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Abstract - English
Two light-triggered molecular motors based on chiral overcrowded alkenes have been stud-
ied in the electronic ground state: a second-generation motor (2) and a redesigned motor
(3). A semiempirical Monte-Carlo-type of conformational search has been implemented to
find local minima in the ground state PESs of 2 and 3, which then have been reoptimized
by ab-initio calculations. While in 3 only the four isomers of the rotary cycle are found,
new isomers have been found in the case of 2, leading to different reaction pathways for
the thermal helix-inversion. TSs for all the possible thermal conversions have been also
computed. The obtained Ea values are in excellent agreement with those reported in the
literature.

The simple model BCH (core unit of many motors) has been studied from a quantum
chemical and quantum dynamical point of view. The controversial nature of BCH’s elec-
tronic transitions has been investigated using high-level ab-initio multiconfigurational and
perturbational methods, including the development of a basis set specific to the problem
at hand. The first two excited states of Bu-symmetry ((π, 3s)-Rydberg and (π, π∗), re-
spectively) are resolved at the MS-CASPT2-level of theory, providing vertical transition
energies and oscillator strengths matching the experimental values. In addition, the origin
of the (π, π∗)-band is computed, yielding an energy value well below the FC-value of the
(π, 3sR)-maximum, explaining this band’s unexpected intensity.

Finally, a one-dimensional PES along BCH’s torsional coordinate has been computed at
the MS-CASPT2-level of theory, and quantum dynamical simulations have been carried
out. These have focused on the obtainment of control laser fields that are able to trigger
unidirectionality even in the symmetric PES (as opposed to 2 and 3 system). Optimal
control strategies as well as the intuitive IR+UV-scheme both succeeded in achieving sus-
tained, unidirectional torsional motion of BCH in the excited state.
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Abstract - Deutsch
Zwei lichtinduzierte, auf chiralen überladenen Alkenen basierende molekulare Motoren

wurden im Grundzustand betrachtet: Motor 2 (der sog. zweiten Generation solcher Mo-
toren angehörend) und ein weiterentwickelter Motor 3. Eine semiempirsche Monte-Carlo-
Konformer-Suche wurde programmiert, um alle möglichen Konformere der Potentialener-
giefläche des Grundzustandes zu finden, und um sie abschließend mit ab-initio-Methoden
weiter zu optimieren. Desweiteren wurden Übergangszustände berechnet. Im Fall des Mo-
tors 2 wurden drei neue Isomere gefunden. Ein neuer Zwischenschritt in der thermischen
Helizitätsinversion wurde postuliert. Alle erhaltenen Aktivierungsbarrieren entsprechen in
sehr guter Übereinstimmung den experimentellen Werten.

Das einfache Alken BCH wurde als Modellsystem für quantenchemische und quanten-
dynamische Berechnungen gewählt. Die kontrovers diskutierten elektronischen Übergänge
wurden gründlich anhand quantenchemischen ab-initio-Methoden untersucht. Teil der Un-
tersuchung war die Optimierung eines spezifischen Basissatzes. Die ersten zwei angeregten
Zustände wurden als (π, 3sR)-Rydberg und (π, π∗) von der MS-CASPT2-Methode be-
stimmt. Die erhaltenen vertikalen Anregungsenergien und Oszillatorstärken stimmen sehr
gut mit experimentellen Werten überein. Progressionen entlang der Scheren- und Streck-
Schwingungen des anti -(π, π∗)-Übergangs tragen zum Profil der (π, π∗)-Bande bei, und
erklären somit die scheinbar hohe Intensität der Rydberg-Bande.

Dieselbe MS-CASPT2-Methode wurde eingesetzt, um eindimensionale Potentialener-
giekurven entlang BCH’s Torsionskoordinate zu berechnen. Diese Kurven wurden für die
Simulation lichtinduzierte Rotation verwendet. Sowohl Optimal Control-Theory als die in-
tuitive IR+UV-Strategie erwiesen sich als erfolgreich in der Auslösung unidirektioneller
Torsion.
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Preface

The present dissertation comprises the work performed under the DFG-project Coherent
control and coherent spectroscopies in complex systems1. The project has focused on
the theoretical characterization and manipulation of light-triggered, biologically inspired
molecular motors. The results obtained during the course of this project are presented fully
in the corresponding articles, which have been published in international scientific journals.
A fourth publication is currently in preparation. A summary of the published results can
be found in Sections 3.1 to 3.3, which can be read independently from the original articles,
provided in Section 3.5 as facsimiles. Two additional articles2, closely related to the
presented work, have been published as a result of the supervision of the diploma-thesis
from Dipl. Chem. M. Aßmann. Additionally, several programs have been developed from
scratch, either to implement existing methodologies or for other purposes concerning this
work. These programs are included in the appendix with a brief description.

1The Deutsche Forschungsgemeinschaft is gratefully acknowledged for financial support.
2See items 8 and 5 in the publication list.
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In order to keep the abbreviations and the symbols consistent in the whole Thesis, the
used nomenclature differs in some items from that used in Articles 3.5.1 to 3.5.3.

Ψ(~r, t) Total molecular wavefunction

ψn(~r) n-th eigenfunction solution to the molecular TISE (stationary state)

En n-th energy eigenvalue solution to the molecular TISE

Ψn(~r, t) n-th time-dependent eigenfunction solution to the molecular TDSE

Ψ(~r, t) Time-dependent wavepacket solution to the molecular TDSE

Cn Time-dependent expasion coefficient of Ψn(~r, t) in the wavepacket Ψ(~r, t)

ϕe(~re; {~RN}) Time-independent electronic wavefunction

ψN (~RN ) Time-independent nuclear wavefunction
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ρ Electron density
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ρTR Trial ρ

εDFT [ρ] Energy functional
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1HNMR Proton nuclear magnetic resonance
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cw continuous wave

DMS Dipole moment surface

DOF Degree of freedom

F0, F1 Rotary sub-units of the ATP-Synthase complex

FFT Fast FT
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FT Fourier transform

FWHM Full width at half maximum

IR Infrared
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IRC Intrinsic reaction coordinate

IVR Internal vibrational redistribution

OCT Optimal Control Theory

PES Potential energy surface

PSB11 Protonated Schiff-base of 11-cis-retinal

PSS Photostationary state

SE Schrödinger Equation

SO Split-Operator

TDSE Time-dependent SE

TISE Time-independent SE

TRK Tannor-Rice-Kosloff

TS Transition state
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AS Active space

B3LYP Becke’s three-parameter hybrid εxc[ρ] using the Lee-Yang-Parr (LYP) cor-
relation part

CAS Complete active space

CASPT2 CAS Perturbation Theory to second order
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CSF Configuration state function
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RI Resolution of the identity
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1. Introduction

The motivation of the present Thesis centers on four main ideas:

• Many fundamental aspects of biological processes rely on a machine-like function of
large biomolecules.

• Inspired by biological machines as well as by regular, man-made machines, nanotech-
nology has produced a considerable amount of microscopic devices, among which
rotatory motors represent an attractive candidate for study.

• Purely quantum phenomena play a decisive role both in biological and nano-sized
machines.

• Quantum phenomena can be steered with external laser fields.

These concepts are nowadays accepted paradigms in life-sciences and chemical physics.
The following introduction is articulated around them, because it is at the intersection of
these four fields where the dream of every chemist becomes more accessible: the under-
standing and the control of matter and its transformations. The work presented here aims
at providing some theoretical insight into how the combination of clever (nano)-synthesis
and sophisticated laser control strategies can shape the chemistry of the future.

1.1. Biological Molecular Machines

Machine. At first glance, nothing seems less related to life than the word machine. Many
instances of popular culture account for this antagonic concepts: from science-fiction nov-
els, to films, to videogames. Even in music one often finds that there is an opposition
between that which is live and that which comes out of machines. Indeed, the Oxford’s
Advanced Dictionary accounts for this man vs machine antagonism by using the following
example in the corresponding entry for machine:

(often disapproving) a person who acts automatically, without allowing their
feelings to show or to affect their work.

Thus, the word machine can be even used in a negative context, where the presence of
feelings is underlined as an attribute of being a living organism and not a machine. But, is

1
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this interpretation entirely true? If one had consulted, for instance, the Merriam-Webster
Dictionary , the situation would be somewhat different, since there, the second entry for
machine (2a) reads:

a living organism or one of its functional systems.

There is little room left for doubt in this definition. According to it, any living organism (or
any of its functioning sub-systems) can be described as a machine. The first dictionary
definition is, of course, correct, but the latter comprises better the framework of life-
sciences nowadays: living organisms, humans included, are machines, and consist of even
smaller machines. As a matter of fact, in the history of life-sciences, when discoveries have
lead to a change of paradigm, they have also been illustrated, directly or indirectly, through
comparison of the living object of study with a machine: a machines with mechanisms
that help understand how life works.

Prominent examples of key biomolecules that base their functionality in machine-like
properties are Adenosin Triphosphate ATP-Synthase and the retinal chromophore. The
ATP-Synthase biomolecular system regulates the energy storage and flow in the cell. Its
catalytic activity is based on a motor-like behavior, and it relies upon the rotary motion,
a central aspect in the present Thesis. The retinal chromophore is responsible for the
primary event in the vision process. The cascade of reactions that leads to the stimulation
of the optic nerve is initiated with an ultrafast conformational change triggered by light.
The example of retinal is chosen not because of a rotatory behavior, but rather because it
is based upon a concept central to the present Thesis: the light-triggered isomerization
of a double bond.

1.1.1. The ATP-Synthase enzyme

The most ubiquitous example of a rotatory molecular system in biology is ATP-Synthase,
an enzyme present in all living systems. [1] It is responsible for manufacturing ATP, the
cell’s preferred form for energy storage. ATP-Synthase exploits a flux of protons through
a membrane (following a chemical gradient) to fuel a mechanical rotatory motion. This
rotation lastly catalyzes the ATP synthesis. The chemical gradient itself can be generated
by respiration or photoreaction. In Fig. 1.1 the ATP-Synthase protein is shown coupled
to photosynthesis. These two reactions define the way in which living organisms exchange
energy and matter with their environments.

At a cellular level, ATP-Synthase can be located in thylakoid membranes of chloroplasts
(plant cells), the inner membranes of mitochondria (animal cells), and plasma membranes
(bacteria). At a molecular level, ATP-Synthase consists of many sub-units, the most
important of which are the rotatory motors F0 and F1. Indeed, very often ATP-Synthase
is designated F1-F0-ATP-Synthase. A simplified scheme of the enzyme with F0, F1, and
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Figure 1.1.: Schematic representation of the ATP-Synthase enzyme coupled to photosynthesis in
the thylakoid membrane. PSI and PSII are photosystems one and two, respectively. Cyt b6f is
the cytochrome b6f complex. PC is plastocyanine and Fd and Fp are the enzymes ferrodoxin and
ferrodoxin-NADP reductase, respectively.

their common axle γ is presented in Fig. 1.2. F0 is inserted in the membrane spanning from
one side to the other, whereas the F1 motor protrudes to the outer side of the membrane.
The two motors operate with different energy sources and in opposite directions: F0 uses
the transmembrane chemical gradient to rotate in one direction, and F1 fuels its motion by
hydrolyzing ATP molecules. Because the rotations are performed in opposite directions
and the two motors share a common shaft (the γ-sub-unit), the rotation of one motor
hinders the other. Under normal cellular conditions (physiological conditions), F0 is the
motor with larger torque. The transmembrane proton gradient (∆µH+) fuels the rotation
in F0 so that it reverses the rotation of F1, thereby driving it to synthesize ATP from
ADP and inorganic phosphate (Pi). When the conditions are those of ATP abundance,
F1 starts hydrolyzing ATP and its torque can drive F0 backwards, turning it into an ion
pump that moves protons across the membrane against the chemical gradient. [2–5]

Thus, the rotational catalysis accomplished by what was the world’s smallest rotary
motor in 1997 [6] relies to a significant extent upon a mechanical property: the rigidity of
the γ shaft connecting the two F1 and F0 rotors. The fact that chemical functionality at
the molecular level (in this case, catalysis) can be achieved through somewhat mechanical
properties has been summarized already by Francis Crick in the context of the DNA
structure: If you want to understand function, study structure. [7] However, the fact that
this principle is exploited by life itself to the point of creating machine-like devices has
further inspired nanotechnology to an extent that will be reviewed in the next sections.
Now, the retinal chromophore in the context of the vision process is presented as another
example that provides valuable insight for the present work.
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ADP+Pi ATP
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Figure 1.2.: Schematic representation of the ATP-Synthase enzyme, highlighting the two rotatory
motors F0 and F1 and the shaft γ by which they are joined. The two opposed rotatory motions
are represented with the circular arrows centered along the γ axle.

1.1.2. The retinal chromophore in rhodopsin

The visual phototransduction process is the process by which light stimuli are converted
by photoreceptor cells of the retina (cones and rods) into electrical signals that finally
stimulate the optic nerve.

The process starts with the absorption of a photon by a light-absorbing molecule (chro-
mophore) bound to a G-protein coupled receptor, called the opsin protein. The chro-
mophore (in its photoactive state) is 11-cis-retinal (an aldehyde of vitamin A), and when
coupled to the opsin, the whole system is called rhodopsin. A schematic view of rhodopsin,
which spans across the cellular membrane is shown in Fig. 1.3. In the opsin environment,
the chromophore is actually the protonated Schiff-base of 11-cis-retinal (PSB11), cova-
lently bound to the protein through the Lys296 residue.

PSB11 in the opsin environment (or models thereof) has been subject of numerous
studies (over 10 000 according to Ref. 9), and is somewhat of a textbook example for
a case in which a cascade of chemical reactions involving different timescales and size
domains are highly correlated.

Of particular relevance for the present Thesis is the primary step of that cascade: the
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Figure 1.3.: Rhodpsin in the cellular membrane, containing the photoactive 11-cis-retinal (PSB11)
as a chromophore in the binding site (dark red). Adapted from Ref. 8.

photoinduced isomerization of 11-cis-retinal inside of the protein binding pocket, as shown
in Fig. 1.4. This rearrangement initiates the overall vision process because the isomerized

NH

hν

Lys296

NH Lys296

Figure 1.4.: Light-triggered cis-trans-isomerization at the 11-cis-bond in the protontated Schiff
base of retinal (PSB11) to an all-trans configuration. The 11-12 double bond is marked in red.

chromophore no longer fits inside the binding site in the rhodopsin environment. The
opsin structure is then forced to undergo a structural transformation to metarhodopsin II,
which in turn is no longer stable and splits into the opsin and the all-trans-retinal. Then,
a cascade of enzyme-catalyzed reactions follows, leading to the closure of cellular ion-
channels in the membrane and finally to hyperpolarization, which ultimately propagates
and stimulates the optic nerve.

Whereas the total duration of the vision process extends to the milisecond regime, the
cis-trans-isomerization takes place at an ultrafast timescale of ∼200 fs (1 fs = 1·10−15 s)
after the absorption of a photon, [10] making it one of the fastest chemical reaction known
that involves nuclear motion, according to Ref. 11. Various aspects of this fact are note-
worthy for the present introduction. First of all, the reaction is triggered through light-
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matter interaction (i.e., light is used as energy source for a structural change). Secondly,
the involved time- and size-domains (∼200 fs and one double bond, respectively) situ-
ate the event in the realm of quantum phenomena. Indeed, the photochemically excited
chromophore deactivates radiationlessly via a nonadiabatic transition to the ground state,
i.e., through a conical intersection, [12,13] which is a pure quantum phenomenon. Finally,
the cis-trans isomerization of the retinal chromophore (also in the bacteriorhodopsin pro-
tein) has also been the subject of laser control studies, experimentally [14–16] and theoreti-
cally, [17–20] thus bringing forward the third idea discussed in the introduction (developed
fully in Section 1.3.6). A schematic view of the first hundreds of femtoseconds of the events
in the vision process is given in Fig. 1.5
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11-cis-retinal

all-trans-retinal

Figure 1.5.: Schematic energy diagram of the light-triggered cis-trans-isomerization of 11-cis-
retinal along the reaction coordinate. S0 and S1 are the adiabatic electronic potential energy
curves for the ground and first excited electronic state, respectively. The region with dashed
curves represents the crossing of the diabatic curves, i.e., the conical intersection (CI) between
the two potentials. Ultrafast, radiationless decay to the all-trans-retinal in the ground state is
complete already after 200 fs. Adapted from Ref. 21.

The discovery of an ultrafast, nonadiabatic process in vision’s primary event repre-
sented a paradigm-shift for visual photochemistry, [10] because it ruled out vibrational
relaxation in the excited state, proposing an unprecedented speed of the isomerization. [22]

Furthermore, it was shown [22] that the relaxation occurs in a coherent way, meaning that
a vibrational wavepacket is created with specific phase and amplitude relations, another
pure quantum phenomenon.

1.2. Nanoscale Molecular Motors

Apart from the previously discussed biological inspiration for molecular machines, every-
day life also provides scientists with inspiration on how molecular devices may be envi-
sioned. In the last two decades, scientists have produced molecular devices that mimic
the macroscopic behavior of motors, shuttles, elevators, switches, muscles, linear motors
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and many other devices. Among these devices, a variety of possibilities exists on how they
can be constructed, operated, and monitored. Several comprehensive monographs exist,
edited to a great extent by the leading authors of the field, see Refs. 23–27. A more recent
(2007) comprehensive review by Kay, Leigh, and Zerbetto [28] provides further detailed in-
sight into many examples of the aforementioned devices. Because, among these molecular
devices, this Thesis focuses on rotary molecular motors (and a very particular sub-class
within them), the following paragraphs are devoted to providing some background and to
outlining the features of these particular devices: light-triggered molecular rotary motors.

1.2.1. Why rotary motors? Why light-triggered?

Venturi and coworkers [26] summarize five points when characterizing (and thus, designing)
molecular machines, also applicable to normal-scale machines:

i) the kind of energy input,

ii) the manner in which their operation can be monitored,

iii) the possibility to repeat the operation at will, i.e., the feasibility of a cyclic process,

iv) the timescale needed to complete one cycle, and

v) the performed function.

Points i)-v) contain the main reasons why light-driven artificial rotary motors might be
considered advantageous, specially those driven by a cis-trans-isomerization. Starting with
item i), light represents one of the most convenient possible sources of energy. Contrary to
other possible sources (such as the proton gradient difference addressed before), light can
be generated far away from the sample and transported safely without much energy-loss
from the source to the sample. Also, light can be switched on and off easily and rapidly,
even with non-laser sources. In addition, for the case of cis-trans-isomerizations, using
light as a source of energy does not produce unwanted byproducts (the equivalent to the
CO2+H2O in combustion engines), thus operating on the sample in a less invasive manner.
Moving on to item ii) (monitoring), light can be used both as energy source and as readout
tool through spectroscopy. That is, not only does one initiate the reaction with light, but
light can also monitor its own effects. To a great extent, that is how the particular class of
rotors that will be treated afterwards are monitored. There is little to be said about item
iii), since clearly rotary motors are the best candidates for cyclic processes. Item iv) is also
adressed by cis-trans-isomerizations, since, as has been pointed out before, this process
occurs in the ultrafast regime. In the particular cases that will follow, efforts to accelerate
rotation rates are focused on other parts of the rotation. Lastly, one arrives at item
v), function. Useful devices need to perform some kind of function of practical interest,
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specially those intended to have some application in nanotechnology (the importance of
light-driven, cis-trans-reactions in nature has already been addressed, vide supra). It has
been shown experimentally that, when anchored to a surface, the class of light-driven
cis-trans-rotors studied in this work can rotate nanoscopic objects. This capability fulfills
two almost mandatory requirements for nanotechnology applications: the performance of
physical work and the anchorage of the device to solid surfaces.

The use of photons as a source of energy becomes even more advantageous if laser
technology enters the discussion (as it will, later on). Nowadays, laser sources are capa-
ble of tuning laser beams in many different ways, providing a variety of pulse lengths,
frequencies, intensities, phase relationships, and sequences, which result ideal in dealing
with different samples. In addition, when coupled to control setups (both experimentally
and theoretically), lasers become a very powerful tool, since they can successfully activate
non-trivial and non-intuitive pathways for achieving the rotation (see Section 1.3.)

1.2.2. Nomenclature

So far, the terms motor, rotor, and rotary motor have been used indistinctly, and indeed
many authors do not make a distinction between them. However, a rotor is merely capable
of performing rotary motion, whereas a motor has to be able to perform useful work. Thus,
the term rotary motor, underlines a) the rotary nature of the performed motion and b) the
ability to extract some work from that motion. Following that convention, the F1 and F0
systems in ATP-synthase are rotary motors, since the work performed by one of them is
used to block the other. An even more pictorial example exists: hybrid F1-ATP-synthase-
based motors can rotate nickel nano-rods attached to the rotator if fueled by increasing
the ATP concentration. [29,30]

The class of light-triggered molecular machines studied in this work are capable of
similar perfomances, such as rotating bulky substituents attached to their rotator1 or even
larger nanoscale objects, [31] thus earning the title of rotary motors. However, in most of
the experimental instances they act strictly as rotors, because usually the focus of the
experiments is a characterization of the stages of the rotation cycle and an optimization of
its speed, rather than the use of the produced work. Nevertheless, even in those instances
they are still addressed by the authors as rotary motors or, simply, motors. Thus, the
same term motors shall be adopted from now on in the present Thesis, implying the
rotary nature of the motion.

1.2.3. Molecular motors based on overcrowded alkenes

Functionalized overcrowded alkenes are a class of molecular motors successfully exploited
by Feringa and coworkers since the early 1990s. The motors have evolved parallel to

1The more common word rotor is avoided because it can also refer to the whole molecule.
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another class of closely related, also overcrowded alkene-based, class of light-triggered
molecular devices: the chiroptical molecular switches. [25,32,33]

The word overcrowded addresses the fact that in these molecules some intramolecular
distances between nonbonded atoms are smaller than the sum of the corresponding van der
Waals radii, giving rise to significant steric hindrances. In the case of polycyclic aromatic
enes, these overcrowdings distort the aromatic plane, so that the adopted conformation
results in helicity (axial chirality), in the whole molecule as well as in some parts of it.
The specific interplay between these steric factors results in an asymmetric potential that
allows for the unidirectionality and irreversibility of some steps in the overall rotation
of the motor. In addition to the steric hindrances, the motors base their functionality
upon the cis-trans-bistability provided by a central olefinic bond, the only bond in the
whole structure able to undergo such an isomerization, which is key when considering
this class of molecules as molecular switches. A further key feature of the motors is the
existence of at least one chiral center, where a methyl group is covalently bonded. Further
functionalizations of the overcrowded alkenes will be addressed later.

How the unidirectional rotation arises and how asymmetries play a role in it is illustrated
with the example of the unidirectional motor that was first published in 1999 [34] by Feringa
and coworkers. The motor 1 is presented in Fig. 1.6 and now it is referred to as a first-
generation motor.

fjord region

fjord region

1

*

*

Figure 1.6.: (3R,3’R)-trans-1,1’,2,2’,3,3’,4,4’-octahydro-3 ,3’-dimethyl-4,4’-biphenanthrylidene,
the first reported light-driven unidirectional motor based on overcrowded alkenes. [34] The regions
where distances between nonbonded atoms are small are referred to as fjord regions. The asterisks
mark the chiral carbon atoms.

In 1, both halves of the molecule are identical, thus no actual difference between stator
and rotator exists. However, the lower half will be addressed as stator, and the upper
as rotator, a convention that will be used throughout the complete text. Furthermore,
and as mentioned above, not only does the central double bond possess helicity due to
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its distortion, but also each separate half can adopt axial chirality P (plus, right handed)
or M (minus, left-handed). Indeed, because M↔P inversions occur as the motor rotates,
the rotation can be monitored through the change in the optical activity of the sample
using circular dichroism (CD) techniques.

A schematic representation of the cycle is presented in Fig. 1.7a, whereas the correspond-
ing chemical structures at each stage are presented in Fig. 1.7b. The upper left corner will

(P,P)-trans-1 (M,M)-cis-1

(M,M)-trans-1 (P,P)-cis-1

a) b)
eq

eq
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Figure 1.7.: a) Schematic representation of the four stages of the rotary cycle of the first unidi-
rectional motor based on overcrowded alkenes. The bent arrows refer to the motion of the rotator
(blue, in the background) with respect to the stator (also blue, in the foreground). The red bar is
the axle of rotation. b) Equivalent structures for the four stages (adapted from Ref. 34).

be considered the starting point of the cycle in the following paragraphs: (P,P)-trans-1.
From there, the rotation is initiated photochemically in step ¬. Irradiation with a wave-
length of λirr≥280 nm triggers the isomerization of the central double bond, resulting in
(M,M )-cis-1. Apart from the trans→cis reaction, the helicity also switches from (P,P)
to (M,M ). Furthermore, the methyl groups change their orientation from axial to equato-
rial. Step ¬ is performed at low temperatures, because at room temperature, the thermal
energy kT would be enough to further induce the next step.

In order to monitor the reaction, step ¬ is followed via 1HNMR and CD spectrospy. Due
to the equatorial→axial change of the methyl group, the protons in β of the stereogenic
carbons (cf. Fig. 1.6) shift upfield, while the helicity change is monitored through the
inversion of the CD spectrum around 217 nm.

Step ¬ is a reversible photoreaction, where irradiation at a different wavelength (λirr≥
380 nm) reverts the photoproduct to the reactant. Hence, one can speak of a photoequi-



1.2. Nanoscale Molecular Motors 11

librium in step ¬, with different degrees of displacements to the photoproduct depending
on each motor. [35–37] The product obtained once that the equilibrium is reached is the
photostationary state (PSS ). For the case of 1, the PSS after step ¬ consists of 95%
photoproduct.

On the contrary, step ­ is irreversible at room temperature. A quantitative axial→
equatorial and (M,M )→(P,P) conversion (monitored through 1HNMR and CD) leads to
(P,P)-trans-1. This pair of cis-isomers connected by step ­ (or generally connected by
thermal steps) are usually referred to as unstable and stable, given the facility and the
irreversibility with which the former fully converts into the latter. After this thermal step
has taken place, one can consider the overall rotation to be complete up to 50%. Step
® is equivalent to step ¬ and is thus carried out at low temperatures, to allow for the
experimental detection of the resulting PSS before it further evolves. In the case of step
®, the PSS consists of, to a high degree (90%), the unstable trans-isomer, as was the case
of step ¬.

Lastly, in step ¯, conversion of unstable-trans to stable-trans is achieved by warming
the sample, this time to a temperature of 60◦C. Only the stable (P,P)-trans-1 is observed
in the CD and 1HNMR spectra, accounting for the complete conversion. Thus, by irre-
versibly (at 60◦C) reverting to the initial isomer, rotation of the motor can be considered
complete.

Figure 1.8 depicts the various effects contributing to the unidirectionality at each stage
of the rotary cycle. As previously mentioned, the potentials need to be asymmetric. In the
overcrowded alkenes, that asymmetry is built-in through the appropiate steric interplay
in the fjord -region between the naphtalene moieties and the methyl group.

In contrast, in a non-distorted, non-hindered olefinic bond, cis-trans-photoisomerization
occurs symmetrically via the negative and the positive torsion coordinate pathway, with
equal results for both pathways, given the periodicity of the potential (see Fig. 1.9).

Two factors differentiate 1 from the ideal ethylene shown in Fig. 1.9. First of all, the
cis-1 and trans-1 isomers absorb at different wavelengths, assuring that a continuous irra-
diation at λirr≥280 nm interacts with the reactant only, and not with the photoproduct.
That is to say, irrespective of the branching ratio, once the motor relaxes back to the
ground state (circled regions in Fig. 1.9), the fraction of population that reverts to the
reactant will be continously pumped out of the reactant side of the potential, so that yields
higher that 50% can be achieved in the photoequilibrium. Second, the maximum in the
excited state potential at the Franck-Condon region is displaced with respect to the mini-
mum of the ground state potential, so that, upon vertical excitation, the positive direction
of torsion (that of the overall rotation) is favoured over the other, negative direction.
The fact that the photoreaction is reversible by no means hinders the motor’s rotation,
because irradiation is performed controlling the λirr. All these asymmetric features are
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Figure 1.8.: Cyclic energy profile along the rotational coordinate of the motor 1. The red and
green curves represent the ground and excited state potential energy surfaces, respectively. The
vertical dashed lines divide the torsion into the steps ¬, ­, ®, and ¯ (cf. Fig. 1.7a). The bars
at the top indicate if the motor is on the cis- or the trans-isomer. The half-times of each step
are written at the bottom. Arrows marked with hν are photoinduced transitions, whereas arrows
marked with ∆ are the thermally induced helicity inversions, with the corresponding activation
energies Ea in dotted arrows.

implemented in the form of the potentials in Fig. 1.8 for the steps ¬ and ®.

Considering the thermal steps ­ and ¯, the unidirectionality is assured through other
means. In these cases, the large difference in stability (ca. 10 kcal/mol [34]) between the
stable and unstable isomers alone suffices for the practical irreversibility of the reaction
under thermodynamic conditions,

Even if the back reaction is made possible through heat, most of the population will
find itself in the most stable isomer. That is, the directionality of the thermal step does
not depend on the shape of the potential, but rather on a large enough energy-difference
between product and reactant.

Indeed, given the fact that the motors are exploiting thermal fluctuations for their
unidirectional rotation, they can be considered hybrid molecular Brownian ratchets, where
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Figure 1.9.: Ideal photoisomerization of a double bond. The positions at which branching occurs
are circled. When exciting to the Sn, both directions are equally probable. When relaxing to the
S0, the situation is analogous.

the intrinsic randomness of the thermal energy input is used to move the system in a
particular direction (see Ref. 38 and references therein for a characterization of Brownian
dynamics in the context of molecular motors).

The rotary cycle’s efficiency can be addressed in terms different from its unidirectional-
ity: speed is another crucial element when characterizing these molecular devices. Whereas
the cis-trans-isomerization of overcrowded alkenes occurs in less than 300 ps, [39] the ther-
mal steps take much longer times, so that ­ and ¯ are the rate-limiting steps for the
whole rotation process. While ­ has a half-time t1/2 of about 30 min, t1/2 equals 440
hours2 for ¯. Thus, in the cycle ¬→­→®→¯→¬, the helicity inversion of unstable-
trans-1 (step ¯) determines the overall speed. Because these helicity-inversion reactions
are unimolecular, half-times are determined only by the reaction rate k,

t1/2 =
ln2
k
. (1.1)

This rate can be expressed, in the simplest approach, by the Arrhenius equation [40] as:

k = Ae−
Ea
RT , (1.2)

where A is the pre-exponential factor and R the ideal gas constant. Thus, for a given
temperature T , the activation energies Ea of the involved transition states will define the
speed of the motor.

Since the rate of rotation is thus ultimately determined by the magnitude Ea (∆G‡ with
the enthalpic and entropic corrections), the subsequent efforts towards acceleration have

2at 20◦C, see Ref. 37.
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focused on decreasing the value of Ea for the thermal steps (cf. Fig. 1.8), and various
approaches with different degrees of success have been attempted. In some cases, the
unstable isomer was destabilized even more by attaching bulkier substituents. [41] Other
strategies have aimed at reducing Ea via stabilization of the transition state, by reducing
the rings fused to the axle from six-membered to five-membered rings. These approaches
could indeed accelerate one of the helix inversions, but slowed the other one. Larger
synthetic changes were carried out upon the overcrowded alkenes, giving rise to the second-
generation molecular motors. [35] A representative member of this new class of motors is
shown in Fig. 1.10

X

Y

R fjord region

*

Figure 1.10.: Second-generation molecular motor. [35] The stator has been exchanged for a sym-
metric tricyclic moiety (cf. Fig. 1.6) that can be further functionalized, and there is only one chiral
atom, marked with an asterisk.

The most distinctive feature of these motors is the symmetric lower half, making stator
and rotator no longer equivalent. Also, substitutions at the positions X and Y (called
bridging atoms) allow for different ring sizes while keeping the number of atoms constant.
If the substituent R is a Hydrogen atom, the stator is totally symmetric, eliminating
the chemical difference between the cis and the trans species. Even if R6=H, the two
thermal helicity inversions (equivalent to steps ­ and ¯) are very similar in their activation
barriers, reducing the complexity of accelerating the overall rotation. In addition, from a
synthetic point of view, different rotator and stator allows for an easier functionalization.
This functionalization has been successfully exploited in the cases where second-generation
motors have been anchored to solid surfaces. Second-generation motors have been fixed,
and operated on gold nanoparticles, [42] gold surfaces, [43] and quartz surfaces. [44] Not all of
the newly envisioned motors achieved an acceleration of the rotation, for instance, when
X = Y = S and R = H; t1/2 ∼ 200 h. Nevertheless, the fastest second-generation motor
(X=C, Y =CH2, and R=H) reduced the half-time of the first motor by three orders of
magnitude (a factor of ∼ 660) to t1/2 ∼ 40 min.

A further remarkable acceleration of second-generation motors was accomplished by
further reducing both rings bonded with the axle to five-membered rings, [45] giving rise to
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the fluorenyl based motors. Although further exploration of the substituents was needed to
optimize the rotation speed, half-times finally could be reduced to the millisecond regime
when a bulky tert-butyl substituent was used in R. The subsequent destabilization of the
unstable isomers was such that Ea dropped down to ∼16 kcal/mol (from values typically
between 25-35 kcal/mol [37]), resulting in t1/2 ∼ 6 · 10−3 seconds, a half-time suggesting
that the motor could perform 44 rotations per second. [37] Finally, with t1/2 having been
reduced to the microsecond domain, the benchmark for rotation speeds now lies in the
MHz regime. [46,47]

1.3. Laser Control of Chemical Reactions

The drive behind a chemist’s activity is not only the will to understand matter and its
transformations, but also to control, to the highest degree of specificity, their outcome.
Over centuries, tools at hand to do so have increasingly gained in complexity, from simple
variation of macroscopic variables such as concentration, pressure or temperature, to the
addition of sophisticated (and expensive) catalysts or cleverly conceived synthetic routes.

As was pointed out in Section 1.2.1, light is a particularly handy reactant, and as such it
is also a useful tool when trying to steer a chemical process. [48] The extent to which control
can be achieved is proportional to the extent to which the light acting upon the system
can be manipulated. The development of laser technologies has provided experimentalists
and theoreticians with a chemical reactant that can be tailored in almost every aspect.
For molecular processes, the femtosecond regime results particularly attractive (see for
instance Refs. 49 and 50), and thus a variety of approaches on how to use it to control
chemical processes exist.

A brief overview of some laser control strategies follows. Only the approaches most
relevant to this work have been selected, either because of the important concepts they
introduce or because they have been directly used in this Thesis. Reference monographs
for these and other laser control strategies are Refs. 51 and 52. The recent review (2010)
in Ref. 53 provides a wider, more comprehensive perspective on the current state of the
field.

1.3.1. The chemical intuition: mode-selective chemistry

The most intuitive approach on how to use laser light to manipulate chemical reactions is
usually called the mode-selective approach. The goal is to selectively break a specific bond
in a polyatomic molecule. The idea is that one identifies the frequency of that particular
bond stretching, tunes the laser to that frequency and irradiates until the bond breaks. Al-
though this intuitive approach can work under favorable circumstances, [54] mode-selective
chemistry is not a broadly applicable approach. [55] The energy stored locally in a particular
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bond can quickly redistribute among the other available modes of the molecule in a process
called internal vibrational relaxation (IVR), what can be considered as the molecule just
increasing its internal temperature. This approach is considered only effective in the cases
were the control target can be achieved before IVR takes place, usually in the range of a
few picoseconds (1 ps ∼1 · 10−12 s). A graphic representation of this phenomenon is given
in Fig. 1.11.

hν (IR)

NO IVR

IVR

Figure 1.11.: Schematic representation of the mode-selective chemistry on the example of ortho-
nitrobenzahldehyde molecule. In most cases, IVR is unavoidable and the energy pumped into a
particular bond (the C−NO2-bond) redistributes among other available modes.

1.3.2. The wave nature of matter: The Brumer-Shapiro approach

In contrast to the previous approach, Brumer and Shapiro [51] proposed and coined the
term coherent control of reactions, which bases upon the quantum nature of molecules, in
particular on the wave-matter duality. The essence of this approach is the manipulation of
constructive and destructive quantum interferences that arise when the desired final state
can be reached through degenerate pathways. This type of control is often viewed as an
extension of the traditional double-slit experiment to show wave interferences. As will be
shown in short, one of the key parameters in the control scheme is the phase information.

The context of photoinduced dissociation is used to briefly illustrate this principle, where
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the control is aimed at manipulating the branching ratio of a given photoreaction, say

AB + C hν←− ABC hν−→ A + BC. (1.3)

In the bichromatic control [51] approach, two continuous wave (cw) lasers of frequencies
ω1 and ω2, with parallel polarization vectors, act upon a starting state |Ψ(t = 0)〉:

|Ψ(t = 0)〉 = a1 |E1〉+ a2 |E2〉 (1.4)

which is a superposition of two eigenstates |E1〉 and |E2〉, with the complex coefficients
a1 and a2. How the superposition of states is prepared is of less importance at this point,
as long as the phase relation between a1 and a2 is conserved, i.e., phase coherence exists.
The frequencies ω1 and ω2 are tuned to match the difference between eigenenergies E1

and E2. These energy relationships are summarized in Fig. 1.12.

|E1>
|E2>

|E>

ω
1

ω
2

Figure 1.12.: Photodissociation of a superposition of two eigenstates via cw laser excitation with
frequencies ω1 and ω2. |E〉 are the degenerated states of the continuum from which photodissoci-
ation can occur towards one or the other photoproducts.

Brumer and Shapiro arrive at an expression (Ref. 51 and references therein) for the
branching ratio of the photoproducts (cf. Eq. (1.3)) in which the interacting laser-fields
act via the interference terms between the two degenerated, indistinguishable photodisso-
ciation routes. These interference terms are governed by the relative phase relationship
between the two lasers and the two initial coefficients a1 and a2, as well as by the in-
tensities of the incident lasers. In order to map their influence, they collect these factors
into two control variables, ∆θ and s, for the phase difference and the relative intensities
of the lasers, respectively, and then plot them vs. the yield of CH3 + I in the following
example: [56]

CH3 + I∗ hν←− CH3I
hν−→ CH3 + I (1.5)
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The yield of CH3 + I vs. ∆θ and s is shown in Fig. 1.13. As can be seen, yields can

Figure 1.13.: Contour plot of ∆θ (relative phase) and s (relative intensities) for the photodissoci-
ation of CH3I. Adapted from 56.

be steered between 30 and 70% in this example, accounting for a considerable amount of
control.

The bichromatic approach was simplified when the need for a superposition of states
as the initial state was eliminated [57] in the one vs. three photon interference approach.
The indistinguishable, degenerated pathways that are mandatory for the interference to
occur are provided through two photoexcitation pathways: a one-photon pathway, with
an associated frequency ω1 and a three-photon pathway, with a frequency ω3 = 3ω1, as
is shown in Fig. 1.14. This control scheme has been implemented successfully in various

|E1>

|E>

ω
1

ω
3

ω
3

ω
3

Figure 1.14.: One-photon vs. three-photon photodissociation scheme. As opposed to Fig. 1.12,
no initial superposition of states is needed to create the interference.
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experiments, for example by Gordon and coworkers [58–60] in modulating the branching
ratio of the photoreaction:

HI+ + e− ←−− HI −−→ H + I. (1.6)

1.3.3. Pulse-timing: the Tannor-Rice-Kosloff approach

The central idea behind the Tannor-Rice-Kosloff (TRK) [52,61–63] approach is to use a
sequence of laser pulses whose relative delay is controlled to steer the time evolution of a
wavepacket. This approach is also often called the pump-dump approach.

As opposed to the quantum interference approach of Section 1.3.2, the TRK-control is
performed in the time-domain rather than through phase manipulation, although a version
of it can be generated from the multiple path-interference of the quantum-interference
scheme. [52] Basically, the pump-dump approach relies upon the topology of the excited
state potential energy surface and the temporal evolution of a wavepacket on it.

Consider again a photoreaction of the type of Eq. (1.3). In the ground electronic state,
different energy barriers need to be passed to access the exit channels AB+C and A+BC.
In the TRK-scheme, contrary to the previous approach, excitation is not performed with
a cw laser, but rather with a pulsed laser carrying a given bandwidth of frequencies. Upon
excitation with such a pulse (the pump-pulse), a wavepacket is created in the excited state.
Depending on the form of that potential, the wavepacket will evolve on it, ideally finding
itself at times over the exit channel AB+C and at other times over the channel A+BC. An
appropriate radiative de-excitation with the dump-pulse can place the wavepacket back on
each of these channels selectively, thus steering the outcome of the reaction. An schematic
representation of the pump-dump approach is shown in Fig. 1.15.

This scheme of control also has been demonstrated experimentally in several instances,
for example in the photofragmentation of the Na2-dimer by Gerber and coworkers [64–66]

or the reaction Xe + I2 −−→ XeI + I by Zewail [67] and coworkers.

1.3.4. From the Tannor-Rice-Kosloff scheme to the few-cycle IR+UV

approach

The TRK-approach (pump-dump-scheme) is based on the intuitive concept of the pulse
structure being resolved in the time-domain. Such a separation underlies also the In-
frared(IR) + (Ultraviolet)UV-control scheme. The method bears similarities with the
mode-selective approach (see Section 1.3.1), because a given bond of interest is also locally
excited as a first step (IR-pump). However, the excitation is intended as a preparation for
a subsequent electronic excitation (UV-pump). Henriksen and Amstrup introduced this
pump-pump-scheme [68,69] for the photodissociation of HOD and the 16O16O18O molecules.
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S0

S1

AB + C A + BC

t1 t2

t0

t3

Figure 1.15.: Pump-dump Tannor-Rice-Kosloff laser control. The wavepacket in the ground state
(S0) is projected onto the excited state (S1) with a short pump-pulse at t0 (upward pointing arrow).
Subsequently, the wavepacket evolves in time in the S1 (t0 < t1 < t2 < t3). At t1, the wavepacket
is over the AB + C exit channel, whereas at t2, it is over the A + BC channel. By timing the
dump-pulse adequately at t1 or t2 (or their periodic recurrences), one can steer the outcome of the
photoreaction.

In a reaction of the type

H + OD hν←− HOD hν−→ HO + D, (1.7)

control over the exit channel is achieved through the delay between the two pumps. The
UV-excitation of the oscillating wavepacket takes place away from the Franck-Condon
region. Revisiting Fig. 1.15, the IR-pulse is the pump, this time creating the wavepacket
in the ground state. The UV-excitation is not a dump but a second pump, instantly
projecting the wavepacket to either one of the exit channels of the excited state.

Of particular interest for the present Thesis is the approach further developed by Manz
and coworkers for the same HOD reaction, [70] in which selectivity is not achieved in po-
sition space, but rather in momentum space with a few-cycle IR+UV-scheme. The exci-
tation is performed first on the electronic ground state with a few-cycle IR-pulse, tuned
to be resonant with the frequency ωOH . Driven by the pulse, the ground state vibra-
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tional wavepacket starts to oscillate, gaining a momentum along the OH-mode. If mode-
selectivity were intended, the OH-bond would be further excited to higher overtones until
its cleavage. Instead, after the IR-excitation, a short (∼ fs) UV-pulse follows at a certain
delay, leading to a vertical transition to the excited state. Once the wavepacket is on the
excited state potential (whose slope can, in principle, be non-selective), the wavepacket
continues to evolve as dictated by direction and sign of the momentum at the instant of
the transition. Thus, if the short UV-pulse is timed adequately, the momentum will be
driving the wavepacket along the desired exit channel (H + OD in Ref. 70). Figure 1.16
illustrates this principle, where the short UV-pump pulses project wavepackets with op-
posite pointing momenta depending on the delays t1 and t2. A number of successful
theoretical examples of this type of control have followed. [71–74]

timefie
ld

t1
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R, position
p, momentum
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R+
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 p0 

Figure 1.16.: Upper panel: The coordinate of interest R (solid, to be read on the left axis) and
the associated momentum p (solid, right axis) evolving in time under the influence of the IR-pre-
excitation. Req is the equilibrium position, R+ and R− are the positive and negative turning-points,
respectively. p+ and p− are the positive and negative directions of the momentum. Dashed: two
consecutive Franck-Condon (FC) windows for igniting motion with a short UV-pulse, shown in the
lower panel. At the times of ignition (t1 and t2), the coordinate, R, is at its equilibrium value (the
wavepacket is in the FC-region (R(t1) = R(t2) = Req), while the associated momenta are maximal
and of opposite directions.

