt bei 1600 °C für die Zusammensetzungen: 5 Na₂O· y MgO· (15-y) CaO· x Al₂O₃· (80 - x) SiO₂: Δ : y = 0; ∇ : y = 5; Φ :y=1 0; \square : y = 15, und O: 10 Na₂O· 10 MgO· x Al₂O₃· (80 - x) SiO₂; jeweils mit 0.25 bzw. 0.5 mol % Fe₂O₃ (für y = 15) dotiert.

Die Maxima treten zwischen 5 mol % Al₂O₃ für die Schmelzen mit 15 mol % MgO-Gehalt und 12.5 mol % Al₂O₃ für die Zusammensetzungen mit 15 mol % CaO-Gehalt auf.

Für die Schmelzen, die anteilig oder ausschließlich Calciumoxid als Erdalkalioxid enthalten, fällt auf, dass die maximalen Verschiebungen für die molaren Verhältnisse bei

 $[Al_2O_3]/\{[Na_2O]+[CaO]/2\}=1$ beobachtet werden. Ein Vergleich mit früheren SWV-Untersuchungen zum Einfluss der Al_2O_3 -Konzentration in Alumosilicat-Schmelzen jeweils nur mit CaO als Erdalkalioxidbestandteil [10,11] in Abbildung 9.2 kann diesen Verlauf bestätigen.

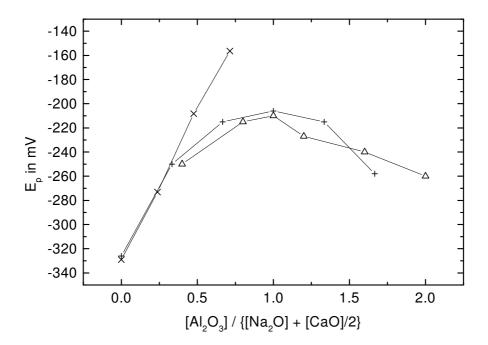


Abb. 9.2: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit vom Verhältnis [Al₂O₃] / {[Na₂O] + [CaO]/2} bei 1600°C für die Zusammensetzungen: Δ : 5 Na₂O · 15 CaO · x Al₂O₃ · (80 - x) SiO₂, +: 10 Na₂O · 10 CaO · x Al₂O₃ · (80 - x) SiO₂ [10], x: 16 Na₂O · 10 CaO · x Al₂O₃ · (74-x) SiO₂ [11]; jeweils mit 0.25 mol % Fe₂O₃ dotiert.

Für die Schmelzen mit der Grundzusammensetzung $10 \text{ Na}_2\text{O} \cdot 10 \text{ CaO} \cdot x \text{ A}_2\text{O}_3 \cdot (80 - x) \text{SiO}_2$ [10] verschieben sich die Peakpotentiale mit zunehmendem Al_2O_3 -Gehalt auch bis zu einem Verhältnis von $[\text{Al}_2\text{O}_3]$ /{ $[\text{Na}_2\text{O}] + [\text{CaO}]/2$ } = 1 zunächst zu positiveren Werten. Die Höhe des Peakpotentialmaximums entspricht dabei nahezu dem Wert für die Schmelze mit der Zusammensetzung $5 \text{ Na}_2\text{O} \cdot 15 \text{ CaO} \cdot x \text{ A}_2\text{O}_3 \cdot (80 - x) \text{ SiO}_2$. Für Verhältnisse von $[\text{Al}_2\text{O}_3]$ /{ $[\text{Na}_2\text{O}] + [\text{CaO}]/2$ } >1 sinken die Peakpotentiale wieder.

Für die Schmelzen mit der Zusammensetzung 16 Na₂O· 10 CaO· xAl₂O₃· (74-x) SiO₂ [11] steigen die Peakpotentiale im gesamten untersuchten Bereich fast linear an. Bis zu einem Verhältnis von [Al₂O₃] /{[Na₂O] + [CaO]/2} < 0.3 entsprechen dabei die Peakpotentiale im Rahmen des Fehlers denen für die Zusammensetzung mit 10 Na₂O· 10 CaO· x Al₂O₃· (80-x) SiO₂. Über diesem Verhältnis verschieben sich die Peakpotentiale im Vergleich zu

den Potentialen der anderen hier dargestellten Zusammensetzungen zunehmend stärker zu positiveren Werten. Da hier aber für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 0.71$ keine Potentialwerte vorliegen, kann auch keine Aussage zum Auftreten eines Maximums gemacht werden.

In der Abbildung 9.3 ist die Abhängigkeit der Peakpotentiale von dem Verhältnis $[Al_2O_3]$ /{ $[Na_2O]$ + [CaO]/2} für die Zusammensetzungen mit 5 Na_2O · y MgO· (15-y) CaO· x Al_2O_3 · (80 - x) SiO₂ (y = 0, 5, 10, 15) aufgetragen. Beim Verhältnis von $[Al_2O_3]$ /{ $[Na_2O]$ + [CaO]/2}= 1 tritt für alle hier dargestellten Zusammensetzungen die maximalen Verschiebungen der Peakpotentiale auf.

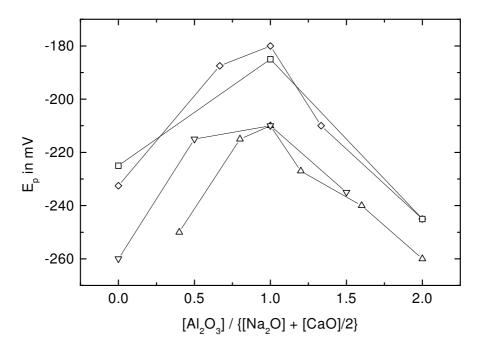


Abb. 9.3: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit vom Verhältnis [Al₂O₃] /{[Na₂O] + [CaO]/2} bei 1600 °C für Zusammensetzungen mit 5 Na₂O · y MgO · (15 - y) CaO· x Al₂O₃· (80 - x) SiO₂ : Δ : y = 0; ∇ : y = 5; Φ : y = 10; \square : y = 15; jeweils mit 0.25 bzw. 0.5 mol % Fe₂O₃ für y = 15.

Bezogen auf die Abhängigkeit der Peakpotentiale von dem Al_2O_3 -Gehalt bleibt festzuhalten, dass die Maxima bei einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ auftreten. Das bedeutet aber auch, dass der MgO-Gehalt anscheinend keinen signifikanten Einfluss auf die Lage der Maxima der Peakpotentiale hat.

Im Folgenden soll dies auch für die Zusammensetzungen, die nur MgO als Erdalkalibestandteil enthalten, diskutiert werden. Zusätzlich zu den Werten der in der Abbildung 9.1 dargestellten Zusammensetzungen sind in der Abbildung 9.4 auch die

Peakpotentiale für die Schmelzen eingefügt, die im Hinblick auf den Einfluss der MgO-Konzentration (siehe Kapitel 5.2.3) untersucht wurden. Es handelt sich dabei um die Zusammensetzungen $10 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ x A}_2\text{O}_3 \cdot (75 - \text{ x}) \text{SiO}_2$ und $10 \text{ Na}_2\text{O} \cdot 20 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (70 - \text{ x}) \text{SiO}_2$ (jeweils x = 0, 10, 15). In der Abbildung 9.4 sind die Peakpotentiale (für T = $1600 \, ^{\circ}\text{C}$) in Abhängigkeit vom Verhältnis [Al $_2\text{O}_3$] /[Na $_2\text{O}$] aufgetragen.

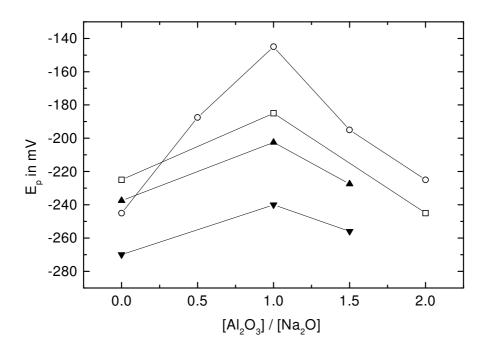


Abb. 9.4: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit vom [Al₂O₃] /[Na₂O]-Verhältnis bei 1600 °C für folgende Zusammensetzungen: \square : $5 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ xAl}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2^*$, \square : $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2$, \blacktriangle : $10 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (75 - \text{x}) \text{SiO}_2$, \blacktriangledown : $10 \text{ Na}_2\text{O} \cdot 20 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (70 - \text{x}) \text{SiO}_2$; mit 0.25 bzw. 0.5 mol % Fe₂O₃ für (*) dotiert.

Für alle in der Abbildung 9.4 dargestellten Potentialverläufe treten die Maxima bei einem Verhältnis von $[Al_2O_3]/[Na_2O] = 1$ auf. Also kann für keine der hier untersuchten Zusammensetzungen ein Einfluss der MgO-Konzentration auf die Lage der Maxima der Peakpotentiale nachgewiesen werden.

Die hier ebenfalls erkennbaren Einflüsse der unterschiedlichen Na₂O- und MgO- Gehalte in den Schmelzen auf die Höhe der Peakpotentiale werden in den Kapiteln 9.2.2 und 9.2.3 näher erläutert.

Wie im Kapitel 4 beschrieben, können in Silicatgläsern und –schmelzen (bei konstanter Temperatur und Sauerstoff-Aktivität) die Basizität, die Ladungskompensation der [FeO_{4/2}]⁻-

Tetraeder oder ein Koordinationswechsel der Fe³⁺-Ionen die Lage des Fe³⁺/Fe²⁺-Redoxgleichgewichtes bestimmen.

Für den hier untersuchten Einfluss des äquimolaren Austausches von SiO₂ gegen Al₂O₃ steigt die berechnete optische Basizität der Schmelzen linear an [124]. Dies sollte analog auch zu einer linearen Zunahme der Peakpotentiale bzw. zu einer Verschiebung der Fe³⁺/Fe²⁺-Redoxgleichgewichts auf die Seite der oxidierten Fe³⁺-Ionen führen [124]. Die in dieser Arbeit und in der Literatur [10,11] beobachtete Zunahme der Peakpotentiale mit steigendem Al₂O₃-Gehalt und das Auftreten der Maxima können somit nicht alleine durch die lineare Zunahme der Basizität erklärt werden.

Gegen einen Koordinationswechsel der Fe³⁺-Ionen von tetraedrischer nach oktaedrischer Koordination sprechen sowohl die geringen Eisen-Konzentrationen (0.5 bis 1 mol %) als auch die auf Seite der oxidierten Fe³⁺-Ionen liegenden Fe³⁺/Fe²⁺-Redoxverhältnisse (siehe Tabelle 1-3 im Anhang) [27,92,106,121]. Ob der für Al³⁺-Ionen beim Übergang vom peralkalischen in den peralumischen Bereich diskutierte Wechsel von tetraedrischer in die oktaedrischer Koordination (siehe Kapitel 4.2) auch für die Fe³⁺-Ionen gültig ist, kann hier nicht geklärt werden. Ein solcher Koordinationswechsel sollte aber zu einer starken Änderung der Beweglichkeit der Fe³⁺-Ionen und der Eisen-Diffusionskoeffizienten führen [92,102]. Im Kapitel 11.3 zur Abhängigkeit der Eisen-Diffusionskoeffizienten von der Zusammensetzung wird dieser Aspekt näher diskutiert.

Die Konkurrenz der [FeO_{4/2}] - und [AlO_{4/2}] -Tetraeder um die Alkali- und Erdalkali-Ionen führt mit zunehmenden Al₂O₃-Gehalt zu einer Verringerung des Anteils an Alkali- und/oder Erdalkali-Ionen, der zur Ladungskompensation der [FeO_{4/2}] -Tetraeder zur Verfügung steht. Da die Fe²⁺-Ionen, wie im Kapitel 4.3 erläutert, überwiegend in oktaedrischer Koordination als Netzwerkwandler eingebaut werden, sollte eine Destabilisierung der [FeO_{4/2}] -Tetraeder zu einer Verschiebung des Fe³⁺/Fe²⁺-Redoxgleichgewichtes in Richtung der Fe²⁺-Ionen führen. Tatsächlich steigen die Peakpotentiale mit steigendem Al₂O₃-Gehalt zunächst für alle hier beschriebenen Zusammensetzungen und entsprechend erhöht sich auch der Anteil der Fe²⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht.

Die Rolle der Na⁺-Ionen wandelt sich dabei vom Netzwerkwandler (koordiniert mit den Trennstellensauerstoffen der Q^3 -Einheiten) mit zunehmenden Al_2O_3 -Gehalt zum Ladungskompensator für die als Q^4 -Struktureinheiten eingebauten $[AlO_{4/2}]^{-}$ -Tetraeder [27,57].

Für die Schmelzen mit CaO als Erdalkalibestandteil in der Abbildung 9.2 zeigen die Maxima bei $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ dass auch die Ca^{2+} -Ionen einen ladungsstabilisierenden Einfluss auf die [AlO_{4/2}] - bzw. [FeO_{4/2}] -Tetraeder ausüben. Offensichtlich nimmt die Stabilisierung der [FeO_{4/2}] -Tetraeder aber nur bis zu einem Wert ab, bei dem ein Ca²⁺-Ion statistisch jeweils einen [AlO_{4/2}]⁻-Tetraeder stabilisiert. Es wurde schon in Kapitel 4.2.1 beschrieben, dass die ladungsstabilisierenden Eigenschaften der Calcium-Ionen im Vergleich zu den Alkali-Ionen schwächer ausgeprägt sind [27]. Auch SWV-Untersuchungen zeigen beim äquimolaren Austausch von Na₂O gegen CaO in Silicatschmelzen eine Verschiebung des Fe³⁺/Fe²⁺-Redoxverhältnisses auf die Seite der Fe²⁺-Ionen [12]. Trotzdem wäre die Verschiebung der Peakpotentiale bei einem Verhältnis maximale $[Al_2O_3]/\{[Na_2O] + [CaO]\} = 1$ zu erwarten [27]. Ein möglicher Grund dafür könnte die im zu den Alkali-Ionen bevorzugte Stabilisierung der Ca²⁺-Ionen Struktureinheiten mit höherer Ladungsdichte sein [31]. Auch moleküldynamische Modellberechnungen kombiniert mit röntgendiffraktometrischen Messungen (WAXS) [130] und thermodynamische Daten [131] zeigen, dass die Ca²⁺-Ionen im Gegensatz zu den Na⁺-Ionen nicht bevorzugt als reine Ladungskompensatoren für die [AlO_{4/2}]-Tetraeder auftreten. Bei geringen Al₂O₃-Konzentrationen liegen die [AlO_{4/2}]⁻-Tetraeder als Q⁴-Struktureinheiten vor. Die Ca²⁺-Ionen sind hingegen vorzugsweise als Netzwerkwandler an die Q²-Struktureinheiten (SiO₄-Tetraeder mit zwei Trennstellensauerstoffen und Brückensauerstoffen) oder an zwei Q³-Einheiten (mit drei Brückensauerstoffen und einem Trennstellensauerstoff) gebunden. Entsprechend wirken zuerst die Na⁺-Ionen als ladungskompensierende Ionen für die [AlO_{4/2}]-Tetraeder [31]. Erst bei höheren Al₂O₃-Gehalten liegen die AlO₄-Tetraeder zunehmend als O³-Einheiten vor. Für diese O³-Struktureinheiten können die Ca²⁺-Ionen gleichzeitig die Rolle des Ladungskompensators übernehmen und mit einem Trennstellensauerstoff koordiniert bleiben [31,130]. Entsprechend sollte ein Ca²⁺-Ion bevorzugt entweder gleichzeitig an einen Trennstellensauerstoff und einen [FeO_{4/2}] -Tetraeder gebunden sein oder nur einen als Q³-Struktureinheit eingebauten FeO₄-Tetraeder stabilisieren [31].

Ein weiterer Grund könnte die anhand von ESR-Untersuchungen für hohe Al_2O_3 -Gehalte postulierte bevorzugte Stabilisierung von $[FeO_{4/2}]^-$ - gegenüber den $[AlO_{4/2}]^-$ -Tetraedern durch die Ca^{2+} -Ionen sein [92]. Während die Al^{3+} -Ionen dann zunehmend in fünf- und sechsfacher Koordination oder als Tricluster eingebaut sind, werden die $[FeO_{4/2}]^-$ -Tetraeder weiterhin durch Ca^{2+} -Ionen stabilisiert [92].

Die Peakpotentiale steigen mit zunehmendem Al_2O_3 -Gehalt auch für die Zusammensetzungen, die sowohl MgO als auch CaO enthalten, bis zu einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ an. Für die Schmelzen die nur MgO als Erdalkalibestandteil enthalten und treten die Maxima der Peakpotentiale bei einem Verhältnis von $[Al_2O_3]/[Na_2O] = 1$ auf. Somit hat in beiden Fällen der MgO-Gehalt keinen Einfluss auf die Lage Maxima der Peakpotentiale und damit üben die Mg²⁺-Ionen auch keinen signifikanten ladungskompensierenden Effekt auf die $[AlO_{4/2}]^-$ - bzw. $[FeO_{4/2}]^-$ -Tetraeder aus.

Ein Grund dafür scheint die höhere Kationenfeldstärke der Mg²⁺-Ionen gegenüber den Na⁺- und Ca²⁺-Ionen zu sein [27,29,124]. Die Mg²⁺-Ionen werden entweder bevorzugt als Netzwerkwandler mit hoch geladenen Struktureinheiten wie Q²-, Q¹- und sogar Q⁰-Einheiten koordiniert [66] oder liegen eventuell sogar als Netzwerkbildner in tetraedrischer Koordination vor [40,42]. Die Stabilisierung der als Q⁴- oder Q³-Einheiten vorliegenden [AlO_{4/2}]⁻-Tetraeder scheint darum zumindest bei niedrigen Al₂O₃-Gehalten unwahrscheinlich zu sein.

Ob bei Verhältnissen von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ die Mg^{2+} -Ionen als Ladungskompensatoren für die $[FeO_{4/2}]^-$ - bzw. $[AlO_{4/2}]^-$ -Tetraeder wirken, kann hier nicht beurteilt werden. Wenn dies aber der Fall wäre, würden die Mg^{2+} -Ionen dabei noch mehr als die Ca^{2+} -Ionen bevorzugt Strukturen mit großer Ladungsdichte stabilisieren [31]. Dies sollte bei hohen Al_2O_3 -Konzentrationen in den Schmelzen zu einer Aufteilung in Bereiche hoher Ladungsdichte (mit hoher Konzentration an $[AlO_{4/2}]^-$ -Tetraedern) und geringer Ladungsdichte (mit $[SiO_{4/2}]$ -Tetraedern in Q^4 -Einheiten) führen [31,132].

Für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ tritt für alle hier beschriebenen Zusammensetzungen eine Verschiebung der Peakpotentiale zu negativeren Potentialen auf, die mit einer Erhöhung des Fe³⁺-Anteils korreliert ist. Da im peralumischen Bereich zusätzlich eingebautes Al_2O_3 aufgrund der nicht mehr möglichen Ladungskompensation auch nicht mehr als $[AlO_{4/2}]^-$ -Tetraeder eingebaut werden kann, müssten die Al^{3+} -Ionen entweder in oktaedrischer Koordination [27,43,54,67,77,78] oder als $(Si,Al)_3O_{10}$ -Tricluster [27,52,75] in das Silicat-Netzwerk eingebaut werden.

Die oktaedrisch koordinierten Al^{3+} -Ionen können dann entweder als Netzwerkwandler wirken, oder als ladungskompensierende Kationen $Al^{3+}[AlO_{4/2}]^{-}_3$ -Struktureinheiten bilden [33,51]. Analog zu den $[AlO_{4/2}]^{-}$ -Tetraedern würden auch die $[FeO_{4/2}]^{-}$ -Tetraeder durch die Al^{3+} -Ionen stabilisiert werden können. Wenn hingegen auch die Fe^{3+} -Ionen in diesem Bereich

in oktaedrischer Koordination als Netzwerkwandler eingebaut werden, sollten auch die Eisen-Diffusionskoeffizienten zunehmen [102].

Nach dem in Abbildung 4.2 dargestellten Schema entstehen gleichzeitig mit der Bildung von (Si, Al)₃O₁₀-Triclustern auch Trennstellensauerstoffe, die mit den Ca²⁺- bzw. Na⁺-Ionen koordiniert sind [68,72]. Entsprechende Molekülorbital-Berechnungen bestätigen eine größere thermodynamische Stabilität von Tricluster-Strukturen, die auch Trennstellensauerstoffe aufweisen [133]. Inwiefern tatsächlich die mit den Trennstellensauerstoffen koordinierten Ca²⁺- und Na⁺-Ionen zumindest teilweise auch zur Ladungskompensation der [FeO_{4/2}]⁻- Tetraeder und zu der beobachteten Erhöhung des Fe³⁺ Anteils beitragen, kann hier nicht beurteilt werden.

9.2.2 Einfluss der Natriumoxidkonzentration

Die in dem Kapitel 5.2.2 dargestellten Ergebnisse zur Abhängigkeit der Peakpotentiale von dem Natriumoxidgehalt zeigen einen auf den ersten Blick unerwarteten Verlauf. So verschieben sich die Peakpotentiale für die Zusammensetzung x Na₂O· 10 MgO· 10 A½O₃· (80 - x) SiO₂ wie in Abbildung 5.12 dargestellt bei Erhöhung der Na₂O-Konzentration von 5 auf 10 mol % zu positiveren Potentialen, um zwischen 10 bis 20 mol % Na₂O wieder zu niedrigeren Werten abzufallen. Dies stimmt nicht mit der für das System x Na₂O· 10 MgO· (90 - x) SiO₂ [6] beobachteten annähernd linearen Abnahme der Peakpotentiale mit zunehmendem Na₂O-Gehalt überein. Da beim Austausch von Na₂O gegen SiO₂ die Basizität der Schmelze linear zunehmen sollte [124] scheint auch hier im Gegensatz zu dem Glas-System ohne Al₂O₃ [6] das Basizitätsprinzip nicht generell anwendbar zu sein.

In der Abbildung 9.5 sind die Peakpotentiale (für 1600 °C) bezogen auf das [Al₂O₃]/[Na₂O]-Verhältnis für die Zusammensetzungen x Na₂O · 10 MgO · 10 A½O₃ · (80 - x) SiO₂ und für 10 Na₂O · 10 MgO · x A½O₃ · (80 - x) SiO₂ dargestellt. Bei der Variation des Na₂O-Gehaltes entspricht der Verlauf und das Auftreten des Maximums der Peakpotentiale bei einem Verhältnis von [Al₂O₃] /[Na₂O] = 1 der im vorherigen Kapitel diskutierten Abhängigkeit der Peakpotentiale von der Al₂O₃-Konzentration.

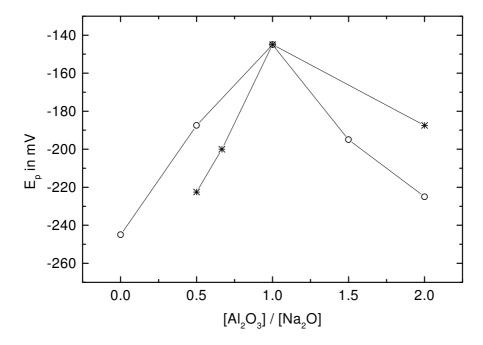


Abb. 9.5: Peakpotentiale (Fehler ± 10 mV) in Abhängigkeit vom Verhältnis [Al₂O₃] / [Na₂O] bei 1600 °C für die Zusammensetzungen: \star : x Na₂O· 10 MgO· 10 Al₂O₃· (80 - x) SiO₂, O: 10 Na₂O· 10 MgO· x Al₂O₃· (80 - x) SiO₂, mit 0.25 mol % Fe₂O₃ dotiert.

Bei Verhältnissen von [Al₂O₃]/[Na₂O] < 1 bewirkt die Zunahme der Konzentration an ladungskompensierenden Na⁺-Ionen eine Erhöhung der Stabilität der [FeO_{4/2}]⁻-Tetraeder und damit eine Verschiebung des Fe³⁺/Fe²⁺-Redoxgleichgewichtes in Richtung der Fe³⁺-Ionen. Für das Verhältnis von $[Al_2O_3]$ / $[Na_2O] = 1$ tritt auch hier ein Maximum auf und unterstreicht damit, dass die Mg²⁺-Ionen keinen signifikanten ladungskompensierenden Einfluss ausüben. Für Verhältnisse von $[Al_2O_3]/[Na_2O] > 1$ hingegen stehen nicht genügend ladungskompensierende Na⁺-Ionen zum Einbau aller Al³⁺-Ionen als [AlO_{4/2}]-Tetraeder zur Verfügung. Entsprechend sollten die überschüssigen Al³⁺-Ionen entweder in oktaedrischer Koordination bzw. als Tricluster vorliegen. Die daraus resultierenden Effekte auf die Stabilisierung der Fe³⁺-Ionen wurden schon im vorherigen Kapitel erläutert.

Werden die in der Abbildung 9.5 dargestellten Peakpotentiale der beiden Schmelzenreihen miteinander verglichen, zeigen sich Unterschiede. Für Verhältnisse von $[Al_2O_3]/[Na_2O] < 1$ sind die Peakpotentiale für die Schmelzen mit 15 und 20 mol % Na_2O gegenüber dem Potentialverlauf für die Schmelzenreihe mit 10 mol % Na_2O um etwa 20-30 mV zu negativeren Potentialen verschoben. Bei gleichem Verhältnis von $[Al_2O_3]/[Na_2O]$ wirkt hier die Erhöhung der Konzentration an ladungskompensierenden Na^+ -Ionen stärker stabilisierend auf die $[FeO_{4/2}]^-$ -Tetraeder als eine Verringerung des Al_2O_3 -Gehaltes.

Für Verhältnisse von $[Al_2O_3]/[Na_2O] > 1$ hingegen kehrt sich die Tendenz um. So ist das Peakpotential der Schmelze mit 5 mol % Na_2O und 10 mol % Al_2O_3 im Vergleich zu entsprechendem Wert für 10 mol % Na_2O und 20 mol % Al_2O_3 um etwa 30 mV zu positiveren Werten verschoben. Hier führt bei jeweils dem Verhältnis von $[Al_2O_3]/[Na_2O] = 2$ der um 10 mol % höhere Al_2O_3 -Gehalt zu einer deutlich stärkeren Stabilisierung der $[FeO_{4/2}]^{-}$ -Tetraeder.

9.2.3 Einfluss der Magnesiumoxidkonzentration

Wie in Abbildung 9.6 dargestellt, ist für die Schmelzenreihen mit 10 und 15 mol % Al₂O₃ eine im Rahmen des Fehlers annähernd lineare Abnahme der Peakpotentiale (um ca. 8 bzw. 5 mV je mol % MgO) mit zunehmendem MgO-Gehalt zu erkennen (in der Abbildung 9.6 sind die jeweiligen Regressionsgeraden eingezeichnet). Diese lineare Abnahme wird für beide

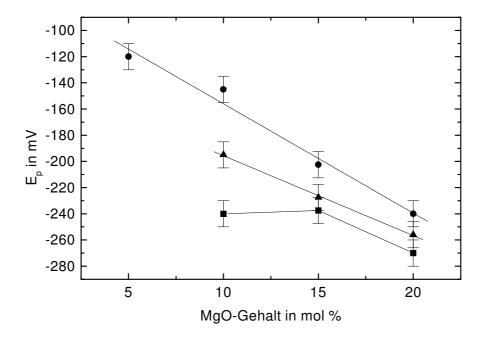


Abb. 9.6: Peakpotentiale bei 1600 °C für folgende Zusammensetzungen: ■: 10 Na₂O· x MgO· (90 - x) SiO₂; ●: 10 Na₂O· x MgO· 10 A½O₃· (80 - x) SiO₂; ▲: 10 Na₂O· x MgO· 15 Al₂O₃· (75 - x) SiO₂; jeweils mit 0.25 mol % Fe₂O₃ dotiert.

Zusammensetzungsreihen zwischen 1600 und 1300 °C beobachtet (siehe Abbildung 5.18 und 5.19). Für die Zusammensetzungen ohne Al₂O₃ bleiben die Werte zwischen 10 und 15 mol %

MgO-Gehalt hingegen annähernd konstant, und erst zwischen 15 und 20 mol % MgO-Gehalt ist eine Abnahme der Werte zu erkennen. Mit abnehmender Temperatur sinken die Peakpotentiale für die Zusammensetzung mit 10 mol % MgO relativ zu den Werten für 15 mol % MgO sogar immer weiter ab (siehe Abbildung 5.17).

Wie in den vorherigen Kapiteln erläutert, kann die für die Schmelzen mit 10 mol % Al₂O₃-Gehalt mit zunehmendem MgO-Gehalt beobachtete Verschiebung der Redoxgleichgewichte auf die Seite der Fe³⁺-Ionen nicht durch einen ladungskompensierenden Effekt der Mg²⁺-Ionen erklärt werden. Qualitativ stimmt die lineare Abnahme der Peakpotentiale mit der linearen Zunahme der optischen Basiziät der Schmelze beim Austausch von SiO₂ gegen MgO überein [124]. Quantitativ kann die Basizitätszunahme von 0.55 auf 0.57 [124] bei einer Erhöhung des MgO-Gehaltes von 10 auf 20 mol % keine ausreichende Erklärung bieten. So führt eine Erhöhung des Na₂O-Gehaltes von 10 auf 20 mol % (mit einer größeren Basizitätszunahme von 0.55 auf 0.59 [124]) zur gleichen Abnahme der Peakpotentiale (siehe Abbildung 9.5).

Eine alternative Erklärung für die Erhöhung des Fe³⁺-Anteils könnte eine Destabilisierung der Fe²⁺-Ionen liefern. So weisen die Mg²⁺- und Fe²⁺-Ionen sowohl annähernd die gleichen Ionenradien (0.78 bzw. 0.83 Å) als auch in oktaedrischer Koordination ungefähr gleiche Metall-Sauerstoff-Bindungslängen (2.1 bzw. 2.15 Å) auf [29]. Beide Kationen würden somit im Glasnetzwerk um die gleichen Koordinationsstellen konkurrieren. Mit zunehmender Konzentration an Mg²⁺-Ionen sollten dann die Fe²⁺-Ionen aus den für sie energetisch günstigen Plätzen verdrängt werden. Dies sollte zu einer Destabilisierung der Fe²⁺- Ionen und damit zu einem steigenden Anteil der Fe³⁺-Ionen im Fe³⁺/Fe²⁺-Gleichgewicht führen.

Für die Peakpotentiale der Schmelzen mit 15 mol % Al₂O₃-Gehalt ist gegenüber den Werten mit 10 mol % Al₂O₃-Gehalt eine geringere Abnahmerate von 5 mV/mol % MgO festzustellen (siehe Abbildung 9.6). Allerdings kann aufgrund des Fehlerbereichs der Peakpotentiale nicht entschieden werden, ob dies ein signifikanter Effekt ist.

Inwiefern die Mg²⁺-Ionen auch einen ladungskompensierenden Einfluss auf die [FeO_{4/2}]⁻-Tetraeder ausüben, kann auch hier nicht entschieden werden, da die beschriebene destabilisierende Wirkung der Mg²⁺-Ionen einen analogen Effekt auf die Verschiebung der Peakpotentiale hat.

Die für die Schmelzen ohne Al_2O_3 beobachtete Konstanz bzw. Zunahme der Peakpotentiale zwischen 10 und 15 mol % MgO kann durch die diskutierten Ansätze nicht erklärt werden. Bemerkenswert ist daher, dass die für den Fe³⁺/Fe²⁺-Redoxübergang ermittelten Werte der Standardenthalpie $\Delta H^0 = 106 \text{ kJ mol}^{-1}$ und der Standardentropie $\Delta S^0 = 42 \text{ J K}^{-1} \text{mol}^{-1}$ der

Schmelze mit 10 mol % MgO um etwa 14 kJ mol⁻¹ bzw. 8 - 9 J K⁻¹mol⁻¹ signifikant über den Werten für die anderen hier vorgestellten Zusammensetzungen liegen (siehe Tabellen 1-3 im Anhang). Ein Anstieg der Standardenthalpie und -entropie wurde auch für die Schmelzenreihe x Na₂O · (16 - x) K₂O · 10 CaO · 74 SiO₂ für x ≈ 8 (also bei einem Verhältnis von [Na₂O]/[K₂O] ≈ 1) beobachtet und als Mischalkalieffekt interpretiert [92]. Da auch für Na₂O-MgO-SiO₂-Gläser ein solcher Mischoxideffekt nicht ausgeschlossen wird [40], könnte dies eine mögliche Erklärung für die hier auftretende Abweichung sein. Auch die Verstärkung des Mischoxideffektes mit abnehmender Temperatur [28] spiegelt sich in der immer größer werdenden Abnahme der Peakpotentiale für 10 mol % MgO relativ zu den Werten für 15 mol % MgO-Gehalt wieder (siehe Abbildung 5.17). Die bei weiterer Erhöhung auf 20 mol % MgO-Gehalt beobachtete Abnahme der Peakpotentiale scheint die Annahme, dass es sich für Schmelze mit 10 mol % MgO-Gehalt um einen singulären Effekt handelt, zu bestätigen.

9.2.4 Einfluss des [CaO]/[MgO]-Verhältnisses

Wie schon in der Literatur [6] diskutiert, beeinflusst auch der Austausch von CaO gegen MgO die Fe³⁺/Fe²⁺-Redoxverhältnisse und erhöht für Alkali-Erdalkalisilicate den Anteil der Fe²⁺-Ionen. Bisher wurde der Einfluss der molaren [CaO]/[MgO]-Verhältnisse in Alkali-Alumosilicaten nicht mittels Square-Wave Voltammetrie untersucht.

Für die Peakpotentiale der Schmelzen mit der Zusammensetzung $5 \text{ Na}_2\text{O} \cdot \text{y} \text{ MgO} \cdot (15\text{-y}) \text{ CaO} \cdot \text{x} \text{ Al}_2\text{O}_3 \cdot (80\text{-x}) \text{ SiO}_2$ ist in der Abbildung 9.7 eine komplexe Abhängigkeit von dem MgO- bzw. CaO-Gehalt zu erkennen. In den Schmelzen ohne Al $_2\text{O}_3$ verschieben sich die Peakpotentiale beim äquimolaren Austausch von CaO gegen MgO zu positiveren Werten. Für die Schmelzen mit 5 mol % Al $_2\text{O}_3$ -Gehalt ist eine analoge Abnahme zu erkennen, die aber um etwa 40 mV zu positiveren Potentialen verschoben ist. Die Peakpotentiale der Schmelzen mit 10 und 15 mol % Al $_2\text{O}_3$ -Gehalt hingegen bleiben bis 10 mol % MgO-Gehalt im Rahmen des Fehlers konstant bzw. nehmen nur leicht ab. Erst für die Schmelzen mit 15 mol % MgO-Gehalt sinken die Peakpotentiale jeweils um etwa 30 mV. Dabei sind die Peakpotentiale der Schmelzen mit 15 mol % Al $_2\text{O}_3$ im Vergleich zu den Werten für 10 mol % Al $_2\text{O}_3$ generell um ca. 10 bis 35 mV zu negativeren Potentialen verschoben.

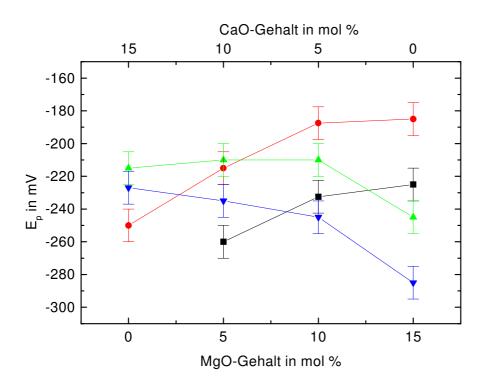


Abb. 9.7: Peakpotentiale bei 1600 °C für folgende Zusammensetzungen (mit 0.25 mol % Fe_2O_3 dotiert): $5 \text{ Na}_2O \cdot \text{ x MgO} \cdot (15\text{-x}) \text{ CaO} \cdot \text{ y Al}_2O_3 \cdot 80 \text{ SiO}_2 \text{ (y = 0, 5, 10, 15);} \blacksquare : \text{x = 0;}$ $\bullet : \text{x = 5;} \triangle : \text{x = 10;} \forall : \text{x = 15}.$

Zur Erklärung dieser Abhängigkeiten müssen die in den vorherigen Kapiteln diskutierten Einflussgrößen auf das Fe^{3+}/Fe^{2+} -Redoxverhältnis bezüglich der Variation der Verhältnisse von $[Al_2O_3]/\{[Na_2O]+[CaO]/2\}$ und der Abhängigkeit von der MgO-Konzentration berücksichtigt werden.

Für die Schmelzen ohne Al₂O₃ korreliert die Abnahme des Gehaltes an Ca²⁺-Ionen mit einer geringeren ladungskompensierenden Wirkung auf die [FeO_{4/2}]⁻-Tetraeder da für die Mg²⁺-Ionen kein derartiger Effekt erkennbar ist. Zusätzlich nimmt auch die Basizität der Schmelze beim äquimolaren Austausch von CaO gegen MgO von 0.54 auf 0.52 ab [124]. Beides führt zu einer Verringerung der Stabilität der [FeO_{4/2}]⁻-Tetraeder. Damit erhöht sich der Anteil an Fe²⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht und erklärt somit die beobachtete Abnahme der Peakpotentiale. Die für den Einfluss der MgO-Konzentration im vorherigen Kapitel diskutierte destabilisierende Wirkung der Mg²⁺-Ionen auf die Fe²⁺-Ionen scheint im Vergleich zu der ladungskompensierenden Wirkung der Ca²⁺-Ionen für die [FeO_{4/2}]⁻-Tetraeder schwächer ausgeprägt zu sein.

Für die Schmelzen mit 5 mol % Al_2O_3 -Gehalt führt die Konkurrenz der $[FeO_{4/2}]^-$ und $[AlO_{4/2}]^-$ -Tetraeder um die ladungskompensierenden Ca^{2+} - und Na^+ -Ionen zu einer zunehmenden Destabilisierung der $[FeO_{4/2}]^-$ -Tetraeder mit abnehmendem CaO- bzw. zunehmendem MgO-Gehalt. Auch hier scheint der Effekt der Ladungskompensation durch die Ca^{2+} -Ionen den Einfluss der Mg^{2+} -Ionen zu überwiegen.

Für die Zusammensetzungen mit 10 und 15 mol % Al_2O_3 -Gehalt ist zusätzlich zu den vorher genannten Faktoren auch der Einfluss der unterschiedlichen Koordination der Al^{3+} -Ionen zu berücksichtigen. So verschieben sich die Peakpotentiale für Verhältnisse von $[Al_2O_3]/\{[Na_2O]+[CaO]/2\} \le 1$ mit zunehmendem Al_2O_3 -Gehalt in Richtung positiverer Werte. Für die Verhältnisse von $[Al_2O_3]/\{[Na_2O]+[CaO]/2\} > 1$ führt die oktaedrische Koordination bzw. der Einbau der Al^{3+} -Ionen als Tricluster zu einer Abnahme der Peakpotentiale. Da sich aber beim molaren Austausch von MgO gegen CaO auch die Verhältnisse $[Al_2O_3]/\{[Na_2O]+[CaO]/2\}$ ändern, bedingt dies eine Verschiebung der Peakpotentiale, die vom Anteil der Al^{3+} -Ionen in der jeweiligen Koordination in der Schmelze abhängig ist.

Um also nur den Einfluss des molaren [CaO]/[MgO]-Verhältnisses auf die Lage der Peakpotentiale zu betrachten, sollten die Peakpotentiale bezogen auf die gleichen Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\}$ diskutiert werden. Die in der Abbildung 9.8 für die Verhältnisse $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 0$, 1 und 2 gegen die MgO- bzw. CaO-Gehalte aufgetragenen Peakpotentiale zeigen mit zunehmendem MgO-Gehalt eine Verschiebung zu positiveren Werten. Die also schon für die Schmelzen ohne Al₂O₃ gemachten Aussagen gelten im Wesentlichen auch für die Zusammensetzungen mit Aluminiumoxid. Somit scheint die ladungskompensierende Wirkung der Ca²⁺-Ionen auf die [FeO_{4/2}]-Tetraeder und die höhere optische Basizität, im Vergleich zur destabilisierenden Wirkung der Mg²⁺-Ionen auf die Fe²⁺-Ionen zu überwiegen. Daraus Resultiert insgesamt die Abnahme der Peakpotentiale mit zunehmendem CaO-Gehalt und eine Verschiebung des Fe³⁺/Fe²⁺-Redoxgleichgewichtes auf die Seite der Fe³⁺-Ionen. Da nicht für alle hier prinzipiell möglichen Zusammensetzungen Messungen durchgeführt wurden, fehlen einige Peakpotentiale bei den hier dargestellten Verhältnissen von [Al₂O₃]/{[Na₂O] + [CaO]/2}. Die in der Abbildung 9.8 eingezeichneten linearen Regressionsgeraden dienen deswegen in erster Linie zu einer besseren Visualisierung der generellen Tendenz. Allerdings scheint es für die Steigungen zwischen den Verhältnissen von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 0$ und 2 keinen großen Unterschied zu geben. Das würde aber bedeuten, dass in beiden Fällen der Austausch der Ca²⁺- gegen die Mg²⁺-Ionen den gleichen Effekt auf die Lage des Fe³⁺/Fe²⁺-Redoxgleichgewichtes hätte. Da aber für die Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} < 1$ kein ladungskompensierender Einfluss der Mg^{2+} -Ionen beobachtet wurde, würde das gleiche auch für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ gelten.