Among these, of particular interest for the present Thesis are the results of Ref. 73,
in which the few-cycle IR+UV scheme is used to selectively isomerize a double bond,
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triggering unidirectional rotation in a model molecular motor. The mechanism to achieve
unidirectionality is analogous to that previously explained for the HOD case. In Ref. 73,
the mode being pre-excited with the few-cycle IR-pulse is the torsion of a C−−C-double
bond. The same approach is used in this Thesis, and is further illustrated in Article 3.5.3
and in Section 3.3.

1.3.5. Optimal control theory: rapidly convergent algorithms

The general idea behind Quantum Optimal Control Theory (OCT), as formulated by
Kosloff, Rice, Gaspard, Tersigni, and Tannor [75] and Dahleh, Peirce, Shi, Woody and Ra-
bitz, [76] is to tackle the problem of finding the control field as a maximization problem
with boundary conditions. Once the problem is formulated that way, it becomes sub-
ject to diverse optimization algorithms that can be imported from other fields, such as
engineering.

OCT takes a step away from schemes where distinctions between pump- and dump-
pulses or IR- and UV-pulses exist, and rather uses continuous, back-and-forth population
transfer between the states involved. Thus, it is less intuitive, and once a pulse has been
obtained, its underlying mechanism is less evident, inscrutable in most of the cases.

In this section, the general formulation of the optimal control problem is outlined, and
two approaches to its solution are highlighted: a theoretical one and an experimental one.
In both of them, a question prior to the OCT problem itself is that of the controllability
of the system. That is, the question if a given target can be reached at all with a given
controller, in this case, a laser field. Conditions and theorems to proof controllability in
quantum systems are given in Refs. 77–79, and for the following, the systems treated in
this Thesis are considered controllable.

Once the issue on controllability is settled, the adopted formulation is that of the stan-
dard OCT problem, that is, the use of Lagrangian multipliers to arrive at the Lagrange
functional J to be maximized: [80]

J [χ,Ψ, ε] = J1[Ψ] + J2[ε] + J3[χ,Ψ, ε], (1.8)

where χ is the Lagrange multiplier, Ψ the wavefunction describing the quantum system,
and ε the control field. J [χ,Ψ, ε] bears the conditions for the constrained optimization
problem, namely:

• J1 contains a generic operator Ô to be maximized:

J1[Ψ] = 〈Ψ(T )|Ô|Ψ(T )〉 , (1.9)

where Ψ(T ) is the wavefunction at the end (t = T ) of the control field. The only
restriction to Ô is that it must be Hermitian, and all of the operators in quantum
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control problems are.

• J2 is designed to keep the fluency of the field to a minimum:

J2[ε] =
∫ T

0
α ε2(t) dt, (1.10)

where α is a penalty function that can be also time-dependent to constrain the pulse
envelope to an experimentally achievable form.

• Lastly, J3 ensures that the time-evolving wavefunction, Ψ(t), satisfies the time-
dependent Schrödinger Equation:

J3[χ,Ψ, ε] = −2 Im
∫ T

0
〈χ(t)|i ∂

∂ t
− Ĥ(t)|Ψ(t)〉 . (1.11)

The Hamilton operator Ĥ(t) includes the field interaction through the dipole, in the
semiclassical description:

Ĥ(t) = T̂ + V̂ − ~µ · ~ε(t), (1.12)

where T̂ is the kinetic energy operator, V̂ the potential energy operator, ~µ is the dipole
moment vector, and ~ε(t) = ε(t) · ~uε is the electric field vector, of magnitude ε(t) and
polarization direction ~uε.

Imposing δJ = 0 on the target functional (Eq. (1.8)) delivers a set of equations that
can be solved iteratively with numerical algorithms. When the algorithm has converged,
the expectation value of Ô has arrived at a maximum value within the constraints, and
an optimal control field ~ε(t) has been found. In the cases discussed in this Thesis, Ô
is a projection operator P̂|φf 〉 = |φf 〉 〈φf |, where φf is the desired final wavefunction.
Since torsion along a particular coordinate is sought, φf is a target wavefunction that
already possesses momentum pointing along the torsion. One can think of such a target
state as the wavefunction corresponding to a certain time-window t1 or t2 in Fig. 1.16.
Indeed, a comparison of the IR+UV and OCT- approaches is provided in Article 3.5.3.
Furthermore, for the particular cases of Ô = P̂|Φf 〉 being a projection operator or a positive
definite operator, rapid monotonically convergent algorithms [81,82] exist.

However, even if the system-environment coupling is taken into account by the al-
gorithm, [83] OCT-schemes may have limitations in the laboratory, due to experimental
noise or decoherence. OCT still remains the leading theoretical approach for identifying
the structure of control fields, [53] and recently, the concept of Quantum Control Land-
scapes [84,85] has emerged to answer the question of why efficient control of diverse quantum
systems is possible at all.
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1.3.6. Adaptative feedback control

The facts that: (i) OCT-solutions depend strongly on realistic model Hamiltonians, and
(ii) even if those solutions are accurate, the experimental uncertainties affect the robust-
ness of the OCT-pulse, have paved the way to an alternative experimental formulation to
quantum optimal control theory, proposed by Rabitz and coworkers in a seminal paper in
1992. The strategy proposed in Teaching Lasers to Control Molecules [86] is indeed the con-
trol scheme most widely implemented in the laboratory nowadays. [53] The experimental
set-up proposed in Ref. 86 biases problems (i) and (ii) by directly allowing the molecular
system itself to evaluate the fitness of a trial control field and optimize it on-site in the
laboratory. The system iteratively improves that field through a fitness parameter in a
feedback-loop until convergence is achieved. The elegant analogy [86] is that of the molec-
ular system acting as an analog computer solving its own time-dependent Schrödinger
Equation in real-time. A detector coupled to the system performs the readout of a con-
trol parameter, against which the fitness of the field is measured. This fitness is then fed
back to the pulse-generator and the next pulse is corrected using genetic [87] or evolution-
ary [88] algorithms. A schematic representation of a generic setup of this type is depicted
in Fig. 1.17.

Figure 1.17.: General set-up of a closed-loop experiment. Figure kindly provided by Marque-
tand, P. (Ph.D. thesis, Julius-Maximiliams-Universität Würzburg (2007)).

The first reported experiment including this adaptative feedback control (AFC) is the
optimization of the electronic population transfer by Wilson and coworkers [89] in 1997,
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allowing for control of the fluorescence signal of a laser-dye. Further early optimizations
include photodissociation reactions by Gerber and coworkers. [90,91] AFC photofragmenta-
tion experiments by Wöste and coworkers [92] were subsequently rationalized theoretically
through a combination of femtosecond pump-probe spectroscopy and wavepacket propa-
gations. [93] Very recently, Hill and coworkers [94] deciphered the underlying dynamics of an
AFC-triggered Coulomb explosion. Of particular interest for this Thesis are AFC exper-
iments on photoisomerizations, specifically of cis-trans-isomerizations. AFC experiments
on the retinal molecule in the protein environment [14–16] have already been addressed in
Section 1.1.2. Similar cis-trans-isomerizations have been controlled via AFC-strategies in
cyianines in solution. [95,96] For the cis-trans-isomerization in Ref. 96, AFC-studies in Ref.
97 even use the optimally shaped dump-pulse itself to gain mechanistic insights about the
isomerization process.

1.3.7. Laser control in molecular rotors

So far, control schemes in the context of molecular rotors have been only cited in the
IR+UV example [73] in Section 1.3.4. Among other light strategies to control motors (see
for instance the surface mounted motors of Michl and coworkers [98] or Engel and cowork-
ers [99]), Fujimura and coworkers have proposed optimally shaped pulses for theoretical
control schemes in molecular rotors. The systems used in these cases are chiral molecules
where the asymmetry of the potentials along the coordinate of interest -typically the tor-
sion of a double bond- already determines a natural or intuitive direction of rotation. In
the weak-field regime, that built-in asymmetry is responsible for unidirectional rotation
after a long (30 ps) IR-pulse. [100,101] The pulse is tuned to the average level spacing and
is long enough to excite the torsional ground state until it has enough energy to overcome
the torsional barriers. This strategy is a rather mode-selective-like approach, where, as
stated before, the effects of IVR can hinder the rotation significantly. Indeed, when a
system-bath coupling was included in the model, [102] the torsional momentum is hardly
maintained even while the pulse is on. This effect was avoided, in a very similar chiral
molecule, with a TRK-pump-dump scheme, [103] where, again, asymmetries in the potential
(now in the excited state potential) determine a preferred direction of rotation when the
dump-pulse is timed adequately. In this case, rotation had already started after ca. 200 fs.
Finally, the authors also apply OCT to the same system [104] and show that both intuitive
and counter-intuitive rotation of the motor can be achieved within 500 fs with two optimal
pulses, respectively.
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2.1. The Schrödinger Equation

The time-dependent Schrödinger Equation (TDSE) was briefly introduced in Section 1.3.5
as the condition that the wavefunction has to satisfy in the J3 functional (Eq. (1.11)) for
the OCT constrained optimization. The condition that a wavefunction satisfies the TDSE
is indeed imposed by the fifth postulate of quantum mechanics: [105]

The wave function or state function of a system evolves in time according to the
time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ(~r, t) = Ĥ(t)Ψ(~r, t). (2.1)

Equation (2.1) governs thus all dynamics of a nonrelativistic quantum system. In cases
where the Hamilton operator Ĥ(t) is not explicitly time-dependent, time t and position ~r
are separable, and the TDSE can be further operated to yield the time-independent SE
(TISE):

Ĥψn(~r) = Enψn(~r), (2.2)

whose solution contains only time-independent information: the set of spatial wavefunc-
tions {ψn(~r)} and eigenenergies {En}. Equation (2.2) is a linear eigenvalue problem for the
operator Ĥ, and the set of energy eigenvalues En constitute its spectrum. The subindex
n is the quantum number of each state. The spatial wavefunctions ψn(~r) are the sta-
tionary states. These are modulated in time through their corresponding En-values via
the phase factor e−iEnt/h̄. The stationary states multiplied with the phase yield the total
wavefunctions Ψn(~r, t):

Ψn(~r, t) = ψn(~r)e−iEnt/h̄ = ψn(~r)e−iωnt, (2.3)

where ωn = En
h̄ has been used.

However, while evolving in time (Eq. (2.1)), the molecular quantum mechanical system
is unlikely to be described only by one of the solutions given by Eq. (2.3). In fact, the
most general solution to Eq. (2.1) is a superposition of different eigenfunctions Ψn(~r, t),

27
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each of them weighted by the complex-valued coefficients Cn:

Ψ(~r, t) =
∑

n

CnΨn(~r, t). (2.4)

Equation (2.4) constitutes a wavepacket, that is, a linear combination of eigenfunctions
with different energies and a given phase relation.

2.2. The Born-Oppenheimer Approximation

So far (Eqs. (2.1) to (2.4)), ~r has represented the whole set of molecular coordinates, both
nuclear and electronic. These particles have also a coordinate in spin-space, but the spin
has no further impact in the following formulation, and will be introduced ad-hoc for the
electrons in Section 2.3.1.

The Born-Oppenheimer approximation assumes separability of the motion of nuclei and
electrons by writing the time-independent molecular eigenfunctions as (cf. Eq. (2.2)):

ψ(~r) = ϕe(~re; {~RN})ψN (~RN ), (2.5)

where the subindices e and N denote electronic and nuclear, respectively. {~RN} indicates
parametric dependence only. The subindex n has been dropped for succinctness; the
following applies to any of the n-eigenfunctions.

Inserting Eq. (2.5) in the TISE (cf. Eq. (2.2)) yields two separate TISEs, the electronic
TISE and the nuclear TISE, assuming that the terms proportional to the ratio of the
masses of electron and nuclei are negligible. The electronic TISE depends on ~re explicitely
and on the nuclear geometry ~RN parametrically:

Ĥe(~re; {~RN})ϕi
e(~re; {~RN}) = εiϕi

e(~re; {~RN}). (2.6)

Solution of the electronic TISE yields the set of i electronic wavefunctions, ϕi
e(~re; {~RN}),

and electronic energies, εi, for a fixed molecular geometry ~RN . Typically, Eq. (2.6) is
solved for the values of ~RN that represent molecular geometries that are chemically most
significant: equilibrium geometries, transition states, conical intersections, etc. When
computationally feasible, Eq. (2.6) is solved for whole ranges of ~RN along one or more
nuclear coordinates of interest. The {~RN} geometries together with the respective {εi}
values constitute the potential energy surface (PES) for the chemical context of interest.
The PES is a function of ~RN and the equilibrium and transition state geometries are its
critical points (∇~RN

=0), whereas -loosely speaking- the conical intersections are regions
of the coordinate space at which the PESs of two or more electronic states are near-
degenerated and nonadiabatic population transfer can occur. All these concepts (PES,
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minima, transition states and conical intersections) have already been introduced briefly
in the introduction, for example in Figs. 1.5 and 1.8.

Analogous to Eq. (2.6), within the Born-Oppenheimer approximation the nuclear TISE
is:

ĤN (~RN )ψν
N (~RN ) = Eνψν

N (~RN ). (2.7)

For brevity, the vibrational TISE for the nuclei is directly written, omitting the separation
of internal and external degrees of freedom (see for instance Ref. 106). Henceforth ~RN

implies only relative displacements of the nuclei with respect to each other, that is, internal
vibrations. It follows that in Eq. (2.7) the index ν is the quantum number denoting
vibrational states.

The nuclear Hamiltonian is composed by the kinetic energy term T̂ and the potential
energy term V̂ :

ĤN (~RN ) = T̂ (~RN ) + V̂ (~RN ). (2.8)

It is through the latter term that the electronic information emerging from Eq. (2.6), the
electronic ε(~RN )-values of the PES, enter the nuclear TISE, because the effective potential
that the nuclei are subject to is defined as:

V̂ (~RN ) = ε(~RN ) + V̂NN (~RN ), (2.9)

where V̂NN is the repulsive potential between nuclei. Solution of Equation (2.9) demands
the PES to be known for a given range of ~RN for the number of electronic states i of
interest. Hence, the PESs are the junction between electronic and nuclear TISEs. In the
following paragraphs, the problem of solving the nuclear and electronic SE is addressed.

2.3. Solutions to the Schrödinger Equation

The first postulate of quantum mechanics states that everything that there is to know
about a quantum mechanical system is contained in its wavefunction [105] and the fifth
postulate states which differential equation that function has to obey. Hence, the full
description of a quantum mechanical system is achieved once the corresponding differential
equation is solved: the SE (nuclear or electronic, time-dependent or time-independent).
The SE cannot, however, be solved exactly in most of the cases without introducing
further approximations. Because of that, diverse approaches and techniques arise, each of
them adapted to the needs of the quantum problem at hand. In the present Thesis, the
problems directly related with solving the SE are:

• obtaining the wavefunctions and energies describing the electronic states of a molecule
in order to compute photophysical properties and explain its photochemical behav-
ior.
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• describing the torsional dynamics of a molecule, both in the absence and presence of
external fields, in order to follow photochemical events and further manipulate them
with laser control schemes.

The electronic problem in the first point is addressed by quantum chemistry, which
provides a manifold of methodologies to tackle the same problem: solving the electronic
TISE. These methods vary in complexity and accuracy. They are implemented in most of
the commercial quantum chemistry packages, which have been properly referenced in the
Articles 3.5.1 to 3.5.3. A brief overview of the methods used in this Thesis is provided in
Section 2.3.1.

The second point falls into the realm of quantum dynamics. The methods at hand are
also well-known, and the reader is referred to Refs. 107 and 108 for an overview on available
techniques to perform quantum dynamical computations. However, the codes to perform
these calculations are less standardized than those for electronic structure calculations,
and codes that handle wavepacket propagations with arbitrary Hamilton operators are
not widespread. The program WAVEPACKET [109] provides a flexible tool for many
simple molecular cases, and in this Thesis many preliminary computations were carried
out using this software. However, most of the programs used to solve quantum dynamical
problems are written from scratch, implementing selected methodologies from Refs. 107
and 108. These codes are included in the Appendix, each one with a brief description.
Section 3.4 provides the mathematical background in the context of the specific quantum
dynamical problems treated in this Thesis.

Besides the codes used to solve problems related with the SE, other programs have
been developed, most importantly for the pseudo-random conformational search. They
have contributed to an effective workflow and data-treatment but they are not included in
the publications of Section 3.5. For completeness, these codes have been included in the
Appendix with lengthier descriptions for further details..

2.3.1. Quantum chemical methods

The electronic structure methods used in this Thesis can be divided into two different
categories: methods which employ wavefunction-based approaches (ab initio-methods)
and density-based approaches (Density Functional Theory, DFT). The aim of this Section
is not to provide the detailed mathematical background to the methods themselves, but
rather to outline briefly the chemical concepts and ideas behind the used methods. Further
details are provided in Articles 3.5.1 to 3.5.3, and in Section 3.2. The reader is referred to
Refs. 110–112 and Refs. therein for completeness.
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2.3.1.1. Wavefunction-based methods

Wavefunction-based methods rely on the Hartree-Fock (HF) initial wavefunction:

|ϕHF (re1, re2...reNel
)〉 =

1√
Nel!

∣∣∣∣∣∣∣∣∣∣
χ1(re1) χ2(re1) . . . χNel

(re1)
χ1(re2) χ2(re2) . . . χNel

(re2)
. . . . . . . . . . . .

χ1(reNel
) χ2(reNel

) . . . χNel
(reNel

)

∣∣∣∣∣∣∣∣∣∣
= |ϕHF 〉 . (2.10)

Equation (2.10) is a Slater-determinant (an antisymmetrized product) of one-particle spin-
orbitals, χj(rei), which depend only on the coordinates of the i-th electron. The overlined
coordinates represent both position and spin-state. These spin-orbitals are in turn product
of the spatial orbitals, Θj(~rei), and the spin-eigenfunctions α and β:

χj(rei) = Θj(~rei) ·

α

β
. (2.11)

The HF-approximation is an approximation central to modern chemistry. It provides the
simple -yet powerful- picture of electrons occupying molecular orbitals (MOs) that spread
all over the molecule. The HF-approximation is equivalent to the MO-approximation,
which together with the ansatz of linear combination of atomic orbitals (LCAO), defines
the playground for most electronic structure calculations, and thus shapes the way in
which most quantum chemists think.

The LCAO-ansatz expands the spatial part of the spin-orbitals in the basis of NB atomic
orbitals θk(~rei):

Θj(~rei) =
NB∑
k

κkjθk(~rei). (2.12)

Hence, the choice of an appropriate basis set of AOs for Eq. (2.12) lies ahead of the calcu-
lation itself. A short discussion on how this choice affects the outcome of the calculation
is provided in Section 3.2.

Inserting Eq. (2.12) in Eq. (2.11), results in a Slater-determinant (Eq. (2.10)) function of
the expansion coefficients κkj . The many-particle electronic Hamiltonian Ĥe(~re) is written
as a Hartree-Fock-Hamiltonian Ĥ0(~re), sum of the Ne one-particle Fock-operators:

Ĥe(~re) ≈ Ĥ0(~re) =
Ne∑
i

f̂(~rei) =
Ne∑
i

f̂i. (2.13)

Substitution of the Slater-determinant (Eq. (2.10)) and the HF-Hamiltonian (Eq. (2.13))
in the electronic TISE (Eq. (2.6)) gives rise to the Roothan-Hall [113,114] equations, which
in the HF-method are solved iteratively until the electronic energy has converged to a
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minimum value εiHF . By virtue of the variational principle, [115] that value represents an
upper bond for the exact value of εi. The other part of the solution emerging from a HF-
calculation is the set of converged expansion coefficients κHF

kj that are used to construct
the electronic wavefunction (recall Eq. (2.12)). Ideally, at the end of the iterative HF-
procedure, these coefficients do not change from one iteration to the next one, so that the
HF-method is included in the group of self consistent field (SCF) methods.

Most molecules are closed-shells in the electronic ground state at the equilibrium ge-
ometries, and HF usually provides qualitatively good results for these type of situations.
As such, HF is very illustrative for basic electronic structure concepts. However, HF
fails to account for open-shell situations (excited states, bond dissociations, or higher spin
multiplicities etc). For these cases, modified versions of the HF-method exist, such as
unrestricted HF (UHF) or restricted open-shell HF (ROHF). The restriction consists in
the optimization of only one spatial orbital for both the α- and the β-electron of a given
spin-orbital (recall Eq. (2.11)). However, none of these HF-methods can describe satis-
factory the correlated motion that electrons actually perform. The amount of correlation
lacking in a HF-calculation can be expressed as the difference between the exact electronic
energy solution to Eq. (2.6) and the HF-energy1:

Ecorr = ε− εHF . (2.14)

This lack of correlation in the HF-picture has motivated the development of post-HF-
methods for accurate energy values. The post-HF-methods provide a more flexible de-
scription that aims at recovering the correlation energy lacking in the single-determinant
HF-description. An overview of the post-HF methods used in this Thesis follows. Com-
prehensive monographs on quantum chemical methods in general can be found in Refs.
110 and 112.

Multiconfigurational approaches: from CI to CASSCF Within the variational ansatz,
the SCF-methodology can be systematically extended by constructing the trial wavefunc-
tion with more than one Slater-determinant. To do so, the simplest approach is to use
the already available unoccupied MOs emerging from a preceding HF-calculation. The
new Slater-determinants can be created by promoting one electron from an occupied MO
(a) to a virtual (unoccupied) MO (b), where the indices a and b run over all available
occupied and virtual MOs, respectively. Such excitations give rise to the singly excited
configuration state functions (CSFs):

∑
a,d |ϕd

a〉. Analogously, doubly (
∑

ab
de
|ϕde

ab〉) as well

triply (
∑

abc
def
|ϕdef

abc 〉) excited CSFs can be created. Extending this treatment to all possible

1The index i-denoting electronic state is dropped.
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excitations, the full configuration interaction (FCI)-vector can be constructed:

|ϕFCI〉 = CHF |ϕHF 〉+
∑
a,d

Cd
a |ϕd

a〉+
∑
a<b
d<e

Cde
ab |ϕde

ab〉+
∑

a<b<c
d<e<f

Cdef
abc |ϕ

def
abc 〉+ ... . (2.15)

The brute force approach is then to initiate a variational SCF-procedure seeking the con-
vergence of the coefficients in Eq. (2.15) to produce an electronic energy value εFCI even
closer to the exact ε. It is brute force because no chemical intuition is used to reduce the
huge number of Slater-determinants available a priori, and the algorithm is forced to de-
vote equivalent amount of computational effort on each of the possible CSFs of Eq. (2.15).
More important, however, is the qualitative jump between a monodeterminantal descrip-
tion of HF and the multideterminantal CI-vector, which can accommodate closed-shell
and open-shell CSFs simultaneously. This provides an excellent tool for the computation
of excited electronic states. However, the FCI-method is rarely employed except for small
molecules and small basis sets.

A chemically conscious reduction of the CSF-space represent the methods in which only
single (CIS) or double (CISD) excitations are included in the CI-vector, as is done in the
CIS- and CISD-methods, respectively. Beyond the purely intuitive assumption that higher
excitations (triple, quadruple, etc) are very unlikely to contribute to the lower-lying elec-
tronic states, it can be proven via perturbation theory that most of the corrections to the
electronic energy (recall Eq. (2.14)) and one-electron properties are already accomplished
with single and double excitations (see Section 13.21 of Ref. 110 and references therein).

The multiconfiguration SCF-method (MCSCF) further implements the spirit of the
variational principle. Not only the CI-coefficients of Eq. (2.15) are optimized, but the MOs
contained in the CSFs are optimized in the SCF-iteration as well, so that ultimately the
initial expansion coefficients κHF

kj are refined from their HF-values. Nevertheless, if guided
by the variational principle alone, the MCSCF-procedure also results computationally very
expensive, because no discrimination among the available CSFs is done. The complete
active space-SCF (CASSCF [116]) offers the possibility to use the chemical knowledge about
the system to reduce a priori the number of CSFs included in an MCSCF-calculation.

The advantage of the CASSCF-approach lies in the criterion to reduce the number of
CSFs. Rather than truncating the CI-expansion at a certain amount of excitation (as do
the CIS-, CID-, or CISD-methods), CASSCF allows for the selection of active orbitals
which are very likely to play a role in the chemical context of interest. The partition of
the available MOs into inactive, active, and virtual is represented in Fig. 2.1.

Once the AS has been chosen (as in Fig. 2.1), an FCI-vector |ϕCAS〉 is constructed within
the AS (hence, complete AS). Subsequently, a MCSCF-calculation takes place with that
CI-vector, so that the MOs in the CSFs and the coefficients of the CI-vector are optimized.

The key aspect in a CASSCF-calculation, besides the basis set, is the choice of the MOs
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virtual orbitals
active orbitals

inactive orbitals
single excitations double excitations triple excitations+ + +HF ...
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2
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Figure 2.1.: Schematic representation of the MO-partition in the CASSCF-approach. An AS of 4
electrons in 4 orbitals (CAS(4,4)) is shown. Representative single, double, and triple excitations
have been chosen. The CASSCF-procedure performs an FCI-calculation within the (4,4)-AS. Thus,
the CAS-wavefuntion |ϕCAS〉 is expressed in terms of a CI-expansion (cf. Eq. 2.15).

of the AS. The AS has to represent the chemical situation of interest, and the CASSCF-
results are very sensitive to this choice. The most prominent example is the computation
of excited states of organic compounds. These can be computed accurately at a reduced
computational cost, typically by including whole π-systems (the frontier orbitals) in the
AS while excluding σ-system. This way, high-level wavefunctions are obtained, which
produce high-quality one-electron properties such as polarizabilites or transition dipole
moments.

A refinement of the CASSCF-method exists to further reduce the number of CSFs in the
CI-vector, and ultimately the computational cost: the restricted CAS-method (RASSCF).
In this approach, CFSs are not constructed indiscriminately as FCI in the AS. Instead, the
AS is subdivided into RAS1-, RAS2-, and RAS3-subspaces. FCI is performed only in the
RAS2-subspace, whereas in the RAS1-subspace only a limited number of holes (number
of excited electrons) per CSF is allowed. Analogously, only a limited number of electrons
are allowed in the RAS3-subspace.

Perturbative approaches: from MP2 to CASPT2 Basing upon the variational solutions
to the electronic TISE, a number of perturbative treatments exist. These approaches cor-
rect energies and wavefunctions to a given order beyond the variational limit. One of the
most widespread formalisms is the second order Møller-Plesset (MP2) perturbation the-
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ory. [117,118] The perturbation Ĥ ′ is defined as the difference between the HF-Hamiltonian
(Eq. (2.13)) and the true electronic Hamiltonian (Eq. (2.6)):

Ĥ ′ = Ĥe − Ĥ0. (2.16)

Within MP2, the expression for the second order energy for the electronic ground state
is: [110]

ε
(2)
0 =

∑
j 6=0

| 〈ϕ(0)
j |H ′|ϕHF 〉 |2

ε
(0)
0 − ε

(0)
j

, (2.17)

where |ϕ(0)
j 〉 are all possible unperturbed Slater-determinants except |ϕHF 〉, and ε(0)j is the

unperturbed energy of the j-th Slater-determinant. In MP2-calculations, the corrected
wavefunctions are first order perturbations of the HF-determinant.

The MP2-procedure is one of the most widely used quantum chemical methods, mainly
because of two reasons: the low computational cost with respect to comparable CI-
calculations and the facility with which gradients along the PES are computed analytically.
Accordingly, MP2-optimizations are typically the procedure of choice when optimizing
ground state closed-shell geometries.

The perturbative treatment can be extended not only to wavefunctions of a single deter-
minant. A multiconfigurational wavefunction can also be used as the unperturbed (zeroth-
order) reference for a generalized perturbative approach. In the CASTP2-method [119,120]

second order perturbation theory is applied to a CASSCF-reference wavefunction. The
obtained energy correction provides a high-quality estimate of the FCI-energy. In ad-
dition, CASPT2 handles open-shell situations accurately, because it bases upon a mul-
ticonfigurational wavefunction. This makes the combined CASPT2/CASSCF-approach
a powerful tool in photophysical calculations (or any other open-shell situations) for
medium-sized molecules. It delivers (i) high-quality wavefunctions, and thus high-quality
one-electron properties, and (ii) highly accurate (± 2 kcal/mol [121]) electronic energies.
CASPT2/CASSCF-calculations are not, however, black box calculations, as are MP2- or
CI-calculations. One has to bear in mind that CASPT2 only perturbs a reference wave-
function which is optimal within a given AS and a given basis set. Thus, CASSCF/CASPT2
results depend strongly on these choices (AS and basis set) being adequate. A measure for
adequacy is a high weight of the original CASSCF-reference wavefunction in the obtained
first order perturbed wavefunction.

State-averaged-CASSCF and multi-state-CASPT2 When computing excited states sep-
arately, the problem arises that separate state-specific calculations (e.g., one for the ground
and one for the first excited state) produce electronic states which are not necessarily or-
thogonal to each other. This situation is unphysical, since nondegenerate solutions to the
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eigenvalue problem posed by the electronic TISE (Eq. (2.6)) must be strictly orthogonal
to each other. This artifact is not decisive if the solutions to Eq. (2.6) are energetically far
apart from one another, a case typical for ground state geometries. However, in many pho-
tochemical situations, most prominently the vicinities of conical intersections, electronic
states are close in energy, and single-state variational SCF-procedures fail at resolving two
different solutions if only one of them is actually being optimized. The state emerging
from such calculations is usually contaminated with the one lying close in energy.

The near-degeneracy problems vanish in state-averaged CASSCF-calculations (SA-CAS-
SCF), where a given number of electronic states is optimized simultaneously in the MCSCF-
procedure. Apart from yielding a more physical picture (electronic states are orthogonal),
the obtained states are described with the same set of MOs and differ only in the varia-
tionally optimized CI-coefficients.

The SA-CASSCF-energies and wavefunctions can be further refined with a CASPT2-
calculation for each state in the average (each root). However, for situations in which
electronic wavefunctions are mixed with one another at SA-CASSCF level, the multi-
state-CASPT2 (MS-CASPT2 [122]) is strongly recommended. An effective Hamiltonian
is set up, in which the different SA-CASSCF states are coupled at second order. Sub-
sequent diagonalization of this Hamiltonian produces a set of new wavefunctions and
energies. The wavefunctions are linear combinations of the original SA-CASSCF states,
called perturbatively-modified CASSCF-wavefunctions (PMCAS-CI). The energies are the
final MS-CASPT2-corrected energy values. In this manner, the mixing in the original SA-
CASSCF-wavefunctions is lifted in the PMCAS-CI wavefunctions.

2.3.1.2. Density functional methods

Two theorems by Hohenberg and Kohn provide the theoretical foundations [123] for DFT
calculations. The first, HK-I, states that all molecular electronic properties (including
energy and wavefunction) are uniquely determined by the electronic ground state electron
density ρ0(x, y, z). The electronic ground state energy ε0 becomes a functional of ρ0:

ε0 = ε0[ρ0]. (2.18)

The second theorem, HK-II, also called the HK-variational theorem, states that the true
ground state electronic density ρ0(x, y, z) minimizes the energy functional, so that the
inequality

ε0[ρ0] = ε0 ≤ ε0[ρTR], (2.19)

holds for every trial density ρTR. These two theorems open the door to a non-wavefunction-
based approach, in which the magnitude of interest depends only on three coordinates,
and not on 3Ne coordinates.
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The HK-theorems do not provide, however, a form to obtain ε0 from ρTR, because the
form of the functional is unknown. Kohn and Sham [124] introduced the idea of represent-
ing the electron density through an auxiliary set of orbitals, providing an implementa-
tion of DFT conceptually and computationally very similar to the HF-procedure. In the
KS-formulation, the only unknown left in the functional, εDFT [ρ], is the the exchange-
correlation part εxc[ρ]:

εDFT [ρ] = T [ρ] + εeN [ρ] + J [ρ] + εxc[ρ], (2.20)

where T [ρ] is the kinetic energy part, εeN [ρ] the electron-nuclei repulsion, and the J [ρ]
Coulomb part.

A number of quality functionals have been developed over the years, differing in their
ways of constructing the exchange-correlation part εxc[ρ]. Hybrid functionals include a part
of exact correlation (calculated from the Slater-determinant set up by the KS-orbitals),
and the rest fitted to experimental data. Their main advantage is the possibility to include
correlation effects in a calculation that costs roughly as much as a HF-calculation. Among
these, one of the most widely used is the three-parameter functional B3LYP introduced by
Becke, [125] which mixes the exact HF-exchange part with other DFT exchange-correlation
parts arising from the Lee-Yang-Parr [126] (LYP) and Vosko-Wilk-Nusair [127] (VWN) func-
tionals.

However, DFT presents some known deficiencies. Apart from the impossibility to sys-
tematically improve the accuracy, the vast majority of functionals do not predict properly
weak dispersive interactions, such as van der Waal interactions. Furthermore, the partition
of the functional in the form Eq. (2.20) is inherently local, so that charge-transfer states
are described poorly as well. A detailed monograph on performance and applicability of
DFT can be found in Ref. 128.





3. Results

This Section is organized as follows. Sections 3.1 to 3.3 present the most important
results of this Thesis in form of standalone summaries of their respective Articles, which
in turn are presented in Section 3.5 as facsimiles1. In Section 3.4 quantum dynamical
implementations for Sections 3.1 to 3.3 are presented beyond the details of their respective
Articles.

Theoretical investigations have been carried out on the following molecules:

S

S

*
*

*

4 (BCH)2 3

Figure 3.1.: Molecular motors treated in the present Thesis: 2 and 3 are chiral overcrowded
alkenes experimentally proven as unidirectional motors. 4 (BCH) is a proposed model system.
The asterisks in 2 and 3 mark the chiral centers.

Motor 2 was chosen as a representative of the second-generation molecular motors be-
cause it was the first motor of this type to be crafted on surfaces. As mentioned in
the introduction (Section 1.2.3), this anchorage is significant for nanotechnological devel-
opment, such as the manufacture of nano-arrays. But beyond direct nanotechnological
application, the anchorage can also be convenient on a molecular scale. First, it pro-
vides a possible escape from the Brownian motion surrounding the motor. And secondly,
and more relevant for the envisioned laser control processes, the anchorage provides a
preorientation of the molecules, making polarized laser interaction more efficient.

Motor 3 belongs to the class of redesigned motors, and it is attractive because it is the
motor with the smallest aromatic system showing unidirectionality reported so far. This

1The permission of the respective copyright owners has been granted.
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fact becomes relevant when considering the electronic structure calculations aimed at char-
acterizing accurately the ground and excited state dynamics, given that the computational
cost of these calculations grows exponentially with the size of the systems treated.

Motor 4, 1,1’-bicyclohexylidene, BCH in short, is a model mimicking the larger systems
2 and 3. It was chosen to study light-induced dynamics. BCH bears a bistable moiety
at its core, analogous to 2 and 3. Two different isomers exist (syn-BCH and anti -BCH),
and they are interconvertible not only through heat but also through the light-triggered
isomerization of the double bond, making BCH a suitable candidate for the investigation
of laser-ignited rotatory motion.

The results are presented initially as a comprehensive conformational study of the rotors
2 and 3 (Section 3.1). A number of local minima and transition states are located on a
rich ground state potential energy surface. Thus, in Section 3.2 , the simpler model BCH
is investigated. An explanation for the controversial UV-spectrum of BCH is provided,
and then, strategies for laser control follow in Section 3.3. There, unidirectional rotation
of one of the halves of BCH is triggered with diverse laser pules, calculated using both
OCT (cf. Section 1.3.5) as well as the more intuitive IR+UV-strategy (cf. Section 1.3.4).

3.1. Ground State Conformations of Overcrowded Alkenes

A conformational study of the motors 2 and 3 is carried out developing a pseudo-random
method, as described in Article 3.5.1. The programs written to this end are provided in
the Appendix for further detail.

In order to better characterize and understand the thermal steps of the rotatory cycle
and its unidirectionality, all possible local minima and transition states (TSs) on the
ground state PES are probed. The used method is based on a Monte-Carlo strategy, since
it relies on a set of randomly generated initial geometries for subsequent optimization.

The initial geometries are generated by partially perturbing the available X-ray param-
eters of 2 and 3 within a scalable interval of their equilibrium values. In this context,
partially means that not all degrees of freedom (DOFs) are subject to the random pertur-
bation, but only those DOFs whose contribution to the rotatory dynamics might be most
significant. Chemical intuition has thus to enter the pseudo-random method at this point.
The choice of the randomized DOFs must provide the algorithm with enough variability
as not to be trapped on a local minimum of the PES. For 2 and 3, the randomized DOFs
are: the length of the central double bond, the dihedral angles governing the boat-chair
conformations of the central ring-moieties, and the position of the methyl groups on these
rings.

The randomized DOFs, Q, are obtained using the perturbation:

Q = Q0 +R · ω · I, (3.1)
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where Q0 is the DOF’s original value and R·ω ·I is the perturbation performed upon it. R
is a random number ε [−.5,+.5], ω is the step or weighting parameter, and I is the interval
available to Q0 (I is different for bond-distances, bond-angles, and dihedral angles). After
randomizing the starting geometry, an optimization and a frequency calculation follow at
semiempirical level of theory (AM1 as implememented in MOPAC [129]). The procedure is
repeated until a number NG of geometries have converged to local minima of the PES. The
converged geometries can be evaluated while the algorithm is continuously running: their
heats of formation are collected and analyzed in form of a histogram. The pseudo-random
method iterates until the histogram is considered converged.

In order to assess statistical effects and variability, the robustness of the method is
investigated with respect to NG and ω, respectively, before their values for the conforma-
tional search are chosen. It is found that, for a fix ω-value, the histogram already adopts
a consistent form after 100 converged geometries. This form is conserved as NG increases,
specially in the energy region close to the original geometry. The majority of the local
minima that are accessible to the algorithm (for a given ω) are already present in the sam-
ple after a relatively small amount of optimizations. Larger NG-values only result in more
individual conformers per local minimum. ω governs the number of unique local minima
accessible to the algorithm. The histogram evolves from a single bar (ω= .25), to a spread
spectrum of geometries (ω = 1.0). With increasing randomness, the chemical intuition
used in the choice of the randomized DOFs is canceled out, because constitutional isomers
begin to populate the sample. However, the rotatory cycle is not intended to produce
constitutional isomers at any stage. Quick browsing of the individuals of the histograms
with the molecular visualization program MOLDEN [130] provides a good estimate of the
ratio of stereo-/constitutional-isomers in each sample, a factor that can be considered a
signal-to-noise ratio of the histogram.

After testing different values of NG and ω, the parameters chosen for the pseudo-random
searches are NG = 1000 and ω = .75. Elimination of redundancies and constitutional
isomers in the samples of 2 and 3 (see Appendix for the corresponding codes) leads
to six and seven unique individuals, respectively. Subsequent MP2/6-31G(d) geometry
optimization of these individuals produces the refined geometries shown in Fig. 3.2a-f and
Fig. 3.3a-d for 2 and 3, respectively. The obtained MP2/6-31G(d) geometries are in very
good agreement with the available X-ray structures in both motors.

In the case of 2, five additional geometries are recovered besides the starting structure,
which is typically called the stable-isomer in the rotatory cycles. The Newman projection
along its central olefinic bond shows the least distorted olefinc plane. Two more conformers
(panels b and c) lie ca. 4-6 kcal/mol higher in energy, with central planes slightly more
distorted. From the point of view of the steric hindrance, structures 2a2 and 2b differ

2From now on, structures of 2 and 3 are noted according to their respective panels in Figs. 3.2 and 3.3,
respectively.
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mostly in the orientation of the methyl group. Whereas in the stable-form, 2a, the methyl
group is pointing out from the fjord -region in axial orientation, its equatorial orientation in
the unstable-form, (2b), results in a destabilization of ca. 4 kcal/mol. In 2c, the methyl-
group is again axial, however a larger destabilization arises from the outer cyclic moieties
of stator and rotator being on the same side of the central olefinic plane. Structures 2a,
2b, and 2c have been already assigned to the known stations of the rotatory cycle: [131] the
unstable-isomer 2b is the photoproduct of the irradiation of 2a with UV-light, whereas
2c is an intermediate (not isolated yet experimentally) in the thermal reversion 2b→2a.
Furthermore, a group of three structures destabilized about 11 kcal/mol over the stable-
isomer are found by the pseudo-random search (panels d-f in Fig. 3.2). The respective
Newman projections show very distorted olefinic planes joining stator and rotator, with
a twist in the double bond of up to 30◦ in the case of 2f. These three structures had
not been reported so far in the literature to the best of our knowledge. Their role in the
rotatory cycle becomes more clear when the TSs are computed.

For 3, two pseudo-random searches are performed separately with two available X-
ray starting geometries, one for the cis- and one for the trans-isomer. The searches
yield equivalent histograms containing the same isomers. After filtering the samples for
redundancies and constitutional isomers, a total of seven unique isomers are found. Among
them are three diastereomers, where the the absolute configuration of one chiral center has
switched during the geometry randomization. These local minima do not participate in
the rotary cycle and as such they are not discussed here. The remaining MP2/6-31G(d)-
refined structures are shown in Fig. 3.3a-d. The structures in panels a-d are assigned to the
stations of the rotatory cycle of 3. The assignment of structures 3a and 3b is immediate,
since they are the X-ray starting structures. They have been isolated experimentally as
the stable-isomers of the cycle [132] (cis- and trans-isomer, respectively). In them, the
methyl-groups are pointing out of the fjord -region in axial configuration. The structures
3c and 3d are the unstable-isomers of the cycle, products of the UV-irradiation of 3b and
3a, respectively. In them, the methyl-groups adopt an equatorial orientation leading to
more steric hindrance in the fjord -region. The geometries show very good agreement with
the available X-ray parameters. All four structures present strained central olefinic planes,
with both twisted and folded distortions up to 30◦. Furthermore, the central double bond
is slightly elongated (ca. 0.1 Å) in the unstable-isomers (cf. 3a vs 3c in Fig. 3.3), as a
consequence of the increased steric hindrance in the fjord -region.