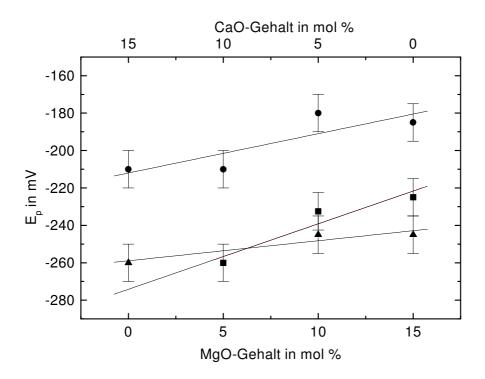


Abb. 9.8: Peakpotentiale bei 1600 °C für folgende Zusammensetzungen: $5 \text{ Na}_2\text{O} \cdot \text{ y MgO} \cdot (15 - \text{y}) \text{ CaO} \cdot \text{ x Al}_2\text{O}_3 \cdot 80 \text{ SiO}_2 \text{ für Verhältnisse } [\text{Al}_2\text{O}_3] / {[\text{Na}_2\text{O}] + [\text{CaO}]/2} = \text{z mit}$ $\blacksquare: z = 0; \quad \blacksquare: z = 1; \quad \blacktriangle: z = 2.$

9.3 Erstellung empirischer Gleichungen zur Berechnung der Peakpotentiale

Wie in den vorherigen Kapiteln beschrieben, ist es nicht möglich eine quantitative Korrelation zwischen der Basizität einer Schmelze und dem Fe³⁺/Fe²⁺-Redoxgleichgewicht herzustellen. Deswegen wurden anhand der vorliegenden thermodynamischen Daten, wie auch schon für andere Zusammensetzungen in der Literatur [6] beschrieben, empirische Gleichungen aufgestellt, die eine quantitative Beschreibung der Abhängigkeit der Peakpotentiale von der Zusammensetzung erlauben. Dabei muss beachtet werden, dass in Abhängigkeit von der Al₂O₃-Konzentration der Einbau der Al³⁺-Ionen sowohl als Tetraeder als auch in

oktaedrischer Koordination bzw. die Bildung von Tricluster diskutiert wird. Dabei bestimmt der Anteil der jeweiligen Spezies am Aluminium-Gesamtgehalt auch die Lage des Redoxgleichgewichtes und muss bei der Berechnung der Standardpotentiale berücksichtigt werden (siehe Kapitel 4.2).

Für die Schmelzen mit der Grundzusammensetzung $x \, Na_2O \cdot y \, MgO \cdot z \, AbO_3 \cdot (100 - x - y - z) \, SiO_2$ wird folgende empirische Formel zur Berechnung der Peakpotentiale (bei 1300 °C) vorgeschlagen:

$$E_{p}(1300 \text{ °C}) = a + b[Na_{2}O] + c[MgO] + d[Al_{2}O_{3}]_{t} + e[Al_{2}O_{3}]_{0}$$
(9.1)

mit a = -190 mV; b = -7.88 mV/mol %; c = -5.85 mV/mol %; d = 7.72 mV/mol % und e = -7.8 mV/mol %.

Die Konzentration der $[AlO_{4/2}]^{-}$ -Tetraeder entspricht dabei $[Al_2O_3]_t$, während $[Al_2O_3]_o$ für den Gehalt der entweder in oktaedrischer Koordination oder als Tricluster eingebauten Al^{3+} -Ionen steht. Der molare Al_2O_3 -Anteil, der den Na_2O -Gehalt übersteigt, entspricht jeweils dem Wert für $[Al_2O_3]_o$

In der Tabelle 9.1 sind für die in dieser Arbeit und in der Literatur [6] untersuchten Zusammensetzungen die nur MgO als Erdalkalioxidbestandteil enthalten, die experimentell ermittelten E_p (exp.) und die berechneten Peakpotentiale E_p (ber.) aufgelistet.

Die Abweichungen fast aller berechneten Werte liegen in einem Bereich von ± 20 mV. Nur die Differenzen für die Zusammensetzungen $10 \text{ Na}_2\text{O} \cdot 20 \text{ MgO} \cdot 10 \text{ AbO}_3 \cdot 60 \text{SiO}_2$ und $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 80 \text{SiO}_2$ liegen mit 21 mV knapp bzw. mit 40 mV deutlich außerhalb dieses Bereiches. Im ersten Fall konnte für das experimentell bestimmte Peakpotential nur ein extrapolierter Wert angegeben werden, (einsetzende Kristallisation in der Schmelze) sodass dies zu dem beobachtenden Fehler führen kann. Die Abweichung der anderen Zusammensetzung kann hingegen dadurch nicht erklärt werden. Wie schon in Kapitel 9.2.3 diskutiert, beeinflusst möglicherweise ein Mischoxideffekt die Lage der Peakpotentiale für die Zusammensetzung $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 80 \text{SiO}_2$, sodass es zu dieser starken Abweichung kommen kann.

Tab.	9.1:	Experimentell	ermittelte	Peakpotentiale	E_{p}	(exp)	und	mit	Gl.	9.1	berechnete
Peakpotentiale E _p (ber.) jeweils für 1300 °C.											

[Na ₂ O]	[MgO]	[Al ₂ O ₃]	[SiO ₂]	E _p (exp.)	E _p (ber.)	Abweichung
in mol %	in mol %	in mol %	in mol %	in mV	in mV	In mV
10	10	0	80	-367	-327	-40
10	10	5	75	-278	-289	11
10	10	10	70	-242	-250	8
10	10	15	65	-287	-289	2
10	10	20	60	-319	-328	9
10	5	10	75	-208	-221	13
10	15	10	65	-296	-279	-17
10	20	10	60	-330*	-309	-21
10	15	0	75	-341	-357	16
10	20	0	70	-370	-386	16
10	15	15	60	-315	-318	3
10	20	15	55	-331	-348	17
5	10	10	75	-279	-288	9
15	10	10	65	-302	-290	-12
20	10	10	60	-330	-329	-1
15	10	0	75	-372 ¹	-367	-5
20	10	0	70	-413 ¹	-406	-7
25	10	0	65	-436 ¹	-446	10
5	15	0	80	-305	-317	12
5	15	5	75	-270	-279	9
5	15	10	70	-335	-318	-17
5	15	15	65	-375	-357	-18
5	15	20	60	-395	-396	1

^{*:} Peakpotential für 1300 °C extrapoliert; ¹: Literaturwerte [6].

Für die Schmelzen der Grundzusammensetzung x Na $_2O$ · y MgO· w CaO· z A $_2O$ · (100- x- y – w - z) SiO $_2$ wird zur Berechnung der Peakpotentiale folgende empirische Formel (für 1300 °C) vorgeschlagen:

$$E_p(1300 \text{ °C}) = a + b[Na_2O] + c[MgO] + d[CaO] + e[Al_2O_3]_t + f[Al_2O_3]_o$$
(9.2)

mit a = -123.8 mV, b = -15.66 mV/mol %, c = 7.35 mV/mol %, d = -13.05 mV/mol %, e = -9.40 mV/mol % und f = -4.90 mV/mol %.

Da die Ca^{2+} -Ionen jeweils einen $[AlO_{4/2}]^{-}$ -Tetraeder stabilisieren können, ergibt sich der Anteil der maximal tetraedrisch koordinierten Al^{3+} -Ionen aus $[Al_2O_3]_t = [Na_2O] + [CaO]/2$. Der molare Al_2O_3 -Anteil der über diesem Wert liegt wird in oktaedrischer Koordination oder als Tricluster eingebaut und entspricht jeweils dem Wert für $[Al_2O_3]_o$.

Tab. 9.2: Experimentell ermittelte $E_p(exp)$ und mit Gl. 9.2 berechnete Peakpotentiale E_p (ber.) jeweils für 1300 °C.

[Na ₂ O]	[CaO]	[MgO]	$[Al_2O_3]$	[SiO ₂]	E _p (exp.)	E _p (ber.)	Abweichung
in mol %	in mol %	in mol %	in mol %	in mol %	in mV	in mV	In mV
10	10	0	5	75	-360 ¹	-364	4
10	10	0	10	70	-304 ¹	-317	13
10	10	0	15	65	-278 ¹	-270	-8
10	10	0	20	60	-286 ¹	-294	8
10	10	0	25	55	-307 ¹	-319	12
10	10	0	0	80	-440 ¹	-411	-29
5	15	0	5	75	-342	-351	9
5	15	0	10	70	-300	-304	4
5	15	0	12.5	67.5	-282	-280	-2
5	15	0	15	65	-300	-293	-7
5	15	0	20	60	-320	-317	-3
5	15	0	25	55	-337	-342	5
5	10	5	0	80	-360	-369	9
5	10	5	5	75	-310	-322	12
5	10	5	10	70	-291	-275	-16
5	10	5	15	65	-317	-300	-17
5	5	10	0	80	-332	-341	9
5	5	10	5	75	-280	-294	14
5	5	10	7.5	72.5	-270	-270	1
5	5	10	10	70	-290	-283	-7
5	5	10	15	65	317	-307	-10

^{1:} Literaturwerte [10]

In der Tabelle 9.2 werden die experimentell ermittelten Peakpotentiale E_p (exp.) der hier untersuchten Zusammensetzungen, die CaO aber auch MgO als Erdalkalibestandteil enthalten können, mit den berechneten Peakpotentialen E_p (ber.) verglichen. Nur die Abweichung des Literaturwertes [10] für die Zusammensetzung $10 \text{ Na}_2\text{O} \cdot 10 \text{ CaO} \cdot 80 \text{SiO}_2$ liegt mit 29 mV außerhalb des Bereiches von ± 20 mV. Inwieweit auch hier, wie für die analoge Zusammensetzung mit 10 mol % MgO, ein Mischoxideffekt vorliegen könnte, kann nicht

beurteilt werden. Insgesamt stimmen aber auch hier berechnete und experimentell bestimmte Peakpotentialen relativ gut überein.

9.4 Zusammenfassung zur Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichts

Die Verschiebung des Fe³⁺/Fe²⁺-Redoxgleichgewichtes wurde durch Square-Wave Voltammetrie anhand der für den Fe³⁺/Fe²⁺-Übergang ermittelten Peakpotentiale in Abhängigkeit von der Temperatur (1000–1600 °C) und der Zusammensetzung der Schmelzen untersucht.

Für die Bereiche linearer Abhängigkeit der Peakpotentiale von der Temperatur wurden die thermodynamischen Kenngrößen ΔH^0 und ΔS^0 bestimmt. Die im Gleichgewicht mit der Atmosphäre berechneten Fe³⁺/Fe²⁺-Redoxverhältnisse zeigen einen zunehmenden Anteil an Fe²⁺-Ionen mit steigender Temperatur. Die für einige Schmelzen auftretenden Abweichungen von der linearen Temperatur-Abhängigkeit können durch Kristallisationserscheinungen erklärt werden, die zu Veränderungen der Zusammensetzungen in den Schmelzen führen.

Der Einfluss der Zusammensetzung auf das Fe^{3+}/Fe^{2+} -Redoxgleichgewicht wurde anhand der Variation der molaren Al_2O_3 -, Na_2O -, und MgO-Gehalte untersucht. Auch die Abhängigkeit vom molaren [CaO]/[MgO]-Verhältnis wurde bestimmt.

Beim Zusatz von Al_2O_3 zu den Natrium-Erdalkalisilicaten verschieben sich die Peakpotentiale zunächst zu positiveren Werten. Sowohl die Fe^{3+} - als auch die Al^{3+} -Ionen werden hier als formal negative geladene $[FeO_{4/2}]^-$ - bzw. $[AlO_{4/2}]^-$ -Tetraeder in das Silicatnetzwerk eingebaut. Beide Kationen konkurrieren um die Alkali- oder Erdalkali-Ionen zur Ladungskompensation. Mit zunehmendem Al_2O_3 -Gehalt werden die $[FeO_{4/2}]^-$ -Tetraeder somit destabilisiert und das Fe^{3+} / Fe^{2+} -Redoxgleichgewicht verschiebt sich auf die Seite der oktaedrisch koordinierten Fe^{2+} -Ionen. Für Zusammensetzungen mit CaO als Erdalkalioxid-Bestandteil treten die Maxima der Peakpotentiale bei einem Verhältnis von $[Al_2O_3]$ / $[Na_2O] + [CaO]$ /2] = 1 auf. Neben den Na^+ - können auch die Ca^{2+} -Ionen jeweils die negative Ladung eines $[FeO_{4/2}]^-$ -bzw. $[AlO_{4/2}]^-$ -Tetraeders kompensieren. Für die Schmelzen mit MgO als Erdalkalioxid-Bestandteil kann kein analoger ladungskompensierender Effekt für die Mg^{2+} -Ionen nachgewiesen werden.

Bei Verhältnissen von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ nehmen die Potentialwerte wieder ab. Hier werden die Al^{3+} -Ionen zunehmend als Netzwerkwandler in oktaedrischer Koordination oder als Tricluster eingebaut. Dies führt zu einer zunehmenden Stabilisierung der $[FeO_{4/2}]^{-}$ Tetraeder und das Fe^{3+}/Fe^{2+} -Redoxverhältnis verschiebt sich wieder auf die Seite der Fe^{3+} -Ionen.

Eine Erhöhung des Na₂O-Gehaltes führt in den mit MgO als Erdalkalioxid-Bestandteil untersuchten Schmelzen für $[Al_2O_3]/[Na_2O] \le 1$ zu sinkenden Peakpotentialen. Die $[FeO_{4/2}]^-$ Tetraeder werden dabei durch die Zunahme der ladungskompensierenden Na⁺-Ionen besser stabilisiert und damit steigt der Anteil der Fe^{3+} -Ionen im Redoxgleichgewicht. Für Verhältnisse von $[Al_2O_3]/[Na_2O] > 1$ führt die Abnahme des Anteils an Na⁺-Ionen zu einem zunehmenden Einbau der Al^{3+} -Ionen in oktaedrischer Koordination oder als Tricluster. Dies verschiebt das Fe^{3+}/Fe^{2+} -Redoxverhältnis wieder auf die Seite der Fe^{3+} -Ionen.

Die Erhöhung der MgO-Konzentration lässt die Peakpotentiale annähernd linear sinken. Die Mg²⁺- und Fe²⁺-Ionen konkurrieren aufgrund annähernd gleicher Ionenradien und Metall-Sauerstoffbindungslängen um dieselben Koordinationsplätze im Silicatnetzwerk. Mit zunehmender MgO-Konzentration erfolgt der Einbau der Fe²⁺-Ionen auf energetisch ungünstigeren Plätzen, und das Fe³⁺/Fe²⁺-Redoxgleichgwicht verschiebt sich auf die Seite der Fe³⁺-Ionen.

Beim äquimolaren Austausch von CaO gegen MgO verschieben sich die Peakpotentiale bei gleichen Verhältnissen [Al₂O₃]/{[Na₂O] + [CaO]/2} zu positiveren Werten. Anscheinend ist die stabilisierende Wirkung der Ca²⁺-Ionen auf die [FeO_{4/2}]-Tetraeder größer als die destabilisierende Wirkung der Mg²⁺-Ionen auf die Fe²⁺-Ionen.

Mit dem "Basizitätskonzept" können die auftretenden Verschiebungen der Peakpotentiale des Fe³⁺/Fe²⁺-Gleichgewichtes in Abhängigkeit von der Zusammensetzung nur teilweise qualitativ richtig beschrieben werden:

- Austausch von SiO₂ gegen Al₂O₃: Basizität und Fe³⁺-Anteil nehmen zu; qualitativ nicht richtig.
- Austausch von SiO₂ gegen Na₂O: Basizität und Fe³⁺-Anteil nehmen zu; qualitativ nicht richtig.
- Austausch von SiO₂ gegen MgO: Basizität und Fe³⁺-Anteil nehmen zu; qualitativ richtig.

• Austausch von MgO gegen CaO: Basizität und Fe³⁺-Anteil nehmen zu; qualitativ richtig.

Für die quantitative Beschreibung wurden daher empirische Gleichungen zur Berechnung der Peakpotentiale aufgestellt. Im Vergleich mit den experimentell ermittelten Peakpotentialen zeigen die berechneten Werte in der Regel eine gute Übereinstimmung (Abweichungen von $\leq \pm 20 \text{ mV}$).

10 Diskussion der Viskositäten

Die Viskosität von Alkali-Erdalkali-Alumosilicat-Schmelzen wird bei konstanter Temperatur im Wesentlichen von drei Faktoren bestimmt [43, 68]:

- dem Gehalt an Netzwerkbildnern bzw. an Brückensauerstoffen im Glasnetzwerk ([SiO_{4/2}]-Tetraeder),
- der Konzentration an Netzwerkwandlern (hier Na⁺, Ca²⁺ und Mg²⁺) jeweils koordiniert mit Trennstellensauerstoffen und
- den Anteilen der "Zwischenoxide" die entweder als Netzwerkwandler (Al³⁺, in oktaedrischer Koordination) oder als Netzwerkbildner ([AlO_{4/2}]-Tetraeder) eingebaut sind.

In den folgenden Kapiteln soll diskutiert werden, inwieweit die hier in dieser Arbeit dargestellten Ergebnisse zur Viskosität mit diesen strukturellen Änderungen korreliert werden können.

10.1 Temperaturabhängigkeit der Viskosität

Die Temperaturabhängigkeit der Viskosität kann mit einem Arrhenius-Ansatz beschrieben Silicat-Schmelzen der Temperaturabhängigkeit werden. ist wegen Aktivierungsenergien E_{η} dies aber nur für relativ kleine Temperaturintervalle sinnvoll. Eine Alternative bietet die Vogel-Fulcher-Tammann-Gleichung, die für den gesamten Temperaturbereich angewandt werden kann. Grosse Abweichungen vom annähernd linearen Temperatur-Viskositätsverlauf ergeben sich für die Temperaturbereiche, in denen es zu Kristallisationserscheinungen Schmelzen in den kommt. Die Bestimmung Aktivierungsenergien E_n und der Vogel-Fulcher-Tammann-Parameter erfolgte nur für die Temperaturbereiche, in denen keine Kristallisation in der Schmelze beobachtet wurde.

Die Aktivierungsenergie der Viskosität E_{η} wird als ein Maß für die Stärke der Bindungen angesehen, die gebrochen werden müssen um den viskosen Fluss zu ermöglichen [27,28]. Dabei sind die Sauerstoff-Brückenbindungen der Netzwerkbildner als die energetisch stabilsten anzusehen und die Aktivierungsenergie sollte in erster Linie durch deren Stärke bestimmt werden [27]. Für Alumosilicat-Schmelzen spielt dabei insbesondere das Verhältnis von [Al]/{[Al]+[Si]} eine wichtige Rolle, da die Al-O-Brückenbindungen energetisch instabiler als die entsprechenden Si-O-Brückenbindungen sein sollten [27]. Neben der Viskosität selbst erlaubt also auch die Abhängigkeit der Aktivierungsenergien E_{η} von der Zusammensetzung Aussagen über strukturelle Änderungen in der Schmelze.

10.2 Einfluss der Zusammensetzung auf die Viskosität

10.2.1 Einfluss der Aluminiumoxidkonzentration

Wie schon für die Thermodynamik des Fe^{3+}/Fe^{2+} -Redoxgleichgewichtes diskutiert, ist für den Einbau des Al^{3+} -Ions entscheidend, welches Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\}$ in der Schmelze vorliegt. In der Abbildung 10.1 sind deswegen die Viskositätsisothermen (für T = 1300 °C) der jeweiligen Zusammensetzungen in Abhängigkeit vom Verhältnis $[Al_2O_3]/\{[Na_2O] + [CaO]/2\}$ aufgetragen. Mit Ausnahme der Viskositäten der Schmelzen mit der Zusammensetzung 5 $Na_2O \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot x \text{ Al}_2O_3 \cdot (80 - x) \text{ SiO}_2$, die annähernd konstant bleiben, nehmen alle hier dargestellten Viskositäten mit steigendem Al_2O_3 -Gehalt

bis zu einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ zu. Aufgrund des relativ großen Fehlerbereichs kann für die Viskositäten der Schmelzen mit der Zusammensetzung $5 Na_2O \cdot 10 MgO \cdot 5 CaO \cdot y Al_2O_3 \cdot (80 - x) SiO_2$ nicht entschieden werden, ob es sich um eine tatsächliche Abweichung von dem für die anderen Schmelzen beobachteten Verlauf handelt.

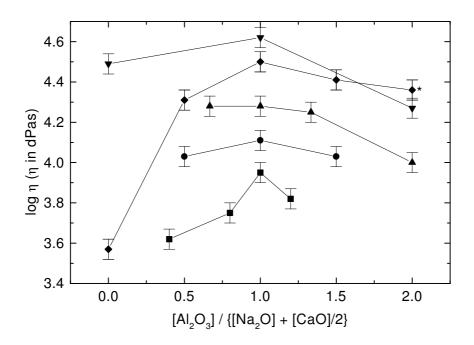


Abb. 10.1 Viskositätsisothermen (T = 1300 °C) in Abhängigkeit vom Verhältnis [Al₂O₃]/{[Na₂O] + [CaO]/2} für die Zusammensetzungen: $5 \text{ Na₂O} \cdot \text{ y MgO} \cdot (15 \cdot \text{y}) \text{ CaO} \cdot \text{ x Al₂O₃} \cdot (80 - \text{x}) \text{SiO}_2 \text{ mit } \blacksquare$: y = 0; \blacksquare : y = 5; \blacktriangle : y = 10, \blacktriangledown : y = 15 und \spadesuit :10 Na₂O · 10 MgO · x Al₂O₃ · (80 - x) SiO₂ (*: anhand der Vogel-Fulcher-Tammann-Gleichung extrapolierter Wert).

Der größte Anstieg um fast eine Größenordnung wird für die Zusammensetzung mit $10 \, \text{Na}_2\text{O}$ · $10 \, \text{MgO}$ · $x \, \text{AbO}_3$ · $(80 \, \text{-} \, x) \, \text{SiO}_2$ beobachtet. Insbesondere nehmen die Viskositäten für die Verhältnisse zwischen 0 und 0.5 (also zwischen 0 und $5 \, \text{mol} \, \% \, \text{Al}_2\text{O}_3$ -Gehalt) um mehr als das fünffache zu. Die überproportional geringe Viskosität für die Zusammensetzung $10 \, \text{Na}_2\text{O}$ · $10 \, \text{MgO}$ · $80 \, \text{SiO}_2$ könnte, wie schon im Kapitel 9.2.3 für die thermodynamischen Kenngrößen des $\text{Fe}^{3+}/\text{Fe}^{2+}$ -Redoxgleichgewichtes diskutiert, durch einen Mischoxideffekt zwischen Na_2O und MgO bedingt sein.

Bei dem äquimolaren Austausch von SiO_2 durch Al_2O_3 wird zunächst der Anteil der Trennstellensauerstoffe erniedrigt, weil die bisher als Netzwerkwandler eingebauten Kationen zunehmend als Ladungskompensatoren für die $[AlO_{4/2}]^-$ -Tetraeder wirken. Dabei steigt aber auch der Anteil an Q^4 -Einheiten (SiO₄- bzw. AlO_4 -Einheiten mit vier Brückensauerstoffen),

und beide Effekte zusammen führen zu der beobachteten Erhöhung des Polymerisationsgrades der Schmelze. Die hier mit Ausnahme der Zusammensetzung mit $5 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot 5 \text{ CaO} \cdot \text{ x A}_2\text{O} \cdot (80 - \text{x}) \text{ SiO}_2$ auftretenden maximalen Viskositäten bei einem Verhältnis von $[\text{Al}_2\text{O}_3]/\{[\text{Na}_2\text{O}] + [\text{CaO}]/2\} = 1$ zeigen, dass neben den Na⁺-Ionen auch die Ca²⁺-Ionen jeweils die Ladung eines $[\text{AlO}_{4/2}]^-$ -Tetraeders kompensieren können. Die Mg^{2+} -Ionen scheinen wenn dann nur einen gering stabilisierenden Effekt auszuüben.

Für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ zeigt die Abnahme der Viskositäten, dass in der Schmelze wieder mehr Trennstellensauerstoffe vorliegen bzw. der Anteil der Netzwerkwandler steigen sollte. Wie schon für die Abhängigkeit der Fe³⁺/Fe²⁺-Redoxverhältnisse vom Aluminiumoxid-Gehalt erläutert, wirken die Na⁺- und Ca²⁺-Ionen für eingebauten Al³⁺-Ionen in diesem zusätzlich Bereich nicht ladungskompensierende Kationen. Entsprechend sollten diese Al3+-Ionen entweder in oktaedrischer Koordination oder als Tricluster eingebaut werden [27,68,71]. Wenn die oktaedrisch eingebauten Al³⁺-Ionen auch als Netzwerkwandler wirken, ergibt sich durch die damit korrelierte Zunahme der Trennstellensauerstoffe eine Abnahme der Viskosität. Bei dem Einbau von Al³⁺-Ionen in Triclustern könnte eine damit verbundene Bildung von Trennstellensauerstoffen, wie in der Literatur diskutiert [68,71], die Viskositätsabnahme erklären.

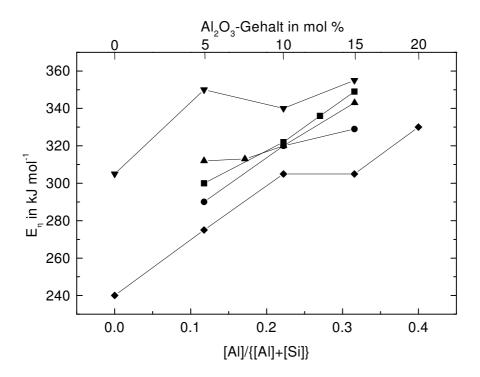


Abb. 10.2: Aktivierungsenergien E_{η} in Abhängigkeit vom Verhältnis [Al]/{[Al]+[Si]} für die Zusammensetzungen: $5 \text{ Na}_2\text{O} \cdot \text{ y MgO} \cdot (15\text{-y}) \text{ CaO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80\text{ - x}) \text{SiO}_2 \text{ mit } \blacksquare$: y = 0; \bullet : y = 5; \bullet : y = 10, \bullet : y = 10 \bullet : $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ x Al}_2\text{O}_3 \cdot (80\text{ - x}) \text{SiO}_2$.

Für die in Abbildung 10.2 dargestellten Aktivierungsenergien E_n nehmen unter Berücksichtigung des Fehlers von 10 bis 20 kJ mol⁻¹ (siehe Tabelle 7 im Anhang) die Werte mit steigendem Verhältnis [Al]/{[Al]+[Si]} zu. Ein Austausch von SiO₂ gegen Al₂O₃ bewirkt hier also eine Erhöhung der Bindungsstärke der Sauerstoffbrückenbindungen. Dieser Anstieg korreliert mit der beobachteten Zunahme der Viskositäten bis zu einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$. Anscheinend ist die Ursache dafür in beiden Fällen die Abnahme der Konzentration an Netzwerkwandlern und das gleichzeitige Absinken der Konzentration an Trennstellensauerstoffen in den Schmelzen. Unterschiede ergeben sich bei den Verhältnissen von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1.$ So nehmen Aktivierungsenergien E_{η} im Gegensatz zu den entsprechenden Viskositäten tendenziell weiter zu. Eine signifikante Ausnahme ist für die Aktivierungsenergien der Schmelzen mit der Zusammensetzung 5 Na₂O · 15 MgO · x AbO₃ · (80 - x) SiO₂ zu beobachten, bei der ein relatives Maximum bei 5 mol % Al₂O₃-Gehalt auftritt. Dieser Wert korreliert mit dem Maximum der Viskosität bei dem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ für diese Zusammensetzung. Allerdings steigen die Aktivierungsenergien auch für diese Zusammensetzung bei Erhöhung von 10 auf 15 mol % Al₂O₃-Gehalt wieder an. Für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ können somit die Veränderungen der Viskosität und der Aktivierungsenergien nicht in Einklang gebracht werden.

10.2.2 Einfluss der Natriumoxidkonzentration

In der Abbildung 10.3 sind Viskositätsisothermen für die untersuchten Schmelzen mit der Zusammensetzung x Na₂O · 10 MgO · 10 AbO₃ · (80 - x) SiO₂ in Abhängigkeit von dem [Al₂O₃]/[Na₂O]-Verhältnis dargestellt. Die Viskositäten steigen mit abnehmendem Na₂O-Gehalt bis zu dem Verhältnis [Al₂O₃]/[Na₂O] = 1 um mehr als eine Größenordnung an. Eine Viskositätszunahme wird auch für analoge Zusammensetzungen ohne Al₂O₃, also für x Na₂O · 10 MgO· (90 - x) SiO₂ (x = 10, 15, 20, 25) beobachtet [5]. In beiden Fällen kann die Abnahme der Konzentration der als Netzwerkwandler eingebauten Na⁺-Ionen mit einer Verringerung Trennstellensauerstoffe damit Zunahme der und einer des Polymerisationsgrades im Silicatnetzwerk korreliert werden.

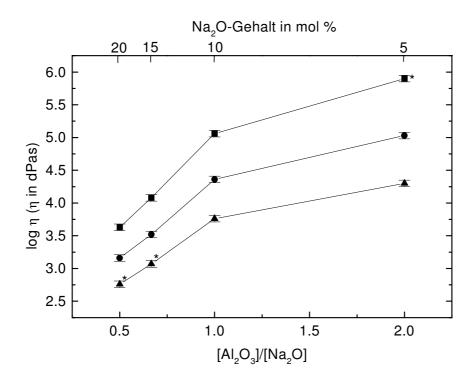


Abb. 10.3 Viskositätsisothermen in Abhängigkeit vom $[Al_2O_3]/[Na_2O]$ -Verhältnis für die Zusammensetzungen $x Na_2O \cdot 10 MgO \cdot 10 AbO_3 \cdot (80 - x) SiO_2 (x = 5, 10, 15, 20);$ $\blacksquare: T = 1200 \, ^{\circ}C \, \bigcirc: T = 1300 \, ^{\circ}C \, \text{und} \, \triangle: T = 1400 \, ^{\circ}C \, (*: Werte anhand der Vogel-Fulcher-Tammann-Gleichung extrapoliert)}$

Im Gegensatz zu dem im vorherigen Kapitel beschriebenen Verlauf ist aber für Verhältnisse von $[Al_2O_3]/[Na_2O] > 1$ keine analoge Abnahme sondern ein weiterer, allerdings geringerer Anstieg der Viskositäten zuerkennen. Hier sollte der zunehmende Einbau der Al^{3+} -Ionen entweder in oktaedrischer Koordination als Netzwerkwandler oder als Tricluster zu einer Abnahme der Viskosität führen. Auch hier muss berücksichtigt werden dass sich beim äquimolaren Austausch von SiO_2 gegen Na_2O die Verhältnisse von $[Al]/\{[Al]+[Si]\}$ verändern. Wie in der Abbildung 10.4 dargestellt sinken dabei sowohl die Aktivierungsenergien E_{η} (um ca. 130 kJ mol $^{-1}$) als auch die Viskositäten mit zunehmenden $[Al]/\{[Al]+[Si]\}$ -Verhältnissen bzw. Na_2O -Gehalt. Anscheinend ist die überproportional starke Zunahme der Aktivierungsenergie um ca. 60 kJ mol $^{-1}$ zwischen 10 und 5 mol $^{\infty}$ Na_2O -Gehalt für die unerwartete Zunahme der Viskosität der entscheidende Faktor.

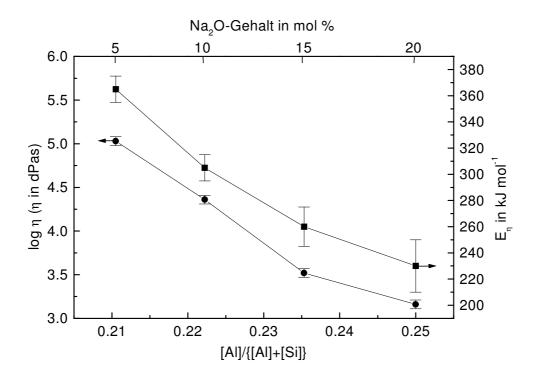


Abb. 10.4: Aktivierungsenergien E_{η} " \blacksquare " und Viskositätsisotherme " \bullet " (für T = 1300 °C) in Abhängigkeit vom [Al]/{[Al]+[Si]}-Verhältnis für die Zusammensetzung: x Na₂O· 10 MgO· 10 Al₂O₃· (80 - x) SiO₂ (x = 5, 10, 15, 20).

Möglicherweise tritt hier aber auch, wie in der Literatur diskutiert [68], eine Verschiebung der Viskositätsmaxima auf. Dabei sollten sich schon für Verhältnisse von $[Al_2O_3]/[Na_2O] \le 1$ oktaedrisch koordinierte Al^{3+} -Ionen oder mit Trennstellensauerstoffe koordinierte Tricluster bilden [68]. Entsprechend würden auch bei einem Verhältnis von $[Al_2O_3]/[Na_2O] = 1$ noch Trennstellensauerstoffe im Silicatnetzwerk vorliegen und erst mit weiter zunehmendem Al_2O_3 -Gehalt ein Viskositäts-Maximum erreicht werden.

10.2.3 Einfluss der Magnesiumoxidkonzentration

Die Viskositäten in Abhängigkeit zum MgO-Gehalt in Abbildung 10.5 zeigen eine annähernd lineare Abnahme zwischen 10 und 20 mol % MgO-Gehalt um etwa eine Größenordnung. Dieser Effekt entspricht auch quantitativ in etwa der äquivalenten Erhöhung der Na₂O-Konzentration von 10 auf 20 mol % (siehe Abbildung 10.3). In beiden Fällen scheint mit der Konzentrationserhöhung auch der Anteil der Trennstellensauerstoffe im gleichen Maße zu

zunehmen. Das lässt wiederum den Schluss zu, dass auch die Mg²⁺-Ionen als Netzwerkwandler eingebaut werden.

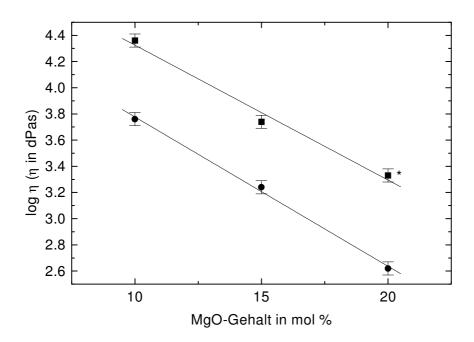


Abb. 10.5: Viskositätsisothermen in Abhängigkeit von dem Magnesiumoxid-Gehalt für die Zusammensetzungen: $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ Ab}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2 \text{ (x = 10, 15, 20);}$ \blacksquare : T = 1300 °C \bullet : T = 1400 °C; (*: Wert anhand der Vogel-Fulcher-Tammann-Gleichung extrapoliert).

Beim Austausch von SiO_2 gegen MgO sollten auch die Aktivierungsenergien E_{η} wie bei der Erhöhung der Na_2O -Konzentration mit zunehmendem Verhältnis von [Al]/{[Al]+[Si]} sinken. Tatsächlich nehmen die Aktivierungsenergien zwar zwischen 10 und 15 mol % MgO von 305 auf 265 kJ mol⁻¹ ab, aber bei weiterer Erhöhung auf 20 mol % MgO bleibt der Wert mit 260 kJ mol⁻¹ im Rahmen des Fehlers (± 10 kJ mol⁻¹) konstant. Hier scheint somit keine eindeutige Übereinstimmung zwischen der Abhängigkeit der Aktivierungsenergien E_{η} und der Viskosität von dem [Al]/{[Al]+[Si]}-Verhältnis zu bestehen.

10.2.4 Einfluss des [CaO]/[MgO]-Verhältnisses

Der Anteil der Al^{3+} -Ionen in tetraedrischer und oktaedrischer Koordination hat wie in Kapitel 10.2.1 erläutert, einen wesentlichen Einfluss auf die Höhe der Viskosität. Die Diskussion des Einflusses der Höhe der Konzentration an Ca^{2+} - und Mg^{2+} -Ionen sollte somit für gleiche Verhältnisse von $[Al_2O_3]/\{[Na_2O]+[CaO]/2\}$ möglich sein. Für die Viskositäten der Zusammensetzungen 5 $Na_2O \cdot y MgO \cdot (15 \cdot y) CaO \cdot x Al_2O_3 \cdot (80 - x) SiO_2$ ist dies wie in Abbildung 10.1 ersichtlich, durchgehend nur bei dem Verhältnis $[Al_2O_3]/\{[Na_2O]+[CaO]/2\}=1$ möglich. Eine Erhöhung des MgO-Gehaltes von 0 auf 15 mol % führt dabei wie in Abbildung 10.6 dargestellt zu mehr als viermal höheren Viskositäten.

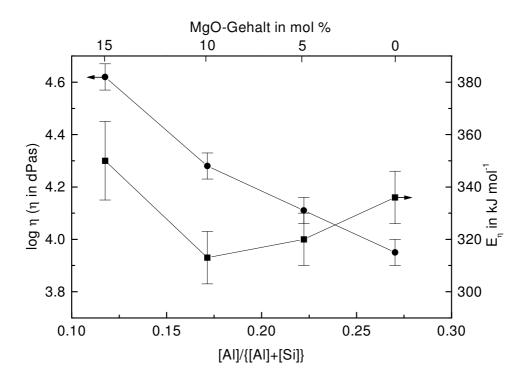


Abb. 10.6 Aktivierungsenergien E_{η} " \blacksquare " und Viskositätsisotherme " \bullet " (für T = 1300 °C) in Abhängigkeit zum Verhältnis von [Al]/{[Al]+[Si]} für die Zusammensetzungen 5 Na₂O · y MgO · (15-y) CaO · x Al₂O₃ · (80 - x) SiO₂ (y = 0, 5, 10, 15) bei dem Verhältnis von [Al₂O₃]/{[Na₂O] + [CaO]/2} = 1.

Für das Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ sind die Ca^{2+} -Ionen statistisch jeweils zur Hälfte als Netzwerkwandler mit Trennstellensauerstoffen koordiniert oder wirken als Ladungskompensator für die $[FeO_{4/2}]^-$ - bzw. $[AlO_{4/2}]^-$ -Tetraeder. Die Mg^{2+} -Ionen hingegen

sind nicht als Ladungskompensatoren anzusehen aber verringern als Netzwerkwandler die Viskosität einer Silicat-Schmelze (siehe vorheriges Kapitel). Die Abnahme des [CaO]/[MgO]-Verhältnisses sollte den Anteil an Trennstellensauerstoffen damit erhöhen und somit zu einer Abnahme der Viskosität in der Schmelze führen. Die in der Abbildung 10.6 dargestellte Viskositätszunahme widerspricht somit dieser Annahme. Auch die Abhängigkeit der Aktivierungsenergie E_{η} vom Verhältnis [Al]/{[Al]+[Si]} korreliert nur zwischen 15 und 10 mol % MgO-Gehalt mit der beobachteten Abnahme der Viskosität. Die Zunahme von E_{η} zwischen 10 und 0 mol % MgO ist der hier beobachteten Abnahme der Viskosität entgegengesetzt.

Ein wichtiger Faktor könnte hier möglicherweise der diskutierte Einbau der Mg²⁺-Ionen als Netzwerkbildner sein [42]. Insbesondere für abnehmende CaO-Konzentrationen sollte der Anteil der nicht als Netzwerkwandler eingebauten Mg²⁺-Ionen zunehmen und zur beobachteten Viskositätszunahme beitragen [42]. Somit scheinen die Ca²⁺-Ionen also im Vergleich zu dem Einbau der Mg²⁺-Ionen in wesentlich stärkerem Maße als Netzwerkwandler zu wirken.

10.3 Zusammenfassung zur Viskosität der Schmelzen

Die Viskositäten einer Reihe von Schmelzen mit den Bestandteilen $Na_2O/MgO/CaO/Al_2O_3/SiO_2$ wurden für Temperaturen zwischen 1450-1150 °C mittels eines Rotationsviskosimeters bestimmt. Für die Bereiche annähernd linearer Korrelation der logarithmischen Viskositäten zur reziproken Temperatur wurden anhand eines Arrhenius-Ansatzes die Aktivierungsenergien E_{η} berechnet. Die für einige Zusammensetzungen beobachteten starken Abweichungen von der linearen Temperaturabhängigkeit können mit Kristallisationserscheinungen in den Schmelzen erklärt werden (siehe auch Kapitel 12).

Die Einflüsse der Al₂O₃-, Na₂O- bzw. MgO-Konzentrationen sowie des [CaO]/[MgO]-Verhältnisses auf die Viskositäten wurden ermittelt.

Durch die Erhöhung des Al_2O_3 -Gehaltes steigen bis zu einem Verhältnis von etwa $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ die Viskositäten der Schmelzen. Die in der Schmelze als $[AlO_{4/2}]^T$ -Tetraeder vorliegenden Al^{3+} -Ionen werden durch die ladungskompensierenden

Kationen wie Na⁺ und Ca²⁺ stabilisiert. Da dadurch aber der Anteil der Netzwerkwandler in der Schmelze abnimmt, verringert sich auch die Konzentration der Trennstellensauerstoffe und führt zu der beobachteten Zunahme der Viskositäten. Im Gegensatz zu den Ca²⁺-Ionen, die statistisch einen [AlO_{4/2}]⁻-Tetraeder stabilisieren können, scheinen die Mg²⁺-Ionen keinen signifikanten ladungskompensierenden Effekt auszuüben. Für Verhältnisse von [Al₂O₃]/{[Na₂O] + [CaO]/2 \geq 1 nehmen die Viskositäten wieder mit zunehmendem Al₂O₃-Gehalt ab. Die zusätzlichen Al³⁺-Ionen werden dabei entweder in oktaedrischer Koordination oder als Tricluster eingebaut. In beiden Fällen kann dies die Konzentration an Trennstellensauerstoffe im Silicatnetzwerk erhöhen und korreliert folglich mit der beobachteten Viskositätsabnahme.

Die Erhöhung des Na₂O-Gehaltes in der Zusammensetzung x Na₂O· 10 MgO· 10 A½O₃· (80 - x) SiO₂ führt für Verhältnisse von $[Al_2O_3]/[Na_2O] \le 1$ zu einer Abnahme der Viskositäten. Die zunehmende Konzentration der als Netzwerkbildner eingebauten Na⁺-Ionen vergrößert die Anzahl der Trennstellensauerstoffe in der Schmelze. Für Verhältnisse von $[Al_2O_3]/[Na_2O] \ge 1$ widersprechen die mit abnehmendem Na₂O-Gehalt höheren Viskositäten einer hier zu erwartenden Zunahme an Trennstellensauerstoffen durch einen steigenden Anteil an oktaedrisch koordinierten oder als Tricluster eingebauten Al^{3+} -Ionen in der Schmelze. Die beobachtete Zunahme der Viskosität scheint hier primär durch die steigenden Aktivierungsenergien der Viskosität bedingt zu sein.