Once the pool of local minima has been generated for 2 and 3, possible reaction path-
ways are investigated through the optimization of TSs between the local minima. TS op-
timizations are much more sensitive to the starting geometries than the regular minimum
optimizations. The algorithms envisioned to generate starting TS geometries typically
interpolate iteratively between product and reactants until a suitable guess is found. The
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Figure 3.2.: Upper panels (a-f): MP2/6-31G(d)-geometries of 2. The dihedral angles correspond
to the moieties attached to the central double bond. The Newman-projections are along that same
bond. Bond-distances are in Å and dihedral angles in degree. Relative MP2/6-31G(d)-stabilities
are shown at the bottom of each panel. Lower panel (g): RI-MP2/TZVP energies of the B3LYP/6-
31G(d) geometries of the six equilibrium conformers of 2 and the corresponding transition states
between them. Energies are given in kcal/mol. Values in parenthesis are taken from Ref. 131.
Dashed lines refer to the pathway suggested in Ref. 131. The labels 2a-2f correspond to the upper
panels. Adapted from Article 3.5.1.
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Figure 3.3.: Upper panels (a-d): MP2/6-31G(d)-geometries of 3 that participate in the rotatory
cycle. The dihedral angles correspond to the moieties attached to the central double bond. The
Newman-projections are along that same bond. Bond-distances are in Å and dihedral angles in
degree. Lower panel (e): RI-MP2/TZVP energies of the B3LYP/6-31G(d) geometries of the four
equilibrium isomers of 3 and the corresponding transition states between them. Energies are given
in kcal/mol. Values in parenthesis correspond to experimental values of Gibbs free energies of
activation at 0◦C taken from Ref. 132. The labels 3a-3d correspond to the structures of the upper
panels. Adapted from Article 3.5.1.
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algorithms available to this end in the software of choice (Gaussian03 [133]) did not succeed
in that task for 2 and 3. In order to produce a guess starting geometry as close as pos-
sible to the TS for a given reaction, relaxed PES-scans are carried out along the guessed
reaction coordinate between reactants and products. Because only the thermal steps are
considered, the guessed reaction coordinate typically involved the geometrical parameters
shown in Figs. 3.2 and 3.3. A discontinuity in the obtained PES marks the suitable guess
of the TS structures, which is then optimized at HF/STO-3G level of theory and refined
at the B3LYP/6-31G(d) level of theory. Intrinsic reaction coordinate (IRC) calculations
follow at the same level of theory, in order to confirm the computed thermal reaction.
Besides the TSs, also the minima are reoptimized at B3LYP/6-31G(d) level of theory,
as to compensate for systematic errors and have all critical points of the reaction at the
same level of theory. In order to obtain activation energies comparable to the available
experimental values, absolute energies are finally recomputed at the more accurate MP2
level of theory, using the resolution of identity (RI)-approximation to reduce computa-
tional time, and triple-zeta basis set (RI-MP2/TZVP). The reaction mechanisms of both
2 and 3 will now be addressed separately, because of the difference in complexity in their
thermal mechanisms.

The reaction pathways can be rationalized straightforwardly in the case of 3. In Fig. 3.3e
the obtained TSs are shown together with the minima that they connect. Two TSs are
found, one for each thermal unstable→stable step: one for the cis-isomer and one for the
trans-isomer. The main reaction coordinate is the evolution of the methyl-groups from the
unstable position (both in equatorial orientation) to the stabler configuration, where both
are oriented axially. The trans-TS (TS1 in Fig. 3.3e) bears an activation energy Ea of
17.4 kcal/mol, whereas the cis-TS (TS2 in Fig. 3.3e) has a higher value of 24.3 kcal/mol.
These two values are in very good agreement with the available [132] Gibbs free energies of
activation at 0◦ of 17.0 and 24.2 kcal/mol, respectively. Furthermore, the geometries of
both TSs do not belong to the point-group symmetry C2 (as do the minima), but have
no symmetry at all. For the reaction unstable-cis-3→TS2→stable-cis-3, at the TS one
methyl group has already accessed a pseudo-axial configuration, whereas the other needs
to correct slightly its equatorial orientation to let the former cross the fjord -region. That
is, the reaction occurs not synchronically in both halves of the motor.

The PES landscape is more complex in the case of 2, where a variety of reaction path-
ways are possible a priori for the thermal step of the rotary cycle. In Fig. 3.2g, minima and
TSs have been arranged as to accommodate all located pathways from left to right. At the
beginning of the thermal step (immediately after the photoreaction) the motor is in the
minimum 2b (second from the left), whereas the end of the thermal step, the motor is in
the minimum 2a (rightmost isomer). If direct reaction from 2b→2c is attempted, a high
Ea of ca. 41 kcal/mol is needed (TS6). In previous calculations, [131] the direct step 2b→2c
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via TS5 was computed as having Ea of ca. 25 kcal/mol, in very good agreement with the
experimental value of ca. 25 kcal/mol. [35] However, the IRC calculations of Article 3.5.1
connect the TS5 structure with the new intermediate 2f, which is a shallow minimum lying
between 2b and 2c. This branch of the thermal reaction is thus 2b→TS1→2f→TS5→2c.
The other two higher-energy structures 2e and 2d are nearly degenerated, and their in-
terconversion only bears an activation energy of 1 kcal/mol (TS4). These minima might
be populated when warming 2f, since the Ea to access 2e and 2d via TS2 is one half of
the Ea of TS5. However, to continue the reaction towards 2a via TS8, the Ea needed to
undergo 2d→2a is higher than that of the back reaction 2d→2e→2f. Thus, the most
probable reaction for the thermal step is 2b→TS1→2f→TS5→2c→TS9→2a. The less
probable pathway, 2b→TS1→2f→TS2→2e→TS4→2d→TS8→2a, has, however, a rate-
determining step, TS8, that also lies ca. 25 kcal/mol above the reactant 2b, also in good
agreement with the measured Gibbs free energies of activation.

The motors 2 and 3 thus present different complexity in their reaction pathways, and
whereas in the case of 3 the pathway appears to occur without intermediates and only in
one possible way, the motor 2 evolves in a rich PES with alternative pathways and local
minima.

3.2. Photochemistry of the Model Olefin BCH

In Article 3.5.2, the electronic TISE (Eq. (2.6)) is solved for the model system BCH (see 4

in Fig. 3.1) using the MS-CASPT2/SA-CASSCF-procedure (recall Section 2.3.1), in oder
to explain the UV-spectrum of the molecule.

BCH’s UV-spectrum presents two bands in solid-, liquid-, and gas-phase. The main
problem in their interpretation so far is the apparent contradiction between π-electron
theory, which predicts only one intense HOMO→LUMO transition upon excitation, and
the two bands present in BCH’s spectrum. An intense (π,π∗)-transition was readily as-
signed to one of the two bands. As for the other band, different proposals have been put
forward over the years for the nature of the underlying electronic transition, basing both
on experiments and theory. Initially, other valence transitions were invoked, [134–139] e.g.,
(σ, σ∗), (π, σ∗), and (π(CH2), π

∗)-charge-transfer (CT) transitions3. More recently, the
Rydberg states entered the discussion [140,141] as possible explanation, and configuration
mixing between Rydberg and valence states was put forward as an explanation to BCH’s
photophysical behavior. This explanation was based partly on photoelectron spectroscopy
experiments [140] and configuration interaction singles (CIS) calculations. [141]

Early computations [136–139] purposely excluded Rydberg excitations by choosing com-
pact basis sets. These basis sets are hardly able to represent the typically very diffuse

3See Table 1 in Article 3.5.2 and references therein for details.
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electronic wavefunctions that account for Rydberg states. As such, the mentioned stud-
ies always obtained valence-like excitations for the second band, about 2 electronVolts
(eV) higher in energy than the experimental values (around 6-7 eV). The opposite effect
arose when the basis sets were chosen purposely diffuse, as not to exclude a-priori other
possible, typically less-bright, lower-lying Rydberg states. In a theoretical study where
the basis set is systematically incremented with diffuse functions, [141] the obtained wave-
functions progressively loose the compact, valence-like character and become more diffuse,
Rydberg-like, as the basis set is incremented. Accordingly, the associated transitions start
to loose intensity (as given by the oscillator strength f) and appear at lower excitation
energies. More importantly, the compact nature of the involved π∗-MO is also lost, and
its antibonding character can be found spread over more than one MO. The assignment
of the (π, π∗)-transition to one of the available diffuse -and yet bright- electronic states
becomes less than trivial.

In order to obtain results which are more robust with respect to the lack of diffusivity (or
excess thereof) in the chosen basis set, a Rydberg basis set is optimized in Article 3.5.2.
This is done with the GENANO utility of the MOLCAS [142,143] suite of programs for
electronic structure calculations. The goal is to optimize the coefficients of the atomic
natural orbitals (ANOs) in the generally contracted basis [144] used to represent the AOs
of Eq. (2.12). The point of such an optimization is avoiding the undiscriminated inclusion
of diffusivity in the basis set, as not to force the subsequent SCF-procedure to deal with
artificial mixing of the wavefunctions.

GENANO averages over an input-set of electronic wavefunctions. These wavefunctions
are the electronic states to be described optimally. Their wavefunctions are computed
initially with the basis set of choice carrying an additional group of diffuse, uncontracted
basis functions placed upon a ghost-center, a center which does not have further influence
in the calculation. GENANO then averages the resulting density matrices and diagonalizes
that average. The obtained eigenvectors are used as contraction coefficients to contract
the initial functions of the ghost-atom.

Two wavefunctions were averaged for anti -BCH: the ground state singlet (π2) of anti -
BCH and the ground state of anti -BCH’s cation, which should resemble BCH’s Rydberg-
states. The calculations made use of the C2h point-group symmetry of anti -BCH, reducing
significantly the computational costs. anti -BCH was chosen because it is the crystalline
form of BCH. The optimized basis set is denoted as ANO-L-R.

Once the ANO-L-R basis set is available, an active space (AS) suitable for representing
valence and Rydberg states needs to be chosen (recall Section 2.3.1 and Fig. 2.1). To
avoid biasing a priori the calculation, the AS must include the Rydberg orbitals, which
are typically denoted with the atomic labels 3s, 3p, 3d and so on. In the C2h-framework,
the MOs are assigned to the four irreducible representations of the C2h-point-symmetry
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group: ag, au, bg, and bu. For the Rydberg orbitals, the assignment is:

• ag : 3s, 3dxy, 3dz2 , 3dx2−y2

• bg : 3dxz, 3dyz

• au : 3pz

• bu : 3px, 3py

The valence orbitals π and π∗ are bu and ag, respectively. The total AS includes thus 11
MOs: 5 (ag), 2 (bg), 1 (au), and 3 (bu). The number of active electrons is 2, hosted in the
π orbital. Hence, the CAS(2,11) is chosen as active space for BCH.

With an adequately trimmed basis set and an AS flexible enough to describe the states
of interest, a state-averaged CASSCF(2,11)/ANO-L-R calculation is carried out, followed
by MS-CASPT2 treatment to correct excitation energies and produce PMCAS-CI wave-
functions. The obtained energies and wavefunctions are shown in Table 3.1.

The most significant feature of Table 3.1 is that the PMCAS-CI wavefunctions correct
the contributions of the 3sR(Rydberg)- and the π∗-MO from the SA-CASSCF wavefunc-
tions. In the corrected electronic states, the 3sR- and the π∗-MO (16ag and 15ag, respec-
tively) are redistributed into two distinct wavefunctions, to 70% and 85%, respectively.
The oscillator strengths reflect the change in the nature of the wavefunctions, clearly
distinguishing between the bright (π, π∗)-band (f = .44 for the 21Bu state) and the less

Table 3.1.: CASPT2/CASSCF(2,11)/ANO-L-R and MS-CASPT2/PMCAS-
CI(2,11)/ANO-L-R results for the first five 1Bu states of anti -BCH using C2h symmetry.

CASPT2/ MS-CASPT2/
CASSCF PMCASCI

State Excitation %Weight f ∆E/eV Excitation %Weight f ∆E/eV
11Ag (14bu)2 96 - 0 (14bu)2 96 - 0

11Bu
14bu → 16ag 76 0.049 5.99 14bu → 16ag 70 0.096 5.9514bu → 17ag 18 14bu → 17ag 17

21Bu
14bu → 15ag 54 0.227 7.18 14bu → 15ag 85 0.438 6.8214bu → 18ag 35 14bu → 16ag 7

31Bu
14bu → 17ag 49 0.048 7.90 14bu → 18ag 60 0.062 7.8214bu → 19ag 28 14bu → 17ag 30

41Bu

14bu → 15ag 15
0.159 8.16

14bu → 19ag 83
0.054 8.1614bu → 16ag 15 14bu → 18ag 9

14bu → 19ag 58

51Bu
14bu → 18ag 47 0.502 8.04 14bu → 17ag 46 0.095 8.5114bu → 15ag 28 14bu → 18ag 30



3.2. Photochemistry of the Model Olefin BCH 49

intense transition (π, 3sR), with f=0.10 for the first excited state 11Bu.

Not only the spurious valence-Rydberg mixing is resolved with the MS-CASPT2-calcula-
tion. The associated vertical excitation energies of 5.95 and 6.82 eV (rightmost values in
Table 3.1) are are in excellent agreement with the experimental values 5.95 and 6.82
eV. However, even if the band centers are predicted correctly and the artificial mixing is
removed, the question remains why the Rydberg band at 5.95 eV is so intense. Analogous
calculations performed in Article 3.5.2 for syn-BCH yield values of 6.41 and 6.68 eV,
excluding strong contributions from syn-BCH-bands to the lower-lying Rydberg intensity
of anti -BCH in the Franck-Condon (FC) region.

Hence, to explain the unusual intensity, the origin of the (π, π∗)-band of anti - and syn-
BCH is computed. A band certainly peaks at the value for the vertical transition (FC
principle), but it can extend its vibrational profile over a range of energies. Its origin is
marked by the 0−0 vibronic transition between the electronic states. Graphically, this
transition corresponds to the diagonal arrow in Fig. 3.4a, where the electronic states of
interest are displayed.
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Figure 3.4.: a) Schematic representation of the ground and first two excited electronic states
in anti -BCH. The vertical excitation energies (in eV) correspond to the values in Table 3.1. The
diagonal transition represents the origin of the (π, π∗)-band, computed also at the MS-CASPT2-
level of theory, but without symmetry considerations. b-c: (π2)- and (π, π∗)-minima of anti -BCH.
d-e: (π2)- and (π, π∗)-minima of syn-BCH. Values in degrees and Å. Adapted from Article 3.5.2.

In order to find this non-vertical energy difference, the molecular geometry of the mini-
mum of the (π, π∗)-state is computed. Hence, SA2-CAS(2,2)/6-31G(d) optimizations are
carried out, following the gradient along the PES of the (π, π∗)-state. The chosen level
of theory for this optimization is mandatory, because: (i) the compact, double-zeta basis
set excludes the intrusion of Rydberg states and (ii) the SA-CASSCF-method can resolve
two electronic states as they come close in energy (cf. the (π2)- and (π, π∗)-curves at
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the (π, π∗)-minimum in Fig. 3.4). Both the syn- and anti - ground state (π2)-minima are
also reoptimized at the same level of theory, to compensate for systematic errors. Fi-
nally, electronic energies are recomputed at the MS-CASPT2/PMCAS-CI level of theory.
Figure 3.4b-e shows the SA2-CASSCF(2,2)-geometries of the minima for anti -BCH and
syn-BCH. As could be expected, both structures have elongated their double bonds, as
corresponds to the antibonding nature of the (π, π∗)-state. Both sp2 carbon atoms are
pyramidalized, resulting in distortions of up to 60◦ in the olefinic plane. The (π, π∗)-
origin for syn-BCH is computed at 6.0 eV, so that an overlap with the Rydberg band
in that region of the UV-spectrum is hardly possible (cf. Table 3.1). Thus, syn-BCH
very unlikely contributes to the intensity around that region. In contrast, the origin of the
anti -(π, π∗)-band is found at ca. 5.6 eV. Starting at that value, the vibrational progression
of the anti -(π, π∗)-band has to increase in intensity until its peak at 6.8 eV, allowing for
a significant contribution to the Rydberg intensity around 6.0 eV.

This interpretation is further supported by vibrational analysis of the anti -(π, π∗)-
minimum. Harmonic frequencies and normal modes are computed at the same SA2-
CASSCF(2,2) level of theory. It is found that the C−−C-stretching and the C−−C−C2-
scissoring of the central bond are the normal modes along which the anti -(π2)-minimim
can evolve to the anti -(π, π∗)-minimum. It is concluded that vibrational progressions of
3-4 and 9-10 quanta in the scissoring and stretching modes, respectively, create a broad,
intense, underlying continuum of the valence anti -(π, π∗)-band. The Rydberg transition
lies on top of that band and borrows intensity from it. Within the emerging photophysical
picture, valence-Rydberg mixing can be discarded as the true origin of the unexpected
intensities.

3.3. Light-Triggered Unidirectional Rotation of BCH

In Article 3.5.3, light-triggered unidirectional rotation is investigated in the model system
BCH. Shaped laser pulses are used to drive a one-dimensional (1D) wavepacket from
the ground torsional state to unidirectional rotation in the excited state. The motion is
described with the torsional coordinate β, which accounts for the rotary motion in BCH
via isomerization of the double bond. The PES along β is computed at the same level of
theory of Section 3.2 (i.e., Article 3.5.2): MS-CASPT2/SA-CASSSCF/ANO-L-Rydberg.
The obtained curves are shown in Fig. 3.5a. The curves represent the adiabatic potentials
for the ground (V1) and first excited (V2) electronic singlet states. The ground state is a
(π2) state. Due to the lack of symmetry, the nature of the excited state forcedly mixes the
(3sR)-character of the pure anti -BCH calculated with symmetry (see Section 3.2) with
the (π, π∗)-character of the second excited state. However, both excited states present a
similar topology of double well, and since the V1 is also a bright state, the dynamics are
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performed on it.

The system BCH is highly symmetric along β. The symmetry axes lie at β = 0 and
β = π, where both the syn- and the anti -isomer have their respective minima in the V1.
The dipole moment surfaces (DMSs) also show this symmetry. Figure 3.5b and c shows
the DMSs, which are either symmetric or antisymmetric with respect to 0 or π.

The first step towards the dynamics is the computation of BCH’s torsional eigenstates,
that is, the solution of the nuclear TISE for the adiabatic potentials in Fig. 3.5a and
the field field-free Hamilton operator. This procedure is implemented in the program
mydiag.f90 (see Appendix) through the diagonalization of the system’s Hamiltonian ma-
trix using a spectral representation. Further details are provided in Section 3.4.2. Only
the results are presented here.

In the ground state, the lower-lying torsional eigenstates are centered at β = 0 (anti -
BCH) or β=π (syn-BCH). The potentials are near-harmonic in the vicinity of the minima,
with torsional frequencies ωsyn =51.95 cm−1 and ωanti =66.20 cm−1, in very good agree-
ment with those resulting from a harmonic frequency calculation.

In the excited state, V2, the lower-lying torsional eigenstates are centered at β= π
2 and

β = 3π
2 (degenerated minima), giving rise to a doublet structure. The two degenerated

eigenstates contained in every level can, by virtue of sharing the same energy eigenvalue,
be linearly combined to create equivalent sets of torsional eigenstates. Of these possible
sets, two are useful when visualizing the eigenfunctions, namely the delocalized basis set
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Figure 3.5.: a) Potential energy curves, b) permanent dipole momentsj, and c) transition dipole
moments computed at the MS-CASPT2/SA-CASSCF/ANO-L-Rydberg level of theory for BCH,
shown in d). The curved arrow indicates the torsional angle β, defined by the carbon atoms colored
in gray. Adapted from Article 3.5.3.
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and localized basis set. Both sets are totally equivalent for further use in the following
propagations.

The propagations are aimed at achieving unidirectional rotation of one half of BCH with
respect to the other with an external laser field. The molecule is considered to be oriented
along the z-axis and one of its halves is fixed (see Fig. 3.5d), thus acting as the stator of
the overcrowded alkenes anchored to surfaces (recall Section 1.2.3). Several OCT- opti-
mizations of the field, with different constraints are carried out, yielding different rates of
success. In addition, the intuitive IR+UV-strategy is also tested, as an emerging strat-
egy from the OCT-simulations. Details regarding the implementation of the propagation
and the OCT-algorithm with the programs written to this end are given in Sections 3.4.3
and 3.4.4. The programs mypropS0.f90, propagSO.f90, and getlaser.f90 are included
(with a short description) in the Appendix.

The goal of the OCT-simulations is to obtain a laser pulse that maximizes the overlap
between the initial wavefunction (lowest torsional eigenstate of syn-BCH in the V1) and
the target wavefunction (a Gaussian wavefunction imprinted with torsional momentum in
the V2). At first, only electronic transitions are allowed by forcing the pulse to interact
only with the transition dipole moments (Fig. 3.5c). Little unidirectional momentum is
transferred to the excited state after 500 fs. After convergence of the OCT-algorithm, the
overlap achieves a maximum value of ca. 65%. The associated field is linearly polarized
along the x-direction, and its central frequency is in the UV-domain, in resonance with
the vertical transition V1→V2 at the geometry of the syn- and anti -minima.

Torsional transitions in the ground state are included when the permanent dipole mo-
ments (Fig. 3.5b) are also taken into account in a second OCT-simulation. The pulse
is allowed to last 2 ps. In this case, the obtained pulse achieves an overlap of ca. 75%
at convergence of the algorithm. The associated transition is now polarized along the x-
and y-directions. The Fourier transform (FT) of the OCT-field shows that it now carries
frequencies in the UV-domain (only x-component) and IR-domain (x- and y-components).
In order to resolve these two frequency domains in time, a spectrogram of the pulse is com-
puted. The spectrogram shows that the IR-frequencies peak at early times lasting over
almost 800 fs, while the UV-peak is much shorter and sits on top of smaller intensities
distributed over the whole duration of the pulse.

This separation of IR- and UV-frequencies in time bears certain similarities with the
IR+UV-scheme, where the pulse is intuitively constructed as a torsional pre-excitation in
the ground electronic state (few-cycle IR-pulse), followed by a vertical electronic transition
between the V1 and the V2 (UV-pulse). The idea behind such a construct is to (i) create
a torsional wavepacket in the ground state whose momentum is maximum while it crosses
the equilibrium position and (ii) project that momentum to the excited state, where it
continues to evolve in the direction of the transferred momentum (recall Section 1.3.4).
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Such a pulse and the unidirectional motion that it triggers on the motor BCH is shown
in Fig. 3.6. Panel a) shows the applied pulse, with IR- and UV-components (along the
y- and the x-axis, respectively) clearly separated in time. This delay between the pulses
is the control parameter of the IR+UV-scheme, since it governs the directionality of the
motion after the UV-excitation. The remaining parameters (frequencies, intensities, and
lengths of the pulses) are chosen as to excite optimally the torsional ladder in the vicinity
of the syn-region of the potential. A detailed the discussion on choice of these parameters
can be found in Article 3.5.3.

 4000  0  1000  2000  3000  4000
 t / fs

1.0

0.5

-0.1

1.0 π

2.0 π

0.0 π

d)

 β
/ra

d

200

100

0

b)  <p1
Z>

 <p2
Z>

 <
p Z

>/
 h

 |Ψ|2

2

0

-2

4 a)

 E
/G

V
m

-1

 0  1000  2000  3000
 t / fs

1.5 π

1.0 π

0.5 π

c)

 <
β>

/ra
d

 <β1>
 <β2>

Figure 3.6.: IR+UV-strategy. a) The laser pulse applied. b) The expectation values of the
torsional momentum in the ground and excited state. c) The expectation values of the torsional
angle in the ground and excited state. d) The probability density of Ψ(t, β). After the UV-pulse,
over 95% of Ψ|(t, β)|2 is in the excited state. Several cycles of the unidirectional rotation are shown,
as Ψ|(t, β)|2 exits and re-enters the periodic boundaries in the direction π → 2π=0→ π at times
t ≈ 2 ps and t ≈ 3.1 ps. Adapted from Article 3.5.3.

In Fig. 3.6b) and c), the position and the torsional momentum are shown as they oscillate
driven by the IR+UV-field. At the time of the UV-irradiation (1675 fs), the torsional
momentum is at its maximum positive value (ca. 20 units of h̄), and once the wavepacket
is projected to the excited state, the gradient further accelerates the wavepacket, making
the momentum peak at values of ca. 220 h̄ (see panel c). This amount of momentum is
enough to surmount the potential energy barriers that the wavepacket encounters as it
moves along the positive β direction. Figure 3.6d) shows that unidirectional motion. The
probability density evolves unidirectionally, exiting and re-entering the periodic boundaries
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of the [0, 2π] coordinate space for several times. Also, the spreading of the wavepacket can
be appreciated, as well as a small portion of population that is reflected back every time
the wavepacket crosses a potential energy barrier.

After the intuitive IR+UV-scheme has been proven successful, an OCT-optimization
without any kind of polarization constraint is carried out. Unidirectional motion is also
achieved in a much shorter timescales (100 fs) with an elliptically laser polarized (see
Section 3.2. in Article 3.5.3). The mechanism of this pulse is not intuitive enough as to
be rationalized.

3.4. Computational Implementations

3.4.1. Nuclear SE: torsional quantum dynamics

In the following Sections, different aspects of the quantum dynamical calculations carried
out in this Thesis are addressed. These quantum dynamics are performed in the context of
the sought light-triggered torsional motion of the model system BCH. The results emerging
from these calculations are presented in Article 3.5.3. The FORTRAN90 programs written
to perform these calculations can be found in the Appendix, and further reference to the
codes will be done in the following.

In Section 3.4.2, a spectral representation via an orthogonal basis set of functions is
chosen to solve the nuclear TISE. In Section 3.4.3 a pseudospectral representation of
spatially localized functions is chosen to solve the nuclear TDSE on a grid. Reference 107
and chapter 11 of Ref. 108 (and references therein) provide helpful overviews on these and
other methods to represent (and subsequently solve) the SE in Hilbert space, both in time-
independent and time-dependent situations. In this Section, these two representations of
quantum dynamics are illustrated because they provide complementary approaches to
represent the Hilbert subspace in which a quantum chemical system exists.

3.4.2. TISE solved using a spectral representation

The numerical computation of the vibrational eigenstates of BCH (4 in Fig. 3.1), is done
with the program mydiag.f90 (see Appendix). As pointed out in Section 2.2, the problem
at hand is to solve the vibrational nuclear TISE (Eq. (2.7)). The vibration of interest
the torsion associated with BCH’s two halves rotating in opposite directions about the
central double bond. Henceforth the problem is addressed as torsional problem, torsional
wavefunctions, and so on. This type of diagonalization is applied in Article 3.5.3.

The torsion is described with the dihedral angle β ε [0, 2π], (Fig. 3.5d). β is the only
dimension of the vector ~RN (cf. Eq. (2.7)), along which the needed PES for the ground
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and first excited electronic states have been calculated (recall Eq. (2.9)):

V̂ (~RN ) = V̂ (β). (3.2)

The PESs in Eq. (3.2) are shown Fig. 3.5a.

Equation (2.7) is re-expressed in matrix notation4:

Hψν = Eνψν , ν = 0,+1,+2, ... (3.3)

where ν is the torsional quantum number. The problem ahead is to solve the linear
eigenvalue problem of Eq. (3.3) by diagonalizing the matrix H, as to find its eigenvectors
{ψν} and corresponding eigenenergies {Eν}.

From the programming point of view, two tasks arise: (i) setting up the H matrix and
(ii) choosing a suitable algorithm that takes H as input and produces the unitary matrix
U as output, so that:

Ω = U†HU, (3.4)

where Ω is the diagonalized Hamiltonian matrix with the torsional eigenvalues {Eν} on
its diagonal.

Task (ii) has less impact on the efficiency of the program, because once H is constructed,
very efficient numerical routines for diagonalization of matrices are available. They are
included in linear algebra libraries such as the LAPACK-package [145] or described in the
Numerical Recipes series. [146] These routines are coded to optimally tackle specific types
of matrices, depending for example on whether the matrices to diagonalize are real- or
complex-valued, Hermitian or only symmetric. Task (i), however, has more influence on
the efficiency of the program. Depending on what representation is chosen, the accuracy
and the computational effort to set up H by evaluating its matrix elements can vary. In
this section, the solution of Eq. (3.3) in terms of a spectral representation is illustrated.

If one introduces a truncated orthonormal basis set (a spectral representation) of k
elements, the column vector ψν has k elements, and H is a k×k matrix. Let the spectral
basis be {φl}, then the matrix elements Hlm of the Hamiltonian are (recall Eq. (2.8)):

Hlm = 〈φl|Ĥ|φm〉 = 〈φl|T̂ + V̂ |φm〉 = 〈φl|T̂ |φm〉+ 〈φl|V̂ |φm〉 . (3.5)

The PES has been evaluated in β space along a series of points, and then interpolated
to a discrete grid of Ng equally spaced βg points. The change from a continuous β to
a discrete βg can be interpreted as a set of δ-functions {βg} centered about the β(g)

4The subindex N for nuclear is dropped for succinctness, since all quantities are nuclear. Bold, upright
symbols are matrices, such as H.
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positions:

β(g) = g∆β, g = 1, 2, ...Ng, ∆β =
2π
Ng

. (3.6)

Computationally, Eq. (3.6) implies that all functional dependencies on β (continuous)
become dependencies on g (integer). Thus, the evaluation of the potential energy matrix
elements in β-space5:

Vlm = 〈φl(β)|V̂ (β)|φm(β)〉 =
∫ 2π

0
φ∗l (β)V̂ (β)φm(β) dβ, (3.7)

becomes a discrete sum over the index g:

Vlm =
Ng∑
g=1

φ∗l (g)V (g)φm(g) ∆β. (3.8)

Note that, for Eq. (3.8), the relation V̂ (β)=V (β)=V (g) has been used, and thus evalua-
tion of Vlm is straightforward regardless of the functional form of the basis {φl}, because
all quantities φ∗l (g), V (g), and φm(g) are known exactly for all g=1, 2...Ng values. Inte-
gration is performed using Simpson’s rule. [147] Recalling then task (i), the evaluation of
Vlm is not decisive in choosing an appropriate spectral basis set {φl}. That is not the case
for the kinetic energy matrix elements Tlm. T̂ (β) has the following form in β-space:

T̂ (β) = − 1
2Iz

d2

dβ2
, (3.9)

where atomic units have been introduced (h̄=1). Iz is the moment of inertia for one of
the six-membered rings of BCH rotating while the other remains fixed, as to mimic the
situations where the molecular motors have the stator anchored to a solid surface (recall
Section 1.2.3). Equation (3.9) includes two consecutive differentiations of the basis {φl} in
β-space. In order to avoid the costly -and less accurate- numerical differentiation on a grid,
the natural option for {φl} is to choose the own eigenfunctions of T̂ (β), in which evaluation
of Tlm results immediate and exact. The problem in which Ĥ(β)= T̂ (β) is the free particle.
In a cyclic space with cyclic boundary conditions (as is the β-space), the spectral basis of
eigenfunctions for a free particle (plane waves) are called particle-in-a-ring [148] functions,
and have the form:

φl(β) =
(

1
2π

)1/2

eilβ, (3.10)

where l=0,±1,±2,±3... is the definite torsional momentum of each pair of functions and

5The spatially localized βg functions represent actually the introduction of a pseudospectral basis set for
the evaluation of the potential. However, since once the Vlm elements are known, the resulting H is
diagonalized in terms of the spectral basis {φl}, the name spectral is kept.



3.4. Computational Implementations 57

i is the imaginary unit. Thus,

T̂ (β)φl(β) = − 1
2Iz

d2

dβ2

(
1
2π

)1/2

eilβ =
l2

2Iz
φl(β), (3.11)

and it follows immediately that the resulting kinetic energy matrix, T, is diagonal with
the elements:

Tlm =
l2

2Iz
δlm. (3.12)

H is constructed via the evaluation of theHlm matrix elements with Eqs. (3.8) and (3.12)
for its upper (or lower) half only, since H is Hermitian and thus Hlm=H

∗
ml. In H the

β-dependence has been integrated out. H is subsequently parsed to the diagonalization
routine (see mydiag.f90 in the Appendix), and the routine returns the unitary matrix U

and the eigenvalues Eν . Tasks (i) and (ii) can be considered accomplished, and solving
Eq. (3.3) can be viewed as change of basis set, where the initial basis set (particle-in-a-
ring functions) is rotated to the final basis set (torsional eigenfunctions of H) using the
obtained unitary matrix U (Eq. (3.4):

ψν =
k∑

l=1

Ulνφl. (3.13)

Finally, for visualization purposes one needs to transform Eq. (3.13) to the β-space,
where the ν-torsional eigenstate is re-expressed in β-space functions

ψν =
Ng∑
g=1

ψgνβg. (3.14)

Each coefficient ψgν represents the amplitude of the eigenfunction at the point g of the grid.
These amplitudes are computed by summing over all the elements of the basis functions
φl multiplied with their respective contribution Ulν for that given point g:

ψgν =
k∑

l=1

Ulνφl(g). (3.15)

When the sum in equation Eq. (3.15) has been computed for a given ν-th torsional eigen-
state ψν for all g points, the representation along the β coordinate of that ν-th state is
available.
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3.4.3. TDSE: solved on a grid (time-propagation)

The time-propagation of the torsional wavefunction using the Split-Operator-(SO) tech-
nique [149] is illustrated in the present section. Part of the one-dimensional (1D) propa-
gations in Article 3.5.3 were carried out with this technique. The programs written to
this end are mypropa.f90, propagSO.f90, and getlaser.f90. These three codes are
provided with further explanations in the Appendix. As in the preceding section, the
time-propagation can be split into two tasks: (i) setting up a Hamilton operator and (ii)
subsequently solving the TDSE.

Setting up the Hamilton operator After invoking the Born-Oppenheimer approxima-
tion, and having separated the translational and rotational degrees of freedom, the TDSE
in matrix notation adopts the form:

ih̄
∂

∂t

(
ψ1(β, t)
ψ2(β, t)

)
= H(β, t)

(
ψ1(β, t)
ψ2(β, t)

)
, (3.16)

where β is the torsional coordinate of the preceding Section 3.4.3.

The goal is to describe photochemical events triggered by external laser fields which
couple the two electronic states S0 and S1 of BCH, i.e., ground and first electronically
excited state, respectively. Hence the two-dimensions (2D) of the wavefunctions and the
Hamiltonian matrix in Eq. (3.16), in order to include populations both in the ground
(ψ1(β, t)) and excited state (ψ2(β, t)).

The Hamiltonian matrix H(β, t) is now time-dependent because it includes the light-
matter interaction of the molecule with the external field. Within the dipole approxima-
tion, this interaction is accounted for with a field-dipole coupling operator

Ŵ (β, t) = −µ̂(β) · ~ε(t), (3.17)

where µ̂(β) is the dipole moment operator and ~ε(t) is the oscillating laser field. The
operator Ŵ (β, t) is added to the field-free Hamiltonian (cf. Eq. (2.8)). In matrix notation:

H(β, t) = T(β) + V(β) + W(β, t). (3.18)

Recall that in Eq. (3.18) the matrices have elements ij, and these subindices do not
denote elements of a spectral basis (as did the subindices lm in Eq. (3.5)), but rather refer
to the electronic states 1 and 2. That is, the Hamiltonian is:

H(β, t) =

(
− 1

2Iz

d2

dβ2 0

0 − 1
2Iz

d2

dβ2

)
+

(
V11(β) 0

0 V22(β)

)
−

(
~µ11(β) ~µ12(β)
~µ21(β) ~µ22(β)

)
· ~ε(t), (3.19)
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where V11(β) and V22(β) are the PESs for the ground and first excited electronic states,
respectively. The fact that Eq. (3.19) has no off-diagonal kinetic or potential terms is a
direct consequence of the Born-Oppenheimer approximation. In the emerging adiabatic
representation, the only off-diagonal terms come from the dipole matrix µ(β). The matrix
µ(β) has three-dimensional (3D) vectors as matrix elements ~µij(β), which are defined
in the same 3D xyz-space in which the field ~ε(t) is propagating. Thus, the elements of
W(β, t) (last term in Eq. (3.19)) are:

Wij(β, t) = −~µij(β) · ~ε(t) = −µij
x (β)εx(t)− µij

y (β)εy(t)− µij
z (β)εz(t). (3.20)

The dipole vector components are computed together with the PESs for the same range
of β, giving rise to dipole moment surfaces (DMSs), as shown in Fig. 3.5b and c. The
diagonal elements of µ(β) correspond to the permanent dipole moment of the ground
(i= j=1) and first excited (i= j=2) electronic states. The off-diagonal elements (i 6=
j) correspond to the transition dipole moment between the two electronic states. In
the adiabatic representation, only these off-diagonal elements enable population transfer
between the two electronic states when the field is on.

In Eq. (3.20) all three field components are shown, although only two of them can
physically interact with the molecule through the dipole. The third is the direction along
which ~ε(t) propagates in the 3D-space. However, it is Eq. (3.20) that has been implemented
in mypropa.f90 to make the program general. That way, fields propagating along the x-,
y-, and z-directions can be used without further changes in the code. The third dipole is
set automatically as equal to zero through the input specifications of the program.

The dipole couplings are incorporated as a part of the time-dependent potential term:

V(β, t) = V(β) + W(β, t). (3.21)

This is of practical use when implementing the Split-Operator Method, as will be shown
next.

Discretizing time Up to this point, only the question on how to set up the H(β, t) opera-
tor in β-space has been addressed, but not how to solve the associated TDSE (Eq. (3.16)).
To do so, the solution of the TDSE for the time-independent Hamiltonian, H(β), is used
as approximate solution for the time-dependent Hamiltonian, H(β, t). In that case, inte-
grating Eq. (3.16) in β-space yields:(

ψ1(β, t)
ψ2(β, t)

)
= e−iH(β,t−t0)/h̄

(
ψ1(β, t)
ψ2(β, t)

)
. (3.22)
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The approximation of Eq. (3.22) requires this equation to be evaluated between two in-
stants in time (t1 and t2) close enough so that H(β, t1) ∼H(β, t2). That is, t becomes
discretized in Nt timesteps for a total time T . The timesteps tτ are separated by the
stepsize ∆t:

tτ (τ) = t0 + τ∆t, ∆t =
T

Nt
, τ = 0, 1, 2...Nt. (3.23)

Thus, the t-dependency becomes computationally a τ -dependence and the time-evolution
operator e−iH(β,tτ )/h̄ becomes e−iHτ (β)∆t/h̄.

After discretization of time, Eq. (3.22) is rewritten as:(
ψ1(β, τ + 1)
ψ2(β, τ + 1)

)
= e−iHτ (β)∆t

(
ψ1(β, τ)
ψ2(β, τ)

)
, (3.24)

where atomic units (h̄ = 1) have been introduced. The time-evolution operator propagates
the two-dimensional vector on the RHS6 of Eq. (3.24) from the τ -th instant to the τ+1-th
instant of the LHS, i.e., Ψ(β, τ)→Ψ(β, τ+1), by operating the exponential of the τ -th
Hamiltonian on the wavefunction. The choice of the parameter ∆t becomes a trade-
off between the computational effort of having to evaluate Eq. (3.24) a large number
of instants for a given propagation time(large Nt, see Eq. (3.23)) and the inaccuracy of
approximating Hτ (β)∼Hτ+1(β) (large ∆t, see Eq. (3.23)).

Discretizing position and momentum space: the Split-Operator implementation Once
∆t has been chosen, the evaluation of Eq. (3.24) is accomplished with the second order
Split-Operator method. [149] The split is performed upon the time-evolution operator sym-
metrically, so that:

e−iHτ (β)∆t = e−iT(β)∆t/2 · e−iVτ (β)∆t · e−iT(β)∆t/2 +O(∆t3), (3.25)

with an error of third-order in ∆t, due to the noncommutability of kinetic and potential en-
ergy operators. Note that in Eq. (3.25) only the potential term bears the time-dependence
through the index τ . The split of Hτ (β) in T(β) and Vτ (β) results effective when working
on a grid because once the Hamiltonian is split, evaluation of kinetic and potential energy
occurs separately on the reciprocal grids, in which both operators are multiplicative. The
discretization of the position space or β-space is described with Eqs. (3.6) and (3.14).
Analogously, the reciprocal torsional momentum-space or p-space is discretized as:

p(g) = g∆p, g = ±0, 1, ...
Ng

2
, ∆p =

2π
Ng∆β

=
2π
2π

= 1, (3.26)

6Right hand side. LHS is left hand side
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from where it follows p=g, further implying that p is integer-valued in momentum space.
The wavefunction in momentum space for the instant τ is denoted Ψp(τ). Its two compo-
nents ψp

1(τ) and ψp
2(τ) are the sums:

ψp
i (τ) =

+Ng
2∑

g=
−Ng

2

ψp
ig(τ)pg, i = 1, 2. (3.27)

where pg are δ-functions centered about the g-th value of the momentum, which is nu-
merically identical to the value g-itself. Analogously, for the two components of the wave-
function Ψβ(τ) in β-space:

ψβ
i (τ) =

Ng∑
g=1

ψβ
ig(τ)βg, i = 1, 2. (3.28)

Equations (3.27) and (3.28) summarize the key of the pseudospectral grid representation
in localized δ-functions, where the weights of the expansion coefficients of the wavefunction
are the values of the wavefunction itself in space. The switch between the p- and β-spaces
of Eqs. (3.27) and (3.28) is accomplished with the Fourier transform (FT), which the code
propagSO.f90 is implemented in its Fast Fourier transform (FFT) version. In these two
reciprocal spaces, kinetic and potential energy will be evaluated multiplicatively as T(p)
and V(β), respectively.

Furthermore, the evaluation of the RHS of Eq. (3.24) involves the exponentiation of ma-
trices in order to obtain the time-evolved wavefunction. If a given matrix to exponentiate
D is already diagonal, with the elements λkk, its exponential is directly written as matrix
of exponentials:

eD = exp



λ11 · · · 0
...

. . .
...

0 · · · λkk


 =


eλ11 · · · 0

...
. . .

...
0 · · · eλkk

 . (3.29)

However, if the matrix to exponentiate A is not diagonal, but its unitary transformation
U to diagonal D is known:

D = U†AU, (3.30)

A is exponentiated by:

eA = UeDU−1 = U


eλ11 · · · 0

...
. . .

...
0 · · · eλkk

U−1. (3.31)
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Thus, unitary matrices and eigenvalues are necessary to evaluate the non-diagonal (cf.
Eq. (3.21)) potential term Vτ (β) in Eq. (3.25). In addition, matrix diagonalizations are
needed for every timestep of the propagation, because Vτ (β) changes for every instant,
τ , as long as the field is on. The series of FFTs and diagonalizations needed for every
timestep will be now illustrated for one step of the propagation, τ → τ+1. These operations
are performed by the program propagSO.f90

According to Eq. (3.25), the first term to be evaluated is e−iT(β)∆t/2 acting on the
wavefunction at the τ -instant. The first step of the propagation is thus to use the FFT to
change to momentum space (FFT+1).

FFT+1

 2∑
i=1

Ng∑
g=1

ψβ
ig(τ)βg

 =
2∑

i=1

+
Ng
2∑

g=−Ng
2

ψp
ig(τ)pg, (3.32)

which for compactness is written as:

FFT+1Ψβ(τ) = Ψp(τ) (3.33)

The kinetic energy operator is diagonal in p-space, and when evaluated in each g-point of
the discrete p-space, the eigenvalues are computed as:

T(p) =
+

Ng
2∑

p=−Ng
2

Tg, Tg =

(
p̂2

g

2Iz
0

0 p̂2
g

2Iz

)
=

(
p2

g

2Iz
0

0 p2
g

2Iz

)
=

(
g2

2Iz
0

0 g2

2Iz

)
, (3.34)

where the relation g=p has been used. The evaluation of the kinetic energy exponential is
straightforward for every g-point:

e−iTg∆t/2 = exp

[(
−i g2

2Iz

∆t
2 0

0 −i g2

2Iz

∆t
2

)](
ψp

1g(τ)
ψp

2g(τ)

)
=e−i p2

2Iz
∆t
2 0

0 e−i p2

2Iz
∆t
2

(ψp
1g(τ)

ψp
2g(τ)

)
=

(
ψp

1g(τ1/3)
ψp

2g(τ1/3)

)
,

(3.35)

and then, for all g-points:

Ψp(τ1/3) =
+

Ng
2∑

g=−Ng
2

(
ψp

1g(τ1/3)
ψp

2g(τ1/3)

)
. (3.36)

The index 1/3 denotes that one third of the Hτ operator has been already applied. The



3.4. Computational Implementations 63

back Fourier-transformation (FFT−1)

FFT−1Ψp(τ1/3) = Ψβ(τ1/3), (3.37)

switches back to β-space, where the evaluation of the potential energy term e−iVτ (β)∆t

on Ψβ(τ1/3) (cf. Eq. (3.25)) takes place. For this operation the matrix Vτ (β) at the
instant τ needs to be diagonalized for every g-point. Although analytic diagonalization
is possible and convenient for a 2-level system (as is the present model of two electronic
potentials), the program propagSO.f90 implements a numerical diagonalization as to
keep the program usable for more potentials without complication (see Appendix for more
details). This diagonalization takes place directly on basis of the g-points of the β(g)-grid
(cf. Eq. (3.6)):

Vτ (β) =
Ng∑
g=1

Vgτ . (3.38)

That is, for each g-point of the β-space, the following 2×2 matrix,

Vgτ =

(
V gτ

11 V gτ
12

V gτ
21 V gτ

22

)
, (3.39)

is parsed for the instant τ to the diagonalization routine, and the matrices Ugτ and Dgτ

(cf. Eq. (3.31) are produced as output. Then, for every point g-point of β-space, the
operation computed is:

e−iVgτ∆t = exp

[(
−iV gτ

11 ∆t −iV gτ
12 ∆t

−iV gτ
21 ∆t −iV gτ

22 ∆t

)(
ψβ

1g(τ1/3)
ψβ

2g(τ1/3)

)]
=

U

(
−iDgτ

11∆t 0
0 −iDgτ

22∆t

)
U−1

(
ψβ

1g(τ1/3)
ψβ

2g(τ1/3)

)
=

(
ψβ

1g(τ2/3)
ψβ

2g(τ2/3)

)
,

(3.40)

and
Ng∑
g=1

(
ψβ

1g(τ2/3)
ψβ

2g(τ2/3)

)
= Ψβ(τ2/3), (3.41)

where the index 2/3 indicates that two thirds of Hτ have been evaluated. After Fourier-
transforming Ψβ(τ2/3) again to momentum space,

FFT+1Ψβ(τ2/3) = Ψp(τ2/3), (3.42)

the final evaluation of the second half of the kinetic energy is carried out by repeating the
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local evaluation of the kinetic energy of Eq. (3.35):

exp

[(
−i g2

2Iz

∆t
2 0

0 −i g2

2Iz

∆t
2

)](
ψp

1g(τ2/3)
ψp

2g(τ2/3)

)
=e−i p2

2Iz
∆t
2 0

0 e−i p2

2Iz
∆t
2

(ψp
1g(τ2/3)

ψp
2g(τ2/3)

)
=

(
ψp

1g(τ3/3)
ψp

2g(τ3/3)

)
,

(3.43)

and
+

Ng
2∑

g=−Ng
2

(
ψp

1g(τ3/3)
ψp

2g(τ3/3)

)
= Ψp(τ3/3). (3.44)

The so-obtained Ψp(τ3/3)=Ψp(τ+1) is the final, propagated wavefunction at the in-
stant τ+1. The wavefunction can be Fourier-transformed back to β-space, if a visual
representation of the torsional motion is desired:

FFT−1Ψp(τ+1) = Ψβ(τ+1), (3.45)

However, for efficient propagation one can keep the momentum representation and start
immediately the next propagation step by inserting Ψp(τ+1) in Eq. (3.35) and repeating
the three steps with the updated Hamilton operator containing the new term Vτ+1(β).

The grid propagations carried out using the technique described above are shown in
Fig. 3.6. The figure displays the time-evolution of the expectation values of momentum
(panel b) and torsion (panel c) of the wavepacket (panel d) as it evolves in time, driven
by the IR+UV-pulse (panel a).

In addition, the SO-technique is also implemented in the OCT-algorithm used in Arti-
cle 3.5.3, in order to obtain other non-intuitive control fields different from that shown in
Fig. 3.6a. How this algorithm is implemented is the subject of the following section.

3.4.4. Implementation of the OCT-algorithm

The rapidly convergent algorithm proposed by Rabitz and coworkers in Ref. 81, is used
in Article 3.5.3, where light-triggered unidirectional rotation in the model system BCH
is sought. The code written to implement the algorithm can be found in the Appendix
under the name oct.f90.

The propagations needed to optimize the laser pulse are carried out with the Split-
Operator technique, as exposed in the preceding section. In this section, emphasis is
done in the iterative scheme for improving the laser field, and the propagation scheme is
not decisive. As a matter of fact, both the Split-Operator and a Spectral-method were
implemented to obtain the various laser pulses presented in Article 3.5.3. Both approaches
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imply discretization of the time variable. However, to remain succinct in the notation in
this section, the continuous variable t is not exchanged for the discrete tτ in the following
paragraphs.

Choice of the target and initial states The algorithm presented in Ref. 81 optimizes
the overlap between an initial Ψi(β) and final Ψf (β) states at the end of a pulse εOCT (t)
of total length T . As initial state, the lowest torsional eigenstate, ψ0, is chosen, which
corresponds to the syn-BCH-isomer. In order to obtain an unidirectionally accelerated
wavefunction after the pulse, positive torsional momentum is imprinted upon the target
state, by displacing a normal Gaussian function in momentum space to a positive value of
pd:

Ψf (β) =
(

2
πa2

)1
4

exp

[
iβpd −

(
β − β0

a

)2]
, (3.46)

where β0 = π and a is the width-parameter,adjusted to fit the width of ψ0.

Iteration procedure The scheme of Rabitz and coworkers [81] incorporates the infor-
mation from one iteration into the next iteration in an entangled fashion. Each it-
eration includes two propagations: one forward (FW ) propagation of the initial wave-
function (ΨFW (t0)=ψ0) and one backward (BW ) propagation of the final wavefunction
(ΨBW (T )=Ψf ). Two symmetric algorithms exist, depending if one chooses to start each
iteration with the BW or FW propagation. In the present implementation, which fol-
lows that presented in Ref. 80, the algorithm starts with the BW propagation. The first
backwardly propagated wavefunction ΨBW evolves under the initial guess of the laser
pulse ~εg(t). The guess may have an arbitrary form, even ~εg = 0, as long as the overlap
〈ΨBW |ΨFW 〉 is different from the exact zero after the pulse.

The first iteration is started as:

Ψ0
BW (t0)

~εg(t)←−−− Ψ0
BW (T ). (3.47)

where the arrow pointing from right to left indicates the backward direction of time. Next,
Ψ1

FW is propagated forwardly

Ψ1
FW (t0)

~ε0(t)−−−→ Ψ1
FW (T ). (3.48)

using the field ~ε0(t), which already incorporates information from the target state through
the product:

~ε0(t) = − 1
α0

Im[〈Ψ1
FW (t)|Ψ0

BW (t)〉 〈Ψ0
BW (t)|~µ|Ψ1

FW (t)〉] (3.49)

The first iteration is then completed. The second iteration starts again with the back-
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ward propagation, analogous to Eq. (3.47), only this time using a field which contains
information from the first iteration. That is:

Ψ1
BW (t0)

~ε1(t)←−−− Ψ1
BW (T ), (3.50)

with the field

~ε1(t) = − 1
α0

Im[〈Ψ1
FW (t)|Ψ1

BW (t)〉 〈Ψ1
BW (t)|~µ|Ψ1

FW (t)〉]. (3.51)

The forward propagation of iteration 2 follows:

Ψ2
FW (t0)

~ε2(t)−−−→ Ψ2
FW (T ), (3.52)

with the field:

~ε2(t) = − 1
α0

Im[〈Ψ2
FW (t)|Ψ1

BW (t)〉 〈Ψ1
BW (t)|~µ|Ψ2

FW (t)〉]. (3.53)

The iterative scheme has thus the equations

~εk(t) = − 1
α0

Im[〈Ψk
FW (t)|Ψk

BW (t)〉 〈Ψk
BW (t)|~µ|Ψk

FW (t)〉], (3.54)

and
~εk+1(t) = − 1

α0
Im[〈Ψk+1

FW (t)|Ψk
BW (t)〉 〈Ψk

BW (t)|~µ|Ψk+1
FW (t)〉], (3.55)

for the fields of the backward and forward propagations in the k-th iteration, respec-
tively. The algorithm continues to iterate until a convergence criterion is fulfilled, which
in oct.f90 is chosen as the overlap between initial and target wavefunction.

From a programming point of view, it is noteworthy that, for any given iteration,
Eqs. (3.54) and (3.55) require knowledge of ΨFW (t) or ΨBW (t) of the immediately preced-
ing propagation (FW or BW ) over the whole range of times t ε [t0, T ] and over the whole
range of β ε [0, 2π]. Thus, wavefunctions need to be stored in memory from one iteration
to the next one. However, in order to keep the program’s memory requirements low, and
because beyond a given size of the wavefunction, its readout can last longer than its re-
computation, three propagations (instead of two) are implemented for each k-th iteration.
The third propagation produces the needed wavefunction (ΨFW or ΨBW ) by repeating
its original propagation (FW or BW ) in reverse, avoiding the necessity for storage and
readout. [80]



3.5. Articles 67

3.5. Articles

3.5.1. Mechanistic insight into light-driven molecular rotors: a conformational

search in chiral overcrowded alkenes by a pseudo-random approach

Guillermo Pérez-Hernández and Leticia González

In the following article, the ground state conformational dynamics of motors 2 and 3

(see Fig. 3.1) are investigated in the ground state using a pseudo-random approach. A
high number of semi-empirical (AM1) geometry optimizations are carried out using start-
ing geometries that have been generated randomly. The initial randomness converges to
a reduced number of just a few local minima of the ground state PES. These are subse-
quently optimized at the MP2/6-31G(d) level of theory. Further analysis of the obtained
geometries leads to an assignment in the respective rotatory cycles of 2 and 3. Transition
state geometries (TSs) are computed at the B3LYP/6-31G(d) level of theory, and internal
reaction coordinate (IRC) calculations follow, in order to obtain the mechanisms behind
the thermal steps of the rotatory cycle. Energies of the DFT structures (minima and TSs)
are recomputed at the RI-MP2/6-31G(d) level of theory. The resulting activation energies
along the reaction paths are in very good agreement with the experimental data. However,
the two motors present different ground state PES topologies, with six minima in the case
of 2 and four in 3. For 2, new intermediates are found and alternative pathways are
proposed. For 3, the PES is less complicated, since the algorithm has found no further
local minima different from the known geometries of the rotary cycle.

Reproduced by permission of the PCCP Owner Societies.

Original can be found at http://dx.doi.org/10.1039/c0cp00324g.

http://dx.doi.org/10.1039/c0cp00324g
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Mechanistic insight into light-driven molecular rotors: a conformational

search in chiral overcrowded alkenes by a pseudo-random approachw

Guillermo Pérez-Hernández and Leticia González*

Received 23rd April 2010, Accepted 15th July 2010

DOI: 10.1039/c0cp00324g

Chiral overcrowded alkenes are capable of unidirectional rotation via a series of cis-trans

photochemical and helix-inversion thermal steps. Using a pseudo-random conformational search

we have located different ground state minima belonging to the potential energy surface of two

different overcrowded alkenes that function as molecular rotors. The transition states connecting

the minima allow identifying different reaction pathways which are possible in the thermal

helix-inversion steps. The mechanisms found for the two studied molecular rotors are different

and provide a valuable insight into the conformational dynamics of the rotary cycle. While in

one case the thermal step occurs via a single transition state, in the other, several intermediates

are accessible. The associated energy barriers are in agreement with the experimental values,

supporting the proposed mechanisms.

1. Introduction

The design and control of molecular machines is a fascinating

quest in science and nanotechnology.1–4 Among the different

possible nanodevices intended to accomplish motion, linear

and rotatory molecular motors have received a lot of attention

since many synthetic examples have been reported during the

last years.5–13 Although functionality can be triggered in

different ways, an interesting source of energy is the use of

light. Light-driven molecular motors are attractive because

they can be very fast, efficient, and cleaner than those

driven by other external sources of energy (for a recent review,

see ref. 14). For instance, the use of lasers offers ultrashort

time domains as well as nanometre resolution. With this in

mind, some efforts have been devoted to achieve unidirectional

rotation with femtosecond laser pulses.15–21 The funda-

mental aspects of controlling molecular rotors with femto-

second lasers have been recently revised by Fujimura and

coworkers.22

In 1999 the group of Feringa reported5 a class of artificial

rotatory molecular motors based on chiral overcrowded

alkenes, with a naphthalene moiety as a chromophore linked

via a CQC double bond to an identical chromophore. An

example of such ‘‘first generation’’ of molecular rotors with

symmetric biphenanthrylidenes is 1 in Scheme 1. Faster

rotations are achieved in the so-called ‘‘second generation’’

of molecular motors (see e.g. 2 in Scheme 1), where distinct

upper and lower halves as well as heteroatoms are introduced.23

Molecular motors of the type 2 have been mounted on a

surface of gold,12 gold nanoparticles,24 and quartz surfaces25

via a thioether linker on the lower half—the stator, while the

upper half can act as a propeller. Recently,26 this first and

second generation of motors have been redesigned by

exchanging the naphthalene moiety by a dimethyl-substituted

phenyl group, see 3. While preserving the molecular function,

this new molecular motor is up to now the smallest of its type

and it is anticipated that will facilitate the synthesis of other

functionalized motors with tunable velocities.

In all these systems unidirectionality is achieved in four

steps through a light-triggered cis–trans isomerization around

the CQC double bond followed by an irreversible thermally

activated helix-inversion. The direction of rotation (clockwise

or counter-clockwise) is governed by the stereogenic centers

present in the molecules, the interplay of steric hindrance in

the so-called fjord-region (see Scheme 1), and the intrinsic

helicity of the isomers. Scheme 2 illustrates the mechanism to

achieve unidirectionality, taking as an example the rotor 3.

Step 1 is a cis–trans photoisomerization around the central

double bond connecting the stable-cis-3 structure with the

unstable-trans-3 one. Due to the steric effects between the

upper and lower p-xylene moieties, the photoisomerization

takes place only in one direction, namely in that which has the

least steric hindrance. In step 2, a helicity inversion is triggered

thermally, going from the unstable-trans-3 to the stable-

trans-3 conformer. Key to the non-reversibility of this step is

the relative stability of the isomers. Analogous to step 1, step 3

is a photoisomerization in which the stable-trans-3 isomer

Scheme 1 First (1), second (2), and redesigned (3) generation of light-

driven molecular rotors. The so-called fjord-region, where the steric

hindrance determining the unidirectionality of the rotation occurs, is

indicated in 3.

Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena,
Helmholtzweg 4, 07743 Germany.
E-mail: leticia.gonzalez@uni-jena.de
w Electronic supplementary information (ESI) available: Cartesian
coordinates of all the structures of Fig. 5 and 8. See DOI: 10.1039/
c0cp00324g
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evolves only in the direction in which the p-xylene moieties

encounter less steric hindrance giving the unstable-cis-3

structure. Finally, and similar to the step 2, a non reversible,

thermally activated helicity inversion takes place in the step 4,

converting the unstable-cis-3 conformer into the stable-trans-3.

To characterize the structure and function of molecular

motors diverse techniques can be employed. When the stages

of the rotary cycle can be obtained as a solid, X-ray crystallo-

graphy is the natural method of choice. In solution, structures

can be probed with 1H-NMR spectroscopy through the

chemical shifts and coupling constants of the protons bonded

to sp3 carbon atoms.23 Also possible are kinetic studies by

following these signals in time. UV-spectroscopy can be used

to measure shifts in the absorption spectra after cis–trans

photoisomerization. Furthermore, the inspection of helix-

inversion and, ultimately, the unidirectionality of the cycle

are carried out with circular dichroism techniques.

In addition to these experimental techniques, theory can be

a useful tool to elucidate key aspects of the structures,

energetics, and the mechanism underlying unidirectional

molecular rotors. For instance, semiempirical calculations

have been used to obtain ground state energies of the stable

cis and trans conformers of 127 and of some second generation

rotors23 different from 2. Density functional theory (DFT)

calculations have been employed to determine the expected

geometry of unstable forms and the energy barriers involved in

the thermal isomerization process of similar overcrowded

alkenes28 and also of 2 in particular.29 Car–Parrinello

molecular dynamic simulations using restricted open-shell

Kohn–Sham theory30 have shed some light on the photoinduced

cis–trans mechanism of 1. Recently, Torras and coworkers31

have used DFT and MP2 theory to obtain the ground state

potential energy profile along the torsion coordinate of 1 and

of a similar motor where the six-membered ring is substituted

by a five-membered one. The latter calculations were done in

gas and in chloroform solution, both implicitly and explicitly,

using polarized continuum models and quantum mechanics/

molecular mechanics (QM/MM), respectively.31

In this paper, we use a pseudo-random method inspired in

Monte-Carlo strategies32,33 to search for all the ground state

conformers which could be involved in the rotary cycle of

these complex systems. Our conformational search is applied

to the overcrowded alkenes 2 and 3, for which structural

information on intermediates is lacking. As in previous

theoretical studies,30,31 the present study also uses the known

X-ray crystallography geometries of the stable conformers as

starting geometries for the conformational space search. They

serve as templates for creating pseudo-random variations in

the conformational space. The generated structures will be

subsequently optimized at the semiempirical level of theory.

So-defined, the search departs from the original geometries

and samples other possible orientations of the fragments.

Because of its random nature, geometries are generated

neglecting any thermal effects. Thus, the outcome of the

method are relative energy differences and corresponding

geometries. Rather than devising possible pathways between

the known structures or to provide a precise structural

description, the first step of the pseudo-random search aims

at converging statistically to a distribution of all possible local

minima of the ground state potential energy surface (PES),

regardless of how they can be accessed. Then, the obtained

geometries serve as starting points for subsequent optimizations

at a higher level of theory. Certainly, not only stereoisomers of

the template structure can appear; also constitutional isomers

with other connectivities which do not play any role in the

rotary cycle isomers can be the outcome of the pseudo-random

search. With this method, all different conformers involved in

the PES of the unidirectional rotary cycle of the overcrowded

alkenes 2 and 3 have been located.

The rest of the paper is organized as follows. In the next

section we describe the features which are relevant to the

pseudo-random conformational search and we introduce the

adopted notation. The conformational search method is

explained in section 3. Section 4 is devoted to the results, first

focusing on the general characteristics of the method and then

on the conformers found thereby. Calculating the transition

states connecting the minima of 2 and 3 allow us to complete

the mechanism of rotation for each rotor. Finally, section 5

summarizes.

2. Molecular models and nomenclature

The stable starting geometries to be fed into the conforma-

tional search are depicted in Scheme 3. In the case of 2, the

symmetric lower dithioxantylene moiety, designed to be

further functionalized23 for ultimate connection to a solid

surface,12,25 is called stator and the upper half, the methyl-

substituted napthothiopyran, is the propeller or rotor. In the

case of 3, both lower (stator) and upper (rotor) halves are

identical.

Scheme 2 Four-step mechanism to achieve unidirectionality in 3,

adapted from ref. 26.
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In general, we label the conformations according to five

descriptors, (i) absolute configuration of the chiral center

(R or S), (ii) isomerism around the double bond (cis or trans),

(iii) helicity (M or P), (iv) relative orientation of methyl groups

and the p-xylene (2) or the naphthalene (3) moieties, (Z or E),

and (v) orientation of the methyl group at the chiral carbon

atom (axial or equatorial). These descriptors will be used when

they are required to distinguish between two conformations

and they will be dropped if unnecessary; e.g. in some molecules

with cis-trans isomerism and in others without overall helicity

we adopt Z/E nomenclature instead.

While in molecular motor 3 R and S configurations are

possible at carbons 9 and 90, in 2 only one chiral center is

present at carbon 2. Accordingly, we shall label the motor 2 as

(2R), and the motor 3 as (9R,90R), see Scheme 3. In the

particular case of 2, due to its symmetrical stator, there are

no cis or trans isomers, and therefore this label is only required

in 3. The relative orientation of the two halves can give the

overall helicity of the molecule, P or M. The initial stable

structure of motor 2 presents negative helicity and it is called

M. From the two stable structures of 3, one is P and the other

does not have helicity, but can be distinguished with the Z/E

label, in this particular case Z,Z0 for the lower and upper

halves, respectively. In principle, the methyl group at the chiral

center can be at axial or equatorial positions. However, due to

steric hindrances this stereogenic methyl group is forced to a

pseudo-axial or pseudo-equatorial positions. Both the starting

geometries of 2 and 3 have the stereogenic methyl group in

pseudo-axial position.

Accordingly, we shall globally name the initial geometry of

the molecular motor 2 as (2R)-(M)-2-(ax). Similarly, in the

case of 3 the geometries are (9R,90R)-(P)-cis-3-(ax,ax0) and

(9R,90R)-(Z,Z0)-trans-3-(ax,ax0), see Scheme 3.

3. The pseudo-random conformational search

approach

Globally, the method consists of three main steps: (i) the

generation of a random ensemble of all chemically sensible

molecular structures which belong to the full dimensional

PES, (ii) a pre-selection of the most stable minima via an

inexpensive optimization, and (iii) the refinement of the lowest-

energy chemical species at a reliable higher level of theory.

Fig. 1 is a flux diagram with the different steps of the

conformational search algorithm. The first step is the so-called

randomizer, where molecular geometries are generated

according to chemical criteria as explained below. The random

generation is made in internal coordinates which allows to

work with Z-matrices. We call the search pseudo-random

because not all of the internal coordinates are randomly

changed at the beginning of each optimization but chemical

intuition is used to reduce meaningfully the conformational

space. Random values are generated and combined only

for those internal degrees of freedom which affect the

conformations of the systems appropriately. In the case we

are interested, i.e. the rotational profile of molecular motors of

the type shown in Scheme 1, we allow random generation

only for

(i) the length and twist of the central double bond, which

results in cis or trans conformers,

(ii) the dihedral angles which determine the boat-chair

conformation of the rings attached to the double bond

(and inherently, the Z and E conformations),

(iii) the position of the methyl groups bound to the chiral

atoms, which can be equatorial, axial, pseudo-equatorial or

pseudo-axial, and gives rise to R or S enantiomers, and finally

Scheme 3 Initial starting geometries used in the pseudo-random

method with their labeling.

Fig. 1 Flux diagram of the pseudo-random conformational search. The procedure can be parallelized up to N processors.
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(iv) the dihedral angles which affect the helicity of the

ring-moieties (P or M).

The randomizer does not change the form of the external

ring moieties which are assumed to remain the same in all

isomers of interest. As a result, the basic structure of rotor

and stator is conserved in the initial randomly generated

geometries. In this way, the conformational space is consider-

ably reduced, avoiding chemical species irrelevant to the

problem at hand. The detailed internal coordinates which

have been randomized in compounds 2 and 3 are summarized

in Table 1.

A random number is generated for every internal degree of

freedom Q to be randomized such that r A [�0.5,+0.5].

In order to determine how far away from its original value

the random coordinate departs, we introduce a weighting

factor o A [0,1]. Then, the new value of the degree of freedom

Q is obtained as

Q = Q0 + r�o�I, (1)

where Q0 is the initial value. The initial values Q0 for 2 and 3

are taken from X-ray data, from ref. 12 and 26, respectively.

For 2, only one stable structure is available, while for 3 two

conformers have been isolated, see Scheme 3. The interval

range allowed for each type of coordinate is given by I; this

range is different for bond distances, bond angles or dihedral

angles, so that I = Q0 for bond-lengths, I = 1801 for bond

angles and I = 3601 for dihedral angles.

After generating a large ensemble of molecular geometries,

these are optimized with an inexpensive method (see Fig. 1). In

this work, we employ the semiempirical AM1 method, as

implemented in MOPAC 2009,34 but certainly any quantum

chemical method can be used. All the optimizations are done

without any symmetry restrictions. The next step is to perform

a frequency calculation for each converged optimization to

assure that only true minima are obtained. We note that all

these steps can be trivially parallelized in as much each

structure is optimized in one processor. Each AM1 converged

geometry provides a heat of formation, which is collected and

plotted in a histogram. Each peak corresponds to a narrow

distribution of energy values associated to local minima within

a chosen energy range. Here we use a range of 0.1 kcal/mol for

a quick browsing of geometries in different energy ranges.

When the energy histogram is converged, the geometries of

each peak are analyzed and redundancies are eliminated until

single isomers are isolated and assigned to particular energy

values. Finally, once the group of distinct isomers has been

isolated, each isomer is reoptimized at a more accurate level of

theory. In this work the geometries have been optimized at the

MP2/6-31G* level of theory with the Gaussian03 suite of

programs.35 An additional calculation of the Hessian at the

same level of theory is done to guarantee that the obtained

geometry is still a minimum of the MP2/6-31G*-hypersurface.

4. Results and discussion

4.1 Performance of the pseudo-random conformational search

In order to examine the robustness of the conformational

search, here we analyze the performance of the method paying

attention to several parameters. Exemplarily, we illustrate the

procedure taking (2R)-(M)-2-(ax) as an initial structure. Once

the set of internal coordinates have been chosen, three

variables need to be set up to achieve a certain reproducibility:

the seeding value with which the FORTRAN90 code harvests

a table of random numbers, the number of iterations NG

(geometries which are converged to a minimum), and the

weighting parameter o (see eqn (1)). The seeding value does

not have a physical meaning since it is automatically generated

based on the actual time on the processor. Different seeding

Table 1 Internal degrees of freedom allowed to adopt random values
in 2 (center column) and 3 (right column). In the case of 3 only one set
of coordinates (without prime) is shown, but their symmetric counter-
parts (with prime) were also randomized. Numbers correspond to
atom labels shown in Scheme 3. Except for the last row, all parameters
are dihedral angles.

Parameter

Rotor

2 3

Boat-chair 14-1-2-3 1-10-9-8
1-2-3-4
15-28-23-22
28-23-22-21

Helicity 4-5-14-13 8-7-2-3
1-15-28-24

Twist 2-1-15-28 9-1-10-9
Methyl 15-1-2-Me 2-1-9-Me
Bond 1-15 1-10

Fig. 2 Performance of the pseudo-random search method with

respect to the number of converged iterations (panels a–d,

o= 0.75) and to the weighting parameter o (panels e–h). The number

of converged geometries NG is 10(a), 100(b), 500(c), and 1000(d). The

insets display the low-energy range, close to the energy of the starting

geometry of (2R)-(M)-2-(ax). In panels e-h the shown distributions are

for NG = 1000 converged geometries.
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values will generate the same histogram of energies. The

convergence of the method with the number of iterations is

shown in Fig. 2 (panels a–d) for a fixed o = 0.75 value. The

histograms, i.e. the number of counts per energy interval, are

depicted for NG = 10, 100, 500, and 1000 iterations. The insets

zoom up the low energy range. As it can be seen, after

100 iterations there is little change in the energy distributions,

meaning that no additional geometries are found but only the

number of counts for a particular energy increases. The right

column of Fig. 2 (panels e–h) displays the behavior of the

energy distributions with respect to o, using NG = 1000

converged geometries. If the weighting factor is very tight,

o = 0.25, i.e. the internal degrees of freedom are randomized

only up to 25%, practically 100% of the generated geometries

converge to the same structure—to the initial geometry of the

template. A larger o = 0.50 enriches the energy distribution,

making other geometries appear. The same trend is observed

when o increases to 0.75, and finally to the loosest value of 1.0.

Although larger distributions are achieved with higher values

of o, increasing o makes the histogram more widespread. The

number of counts per given energy or the peak-heights in the

histogram become smaller from panel (e) to (h); note the

different scales. This is a pure statistical behavior because

the more geometries become available to the randomizer

through a larger o, the less sensible geometry is generated

and thus the less optimizations converge. That is, even if a

large number of iterations are desirable to cover as much

conformational space as possible, once the pair of values for o
and for the seed is chosen, the energy distributions take shape

after a relatively small amount of iterations. For the following

conformational searches a total of 1000 geometries (NG =

1000) were computed with the o parameter set to 0.75.

4.2 Potential energy surface of molecular rotor 2

4.2.1 Equilibrium conformers of 2. In this section we

discuss the conformers generated out of (2R)-(M)-2-(ax),

recall Scheme 3. Note that in the rotary cycle of this complex,

depicted in Scheme 4, one photochemical step followed by a

thermal step reverts the molecule to a geometry indistinguishable

from the starting one. Only if 2 is fixed to a surface, as in

ref. 12 and 25, these indistinguishable geometries have

different orientations relative to the solid. However, in

solution, or in gas phase, as we are treating here, the two

thermal products are totally equivalent. By means of our

algorithm we intend to search for the unstable photochemical

geometries or other minima which could be involved in

the cycle.

In Fig. 3 the histogram obtained after 1000 iterations is

presented. The picture is already restricted to the useful energy

range and shows MP2/6-31G* relative energies in parenthesis.

Among all the peaks, only six correspond to structures sharing

the same connectivity as the molecular motor 2 and only those

have been labeled. These isomers have been drawn in Fig. 4,

indicating the relevant parameters of the central olefinic plane

and the moieties around it. We note that the relative order of

the optimized conformers at AM1 level of theory is different

than at MP2. The most stable structure is, as expected, the

initial (2R)-(M)-2-(ax) conformer and its enantiomeric

counterpart (2S)-(P)-2-(ax); for simplicity we denote the pair

by racemic notation (2R*)-(M*)-2-(ax). Analogously, each

peak of the histogram contains the two members of the

enantiomeric pair and they will be denoted correspondingly.

The next conformer higher in energy is the (2R*)-(P*)-2-(eq),

which we identify as the photochemical product of the rotary

cycle, on the basis of its helicity (P) and the position of the

methyl group (equatorial), see Fig. 4b. The energy difference

between the two most stable conformers is 4.3 kcal/mol at

MP2/6-31G* level of theory. Recent results obtained by the

group of Feringa et al.29 predict a value of 4.6 kcal/mol at

DFT/6-31G** level of theory for this structure.

Besides the most stable conformer of 2 and its photo-

chemical product (2R*)-(P*)-2-(eq), another four additional

minima have been found. They differ in the helicity, the

position of the methyl group and the relative orientation of

the methyl group with respect to the naphtalene moiety. In the

conformer closest in energy (only 1.2 kcal/mol above the

photoproduct), both rotor and stator moieties are on the same

side of the central olefinic plane. The overall helicity is thereby

lost and because the methyl group and the naphthalene moiety

(both on the rotor) point towards the same side of the olefinic

plane of the central double bond (cf. Fig. 4c), the Z descriptor

is used; hence, this structure is designated as (2R*)-(Z)-2-(ax).

The three additional isomers have relative stabilities ca. 11

kcal/mol above the most stable one, (2R*)-(M*)-2-(ax). The

next conformer higher in energy (10.3 kcal/mol) is (2R*)-(E)-2-(eq),

which also possesses no helicity but the methyl group, now on

equatorial position, is on opposite side of the naphthothiopyran

moiety, corresponding to an E arrangement (see Fig. 4d). The

Scheme 4 Schematic representation of the rotary cycle of 2. Solid

arrows represent the photochemical and thermal steps (1–4) of the

cycle. Dotted arrows indicate the intermediate species in the thermal

steps according to ref. 29. The labels 4a–c correspond to the structures

of Fig. 4.

Fig. 3 Low energy range of the histogram for (2R)-(P)-2-(ax). The

relevant geometries are labeled; the * indicates that both enantiomers

(R and S, or M and P) are included. The MP2/6-31G* relative energy

in kcal/mol is given in parenthesis.
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conformer (2R*)-(E)-2-(ax) is only 1.5 kcal/mol higher in

energy and, as seen in Fig. 4e, it is the result of changing the

methyl group from equatorial to pseudo-axial position.

Finally, the most unstable structure—almost degenerated with

the previous one—differs in the orientation of the stator

moiety, now flipped to the opposite side as the rotor moiety,

while keeping the methyl in axial position, see Fig. 4f. This

conformer possesses again overall helicity and is thus labeled

(2R*)-(P*)-2-(ax).

The relative stabilities are a consequence of steric factors

and they are best explained with the help of Newman

projections along the double bond connecting rotor and stator

(Fig. 4). In the case of the two most stable isomers, the

projections clearly show the least distorted olefinic planes,

with fold angles of ca. 1771 and deviations from planarity in

the sp2 carbons of maximum 61 (see Fig. 4a and b). Further-

more, in these two structures, the stator and rotor are

accommodated on opposite sides of the olefinic plane, so that

steric hindrances are minimized. In (2R*)-(Z)-2-(ax) (Fig. 4c)

both stator and rotor are flipped to the same side of the

olefinic plane. This strain upon the double bond is reflected by

higher fold angles (ca. 1551). However, this structure is

stabilized by having the methyl group in an axial position,

pointing outwards of the highly populated fjord-region. That

is not the case of (2R*)-(E)-2-(eq) (Fig. 4d), about 5 kcal/mol

higher in energy than the previous structure. The other two

remaining higher-energy structures (Fig. 4e and f) are twisted

in the olefinic plane with angles between 161 and 281 and

pyramidalized at the sp2 carbons around ca. 251. Interestingly,

in all the conformers the CQC bond distances differ little,

ranging from 1.361 to 1.364 Å, except in (2R*)-(P*)-2-(ax),

where this bond is stretched to 1.392 Å as a consequence of the

large strain between the stator and rotor.

In the following we are concerned with the role of the

different conformers in the ‘‘four-step’’ rotary cycle of

compound 2 (see Scheme 4). Whereas the thermal (Fig. 4a),

(2R*)-(M*)-2-(ax), and photochemical (Fig. 4b), (2R*)-(P*)-2-(eq),

products involved in step 1 have been experimentally detected,

the others have not been isolated so far. The conformer

(2R*)-(Z)-2-(ax), (Fig. 4c), has been recently calculated29 to

be an intermediate at 3.7 kcal/mol in the thermal helicity

inversion (step 2 in Scheme 4), even if it has not been detected

experimentally. Such an intermediate is not surprising taking

into account that helicity inversion also occurs through meso

forms in similar systems, such as other first36 and second29

generation molecular rotors as well as byphenanthrylidenes.27

Moreover, stepwise helicity inversion has also been theoreti-

cally predicted in other bistricyclic aromatic overcrowded

alkenes.37

The three remaining conformers found by the algorithm

(Fig. 4d–f) have not been reported so far as part of the rotary

cycle. Therefore, in order to provide insight into the role of all

the optimized conformers and undercover the overall mecha-

nism of the rotary cycle, transition states (TS) connecting the

minima have been calculated. These shall be presented and

discussed in the following section.

4.2.2 Transition state geometries of 2. The search of TS

requires suitable starting geometries. To this aim, relaxed

potential energy scans were performed at the AM1 semi-

empirical level of theory. The scans were carried out by

simultaneously changing one, two, or three internal coordi-

nates, typically those characterizing the dihedral angles shown

in Fig. 4, while allowing the rest of the coordinates to relax.

Such scans deliver energy curves with a discontinuity that

marks the change from the reactant side to the product side of

the potential. For each curve, the structure prior to the

discontinuity was then optimized at HF/STO-3G level of

theory using standard TS search algorithms as implemented

in Gaussian03.35 After a TS is optimized, the geometries

and energies were refined using B3LYP/6-31G*. The level of

theory MP2/6-31G* could not be used since the search of TS

Fig. 4 Conformers of 2. For each panel, from top to bottom: chemical structures, dihedral angles of the groups attached to the central double

bond, Newman projections as observed through the central double bond, and PLUTO drawings. Relative energies in kcal/mol at the MP2/6-31G*

level of theory. Angles in degrees and bond lengths in Å.

D
ow

nl
oa

de
d 

by
 T

hu
ri

ng
er

 U
ni

ve
rs

ita
ts

 U
nd

 L
an

de
sb

ib
lio

th
ek

 J
an

a 
 o

n 
20

 A
ug

us
t 2

01
0

Pu
bl

is
he

d 
on

 1
6 

A
ug

us
t 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0C

P0
03

24
G

View Online

74 3. Results



This journal is c the Owner Societies 2010 Phys. Chem. Chem. Phys.

requires the computation of force constants which are

unfeasible at this level of the theory in our present computers.

For consistency in the reaction paths, all the minima have been

reoptimized at the same DFT level of theory as the TS. In

order obtain more accurate energy values on these geometries,

single-point energy calculations were then carried out with a

polarized triple-zeta basis set (TZVP38) at the second-order

Møller–Plesset perturbation theory level using the resolution

of identity approximation (RI-MP239,40) as implemented in

the TURBOMOLE quantum chemical software.41,42 Finally,

intrinsic reaction coordinate (IRC, as implemented in

Gaussian0335) calculations were carried out at DFT level to

determine the reactants and products linked to a given

transition state. A total of nine TS were located. They are

labeled TS1 through TS9 and are depicted together with the

minima they link in Fig. 5. For simplicity in the following

discussion, the minima will be addressed with the labels 4a–4f

from Fig. 4.

The relative stabilities of the TS and corresponding minima

with respect to the most stable thermal 4a minimum are also

given in Fig. 5. The obtained values agree well with those

available in the literature. After irradiation, the photochemical

product 4b is obtained and then several mechanisms can be

conceived. Until now it has been suggested29 that the inter-

mediate 4c, conformer (2R*)-(Z)-2-(ax), is reached via the TS5

(dashed line in Fig. 5). Therefore, TS5 can be ascribed as the

rate-limiting step of the stepwise helix inversion from 4b to 4a,

(i.e. the reaction (2R*)-(P*)-2-(eq) - (2R*)-(M*)-2-(ax)). The

activation barrier Ea = 25.6 kcal/mol from 4b to TS5, both in

this study and in ref. 29, is in agreement with the experimental

value of the activation energy of 24.92 � 0.92 kcal/mol23 for

that helix inversion. Furthermore, this value is also in

agreement with the semiempirical value of 24.3 kcal/mol

obtained by Biedermann et al.37 for the helix inversion of

dithioxantylene, a related overcrowded alkene with a

thioxanthylene group both as stator and rotor. As calculated

by Klok et al.29 and confirmed in this work, from the

intermediate 4c the final thermally stable product 4a is reached

via the TS9. The obtained activation barrier Ea is about

13 kcal/mol, about 2 kcal/mol lower than in ref. 29.

Our IRC calculations, however, do not connect the TS5

directly with the photochemical product 4b, but with the

intermediate 4f, (2R*)-(P*)-2-(ax), which belongs to the group

of three isomers lying around 11 kcal/mol above the minimum.

If we start from the photoproduct 4b we find a small activation

energy (TS1 with Ea = 8.2 kcal/mol), which is required to

change the methyl group from equatorial to axial position.

This change can revert almost barrierless since the corres-

ponding local minimum 4f is very shallow, lying only

1.3 kcal/mol under TS1. According to our calculations, the

unstable intermediate 4f is further linked with the conformer

4e via the TS2. This TS corresponds to the flip of the stator

unit. It lies ca. 23 kcal/mol above the thermal stable minimum

and leads to an activation energy of 11.5 kcal/mol, for both the

forward and backward reactions from 4f and 4e. The con-

former 4e, as was 4f, is a very shallow minimum. Not only the

reaction axial 2 equatorial (4e 2 4d) occurs almost barrier-

less via the TS4 (Ea = 1 kcal/mol), but 4e and 4f are nearly

degenerated. A direct path to 4d from 4b can be achieved via

TS3 at a much more energetic expense, Ea B 39 kcal/mol.

From the conformer 4d (which at room temperature should

be indistinguishable from 4e) several pathways with different

Fig. 5 RI-MP2/TZVP energies at the B3LYP/6-31G* geometries of the six equilibrium conformers of 2 and the corresponding transition states

between them. Energies are given in kcal/mol. Values in parenthesis are taken from ref. 29. Dashed lines refer to the pathway suggested in ref. 29.

The labels 4a–4f correspond to the isomers of Fig. 4.
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activation energies are available. The lowest energy path is a

stepwise reversion to the photoproduct 4b via the series of

TS4, TS2, and TS1, as described before. In this path TS2 is the

rate-limiting step with Ea = 12.1 kcal/mol. A direct reversion

pathway is also possible through TS3 but with a much higher

Ea of 33.1 kcal/mol. The forward reaction towards the stable

form 4a goes either directly through TS8 with an activation

energy Ea = 18.2 kcal/mol or stepwise through TS7 - 4c -

TS9 - 4a. The latter pathway via the intermediate 4c is

unlikely, since TS7 bears a very large activation energy

(Ea = 35.9 kcal/mol) and other lower-energy pathways are

accessible.

Note that in view of the calculated paths, the intermediate

4c is only accessible in the stepwise manner 4b- TS1- 4f-

TS5- 4c, and not as 4b- TS5- 4c (dashed line29). A single

step is yet possible, but the corresponding TS, which is TS6,

lies at ca. 41 kcal/mol and it is not likely to be populated. The

intermediate 4c has not been found experimentally, as kinetic

data23 on the thermal decay of 4b indicated a first order

reaction in the thermal helix-inversion. The explanation is

that because the energy barrier of TS9 is so small the reaction

occurs too fast to detect 4c on an NMR timescale.

In conclusion, Fig. 5 indicates that several paths are possible

in going from the photoproduct 4b, (2R*)-(P*)-2-(eq), to the

thermally stable 4a, (2R*)-(M*)-2-(ax). The reaction is multi-

step and it can undergo either via the rate limiting steps TS5 or

TS8. In both cases the activation energies lie around 24 to

25 kcal/mol, in excellent agreement with the experimental

value 24.92 � 0.92 kcal/mol.23 Besides 4c, the least stable

isomers 4f, 4e, and 4d above 10 kcal/mol are all energetically

accessible.

However, these local minima appear to be very shallow,

making the reaction easily reversible via the TS1, TS2, and

TS4, respectively. Thus, it is very probable that TS8 is

never populated. Instead, the rotary cycle should undergo as

4a - 4b - TS1 - 4f - TS5 - 4c - TS9 - 4a.

4.3 Potential energy surface of molecular rotor 3

4.3.1 Equilibrium conformers of 3. The low-energy range of

the histogram obtained for 3 is presented in Fig. 6 for o = .75

and NG = 1000. The two available cis and trans X-ray

structures (see Scheme 3) produced similar histograms. In

contrast to the histogram of 2 where single peaks are observed,

here six broad distributions are obtained. Within each of them,

the geometries correspond to changes of the hydrogen atoms

of the methyl groups of the p-xylene moieties from eclipsed

to staggered. Among the different structures, only the

lowest energy ones were then optimized at MP2/6-31G* level

of theory. Fig. 7 collects the found structures, showing the

Newman projections along the central double bond (C1–C10),

the dihedral angles of the moieties attached to the olefinic

plane, and PLUTO drawings. As in 2, the notation (R*,R*)-P*

and (R*,R*)-M* contains both enantiomers, (R,R)-P/(S,S)-M

and (R,R)-M/(S,S)-P, respectively. Similarly, (R*,S*)-M*

contains four identical stereoisomers (R,S)-M, (R,S)-P,

(S,R)-M and (S,R)-P, which are related to each other through

a reflection or through the exchange of the rotor and stator

halves.

Among the six energy distributions we have found seven

different conformers, see Fig. 7a–g. The lowest in energy is

labeled (9R,90R)-(P)-cis-3-(ax,ax0) and corresponds to the

initial stable-cis-3 structure of the rotary cycle, see Scheme 2.

The stable-trans-3 structure of the rotary cycle corresponds to

(9R,90R)-(Z,Z0)-trans-3-(ax,ax0) and lies 4.4 kcal/mol higher in

energy. The algorithm has found another two structures at

6.1 and 5.9 kcal/mol, respectively, which show the same

absolute configurations on carbons 9 and 90 and both methyl

groups on equatorial or pseudo-equatorial position (Fig. 7c

and d). They are ascribed to the two photochemical products,

unstable-trans-3 and unstable-cis-3, resulting after step 1 and

step 3 of the rotary cycle.26 In our notation these two

conformers are named (9R,90R)-(E,E0)-trans-3-(eq,eq0) and

(9R,90R)-(M)-cis-3-(eq,eq0). All four conformers discussed

above possess C2 symmetry. As in the case of 2, the most

stable isomers are the ones where the stereogenic methyl

groups are on axial position (Fig. 7a and b). Additionally,

the conformer search arrived at three additional diastereomers

in which the absolute configuration of the chiral carbon atoms

(C9 and C90) differs from one half to the other (Fig. 7e–g).

Since during the unidirectional rotation the absolute

configurations of the chiral carbons must be conserved, we

conclude that these structures are not involved in the rotary

cycle and thus will not be further discussed.