Die Erhöhung des MgO-Gehaltes führt zu einer nahezu linearen Abnahme der Viskositäten. Durch die Zunahme der Konzentration der als Netzwerkwandler eingebauten Mg²⁺-Ionen steigt hier wiederum der Anteil an Trennstellensauerstoffen im Silicatnetzwerk.

Die beim äquimolaren Austausch von MgO gegen CaO bei einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ beobachtete Abnahme der Viskositäten zeigt, dass die Ca^{2+} -Ionen im Vergleich zu den Mg^{2+} -Ionen als Netzwerkwandler die Silicatstruktur stärker auflockern können. Möglicherweise werden die Mg^{2+} -Ionen mit abnehmendem CaO-Anteil zunehmend auch als Netzwerkbildner eingebaut.

11 Diskussion der Eisen-Diffusionskoeffizienten

11.1 Temperaturabhängigkeit der Eisen-Diffusionskoeffizienten

Die Temperaturabhängigkeit der durch Square-Wave Voltammetrie ermittelten Eisen-Diffusionskoeffizienten konnte anhand der Arrhenius-Gleichung beschrieben werden (siehe Kapitel 6.2). Dabei werden die höchsten Diffusionskoeffizienten für die jeweils größte Temperatur von 1600 °C ermittelt. Die für einige Zusammensetzungen beobachteten Abweichungen von der linearen Abhängigkeit der logarithmischen Diffusionskoeffizienten zur reziproken absoluten Temperatur können mit Kristallisationserscheinungen in der Schmelze korreliert werden (siehe Kapitel 12).

11.2 Viskositätsbezogene Eisen-Diffusionskoeffizienten

Die für die Berechnung der Eisen-Diffusionskoeffizienten herangezogenen Peakströme für den Fe³⁺/Fe²⁺-Redoxübergang setzen sich aus den Teilströmen für die Reduktion der Fe³⁺-Ionen und der anschließenden Oxidation der Fe²⁺-Ionen zusammen (siehe Kapitel 2.3). Wie schon für die Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichtes erläutert, werden die Fe³⁺-Ionen bevorzugt als [FeO_{4/2}]⁻-Tetraeder eingebaut, während die Fe²⁺-Ionen überwiegend in oktaedrischer Koordination als Netzwerkwandler im Silicatnetzwerk vorliegen. Die Diffusionskoeffizienten der als Netzwerkbildner eingebauten Fe³⁺-Ionen sollten aber wesentlich unter den Werten für die als Netzwerkwandler koordinierten Fe²⁺-Ionen liegen [102,134]. Somit sollte der diffusionskontrollierte Strom der Fe³⁺-Ionen der limitierende Faktor für die Höhe des Peakstromes insgesamt sein (siehe Kapitel 2.3). Die Viskosität einer Schmelze wird aber in erster Linie von der Diffusion der Netzwerkbildner bestimmt [134]. Deshalb erfolgt die Diskussion zum Einfluss der Zusammensetzung auf die Eisen-Diffusionskoeffizienten jeweils bezogen auf die gleiche Viskosität und damit in der Regel nicht für dieselbe Temperatur.

11.3 Einfluss der Zusammensetzung auf die viskositätsbezogenen Eisen-Diffusionskoeffizienten

11.3.1 Einfluss der Aluminiumoxidkonzentration

Der Einfluss der Aluminiumoxidkonzentration auf die Eisen-Diffusionskoeffizienten soll wie schon für die Fe³+/Fe²+-Redoxverhältnisse und die Viskositäten auch hier in Abhängigkeit vom Verhältnis [Al₂O₃] /{[Na₂O] + [CaO]/2} diskutiert werden. In der Abbildung 11.1 ist zu erkennen, dass die viskositätsbezogenen Eisen-Diffusionskoeffizienten (für log (η /dPa s) = 4) mit zunehmendem Al₂O₃-Gehalt für alle dargestellten Zusammensetzungen bis zu einem Verhältnis von [Al₂O₃] /{[Na₂O] + [CaO]/2} = 1 ansteigen. Die Eisen-Diffusionskoeffizienten der Schmelzen mit der Zusammensetzung 10 Na₂O· 10 MgO· x A½O₃· (80 - x) SiO₂ nehmen dabei am stärksten um fast eine Größenordnung zu.

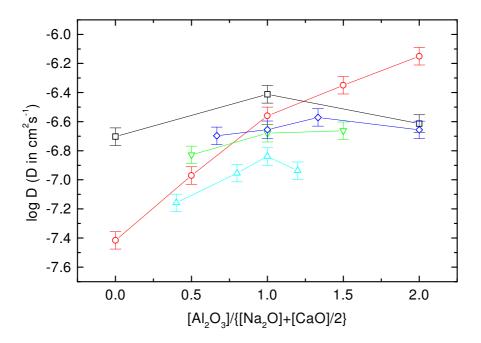


Abb. 11.1: Eisen-Diffusionskoeffizienten bei konstanter Viskosität (log (η /dPa s) = 4) in Abhängigkeit vom Verhältnis [Al₂O₃] /{[Na₂O] + [CaO]/2} für folgende Zusammensetzungen: 5 Na₂O· y MgO· (15-y) CaO· x Al₂O₃· (80 - x) SiO₂: Δ : y = 0; ∇ : y = 5; \diamond : y = 10; \square : y = 15; \bigcirc : 10 Na₂O· 10 MgO· x Al₂O₃· (80 - x) SiO₂.

Parallel zur Zunahme der Eisen-Diffusionskoeffizienten verschieben sich die Fe³⁺/Fe²⁺-Redoxverhältnisse auf die Seite der Fe²⁺-Ionen (siehe Kapitel 5.2.1). Dabei werden die [FeO_{4/2}]⁻-Tetraeder durch den zunehmenden Anteil der ebenfalls als [AlO_{4/2}]⁻-Tetraeder eingebauten Al³⁺-Ionen destabilisiert, da beide um die ladungskompensierenden Na⁺- und Ca²⁺-Ionen konkurrieren. Die abnehmende Stabilisierung der [FeO_{4/2}]⁻-Tetraeder im Silicatnetzwerk korreliert somit auch mit der beobachteten Zunahme der Eisen-Diffusionskoeffizienten.

Für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ erhöht sich der Anteil der Fe³⁺-Ionen wieder, da die Al³⁺-Ionen zunehmend in oktaedrischer Koordination bzw. als Tricluster eingebaut werden (siehe Kapitel 5.2.1). Entsprechend sollten hier auch die Eisen-Diffusionskoeffizienten durch die zunehmende Stabilisierung der [FeO_{4/2}]-Tetraeder wieder sinken. Die Eisen-Diffusionskoeffizienten der Schmelzen für die Zusammensetzungen $5 \text{ Na}_2\text{O} \cdot 15 \text{ MgO} \cdot \text{ x AbO}_3 \cdot (80 - \text{x}) \text{ SiO}_2 \text{ und } 5 \text{ Na}_2\text{O} \cdot 15 \text{ CaO} \cdot \text{ x AbO}_3 \cdot (80 - \text{x}) \text{ SiO}_2$ entsprechen dem erwarteten Verlauf. Für die Schmelzen mit 15 mol % MgO bedeutet dies aber auch, dass die Mg²⁺-Kationen, wie schon für die Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichtes gezeigt, keinen signifikanten ladungskompensierenden Einfluss auf die [FeO_{4/2}] - bzw. [AlO_{4/2}] -Tetraeder ausüben. Für die Schmelzen mit der Zusammensetzung 5 Na₂O· 10 MgO· 5 CaO· x Al₂O₃· (80 - x) SiO₂ hingegen wird ein Maximum für die Eisen-Diffusionskoeffizienten erst bei einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} \approx 1.3$ erreicht. Die Eisen-Diffusionskoeffizienten der Schmelzen mit 5 Na₂O · 5 MgO · 10 CaO · $x Al_2O_3$ · (80 - x) SiO₂ verändern sich für Verhältnisse von [Al₂O₃] /{[Na₂O] + [CaO]/2} > 1 hingegen fast nicht. Da in beiden Fällen die Veränderungen im Bereich des Fehlers liegen, können hier keine eindeutigen Aussagen gemacht werden, ob die Zunahme der Al₂O₃-Konzentration zu einer Stabilisierung der [FeO_{4/2}] -Tetraeder führt. Die Eisen-Diffusionskoeffizienten der Schmelzen mit 10 Na₂O· 10 MgO· x Al₂O₃· (80 - x) SiO₂ nehmen hingegen auch für Verhältnisse von [Al₂O₃] /{[Na₂O] + [CaO]/2}> 1 signifikant zu. Wie schon für den Einfluss der Zusammensetzung auf die Viskosität diskutiert (siehe Kapitel 10.2) können strukturelle Einflüsse auch zu Änderungen der jeweiligen Aktivierungsenergien führen. In der Abbildung 11.2 sind die berechneten Aktivierungsenergien E_D der Eisen-Diffusionskoeffizienten für die Zusammensetzungen 10 Na₂O · 10 MgO · x AbO₃ · (80 x) SiO₂ und 5 Na₂O · 15 MgO · x Al₂O₃ · (80 - x) SiO₂ gegen die Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\}$ aufgetragen.

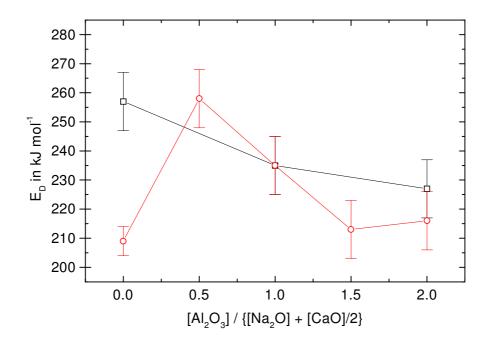


Abb. 11.2: Diffusionsaktivierungsenergien E_D in Abhängigkeit vom Verhältnis $[Al_2O_3]$ / $\{[Na_2O] + [CaO]/2\}$ für folgende Zusammensetzungen: \Box : $5 Na_2O \cdot 15 MgO \cdot x AbO_3 \cdot (80 - x) SiO_2$, \bigcirc : $10 Na_2O \cdot 10 MgO \cdot x AbO_3 \cdot (80 - x) SiO_2$.

Für Verhältnisse von $[Al_2O_3]$ /{ $[Na_2O]$ + [CaO]/2} > 1 nehmen die Diffusionsaktivierungsenergien der Zusammensetzungen $10\ Na_2O \cdot 10\ MgO \cdot x\ AbO_3 \cdot (80 - x)\ SiO_2$ im Vergleich zu den Werten von $5\ Na_2O \cdot 15\ MgO \cdot x\ AbO_3 \cdot (80 - x)\ SiO_2$ ab. Die Höhe der Aktivierungsenergie kann als ein Maß für die Stärke des Einbaus der Komponenten im Silicatnetzwerk angesehen werden. Für die Koordination der Eisen-Ionen als Netzwerkwandler in Silicat-Schmelzen sollten die Aktivierungsenergien im Bereich von etwa 125 bis 210 kJ mol⁻¹ liegen [134]. Für Netzwerkbildner sind hingegen Aktivierungsenergien von über 300 kJ mol⁻¹ zu erwarten [134]. Die hier für die Schmelzen $10\ Na_2O \cdot 10\ MgO \cdot x\ AbO_3 \cdot (80 - x)\ SiO_2$ bei Verhältnissen von $[Al_2O_3]$ /{ $[Na_2O]$ + [CaO]/2} > 1 ermittelte Abnahme der Aktivierungsenergie um etwa $20\ kJ\ mol^{-1}$ auf etwa $215\ kJ\ mol^{-1}$ scheint zumindest tendenziell auf einen höheren Anteil von oktaedrisch koordinierten Fe^{3+} -Ionen hinzudeuten.

Ein weiterer zu beobachtender Effekt ist die Abnahme der Aktivierungsenergie für die Zusammensetzung mit 10 Na₂O · 10 MgO · (80 - x) SiO₂ auf 209 kJ mol⁻¹, dem hier niedrigsten Wert. Die Eisen-Diffusionskoeffizienten für diese Zusammensetzung gehören aber gleichzeitig zu den kleinsten in dieser Arbeit bestimmten Werten (siehe Abbildung 11.1). Daraus ergibt sich ein Widerspruch zu der vorher diskutierten Zunahme der Eisen-Diffusionskoeffizienten bei einem Absinken der Aktivierungsenergie. Eine Möglichkeit zur

Aufhebung dieser Diskrepanz könnte das Auftreten eines Mischoxideffektes sein, der mit einer Abnahme der Diffusionsgeschwindigkeit verbunden wäre [134]. Diese Interpretation steht auch in Übereinstimmung zu den ebenfalls einem Mischoxideffekt zugeschriebenen Abweichungen bei den thermodynamischen Daten und Viskositäten für diese Zusammensetzung (siehe Kapitel 9.2.3 und 10.2.1).

11.3.2 Einfluss der Natriumoxidkonzentration

Wie in der Abbildung 11.3 zu erkennen ist, steigen die viskositätsbezogenen Eisen-Diffusionskoeffizienten der Schmelzen mit der Zusammensetzung $x \, Na_2O \cdot 10 \, MgO \cdot 10 \, Al_2O_3 \cdot (80 - x) \, SiO_2$ mit zunehmendem Verhältnis von $[Al_2O_3] / [Na_2O]$.

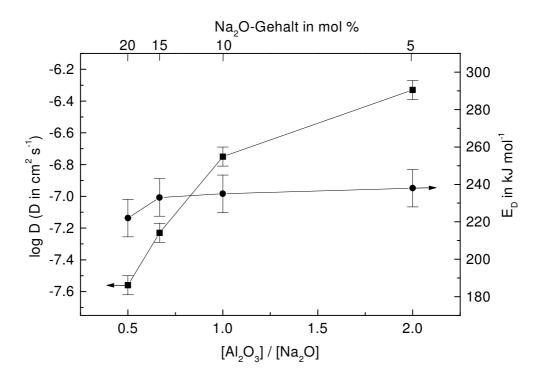


Abb. 11.3: Aktivierungsenergien E_D " \bullet " und Eisen-Diffusionskoeffizienten " \bullet " bei konstanter Viskosität (log (η /dPa s) = 4.25) in Abhängigkeit vom [Al₂O₃] /[Na₂O]-Verhältnis für die Zusammensetzung: x Na₂O· 10 MgO· 10 AbO₃· (80 - x) SiO₂.

Für Verhältnisse von $[Al_2O_3]$ / $[Na_2O] \le l$ korreliertdiesmitderschoninvorherigen Kapitel diskutierten Destabilisierung der $[FeO_{4/2}]^-$ -Tetraeder durch den abnehmenden Anteil der als Ladungskompensatoren zur Verfügung stehenden Na^+ -Ionen.

Für Verhältnisse von $[Al_2O_3]$ / $[Na_2O] \ge 1$ sollte dann der zunehmende Einbau der Al^{3+} -Ionen als Netzwerkwandler oder als Tricluster zu einer stärkeren Stabilisierung der Fe^{3+} -Ionen führen und die Eisen-Diffusionskoeffizienten wieder sinken. Der wenn auch etwas geringere Anstieg der Eisen-Diffusionskoeffizienten für Verhältnisse von $[Al_2O_3]$ / $[Na_2O] > 1$ widerspricht somit dem vorgestellten Strukturmodell und dem für die Fe^{3+}/Fe^{2+} -Redoxverhältnisse beobachteten Verlauf. Da sich auch die Aktivierungsenergien E_D nicht signifikant ändern, scheint dieser Faktor hier nicht mit der Zunahme der Eisen-Diffusionskoeffizienten zu korrelieren.

Wie schon für die Abhängigkeit der Viskositäten diskutiert (siehe Kapitel 10.2.2), können aber schon bei Verhältnissen von $[Al_2O_3]/[Na_2O] \le 1$ in der Silicat-Schmelze Tricluster bzw. fünf- und sechsfach koordinierte Al^{3+} -Ionen auftreten [68]. Entsprechend sollte die maximale Destabilisierung der $[FeO_{4/2}]^-$ -Tetraeder, bei der alle Na^+ -Ionen als Ladungskompensatoren für die $[AlO_{4/2}]^-$ -Tetraeder wirken, erst bei Verhältnissen von $[Al_2O_3]/[Na_2O] > 1$ zu beobachten sein. Analog könnten damit auch die Maxima der viskositätsbezogenen Eisen-Diffusionskoeffizienten verschoben sein.

11.3.3 Einfluss der Magnesiumoxidkonzentration

Wie in der Abbildung 11.4 dargestellt, nehmen die viskositätsbezogenen Eisen-Diffusionskoeffizienten für die Schmelzen der Zusammensetzung $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ Al}_2\text{O}_3 \cdot (80 - \text{x}) \text{SiO}_2 \text{ von } 10 \text{ auf } 20 \text{ mol } \% \text{ MgO} \text{ um etwa } 30 \% \text{ ab. Dabei ist allerdings zu berücksichtigen, dass der Wert für 20 mol } \% \text{ MgO-Gehalt nur durch lineare Extrapolation erhalten werden konnte. Es ist somit nicht auszuschließen, dass analog zu den Aktivierungsenergien <math>E_D$ wegen des relativ großen Fehlerbereichs auch die Eisen-Diffusionskoeffizienten sich insgesamt nicht signifikant ändern. Verglichen mit der Abnahme um etwa 80 % bei einer äquivalenten Erhöhung der Na $_2$ O-Konzentration ist der Effekt bezogen auf die MgO-Konzentration aber zumindest viel kleiner. Parallel dazu verschieben sich die Fe $_3$ +/Fe $_2$ -Redoxgleichgewichte in beiden Fällen aber im gleichen Maße auf die Seite der Fe $_3$ -Ionen (siehe Kapitel 9.2.2 und 9.2.3).

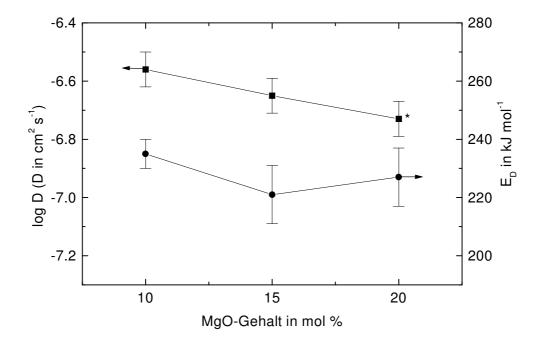


Abb. 11.4: Eisen-Diffusionskoeffizienten " \blacksquare " bei konstanter Viskosität ($\log (\eta/dPa s) = 4$) und Aktivierungsenergien E_D " \blacksquare " in Abhängigkeit vom MgO-Gehalt für die Zusammensetzung: $10 \text{ Na}_2\text{O} \cdot \text{ x MgO} \cdot 10 \text{ A}_2\text{O}_3 \cdot (80 - \text{ x}) \text{ SiO}_2$ (*: extrapolierter Wert).

Aus thermodynamischer Sicht konnten für die Mg^{2+} -Ionen im Gegensatz zu den Na^{+-} und Ca^{2+} -Ionen keine signifikanten ladungskompensierenden Eigenschaften für die $[FeO_{4/2}]^{-}$ Tetraeder abgeleitet werden. Die mit zunehmendem MgO-Gehalt beobachtete Erhöhung des Fe^{3+} -Anteils im Fe^{3+} / Fe^{2+} -Redoxgleichgewicht wurde mit einer Verdrängung der Fe^{2+} -Ionen durch die Mg^{2+} -Ionen auf energetisch ungünstigere Koordinationsstellen im Silicatnetzwerk erklärt (siehe Kapitel 9.2.3). Die $[FeO_{4/2}]^{-}$ -Tetraeder werden also nicht wie bei der Erhöhung des Na_2O -Gehaltes durch eine zunehmende Anzahl an ladungskompensierenden Kationen stärker stabilisiert. Entsprechend nehmen die Diffusionskoeffizienten wie auch die Aktivierungsenergien E_D , wenn dann nur sehr geringfügig, mit zunehmendem MgO-Gehalt ab.

11.3.4 Einfluss des [CaO]/[MgO]-Verhältnisses

Die Abhängigkeit der viskositätsbezogenen Eisen-Diffusionskoeffizienten [CaO]/[MgO]-Verhältnis wurde für die Schmelzen mit der Zusammensetzung 5 Na₂O · y MgO· (15-y) CaO· x Al₂O₃· (80 - x) SiO₂ (y = 0, 5, 10, 15) untersucht. Wie schon für die Lage der Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewichtes in Kapitel 9.2.4 beschrieben, müssen bei der Diskussion auch die jeweiligen Anteile der Al³⁺-Ionen in tetraedrischer und oktaedrischer Koordination berücksichtigt werden. Für das Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ sinken die jeweils auf die Viskosität $\log (\eta/dPa s) = 4$ bezogenen Eisen-Diffusionskoeffizienten, wie in der Abbildung 11.5 dargestellt, zwischen 0 und 15 mol % CaO-Gehalt um etwa 60 % ab.

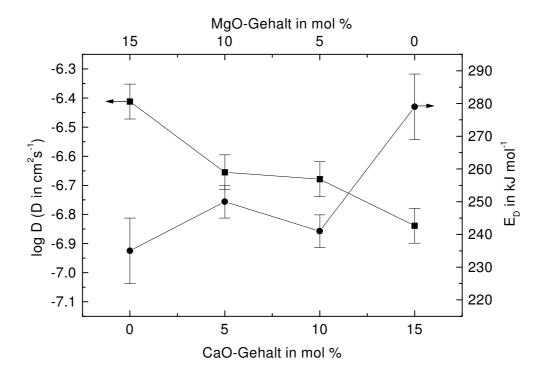


Abb. 11.5: Eisen-Diffusionskoeffizienten " \blacksquare " bei konstanter Viskosität (log (η /dPa s) = 4) und Aktivierungsenergien E_D " \blacksquare " in Abhängigkeit vom CaO- bzw. MgO-Gehalt für die Zusammensetzung 5 Na₂O· y MgO· (15-y) CaO· x Al₂O₃· (80 - x) SiO₂ (y = 0, 5, 10 und 15) bei dem Verhältnis [Al₂O₃]/{[Na₂O] + [CaO]/2} = 1.

Die Abnahmen der Eisen-Diffusionskoeffizienten zwischen 0 und 5 bzw. 10 und 15 mol % CaO-Gehalt korrelieren dabei mit jeweils steigenden Aktivierungsenergien E_D. Die für die

Thermodynamik des Fe³⁺/Fe²⁺-Redoxgleichgewicht diskutierte zunehmende Stabilisierung der [FeO_{4/2}]⁻-Tetraeder durch die ladungskompensierenden Ca²⁺-Ionen korreliert somit auch mit den abnehmenden Eisen-Diffusionskoeffizienten. Eine ladungskompensierende Wirkung der Mg²⁺-Ionen auf die [FeO_{4/2}]⁻-Tetraeder scheint hingegen, wie schon im vorherigen Kapitel erläutert, auch im Vergleich mit den Ca²⁺-Ionen nur in einem wesentlich geringeren Maße aufzutreten.

11.4 Zusammenfassung für die Eisen-Diffusionskoeffizienten

Die Eisen-Diffusionskoeffizienten wurden mit der Square-Wave Voltammetrie in einer Reihe von Schmelzen mit den Bestandteilen Na₂O/MgO/CaO/Al₂O₃/SiO₂ für Temperaturen zwischen 1600 - 1000 °C bestimmt. Die lineare Abhängigkeit der logarithmischen Eisen-Diffusionskoeffizienten von der reziproken Temperatur erlaubte die Berechnung der Aktivierungsenergie E_D für die Diffusion der Eisen-Ionen nach einem Arrhenius-Ansatz. Die für einige Zusammensetzungen bei niedrigeren Temperaturen auftretenden Abweichungen von dieser linearen Abhängigkeit konnten mit Kristallisationserscheinungen in den Schmelzen korreliert werden (siehe auch Kapitel 12).

Der Einfluss der Konzentration an Aluminiumoxid, Natriumoxid und Magnesiumoxid sowie der Variation des [CaO]/[MgO]-Verhältnisses wurde anhand der viskositätsbezogenen Eisen-Diffusionskoeffizienten diskutiert.

Die Zunahme des Aluminiumoxid-Gehaltes führt für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} \le 1$ zu einem Anstieg der Eisen-Diffusionskoeffizienten. Dabei werden durch den zunehmenden Einbau der Al^{3+} -Ionen als $[AlO_{4/2}]^{-}$ -Tetraeder die als $[FeO_{4/2}]^{-}$ -Tetraeder koordinierten Fe^{3+} -Ionen weniger stark im Silicatnetzwerk eingebunden, da beide um die ladungskompensierenden Natrium- und Calcium-Ionen konkurrieren.

Für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ sinken die Eisen-Diffusions-koeffizienten für die Zusammensetzungen 5 Na₂O· 15 RO· x Al₂O₃· (80 - x) SiO₂ (R = Mg, Ca). Die als $[FeO_{4/2}]^-$ -Tetraeder eingebauten Fe^{3+} -Ionen können durch den zunehmenden Einbau der Al³⁺-Ionen in oktaedrischer Koordination oder als Tricluster wieder stabilisiert

werden. Die Eisen-Diffusionskoeffizienten der Zusammensetzungen $5 \text{ Na}_2\text{O} \cdot \text{y} \text{ MgO} \cdot (15\text{-y}) \text{ CaO} \cdot \text{x} \text{ Al}_2\text{O}_3 \cdot (80\text{-x}) \text{ SiO}_2 \text{ (} \text{y} = 5, 10\text{)}$ bleiben für diese Verhältnisse hingegen nur im Rahmen des Fehlers konstant. Für die Schmelzen der Zusammensetzung $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{x} \text{ Al}_2\text{O}_3 \cdot (80\text{-x}) \text{ SiO}_2$ steigen die Eisen-Diffusionskoeffizienten sogar weiter an. Die gleichzeitige Abnahme der Diffusionsaktivierungsenergie E_D deutet auf einen zunehmenden Einbau der Fe³+-Ionen als Netzwerkwandler mit entsprechend wesentlich höheren Diffusionskoeffizienten hin.

Die Erhöhung der Konzentration der ladungskompensierenden Na^+ -Ionen für die Zusammensetzungen x $Na_2O \cdot 10$ $MgO \cdot 10$ $A_{\frac{1}{2}}O_3 \cdot (80 - x)$ SiO_2 führt bei Verhältnissen von $[Al_2O_3]/\{[Na_2O] \le 1$ zur Stabilisierung der $[FeO_{4/2}]^-$ -Tetraeder und korreliert mit den sinkenden Eisen-Diffusionskoeffizienten. Die für Verhältnisse von $[Al_2O_3]/\{[Na_2O] > 1$ bei sinkendem Na_2O -Gehalt wenn auch geringere Zunahme der Eisen-Diffusionskoeffizienten stimmt nicht mit dem hier vorgestellten Modell überein. Durch den Einbau der Al^{3+} -Ionen in oktaedrischer Koordination oder als Tricluster sollten die $[FeO_{4/2}]^-$ -Tetraeder wieder stärker stabilisiert werden und die entsprechenden Eisen-Diffusionskoeffizienten sinken.

Die Zunahme des MgO-Gehaltes führt verglichen mit einer analogen Erhöhung der $Na_2O-Konzentration$ zu einer wesentlich geringeren Abnahme der Eisen-Diffusionskoeffizienten. Durch den Einbau der Mg^{2+} -Ionen werden die Fe^{2+} -Ionen auf energetisch ungünstigere Koordinationsplätze verdrängt und der Anteil der Fe^{3+} -Ionen im Gleichgewicht dadurch erhöht. Eine stärkere Stabilisierung der $[FeO_{4/2}]^-$ -Tetraeder im Silicatnetzwerk durch die Mg^{2+} -Ionen erfolgt dann nur in einem relativ geringen Ausmaße.

Die mit zunehmendem [CaO]/[MgO]-Verhältnis sinkenden Eisen-Diffusionskoeffizienten und steigenden Aktivierungsenergien E_D zeigen ebenfalls, dass die Ca²⁺-Ionen im Vergleich zu den Mg²⁺-Ionen als Ladungskompensatoren den Einbau der Fe³⁺-Ionen als [FeO_{4/2}]⁻-Tetraeder besser stabilisieren können.

12 Einfluss der Kristallisation

Wie in den Kapiteln 5.2 und 6.2 erläutert, kommt es durch Kristallisationserscheinungen in den Schmelzen zu Abweichungen für die jeweiligen linearen Temperaturabhängigkeiten der Peakpotentiale und der Eisen-Diffusionskoeffizienten.

In der Tabelle 12.1 sind die Zusammensetzungen der Gläser mit den jeweils detektierten kristallinen Phasen (Röntgen-Pulverdiffraktometrie) und die dadurch bedingten Abweichungen der Peakpotentiale und Eisen-Diffusionskoeffizienten aufgelistet.

Tabelle 12.1: Einfluss der Bildung von Kristallphasen auf die Peakpotentiale E_p und die Eisen-Diffusionskoeffizienten D (Verschiebung zu höheren (+) oder niedrigeren Werten (-)).

		Versch	niebung
Glaszusammensetzung	Kristallphasen	von	
		Ep	D
5 Na ₂ O ⋅ 15 MgO⋅ 80SiO ₂	SiO ₂ Cristobalit	-	+
5 Na ₂ O· 5 MgO· 10 CaO· 80 SiO ₂	SiO ₂ Tridymit	-	+
5 Na ₂ O· 10 MgO· 5 CaO· 80SiO ₂	SiO ₂ Tridymit	-	+
10 Na ₂ O ⋅ 10 MgO⋅ 80SiO ₂	SiO ₂ Tridymit	-	+
10 Na ₂ O · 15 MgO· 75SiO ₂	SiO ₂ Cristobalit	+	-
5 Na ₂ O· 15 MgO· 5 A½O ₃ · 75 SiO ₂	MgSiO ₃ Protoenstatit	+	-
5 Na ₂ O · 15 MgO· 15 A½O ₃ · 65 SiO ₂	$Mg_2Al_4Si_5O_{18}$ Indialit $Na_2Mg_5Si_{12}O_{30}$	+	-
5 Na ₂ O · 15 MgO· 20 A½O ₃ · 60 SiO ₂	MgAl ₂ O ₄ Spinell	+	-
10 Na ₂ O⋅ 20 MgO⋅ 10 A½O ₃ ⋅ 60 SiO ₂	Mg ₂ SiO ₄ Forsterit	+	-
10 Na ₂ O⋅ 20 MgO⋅ 15 A½O ₃ ⋅ 55 SiO ₂	MgSiO ₃ Enstatit Mg ₂ SiO ₄ Forsterit	+	-
10 Na ₂ O· 10 MgO· 20 Al ₂ O ₃ · 60 SiO ₂	Mg ₂ Al ₄ Si ₅ O ₁₈ Indialit	+	-
5 Na ₂ O · 5 MgO· 10 CaO· 10 A½O ₃ · 70 SiO ₂	(Ca,Na)(Si,Al) ₄ O ₈ Anorthit	+	-
5 Na ₂ O · 10 MgO· 5 CaO· 15 A½O ₃ · 65 SiO ₂	(Na,Ca)(Si,Al) ₄ O ₈ Albit	+	-
5 Na ₂ O⋅ 15 CaO⋅ 10 A½O ₃ ⋅ 70 SiO ₂	(Ca,Na)(Si,Al) ₄ O ₈ Anorthit	+	-
5 Na ₂ O· 15 CaO· 20 AեջO ₃ · 60 SiO ₂	(Ca,Na)(Si,Al) ₄ O ₈ Anorthit	+	-

12.1 Einfluss der Kristallisation auf die Temperaturabhängigkeit der Peakpotentiale

Die Bildung der Kristallphasen Tridymit oder Cristobalit in den Zusammensetzungen ohne Al₂O₃ führt zu einer Erhöhung des Anteils an Na⁺- und Mg²⁺-Ionen in den Schmelzen. Die Peakpotentiale verschieben sich mit Ausnahme für die Zusammensetzung 10 Na₂O· 15 MgO· 75 SiO₂ in Richtung negativerer Werte. Dies stimmt mit den in dieser Arbeit und in der Literatur [9] beobachteten Einfluss der Na₂O− und MgO-Konzentration auf die Lage des Fe³⁺/Fe²⁺-Redoxgleichgewichtes in Silicatschmelzen überein. Damit ist die für die Zusammensetzung 10 Na₂O· 15 MgO· 75SiO₂ beobachtete Verschiebung der Peakpotentiale zu positiveren Werten so nicht erklärbar.

In den mit Magnesium als Erdalkalibestandteil untersuchten Al₂O₃-haltigen Zusammensetzungen, in denen sich als Kristallphasen Protoenstatit, Enstatit oder Forsterit bilden, nimmt in den Schmelzen jeweils der MgO-Gehalt ab. Die dabei auftretende Zunahme der Peakpotentiale steht in Übereinstimmung mit den in dieser Arbeit für die Abnahme der MgO-Konzentration erhaltenen Verschiebungen (siehe Kapitel 5.2.3). Die Bildung der Kristallphasen Indialit und Spinell ist mit einer relativen Zunahme der Peakpotentiale verbunden. Die damit korrelierte Abnahme des Gehaltes an MgO und Al₂O₃ (für Verhältnisse von [Al₂O₃]/[Na₂O] > 1) führte auch bei den dazu jeweils untersuchten Zusammensetzungsabhängigkeiten der Peakpotentiale zu positiveren Werten (siehe Kapitel 5.2).

Für die Al₂O₃-haltigen Schmelzen, die sowohl CaO als auch MgO als Erdalkalioxide aufweisen, erhöht sich durch das Ausscheiden der Kristallphasen Anorthit und Albit jeweils der molare MgO-Anteil. Die dabei auftretende Verschiebung zu positiveren Peakpotentialen wird auch beim äquimolaren Austausch von CaO gegen MgO beobachtet (siehe Kapitel 9.2.4).

Für die Schmelzen, die nur CaO als Erdalkali-Bestandteil enthalten, wurde die Bildung der Kristallphase Anorthit beobachtet. Für 10 mol % Al_2O_3 -Gehalt und damit einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} < 1$ sollte die beobachtete Verschiebung der Peakpotentiale mit einer Erhöhung des Al_2O_3 -Gehaltes bzw. einer Erniedrigung des Na_2O - oder CaO-Anteils korrelieren (siehe Kapitel 9.2). Für die Zusammensetzung mit 20 mol % Al_2O_3 also bei einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ müsste die Zunahme der Peakpotentiale genau entgegengesetzt mit einem geringeren Al_2O_3 -Gehalt bzw. höheren Na_2O - oder CaO-Anteilen in der Schmelze verbunden sein (siehe Kapitel 9.2). Aufgrund der nicht genau bekannten stöchiometrischen Zusammensetzung der Anorthit-Kristallphase kann dies aber hier nicht eindeutig beurteilt werden.

12.2 Einfluss der Kristallisation auf die Temperaturabhängigkeit der Eisen-Diffusionskoeffizienten

Bei der Diskussion, welchen Einfluss die gebildeten Kristallphasen auf die Eisen-Diffusionskoeffizienten haben, müssen mehrere Faktoren berücksichtigt werden.

So sollte sich z. B. in der Schmelze mit der Zusammensetzung 5 Na₂O· 15· MgO· 80 SiO₂ durch die Bildung von Cristobalit und der damit verbundenen Zunahme der ladungskompensierenden Na⁺-Ionen, die Stabilität und der Anteil der als [FeO_{4/2}]⁻-Tetraeder eingebauten Fe³⁺-Ionen erhöhen. Bezogen auf die viskositätsbezogenen Eisen-Diffusionskoeffizienten würde entsprechend eine Abnahme der Eisen-Diffusionskoeffizienten zu erwarten sein (siehe Kapitel 11.3.2).

Gleichzeitig ändern sich aber auch die Viskositäten der Schmelzen bei der Bildung von Kristallphasen. Eine Zunahme der Viskosität der Schmelze sollte mit einer Abnahme der Eisen-Diffusionskoeffizienten korrelieren (siehe Kapitel 8.1). Die Viskositäten für die Schmelzen mit den Zusammensetzungen 5 Na₂O · 15 MgO · 5 AbO₃ · 75 SiO₂ und 5 Na₂O · 15MgO · 80SiO₂ steigen bei der Bildung der kristallinen Phasen jeweils an (siehe Kapitel 7.2). Die entsprechenden Eisen-Diffusionskoeffizienten nehmen hier aber einmal ab und einmal zu. Somit kann keine eindeutige Korrelation zwischen der Viskositätsänderung durch Kristallisation und der Verschiebung Eisender Diffusionskoeffizienten festgestellt werden.

Weiterhin kann es durch die elektrochemisch induzierte Kristallphasenbildung auch zu einer Veränderung der für die Redoxreaktion zur Verfügung stehenden Elektrodenoberfläche kommen. Entsprechend sollte dadurch auch die Höhe der ermittelten Peakströme und der daraus berechneten Eisen-Diffusionskoeffizienten beeinflusst werden (siehe Kapitel 2.3). Ob und wie die Eisen-Diffusionskoeffizienten sich aber dadurch tatsächlich verschieben, kann nicht beurteilt werden.

Angesichts der Vielzahl und der teilweisen Unwägbarkeit der Faktoren scheint es derzeit kaum möglich, eine eindeutige Korrelation zwischen der Verschiebung der Eisen-Diffusionskoeffizienten und der beobachteten Kristallphase herzustellen.

13 Zusammenfassung

Das Redox- und das Diffusionsverhalten des polyvalenten Elementes Eisen in Schmelzen des Systems $Na_2O/MgO/CaO/Al_2O_3/SiO_2$ wurde mit Hilfe der elektrochemischen Meßmethode Square-Wave Voltammetrie bei hohen Temperaturen (1000 - 1600 °C) untersucht.

Die lineare Abhängigkeit der Peakpotentiale von der Temperatur ermöglichte die Berechnung der thermodynamischen Kenngrößen ΔH^0 und ΔS^0 für die Fe³⁺/Fe²⁺-Redoxreaktion. Unter der Annahme, dass sich die Schmelze im Gleichgewicht mit der Atmosphäre befindet, korreliert die Verschiebung der Peakpotentiale mit zunehmender Temperatur zu positiveren Werten mit einer Erhöhung des Anteils der Fe²⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht.

Für die Bereiche linearer Korrelation der Peakströme zu $\tau^{-0.5}$ wurden die Eisen-Diffusionskoeffizienten ermittelt. Die Temperaturabhängigkeit der Eisen-Diffusionskoeffizienten konnte durch einen Arrhenius-Ansatz beschrieben werden und die entsprechenden Aktivierungsenergien für die Diffusion wurden berechnet.

Für die Temperaturabhängigkeit der mit einem Rotationsviskosimeter gemessenen Viskositäten der Schmelzen wurden neben den nach einem Arrhenius-Ansatz bestimmten Aktivierungsenergien auch die Parameter für die Vogel-Fulcher-Tammann Gleichung ermittelt.

Die größten Eisen-Diffusionskoeffizienten bzw. niedrigsten Viskositäten ergeben sich für die jeweils höchsten untersuchten Temperaturen.

Bei Schmelzen Peakpotentialen, einigen zeigten sich bei den den Eisen-Diffusionskoeffizienten und den Viskositäten unterhalb einer für die jeweilige Zusammensetzung charakteristischen Temperatur signifikante Abweichungen von der jeweiligen linearen Temperaturabhängigkeit. Durch Röntgendiffraktometrie konnte die Kristallphasen nachgewiesen werden. Die daraus resultierenden Bildung von Zusammensetzungsänderungen der Schmelzen korrelierten mit den beobachteten Veränderungen.

Durch die Variation der Zusammensetzung wurde der Einfluss des Al₂O₃-, des MgO-, des Na₂O-Gehaltes und des [CaO]/[MgO]-Verhältnisses auf die thermodynamischen Kenngrößen, die Eisen-Diffusionskoeffizienten und die Viskositäten der Schmelzen ermittelt. Dabei

erfolgte die Diskussion der Abhängigkeit der Eisen-Diffusionskoeffizienten jeweils bezogen auf die gleiche Viskosität und somit in der Regel nicht auf die gleiche Temperatur.

Beim äquimolaren Austausch von SiO₂ gegen Al₂O₃ korreliert die Verschiebung der Peakpotentiale zu positiveren Werten bis zu einem Verhältnis [Al₂O₃]/{[Na₂O] + der Fe²⁺-Ionen im Fe³⁺/Fe²⁺-Zunahme des Anteils [CaO]/2 = 1 mit einer Redoxgleichgewicht. Die Fe³⁺-Ionen liegen im Gegensatz zu den überwiegend oktaedrisch koordinierten Fe²⁺-Ionen als formal negativ geladene [FeO_{4/2}]⁻-Tetraeder in Silicatschmelzen vor, und benötigen zur Ladungskompensation Metall-Kationen. Auch die Al³⁺-Ionen werden als [AlO_{4/2}]-Tetraeder eingebaut und konkurrieren mit den Fe³⁺-Ionen um die ladungskompensierenden Kationen. Mit zunehmendem Al₂O₃-Gehalt sinkt damit der Anteil der Kationen der zur Stabilisierung der [FeO_{4/2}]-Tetraeder zur Verfügung steht, und das Fe³⁺/Fe²⁺-Redoxgleichgewicht verschiebt sich auf die Seite der Fe²⁺-Ionen. Die Lage der Maxima der Peakpotentiale jeweils bei einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ zeigt, dass neben den Na⁺-Ionen auch die Ca²⁺-Ionen als Ladungskompensatoren statistisch jeweils einen [FeO_{4/2}]²- bzw. [AlO_{4/2}]²-Tetraeder stabilisieren. Die Mg²⁺-Ionen scheinen hingegen keinen signifikanten ladungskompensierenden Effekt aufzuweisen.

Parallel dazu nehmen die viskositätsbezogenen Eisen-Diffusionskoeffizienten mit steigendem Al_2O_3 -Gehalt und damit geringerer Stabilisierung der $[FeO_{4/2}]^-$ -Tetraeder bis zu einem Verhältnis von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} = 1$ zu.

Die höheren Viskositäten ergeben sich ebenfalls aus der sich mit zunehmenden Al_2O_3 -Gehalt ändernden Rolle der Na^+ - und Ca^{2+} -Ionen vom Netzwerkwandler zum Ladungskompensator für die $[AlO_{4/2}]^-$ -Tetraeder und der daraus resultierenden Abnahme der Trennstellensauerstoffe im Silicatnetzwerk.