The X-ray structures of the thermal products of 3 show a

twisted central olefin moiety.26 This distortion can be seen in

the fold angles of the double bond (1671 and 2071) in Fig. 7a

and c, respectively. Note that the optimized theoretical values

are in very good agreement with the experimental available

ones (in parenthesis). The same distortion is appreciated in the

photochemical products (Fig. 7b and d). This distortion is due

to the steric hindrance arising from accommodating the sp3

carbon atoms of the chiral center 90 and of the p-xylene

moieties in the fjord-region. In fact, as compared to 2, the

fjord-region has to accommodate one additional methyl-

group. This increase of the steric hindrance can be responsible

for the absence of other minima equivalent to those of 2.

4.3.2 Transition state geometries of 3. The TS that connect

the conformers participating in the rotary cycle of 3 were

computed at the B3LYP/6-31G* level of theory in the same

fashion as for 2. For consistency, the minima were also

Fig. 6 Low energy range of the histogram for (9R,90R)-(P)-cis-3-

(ax,ax0) or (9R,90R)-(Z,Z0)-trans-3-(ax,ax0). The relevant geometries

are labeled; the * indicates that both enantiomers (R and S, orM and P)

are included. The MP2/6-31G* relative energy in kcal/mol is given in

parenthesis.
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reoptimized at B3LYP/6-31G* level of theory. Single-point

energy calculations at the RI-MP2/TZVP level of theory

were then performed on all the obtained geometries. The

resulting energy profile for this rotor, with geometries and

relative internal energies to the global minimum is summarized

in Fig. 8.

Contrary to what it was found for rotor 2, there is no

intermediate in the thermal helicity inversion of 3. The steps 2

Fig. 7 Conformers of 3. For each panel, from top to bottom: chemical structures, dihedral angles of the groups attached to the central double

bond, Newman projections as observed through the central double bond, and PLUTO drawings for the conformers of 3. Relative energies at the

MP2/6-31G* level of theory are also displayed. Angles in degrees and bond lengths in Å. When available, experimental values from ref. 26 are

given in parenthesis.

Fig. 8 RI-MP2/TZVP energies at the B3LYP/6-31G* geometries of the four equilibrium conformers of 3 and the corresponding transition states

between them. Energies are given in kcal/mol. Values in parenthesis correspond to experimental values of Gibbs free energies of activation at 0 1C

taken from ref. 26. The labels 7a–7d correspond to the structures of Fig. 7.
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and 4 of the rotary cycle (Scheme 2) occur in a single step via

the TS1 and TS2, respectively. The obtained Ea values of

17.4 kcal/mol and 24.3 kcal/mol are in good agreement

with the experimental Gibbs free energies26 of 17.0 and

24.2 kcal/mol, respectively.43 Interestingly, whereas all the

minima of the rotary cycle present C2 point-group symmetry,

none of the found TS does. The IRC calculations show that

the motion of the two equivalent molecular halves is not

synchronous. Exemplarily, Fig. 9 shows this asymmetric

behavior for the step 4 of the rotary cycle via TS2. From both

TS, this is the most prominent example of asymmetry because

TS2 has one methyl group clearly on axial position and the

other in equatorial one. Fig. 9a shows a PLUTO drawing of

TS2 with the dihedral angles around its central olefinic plane

indicated. Fig. 9b and c show the evolution of these dihedral

angles against the reaction coordinate; panel b shows the

motion the stereogenic methyl substituents (with and without

prime) and panel c the motion the p-xylene moieties. The TS

occurs at the reaction coordinate 0. From Fig. 9b we see that

both methyl groups (at C2 and C20) start at the same value of

�301 (equatorial position). When the geometry has arrived at

TS2, the dihedral angle of the methyl group at C2 has been

displaced ca. 501, whereas the one at C20 has changed by

almost twice as much (B951). From TS2 onwards the

behavior is inverted: the methyl at C2 must change ca. 1201

to go from equatorial to axial, whereas the one at C20 only

needs to adjust by B251. A similar behavior is observed in

Fig. 9c. The asynchronous mechanism implies that an equi-

valent pathway for step 4 is possible, where the methyl at C20

is the one that moves first, and then the one at C2 follows.

5. Conclusions

This paper provides insight into the thermal mechanism of two

chiral overcrowded alkenes which act as light-triggered

unidirectional molecular rotors, 2 (so-called second-generation

rotor) and 3 (redesigned rotor). A pseudo-random approach

has been implemented to locate ground state minima

belonging to the potential energy surface of 2 and 3. In the

case of 2, a total of six local minima have been found. Three of

them, lying at about 11 kcal/mol above the absolute minimum,

had not been reported so far and their possible role in the

thermal steps of rotary cycle is discussed. Transition states

connecting the six available conformers are located allowing to

estimate activation energy values for different isomerization

pathways. Our calculations indicate that the thermal helicity

inversion step of the rotary cycle of 2 is multistep involving

several intermediates and corresponding transition states.

The limiting energy barrier is estimated to be ca. 26 kcal/mol,

which agrees well with the experimental value of ca.

25 kcal/mol.23 In the case of the rotor 3, seven isomers were

found, from which only four belong to the rotary cycle, while

the other three conformers are diastereoisomers of the rotor.

The two calculated TS for the thermal helix inversion of 3

deliver energies of activation of B17 and B24 kcal/mol, also

in excellent agreement with the experimental ones.26

On the quest to find efficient control strategies of light-

triggered molecular rotors, as e.g. involving shaped laser

pulses, the understanding of the mechanism underlying this

class of light-triggered molecular rotors is essential. Here we

have characterized the potential energy landscapes of the

thermal steps. An analysis of the photochemical pathways is

currently in progress.

Acknowledgements

The authors thank the Deutsche Forchungsgemeinschaft

(GO 1059/2-1) and the Jenaer Graduierten-Akademie for
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S. Koseki and Y. Fujimura, J. Phys. Chem. B, 2004, 108,
4916–4921.
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38 A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100,
5829–5835.
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3.5.2. Rydberg or valence? The long-standing question in the UV absorption

spectrum of 1,1’-bicyclohexylidene

Guillermo Pérez-Hernández, Leticia González, and Luis Serrano-Andrés.

In order to implement light-triggered control of rotation in the model system BCH (4
in Fig. 3.1), the following article, BCH is investigated from a photophysical point of
view. High-level ab-initio methods (MS-CASPT2(2,11)) are used to unravel the appar-
ent contradiction between the UV-spectrum of BCH (two intense bands in gas-, solid-,
and liquid-phase) and the predictions of π-electron-theory (only one). It is found that a
(π, 3s)-Rydberg-transition is responsible for the other band at low energies in the gas phase.
As confirmed through the calculation of the origin of the (π, π∗)-band, the Rydberg-band’s
apparent intensity is rationalized with the vibronic progression of the intense (π, π∗)-band
lying underneath the (π, 3sR)-band.

Wiley-VCH holds the copyright for this article.

Original can be found at http://dx.doi.org/10.1002/cphc.200800454.
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3.5.3. Biologically-inspired molecular machines driven by light. optimal

control of a unidirectional rotor

Guillermo Pérez-Hernández, Adam Pelzer, Leticia González, and Tamar

Seideman.

Once the model system BCH (4 in Fig. 3.1) has been studied from the photochemical
point of view (see Article 3.5.2), the possibility of unidirectional, light-triggered rotation
is investigated. Unidirectionality has to be achieved not through a built-in asymmetry
(see Article 3.5.1), but coherently through the dipole-field interaction. High-level ab-initio
(MS-CASPT2(2,11)) PESs are computed for the ground and first excited states along
the torsional coordinate, and one-dimensional (1D) quantum dynamical simulations are
carried out using diverse control fields. Optimal control theory and intuitive IR+UV-pulses
are used to initiate the unidirectional rotation, lasting several picoseconds. Propagations
are carried out using both the grid representation as well as the state representation.

Reproduced by permission of IOP Publishing under the NJP copyright statement, which can be found at

http://iopscience.iop.org/1367-2630/page/NJP copyright statement.

Original can be found at http://dx.doi.org/10.1088/1367-2630/12/7/075007.
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Abstract. We investigate the extent to which unidirectional intramolecular
torsional motion can be created in an oriented bicyclic model system driven
solely by laser light. We apply the machinery of quantum control via specifically
tailored laser pulses to induce such motion, eliminating the need for the thermally
constrained steps conventionally used in molecular motor systems. Our approach
does not rely on specific details of the potential surfaces to create a preferred
direction. Rather, we use matter–field interaction and the tools of coherent
optimal control to create a wave packet with nonzero angular momentum among
unbound torsional states on an excited electronic surface. Analysis of the results
of the control algorithm provides general insight into when and how optimal
control theory can find solutions that could not be generated through simple
intuitive schemes. We find that, under constrained polarization, the control
algorithm reduces to a simple intuitive coherent control strategy wherein a first
IR pulse creates a non-stationary wave packet on the ground surface and a
subsequent UV pulse transfers it to the excited state. Allowing for polarization
shaping, however, we find new control routes that go beyond the intuitive
scheme.
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1. Introduction

The development of molecular machines has grown, during the past two decades, into an active
and diverse subdiscipline of nanoscience. The understanding of natural molecular mechanical
motions has inspired researchers in chemistry, physics and materials science to create synthetic
systems with similar capabilities with the goal of assembling complex machines from molecular
components. Artificial nanoscale devices have taken the form of molecular switches [1],
propellers [2], muscles [3], gears [4], shuttles [5] and rotors [6], to name but a few of many
imaginative examples (for a comprehensive monograph, see [7]).

Conventional molecular machines are driven incoherently, as an ensemble, for instance
by changes in temperature [8], pH-value [9], redox potential [10] or light [11]–[13]. The
more recent literature on current-driven dynamics in molecular-scale electronics [14]–[18], has
illustrated the possibility of driving molecular machines individually, on a single device level, in
the dry state. Here coherence is maintained (in the complete electronic + vibrational space) but
the opportunities for control are limited, as the driving force is electronic. Together, the early
research on incoherently driven, light-triggered molecular rotors [11]–[13] and the recent work
on individually addressed, current-driven molecular machines in junctions [14]–[18] suggest
the application of control theory to drive molecular motors with coherent light.

The latter field, the control of molecular systems with coherent light sources, has been
extensively reviewed [19]–[28] and is well understood. Concepts and techniques of coherent
control have been applied to problems as diverse as atomic physics and gas-phase molecular
dynamics, solid-state physics and semiconductor device technology, solution chemistry and
biology. Underlying the success of coherent control is the understanding that the coherence
properties of laser light can be imprinted on the quantum state of the system through the
light–matter interaction, along with the development of light sources that allow precise control
over the spectral composition and phase properties of the electromagnetic field.

Among coherent control approaches, optimal control theory (OCT), wherein a systematic
procedure is employed to determine the field properties that optimize a desired system
observable, has been gaining increasing popularity. The success of this class of techniques owes
to their rigorous theoretical understanding [24, 29, 30], the increasing power of computational

New Journal of Physics 12 (2010) 075007 (http://www.njp.org/)

92 3. Results



3

a)

BCH

b)

Figure 1. (a) Bicyclohexylidene (BCH). (b) So-called first generation molecular
rotors, adapted from [6].

systems, and the advance of modern pulse shaping technologies [31]–[41]. The extent to which
OCT can unravel control routes that could not be designed by simple intuitive schemes, however,
has been a matter of controversy.

Here we apply OCT to develop a new form of molecular machines, one that marries the
attractive features of conventional light-driven machines [42, 43] and individually triggered,
current-driven machines [14]–[16], [18]. Specifically, we consider the problem of creating
unidirectional intra-molecular rotation in a simple (but general) oriented model system,
representing a class of biological molecules. A number of previous calculations have illustrated
unidirectional torsion with short linear or circularly polarized pulses. Hoki et al [44, 45] show
that linearly polarized pulses can be used to create unidirectional torsion in a chiral, randomly
oriented system with an asymmetric ground state potential surface, via state ladder climbing,
while circularly polarized pulses must be used to achieve the same effect in an oriented chiral
molecule [44]. In these cases, the asymmetry of the potentials creates a preferred direction
of motion. Yamaki et al [46] apply OCT to the same system to show that a single linearly
polarized shaped pulse can make use of the asymmetries of both the ground and the excited
state surfaces to drive unidirectional motion in either direction, and that the mechanism can be
rationalized as a simple pump–dump process. An intuitive procedure based on a sequence of
an IR and a UV unshaped pulses, with which wave packet localization on the ground surface
is followed by projection onto the excited surface, was also shown to successfully achieve
unidirectionality [47].

Our goal in the present work is three-fold. Firstly, we explore the possibility of using
coherent control tools and concepts to drive sustained, unidirectional torsion in a symmetric
system. Secondly, we ask to what extent OCT can devise control routes that go beyond intuitive
schemes, rather than reduce to a simple pulse sequence that could have been guessed ahead
of the optimization. Thirdly, and most interestingly, we illustrate the potential of polarization
shaping as an efficient way of breaking symmetry and producing unidirectional motions.

As a simple but general model system we choose 1, 1′-bicyclohexylidene (BCH). This
simple olefin, shown in figure 1(a), is used as a 1D model of a class of much more complicated
molecular rotors [6, 48, 49] (see figure 1(b)), that nonetheless shares their essential structural
motives. Research in the field of conventional molecular machines has achieved intramolecular
rotation in these systems through a series of steps consisting of a thermally induced inversion
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of helicity followed by a photochemically induced cis–trans-isomerization of the central C C
double bond. Our goal in the present contribution is to induce continuous unidirectional torsion
in BCH coherently, solely through the interaction with a laser pulse. We are specifically
interested in the case where the potential energy surfaces (PESs) and dipole moments along
the torsional coordinate are totally symmetric. As in the experiments of [49, 50], our system is
oriented and fixed onto a surface. Hence unidirectional motion induced in the molecular frame
is not averaged out in the laboratory frame. We recognize the complexity of realistic molecules
and hence begin our study with an ab initio calculation of the underlying PESs and dipole
functions at a high level of the theory. Our calculations omit inter-nuclear vibrational motions
and focus only on the torsional states of the ground and first excited state Hamiltonians.

In the following section, we first provide details of the electronic structure and spectroscopy
of BCH and next outline our methods of time propagating the wavefunction and our control
approaches. Section 3.1 examines the results of calculations performed with linear polarization
alone. Finally, in section 3.2 we illustrate the potential of polarization optimization in this
context. Our conclusions are summarized in the final section.

2. Model and methods

2.1. Model system. Spectroscopy and quantum chemistry

The nature of the electronically excited states of BCH has been the subject of discussion for
several years, both experimentally [51]–[54] and theoretically [55]–[60]. Spectroscopically, one
observes bands centered about 5.95 and 6.82 eV in the vapor phase [51], 5.95 and 6.32 eV
in the crystalline phase [51] and 6.01 and 6.94 eV in n-pentane solution [52]. Whereas one
strong absorption band may have been expected in the BCH UV-spectrum (corresponding to
the π → π∗-transition) [61], the appearance of two strong bands in the gas phase as well
as in condensed phases is surprising. The π → π∗-bands of the anti- and syn-isomers were
numerically found identical [57]. Furthermore, the observation of two bands in the UV-spectrum
of BCH crystal, where only the anti-isomer is present [51], rules out the possibility that the two
π → π∗-bands result from two different isomers that absorb at different energies. Whereas other
possible valence excitation types have been proposed experimentally (σ → σ ∗ [51] and π →

(CH)2π
∗ [52]) and numerically (π → σ ∗ [58]), the Rydberg nature of this band was illustrated

only recently, first experimentally [54] and later numerically [59]. Its anomalous intensity was
attributed to valence mixing [59] of the π → π∗-state and the π , Rydberg manifold of states. A
subsequent study provided a somewhat different explanation [60], based on calculation of both
the π → π∗-state and the first Rydberg (π → 3sR) state within multiconfigurational complete
active space self-consistent-field second-order perturbation theory in its multi-state version
(MS-CASPT2). The main conclusion of [60] is that no valence mixing between the π → π∗-
state and the π → 3sR-state occurs in the excited state wavefunctions. The π → π∗-band origin
is located beyond the vertical excitation energy of the Rydberg band. Thus, much of the apparent
Rydberg intensity can be ascribed to the underlying, strongly absorbing valence-π → π∗-band.
Details can be found in [60].

In the present work we compute adiabatic PESs and transition and permanent dipole
moments surfaces for the ground electronic state and the first excited electronic singlet state
along the BCH torsional coordinate β, starting in the anti-BCH MP2/6-31G∗ equilibrium
geometry (figures 2, 3), whereas the other coordinates are kept fixed at their equilibrium
configurations. Our results are summarized in figure 4. The ground state potential (V1) shows
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Figure 2. Anti- and syn-BCH.
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Z

Figure 3. Ball-and-stick diagram of oriented anti-BCH. The curved arrow
indicates the torsional angle β. Carbon atoms defining the dihedral angle are
shown as dark gray balls.
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Figure 4. Potential energy curves (a), permanent dipole functions
(b) and transition dipole functions (c) computed at the MS-CASPT2/SA(12)-
CASSCF/ANO-L-Rydberg level of theory [60].

minima at β = 0 (anti-conformation) and π (syn-) with transition states at β = π/2 and 3π/4.
The first excited state (V2) shows the opposite topology, with a barrier of about 25 kcal mol−1 at
β = π , while minima are observed for β = π/2 and 3π/4. As determined in [60], at the anti-
conformation using C2h symmetry conditions, V2 has π → 3sR character, while the π → π∗-
state is higher in energy (V3). In calculations without symmetry considerations, both states mix
and therefore the PESs for the π → 3sR and π → π∗ states show the same topological profile;
accordingly, both states are bright. For simplicity, in this paper we have chosen the lowest-lying
adiabatic state (V2), assuming that the dynamical results would vary at most little if the V3 state
was chosen.
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2.2. Eigenfunctions and eigenenergies

The torsional eigenfunctions and eigenenergies of BCH, {8ν, Eν}, were computed by
diagonalization of the field free torsional Hamiltonian

Ĥ(β)= T̂ (β)+ V̂ (β)

=

−
1

2Iz

d2

dβ2
0

0 −
1

2Iz

d2

dβ2

+

(
V1(β) 0

0 V2(β)

)
, (1)

where β is the torsion angle, V1 and V2 are the S0 and S1 potential surfaces, respectively, Iz is
the moment of inertia associated with the torsional motion,

Iz =

∑
α

r 2
αmα, (2)

rα =

√
x2
α + y2

α, (3)

and α runs over the atoms (Iz=1218 789.7374 a.u.). The eigenenergies and eigenfunctions were
computed up to {Ei ,8i}, i = 700 for the ground and excited states on a grid of 4096 points.

Several considerations regarding the symmetry of the system will prove useful. The torsion
is symmetric with respect to β → −β and β → π −β, but not with respect to β → π/2 −β.
As a consequence, the minima in V1 at β = 0 (anti-BCH) and β = π (syn-BCH) are not
identical, the syn-conformation being about 87 cm−1 lower in energy than the anti-BCH. Due
to their slightly different energies and curvatures, the ground state eigenfunctions {81

ν} are
preferentially localized in one of the two minima. The excited state potential, V2, by contrast,
has a symmetric double-well structure and consequently the excited state eigenvalue spectrum
is doubly degenerate.

Figures 5(a) and (b) show the energy eigenvalues {E1
ν} of the ground state Hamiltonian.

Note that because the syn- and anti-BCH have different absolute energies, two of the eigenvalues
of the syn-conformation are lower than the lowest anti eigenvalue (see figure 5(a). In figure 5(b)
the eigenvalues are sorted into syn and anti eigenvalues. Within each manifold, the linearity
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in the vibrational index ν ′ indicates that the ground state eigenfunctions {81
ν} are essentially

harmonic at low excitation.
Figure 6 displays the corresponding eigenfunctions {81

ν}. As seen in figure 5(b), both
wells are essentially harmonic in the vicinity of the minima, with harmonic frequencies of
ωsyn

= 51.95 cm−1 and ωanti
= 66.20 cm−1, calculated as the average respective level spacing

of the first ten eigenvalues. These frequencies are extremely low, as would be expected for a
torsion of this type, where a very stable carbon–carbon double bond is being forced out of
planarity, and a large mass (∼1.2 × 106a2

0me) is moved. Consequently, the density of vibrational
states is large, about 261 eV−1. As has been found previously [57], the syn-isomer is the more
stable of the two isomers, even on the unrelaxed PES. Syn-BCH (C2v) and anti-BCH (C2h) were
optimized at the MP2/6-31G∗ level using the Gaussian03 [62] quantum chemical software. At
0 K, the ZPE-corrected values give the relative stability of syn-BCH as 7.56 meV. Energies of
the PES for the syn- and anti-minima, corrected with 1

2ω
syn and 1

2ω
anti, respectively, yield a

value of 11.2 meV. For comparison, the value computed in [57] (MP2/6-311G ∗∗ on a HF/6-
31G geometry) is 2.21 meV. Harmonic frequencies were also calculated at the MP2/6-31G ∗

level of theory, yielding ωsyn
0 = 73.48 cm−1 and ωanti

0 = 71.22 cm−1. The discrepancy between
the harmonic frequencies (ω0) and the frequencies arising from diagonalizing the PES (ω) is
larger for the syn conformation (∼20 cm−1) than for the anti (∼5 cm−1) because the geometry
of the PES is not relaxed for the syn isomer.

Approximately 350 eigenvalues lie on each side of the barrier. Given the near harmonicity
of the well, transitions between these levels obey the 1ν = ±1 selection rule to a good
approximation. Assuming an average energy spacing of about 50 cm−1 for all the states under
the barrier, one can calculate the period TP of the associated radiation as

TP =
1

λ
=

1

ωc
= 667.281 fs. (4)

Thus, relatively long times would be needed to climb up the torsional ladder and hence transition
from one isomer to the other through a ladder climbing mechanism is unlikely, requiring of
order 350 transitions. Equation (4) illustrates also the small likelihood of thermal isomerization
by twist of a carbon–carbon double bond.
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The lowest ten eigenvalues {E2
ν} of the excited state Hamiltonian are plotted in figure 7,

where the doublet structure is readily observed. As discussed above, the frequency is small
in comparison with the barrier height, hence tunneling does not take place at the level of
excitation of figure 7, the tunneling splitting is negligible and the degeneracy is nearly rigorous.
Because the two corresponding eigenvectors, 8ν

1 and 8ν
2, span a subspace of the Hamiltonian

with essentially equal energies, any linear superposition of these functions is likewise an
eigenfunction of H with the same eigenvalue E1

ν ≈ E2
ν . Several examples are shown in figure 8.

Of particular interest are the superpositions φ+ and φ− (figures 8(e)–(h)),

φ± =
1

√
2
(82

1 ∓82
2), (5)

because they are localized at the geometry of the ground state transition state connecting the
syn- and anti-isomers. Similar to the ground state counterparts, the energies behave quasi-
harmonically in the vicinity of the minima, with a level spacing of ∼50 cm−1.
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In section 3.1 we use a grid representation of the operators. In this method, the position
space (β ∈ [0, 2π ]) and the momentum space (p ∈ [−pmax,+pmax]) are discretized into Np grid
points on reciprocal grids, with 1x = 2π/Np and pmax = π/Np1x . A fast Fourier transform
(FFT) is used to switch between the two spaces. The Hamilton matrix (equation (1)) is then
diagonalized, yielding the eigenenergies {Eν} and eigenfunctions {8ν(β)} directly expressed in
the position grid.

A complementary representation of the system, which will be useful below, is in terms of
the eigenstates of the Hamiltonian operator (equation (1)). To construct these states, we begin
by defining a primitive basis as the eigenstates of the kinetic portion of equation (1), the particle-
on-a-ring states (1/

√
2π)einθ , n = 0,±1,±2, . . .± nmax with eigenenergies En = h̄2n2/2I and

periodicity 2π . With this primitive basis, the kinetic energy operator is diagonal, and the
potential matrix elements are readily evaluated analytically by expanding the potentials as
Fourier series

V (β)=

bmax∑
b=1

ab sin
bβ

2
(6)

and using the relation

ab

2π

∫ 2π

0
einβ sin(bβ/2)eimβdβ =

ab ∗ 4b

2π(−4m2 − 8nm − 4n2 + b2)
, b = odd, (7)

= 0, b = even. (8)

Diagonalizing the total Hamiltonian in the particle-on-a-ring basis, we obtain the stationary
states of the system as

8ν(β)=

nmax∑
n=−nmax

cνneinβ . (9)

The time evolving wave packet is expanded in terms of the stationary eigenstates as

8total(β, t)=

νmax∑
ν=0

dν(t)8ν(β), (10)

where νmax is the total number of stationary states in the superposition. In the calculations of
section 3.2, νmax = 81, of which eight are in the ground electronic state and the remaining 73 in
the excited state. This basis size was chosen by including only the states with enough amplitude
around π to have a significant overlap (>10−4) with the initial state, as these are the only states
that will participate in the system dynamics. Clearly, this method yields the same observables
and energy eigenvalues as the grid representation outlined above, but each representation lends
itself to a different description of the OCT targets, as discussed in section 3.2.

2.3. Time-dependent nuclear dynamics

The time-dependent nuclear dynamics evolve the following time-dependent Schrödinger
equation:

i
∂

∂t

(
91(β, t)

92(β, t)

)
= Ĥ(β, t)

(
91(β, t)

92(β, t)

)
, (11)

New Journal of Physics 12 (2010) 075007 (http://www.njp.org/)

3.5. Articles 99



10

where |91(β, t)|2 and |92(β, t)|2 represent the adiabatic populations on the ground and excited
state surfaces, respectively. Assuming that the two states are not non-radiatively coupled, the
complete Hamiltonian is

Ĥ(β, t)=

−
1

2Iz

d2

dβ2
0

0 −
1

2Iz

d2

dβ2

+

(
V1(β) 0

0 V2(β)

)
−

(
Eµ11(β) · Eε(t) Eµ12(β) · Eε(t)

Eµ12(β) · Eε(t) Eµ22(β) · Eε(t)

)
, (12)

where Eε(t) is the electromagnetic field.
In section 3.1, equation (11) is integrated in time using the split operator method [63, 64],

within which the time evolution operator is approximated as

e−iĤ1t
≈ e−i(T̂ /2)1t

· e−iV̂1t
· e−i(T̂ /2)1t , (13)

V̂ being the complete potential operator (including the field–matter interaction). Attractive
features of the method are its simplicity and the scaling of the error as the third order in the
time step 1t .4 As above, the kinetic terms of the time evolution operator are evaluated by using
the FFT to switch between position and momentum spaces.

In section 3.2, the state space-based wave packet of equation (10) is propagated via the
fourth-order complex Runge–Kutta algorithm. The method has a local truncation error which is
fourth order in 1t , and lends itself well to optimal control calculations with a target operator
in state space. This can be important for calculations like those of section 3.2, as the level
of convergence of the algorithm is much more strongly dependant on the precision of the
integration than a simple time propagation.

2.4. Optimization of the laser pulse

Having developed potential energy and dipole moment curves in section 2.1 and explored the
spectroscopic and dynamical properties in sections 2.2 and 2.3, respectively, we proceed in this
subsection to introduce a unidirectional rotor based on BCH. To that end we apply OCT [65]
to determine the pulse shape that will set BCH into sustained unidirectional torsion. Within this
approach [65], the functional to be maximized is

Jfi = |〈9i(T )|φf(T )〉|
2
−α0(t)

∫ T

0
[ε(t)]2 dt − 2 Re[〈9i(T )|φf(T )〉

×

∫ T

0
〈9i(t)|

∂

∂t
+ iĤ(t)|9i(t)〉 dt], (14)

where9i(t) is the time-evolving wavefunction,9i(0)= ψi(0) is the initial wavefunction, φf(T )
is the target state at final time T and α0(t) is a parameter weighting the intensity. Requiring that
δ Jfi = 0 and exploiting the time invariance relation,

〈9i(T )|φf(T )〉 = 〈9i(t)|9f(t)〉, (15)

4 Equivalently, Ĥ in the exponent can be split in the order V̂ /2, T̂ and V̂ /2.
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one obtains a pair of differential equations for the time evolution of 9i(t) and 9f(t), which
we solve iteratively, using the algorithm of [65]. We omit details of the method, as these
are extensively discussed elsewhere in this issue, and note the specific parameters used in
section 3.

3. Results

In this section we examine the possibility of inducing unidirectional torsion in the class of
biological molecules represented here by their common BCH moiety using OCT. We ask also
when and to what extent the results of OCT can be intuitively anticipated, that is, reduce
to a simple, readily understood scheme. We begin, in section 3.1, by restricting the control
algorithm to linear polarization. In section 3.2 we show that a more flexible approach, where
the polarization is shaped, provides substantially more extensive control. The initial state for all
propagations is the lowest torsional state of the ground Hamiltonian,

9(t = 0)=

(
81

1

0

)
. (16)

3.1. Linear polarization

In order to achieve unidirectional rotation on the excited state surface, the excited state wave
packet needs to have torsional momentum of only one sign, positive or negative. Thus, a simple
formulation of a target wavefunction for the OCT algorithm is obtained by fitting a Gaussian
function to81

1, and displacing it in momentum space to be centered about a momentum pd 6= 0,

8f(T )=

(
2

πa2

)1/4

exp

[
iβpd −

(
β −β0

a

)2
]

(17)

with

9f(T )=

(
0

8f(T )

)
. (18)

Here we take the target wave packet center to be β0 = π and its width to be 0.09 rad.
As discussed in [65], if the initial and target states are orthogonal to each other, there is

a trivial, solution for the optimal field, namely Eε(t)= 0. From equation (18) it is evident that
〈9i(t)|9f(t)〉 = 0 at all times for the first iteration. Thus, for Eε(t)= 0 subsequent iterations
will not generate nonzero overlap. To circumvent this problem, we use a very weak nonzero
initial field. The initial frequency does not necessarily have to be resonant with 1V2−1(π)=

V2(π)− V1(π)= 0.228Eh , since it only needs to transfer some population from the ground to
the excited state, producing a nonzero overlap that will generate a nonzero Eε(t) solution in the
course of the OCT iteration. The seeding pulse is taken to be of the form

|ε̄(t)| = ε0 sin(ω0t), (19)

where ω0 = 0.250Eh , and ε0 = 10−6 a.u., resulting in a population transfer of less than 10−6.
Two different scenarios were simulated, a pure electronic transition and a vibronic transition.
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i (t). The dotted curve corresponds to a constrained optimization, where
only electronic transitions are included. The solid curve corresponds to an
optimization where both electronic and vibrational transitions are involved.

3.1.1. Pure electronic transition. The length of the sought optimal pulse was set to 500 fs and
the field was taken to be polarized along the X -axis. The target momentum was taken to be
pd = 30.0 h̄, centered about β = π . No penalty function α0 or envelope was added to the field.
The dotted curve in figure 9 shows the overlap of the target state 8f(T ) (17) and the function
9k

i (t) at iteration k versus the iteration number, and tests the convergence behavior of the
algorithm. The algorithm converges to an overlap of ∼65% within ten iterations. The dotted
curves in figures 10(a) and (b) show, respectively, the obtained field in the time domain, and the
field-driven population transfer from the ground to the excited state. At the end of the pulse,
almost the entire wave packet (>99%) is in the excited state. The Fourier transform of the pulse
(not shown) illustrates how the pulse evolves from its initial value of 0.25Eh . As could have been
expected, the frequency has shifted towards a central value resonant with the UV transition at
β = π , with 1V2−1 ∼ 0.228Eh . The spectrogram of the pulse shows no significant frequency
chirp. The ∼65% overlap of 9i and φf at the final time T does not suffice for 9i to have the
desired expectation value of the torsional momentum; only negligible torsional momentum is
created in the excited state at the end of the 500 fs long pulse. This observation can be ascribed
to the fact that the only nonzero transition dipole moment, Eµx

12 is symmetric about β = π . We
show below that much better control is obtained when the permanent dipole moments are taken
into account, and the pulse length is increased, to allow for more flexible dynamics.

3.1.2. Vibrational and electronic transition. We proceed by setting the pulse length to two
picoseconds and including the nonzero components of the permanent dipole vector, Eµ11 in
equation (12). As in the previous simulation, a seed pulse with ω0 = 0.250Eh and ε0 = 10−6 a.u.
is used as a trial pulse amplitude to couple the two electronic states. The target wavefunction is
the same as above (see equation (17)). The solid curve in figure 9 illustrates the overlap element
φf(t)|9k

i versus k, and serves to study the convergence properties of the algorithm. Convergence
is reached after about 12 iterations, at which point the overlap element reaches ∼71.4%. The
X - and Y -components of the optimized field are displayed in figure 10 (the field components
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differ since they interact with differently structured dipole moment components (recall
figure 4)). The Fourier transform again reveals one group of frequencies centered about
1V2−1 = 0.228Eh . Interestingly, however, the OCT-algorithm has made use also of IR-
transitions, as can be seen by the intensity peaks at very low frequencies in figure 11. With the
pulse of figures 10(a) and (b), the expectation value of 〈9i(T )| p̂z|9i(T )〉 is 5.80 h̄ after the 2 ps
pulse, showing significant torsional momentum transfer to the excited state. The spectrograms
of the X - and Y -components of the field are displayed in figure 12. The time/energy resolution
of the spectrogram depends on the duration of the gating function. Since a Gaussian function
has been used, this period is defined by its full-width at half-maximum (FWHM). Short gating
functions resolve the pulse in time while smearing out the frequency information and vice versa.

Although figure 12 involves a tradeoff, it illustrates clearly that the low-frequency (IR)
components peak strongly at early times, whereas the high-frequency (UV) components
are nearly equally distributed over the pulse duration. Thus, the control algorithm reveals
that (within the constraint of linear polarization) the best combination of fields to achieve
unidirectional torsion consists of a short IR followed by a narrow band UV subpulse. The
IR pulse populates a ground torsional wave packet, which the UV subpulse projects onto the
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excited surface at an opportune instant, when the torsional wave packet has reached the turning
point and the ground–excited overlap is optimized.

Furthermore, it is seen that the IR pulse duration is under ∼800 fs. Considering that
the IR frequencies are in the range of 40–200 cm−1, application of equation (4) shows that
the pulse includes very few optical cycles, just one in the case of the lowest frequency (for
40 cm−1Tp ∼ 834 fs) and four in the highest. The optimal control algorithm thus confirms the
usefulness of the IR + UV strategy, applied in the previous research to similar problems [47],
[66]–[69]. In the next subsection, we ask to what extent and how could the pulse parameters
be set intuitively, bypassing the optimization, to yield the same level of control. In section 3.2
we investigate the extent to which unconstrained (polarization shaping) OCT can generate new
solutions, that significantly surpass those of intuitive schemes.

3.1.3. IR + UV strategy. The goal of the IR + UV strategy is to create torsional momentum in
the ground state and then transfer it with an ultrashort (short with respect to torsional motions)
pulse to the excited state. We use the same parameters as in the OCT calculations discussed in
the previous subsection but with the target state on the electronic ground state,

9f(T )=

(
8f(T )

0

)
, (20)

where 8f(T ) is a Gaussian wavefunction (equation (17)) having 30.0 h̄ of initial torsional
momentum, centered about β = π . The field is linearly polarized and hence only the Eµ

y
11

component of the dipole contributes to the field–matter interaction. In this case, the overlap
9i(t)|9f(t) is not necessarily zero, because both functions belong to the same Hamiltonian,
thus no seeding pulse is needed to start the algorithm. A period of 2 ps is simulated and no
envelope function or weighting function is used. Inspecting the convergence behavior of the
overlap, analogous to the discussion of the previous subsection, we find that the algorithm is
able to increase the overlap up to ∼87%, with the final wavefunction having a momentum
expectation value of 18.00h̄. The optimized field is a sinusoidal function, with a central feature
of about 52.0 cm−1, as determined through Fourier transform of the final field. This result has
been expected: the underlying mechanism is torsional ladder climbing, and in order to excite the
syn-isomer, the pulse needs to be resonant with the level spacing around β = π . These results
confirm the conclusion of the previous subsection that, under the conditions of the constraint
optimization considered, the best method to achieve sustained unidirectional torsion in BCH is
the IR + UV strategy.

It remains to discover, however, how sensitive the results are to the parameters of an
analytically constructed pulse. We thus proceed to examine the results of a pulse of the form

Eε(t)= EIR(t) · EεY + EUV(t) · EεX , (21)

where

E j(t)= E0
j · sin (ω j t) · s j(t), j = IR,UV, (22)

and s j(t) is an envelope function of duration tp. The parameters of the two pulses are chosen to
satisfy the following conditions:

1. The IR frequency is resonant with the transitions in the syn configuration of the ground
state, so that ladder climbing is facile (cf figure 5(b)), slope of the solid curve).

2. The IR-pulse duration allows only a few half-cycles.
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3. E0
IR allows sufficient torsional momentum to be gained in the electronic ground state. In

order to maintain comparable fluence while decreasing the pulse duration with respect to
that of the OCT algorithm, we are required to increase the field amplitude.

4. The UV frequency is resonant with 1V2−1 in the vicinity of β = 0.
5. The UV-pulse duration is chosen such that the expectation value of the torsional momentum

p1
z (t) during the electronic transition remains close to its maximum p1

z max ∼ 19.5h̄.
6. E0

UV is chosen so that population transfer is >95%.

We find that these conditions are satisfied with the IR-laser parameters set to:ωIR = 51.0 cm−1
=

0.232 × 10−3Eh , E0
IR = 4.0 GV m−1, t IR

p = 1485 fs,

sIR(t)=

sin

(
π t

t IR
p

)
, 06 t 6 t IR

p ,

0, t > t IR
p

(23)

and the UV-laser parameters to: ωUV = 50 000 cm−1
= 0.228Eh , E0

UV = 2.5 GV m−1, tUV
p =

80 fs

sUV(t)=

sin

(
π t

tUV
p

)
, 1675.06 t 6 1675.0 + tUV

p ,

0, t > 1675.0 + tUV
p .

(24)

Although we show below that the IR + UV pulse sequence induces the desired motion, the
sensitivity to the precise detail of the pulse suggests the advantage of OCT.

Figure 13 summarizes the results obtained with the analytical pulse sequence of
equation (21) (section 3.1.3). The laser pulse is depicted in panel (a). Panel (b) shows the
oscillations in the expectation values of the torsional momenta pz(t) for the electronic ground
and excited states. While for the former p1

z (t) oscillates around zero (solid curve), in the
latter, once the UV-laser has triggered the electronic transition, p2

z (t) maintains a positive value
(dashed curve), undergoing acceleration and deceleration depending on the slope of V2 at the
center of the wave packet. Panel (c) shows the evolution of the expectation value of the torsion
angle, β(t), in the ground (solid) and excited (dashed) states. A full rotation cannot be depicted
in this representation, because β spans the 0 → 2π range. A complementary view of the same
dynamics in thus provided in panel (d), which shows the probability density |9(t, β)|2 versus
time and position.

An alternative way of describing the same driven torsional dynamics is in terms of the
torsional eigenstates, as calculated in the previous section,

C1
ν (t)= 〈91(t, β)|81

ν(β)〉 (25)

for the ground and

C2
ν (t)= 〈92(t, β)|82

ν(β)〉 (26)

for the excited state, where the β-dependence has been integrated out. The square absolute
value of these coefficients after turn off of the pulse is shown in figure 14 . Whereas the ground
state is dominated by the lowest few torsional components, the excited state torsional wave
packet is centered about ν = 485 and is broad, involving ∼20 significantly populated states.
Clear dominance of the odd components reflects our breaking of the symmetry of the two
torsion senses. The need to determine the pulse parameters to high accuracy, however, limits
the applicability of the method.
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3.2. Polarization shaping

In this section we relax the constraint of linear polarization imposed in section 3.1 and allow
the control algorithm to vary with time the polarization of the field to explore the potential
advantage of polarization shaping. We remark that polarization shaping has been demonstrated
in several experiments [41], [70]–[75].

To gain complementary insight into the controlled torsional dynamics, we perform the
calculations in basis set space, rather than in grid space (see section 2.3). A target operator that
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Figure 15. Polarization shaping. (a) The squared modulus of 8(β, t). (b) The
expectation value of the angular momentum. The polarization-shaped pulse is
100 fs long.

embodies the dynamics that we seek to control is a projector onto states with positive angular
momentum,

Ô target =

nmax∑
n>0

|einθ
〉〈einθ

|. (27)

In these calculations, we have used a penalty function amplitude of αo = 50 and a penalty
function shape of the form described in [76]. This restricts the field strength and ensures
that the field grows from zero at a finite rate and approaches zero smoothly toward the target
time. Using this method, we are able to restrict ourselves to very short timescales (10–100 fs)
while significantly improving our control over the torsional dynamics as compared to the linear
polarization approach.

Figure 15 displays the results. Panel (a) may be compared with figure 13(d) for the IR + UV
scheme of section 3.1.3. The probability density exhibits unidirectional motion beginning
immediately after the short pulse and persisting for several cycles before (coherent) dephasing
begins to spread the wave packet. Noteworthy is the difference in the extent of reflection from
interaction with the barriers in figures 15 and 13(d). At the point where the wave packet first
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Figure 16. Results of polarization shaping with all dipole/field interactions
included. (a) Ground (- - -) and excited (solid) state population along with
the portion of the excited state population above the central barrier at 0.22809
Hartrees (solid curve with superimposed circles). (b) Ground (- - -) and
excited (solid) state angular momentum during and immediately after the pulse.
(c) X - (left ordinate) and Y - (right ordinate) field components. Note the scale
difference indicating that the Y -component of the field is much more intense.

encounters the excited state torsional barrier at the 0/2π juncture (see figure 4(a)), a faint line
can be seen moving in the direction counter to the bulk of the wave packet, which continues
rotating onward to emerge from the β = 0 side of the coordinate system. This represents
portions of the total wave packet that are reflected from the barrier. This happens most noticeably
for wave packets that have a great deal of population at energies not too far above the peak
value of the torsional barrier. In figure 15(a), however, such reflection is not observed, since in
the polarization-shaped case the center of the wave packet lies energetically above the highest
bound state, as seen in figure 17 and discussed below.

Within the IR + UV scheme, the ground state angular momentum must be built up before
it can be transferred to the excited state. Within the optimized polarization scheme, the creation
of the phase relations necessary for unidirectional rotation and the population of the excited
state are done simultaneously. Panel (b) displays the excited state angular momentum after the
pulse, where it is seen that unidirectional rotation begins immediately after the pulse turnoff.
The magnitude of this angular momentum once the wave packet accelerates down the slope of
the potential approaches 250h̄, and maintains a large positive value, persisting picoseconds.

Although population transfer occurs steadily through the interaction time with the pulse, it
is not until the last 10 fs that the excited state angular momentum begins to change appreciably
(figure 16(b)). Thus, the phase information necessary for unidirectionality builds up gradually in
the course of population transitions, but is only triggered in the final sharp sub-pulse near 100 fs.
The differences between the dynamics induced by the IR + UV scheme and those induced by the
polarization-shaped pulse are twofold. Firstly, the polarization-shaped pulse is able to increase
the Y -component of the field at the expense of the X -component, thus offsetting the large
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Figure 17. The correspondence between the transition strengths 〈81
1|µ

x
12|8

2
ν〉 (a)

and the populations of torsional states in the excited electronic state after the
pulse (b), (c). Panel (b) corresponds to the IR + UV scheme and panel (c) to
the polarization shaping approach. The shift of the center of the wave packet
towards higher energy states is clearly seen. The state numbers here refer to the
most highly populated subset of the 73 total excited states. In this representation,
state number 46 marks the highest bound state.

difference between the X - and Y-components of the dipole function (see figure 4) that hinders
unidirectional rotation. Secondly, the optimal pulse produces a higher energy torsional wave
packet, dominated by states whose energy is above the central torsional barrier (figures 16(a)
and 17). This wave packet decohers more slowly than the one due to the IR + UV scheme as it
suffers less from collisions.