Für Verhältnisse von $[Al_2O_3]/\{[Na_2O] + [CaO]/2\} > 1$ stehen, wenn überhaupt, nur wenige ladungskompensierende Kationen zur Verfügung, und die Al^{3+} -Ionen werden zunehmend als Netzwerkwandler in oktaedrischer Koordination oder als Tricluster eingebaut. Die beobachtete Erhöhung des Anteils an Fe^{3+} -Ionen im Fe^{3+}/Fe^{2+} -Redoxgleichgewicht deutet auf eine zunehmende Stabilisierung der $[FeO_{4/2}]^{-}$ -Tetraeder durch die ladungskompensierende Wirkung der oktaedrisch koordinierten Al^{3+} -Ionen hin. Die Fe^{3+} -Ionen könnten aber auch in oktaedrischer Koordination als Netzwerkwandler im Silicatnetzwerk vorliegen.

Eine wieder zunehmende Stabilisierung der [FeO_{4/2}]-Tetraeder lässt eine Abnahme der viskositätsbezogenen Eisen-Diffusionskoeffizienten erwarten. Tatsächlich wird dies für die Zusammensetzungen mit jeweils 15 mol % CaO- bzw. MgO-Gehalt beobachtet. Für die

Schmelzen die sowohl MgO als auch CaO als Erdalkalibestandteil enthalten, verändern sich die Eisen-Diffusionskoeffizienten nicht signifikant. Für die entsprechenden Werte der Zusammensetzung mit $10 \text{ Na}_2\text{O} \cdot 10 \text{ MgO} \cdot \text{ xAl}_2\text{O}_3 \cdot 80 \text{ SiO}_2$ steigen die viskositätsbezogenen Eisen-Diffusionskoeffizienten für Verhältnisse von $[\text{Al}_2\text{O}_3]/[\text{Na}_2\text{O}] > 1$ hingegen weiterhin an. In diesem Fall weist die parallele Abnahme der Diffusionsaktivierungsenergien auf einen zunehmenden Einbau der Fe³⁺-Ionen in oktaedrischer Koordination als Netzwerkwandler mit entsprechend höheren Diffusionskoeffizienten hin.

Die für diese Verhältnisse sinkenden Viskositäten korrelieren mit einer Erhöhung des Anteils der Trennstellensauerstoffe im Silicatnetzwerk durch den zunehmenden Einbau der Al³⁺-Ionen als Netzwerkwandler.

Der Anstieg der ladungskompensierenden Natrium-Ionenkonzentration für die Zusammensetzung mit x Na $_2$ O· 10 MgO· 10 A $_2$ O₃· (80 - x) SiO $_2$ führt bei Verhältnissen von [Al $_2$ O $_3$]/[Na $_2$ O] \leq 1 durch die stärkere Stabilisierung der [FeO $_{4/2}$]-Tetraeder zu einer Zunahme des Anteils an Fe $^{3+}$ -Ionen. Die viskositätsbezogenen Eisen-Diffusionskoeffizienten nehmen entsprechend ab. Da die steigende Konzentration der als Netzwerkwandler koordinierten Na $^+$ -Ionen auch zu einer Zunahme der Trennstellensauerstoffe im Silicatnetzwerk führt, resultiert daraus die beobachtete Abnahme der Viskositäten.

Für Verhältnisse von $[Al_2O_3]/[Na_2O] \ge 1$ bewirkt der Anstieg der Konzentration der Natrium-Ionen eine Zunahme des Anteils der Fe²⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht. Die Abnahme der in oktaedrischer Koordination oder als Tricluster eingebauten Al^{3+} -Ionen korreliert mit einer Destabilisierung der $[FeO_{4/2}]^{\text{T}}$ -Tetraeder. Eine daraus ebenfalls zu erwartende Zunahme der viskositätsbezogenen Eisen-Diffusionskoeffizienten tritt aber nicht auf, sondern eine Abnahme der Werte wird beobachtet. Eine signifikante Änderung der Aktivierungsenergie wird auch nicht beobachtet, so dass das vorgestellte Modell hierfür keine Erklärung liefert. Auch die Abnahme der Viskosität widerspricht diesem Ansatz, da mit abnehmendem Gehalt an oktaedrisch koordinierten Al^{3+} -Ionen auch die Anzahl der Trennstellensauerstoffe und damit die Viskosität der Schmelze steigen sollte. Hier scheint die parallel abnehmende Aktivierungsenergie der bestimmende Faktor für die kleiner werdende Viskosität zu sein.

Der bei der Erhöhung der MgO-Konzentration zunehmende Anteil an Fe³⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht kann nicht mit einem signifikanten ladungskompensierenden Effekt der Mg²⁺-Ionen für die [FeO_{4/2}]⁻-Tetraeder erklärt werden. Die Mg²⁺- und Fe²⁺-Ionen sollten

in oktaedrischer Koordination aufgrund annähernd gleicher Kationenradien und Metall-Sauerstoffbindungslängen um die gleichen Koordinationsplätze im Silicatnetzwerk konkurrieren. Mit steigender Konzentration der Mg²⁺-Ionen werden die Fe²⁺-Ionen dadurch zunehmend auf energetisch ungünstigere Plätze im Silicatnetzwerk verdrängt. Dies erhöht den Anteil der Fe³⁺-Ionen im Fe³⁺/Fe²⁺-Redoxgleichgewicht. Daraus resultiert aber nur eine relativ geringe Abnahme der viskositätsbezogenen Eisen-Diffusionskoeffizienten, da zwar der Anteil der [FeO_{4/2}]⁻-Tetraeder erhöht wird, aber keine signifikant zunehmende Stabilisierung im Silicatnetzwerk durch die Mg²⁺-Ionen erfolgt.

Die Abnahme der Viskositäten zeigt, dass mit steigender Konzentration an Mg²⁺-Ionen diese als Netzwerkwandler den Anteil der Trennstellensauerstoffe im Silicatnetzwerk erhöhen.

Für den äquimolaren Austausch von CaO gegen MgO bei gleichen Verhältnissen $[Al_2O_3]/\{[Na_2O] + [CaO]/2\}$ ist eine Zunahme des Anteils an Fe^{2+} -Ionen festzustellen. Die stabilisierende Wirkung der ladungskompensierenden Ca^{2+} -Ionen auf die $[FeO_{4/2}]^-$ -Tetraeder ist somit stärker als der destabilisierende Einfluss der Mg^{2+} -Ionen auf den Einbau der Fe^{2+} -Ionen im Silicatnetzwerk. Die mit zunehmendem CaO-Anteil sinkenden Eisen-Diffusionskoeffizienten weisen ebenfalls daraufhin, dass die ladungskompensierenden Ca^{2+} -Ionen im Vergleich zu den Mg^{2+} -Ionen die $[FeO_{4/2}]^-$ -Tetraeder stärker in das Silicatnetzwerk einbinden. Die Zunahme der Viskosität bei steigendem MgO-Anteil lässt erkennen, dass die Mg^{2+} -Ionen im Vergleich zu den Ca^{2+} -Ionen die geringeren Netzwerkwandlereigenschaften aufweisen. Möglicherweise können die Mg^{2+} -Ionen mit abnehmenden CaO-Gehalt sogar teilweise auch als Netzwerkbildner eingebaut werden.

Die nach dem "Basizitätskonzept" zu erwartenden Veränderungen der Fe³⁺/Fe²⁺-Redoxverhältnisse stimmen mit den tatsächlich in dieser Arbeit ermittelten Verschiebungen qualitativ nur teilweise überein. Zur quantitativen Beschreibung der Peakpotentiale in Abhängigkeit von der Zusammensetzung wurden darum empirische Gleichungen aufgestellt. Dabei wurde insbesondere der unterschiedliche Einfluss des Al₂O₃-Gehaltes auf das Fe³⁺/Fe²⁺-Redoxgleichgewicht berücksichtigt, der sich aufgrund des Einbaus der Al³⁺-Ionen als [AlO_{4/2}]⁻-Tetraeder oder in oktaedrischer Koordination ergibt. Im Vergleich mit den experimentell ermittelten Peakpotentialen zeigen die berechneten Werte bis auf wenige Ausnahmen eine relativ gute Übereinstimmung.

Literaturverzeichnis

- [1] H. Hirashima, T. Yoshida, R. Brückner, Glastech. Ber. 61 (1988) 283-292
- [2] H.D. Schreiber, S.J. Kozak, A.L. Fritchman, D.S. Goldman, H.A. Schaeffer, Phys. Chem. Glasses 27 (1986) 152-177
- [3] H.D. Schreiber, J. Non-Cryst. Solids 84 (1986) 129-141
- [4] K. Takahashi, Y. Miura, J. Non-Cryst. Solids 38&39 (1980) 527-532
- [5] S. Gerlach, O. Claußen, C. Rüssel, J. Non-Cryst. Solids 226 (1998) 11-18
- [6] S. Gerlach, O. Claußen, C. Rüssel, J. Non-Cryst. Solids 238 (1998) 75-82
- [7] R. Pascova, C. Rüssel, J. Non-Cryst. Solids 208 (1996) 237-246
- [8] O. Claußen, C. Rüssel, J. Mol. Liquids 83 (1999) 295-302
- [9] G.v.d. Gönna, C. Rüssel, J. Non-Cryst. Solids 272 (2000) 139-146
- [10] J. de Strycker, S. Gerlach, G. von der Gönna, C. Rüssel, J. Non-Cryst. Solids 272 (2000) 131-138
- [11] S. Gerlach, O. Claußen, C. Rüssel, J. Non-Cryst. Solids 248 (1999) 92-98
- [12] O. Claußen, C. Rüssel, Phys. Chem. Glasses 39 (1998) 200-205
- [13] C. Rüssel, E. Freude, Phys. Chem. Glasses 30 (1992) 25-31
- [14] C. Montel, C. Rüssel, E. Freude, Glastech. Ber. 61 (1988) 59-63
- [15] O. Claußen, C. Rüssel, Glastech. Ber. Glass Sci. Technol. 69 (1996) 95-100
- [16] S. Gerlach, O. Claußen, C. Rüssel, J. Non-Cryst. Solids 240 (1998) 110-117
- [17] A. Matthai, D. Ehrt, C. Rüssel, Glastech. Ber. Glass Sci. Technol. 73 (2000) 33-38
- [18] T. Kordon, C. Rüssel, E. Freude, Glastech. Ber. 63 (1990) 213-218
- [19] E. Freude, C. Rüssel, Glastech. Ber. 60 (1987) 202-204
- [20] E. Freude, C. Rüssel, Glastech. Ber. 63 (1990) 149-153
- [21] E. Freude. Dissertation Universität Erlangen (1989)
- [22] G.C. Barker, Anal. Chim. Acta 18 (1958) 118
- [23] J.J. O' Dea, J. Osteryoung, R.A. Osteryoung, AnalChem. 53 (1981) 695-701
- [24] J.G. Osteryoung, R.A. Osteryoung, Anal. Chem. 57 (1985) A101
- [25] J.G. Osteryoung, J.J. O' Dea, "Squarewave Voltammetry" in Electroanalytical Chemistry,
- Bard, A.J. (ed.), Vol. 14, S. 209-308, Marcel Dekker, New York, Basel (1986)
- [26] O. Claußen, Dissertation, Friedrich-Schiller-Universität Jena, 1996
- [27] B.O. Mysen, "Structure and Properties of Silicate Melts" (Elsevier, Amsterdam 1988) und darin zitierte Referenzen
- [28] H.Scholze: "Glas. Natur, Struktur und Eigenschaften" Springer/Berlin 1990

- [29] W. Vogel: "Glaschemie", Springer/Berlin 3. Aufl. 1993
- [30] T. Taniguchi, M. Okuno, T. Matsumoto, J. Non-Cryst. Solids 211 (1997) 56-63
- [31] I. Merzbacher, W.B. White, J. Non-Cryst. Solids 130 (1991) 18-34
- [32] G. Hauret, Y. Vaills, Y. Luspin, F. Gervais, B. Cote, J. Non-Cryst. Solids 170 (1994) 175-181
- [33] G. Engelhardt, M. Nofz, K. Forkel, F.G. Wihsmann, M. Mägi, A. Samoson, E. Lippmaa, Phys. Chem. Glasses 26 (1985) 157-165
- [34] C.I. Merzbacher, B.L. Sherriff, J.S. Hartman, W.B.White, J. Non-Cryst. Solids 124 (1990) 194-206
- [35] T. Hanada, N. Soga, T. Tachibana, J. Non-Cryst. Solids 105 (1988) 39-44
- [36] L. Barbiere, A. Corradi, I. Lancellotti, C. Leonelli, C. Siligardi, Phys. Chem. Glasses 43 (2002) 161-164
- [37] F. Gervais, A. Blin, C. Garnier, P. Verdier, Y. Laurent, J. Non-Cryst. Solids 176 (1994) 69-75
- [38] C.D. Yin, M.Okuno, H. Morikawa, F. Marumo, T. Yamanaka, J. Non-Cryst. Solids 55 (1983) 131
- [39] A.M. George, J.F. Stebbins, Am. Mineral. 83 (1998) 1022-1029
- [40] F.S. Fiske, J. F. Stebbins, Am. Mineral. 79 (1994) 848-861
- [41] P.S. Danielson, J.W.H. Schreurs, J. Non-Cryst. Solids 38 & 39 (1980) 177-182
- [42] S. Kroeker, J.F. Stebbins, Am. Mineral. 85 (2000) 1459-1464
- [43] K. Hunold, R.Brückner, Glastechn. Ber. 53 (1980) 149-161
- [44] T. Yagi, M. Susa, K. Nagata, Phys. Chem. Glasses 42 (2001) 287-291
- [45] P. McMillan, B. Piriou, J. Non-Cryst. Solids, 53 (1982) 279-298
- [46] S.H. Risbud, R.J. Kirckpatrick, A.P. Taglialavore, B. Montez, J. Am. Ceram. Soc. 70 (1987) C10-12
- [47] G. El-Damrawi, H. Doweidar, Phys. Chem. Glasses 42 (2001) 116-120
- [48] H. Doweidar, Phys. Chem. Glasses 42 (2001) 42-48
- [49] D.A. McKeown, F.L. Galeener, G.E. Brown, J. Non-Cryst. Solids 68 (1984) 361-378
- [50] R. Brückner, H-U. Chun, H. Goretzki, Glastechn. Ber. 51 (1978) 1-7
- [51] T.D. Taylor, G.E. Rindone, J. Amer. Ceram. Soc. 53 (1970) 692-695
- [52] D.A. McKeown, G.A. Waychunas, G.E. Brown Jr., J. Non-Cryst. Solids 74 (1985) 349-371
- [53] H. Doweidar, Phys. Chem. Glasses 43 (2002) 87-90

- [54] R.K. Sato, P. F. McMillan, P. Dennison, R. Dupree, Phys. Chem. Glasses 32 (1991) 149-156
- [55] B. Himmel, J. Weigelt, T. Gerber, M. Nofz, J. Non-Cryst. Solids 136 (1991) 27-36
- [56] C. Huang, E.C. Behrmann, J. Non-Cryst. Solids 128 (1991) 310-321
- [57] Y. Miura, S. Matsumoto, T. Nanba, T. Akazawa, Phys. Chem. Glasses 41 (2000) 24-31
- [58] B.E. Yoldas, Phys. Chem. Glasses 12 (1971) 28-32
- [59] J.E. Shelby, J. Appl. Phys. 49 (1978) 5885-5891
- [60] R. Brückner, H.-U. Chun, H. Goretzki, M. Sammet, J. Non-Cryst. Solids 42 (1980) 49-60
- [61] H. Doweidar, J. Non-Cryst. Solids 240 (1998) 55-65
- [62] A. Navrotsky, K.L. Geisinger, P. McMillan, G.V. Gibbs, Phys. Chem. Miner. 11 (1985) 284-298
- [63] E.I. Kamitsos, J.A. Kapoutsis, H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 171 (1994) 31-45
- [64] C.H. Hsieh, H. Jain, A.C. Miller, E.I. Kamitsos, J. Non-Cryst. Solids 168 (1994) 247-257
- [65] R. Brückner, H.-U.Chun, H. Goretzki, M. Sammet, J. Non-Cryst. Solids 42 (1980) 49-60
- [66] J.M. Oliveira, R.N. Correia, M.H. Fernandez, J. Rocha, J. Non-Cryst. Solids 265 (2000) 221-229
- [67] D.E. Day, G.E. Rindone, J. Amer. Ceram. Soc. 45 (1962) 489-496, 496-504, 579-581
- [68] M.J. Toplis, D. B. Dingwell, T. Lenci, Geochim. Cosmochim. Acta 61 (1997) 2605-2612
- [69] E. Hallas, U. Haubenreißer, M. Hähnert, D. Müller, Glastech. Ber. 56 (1983) 63-70
- [70] P.I.K. Onorato, M.N. Alexander, C.W. Struck, G.W. Tasker, D.R. Uhlmann, J. Am. Ceram. Soc. 68 (1985) C148-150
- [71] M.J. Toplis, D. B. Dingwell, Eos Trans. Am. Geophys. Un. 77 (1996) F848
- [72] J.F. Stebbins, Z. Xu, Nature 390 (1997) 60-62
- [73] J.F. Stebbins, S. Kroeker, S.K. Lee, T.J. Kiczenski, J. Non-Cryst. Solids 275 (2000) 1-6
- [74] J.H. Baltisberger, Z. Xu, J.F. Stebbins, S.H. Wang, A. Pines, J. Am. Chem. Soc. 118 (1996) 7209-7214
- [75] E. D. Lacy, Phys. Chem. Glasses, 4 (1963) 234-238
- [76] M.J. Toplis, S.C. Kohn, M.E. Smith, I.J.F. Poplett, Am. Mineral. 85 (2000) 1556-1560
- [77] P.F. McMillan, W.T. Petuskey, B. Cote, D. Massiot, C. Landron, J.-P. Coutures, J. Non-Cryst. Solids 195 (1996) 261-271
- [78] C. Jäger, W. Müller-Warmuth, C. Mundus, L. van Wüllen, J. Non-Cryst. Solids 149 (1992) 209-217

- [79] J.F. Stebbins "Dynamics and Structure of Silicate and Oxide Melts: Nuclear Magnetic
- Resonance Studies" in "Structure, Dynamics and Properties of Silicate Melts" Ed. J.F.
- Stebbins, P.F. McMillan, D.B. Dingwell, Reviews of Mineralogy Vol. 32 (1995) 191-246
- [80] J.F. Stebbins, J.V. Oglesby, S. Kroeker, Am. Mineral. 86 (2001) 1307-1311
- [81] B.O. Mysen, D. Virgo, Phys. and Chem. Miner. 12 (1985) 191-200
- [82] M.P. Dickenson, P.C. Hess, Contribution. Mineral. Petrol. 92 (1986) 202-217
- [83] K.E. Fox, Y. Furukawa, W.B. White, Phys. Chem. Glasses 23 (1982) 169-178
- [84] H.D. Schreiber, B.K. Kochanowski, C.W. Schreiber, A.B. Morgan, M.T. Coolbaugh,
- T.G. Dunlap, J. Non-Cryst. Solids 177 (1994) 340-346
- [85] M. Hayashi, M. Hori, M. Susa, H. Fukuyama, K. Nagato, Phys. Chem. Glasses 41 (2000) 49-54
- [86] W.E. Jackson, J.M.d. Leon, G.E.Jr. Brown, G.A. Waychunas, S.D. Conradson, J.-M. Combes, Science 262 (1993) 229-233
- [87] G.A. Waychunas, G.E. Brown Jr., C.W. Ponader, W.E. Jackson, Nature 332 (1988) 251-253
- [88] D. Holland, A. Mekki, I.A. Gee, C.F. McConville, J.A. Johnson, C.E. Johnson,
- P. Appleyard, M. Thomas, J. Non-Cryst. Solids 253 (1999) 192-202
- [89] G.E. Brown Jr., F. Farges, G. Calas, "X-Ray-Scattering and X-Ray Spectroscopy Studies of Silicate Melts" in "Structure, Dynamics and Properties of Silicate Melts" Ed. J.F. Stebbins,
- P.F. McMillan, D.B. Dingwell, Reviews of Mineralogy Vol. 32 (1995) 317-410
- [90] R.A. Dunlap, D.A. Eelman, G.R. MacKay, J. Non-Cryst. Solids 223 (1998) 141-146
- [91] A. Montenero, M. Friggeri, D.C. Giori, N. Belkhiria, L. D. Pye, J. Non-Cryst. Solids 84 (1986) 45-60
- [92] M.D. Dyar, M.T. Nancey, S.E. Swanson, Am. Mineral 72 (1987) 792
- [93] B.O. Mysen, D. Virgo, F.A. Seifert, Am. Mineral. 69 (1984) 834-848
- [94] Z. Zhang, Phys. Chem. Glasses 34 (1993) 95-103
- [95] K.F.E. Williams, C.E. Johnson, M.F. Thomas, J. Non-Cryst. Solids 226 (1998) 19-23
- [96] U. Halenius, Mineral J. 17 (1995) 363-371
- [97] C. Rüssel, Glastech. Ber.-Glass Sci. Technol. 66 (1993) 68-75
- [98] D. Virgo, B.O. Mysen, Phys. Chem. Minerals 12 (1985) 65-76
- [99] M. Nofz, R. Stösser, F.G. Wihsmann, J. Non-Cryst. Solids 129 (1991) 249-258
- [100] J.W. Park, H. Chen, Phys. Chem. Glasses 23 (1982) 107-108
- [101] P.A. Bingham, J. M Parker, T. Searle, J. M. Williams, K. Fyles, J. Non-Cryst. Solids 253 (1999) 203-209

- [102] C. Rüssel, Glastech. Ber.-Glass Sci. Technol. 70 (1997) 17-22
- [103] C. Rüssel, Glastech. Ber.-Glass Sci. Technol. 66 (1993) 93-99
- [104] C.R. Kurkjian, E.A. Sigety, Phys. Chem. Glasses 9 (1968) 73-83
- [105] J.E. Fenstermacher, J. Non-Cryst. Solids 38-39 (1980) 239
- [106] B. Hannoyer, M. Lenglet, J. Dürr, R. Cortes, J. Non-Cryst. Solids 151 (1992) 209-216 und darin zitierte Referenzen
- [107] T. Uchino, K. Nakaguchi, Y. Nagashima, T. Kondo, J. Non-Cryst. Solids 261 (2000) 72-78
- [108] B. Camara, J. Phys. 43 Colloque C9 suppl. au no.12 (1982) C9-165 C9-168
- [109] B. Camara, Glastechn. Ber. 51 (1978) 87-95
- [110] T. Schels, B. Camara, H. Dannheim, Glastechn. Ber.-Glass Sci. Technol. 65 (1992) 162-168
- [111] K. Nagata, M. Hayashi, J. Non-Cryst. Solids 282 (2001) 1-6
- [112] N.A. Eissa, W.M. El-Meliegy, S.M. El Minyawi, N.H. Sheta, H.A. Sallam, Phys. Chem. Glasses 34 (1993) 31-34
- [113] C.M. Wang, H. Chen, Phys. Chem. Glasses 28 (1987) 39-47
- [114] R.A. Levy, C.H.P. Lupis, P.A. Flinn, Phys. Chem. Glasses 17 (1976) 94-103
- [115] D.J.M. Burkhard, Phys. Chem. Glasses 38 (1997) 317-322
- [116] Z. Wang, T.F. Cooney, S.K. Sharma, Geochim. Cosmochim. Acta 59 (1995) 1571-1577
- [117] I. Abs-Wrumbach, K. Langer, F. Seifert, E. Tillmanns, Z. Kristallogr. 155 (1981) 81-113
- [118] A. Navrotsky, Peradeau, P. McMillan, J.P. Coutoures, Geochim. Cosmochim. Acta 46 (1982) 2039-2049
- [119] F. Domine, B. Piriou, Am. Mineral. 71 (1986) 38-50
- [120] F.A. Seifert, B.O. Mysen, D. Virgo, Am. Mineral. 67 (1982) 696-718
- [121] H.V. Alberto, J.M. Gil, N.A. DeCampos, B. O. Mysen, J. Non-Cryst. Solids 151 (1992) 39-50
- [122] R. Stosser, G. Scholz, M. Nofz, T. Grande, S. Aasland, Ber. Bunsen. Phys. Chem. 100 (1996) 1588-1592
- [123] J.A. Tangeman, R. Lange, L. Forman, Geochim. Cosmochim. Acta 65 (2001) 1809-1819
- [124] J.A. Duffy in: H. Bach, F.G.K. Baucke, D. Krause (Hrg.), "Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes", Springer/Berlin (2000) 275-301
- [125] J.A. Duffy, J. Non-Cryst. Solids 196 (1996) 45-50

- [126] J.A. Duffy, J. Non-Cryst. Solids 109 (1989) 35-39
- [127] G. Jeddeloh, Phys. Chem. Glasses 25 (1984) 163-164
- [128] M. Nakashima, H. Yamashita, T. Maekawa, J. Non-Cryst. Solids 223 (1998) 133-140
- [129] O. Knacke, O. Kubaschewski, K. Hesselmann, Thermochemical Properties of Inorganic Substances, 2nd Ed., Springer, Stahleisen, 1991
- [130] J.M. Delaye, L. Cormier, D. Ghaleb, G. Calas, J. Non-Cryst. Solids 293 (2001) 290-296
- [131] N. Roy, A. Navrotsky, J. Am. Ceram. Soc. 67 (1984) 606-610
- [132] J.M. Oliveira, R.N. Correia, M.H. Fernandez, J. Rocha, J. Non-Cryst. Solids 265 (200) 221-229
- [133] J.D. Kubicki, M.J. Toplis, Am. Mineral. 87 (2002) 668-678
- [134] S. Chakraborty: "Diffusion in Silicate Melts" in "Structure, Dynamics and Properties of Silicate Melts" Ed. J.F. Stebbins, P.F. McMillan, D.B. Dingwell, Reviews of Mineralogy Vol. 32 (1995) 411-503

Anhang

I Thermodynamische Daten

Abhängigkeit vom Al₂O₃-Gehalt

Tabelle 1: Standardpotentiale E^0 bei 1300 °C, Standardenthalpien ΔH^0 und Standardentropien ΔS^0 des Fe^{3+}/Fe^{2+} -Redoxüberganges für 5 Na₂O· y MgO· (15- y) CaO· x Al₂O₃· (80- x) SiO₂ (y = 0, 5, 10, 15) und 10 Na₂O· 10 MgO· x Al₂O₃· (80- x) SiO₂ und berechnete Fe^{3+}/Fe^{2+} -Verhältnisse für 1300 °C bei Äquilibrierung mit Luft (p_{O_2} = 0.21 bar).

[MgO]	[CaO]	[Al ₂ O ₃]	E^0	ΔH^0	ΔS^0	log (Fe ³⁺ /Fe ²⁺)
in mol %	in mol %	in mol %	in mV	in kJ mol ⁻¹	in J (K mol) ⁻¹	bei 1300 °C
15	0	0	-358*	75	26	0.98
15	0	5	-326	70	24	0.88
15	0	10	-381	77	26	1.05
15	0	15	-433	87	29	1.22
15	0	20	-450*	83	25	1.27
10	0	0	-416	106	42	1.17
10	0	5	-333	79	30	0.90
10	0	10	-299	77	31	0.79
10	0	15	-344	82	31	0.93
10	0	20	-372*	83	30	1.02
0	15	5	-395	84	29	1.10
0	15	10	-355	77	27	0.97
0	15	12.5	-335	70	24	0.91
0	15	15	-355	71	23	0.97
0	15	20	-376	77	26	1.04
0	15	25	-388	76	25	1.07
10	5	0	-385	88	32	1.07
10	5	5	-332	79	30	0.9
10	5	7.5	-323	77	29	0.87
10	5	10	-341	73	25	0.92
10	5	15	-380	79	27	1.05
5	10	0	-412	91	33	1.15
5	10	5	-363	84	31	0.99
5	10	10	-344	74	26	0.93
5	10	15	-370	78	27	1.02
	Fehler		± 10	± 2	± 1	± 0.04

^{*:} linear extrapolierte Werte

Abhängigkeit vom Na₂O-Gehalt

Tabelle 2: Standardpotentiale E^0 bei 1300 °C, Standardenthalpien ΔH^0 und Standardentropien ΔS^0 des Fe^{3+}/Fe^{2+} -Redoxüberganges in den Schmelzen x Na₂O· 10 MgO· 10 Al₂O₃· (80 - x) SiO₂; und berechnete Fe^{3+}/Fe^{2+} -Verhältnisse für 1300 °C bei Äquilibrierung mit Luft (p_{O_2} = 0.21 bar).

[Na ₂ O]	E^0	ΔH^0	ΔS^0	$\log (Fe^{3+}/Fe^{2+})$
in mol %	in mV	in kJ mol ⁻¹	in J (K mol) ⁻¹	bei 1300 °C
5	-334	78	29	0.90
10	-299	77	31	0.79
15	-355	86	33	0.97
20	-377	87	32	1.04
Fehler	± 10	±2	± 1	± 0.04

Abhängigkeit vom MgO-Gehalt

Tabelle 3: Standardpotential E^0 bei 1300 °C, Standardenthalpien ΔH^0 und Standardentropien ΔS^0 des Fe^{3+}/Fe^{2+} -Redoxüberganges in den Schmelzen 10 Na₂O· x MgO· (90- x) SiO₂, 10 Na₂O· x MgO· 10 Al₂O₃· (80- x) SiO₂ und 10 Na₂O· x MgO· 15 Al₂O₃· (75- x) SiO₂; berechnete Fe^{3+}/Fe^{2+} -Verhältnisse für 1300 °C bei Äquilibrierung mit Luft (p_{O_2} = 0.21 bar)

[MgO]	[Al ₂ O ₃]	E^0	ΔH^0	ΔS^0	$\log (Fe^{3+}/Fe^{2+})$
in mol %	in mol %	in mV	in kJ mol ⁻¹	in J (K mol) ⁻¹	bei 1300 °C
10	0	-416	106	42	1.17
15	0	-394	92	34	1.09
20	0	-418	92	33	1.17
5	10	-261	71	29	0.67
10	10	-299	77	31	0.79
15	10	-351	80	29	0.96
20	10	-382*	81	28	1.06
10	15	-344	82	31	0.93
15	15	-369	80	28	1.01
20	15	-384	75	24	1.06
Fel	nler	± 10	± 2	±1	± 0.04

^{*} linear extrapolierter Wert

II Eisen-Diffusionskoeffizienten

Abhängigkeit von der Al₂O₃-Konzentration

Tabelle 4: Eisen-Diffusionskoeffizienten (bei 1300 °C), Aktivierungsenergien E_D und präexponentielle Faktoren D_0 für 5 $Na_2O \cdot 15$ $MgO \cdot (15 - y)$ $CaO \cdot x$ $Al_2O_3 \cdot (80 - x)$ SiO_2 (y = 0, 5, 10, 15) und für 10 $Na_2O \cdot 10$ $MgO \cdot x$ $Al_2O_3 \cdot (80 - x)$ SiO_2 dotiert mit 0.25 mol % Fe_2O_3 (Ausnahme: 5 $Na_2O \cdot 15$ $MgO \cdot x$ $Al_2O_3 \cdot (80 - x)$ SiO_2 mit jeweils 0.5 mol % Fe_2O_3).

	-	<i>U</i> - <i>v</i>	`	•	/
[MgO]	[CaO]	[Al ₂ O ₃]	D bei 1300 °C	E_D	D_0
in mol %	in mol %	in mol %	in cm ² s ⁻¹	in kJ mol ⁻¹	in cm ² s ⁻¹
10	0	0	1,122e-07	209 ±5	0.94 ±0.5
10	0	5	7,586e-08	258 ±10	27 ±15
10	0	10	1,380e-07	235 ±10	9 ±5
10	0	15	3,311e-07	213 ±10	8.9 ±5
10	0	20	1,413e-07	216 ±10	8.3 ±5
15	0	0	7,709e-08*	257 ±10	26.5 ±15
15	0	5	1,349e-07	235 ±10	7 ±5
15	0	10	1,660e-07	227 ±10	6 ±5
15	0	15	2,138e-07	261±10	88.3 ±30
15	0	20	1,862e-07*	279 ±10	326 ±150
0	15	5	1,349e-07	248±10	20.5±10
0	15	10	1,738e-07	269±10	127±15
0	15	12.5	1,380e-07	279±10	238±60
0	15	15	1,514e-07	278±10	219±150
0	15	20	2,239e-07	284±10	501±80
0	15	25	2,57e-07	281±10	572 ±15
10	5	0	6,457e-08*	276±20	90.9 ±65
10	5	5	1,202e-07	255 ±15	33.1 ±20
10	5	7.5	1,479e-07	250 ±5	27.5 ±10
10	5	10	1,698e-07	258±5	58.8 ±10
10	5	15	2,239e-07	260 ±5	92.4 ±20
5	10	0	1,824e-07*	217±15	2.8 ±2
5	10	5	1,479e-07	231 ±5	6.4 ±2
5	10	10	1,738e-07	241 ±5	16.9 ±3
5	10	15	2,188e-07	248 ±5	36.7 ±5

^{*} linear extrapolierte Werte

Abhängigkeit von der Na₂O-Konzentration

Tabelle 5: Eisen-Diffusionskoeffizienten D (bei 1300 °C), Aktivierungsenergien E_D und präexponentielle Faktoren D_0 für x $Na_2O \cdot 10 \text{ MgO} \cdot 10 \text{ A} \frac{1}{2}O_3 \cdot (80 - x) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe_2O_3 .

[Na ₂ O]	D bei 1300 °C	E_D	D_0
in mol %	in cm ² s ⁻¹	in kJ mol ⁻¹	in cm ² s ⁻¹
5	1,660e-07	238 ±10	11.8 ±5
10	1,380e-07	235 ±10	9 ±5
15	3,236e-07	233 ±10	15.2±5
20	3,548e-07	222 ±10	8.1 ±5

Abhängigkeit von der MgO-Konzentration

Tabelle 6: Eisen-Diffusionskoeffizienten D (bei 1300 °C), Aktivierungsenergien E_D und präexponentielle Faktoren D_0 für $10 \text{ Na}_2\text{O} \cdot \text{ y MgO} \cdot \text{ x A}_2\text{O}_3 \cdot (80-\text{x-y}) \text{ SiO}_2$ dotiert mit 0.25 mol % Fe_2O_3 .

[MgO]	[Al ₂ O ₃]	D bei 1300 °C	E_D	D_0
in mol %	in mol %	in $cm^2 s^{-1}$	in kJ mol ⁻¹	in cm ² s ⁻¹
10	0	1,122e-07	209 ±5	0.9 ± 0.5
15	0	1,738e-07	231±5	8.2 ±3
20	0	3,715e-07	216±5	5.4±2
5	10	1,047e-07	263 ±5	60.7 ±15
10	10	1,380e-07	235 ±5	9 ±3
15	10	3,311e-07	221 ±10	7.6±3
20	10	6.760e-07*	227 ±10	23.8 ±15
10	15	3,311e-07	233 ±10	15.7 ±10
15	15	4,898e-07	231±10	23 ±5
20	15	7,079e-07	226±5	23.3±5

^{*} linear extrapolierter Wert

III Viskositäten

Abhängigkeit von der Al₂O₃-Konzentration

Tabelle 7: Viskositäten (1300 °C), Aktivierungsenergien E_{η} und Vogel-Fulcher-Tammann-Parameter für die Schmelzen mit den Zusammensetzungen 10 Na₂O· 10 MgO· x A½O₃· (80 - x) SiO₂ und 5 Na₂O· 15 MgO· (15 - y) CaO· x A½O₃· (80 - x) SiO₂ (y = 0, 5, 10, 15).

[MgO]	[CaO]	$[Al_2O_3]$	η (1300 °C)	E_{η}	_	ulcher-Tam	ımann-
in mol %	in mol %	in mol %	in dPa s	in kJ mol ⁻¹	A	Parameter B	т
					in dPa s	in °C	T_0 in °C
15	0	0	31261	305±15 ¹	1.45e-03 ¹	18655 ¹	195.75 ¹
15	0	5	41115	350±15 ²	1.10e-03 ²	19865 ²	161.14 ²
15	0	10	18819	340±10	2.26e-03	15311	340.14
15	0	15	8888	355±10	9.29e-05	19441	243.24
10	0	0	3724*	240±10*	2.54e-03*	16632*	105.04
10	0	5	20417	275±10	8.26e-03	15473	226.72
10	0	10	32018	305±10	5.87e-03	15468	280.3
10	0	15	25930	305±15	7.40e-03	13610	373.94
10	0	20	22929	330±20 ³	$3.22 \text{ e}01^3$	1299 ³	1102.24 ³
0	15	5	5313	300±10	9.63e-04	16927	207.84
0	15	10	7015	322±10	5.17e-05	22530	95.94
0	15	12.5	11301	336±10	1.50e-03	15691	309.24
0	15	15	8555	349±10 ⁴	2.64e-06 ⁴	27506 ⁴	45.74 ⁴
10	5	5	19103	312±10	1.87e-04	22332	88.34
10	5	7.5	18780	313±10	3.37e-04	20849	131.54
10	5	10	17701	320±10	3.34e-03	15297	312.14
10	5	15	10000	343±10	6.06e-04	16737	293.04
5	10	5	10627	290±15	4.40e-02	11308	388.34
5	10	10	13032	320±10	1.83e-03	16281	268.14
5	10	15	10627	329±15 ⁵	2.57e-01 ⁵	6794 ⁵	661.74 ⁵

Berechnet für Temperaturen über ¹: 1275 °C; ²: 1300 °C; ³: 1375 °C; ⁴: 1230 °C; ⁵: 1240 °C. *aus [5].

Abhängigkeit von der Na₂O-Konzentration

Tabelle 8: Viskositäten (1300 °C), Aktivierungsenergien E_{η} und Vogel-Fulcher-Tammann-Parameter für die Schmelzen mit den Zusammensetzungen: x Na $_2$ O· 10 MgO· 10 A $_2$ O₃· (80 - x) SiO $_2$.

[Na ₂ O]	η (1300 °C)	E_{η}	Vogel-Fu	ılcher-Tammann	-Parameter
in mol %	in dPa s	in kJ mol ⁻¹	A in dPa s	B in °C	T ₀ in °C
5	107540	365 ±10	8.09e-05	24136	151.34
10	32018	305 ±10	5.87e-03	15468	280.34
15	3273	260 ±15	1.46e-01	8744	427.44
20	1417	230 ±20	1.36e-01	8650	363.44

Abhängigkeit von der MgO-Konzentration

Tabelle 9: Viskositäten (1300 °C), Aktivierungsenergien E_{η} und Vogel-Fulcher-Tammann-Parameter für die Schmelzen mit den Zusammensetzungen $10Na_2O\cdot\ x\ MgO\cdot\ 10\ Al_2O_3\cdot\ (80$ - $x)\ SiO_2$.

[MgO]	η (1300 °C)	E_{η}	Vogel-Fu	lcher-Tammann-l	Parameter
in mol %	in dPa s	in kJ mol ⁻¹	A in dPa s	B in °C	T ₀ in °C
10	32018	305 ±10	5.87e-03	15468	280.3
15	5394	260 ± 15^{1}	7.64 ¹	3154 ¹	819.041
20	2187*	265 ± 10^2	34.8 ²	618 ²	1150.94 ²

Für Temperaturen über ¹: 1200 °C; ²: 1330 °C; *: mit Vogel-Fulcher-Tammann-Gleichung extrapolierter Wert.

Danksagung

Herrn Prof. Dr. C. Rüssel danke ich für die interessante Aufgabenstellung und die sehr gute Betreuung.

Frau Doz. Dr. D. Ehrt danke ich für die Bereitschaft ein Gutachten für diese Dissertation zu erstellen.

Bei Herrn Dipl.-Phys. B. Keinert möchte ich mich für die Durchführung der Viskositätsmessungen bedanken.

Frau Wagner danke ich für die Durchführung der Röntgendiffraktometrischen Messungen.

Mein besonderer Dank gilt Herrn Dipl.-Ing. S. Woltz für seine sorgfältige Durchsicht und kritische Auseinandersetzung mit der Arbeit.

Frau A. Kupfer danke ich für das frühzeitige Anschalten der SWV-Apparatur und für die Hilfe bei der Herstellung der Gläser.

Mein Dank gilt auch Frau G. Möller für die schnelle und sorgfältige Durchführung von "Schleifarbeiten".

Für das Auffinden von Rechtschreib- und sonstigen Fehlern danke ich Herrn Dipl. Geol. O. Anspach.

Herrn Dr. G.v.d. Gönna danke ich für die praktische Einführung in die Square-Wave Voltammetrie.

Für die gewährte Hilfe bei diversen technischen Problemen danke ich Herrn Dr. R. Keding.

Frau U. Roglic danke ich für die Durchführung von Kristallisationsexperimenten im Rahmen eines Praktikums.

Außerdem gilt mein Dank allen Mitarbeiterinnen und Mitarbeitern des Otto-Schott-Institutes für das sehr angenehme Arbeitsklima und die vielfältige Unterstützung bei der Durchführung dieser Arbeit.

Der Deutschen Forschungsgemeinschaft danke ich für die gewährte finanzielle Unterstützung.

LEBENSLAUF

Achim Wiedenroth

02.05.1965	geboren in Gifhorn (Niedersachsen) ledig
1971-1975 1975-1984 20.06.1984	Volks- und Grundschule Päse/Meinersen Gymnasium Uetze Abitur
10/1984-12/1985	Grundwehrdienst in Braunschweig
04/1986-04/1994 12.04.1994	Chemie-Studium an der TU-Braunschweig Chemie-Diplom
01/1995-12/1997	Wissenschaftlicher Mitarbeiter bei der Max-Planck-Gesellschaft in der AG "CO ₂ -Chemie" an der FSU-Jena
09/1998-03/1999	Weiterbildung zum Qualitätsmanagement- und Umweltbeauftragten
04/1999-03/2000	Angestellter bei der Berufsgenossenschaft der keramischen und Glas- Industrie in Jena
04/2000-07/2003	Wissenschaftlicher Mitarbeiter am Otto-Schott-Institut für Glaschemie an der FSU-Jena

Jena, den 07.07.03

Selbstständigkeitserklärung

Ich erkläre, daß ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Hilfsmittel und Literatur angefertigt habe.

Jena, 07. Juli 2003