Within the IR + UV scheme, there is an anticipated close correspondence between the
populations in the excited state levels after the pulse sequence and the strengths of their
transitions from the ground torsional state. Inevitably, the strength of transitions into bound
states is well above that for transitions into states above the barrier, and hence the excited
state wave packet contains ∼26% of bound states. The short shaped pulse, by contrast, is able
to concentrate the pulse fluence in a short time and thus offset the trend determined by the
transition strengths and place ∼90% of the excited state population in torsional states above the
0.22809Eh barrier.

Examination of the control fields involved in the polarization shaping approach shows that
in some respects similar mechanisms apply in this case as in the IR + UV scheme. Figure 18
shows the Fourier transforms of the X - and Y -components of the field, illustrating that the
frequency spectrum of the Y -component (red) is reminiscent of that shown in figure 11 for
the linearly polarized field. While both the X- and Y-field components contain frequencies
corresponding to ground-to-ground, excited-to-excited and ground-to-excited transitions, the
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Figure 18. Frequency domain representation of the X - (black) and Y - (red)
components of the field, where the X -component is referred to the right ordinate
and the Y -component to the left ordinate. The X -component is considerably
weaker and much broader in frequency space.

Y -component of the polarization-shaped pulse is not nearly as broad in frequency space as the
X -component. Both the high- and the low-frequency components of the Y field component
are active throughout the pulse, leading to greater resolution in the frequency domain relative
to the X field component, which is much more concentrated in time and hence broader in
frequency domain. Further, one observes a large difference between the peak intensity of the
most represented frequency in the Y field component (normalized to 1 for ease of comparison)
and that of the X -component (only 0.03). As noted above, this is due to the large difference
in strengths of the X - and Y -components of the transition dipole in figure 4(c). The relevant
parameter is the interaction strength εX(t)〈81

a|µ|82
ν〉, which requires a much lower field strength

to be comparable to εY (t)〈81
a|µ|82

ν〉.
Complementary insights are provided by the temporal evolution of the fields, provided in

figure 16(c). Here we find that the Y-component of the field is shaped in both the low-frequency
(overall envelop) and high-frequency (fine structure) regimes and that its amplitude is high
throughout. The X -component, by contrast, has a very small (although nonzero) amplitude at
all but the very early and very late portions of the interaction time, leading to a broadening
in the frequency domain representation. As will be seen below, this does not reduce to a
simple two pulse control field, as the small oscillations in the X -component of the field lead
to definite polarization when taken in concert with the Y -component of the field. Population
transfer from the ground to the excited electronic state continues steadily during the pulse, but
with low amplitude oscillations that indicate the creation of coherences. This interpretation is
further supported by the results of calculations with only one of the field components. When
only εX(t) is applied and εY (t) is set to zero, only ∼30% of the population is transferred to
the excited state. When only εY (t) is applied, ∼60% of the population is in the excited state,
the results of section 3.1.1 are reproduced, but with no unidirectionality to the excited state
wave packet. The wave packet splits into two counter-propagating wave packets, leaving the net
angular momentum zero.

Lastly, it is instructive to examine the evolution of the total electric field over time. Here we
clearly see the use of multiple elliptical polarizations spanning tens of femtoseconds along with
more exotic forms where the polarization changes rapidly with time. By plotting the changes
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a) b) c) d) e)

f) g) h) i) j)

Figure 19. Time evolution of the polarization properties of the optimal field.
(a) 10–12 fs, (b) 20–22 fs, (c) 30–32 fs, (d) 40–42 fs, (e) 50–52 fs, (f) 60–62 fs,
(g) 70–72 fs, (h) 80–82 fs, (i) 90–92 fs, and (j) 98–100 fs.

in the X and Y control fields simultaneously, we can follow the establishment and change of
particular pulse polarizations (figure 19). At early times, t ∼ 0–40 fs, the pulse is elliptically
polarized (panels (a)–(d)) with a slight change of the orientation around 40 fs (panel (d)). An
entirely different behavior, however, is found in the later portions of the pulse, t ∼ 50–90 fs
(panels (e)–(i)), where the polarization direction varies rapidly. Finally, the pulse ends with a
slowly varying elliptical polarization that decreases in amplitude as the pulse smoothly decays
to zero (panel (j)). Figure 19 thus clarifies the manner in which the polarization-shaped pulse
breaks the rotational symmetry of the system and optimally induces unidirectional torsion.

4. Conclusion

In the preceding sections we explored the extent to which coherent light–matter interactions
alone could drive unidirectional rotation in a symmetric system. We addressed also the more
general question if and when can optimal control strategies provide solutions that could
not be attained by intuitive approaches. Time-dependent approaches based on momentum
space and state space formulations were used in the application of complimentary coherent
control techniques, and useful information about wave packet shaping in multiple regimes was
unraveled. As an experimentally relevant model system we used the BCH molecule, a simple
olefin that serves as a prototype of a class of more complicated molecular rotors that share its
essential structural motives. Our conclusions, however, are largely general.

Under constrained polarization conditions, we find that the optimal control algorithm
reduces to a simple two-pulse sequence, where a first IR pulse excites a wave packet of torsional
states and a subsequent UV pulse, timed to an instance where the system is localized at the
ground state turning point, projects it onto an excited PES. The structure of the excited surface
gives rise to unidirectional motion along the torsional coordinate. We found, however, that
with the restriction to linear polarization removed, significantly better solutions are unraveled.
In particular, an interesting polarization shaping approach is introduced, where elliptically
polarized light breaks the symmetry between the two senses of torsion.
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4. Conclusions and Outlook

The present Thesis is a theoretical work on light-triggered molecular motors. Three
molecules have been studied (see Fig. 3.1), posing a number of different problems: pure
electronic structure calculations, reaction dynamics (time-dependent and time-indepen-
dent), conformational search, and laser control. Ground state and excited state properties
have been subject of investigation, yielding mechanistic insights into the motors’ ther-
mochemistry and photochemistry. Commercial codes as well as codes written for this
Thesis have been used.

The motors 2 and 3 belong to the class of light-triggered unidirectional molecular motors
based on chiral overcrowded alkenes, a group of molecular motors over which extensive
experimental control exists. The unidirectional rotation that this class of motors performs
is based partly upon a thermal process (a molecular helicity inversion), and partly upon a
light-triggered, ultrafast cis-trans-isomerization. Under certain experimental conditions,
these two processes occur irreversibly towards one preferred rotatory direction, leading
to an overall unidirectionality of the molecular motion. This preference of rotation is
based entirely upon semi-rigid substituents built into the molecule through clever syn-
thesis. In this Thesis, the thermal helicity inversion in 2 and 3 has been investigated.
First, a conformational search has been carried out using a Monte-Carlo-based search al-
gorithm, in order to find all possible local minima of 2 and 3 in the electronic ground
state. Subsequently, pathways connecting the found minima have been obtained through
the calculation of TSs and associated IRCs. All of the calculated geometries of the minima
and the corresponding Ea-values (available through the TSs and the IRCs) are in excellent
agreement with the available values from the literature, both for 2 and 3.

However, even if both motors function similarly, their respective PESs differ substan-
tially in complexity. For 2, the search-algorithm has found six minima, three of which
had not been reported so far. This manifold of isomers and the calculated TSs give rise
to alternative pathways in the thermal, irreversible step of the overall unidirectional ro-
tation. Two of the three newly found isomers have Ea-values that allow the backward
thermal escape from these minima at the experimental temperatures. Moreover, one of
the newly-found minima, 2f, is proposed as an additional intermediate in the thermal helix
inversion of 2. In accordance with the experimental observations, the computed difference
in stability (> 5 kcal/mol) of the minima (regardless of Ea-values) guarantees that the
desired stable minimum, 2a, is populated almost exclusively under thermal conditions,
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ensuring the irreversibility of the reaction under the experimental conditions.

These stability relations hold also for the motor 3, but in a less complicated PES. In
this case, the search-algorithm has found four isomers that correspond to the minima
reported in the literature. Again, the obtained relative stabilities (> 5 kcal/mol) between
reactants and products of the thermal reaction account for the process’ irreversibility under
experimental conditions. Computation of the TSs yields Ea-values in excellent agreement
with those provided in the literature, sustaining the mechanism proposed.

Given the fact that overcrowded alkenes present differently shaped thermal pathways,
and that accurate ab-initio methods are mandatory for a realistic description of the light-
matter interaction, a simpler alkene (4, BCH) has been investigated as a model for uni-
directional rotation. This olefin, which can be considered as a building block of larger
overcrowded alkenes, exhibits a syn-anti -bistability which can be triggered with UV-light.
Additionally, BCH serves as a model in which unidirectional rotation has to be achieved
alone through the field-dipole interaction, due to BCH’s lack of built-in asymmetric fac-
tors. In order to describe properly that interaction, BCH’s electronic structure has been
investigated thoroughly with high-level ab-initio quantum chemical methods at first.

Despite its apparent simplicity, the photochemistry of BCH has been matter of contro-
versy in the literature over the last decades. The discussion has focused on the presence
of two intense bands in the low-energy range of the UV-spectrum, in the gas phase as
well as in condensed phases. One of the bands was readily assigned to a HOMO→LUMO
(π, π∗)-transition, according to π-electron theory predictions. Different, contradicting as-
signments of the nature of the other band have followed. Early investigations offered other
low-lying valence-like transitions as an explanation, even if such assignments were unex-
pected within π-electron theory. A possible Rydberg-character of the second transition
was initially excluded (both in theoretical and experimental works) due to the band’s
persistence in condensed phases. Most recent experimental and theoretical studies have
interpreted both bands as a mixture of the (π, π∗)-electronic state with a low-lying, diffuse
3dR-Rydberg state.

In order to carry out electronic structure calculations that do not exclude a given elec-
tronic nature a priori, a one-particle basis set of atomic orbitals has been newly devel-
oped from the ANO-L basis set. It has been specifically optimized to accommodate both
the diffuse and the compact electronic wavefunctions that need to be simultaneously de-
scribed. The performed CASSCF calculations included all possible Rydberg excitations in
the chosen active space. Subsequent multi-state perturbation-theory computations (MS-
CASPT2) resolved the first two excited electronic states into two differentiated states:
one Rydberg-like (π, 3s)-state and one valence-like (π, π∗)-state. The associated vertical
excitation energies (5.95 and 6.83 eV, respectively) and oscillator strengths are in excellent
agreement with the reported band peaks. The resulting MS-CASPT2-assignment reverses
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the order of the states assumed so far, because the calculations predict the Rydberg state
lying at lower energies than the valence state. The apparent intensity of the Rydberg-band
in condensed phases needs further rationalization. To do so, the origin of the vibrational
progression of the (π, π∗)-band has been computed. Optimizing the (π, π∗)-minimum
yields an energy value of 5.63 eV for the associated non-vertical electronic transition in
the anti -BCH (the one present in the solid). This value allows the (π, π∗)-band to extend
beyond the peak of the Rydberg intensity (ca. 5.95 eV), via progressions along the C−−C-
stretching and C−−C−CH2-scissoring modes. The (π, π∗)-vibronic spectrum serves thus as
an underlying continuum, on top of which the Rydberg band appears more intense, even
in condensed phases.

Finally, quantum dynamical simulations have been carried out to probe light-induced,
unidirectional molecular rotation. The adiabatic potentials have been constructed along
the torsion about BCH’s double bond. The model includes the ground and first ex-
cited states, and the associated permanent and transition dipoles, computed at the MS-
CASPT2-level of theory with the optimized Rydberg basis set. As opposed to 2 and
3, BCH is highly symmetric, with quasi-degenerated (ground) and degenerated (excited
state) double-well, cyclic PESs. Prior to the investigation of the light-induced dynam-
ics, the system’s torsional eigenstates have been computed, and torsional frequencies for
the syn- and anti -isomers have been obtained, in good agreement with the corresponding
harmonic frequencies of the associated torsional normal mode.

Diverse control strategies have been used to drive the sought unidirectional rotation in
BCH. These include OCT under different assumptions for the induced transitions, OCT
polarization shaping, and the more intuitive few-cycle IR+UV-strategy. Contrary to 2 and
3, BCH does not rely upon thermal steps for full rotation. Thus, alone the interaction of
the dipole with the shaped light introduces the asymmetry into the pre-oriented system.
The amount of unidirectional momentum transferred to the excited state increases if the
OCT-optimization includes ground state torsional transitions. The obtained pulse shows
a certain time-separation of the carried IR- and UV-frequencies. This principle of time-
separation of frequencies is subsequently exploited in the few-cycle IR+UV-simulation,
which triggers unidirectional rotation in the excited state lasting for over two picoseconds.

Conical intersections can play a major role in the ultrafast cis-trans-isomerizations of
double bonds. [150] This fact, mentioned in the introduction for the case of retinal, is very
likely to be behind the ultrafast isomerization (> 300 ps) measured for chiral overcrowded
alkenes. Whereas in the case of BCH no conical intersection was found, several conical
intersections have been located for the motors 2 and 3 between the ground state, (π2), and
the first excited state (π, π∗). It is thus mandatory that quantum dynamical simulations
of 2 or 3 include conical intersections if efficient laser control strategies in the excited state
are to be devised. Beyond the torsion, such simulations must include pyramidalization
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Figure 4.1.: B3LYP/6-31G(d) UV-spectra of the four isomers of 3. The panels are ordered
clockwise a)→b)→c)→d)→a) following the rotary cycle of Fig. 3.3e. The upper-right squared
label in each panel a-d) contains the label of the corresponding isomer in Fig. 3.3a-d), where the
isomers were ordered by energy. To represent best the shifts in the band peaks throughout the
rotary cycle, the preceding isomer’s spectrum is presented in dashed black lines. Band peaks are
shown in nm, with the experimental values in parenthesis.

(re-hybridization) of the sp2 carbon atoms of the central double bond, since the obtained
conical intersections present a twisted-pyramidalized [150] geometry.

The photochemical results including conical intersections as well as a time-dependent
DFT (TDDFT) study of the excited states of 2 and 3 are currently being prepared for
publication. The obtained TDDFT spectra are shown exemplarily for the four isomers
of 3 in Fig. 4.1. The electronic character of the lowest excitation around 300 nm is of
(π, π∗)-nature in the central double bond (the axle) of all motors. The associated batho-
and hypsochromic shifts in the band peaks are consistent with the different degrees of
distortion of the central olefinic plain. Additional MS-CASPT2 computations have been
carried out to obtain more accurate vertical excitation energies for 3, the motor for which
such high level of theory is affordable. Together with the computation of minimum energy
paths (MEPs, currently being computed), a complete PES landscape emerges.



5. Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit quantenchemischen und quantendynami-
schen Berechnungen von molekularen Rotoren. Außerdem werden Laserkontrollstrategien
zur unidirektionellen Rotation vorgeschlagen.

Vier Ideen bilden die Grundlage dieser Forschungsarbeit: (i) Wichtige biologische Pro-
zesse basieren auf einer maschinenartigen Funktionsweise von großen Biomolekülen. (ii)
Heutzutage bietet Nanotechnologie eine Vielfalt an molekularen Maschinen, welche zum
Teil auch von biologischen Systemen inspiriert sind. Eine Klasse solcher Maschinen sind die
molekulare Rotoren, in denen eine Drehbewegung auf molekularer Ebene stattfindet. (iii)
Sowohl in den biologischen als auch in den nanotechnologischen molekularen Maschinen
spielt die quantenmechanische Natur der Materie eine entscheidende Rolle und (iv) quan-
tenmechanische Phänomene lassen sich anhand externer Laserfelder steuern. Punkt (i)
wird an den Beispielen der ATP-Synthase und des Chromophors Retinal erläutert, in de-
nen mechanische Eigenschaften auf molekularer Ebene weitere Folgen auf zellulärer Ebene
haben: Energieverwaltung im Fall der ATP-Synthase und der erste Schritt des Sehprozes-
ses im Fall des Retinals. In Zusammenhang mit Punkt (ii) wird die Klasse der chiralen,
sog. überladenen (overcrowded) Alkene eingeführt, die als unidirektionelle, lichtinduzierte
molekulare Rotoren erfolgreich experimentell eingesetzt worden sind. Ihre Funktionswei-
se basiert auf der Kombination mehrerer Faktoren: Einer vorhandenen Asymmetrie in
den Potentialenergieflächen (von mindestens einem chiralen Zentrum verursacht), einer
konformationellen Flexibilität und der cis-trans-Bistabilität. Die Wichtigkeit rein quan-
tenmechanischer Prozesse (Punkt (iii)) wird weiter am Beispiel der ultraschnellen (ca.
200 fs) Isomerisierung des Retinalmoleküls betrachtet. Diese Isomerisierung wird durch
nichtadiabatische Kopplungen der beteiligten elektronischen Zustände ermöglicht. Grund-
legende Aspekte der Lasersteuerung chemischer Prozesse (Punkt (iv)) werden auch disku-
tiert, mit dem Schwerpunkt auf Optimal Control Theory (OCT) und der intuitiven Infrarot
+ Ultraviolett (IR+UV)-Strategie, durch welche eine gerichtete Rotation in molekularen
Rotoren ausgelöst wird.

In dieser Arbeit werden die Moleküle aus Abb. 5.1 als Modellsysteme verwendet. Die Mo-
leküle 2 und 3 gehören der Klasse der chiralen überladene Alkene an. 4 (BCH) hingegen ist
ein einfaches Alken, das als Kernbaustein vieler Rotoren zu finden ist. BCH alleine verfügt
auch über syn-anti Bistabilität, die sich mittels UV-Licht steuern lässt, und wird daher als
Modell für Laserkontrollstrategien benutzt. 2 und 3 werden aus unterschiedlichen Gründen
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Abbildung 5.1.: Molekulare Motoren, die in der vorliegenden Arbeit behandelt wurden.

ausgewählt. 2 ist eines der überladenen Alkene, das als Rotor auf einer festen Oberfläche
verankert wurde, was im Üblichen die Voraussetzung für weitere nanotechnologische An-
wendungen ist. Im Gegensatz dazu konnte 3 bisher nur in der Gasphase erfolgreich als
Rotor eingesetzt werden. Dieser stellt jedoch einen der einfachsten solcher Rotoren dar,
was vom Standpunkt des rechnerischen Aufwandes her besonders wünschenswert ist. In
Rotoren wie 2 und 3 führt das Zusammenspiel des Überladens und einer gewissen Rigidität
der Substituenten an der zentralen Doppelbindung zu einer axialen Chiralität: P - oder M -
Helizität. Die thermisch irreversible Inversion dieser Helizität trägt zur Funktionsweise von
2 und 3 bei, denn die Rotation wird im Experiment zum Teil thermisch gesteuert. Dar-
um spielt die Topologie der Potentialenergiefläche des elektronischen Grundzustandes eine
Rolle und deswegen wird die konformationelle Dynamik der Rotoren 2 und 3 im Arti-
kel 3.5.1 untersucht. Anhand einer selbst-programmierten Monte-Carlo-Konformer-Suche
werden alle möglichen Konformere von 2 und 3 mit semiempirischen Rechenmethoden
generiert, um letztendlich mit der quantenchemischen MP2/6-31(d)-Methode optimiert
zu werden. Zusätzlich werden auch Übergangsstrukturen zwischen den erhaltenen Kon-
formeren mit der B3LYP/6-31(d)-DFT-Methode optimiert. Wenn Edukte, Produkte und
Übergangszustände einer gewissen Reaktion vorhanden sind, werden Aktivierungsbarrie-
ren (Ea) mit der genaueren RI-MP2/TZVP-Methode berechnet.

Sowohl für 2 als auch für 3 stimmen die berechneten Geometrien und Energiedifferen-
zen sehr gut mit den verfügbaren experimentellen Werten überein. Allerdings erfolgt die
Auswertung unterschiedlich für beide Rotoren. 3 weist eine relativ einfache Konformer-
Landschaft auf, wo die aufgefundenen vier Isomere sich den entsprechenden vier Etappen
der Rotation klar zuordnen lassen: Zwei stabile cis-Konformere und zwei instabile trans-
Konformere, mit jeweils einer Übergangsstruktur, wobei die berechneten Aktivierungs-
barrieren sehr gut mit den experimentellen Werten übereinstimmen (± 0.4 kcal/mol). Im
Fall des Rotors 2 ist die Potentialenergiefläche des Grundzustandes reicher an lokalen Mi-
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nima (sechs), und neben den drei Isomeren, von denen in der Literatur schon berichtet
wurde, findet der Algorithmus weitere drei instabilere Isomere. Mit Hilfe der berechneten
Übergangsstrukturen lässt sich die mögliche Rolle dieser Minima in der Rotation weiter
untersuchen. Die zweite Hälfte der thermisch induzierten Helizitätsinversion ist schon in
der Literatur als schrittweise Reaktion beschrieben worden. Ein neuer Zwischenschritt in
der ersten Hälfte dieser Helizitätsinversion wird zum ersten Mal postuliert. Eine alter-
native, weniger wahrscheinliche Reaktionsroute wird zusätzlich für den zweiten Teil der
Inversion vorgeschlagen.

Wie aus Artikel 3.5.1 hervorgeht, können chirale überladene Alkene unterschiedlich kom-
plizierte Dynamiken im Grundzustand aufweisen. Hinzu kommt noch die Tatsache, dass
angeregte Zustände genau berechnet werden müssen, um realistisch die Licht-Materie-
Wechselwirkung beschreiben zu können und um letztendlich Laserkontrollstrategien zu
entwerfen. Quantenchemische und quantendynamische Berechnungen sind einfacher am
Modellsystem 4 (BCH) durchzuführen. Als erstes erfolgt im Artikel 3.5.2 eine gründliche
Untersuchung der angeregten Zustände von BCH, die schon seit langem in der Litera-
tur kontrovers diskutiert werden. Im Prinzip scheint das mehrfach aufgenommene UV-
Spektrum von BCH (in der Gasphase, im Festkörper und in Lösung) im Gegensatz zur
π-Elektron-Theorie zu stehen. Denn als einfaches Alken sollte nur der (π, π∗)-Übergang
(HOMO→LUMO) als einziger starker Übergang im Spektrum auftauchen. Jedoch weist
das UV-Spektrum von BCH (das im Festkörper nur als anti -BCH vorkommt) zwei starke
Banden auf. Der elektronische Charakter der zweiten Bandes ist umstritten, und sowohl
Valenz- (z. B. (σ, σ∗)) als auch Rydberg-Übergange wurden seitens Theorie und Experi-
ment in Betracht gezogen.

Im Artikel 3.5.2 wird problemspezifisch ein Basissatz entwickelt, der den diffusen Cha-
rakter von Rydberg-Wellenfunktionen beschreiben kann, aber trotzdem den Valenz-Wellen-
funktionen nicht uneingeschränkt Diffusität hinzufügt. Die ab-initio SA-CASSCF-Methode,
zusammen mit diesem Rydberg-Basissatz, wird eingesetzt, um im Anschluss mittels Störungs-
theorie (MS-CASPT2) gleichzeitig Valenz-Zustände (Grundzustand (π2) und angeregter
Zustand (π, π∗)) und Rydberg-Zustände zu berechnen. Der active space wird so gewählt,
dass im Prinzip alle möglichen, symmetrie-erlaubten Übergänge berechnet werden können.
Die elektronischen Energiewerte und Wellenfunktionen der MS-CASPT2-Rechnung be-
stimmen den (π, 3sR)-Übergang (Rydberg) als ersten angeregten Singulett-Zustand und
den (π, π∗)-Übergang (Valenz) als zweiten. Die jeweiligen Anregungsenergien 5.95 eV und
6.82 eV stimmen sehr gut mit verfügbaren experimentellen Werten überein, ebenso die je-
weiligen Oszillatorstärken. Es bleibt jedoch zu klären, warum ein Rydberg-Übergang sogar
in der kondensierten Phase zu einer so starken Bande führt. Zu diesem Zweck werden die
(π, π∗)-Minima von anti - und syn-BCH berechnet. Dadurch wird wiederum eine Energie-
differenz berechenbar, die dem Ursprung der Schwingungsprogression der (π, π∗)-Bande im
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Abbildung 5.2: Schematische Darstellung des
elektronischen Grundzustandes und der ers-
ten beiden angeregten Zuständen in anti -BCH.
Anregungsenergien für vertikale und nicht-
vertikale Übergänge sind aufgetragen (in eV).
Aus Artikel 3.5.2.

UV-Spektrum entspricht. Das bedeutet, der nicht-vertikale Übergang zwischen (π2)- und
(π, π∗)-Minimum wird berechnet. Eine graphische Darstellung davon ist in Abb. 5.2 aufge-
tragen. Für anti -BCH wird ein Wert von 5.63 eV als Ursprung der (π, π∗)-Bande gefunden,
d.h. diese starke Bande kann sich bis weit unterhalb der (π, 3sR)-Bande (5.93 eV) erstre-
cken. Die zugehörige Schwingungsprogression wird untersucht, indem die harmonischen
Schwingungsmoden und -frequenzen beider Minima berechnet werden. Progressionen ent-
lang der Scheren- und Streck-Schwingungen tragen zum Profil des anti -(π, π∗)-Übergangs
bei.

In Artikel 3.5.3 werden unterschiedliche Laserkontrollstrategien für BCH vorgeschlagen.
Voraussetzung dafür ist der photochemische Einblick aus Artikel 3.5.2. Dieselbe quanten-
chemische Methode (MS-CASPT2 mit Rydberg-Basissatz) wird eingesetzt. Eine eindimen-
sionale Potentialenergiekurve entlang der periodischen Torsionskoordinate β (der Dieder-
winkel der Doppelbindung in BCH, Abb. 5.1) wird für den elektronischen Grundzustand
und den ersten angeregten Zustand berechnet. Entsprechend werden auch permanente und
Übergangsdipolmomente berechnet.

Der Grundzustand weist das Profil eines quasi-entarteten Doppelminimums auf, mit je-
weils einem Minimum für die anti -BCH- (β=0=2π) und die syn-BCH Geometrie (β=π),
die nicht identisch stabil sind. Diese zwei Positionen entsprechen auch den Symmetrieach-
sen im β-Raum ε [0, 2π]: Alle vorhandene Elemente, die f(β) sind, sind entweder gerade
oder ungerade bei β=0=2π oder β=π. Der angeregte Zustand weist hingegen ein entartetes
Doppelminimumpotential auf, in dem die Minima bei β = π

2 und β = 3π
2 zu finden sind.

Beide Potentiale werden auf ihre Eigenfunktionen und Eigenwerte untersucht, indem die
entsprechende Kern-Schrödingergleichung durch eine Matrixdiagonalisierung gelöst wird.
Für den Grundzustand sind die berechneten Eigenfunktionen entweder um das syn- oder
das anti -Minimum zentriert, wobei jeweils ca. 350 Torsionseigenzustände unter der Bar-
riere im Grundzustand liegen. Die durch die Diagonalisierung erhaltene Schwingungsfre-
quenzen für die Torsion von syn- und anti -BCH entsprechen in guter Übereinstimmung
den Werten aus einer harmonischen Frequenzrechnung. Die Diagonalisierung für den Fall
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Abbildung 5.3: Few-cycle IR+UV-
Laserkontrollstrategie. Abb. a) zeigt
den verwendeten Laserpuls, in dem
IR- und UV-Komponenten zeitlich ge-
trennt und gezielt verzögert sind. Abb.
b) zeigt die durch den Laser-Puls indu-
zierte Wellenpaketdynamik. Bis zum
Zeitpunkt des UV-Subpulses erfolgt
die Dynamik im Grundzustand. Nach
der Anregung befindet sich >99% der
Wahrscheinlichkeitsdichte |Ψ(t, β)|2
im angeregten Zustand. Die Rotation
wird unidirektionell ausgelöst, und
zwei vollständige Zyklen (π→2π=0→π)
werden angezeigt. Aus Artikel 3.5.3.

des angeregten Zustandes ergibt einen Satz von zweifach entarteteten Eigenfunktionen,
die bei β= π

2 und β= 3π
2 zentriert sind.

Die Torsionspotentiale und Eigenfunktionen werden weiter in einer Untersuchung von
Laserkontrollstrategien mittels OCT und few-cycle IR+UV-Theorie eingesetzt. Ziel der
Untersuchung ist die Rotation allein durch Laser-Pulse auszulösen. Die Formulierung des
Kontrollproblems im Rahmen der OCT erfolgt anhand Anfangszustand und Zielzustand.
Als Anfangszustand wird die niedrigste Torsionseigenfunktion gewählt, die dem syn-isomer
(β=π) entspricht. Als Zielzustand wird eine normierte Gaußfunktion im angeregten Zu-
stand verwendet. Diese ist auch um β = π zentriert und ist erheblich in der positiven
Drehrichtung beschleunigt. Bei der Betrachtung des erhaltenen OCT-Pulses mittels eines
Spektrogrammes taucht eine gewisse zeitliche Differenzierung der IR- und UV-Frequenzen
auf. Diese Art von Unterteilung des Kontrollpulses erfolgt ganz intuitiv, wenn das Kon-
trollproblem im Rahmen der few-cycle IR+UV-Strategie formuliert wird. Es wird ein few-
cycle-Anfangspuls benutzt, der in Resonanz mit den ersten Schwingungsübergängen des
anti -BCH im Grundzustand ist. Es folgt ein kurzer UV-Puls der resonant beide elektroni-
schen Zustände koppelt. Die gezielte Verzögerung des UV-Pulses bestimmt die Rotations-
richtung des Wellenpaketes im angeregten Zustand. In Abb. 5.3 wird der Laserpuls und
die dadurch induzierte Dynamik gezeigt. Nach der UV-Strahlung vollendet das angeregte
Wellenpacket zwei vollständige Rotationszyklen. Das eindimensionale BCH-Model erweist
sich dadurch als geeigneter lichtinduzierter Motor.

Derzeit durchgeführte Berechnungen beschäftigen sich mit den angeregten Zuständen
der Motoren 2 und 3, mit besonderer Berücksichtigung der konischen Durchschneidungen
und ihren Folgen in der lichtinduzierten Dynamik.
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U., Veryazov, V., Widmark, P.-O., Cossi, M., Schimmelpfennig, B.,
Neogrady, P., and Seijo, L. MOLCAS: a program package for computational
chemistry. Comp. Mater. Sci., 28, 222–239 (2003). 47

[143] Veryazov, V., Widmark, P.-O., Serrano-Andrés, L., Lindh, R., and Roos,

B. O. 2MOLCAS as a development platform for quantum chemistry software. Int.
J. Quant. Chem., 100, 626–635 (2004). 47
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en Berĺın. Por ello es mi persona de referencia para cuestiones avanzadas de estructura
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Verónica Leyva también hace que el trabajo en el grupo sea más agradable. Tanto en
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preguntas. No sé si ellos se dan cuenta, pero ayudándoles también aprendo much́ısimo,
cosa que les agradezco. Los estudiantes visitantes Cristian Buend́ıa, André Santos, y
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Appendix: Programs

• mydiag.f90

This program diagonalizes a number npot of potential energy surfaces defined as
arrays over a number npoints of equally spaced points, with mass and the potential
energy array (from file) as inputs. The user can switch between the subroutines
tred2+tql2 [146] or zheevd [145] for matrix diagonalization. Particle-in-a-ring func-
tions are used to construct the system’s Hamiltonian, yielding the evaluation of the
kinetic energy term trivial (cf. l. 257). A switch to a toy-model harmonic po-
tential is built within the code (cf. line 106) for debugging and general checking.
Two additional switches are provided for verbose and veryverbose printing levels.
Other internal subroutines are included within the program: doheadpsi provides the
wavefunction files with headers and doheader provides the standard output header.
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     1 program mydiag !This program should diagonalize in the basis of 
     2                !linear combinations of 
     3                !the particle in a ring (free−rotor in the plane)
     4
     5 !INPUT in the main program are mass,gridpoints
     6
     7 !INPUT from s.i. 
     8 !nb             basis functions. total nr. will be 2*nb+1
     9 !npot           potential to be diagonalized
    10 !npoints        number of points
    11 !harm           logical. For switching to a toy harmonic potential
    12 !verbose        verbose ouput, for debugging and checking
    13 !veryverbose    even more stuff on output, take your time...
    14 !rut            character*6. Can be 'NR_F90' or 'LAPACK' to switch between d

iag routines
    15 !mass           mass in a.u.
    16
    17 !INPUT from files 
    18 !i3.3_i3.3.poten potential file, with i=npot
    19
    20 !OUTPUT to  files
    21 !E_i3.3.dat             File with eigenenergies
    22 !EIGEN/i6.6_j3.3.psi            Files with eigenfunctions, (i=wf index,j=pot

 index)
    23
    24 implicit none
    25
    26
    27 INteger, Parameter :: DP= Kind(1.0D0)
    28
    29 integer i,j,k
    30 integer error
    31 integer points
    32 integer nb
    33 integer npot
    34
    35 real(KIND=DP) :: theta(:),x(:),thres
    36 allocatable theta,x
    37 real(KIND=DP) :: arg(:)
    38 allocatable   arg
    39 real(KIND=DP) :: pot(:)
    40 allocatable pot
    41 complex(KIND=DP) fi(:,:),fi2(:,:),faux(:)
    42 allocatable fi,fi2,faux
    43
    44 complex(KIND=DP) integrand(:)
    45 allocatable integrand
    46 complex(KIND=DP) integral
    47
    48 logical harm
    49 real(KIND=DP) :: kharm
    50 real(KIND=DP) :: nu
    51 real(KIND=DP) :: V0
    52 real(KIND=DP) :: Eharm(:)
    53 allocatable Eharm
    54
    55 complex(Kind=DP),parameter :: Im=dcmplx(0.d0,1.d0)
    56 real(KIND=DP),parameter :: pi=dacos(−1.d0)
    57 real(KIND=DP) :: mass
    58 real(KIND=DP) :: high,low
    59 real(KIND=DP) :: dtheta
    60 real(KIND=DP) :: dummyreal
    61
    62 complex(Kind=DP) :: T(:,:),V(:,:),H(:,:)
    63 real(KIND=DP) :: REH(:,:),REEVEC(:,:),REEVAL(:),REEVAL2(:),REEVEC2(:,:)
    64 allocatable REH,REEVEC,REEVAL,REEVAL2,REEVEC2
    65 complex(Kind=DP) EVEC(:,:)
    66 real(KIND=DP) :: EVAL(:)
    67 allocatable EVEC,EVAL
    68 allocatable T,V,H
    69
    70 complex(Kind=DP) EIGEN(:,:),VC(:)
    71 allocatable EIGEN,VC
    72
    73 character*21 fname
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    74 character*21 filein
    75 logical verbose
    76 logical veryverbose
    77 character*6 rut
    78 !For jgv's
    79 real(KIND=DP),allocatable :: realH(:,:),imH(:,:),realE(:,:),imE(:,:),realEIG

(:)
    80 real(kind=DP),allocatable :: fv1(:),fv2(:),fm1(:,:)
    81 !##############################
    82
    83 !mass=1.218790D+06   
    84
    85 !Definitions
    86 !nb=100
    87 !harm=.false.
    88 !verbose=.false.
    89 !verbose=.true.
    90 !veryverbose=.false.
    91 !veryverbose=.true.
    92
    93 !Input
    94 read(*,*) nb
    95 read (*,*) npot
    96 read (*,*) points
    97 read (*,*) harm
    98 read (*,*) verbose
    99 read (*,*) veryverbose
   100 read (*,*) rut
   101 read (*,*) mass
   102 !#################
   103
   104
   105 !Switch for harmonic oscillator
   106 if (harm) mass=1.d0
   107 kharm=1.d0
   108 nu=sqrt(kharm/mass)
   109 V0=4.d0
   110 !##############################
   111
   112
   113 write(filein,'(i3.3,a1,i3.3,a6)') npot,'_',npot,'.poten'
   114 allocate (fi(−nb:nb,1:points),fi2(−nb:nb,1:points),faux(1:points))
   115 allocate (theta(1:points),pot(1:points),x(1:points))
   116 allocate (arg(1:points))
   117 allocate (T(−nb:nb,−nb:nb),V(−nb:nb,−nb:nb),H(−nb:nb,−nb:nb))
   118 allocate (EVEC(−nb:nb,−nb:nb),EVAL(−nb:nb))
   119 allocate (REEVEC(−nb:nb,−nb:nb),REEVAL(−nb:nb),REEVAL2(−nb:nb),REH(−nb:nb,−n

b:nb),REEVEC2(−nb:nb,−nb:nb))
   120 allocate (Eharm(−nb:nb))
   121 allocate (integrand(1:points))
   122 allocate (EIGEN(−nb:nb,1:points),VC(−nb:nb))
   123 !For jgv's
   124 allocate (realH(1:2*nb+1,1:2*nb+1),imH(1:2*nb+1,1:2*nb+1))
   125 allocate (realE(1:2*nb+1,1:2*nb+1),imE(1:2*nb+1,1:2*nb+1))
   126 allocate (realEIG(1:2*nb+1))
   127 allocate (fv1(1:2*nb+1),fv2(1:2*nb+1),fm1(2,1:2*nb+1))
   128
   129
   130 open(unit=51,file=filein,status='old')
   131 read(51,*) (theta(i),pot(i),i=1,points)
   132 close(51)
   133 low=theta(1)
   134 high=theta(points)
   135 dtheta=(high−low)/(points−1)
   136
   137
   138 !Optional
   139 if (verbose) then
   140    write(*,*) '# Following space array has been created'
   141    write(*,'(i4.4,E20.10E3)') (i,theta(i),i=1,points)
   142    write(*,*) '# End space array' 
   143 endif 
   144
   145 !Write stuff on output
   146 call doheader (mass,high,low,points,harm,nb,nu,kharm)
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   147 write(*,'(x,a25,x,a21)') 'Potential read from file:',filein
   148 write(*,'(x,a25,x,a21)') 'Using routine           :',rut
   149
   150 !Create harmonic potential
   151 if (harm) then
   152    do i=1,points
   153       pot(i)=V0+.5d0*kharm*((.5*pi−theta(i))**2)
   154    enddo
   155    do i=−nb,nb
   156       Eharm(i)=(.5+(i+nb))*nu
   157    enddo
   158    write(*,*) 'Harmonic function has overwritten read potential'
   159 endif
   160
   161 !call integratec(dcmplx(pot(:),0.d0),1,points,integral)
   162 !write(*,*) integral
   163 !pot(:)=pot(:)−real(integral)/(2.d0*pi)*dtheta
   164 !call integratec(dcmplx(pot(:),0.d0),1,points,integral)
   165 !write(*,*) integral
   166
   167 if (verbose) then
   168    write(*,*) '# Following potential will be used'
   169    write(*,'(2(E20.10E3,x))') (theta(i),pot(i),i=1,points)
   170    write(*,*) '# End potential' 
   171 endif
   172
   173 !Create basis functions fi2 (primary)
   174 !of the particle in the ring functions
   175 do i=−nb,nb
   176    do j=1,points
   177        fi2(i,j)=cdexp(Im*real(i)*theta(j))
   178        !fi2(i,j)=dcmplx(dcos(real(i)*theta(j)),dsin(real(i)*theta(j)))
   179    enddo
   180    fi2(i,:)=fi2(i,:)/dsqrt(2.d0*pi)
   181    fi(i,:)=fi2(i,:)
   182    if (dabs(cdabs(fi(i,1))−cdabs(fi(i,points))).gt.1.d−6) then
   183       write(*,*) "basis functions not periodic",cdabs(fi(i,1))−cdabs(fi(i,po

ints)),i
   184       write(*,*) fi(i,1),fi(i,points)
   185    endif
   186 enddo
   187 !Create basis functions as linear combinations
   188 !sum and difference of primary basis. (sum=cos,dif=sin)
   189 !Goal is to keep everything real
   190 if (.true.) then
   191    do i=−nb,−1
   192       fi(i,:)=fi2(+i,:)+fi2(−i,:)
   193       fi(i,:)=fi(i,:)/dsqrt(2.d0)
   194    enddo
   195    fi(0,:)=dcmplx(1.d0,0.d0)
   196    fi(0,:)=fi(0,:)/dsqrt(2.d0*pi)
   197    do i=1,nb
   198       fi(i,:)=fi2(+i,:)−fi2(−i,:)
   199       fi(i,:)=fi(i,:)/dsqrt(2.d0)
   200       fi(i,:)=fi(i,:)*Im
   201    enddo
   202 endif
   203
   204 !Write stuff on ouput
   205 write(*,*) 'Basis functions created and stored'
   206
   207 !Check wfs of base:orthonormal
   208 if (verbose) then
   209    write(*,*) '# Check orthonormal basis'
   210    do i=−nb,nb
   211       integral=0.d0
   212       do j=−nb,nb
   213          integrand(:)=dconjg(fi(j,:))*fi(i,:)
   214          call integratec(integrand,1,points,integral)
   215          write(*,100) i,j,integral*dtheta,cdabs(integral)*dtheta
   216       enddo
   217    write(*,*)
   218    enddo
   219    write(*,*) '# End orthonormal basis' 
   220
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   221    if (veryverbose) then
   222       !Check basis functions
   223       write(*,*) '# These are the functions of your basis'
   224       do i=−nb,nb
   225          do j=1,points
   226             write(*,'(i4.3,10(E20.10E3,x))') i,theta(j),fi(i,j)
   227          enddo
   228          write(*,*)
   229       enddo
   230    write(*,*) '# End functions of basis' 
   231    endif
   232
   233 endif
   234
   235 !Evaluate kinetic operator
   236 write(*,*) 'Evaluating kinetic energy operator...'
   237 T(:,:)=0.0d0
   238
   239 !if (.false.) then
   240 !do i=−nb,nb
   241 !   do j=−nb,nb
   242 !      !Operator on LHS
   243 !      !Diferenciate 1st time
   244 !      faux(:)=real(j)*fi(−j,:)
   245 !      !Diferenciate the product mass(x)*faux(:)
   246 !      faux(:)=0.d0+(1.d0/mass)*real(j**2)*fi(+j,:)
   247 !      integrand=dconjg(fi(i,:))*faux(:)
   248 !      call integratec (integrand,1,size(integrand),T(i,j))
   249 !      T(i,j)=T(i,j)*dtheta/2.d0
   250 !      write(*,'(10(E20.10E3,x))') real(i),real(j),T(i,j)
   251 !   enddo
   252 !   write(*,*)
   253 !enddo
   254 !endif
   255
   256 do i=−nb,nb
   257    T(i,i)=real(i**2)
   258 enddo
   259 T(:,:)=T(:,:)/(2.0d0*mass)
   260 !T(:,:)=T(:,:)/(2.0d0)
   261
   262 !Write stuff on output
   263 write(*,*) '...done!'
   264
   265 !Evaluate potential operator
   266 write(*,*) 'Evaluating potential energy operator...'
   267 V(:,:)=dcmplx(0.0d0,0.d0)
   268 do i=−nb,nb
   269    do j=i,nb
   270 !      if (i*j.gt.0.d0) then 
   271          integrand(:)=dconjg(fi(i,:))*pot(:)*fi(j,:)*dtheta
   272          call integratec (integrand,1,points,integral)
   273          V(i,j)=integral
   274          V(j,i)=dconjg(V(i,j))
   275 !       endif
   276    enddo
   277 enddo
   278 do i=−nb,nb
   279    fi2(i,:)=dcmplx(1.d0/(pi)*dsin(real(i)*theta(:)),0.d0)
   280    integrand(:)=dconjg(fi2(i,:))*(pot(:))
   281    call integratec (integrand,1,points,integral)
   282    VC(i)=integral*dtheta
   283 enddo
   284 !Write stuff on output
   285 write(*,*) '...done!'
   286
   287 !Build Hamiltonian
   288 H(:,:)=0.0d0
   289 H(:,:)=T(:,:)+V(:,:)
   290
   291 if (veryverbose) then
   292
   293    if (.false.) then
   294    !Check potential array decomposition
   295    write(*,*) '# Checking potential Fourier decomposition'

mydiag.f90 157



   296    do i=1,points
   297       integral=dcmplx(0.d0,0.d0)
   298       do j=−nb,nb
   299          integral=integral+VC(j)*fi2(j,i)
   300       enddo
   301       write(*,'(3(E20.10E3,x))') theta(i),integral!+minval(pot(:))
   302    enddo
   303    write(*,*) '# End       potential Fourier decomposition'
   304    endif
   305
   306    !Check potential energy matrix
   307    write(*,*) '# Checking potential energy matrix'
   308    do i=−nb,nb
   309       do j=−nb,nb
   310          write (*,100) i,j,real(V(i,j)),dimag(V(i,j)),abs(V(i,j))
   311       enddo
   312       write(*,*)
   313    enddo
   314    write(*,*) '# End potential energy matrx' 
   315    !Check kinetic energy matrix
   316    write(*,*) '# Checking kinetic energy matrix'
   317    do i=−nb,nb
   318       do j=−nb,nb
   319          write (*,100) i,j,real(T(i,j)),dimag(T(i,j)),abs(T(i,j))
   320       enddo
   321       write(*,*)
   322    enddo
   323    write(*,*) '# End kinetic energy matrx' 
   324    !Check Hamiltonian matrix
   325    write(*,*) '# Checking Hamiltonian matrix'
   326    do i=−nb,nb
   327       do j=−nb,nb
   328          write (*,100) i,j,real(H(i,j)),dimag(H(i,j)),abs(H(i,j))
   329       enddo
   330       write(*,*)
   331    enddo
   332    write(*,*) '# End Hamiltonian matrx' 
   333 endif
   334
   335 !Write stuff on output
   336 write(*,*) 'Diagonalizing total Hamiltonian...'
   337
   338 !diagonalize
   339 if (rut.eq.'NR_F90') then
   340    write(*,*) '...using tred2 + tql2 routines...'
   341    REH(:,:)=real(H(:,:))
   342
   343    !Calling first subroutine to reduce with Householder algorithm 
   344    ! to a tridiagonal matrix
   345    call tred2(2*nb+1,2*nb+1,REH,REEVAL,REEVAL2,REEVEC)
   346
   347    if (veryverbose) then
   348       deallocate(integrand)
   349       allocate  (integrand(−nb:nb))
   350       write(*,*) '# Checking 1st Orthogonal transf matrix'
   351       do i=−nb,nb
   352          do j=−nb,nb
   353             write (*,100) i,j,REEVEC(i,j)
   354          enddo
   355          write(*,*)
   356       enddo
   357       write(*,*) '# End 1st Orthogonal matrix'
   358       write(*,*) '# Checking orthogonality of 1st Orthogonal transf matrix'
   359       do i=−nb,nb
   360          integral=0.d0
   361          do j=−nb,nb
   362             integrand(:)=REEVEC(j,:)*REEVEC(i,:)
   363             call integratec(integrand,−nb,+nb,integral)
   364             write(*,100) i,j,integral,abs(integral)
   365          enddo
   366       write(*,*)
   367       enddo
   368       write(*,*) '# End 1st orthogonality test'
   369       write(*,*) '# Checking elements of main diagonal and and sub−diagonal'
   370       do i=−nb,nb
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   371          write(*,400) i,REEVAL(i),REEVAL2(i)
   372       enddo
   373       write(*,*) '# End main diagonal and sub−diagonal'
   374    endif
   375
   376    !Call second subroutine, to determine eigenvalues and eigenvectors
   377    !tridiagonal matrix
   378    call tql2(2*nb+1,2*nb+1,REEVAL,REEVAL2,REEVEC,error)
   379
   380    if (veryverbose) then
   381       write(*,*) '# Checking 2nd Orthogonal transf matrix'
   382       do i=−nb,nb
   383          do j=−nb,nb
   384             write (*,100) i,j,REEVEC(i,j),abs(REEVEC(i,j))
   385          enddo
   386          write(*,*)
   387       enddo
   388       write(*,*) '# End 2nd Orthogonal matrix'
   389       write(*,*) '# Checking orthogonality of 2nd Orthogonal transf matrix'
   390       do i=−nb,nb
   391          integral=0.d0
   392          do j=−nb,nb
   393             integrand(:)=REEVEC(j,:)*REEVEC(i,:)
   394             call integratec(integrand,−nb,+nb,integral)
   395             write(*,100) i,j,integral,abs(integral)
   396          enddo
   397       write(*,*)
   398       enddo
   399       write(*,*) '# End 2nd orthogonality test'
   400    endif   
   401 elseif (rut.eq.'LAPACK') then
   402    write(*,*) '...using zheevd routine...'
   403    call mydiagsubc (H,2*nb+1,EVEC,EVAL)
   404 elseif (rut.eq.'rutjgv') then
   405    write(*,*) '...using jgv    routine...'
   406    do i=−nb,nb
   407       do j=−nb,nb
   408          realH(i+nb+1,j+nb+1)=real(H(i,j))
   409          imH  (i+nb+1,j+nb+1)=dimag(H(i,j))
   410 !         write(*,*) 'Doing ',i,' to ',i+nb+1,' and ',j,' to ',j+nb+1  
   411       enddo
   412    enddo
   413
   414 !   call ch(2*nb+1,2*nb+1,realH,imH,realEIG,1,realE,imE,fv1,fv2,fm1,i)
   415
   416    write(*,*) "Start jgv's EVEC"
   417    do i=1,2*nb+1
   418       EVAL(i−nb−1)=realEIG(i)
   419       do j=1,2*nb+1
   420          EVEC(i−nb−1,j−nb−1)=dcmplx(realE(i,j),imE(i,j))
   421          !write(*,*) 'Doing from',i,' to ',i−nb−1,' and ',j,' to ',j−nb−1
   422          write(*,'(2(i3,3x),10(E20.10E3,x))') i,j,realE(i,j),imE(i,j)!,realH

(i,j),imH(i,j)
   423       enddo
   424       write(*,*) 
   425    enddo
   426    write(*,*) "End   jgv's EVEC"
   427 else
   428    write(*,*) 'Which subroutine do you want to use exactly?'
   429    STOP
   430 endif
   431      
   432 !Write stuff on output
   433 write(*,*) '...done!'
   434
   435 !Write eigenvalues
   436 if (verbose) write(*,*) '# This are your eigenvalues'
   437 if (verbose) write(*,'(i4.3,x,E20.10E3)') (i+nb,EVAL(i),i=−nb,nb)
   438
   439 if (rut.eq.'NR_F90') then
   440    EVAL(:)=REEVAL(:)
   441    EVEC(:,:)=REEVEC(:,:)
   442 endif
   443
   444 if (verbose) then
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   445    !Write matrix of eigenvectors
   446    write(*,*) '#This is the matrix of your eigenvectors'
   447    do i=−nb,nb
   448       do j=−nb,nb
   449          write(*,100) i,j,real(EVEC(i,j)),dimag(EVEC(i,j)),cdabs(EVEC(i,j))
   450       enddo
   451    write(*,*)
   452    enddo
   453 endif
   454
   455 if (harm) then
   456    open(unit=52,file='Eharm.dat',status='unknown')
   457    open(unit=53,file='Vharm.dat',status='unknown')
   458    write (53,200) (theta(j),pot(j),j=1,points)
   459    close(52)
   460    close(53)
   461 endif
   462
   463 !Save energies
   464 write(fname,'(a1,i2.2,a1,i4.4,a4)') 'E',npot,'.',points,'.dat'
   465 open(unit=51,file=fname,status='unknown')
   466 do i=−nb,nb
   467    write(51,200) EVAL(i)
   468    if (harm) write (52,200) Eharm(i)
   469 enddo
   470 close(51)
   471
   472 !Write stuff on output
   473 write(*,*) 'Energies written to ',fname
   474
   475 !Write stuff on output
   476 write(*,*) 'Rotating obtained eigenvectors to position space, storing and wr

iting'
   477
   478 !Calculate eigenfunction in terms of spacial base
   479 EIGEN(:,:)=dcmplx(0.d0,0.d0)
   480 !Loop over eigenvectors columns of the Hamiltonian
   481 do j=−nb,nb
   482
   483    !Loop over basis functions
   484    do i=−nb,nb
   485       EIGEN(j,:)=EIGEN(j,:)+EVEC(i,j)*fi(i,:)
   486    enddo
   487
   488    !Storing the eigenvectors in positon space basis
   489    write(fname,'(i3.3,a1,i3.3,a4)') j+nb+1,'_',npot,'.psi'
   490    open(unit=57,file='EIGEN/'//fname,status='unknown')
   491    call doheadpsi(EIGEN(j,:),theta(:),EVAL(j),j+nb+1,57)
   492    !Loop over space points
   493    do k=1,points
   494       write(57,300) theta(k),EIGEN(j,k),cdabs(EIGEN(j,k))**2
   495    enddo
   496    close(57)
   497
   498 enddo
   499 !Write stuff on output
   500 write(*,*) '...done!'
   501
   502 !Write stuff on output
   503 write(*,*) 'Mission acomplished.'
   504
   505 100 format (2(i4.3,x),3(E20.10E3,x))
   506 200 format (2(E20.10E3,x))
   507 300 format (10(E20.10E3,x))
   508 400 format (1(i4.3,x),2(E20.10E3,x))
   509 !###############################
   510 contains
   511
   512 subroutine mydiagsubc (matin,df,matvec,ev)
   513 !This subroutine calls a LAPACK diagonalization zheevd
   514 !For diagonalizing complex hermitian matrices
   515 !Input
   516 ! matin:          matrix to diagonalize
   517 ! df:             dimension of the matrix
   518 ! matvec:         matrix with eigenvectors as column vectors

160 mydiag.f90



   519 ! ev:             vector with eigenvalues
   520
   521 implicit none
   522 integer df
   523 complex(KIND=DP) ::  matin(1:df,1:df),matvec(1:df,1:df)
   524 real(KIND=DP) :: ev(1:df)
   525 complex(Kind=DP) matarray(1:df*(df+1)/2)
   526 integer i,j,k
   527
   528 complex(Kind=DP) work(1:df**2+2*df)
   529 real(KIND=DP) :: rwork(:)
   530 allocatable rwork
   531 integer lrwork
   532 integer iwork(1:5*df+3)
   533 integer info
   534
   535 lrwork=int(log(df*1.d0)/log(2.d0))+1
   536 lrwork=3*df**2+(4+2*lrwork)*df+1
   537 allocate (rwork(1:lrwork))
   538
   539 !write(*,*) '# Matrix that enters mydiagsubc'
   540 !do i=1,df
   541 !   do j=1,df
   542 !      !if (cdabs(matin(i,j)).le.1.d−3) matin(i,j)=dcmplx(0.d0,0.d0)
   543 !      write(*,'(2(i3.3,x),4(E20.10E3))') i,j,matin(i,j)
   544 !   enddo
   545 !   write(*,*) 
   546 !enddo
   547 !write(*,*) '# End matrix that enters mydiagsubc'
   548
   549 call zheevd('V','U',df,matin,df,ev,work,df**2+2*df,rwork,lrwork,iwork,5*df+3

,info)
   550 if (info.ne.0) write (*,*) "something wrong with routine"
   551 matvec(:,:)=matin(:,:)
   552 end subroutine mydiagsubc
   553 !##################################
   554 subroutine doheadpsi(psi,space,E,n,ffi)
   555 !Puts together a header for psi files
   556 !ffi is integer determining fortran file on which 
   557 !stuff will be written
   558 implicit none
   559 INteger, Parameter :: DP= Kind(1.0D0)
   560
   561 integer points
   562 integer n
   563 integer ffi 
   564                  
   565 complex(KIND=DP) psi(:)
   566 real(KIND=DP) space(:)
   567 real(KIND=DP) E
   568 complex(KIND=DP) norm
   569 complex(KIND=DP) center
   570
   571 call integratec(dconjg(psi(:))*psi(:),1,size(psi(:)),norm)
   572 norm=norm*(space(2)−space(1))
   573 call determine(psi(:),space(:),points,center)
   574 write(ffi,'(a1,x,i3.3,a15)') '#',n,'−th eigenfunction'
   575 write(ffi,'(a7,x,E20.10E3)')      '# norm=',real(norm)
   576 write(ffi,'(a7,x,E20.10E3)')      '# E   =',E
   577 if     (real(center).lt..5*dacos(−1.d0)−.2) then
   578    write(ffi,'(a7,x,E20.10E3,x,a6)')      '# <q> =',real(center),'(anti)'
   579 elseif (real(center).gt..5*dacos(−1.d0)+.2) then
   580    write(ffi,'(a7,x,E20.10E3,x,a5)')      '# <q> =',real(center),'(syn)'
   581 elseif ((real(center).le..5*dacos(−1.d0)+.2) .or. &
   582         (real(center).ge..5*dacos(−1.d0)−.2)) then
   583    write(ffi,'(a7,x,E20.10E3,x,a6)')      '# <q> =',real(center),'(twst)'
   584 endif
   585 write(ffi,'(a54)')             '# space         Re{psi}        Im{psi}      

abs{psi}^2'
   586
   587 end subroutine
   588 !###################################
   589 subroutine renorm(psi,space)
   590 !Renormalizes a wf in a given space
   591 !Variable psi is overwritten on output

mydiag.f90 161



   592 implicit none
   593 INteger, Parameter :: DP= Kind(1.0D0)
   594
   595 integer points
   596 complex(KIND=DP) psi(:)
   597 real(KIND=DP)    space(:)
   598
   599 complex(KIND=DP) area
   600
   601 call integratec(dconjg(psi(:))*psi(:),1,size(space(:)),area)
   602 area=area*(space(2)−space(1))
   603 psi(:)=psi(:)/sqrt(cdabs(area))
   604 end subroutine renorm
   605 !######################
   606 subroutine determine(f,space,points,value)
   607 !Calculates center of of the 1st half of wf,
   608 !to avoid periodicity problems
   609 implicit none
   610 INteger, Parameter :: DP= Kind(1.0D0)
   611
   612 integer i,j,k
   613
   614 integer points
   615 complex(KIND=DP) f(1:points)
   616 real(KIND=DP) space(1:points)
   617 complex(KIND=DP) value
   618
   619 call integratec(dconjg(f(:))*space(:)*f(:),1,points/2,value)
   620 value=value*2*(space(2)−space(1))
   621 end subroutine
   622 !##########################
   623 subroutine doheader (mass,high,low,points,harm,nb,nu,kharm)
   624 !Given the input parameters, this subroutine creates the 
   625 !header of the output. To avoid verbose on main program
   626 implicit none
   627
   628 real*8 mass
   629 real*8 high,low
   630 real*8 nu,kharm
   631 integer points
   632 integer nb
   633 logical harm
   634
   635 write(*,*) 'Starting diagonalization'
   636 write(*,'(x,a5,10x,x,f13.5,x,a2)') 'mass:',mass,'au'
   637 write(*,'(x,a9, 6x,x,f13.6,x,a2,x,f13.6,x,a2,x,i4.4,x,a6)') 'interval:',low,

'to',high,'in',points,'points'
   638 if (harm) then 
   639    write(*,*) 'Detected harmonic oscillator'
   640    write(*,'(x,a2,13x,x,f13.5)') 'k:',kharm
   641    write(*,'(x,a3,12x,x,f13.5)') 'nu:',nu
   642 endif
   643 write(*,'(x,a10,x,i4.4)') 'n basis f:',2*nb+1
   644 end subroutine doheader
   645 !###########################
   646 subroutine getargL (r,argL)
   647 !Gets the Local argument of each complex in a complex array
   648 !I never finish to write this subroutine because it bores me to death
   649 implicit none
   650 integer, parameter :: DP=KIND(1.d0)
   651 real(KIND=DP), parameter :: zero=1.d−6
   652 complex(KIND=DP) r(:)
   653 real(KIND=DP) argL
   654
   655 real(KIND=DP) a,b
   656 integer i,j,k
   657
   658 do i=1,size(r)
   659    a=dreal(r(i))
   660    b=dimag(r(i))
   661    argL=dacos(dabs(a/b))
   662    if ((a.gt.zero) .and. (b.gt.zero)) then
   663       argL=argL
   664    elseif ((a.lt.zero) .and. (b.gt.zero)) then
   665       argL=180.d0−argL
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   666    elseif ((a.lt.zero) .and. (b.lt.zero)) then
   667    endif
   668 enddo
   669 end subroutine getargL
   670 !#######################################
   671 subroutine getargG (r,argG)
   672 !Gets global phase (argG) of complex array. 
   673 !This routine is thought to substract from a complex array (usually
   674 !wavefunction) its global phase, so it becomes a pure real number
   675 !without lost of module or sign (important for wfs)
   676 implicit none
   677 integer, parameter :: DP=KIND(1.d0)
   678 complex (KIND=DP) r(:)
   679 real(KIND=DP) argG
   680 real(KIND=DP) normR,normI,norm
   681 complex(KIND=DP) dummycomp
   682 complex(KIND=DP) integrand(1:size(r))
   683 real(KIND=DP),parameter :: pi=dacos(−1.d0)
   684 integer i
   685
   686 call integratec(dcmplx(dimag(r(:))**2,0.d0),1,size(r),dummycomp)
   687 normI=cdabs(dummycomp)
   688 norm=normR+normI
   689
   690 argG=dacos(normR/norm)
   691 write(*,'(20(F13.4,x))') normR,normI,norm,argG*360.d0/(2.d0*pi)
   692 end subroutine getargG
   693 !#####################
   694 subroutine integratec(f,start,finish,area)
   695 !Integration of a complex number
   696 !
   697 ! CAREFUL: dx is not taken into account here
   698 !
   699 implicit none
   700 Integer, Parameter :: DP= Kind(1.0D0)
   701 integer i,j,k
   702 integer a,b
   703 integer start,finish
   704 complex(KIND=DP) f(start:finish)
   705 complex(KIND=DP) area
   706
   707 area=dcmplx(0.d0,0.d0)
   708 do i=start,finish−1
   709 !do i=start+1,finish−1
   710     a=i
   711     b=i+1
   712     area=area+real(b−a)/6.d0*(f(a)+4.d0*(f(a)+f(b))/2.d0+f(b))
   713 enddo
   714 !area=area+(f(start)+f(finish))/2.d0
   715 end  subroutine integratec
   716 !######################
   717 end program mydiag
   718
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• mypropa.f90

This program uses the Split-Operator-technique to propagate an npot-dimensional
wavefunction on a grid of np evenly spaced points. The program is written for npot
adiabatic potential energy surfaces. The subroutine getlaser (called at line 101,
provided also in this Appendix) can generate an arbitrary combination of npu laser
sub-pulses as sum of oscillating functions× sin2-envelopes, where each sub-pulse can
have different delays and overall lengths. getlaser can also read arbitrary pulses
from files (most typically, OCT-pulses).

The program mypropa itself constitutes a do loop which calls nt times the Split-
Operator subroutine propagSO (cf. line 170, also provided in this Appendix). Other
used subroutines are calcprop, that can compute expectation values for position,
momentum, kinetic energy or potential energy (see lines 137-140) and getdipoles,
that automatically reads available dipoles from the working directory and includes
them in the computation.



     1 program mypropa !Guille's approach to numerical propagation
     2 !with split−operator method
     3 implicit none
     4 integer npot,np,nt
     5 integer npr,ipr
     6 integer npu
     7 character*2 itu                     !Input time units
     8 integer,parameter:: DP=kind(1.d0)
     9 complex(kind=DP),allocatable :: wff(:,:),wfb(:,:)
    10 complex(kind=DP),allocatable :: psi_I(:,:),psi_F(:,:)
    11 real(kind=DP),allocatable :: V(:,:),r(:)
    12 real(kind=DP),allocatable :: norm(:),normF(:),normB(:)
    13 complex(kind=DP) overlap
    14 real(kind=DP),allocatable :: dx(:,:,:),dy(:,:,:),dz(:,:,:)
    15 real(kind=DP),allocatable :: Ex(:,:),Ey(:,:),Ez(:,:)
    16 real(kind=DP),allocatable :: fieldx(:),fieldy(:),fieldz(:)
    17 real(kind=DP),allocatable :: t(:)
    18 real(kind=DP) dr,dt
    19 complex(kind=DP) mean,muEx,muEy,muEz
    20 complex(kind=DP),allocatable :: expcR(:),expcK(:),expcT(:),expcV(:),expcF(:,

:)
    21 real(kind=DP) dummyreal
    22 complex(kind=DP) dummycomp
    23 real(kind=DP) mass,penv
    24
    25 complex(kind=DP) suma
    26
    27 character*50 fname
    28 real(KIND=DP),parameter :: pi=dacos(−1.d0)
    29 real(KIND=DP),parameter :: Im=dcmplx(0.d0,1.d0)
    30 real(KIND=DP),parameter :: fs2au=41.341191
    31 real(KIND=DP),parameter :: au2cm=219474.6313705
    32 real(KIND=DP),parameter :: au2GVm=5.142216D+02
    33 integer i,j,k
    34
    35 dt=0.d0
    36
    37 read(*,*) npot
    38 read(*,*) np
    39 read(*,*) nt
    40 read(*,*) dt,itu
    41 read(*,*) mass
    42 read(*,*) npu
    43 read(*,*) npr
    44
    45 allocate(r(1:np))
    46 allocate(psi_I(1:npot,1:np),psi_F(1:npot,1:np))
    47 allocate(wff(1:npot,1:np),wfb(1:npot,1:np),V(1:npot,1:np))
    48 allocate(norm(1:npot),normF(1:npot),normB(1:npot))
    49 allocate(t(0:nt))
    50 if (npu.gt.0) allocate(Ex(1:npu,0:nt),Ey(1:npu,0:nt),Ez(1:npu,0:nt))
    51 allocate(fieldx(0:nt),fieldy(0:nt),fieldz(0:nt))
    52 allocate(expcR(1:npot),expcK(1:npot),expcT(1:npot),expcV(1:npot),expcF(1:npo

t,1:npot))
    53 allocate(dx(1:npot,1:npot,1:np),dy(1:npot,1:npot,1:np),dz(1:npot,1:npot,1:np

))
    54
    55 !Inform before starting propagation
    56 write(*,'(a30,x,i2.2     )') ' Number of potentials: ',npot
    57 write(*,'(a30,x,F10.2,x,a3)') ' Duration of the propagation ',(nt)*dt,itu 
    58
    59 !Read potentials
    60 do i=1,npot
    61   write(fname,"(A1,I1.1,A4)") "V",i,".dat"
    62   call readfr(fname,V(i,:),r,np)
    63 enddo
    64 dr=r(2)−r(1)
    65
    66 !Read psi_I
    67 call readfc('psi_I.in',psi_I,r,np,npot)
    68 do k=1,npot
    69    norm(k)=cdabs(overlap(psi_I(k,:),psi_I(k,:),np,dr))
    70 enddo
    71
    72 !Renormalize
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    73 do k=1,npot
    74    psi_I(k,:)=psi_I(k,:)/sqrt(sum(norm(:)))
    75    normF(k)=cdabs(overlap(psi_I(k,:),psi_I(k,:),np,dr))
    76 enddo
    77 write(*,'(a20,3(E20.10E3,x))') "# Norm of initial wf (on each potential)",(n

ormF(k),k=1,npot),sum(normF(:))
    78
    79 !Read dipoles
    80 dx(:,:,:)=0.d0
    81 dy(:,:,:)=0.d0
    82 dz(:,:,:)=0.d0
    83 call getdipoles(npot,np,dx,dy,dz)
    84
    85 !Convert timestep
    86 !Other time−dependent transformations (freq, lengths, delays...)
    87 !will be converted to au in the subroutine getlaser if needed.
    88 if (itu.eq.'fs') then
    89    dt=dt*fs2au
    90 elseif (itu.eq.'au') then
    91 else
    92    write(*,*) "I don't understand your time units"
    93    STOP
    94 endif
    95
    96 !Generate the field
    97 fieldx(:)=0.d0
    98 fieldy(:)=0.d0
    99 fieldz(:)=0.d0
   100 if (npu.gt.0) then 
   101    call getlaser(nt,npu,dt,itu, &     !Input
   102         t,fieldx,fieldy,fieldz)       !Output, don't worry with what getlase

r gives you for t, 
   103                                       !it will be recalculated.
   104 else
   105    write(*,*) "This is a field free propagation."
   106 endif
   107
   108 !Calculate some properties at the beginning
   109 do i=1,npot
   110    call calcprop(psi_I(i,:),r,V(i,:),mass,np,'r',mean)
   111    write (*,'(a10,x,i2.2,a30,2(E20.10E3,x))') "On pot.",i,"mean position of 

psi_I is ",mean
   112    call calcprop(psi_I(i,:),r,V(i,:),mass,np,'p',mean)
   113    write (*,'(a10,x,i2.2,a30,2(E20.10E3,x))') "On pot.",i,"mean momentum of 

psi_I is ",mean
   114 enddo
   115
   116 !Open all outputs
   117 open(1,file="norm.dat", status='unknown')
   118 open(2,file="r1.dat",   status='unknown')
   119 open(3,file="k1.dat",   status='unknown')
   120 open(5,file="ekin.dat", status='unknown')
   121 open(6,file="epot.dat", status='unknown')
   122 open(7,file="elas.dat", status='unknown')
   123 open(8,file="esum.dat", status='unknown')
   124
   125 wfF(:,:)=psi_I(:,:)
   126
   127 !Propagation starts! 
   128 ipr=0 !Initialize printing counter
   129 do i=0,nt,+1
   130    ipr=ipr+1
   131    t(i)=(i)*dt
   132    if ((ipr.eq.npr+1) .or. (i.eq.0))then
   133       ipr=1
   134       suma=dcmplx(0.d0,0.d0)  !Initialize mu*E
   135       do k=1,npot
   136          normF(k)=cdabs(overlap(wff(k,:),wff(k,:),np,dr))
   137          call calcprop(wff(k,:),r,V(k,:),mass,np,'r',expcR(k))
   138          call calcprop(wff(k,:),r,V(k,:),mass,np,'p',expcK(k))
   139          call calcprop(wff(k,:),r,V(k,:),mass,np,'T',expcT(k))
   140          call calcprop(wff(k,:),r,V(k,:),mass,np,'V',expcV(k))
   141          !If there is field,calculate its interaction energy
   142          if (npu.gt.0) then
   143             !The dipole−field interaction is a matrix, thus open a new loop
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   144             do j=1,npot
   145                suma=suma &
   146 &                        +overlap(wff(k,:),−1.d0*dx(k,j,:)*fieldx(i)*wff(j,:

),np,dr) &!Calculate <wff(k)|muX_kj*Ex|wff(j)> (ATT NO NORM!)
   147 &                        +overlap(wff(k,:),−1.d0*dy(k,j,:)*fieldy(i)*wff(j,:

),np,dr) &!Calculate <wff(k)|muY_kj*Ey|wff(j)> (ATT NO NORM!)
   148 &                        +overlap(wff(k,:),−1.d0*dz(k,j,:)*fieldz(i)*wff(j,:

),np,dr)  !Calculate <wff(k)|muZ_kj*Ez|wff(j)> (ATT NO NORM!)
   149             enddo
   150          endif
   151       suma=suma/sum(normF(:))
   152       enddo
   153       write (1,'(1000(E20.10E3,x))') t(i)/fs2au,(normF(k),k=1,npot),sum(norm

F(:))
   154       write (2,'(1000(E20.10E3,x))') t(i)/fs2au,(real(expcR(k)),k=1,npot)
   155       write (3,'(1000(E20.10E3,x))') t(i)/fs2au,(real(expcK(k)),k=1,npot)
   156       write (5,'(1000(E20.10E3,x))') t(i)/fs2au,(real(expcT(k)),k=1,npot)
   157       write (6,'(1000(E20.10E3,x))') t(i)/fs2au,(real(expcV(k)),k=1,npot)
   158       write (7,'(1000(E20.10E3,x))') t(i)/fs2au,real(suma)
   159       write (8,'(1000(E20.10E3,x))') t(i)/fs2au,real((suma)+sum(expcT(:))+su

m(expcV(:)))
   160       write(fname,'(i6.6,a4)') i,'.dat'
   161       open(11,file=fname,status='unknown')
   162       write (11,'(a5,x,F13.6,x,i6.6)') '#Time',t(i)/fs2au,i
   163       write (11,'(a5,x,1000(E20.10E3,x))') '# E  ',(cdabs(expcT(k)+expcV(k)+

0.d0),k=1,npot)
   164       do k=1,np
   165          write (11,'(10000(E20.10E3,x))') r(k),(wff(j,k),cdabs(wff(j,k))**2,

j=1,npot)
   166       enddo
   167       close(11)
   168    endif
   169
   170    call propagSO(wfF,dt,dr,V,dx,dy,dz,fieldx(i),fieldy(i),fieldz(i),mass,+1,

np,npot)
   171 enddo
   172 !Propagation terminated 
   173 close(1)
   174 close(2)
   175 close(3)
   176 close(5)
   177 close(6)
   178 close(7)
   179 close(8)
   180
   181 !Write stuff on output
   182 do i=1,npot
   183    call calcprop(wff(i,:),r,V(i,:),mass,np,'r',mean)
   184    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean position of wff

   is ",mean
   185    call calcprop(wff(i,:),r,V(i,:),mass,np,'p',mean)
   186    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean momentum of wff

   is ",mean
   187 enddo
   188
   189 end
   190 !Functions
   191 !##############################
   192 function overlap(f1,f2,np,dr)
   193 implicit none
   194 integer,parameter :: DP=kind(1.d0)
   195 integer i,j,k,np
   196 complex(kind=DP) f1(1:np),f2(1:np)
   197 real(kind=DP) dr
   198 complex(kind=DP) overlap
   199
   200 overlap=(0.d0,0.d0)
   201 do i=1,np−1
   202    overlap=overlap+dconjg(f1(i))*f2(i)
   203 enddo
   204 overlap=overlap*dr
   205 return
   206 end function
   207 !###############################   
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• propagSO.f90

This subroutine reads an npot×np-dimensional wavefunction, the time-interval dt,
the potential V, the dipoles dx,dy,dz, the field components Ex,Ey,Ez, the mass,
and the direction of the propagation dir (forward or backward) as an input and
performs the evaluation of the time-propagator upon the wavefunction as outlined
in equations Eqs. (3.37) to (3.45). The process includes fast Fourier transforms for
switching between position and momentum space (see lines 26,42,93,103) for the
evaluation of the kinetic energy term, and the required matrix diagonalization for
the potential term (see line 66). The subroutine diag is an alias for a simplified call
of the zheevd subroutine.



     1 subroutine propagSO(wf,dt,dr,V,dx,dy,dz,Ex,Ey,Ez,mass,dir,np,npot)
     2 implicit none
     3 !What this subroutine has to get from the main program
     4 !wf             wavefunction(1:npot,1:np),complex
     5 !dt             timestep in atomic units
     6 integer,parameter :: DP=kind(1.d0)
     7 complex(kind=DP) wf(1:npot,1:np)
     8 real(kind=DP) Ex,Ey,Ez,dx(1:npot,1:npot,1:np),dy(1:npot,1:npot,1:np),dz(1:np

ot,1:npot,1:np),V(1:npot,1:np)
     9 real(kind=DP) dr,mass,dt
    10 integer dir
    11
    12 integer npot,np
    13 integer i,j,ii,ij,ik
    14 real(kind=DP) k,dk
    15 real(kind=DP) VW(1:npot,1:npot)
    16 real(kind=DP) VWd(1:npot)
    17 complex(kind=DP) zsum(1:npot)
    18 real(kind=DP),parameter :: pi=dacos(−1.d0)
    19
    20 dk=2.d0*pi/np/dr
    21
    22 !Apply exp(−Im*T*t/2) to the wavefunction.
    23 !In phase space, it is equivalent to multply with momentum value
    24 !Loop over potentials
    25 do ii=1,npot
    26    call tfft(wf(ii,:),np,np,1)
    27   
    28    !Reorder k−vector in momentum space
    29    do ij=1,np
    30       if (ij.le.np/2) then
    31           k=(ij−1)*dk
    32       else
    33           k=(ij−1−np)*dk
    34       endif
    35       !Calculate value of the momentum at each (reordered) point
    36       k=−real(dir)*dt*k**2/2./mass 
    37       !Multiply times wf
    38       wf(ii,ij)=cdexp(dcmplx(0.d0,k/2.))*wf(ii,ij) !Split is done (mult. x k

/2)
    39    enddo
    40    !End reorder 
    41   
    42    call tfft(wf(ii,:),np,np,−1)
    43 enddo
    44 ! 1/2 Kinetic term done
    45
    46 !Evaluate potential term
    47 !Loop over points
    48 do ii=1,np
    49    !Prepare a matrix V−muE (npot x npot) for every point to be diagonalized:
    50
    51    !Loop over potentials
    52    do ij=1,npot   
    53       do ik=1,npot
    54          if (ij.eq.ik) then
    55             VW(ij,ik)=V(ij,ii)
    56          else
    57             VW(ij,ik)=0.d0
    58          endif
    59          VW(ij,ik)=VW(ij,ik) −dx(ij,ik,ii)*Ex   &
    60 &                            −dy(ij,ik,ii)*Ey   &
    61 &                            −dz(ij,ik,ii)*Ez
    62       enddo
    63    enddo
    64
    65    !Diagonalize 
    66    call diag(VW,npot,VWd)
    67
    68    !U(rotation matrix) * psi
    69    do ij=1,npot
    70       zsum(ij)=dcmplx(0.d0,0.d0)
    71       do ik=1,npot
    72          zsum(ij)=zsum(ij)+VW(ik,ij)*wf(ik,ii) 
    73       enddo
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    74    enddo
    75    !Ud(diagonalized matrix) * U * psi
    76    do ik=1,npot
    77       k=−real(dir)*dt*VWd(ik)
    78       zsum(ik)=cdexp(dcmplx(0.0d0,k))*zsum(ik)   !Nosplit
    79    enddo
    80    !Udagger(rotation matrix dagger) * Ud * U * psi
    81    do ij=1,npot
    82       wf(ij,ii)=dcmplx(0.0d0,0.d0)
    83       do ik=1,npot
    84          wf(ij,ii)=wf(ij,ii)+VW(ij,ik)*zsum(ik)
    85       enddo
    86    enddo
    87    !End Loop over points
    88
    89 enddo
    90 !Potential done
    91   
    92 do ii=1,npot
    93    call tfft(wf(ii,:),np,np,1)
    94    do ij=1,np
    95       if (ij.le.np/2) then
    96          k=(ij−1)*dk
    97       else
    98          k=(ij−1−np)*dk
    99       endif
   100         k=−real(dir)*dt*k**2/2./mass
   101       wf(ii,ij)=cdexp(dcmplx(0.d0,k/2.))*wf(ii,ij) !Split
   102    enddo
   103    call tfft(wf(ii,:),np,np,−1)
   104 enddo
   105 ! 1/2 Kinetic term done
   106     
   107 end subroutine propagSO
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• getlaser.f90

This subroutine interfaces with other programs and provides them with the desired
type of laser. It reads propagation parameters from the main program (number
of timesteps nt, number of wanted laserpulses npu, timestep dt) as well as from
the subroutine’s input file laser.para, which contains one block of parameters per
wanted sub-pulse. The header of the source is extensively documented.



     1 subroutine getlaser(nt,npu,dt,itu, &
     2                    fieldx,fieldy,fieldz)  
     3 !With whole bunch of paramters read from input, this subroutine
     4 !"fills" the laser array with whatever laser the user
     5 !has chosen:
     6
     7 !INPUT from the main program
     8 !nt             number of timesteps
     9 !npu            number laser pulses
    10 !dt             timestep
    11 !itu            input time units, 'fs' or 'au'. 
    12
    13 !INPUT from the file 'laser.para' (don't return to main program)
    14 !Following lines per kth−laser pulse
    15 !lt     'hc' for half−cycle laser pulses,'fr' for freq
    16 !       if (lt.eq.hc) then read
    17 !               nhc             number of half cycles
    18 !               lhc             lenght of half−cycle
    19 !       if (lt.eq.fr) then read
    20 !               omega,ifu       frequency,input freq units
    21 !       endif
    22 !       Eox,Eoy,Eoz,iAu         Amplitudes in x,y,z,input Amp units
    23 !       Ex,Ey,Ez                Oscillating amplitudes in x,y,z
    24 !       phax,phay,phaz          Phases in x,y,z
    25 !       env,delay,length        envelope function (.true. or .false.),delay,

length
    26 !       dalpha                  angular velocity of polarization vector
    27
    28 !INPUT laser pulses throuhg laser_k.in
    29 !The files have to have t,fieldx(k),fieldy(k),fieldz(k) as input
    30 !The input time units of laser_k.in has to be specified through itu in laser

.para
    31 !The input Amp  units of laser_k.in has to be specified through iAu in laser

.para
    32
    33 !OUTPUT to the main program
    34 !fieldx,fieldy,fieldz   Oscillating amplitudes
    35
    36 !OUTPUT to the user
    37 !laser.dat              containing time, fieldx,fieldy,fieldz
    38 !If polarization(t) is given, following files for every k−th pulse
    39 !polvc_k.dat            containig polarization vectors of each pulse
    40
    41 implicit none
    42 integer,parameter :: DP=kind(1.d0)
    43
    44 !Input variables from the main program
    45 integer nt,npu 
    46 real(kind=DP) dt
    47 character*2   itu  !Input time units
    48
    49 !Input variables from file 'laser.para'
    50 character*2   lt(1:npu)  !laser type 'hc' for half−cycle laser pulse,fr for 

freq defined lasers
    51
    52 !Depending on lt, following variables for each kth−laser pulse
    53 !Only if lt(k).eq. hc        
    54 integer       nhc(1:npu) !number of half−cycles
    55 real(kind=DP) lhc(1:npu) !lenght of half−cycle
    56 !Only if lt(k).eq. fr        
    57 real(kind=DP) omega(1:npu)
    58 character*4   ifu(1:npu) !Input freq units
    59
    60 !For all lasertypes (lt.eq.fr.) or (lt.eq.hc)
    61 real(kind=DP) Eox(1:npu),Eoy(1:npu),Eoz(1:npu)
    62 real(kind=DP) phax(1:npu),phay(1:npu),phaz(1:npu)
    63 character*4   iAu(1:npu) !Input amp  units
    64 logical       env(1:npu)
    65 real(kind=DP) delay(1:npu),length(1:npu)
    66 real(kind=DP) dalpha(1:npu)
    67
    68 !Output variables
    69 real(kind=DP) t 
    70 real(kind=DP) fieldx(0:nt),fieldy(0:nt),fieldz(0:nt)
    71
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    72 !Subroutine internal variables
    73 integer i,j,k
    74 real(kind=DP) Ex(1:npu),Ey(1:npu),Ez(1:npu)
    75 character*50  fname
    76 real(kind=DP) E2(0:nt)
    77 real(kind=DP) polvcx(1:npu),polvcy(1:npu),polvcz(1:npu)
    78 real(kind=DP) suma,dummyreal
    79 real(kind=DP) wu2otu      !working units (au) to ouput units of time
    80 real(kind=DP) wu2oAu      !working units (au) to ouput units of amplitude
    81
    82 !Numbers
    83 !real(kind=DP),parameter :: pi=dacos(−1.d0)
    84 real(kind=DP) pi
    85 real(kind=DP),parameter :: au2GVm=5.142216D+02
    86 real(kind=DP),parameter :: fs2au =41.341191
    87 real(KIND=DP),parameter :: au2cm=219474.6313705
    88
    89 pi=dacos(−1.d0) !To run in Evanston...
    90
    91 !Initialize fields
    92 Ex(:)=0.d0
    93 Ey(:)=0.d0
    94 Ez(:)=0.d0
    95 fieldx(:)=0.d0
    96 fieldy(:)=0.d0
    97 fieldz(:)=0.d0
    98 !Initialize polarization vector
    99 polvcx(:)=0.d0
   100 polvcy(:)=0.d0
   101 !Initialize conversion factors
   102 wu2otu=1.d0
   103 wu2oAu=1.d0
   104
   105 !Get parameters!
   106 open(1,file='laser.para',status='old')
   107 do k=1,npu
   108    read(1,*) lt(k)
   109    if (lt(k).eq.'hc') then
   110       read(1,*) nhc(k)
   111       read(1,*) lhc(k)
   112    elseif (lt(k).eq.'fr') then
   113       read(1,*) omega(k),ifu(k)
   114    else
   115       write(*,*) 'What type of laser do you want exactly ',lt(k),'?'
   116       STOP
   117    endif
   118    read(1,*) Eox(k),Eoy(k),Eoz(k),iAu(k)
   119    if ((iAu(k).ne.'au').and.(iAu(k).ne.'GV/m')) then
   120        write(*,*) 'Eo units for pulse ',k,' are ',iAu(k),'?'
   121        STOP
   122    endif
   123    read(1,*) phax(k),phay(k),phaz(k)
   124    read(1,*) env(k),delay(k),length(k)
   125    if (lt(k).eq.'hc') length(k)=nhc(k)*lhc(k)
   126    read(1,*) dalpha(k)
   127 enddo
   128 close(1)
   129
   130 !Convert times
   131 if (itu.eq.'fs') then 
   132    dt=dt*fs2au
   133    delay(:)=delay(:)*fs2au
   134    length(:)=length(:)*fs2au
   135    lhc(:)=lhc(:)*fs2au
   136    wu2otu=1.d0/fs2au
   137 elseif (itu.eq.'au') then
   138 else 
   139    write(*,*) "I don't understand your time units"
   140    STOP
   141 endif
   142
   143 !Convert omega and amplitudes
   144 do k=1,npu
   145    if (ifu(k).eq.'cm−1') omega(k)=omega(k)/au2cm
   146    if (iAu(k).eq.'GV/m') then
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   147       Eox(k)=Eox(k)/au2GVm
   148       Eoy(k)=Eoy(k)/au2GVm
   149       Eoz(k)=Eoz(k)/au2GVm
   150       wu2oAu=au2GVm
   151    endif
   152 enddo
   153
   154 !Convert revolutions of polarization vector to a differential of alpha
   155 dalpha(:)=dalpha(:)*2.d0*pi/length(:)
   156 !Convert phases
   157 phax(:)=180.d0/pi*phax(:)
   158 phay(:)=180.d0/pi*phay(:)
   159 phaz(:)=180.d0/pi*phaz(:)
   160
   161 do k=1,npu
   162    write(*,*) k,'−th pulse'
   163    if (lt(k).eq.'hc') then
   164       length(k)=nhc(k)*lhc(k)
   165       omega(k)=pi/lhc(k)
   166       write (*,'(a25,x,1(i3      ,x),a15,x,1(F13.6,x),a9)')'Half−cycle pulse

:',nhc(k),'cycles of  ',lhc(k)/fs2au,'fs each.' 
   167    endif
   168    if (omega(k).ge.0.d0) then
   169       write (*,'(a25,x,1(E20.10E3,x),a15,x,1(F13.6,x),a9)')'Frequency of    

 ',omega(k),'hartree and',omega(k)*au2cm,'cm−1.'    
   170       write (*,'(a25,x,L2                               )')'Envelope functio

n',env(k)
   171       write (*,'(a25,x,1(F13.6,   x),a07,x,1(F13.6,x),a3)')'Delay           

 ',delay(k)/fs2au,'fs and',delay(k),'au.'
   172       write (*,'(a25,x,1(F13.6,   x),a07,x,1(F13.6,x),a3)')'Length          

 ',length(k)/fs2au,'fs and',length(k),'au.'
   173       write (*,'(a25,x,3(E20.10E3,x),a15                )')'Eox,Eoy,Eoz:    

 ',Eox(k),Eoy(k),Eoz(k),'au and'
   174       write (*,'(a25,x,3(F13.6,   x),a15                )')'Eox,Eoy,Eoz:    

 ',Eox(k)*au2GVm,Eoy(k)*au2GVm,Eoz(k)*au2GVm,'GV/m.'    
   175       write (*,'(a25,x,3(F13.6,   x),a15                )')'phases (x,y,z)  

 ',phax(k)*pi/180.d0,phay(k)*pi/180.d0,phaz(k)*pi/180.d0,'degree'
   176       write (*,'(a25,x,1(F13.6,   x),a15                )')'alphadot        

 ',dalpha(k)*180.d0/pi*fs2au,'degrees/fs'
   177       write (*,'(a25,x,1(E20.10E3,x),a15                )')'alphadot        

 ',dalpha(k)                ,'radians/au'
   178
   179       
   180       write(fname,'(a6,i3.3,a4)') 'polvc_',k,'.dat'
   181       if (dalpha(k).gt.(0.d0)) open(2,file=fname)
   182
   183       !Generate laser for every timestep
   184       do i=0,nt
   185          t=i*dt
   186          !Ex(k), Ey(k),Ez(k) are 1D reals and need to be initialized
   187          Ex(k)=0.d0
   188          Ey(k)=0.d0
   189          Ez(k)=0.d0
   190          if ((t.ge.delay(k)).and.(t.le.delay(k)+length(k))) then
   191              !Assure the laser is supossed to be on and make it oscillate
   192              Ex(k)=dcos(omega(k)*(t−delay(k))+phax(k))
   193              Ey(k)=dcos(omega(k)*(t−delay(k))+phay(k))
   194              Ez(k)=dcos(omega(k)*(t−delay(k))+phaz(k))
   195              !Correct for constant laser field
   196              if (omega(k).eq.0.d0) then
   197                 Ex(k)=1.d0
   198                 Ey(k)=1.d0
   199                 Ez(k)=1.d0
   200              endif
   201              if (env(k)) then 
   202                 !Multiply with envelope
   203                 Ex(k)=Ex(k)*sin((t−delay(k))*pi/(length(k)))**2
   204                 Ey(k)=Ey(k)*sin((t−delay(k))*pi/(length(k)))**2
   205                 Ez(k)=Ez(k)*sin((t−delay(k))*pi/(length(k)))**2
   206              endif
   207              !Multiply with amplitude
   208              Ex(k)=Ex(k)*Eox(k)
   209              Ey(k)=Ey(k)*Eoy(k)
   210              Ez(k)=Ez(k)*Eoz(k)
   211              if ((dalpha(k).ne.0.d0) .and. (Eoy(k).eq.0.d0)) then
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   212                 !Add the polarization if dalpha=/zero
   213                 polvcx(k)=dcos(0.0d0*pi+(t−delay(k))*dalpha(k))
   214                 polvcy(k)=dsin(0.0d0*pi+(t−delay(k))*dalpha(k))
   215                 E2(i)=Ex(k)
   216                 Ex(k)=E2(i)*polvcx(k)        
   217                 Ey(k)=E2(i)*polvcy(k)
   218              elseif ((dalpha(k).ne.0.d0) .and. (Eox(k).eq.0.d0)) then
   219                 !Add the polarization if dalpha=/zero
   220                 polvcx(k)=dcos(0.5d0*pi+(t−delay(k))*dalpha(k))
   221                 polvcy(k)=dsin(0.5d0*pi+(t−delay(k))*dalpha(k))
   222                 E2(i)=Ey(k)
   223                 Ex(k)=E2(i)*polvcx(k)        
   224                 Ey(k)=E2(i)*polvcy(k)
   225              endif
   226          endif
   227
   228          if (dalpha(k).ne.(0.d0)) write(2,'(F13.6,x,6(E20.10E3,x))') t*wu2ot

u,polvcx(k),polvcy(k)
   229
   230          !Before time−loop is over, add all components of the field
   231          fieldx(i)=fieldx(i)+Ex(k)
   232          fieldy(i)=fieldy(i)+Ey(k)
   233          fieldz(i)=fieldz(i)+Ez(k)
   234       
   235       enddo   
   236       !End timestep for this pulse
   237       if (dalpha(k).ne.(0.d0)) close(2)
   238
   239    !Other posibilities for initial laser: READ LASER
   240    elseif (omega(k).lt.0.d0) then
   241       write(fname,'(a6,i3.3,a3)') 'laser_',k,'.in'
   242       open (unit=11,file=fname,status='old')
   243       write(*,*) 'Reading X,Y,and Z component of laser from',fname
   244       do i=0,nt
   245          read(11,*) t,Ex(k),Ey(k),Ez(k)
   246          if (iAu(k).eq.'GV/m') then
   247              Ex(k)=Ex(k)/au2GVm
   248              Ey(k)=Ey(k)/au2GVm
   249              Ez(k)=Ez(k)/au2GVm
   250          endif
   251          !Before time−loop is over, add all components of the field
   252          fieldx(i)=fieldx(i)+Ex(k)
   253          fieldy(i)=fieldy(i)+Ey(k)
   254          fieldz(i)=fieldz(i)+Ez(k)
   255       enddo
   256       close(11)
   257    endif
   258 write (*,*)
   259 enddo
   260 !End loop over pulses
   261
   262 !Write out final field
   263 open(4,file='laser.dat',status='unknown')
   264 do i=0,nt
   265    t=i*dt
   266    write (4,'(1000(E20.10E3,x))') t*wu2otu,fieldx(i)*wu2oAu,fieldy(i)*wu2oAu

,fieldz(i)*wu2oAu
   267 enddo
   268 close(4)
   269 !Important addendum: because I want my laser routine to leave my
   270 !dt variable untouched, I need to transform it back in
   271 !case it was transformed by the routine
   272 dt=dt*wu2otu
   273 end subroutine
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• oct.f90

This program implements the rapidly convergent algorithm of Zhu, Botina, and Ra-
bitz [81] outlined in equations Eqs. (3.47) to (3.55). It makes use of propagSO for the
needed time propagations, and as such, oct functions similarly to mypropa in the
read-in of parameters, anduse as well the subroutines getdipoles and calcprop.
The subroutine getlaser (also provided above) is also used to generate the ini-
tial, guessed laser field (Eq. (3.47)). See header of the source code for more de-
tails.



     1 program oct !Trying to implement the OCT−algorithm of Zhu and Rabitz
     2
     3 !INPUT from standard input
     4 !npot           number of potentials
     5 !np             number of gridpoints
     6 !nt             number of timesteps
     7 !dt             timestep length,currently read only in femtoseconds
     8 !env            logical, envelope true of false
     9 !mass           mass
    10 !pen            logical,penalty function
    11 !penv           real, functional will be mutiplied with 1/penv. Only read if

 pen=true
    12
    13 !INPUT from files
    14 !from the main program:
    15 !V_XXX.dat      X−th potential, format i3.3 (read from main program)
    16 !psi_I.in       initial wf. To be read with a loop read(*,*) r,(Re{Psi},Im{P

si},i=1,npot)
    17 !psi_F.in       target wf. To be read with a loop read(*,*) r,(Re{Psi},Im{Ps

i},i=1,npot)
    18 !from the subroutines
    19 !laser.para     laser paramters
    20 !getdipole      dipole momenta
    21
    22 implicit none
    23 integer npot,np,nt
    24 integer,parameter:: DP=kind(1.d0)
    25 complex(kind=DP),allocatable :: wff(:,:),wfb(:,:)
    26 complex(kind=DP),allocatable :: psi_I(:,:),psi_F(:,:)
    27 real(kind=DP),allocatable :: V(:,:),r(:)
    28 real(kind=DP),allocatable :: norm(:),normF(:),normB(:)
    29 complex(kind=DP) overlap
    30 real(kind=DP),allocatable :: dx(:,:,:),dy(:,:,:),dz(:,:,:)
    31 real(kind=DP),allocatable :: d(:,:,:)
    32 real(kind=DP),allocatable :: E1(:),E2(:)
    33 real(kind=DP),allocatable :: Ex1(:),Ey1(:),Ez1(:)
    34 real(kind=DP),allocatable :: Ex2(:),Ey2(:),Ez2(:)
    35 real(kind=DP),allocatable :: t(:)
    36 real(kind=DP) dr,dt
    37 complex(kind=DP) mean 
    38 real(kind=DP) dummyreal
    39 logical env,pen
    40 real(kind=DP) mass,penv
    41
    42 complex(kind=DP) g1,g2,suma,ov1(:),ov2(:)
    43 complex(kind=DP) gx2,gy2,gz2
    44 allocatable ov1,ov2
    45 real(kind=DP) eps
    46 real(kind=DP) thres
    47
    48 character*50 fich
    49 logical ex
    50 real(KIND=DP),parameter :: pi=dacos(−1.d0)
    51 real(KIND=DP),parameter :: Im=dcmplx(0.d0,1.d0)
    52 real(KIND=DP),parameter :: fs2au=41.34
    53 integer i,j,k,iter
    54
    55
    56
    57 read(*,*) npot
    58 read(*,*) np
    59 read(*,*) nt
    60 read(*,*) dt
    61 read(*,*) thres
    62 read(*,*) env
    63 read(*,*) mass
    64 read(*,*) pen
    65 if (pen) read(*,*) penv
    66
    67 dt=dt*fs2au
    68 allocate(wff(1:npot,1:np),wfb(1:npot,1:np),V(1:npot,1:np))
    69 allocate(norm(1:npot),normF(1:npot),normB(1:npot))
    70 allocate(psi_I(1:npot,1:np),psi_F(1:npot,1:np))
    71 allocate(r(1:np),d(1:npot,1:npot,1:np))
    72 allocate(t(0:nt),E1(0:nt),E2(0:nt))

oct.f90 177



    73 allocate(ov1(1:npot),ov2(1:npot))
    74 allocate(dx(1:npot,1:npot,1:np),dy(1:npot,1:npot,1:np),dz(1:npot,1:npot,1:np

))
    75 allocate(Ex1(0:nt),Ey1(0:nt),Ez1(0:nt))
    76 allocate(Ex2(0:nt),Ey2(0:nt),Ez2(0:nt))
    77
    78 !Read potentials
    79 do i=1,npot
    80   write(fich,"(A1,I1.1,A4)") "V",i,".dat"
    81   call readfr(fich,V(i,:),r,np)
    82 enddo
    83 dr=r(2)−r(1)
    84
    85 !Read dipoles
    86 dx(:,:,:)=0.d0
    87 dy(:,:,:)=0.d0
    88 dz(:,:,:)=0.d0
    89 call getdipoles(npot,np,dx,dy,dz)
    90
    91 d(:,:,:)=dy(:,:,:)
    92
    93 !Read psi_I,psi_F
    94 call readfc('psi_I.in',psi_I,r,np,npot)
    95 do k=1,npot
    96    norm(k)=cdabs(overlap(psi_I(k,:),psi_I(k,:),np,dr))
    97 enddo
    98 do k=1,npot
    99    psi_I(k,:)=psi_I(k,:)/sqrt(sum(norm(:)))
   100    normF(k)=cdabs(overlap(psi_I(k,:),psi_I(k,:),np,dr))
   101 enddo
   102 write(*,*) "# Norm of initial wf_I",(normF(k),k=1,npot),sum(normF(:))
   103
   104 call readfc('psi_F.in',psi_F,r,np,npot)
   105 do k=1,npot
   106    norm(k)=cdabs(overlap(psi_F(k,:),psi_F(k,:),np,dr))
   107 enddo
   108 do k=1,npot
   109    psi_F(k,:)=psi_F(k,:)/sqrt(sum(norm(:)))
   110    normB(k)=cdabs(overlap(psi_F(k,:),psi_F(k,:),np,dr))
   111 enddo
   112 write(*,*) "# Norm of initial wf_F",(normB(k),k=1,npot),sum(normB(:))
   113
   114 do i=1,npot
   115    call calcprop(psi_I(i,:),r,V(i,:),mass,np,'r',mean)
   116    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean position of psi

_I is ",mean
   117    call calcprop(psi_I(i,:),r,V(i,:),mass,np,'p',mean)
   118    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean momentum of psi

_I is ",mean
   119    call calcprop(psi_F(i,:),r,V(i,:),mass,np,'r',mean)
   120    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean position of psi

_F is ",mean
   121    call calcprop(psi_F(i,:),r,V(i,:),mass,np,'p',mean)
   122    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean momentum of psi

_F is ",mean
   123 enddo
   124
   125 !Generate initial laser
   126 call getlaser(nt,1,dt/fs2au,'fs', &    !Since getlaser will read fs, I have 

to send dt in fs
   127 &             t,Ex1,Ey1,Ez1)
   128
   129 !Inform before starting propagations
   130 write(*,'(a30,x,i2.2     )') ' Number of potentials: ',npot
   131 write(*,'(a30,x,F10.2,x,a)') ' Duration of the pulse:',(nt−1)*dt/fs2au,'fs'
   132 write(*,'(a30,x,L1       )') ' Use of sin2 envelope :',env
   133 write(*,'(a30,x,L1       )') ' Use of penalty func. :',pen 
   134 if (pen) write(*,'(a30,x,a1,F10.2 )') ' Penalty function of   :',penv
   135
   136 E2(:)=E1(:)
   137 Ex2(:)=Ex1(:)
   138 Ey2(:)=Ey1(:)
   139 Ez2(:)=Ez1(:)
   140 open(1,file='field.in',status='unknown')
   141 do i=0,nt−1
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   142    write(1,'(6(E20.10E3,x))') t(i)/fs2au,Ex1(i),Ey1(i),Ez1(i)
   143 enddo   
   144 close(1)
   145
   146
   147 open(1,file="normB.dat")
   148 !First backward propagation 
   149 wfB(:,:)=psi_F(:,:)
   150 !Open backward−time−loop
   151 do i=nt−1,0,−1
   152 !   call propag(wfB,dt,dr,V,d,E1(i),mass,−1,np,npot)
   153    call propagSO(wfB,dt,dr,V,dx,dy,dz,Ex1(i),Ey1(i),Ez1(i),mass,−1,np,npot)
   154    do k=1,npot
   155       normB(k)=cdabs(overlap(wfb(k,:),wfb(k,:),np,dr))
   156    enddo
   157    write (1,'(1000(E20.10E3,x))') t(i)/fs2au,normB(:),sum(normB(:))
   158 enddo !Close backward−time−loop
   159 close(1)
   160 !Terminated 1st backward propagation
   161
   162 !Check for the overlap wfB at time zero and psi_I
   163 write(*,*) "Overlap between 1st wfB(t=0) and psi_I"
   164 do k=1,npot
   165    ov1(k)=overlap(psi_I(k,:),wfB(k,:),np,dr)
   166    write(*,*) "Overlap in potential ",k,abs(ov1(k))!**2
   167 enddo
   168 !write(*,*) "total overlap",sum(abs(ov1(:))**2)
   169 write(*,*) "total overlap",sum(abs(ov1(:)))
   170
   171 !First forward(double) propagation, the laser of psi_I prop. forward (E2)
   172 !will be already changed with the information of psi_F prop. backward (with 

E1)
   173 open(1,file="normF.dat")
   174 wfF(:,:)=psi_I(:,:)
   175 !write(*,*) "time k j     Re{<wfF(k)|wfB(k)>} Im{}   Re{<wfF(k)|d(k,j)|wfB(j

)>} Im{} "
   176 do i=0,nt−1,+1
   177     g1=(0.d0,0.d0)  !Initialize first term
   178     g2=(0.d0,0.d0)  !Initialize 2nd   term
   179    gx2=(0.d0,0.d0)  !Initialize 2nd   term in x
   180    gy2=(0.d0,0.d0)  !Initialize 2nd   term in y
   181    gz2=(0.d0,0.d0)  !Initialize 2nd   term in z
   182    !First term of overlap only on the diagonal of npot x npot matrix
   183    do k=1,npot
   184       g1=g1+overlap(wfF(k,:),wfB(k,:),np,dr)
   185       !Second term of overlap over the WHOLE npot x npot dipole matrix
   186       do j=1,npot
   187          g2 =g2 +overlap(wfB(k,:), d(k,j,:)*wfF(j,:),np,dr)
   188          gx2=gx2+overlap(wfB(k,:),dx(k,j,:)*wfF(j,:),np,dr)
   189          gy2=gy2+overlap(wfB(k,:),dy(k,j,:)*wfF(j,:),np,dr)
   190          gz2=gz2+overlap(wfB(k,:),dz(k,j,:)*wfF(j,:),np,dr)
   191       !   write(*,'(F13.6,x,2(i7.7,x),20(E20.10e3,x))') t(i)/fs2au,k,j,overl

ap(wfF(k,:),wfB(k,:),np,dr),overlap(wfF(k,:),d(k,j,:)*wfB(j,:),np,dr)
   192       enddo
   193       !write(*,*)
   194    enddo
   195    !Input of this info in the new laser (core of OCT)!!!!!
   196    !if (cdabs(g1).lt.1.0d−5 ) g1=0.d0
   197    !if (cdabs(g2).lt.1.0d−5 ) g2=0.d0
   198    E2(i) =−dimag(g1* g2)
   199    Ex2(i)=−dimag(g1*gx2)
   200    Ey2(i)=−dimag(g1*gy2)
   201    Ez2(i)=−dimag(g1*gz2)
   202    if (pen) E2(i)=E2(i)/penv
   203    if (env) then
   204       E2(i) = E2(i)*sin(pi*t(i)/(nt*dt))**2
   205       Ex2(i)=Ex2(i)*sin(pi*t(i)/(nt*dt))**2
   206       Ey2(i)=Ey2(i)*sin(pi*t(i)/(nt*dt))**2
   207       Ez2(i)=Ez2(i)*sin(pi*t(i)/(nt*dt))**2
   208    endif
   209    call propagSO(wfB,dt,dr,V,dx,dy,dz,Ex1(i),Ey1(i),Ez1(i),mass,+1,np,npot) 

!wfB props FWD with with E1 laser       <−
   210    call propagSO(wfF,dt,dr,V,dx,dy,dz,Ex2(i),Ey2(i),Ez2(i),mass,+1,np,npot) 

!wfF props FWD with with E2 (new) laser _|
   211 !   call propag(wfB,dt,dr,V,d,E1(i),mass,+1,np,npot)
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   212 !   call propag(wfF,dt,dr,V,d,E2(i),mass,+1,np,npot)
   213    do k=1,npot
   214       normB(k)=cdabs(overlap(wfb(k,:),wfb(k,:),np,dr))
   215       normF(k)=cdabs(overlap(wff(k,:),wff(k,:),np,dr))
   216    enddo
   217 !   write(*,'(10000(F13.6,x))') r(k),t(i)/fs2au,(wfb(j,k),j=1,npot)
   218    write (1,'(1000(E20.10E3,x))') t(i)/fs2au,normB(:),sum(normB(:)),normF,su

m(normF(:))
   219 !   write(*,*) 'End of iteration ',iter
   220 enddo
   221 close(1)
   222 !First forward (double) propagation terminated 
   223
   224 write(*,*) "Overlap between 1st wfF(t=tf) and psi_F"
   225 do k=1,npot
   226    ov1(k)=overlap(wff(k,:),psi_F(k,:),np,dr)
   227    write(*,*) "Overlap in potential ",k,abs(ov1(k))!**2
   228 enddo
   229 !write(*,*) "total overlap",sum(abs(ov1(:))**2)
   230 write(*,*) "total overlap",sum(abs(ov1(:)))
   231
   232 !Start counter of iterations for OCT−loop and save laser of wfF
   233 iter=0
   234 write(fich,'(a4,i4.4,a4)') 'las_',iter,'.dat'
   235 open(unit=1,file=fich,status='unknown')      
   236 do i=0,nt−1
   237    write (1,'(4(e20.10e3))') t(i)/fs2au,Ex2(i),Ey2(i),Ez2(i)
   238 enddo
   239 close(1)
   240
   241 !Begin OCT−loop
   242 eps=1.d0
   243 open(55,file='norms.dat',status='unknown')
   244 do while (eps>thres)
   245    iter = iter+1
   246    E1(:) = E2(:)   !Improve the laser with the previous output of OCT−loop
   247    Ex1(:)=Ex2(:)
   248    Ey1(:)=Ey2(:)
   249    Ez1(:)=Ez2(:)
   250
   251    !Backward propagation 
   252    wfB(:,:)=psi_F(:,:)
   253    !Open backward−time−loop
   254    do i=nt−1,0,−1
   255 !      write(*,*) t(i)/fs2au,E1(i),Ey1(i)
   256 !      call propag(wfB,dt,dr,V,d,E1(i),mass,−1,np,npot)
   257       call propagSO(wfB,dt,dr,V,dx,dy,dz,Ex1(i),Ey1(i),Ez1(i),mass,−1,np,npo

t)
   258       do k=1,npot
   259          normB(k)=cdabs(overlap(wfb(k,:),wfb(k,:),np,dr))
   260       enddo
   261 !     write(*,'(10000(F13.6,x))') r(k),t(i)/fs2au,(wfb(j,k),j=1,npot)
   262    enddo !Close backward−time−loop
   263    !Terminated backward propagation
   264
   265    !Forward(double) propagation, the laser of psi_I prop. forward (E2)
   266    !will be already changed with the information of psi_F prop. backward
   267    wfF(:,:)=psi_I(:,:)
   268    do i=0,nt−1,+1
   269       g1=(0.d0,0.d0)   !Initialize first term
   270       g2=(0.d0,0.d0)   !Initialize 2nd   term
   271       gx2=(0.d0,0.d0)  !Initialize 2nd   term in x
   272       gy2=(0.d0,0.d0)  !Initialize 2nd   term in y
   273       gz2=(0.d0,0.d0)  !Initialize 2nd   term in z
   274
   275       !First term of overlap only on the diagonal of npot x npot matrix
   276       do k=1,npot
   277          g1=g1+overlap(wfF(k,:),wfB(k,:),np,dr)
   278          !Second term of overlap over the WHOLE npot x npot dipole matrix
   279          do j=1,npot
   280             g2 = g2+overlap(wfB(k,:),d(k,j,:) *wfF(j,:),np,dr)
   281             gx2=gx2+overlap(wfB(k,:),dx(k,j,:)*wfF(j,:),np,dr)
   282             gy2=gy2+overlap(wfB(k,:),dy(k,j,:)*wfF(j,:),np,dr)
   283             gz2=gz2+overlap(wfB(k,:),dz(k,j,:)*wfF(j,:),np,dr)
   284          enddo
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   285       enddo
   286
   287       !Input of this info in the new laser (core of OCT)!!!!!
   288       E2(i) =−dimag(g1*g2)
   289       Ex2(i)=−dimag(g1*gx2)
   290       Ey2(i)=−dimag(g1*gy2)
   291       Ez2(i)=−dimag(g1*gz2)
   292       if (pen) E2(i)=E2(i)/penv
   293       if (env) then
   294          E2(i) = E2(i)*sin(pi*t(i)/(nt*dt))**2
   295          Ex2(i)=Ex2(i)*sin(pi*t(i)/(nt*dt))**2
   296          Ey2(i)=Ey2(i)*sin(pi*t(i)/(nt*dt))**2
   297          Ez2(i)=Ez2(i)*sin(pi*t(i)/(nt*dt))**2
   298       endif
   299       call propagSO(wfB,dt,dr,V,dx,dy,dz,Ex1(i),Ey1(i),Ez1(i),mass,+1,np,npo

t) !wfB props FWD with with E1 laser       <−
   300       call propagSO(wfF,dt,dr,V,dx,dy,dz,Ex2(i),Ey2(i),Ez2(i),mass,+1,np,npo

t) !wfF props FWD with with E2 (new) laser _|
   301 !      call propag(wfB,dt,dr,V,d,E1(i),mass,+1,np,npot)
   302 !      call propag(wfF,dt,dr,V,d,E2(i),mass,+1,np,npot)
   303       do k=1,npot
   304          normB(k)=cdabs(overlap(wfb(k,:),wfb(k,:),np,dr))
   305          normF(k)=cdabs(overlap(wff(k,:),wff(k,:),np,dr))
   306       enddo
   307       write (55,'(1000(E20.10E3,x))') t(i)/fs2au,normB(:),sum(normB(:)),norm

F,sum(normF(:)),iter*1.d0
   308 !     write(*,'(10000(F13.6,x))') r(k),t(i)/fs2au,(wfb(j,k),j=1,npot)
   309    enddo
   310    write (55,*)
   311    !First forward (double) propagation terminated 
   312    
   313    write(*,*) "For the forwardly propagated wavefunction, at t=T:"
   314    do i=1,npot
   315       call calcprop(wff(i,:),r,V(i,:),mass,np,'r',mean)
   316       write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean position wfF

 is ",mean
   317       call calcprop(wff(i,:),r,V(i,:),mass,np,'p',mean)
   318       write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean momentum wfF

 is ",mean
   319    enddo
   320
   321
   322    write(*,*) "Overlap between wfF(t=tf) and psi_F"
   323    do k=1,npot
   324       ov2(k)=overlap(wff(k,:),psi_F(k,:),np,dr)
   325       write(*,*) "Overlap in potential ",k,abs(ov2(k))!**2
   326    enddo
   327    write(*,*) "total overlap",sum(abs(ov2(:)))
   328    
   329    eps=   abs(sum(abs(ov2(:)))−sum(abs(ov1(:))))/(sum(abs(ov1(:))))
   330    write (*,*) 'Convergence ',eps,thres
   331    
   332    ov1(:)=ov2(:)
   333    write(fich,'(a4,i4.4,a4)') 'las_',iter,'.dat'
   334    open(unit=1,file=fich,status='unknown')      
   335    do i=0,nt−1
   336       write (1,'(4(e20.10e3))') t(i)/fs2au,Ex2(i),Ey2(i),Ez2(i)
   337    enddo
   338    close(1)
   339    write(*,*) 'End of iteration ',iter
   340
   341    open(1,file='wfF.dat',status='unknown')
   342    do i=1,np
   343       write(1,'(2000(E20.10e3,x))') r(i),(wfF(j,i),j=1,npot)
   344    enddo
   345    close(1)
   346
   347 enddo !OCT−while loop converged
   348
   349 close(55)
   350 !Write stuff on output
   351 do i=1,npot
   352    call calcprop(wff(i,:),r,V(i,:),mass,np,'r',mean)
   353    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean position of wff

   is ",mean
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   354    call calcprop(wff(i,:),r,V(i,:),mass,np,'p',mean)
   355    write (*,'(a10,x,i2.2,a30,2(F13.6,x))') "On pot.",i,"mean momentum of wff

   is ",mean
   356 enddo
   357
   358 open(1,file='oct_field.dat')
   359 do i=0,nt−1,+1
   360    write (1,'(5(e20.10e3,x))') t(i)/fs2au,Ex2(i),Ey2(i),Ez2(i)
   361 enddo
   362 close(1)
   363
   364 open(1,file='oct_wfF',status='unknown')
   365 do i=1,np
   366    write(1,'(2000(E20.10e3,x))') r(i),(wfF(j,i),j=1,npot)
   367 enddo
   368 close(1)
   369 end
   370 !Functions
   371 !##############################
   372 function overlap(f1,f2,np,dr)
   373 implicit none
   374 integer,parameter :: DP=kind(1.d0)
   375 integer i,j,k,np
   376 complex(kind=DP) f1(1:np),f2(1:np)
   377 real(kind=DP) dr
   378 complex(kind=DP) overlap
   379
   380 overlap=(0.d0,0.d0)
   381 do i=1,np
   382    overlap=overlap+dconjg(f1(i))*f2(i)
   383 enddo
   384 overlap=overlap*dr
   385 return
   386 end function
   387 !###############################   
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• randomizeparallel.f90

This program performs a Monte-Carlo based pseudo-random conformational search,
and the code is parallelized to n processors (line 102). It reads from standard input
the parameters filein, tight, tipo, and seed. filein is the name of the file
with the molecular geometry in form of MOPAC [129] Z-matrix. The stepsize ω in
Eq. (3.1) is tight. The type (tipo) of optimization can be minimum or TS, although
TS has not been fully tested yet. The option seed informs the program if a new
random table needs to be created or a previous one has to be used (in order to ensure
reproducibility even in random conditions). The filein is scanned automatically by
the subroutine getzmatmopac (line 32, see end the source code), which automatically
reads atom-labels and connectivities. Additionally, the MOPAC Z-matrix format
allows each DOF to have another descriptor, an integer determining its status. This
integer is used do differentiate the DOFs to be randomized from those to be left
untouched.

Before the optimization begins, separate files (line 59) containing xyz-geometries of
each randomized DOF are created for visualization purposes. Each of these files
contains geometries spanning over the randomized interval, as to provide a quick
visual impression of the impact of the tight parameter on the search. Only internal
DOFs are randomized, thus the random perturbation is done in the more chemical
Z-matrix-geometry, expressed in terms of bond-angles, bond-distances and dihedral
angles. Transformation back to Cartesian is done by the subroutine zmatcart (line
74).

The search itself begins at line 102, where the parallel segment of the code starts (do-
loop opening in lines 101-106). Each DOF undergoes the perturbation of Eq. (3.1)
(lines 110-134) and the full MOPAC-input is set up, including the optimization
command-line for MOPAC (lines 136-146). The program randomizeparallel is
then interfaced with the MOPAC code via a script created in each iteration for
each processor, which then executes MOPAC. (lines 140-160). After the iteration
has stopped, other scripts check for convergence (lines 182-191). If the iteration
has converged, a frequency calculation is automatically launched by the code (lines
214-232). The outcome of that calculation is again checked (lines 234-260) for neg-
ative frequencies. If none appear (line 262), the converged geometry is a minimum,
and the optimization is then stored and compressed (using the bzip2-compressor, see
lines 282-285). The name of the saved file is created with the obtained energy value
in its filename. This allows for quick browsing of energy values while the program
is running, and simplifies the manipulation by the program alignMOPAC further on
(also in this Appendix).

All the converged energy values are appended to a separate file E.dat on the fly,
as they emerge from the algorithm (lines 297-300). This file produces ultimately a
histogram representing the distribution of energies for the whole search.

The remaining parts of the code (lines 306-520) correspond to the algorithm for ran-
dom TS-search, which is not yet implemented fully. It bases on the same strategy as
the minimum search, but combines searches for TSs with intermediate optimizations
where parts of the molecule (specially CH3-groups) are allowed to relax. In order for
the algorithm to be efficient, fewer DOFs shold be randomized and smaller ω-values
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     1 program randomizeparallel !To randomly generate mopac inputs out of zmat and
     2                           !give them to mopac
     3 implicit none
     4 integer i,j,k
     5 integer ii,jj
     6 integer,parameter :: na=16
     7 integer,parameter :: DP=kind(1.d0)
     8 character*1   natomI(1:na)
     9 character*1   natom(1:na)
    10 real(kind=DP) cnctvt_V(na,1:3)  !Conectivity value
    11 real(kind=DP) cnctvt_VI(1:na,1:3)  !Conectivity value initial
    12 integer       cnctvt_A(1:na,1:3)  !Conectivity atom 
    13 integer       cnctvt_AI(1:na,1:3)  !Conectivity atom  initial
    14 integer       cnctvt_S(1:na,1:3)  !Conectivity status
    15 integer       cnctvt_SI(1:na,1:3)  !Conectivity status initial
    16 real(kind=DP) cart    (1:na,1:3)  !cartesian coords
    17 integer       seed(1:2),succes,succesM,succesF,thread
    18 real(kind=DP) ra,E,start,tight,amp(1:3),G   
    19 character*35 fname,dummychar,fname2,fname3,fname4
    20 character*75 commandline
    21 character*2  tipo
    22 character*1  s
    23 integer       signo,randcoords,counter
    24 integer,allocatable :: listrandoms(:,:)
    25 logical exi,corr
    26 integer        omp_get_thread_num,fi
    27 fname=''
    28 read(*,*) fname
    29 read(*,*) tight
    30 read(*,*) tipo
    31 read(*,*) s                  !read or create seed
    32 call getzmatmopac(fname,na,natomI,cnctvt_AI,cnctvt_VI,cnctvt_SI)
    33
    34 cnctvt_V(:,:)=cnctvt_VI(:,:)
    35 cnctvt_A(:,:)=cnctvt_AI(:,:)
    36 cnctvt_S(:,:)=cnctvt_SI(:,:)
    37 natom(:)=natomI(:)
    38 if (s.eq.'c') call system ("echo $RANDOM > seed.dat")
    39 open(51,file='seed.dat',status='old')
    40 read(51,*) seed(1)
    41 close(51)
    42 write(*,*) "Seed  for this search was",seed
    43 write(*,*) "Tight for this search was",tight
    44 write(*,*) "Type of search",tipo
    45 !call srand(seed)  !FOR RUNNING IN GFORTRAN
    46 call random_seed(put=seed) !FOR RUNNING IN PGF90
    47
    48 !tight=.40 
    49 !tight=.50 
    50 !Choose amplitudes of motion
    51 amp(1)=1.3d0
    52 amp(2)=180.d0
    53 amp(3)=360.d0
    54 !Segment to randomize each coord separately
    55 do i=1,na
    56    do j=1,3
    57       if (cnctvt_SI(i,j).eq.1) then
    58          start=cnctvt_V(i,j)−tight*.5*amp(j) !(start at lowest value)
    59          write(fname,'(a8,i2.2,a1,i1,a4)') "randoms.",i,".",j,".xyz"
    60          open(60,file=fname,status='unknown')
    61          write(fname,'(a8,i2.2,a1,i1,a9)') "randoms.",i,".",j,".zmat.mop"
    62          write(*,'(a5,x,F9.4,x,a2,x,F9.4,x,a2,x,15a)') "From ",start,"to",cn

ctvt_V(i,j)+tight*.5*amp(j),"in",fname
    63          open(70,file=fname,status='unknown')
    64          cnctvt_V(i,j)=start
    65          do k=1,25
    66             cnctvt_V(i,j)=start+tight*amp(j)/24.d0*k
    67             if ((j.eq.2).and.(cnctvt_V(i,j).gt.179.99)) then
    68                cnctvt_V(i,j)=360.d0−cnctvt_V(i,j)
    69                cnctvt_V(i,3)=cnctvt_VI(i,3)+180.d0
    70             elseif((j.eq.2).and.(cnctvt_V(i,j).lt.000.01)) then
    71                cnctvt_V(i,j)=360.d0−cnctvt_V(i,j)
    72                cnctvt_V(i,3)=cnctvt_VI(i,3)+180.d0
    73             endif
    74             call zmatcart(na,cnctvt_V(:,:),cnctvt_A(:,:),cart) !!!!
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    75             write(60,*) na
    76             write(60,*) "Scf Done: ",cnctvt_V(i,j)
    77             write(70,*)
    78             write(70,*) "HEAT OF FORMATION:",cnctvt_V(i,j)
    79             write(70,*)
    80             do ii=1,na
    81                write(60,'(a1,x,3(F9.4,x))') natomI(ii),(cart(ii,jj),jj=1,3)
    82                write(70,'(a1,x,3(F9.4,x,i2,x),3(i2,x))') natomI(ii),(cnctvt_

V(ii,jj),cnctvt_S(ii,jj),jj=1,3),&
    83                     (cnctvt_A(ii,jj),jj=1,3)
    84             enddo
    85          enddo   
    86          close(60)
    87          close(70)
    88          cnctvt_V(:,:)=cnctvt_VI(:,:)
    89       endif
    90    enddo
    91 enddo
    92 inquire(file='E.dat',exist=exi)
    93 if (exi) then 
    94    write(*,*) "E.dat already exists. Is this okay?"
    95    STOP
    96 else
    97    open(50,file='E.dat',status='new')
    98    close(50)
    99 endif
   100
   101 counter=0
   102 !Parallelizable part begins
   103 !$OMP PARALLEL DO &
   104 !$OMP PRIVATE(cnctvt_V,k,E,fname,fname2,fname3,fname4,commandline,ra,succesM

,succesF,thread,exi,fi,G   ) &
   105 !$OMP SHARED(cnctvt_VI,tight,cnctvt_A,natomI,seed,counter) 
   106 do k=1,5000
   107    cnctvt_V(:,:)=cnctvt_VI(:,:)
   108    thread=omp_get_thread_num()
   109    fi=thread
   110    !Generating random 
   111    do i=1,na
   112       do j=1,3
   113          call random_number(harvest=ra)
   114          corr=.false.
   115          if(cnctvt_SI(i,1).eq.1) cnctvt_V(i,1)=cnctvt_VI(i,1)+(ra−.5d0)
   116          if(cnctvt_SI(i,2).eq.1) then 
   117             cnctvt_V(i,2)=cnctvt_VI(i,2)+(ra−.5d0)*tight*180.d0 
   118             if ((cnctvt_V(i,2).gt.179.99)) then
   119                cnctvt_V(i,2)=360.d0−cnctvt_V(i,j)
   120                cnctvt_V(i,3)=cnctvt_VI(i,3)+180.d0
   121                corr=.true.
   122             elseif((cnctvt_V(i,2).lt.000.01)) then
   123                cnctvt_V(i,2)=360.d0−cnctvt_V(i,j)
   124                cnctvt_V(i,3)=cnctvt_VI(i,3)+180.d0
   125                corr=.true.
   126             endif
   127          endif
   128          if (corr) then
   129             if(cnctvt_SI(i,3).eq.1) cnctvt_V(i,3)=cnctvt_V(i,3)+(ra−.5d0)*ti

ght*360.d0
   130          else 
   131             if(cnctvt_SI(i,3).eq.1) cnctvt_V(i,3)=cnctvt_VI(i,3)+(ra−.5d0)*t

ight*360.d0
   132          endif
   133       enddo
   134    enddo     
   135           if (tipo.eq.'MI') then
   136              !Write the mopac input with an iteration dependent filename
   137              fname=''
   138              write(fname,'(a15,i4.4,4a)') 'PM6.random.opt.',k,'.mop'
   139              open(100+fi,file=fname,status='new')
   140              write(100+fi,'(99a)') 'PM6 CHARGE=−1 LET PRECISE GRAD=.01 NOXYZ

 GRAPH PRNT=2 COMPFG CYCLES=250 GEO−OK'
   141              write(100+fi,'(a30)')
   142              write(100+fi,'(a30)')
   143              do i=1,na
   144                 write(100+fi,'(a1,3x,3(F13.6,2x,i1,x),3(i2.2,x))') natomI(i)
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,(cnctvt_V(i,j),1,j=1,3),(cnctvt_AI(i,j),j=1,3)
   145              enddo
   146              close(100+fi)
   147           
   148              !Prepare command script (all filenames iteration dependent)
   149              fname2='' 
   150              write(fname2,'(a12,i4.4,4a)') 'command.opt.',k,'.sht'
   151              open(100+fi,file=fname2,status='unknown')
   152              write(100+fi,*) "echo 'Full opt ...'"
   153              write(100+fi,'(40a,x,23a)') '/user/guille/programs/MOPAC09/MOPA

C2009.exe ',fname
   154              write(100+fi,*) "echo '...done full opt'"
   155              close(100+fi)
   156           
   157              !Call MOPAC
   158              commandline=''
   159              write(commandline,'(a3,20a)') "sh ",fname2
   160              call system (commandline)
   161           
   162              !Prepare succes  script (all filenames iteration dependent)
   163              fname=''
   164              fname2=''
   165              fname3=''
   166              fname4=''
   167              write(fname ,'(a11,i4.4,4a)') 'succes.opt.',k,'.sht'
   168              write(fname2,'(a15,i4.4,4a)') 'PM6.random.opt.',k,'.out'
   169              write(fname3,'(a11,i4.4,4a)') 'succes.opt.',k,'.dat'
   170              write(fname4,'(a11,i4.4,4a)') 'succes.opt.',k,'.tmp'
   171              inquire(file=fname2,exist=exi)
   172              if (exi) then
   173                 open(100+fi,file=fname,status='new')
   174                 write(100+fi,'(40a,x,23a,a3,19a)') "grep 'SCF FIELD WAS ACHI

EVED' ",fname2," > ", fname3
   175                 write(100+fi,'(6a,x,19a,a3,19a)')  "wc −w ",fname3," > ",fna

me4
   176                 close(100+fi)
   177              else
   178                 write(*,*) fname2,"does not exist after minimizing?"
   179                 STOP
   180              endif
   181              
   182              !Check success
   183              commandline=''
   184              write(commandline,'(a3,19a)') "sh ",fname
   185              call system (commandline)
   186              open(100+fi,file=fname4,status='old')
   187              read(100+fi,*) succesM
   188              close(100+fi)
   189           
   190              !Converged minimization:
   191              if(succesM.eq.4) then
   192           
   193                 !Prepare geom−fish and mopac input for freqs (all filenames 

iteration dependent)
   194                 fname=''
   195                 fname2=''
   196                 fname3=''
   197                 write(fname ,'(a12,i4.4,a4)') 'get.mat.frq.',k,'.sht'
   198                 write(fname2,'(a15,i4.4,4a)') 'PM6.random.frq.',k,'.mop'
   199                 write(fname3,'(a15,i4.4,4a)') 'PM6.random.opt.',k,'.arc'
   200                 write(fname4,'(a15,i4.4,4a)') 'PM6.random.opt.',k,'.out'
   201                 inquire(file=fname4,exist=exi)
   202                 if (exi) then
   203                     open(100+fi,file=fname,status='new')
   204                     write(100+fi,'(a25,x,a23)')" echo PM6 FORCE   > ",fname2
   205                     write(100+fi,'(a10,x,a23)')" echo >> ",fname2 
   206                     write(100+fi,'(a10,x,a23)')" echo >> ",fname2 
   207                     write(100+fi,'(a50,x,a23)') "echo XX 0.0 0 0.0 0 0.0 0 0

 0 0 >> ", fname2
   208                     write(100+fi,'(a6,i3,x,a23,a4,a23)') "tail ",−na,fname3,

" >> ", fname2
   209                     close(100+fi)
   210                 else
   211                    write(*,*) fname4,"does not exist when calc freqs?"
   212                    STOP
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   213                 endif
   214           
   215                 !Fish geometries and create mopac input
   216                 commandline=''
   217                 write(commandline,'(a3,20a)') "sh ",fname
   218                 call system (commandline)
   219           
   220                 !Prepare MOPAC script (filenames are iteration dependent)
   221                 fname=''
   222                 write(fname,'(a12,i4.4,4a)') 'command.frq.',k,'.sht'
   223                 open(100+fi,file=fname,status='new')
   224                 write(100+fi,*) "echo 'Freq calc...'"
   225                 write(100+fi,'(40a,x,23a)') '/user/guille/programs/MOPAC09/M

OPAC2009.exe ',fname2
   226                 write(100+fi,*) "echo '...done freqs'"
   227                 close(100+fi)
   228              
   229                 !Call MOPAC
   230                 commandline=''
   231                 write(commandline,'(a3,20a)') "sh ",fname
   232                 call system (commandline)
   233           
   234                 !Prepare freq−fish script (filenames iteration dependent)
   235                 fname=''
   236                 fname2=''
   237                 fname3=''
   238                 fname4=''
   239                 write(fname, '(a12,i4.4,4a)') 'get.neg.frq.',k,'.sht'
   240                 write(fname2,'(a15,i4.4,4a)') 'PM6.random.frq.',k,'.out'
   241                 write(fname3,'(a11,i4.4,4a)') 'succes.frq.',k,'.dat'
   242                 write(fname4,'(a11,i4.4,4a)') 'succes.frq.',k,'.tmp'
   243                 inquire(file=fname2,exist=exi)
   244                 if (exi) then
   245                    open(100+fi,file=fname,status='new')
   246                    write(100+fi,'(a10,a23,a40,a23)') "grep FREQ ",fname2," |

 awk '{print $2}' | grep '\−' > ",fname3
   247                    write(100+fi,'(a10,a23,a3, a23)') "wc −w ",fname3," > ",f

name4
   248                    close(100+fi)
   249                 else
   250                    write(*,*) fname2,"does not exist after calc freqs?"
   251                    STOP
   252                 endif
   253                 
   254                 !Get freqs
   255                 commandline=''
   256                 write(commandline,'(a3,20a)') "sh ",fname
   257                 call system (commandline)
   258                 open(100+fi,file=fname4,status='old')
   259                 read(100+fi,*) succesF
   260                 close(100+fi)
   261           
   262                 !Loop of only positive frequencies
   263                 if (succesF.eq.0) then
   264                    !Get energy (just one commandline, no script)
   265                    commandline=''
   266                    fname3=''
   267                    write(fname3,'(a15,i4.4,4a)') 'PM6.random.opt.',k,'.arc'
   268                    write(commandline,'(a26,x,a23,a5,i4.4,4a)') "grep 'HEAT O

F FORMATION' ",fname3," > E.",k,".tmp"
   269                    call system (commandline)
   270                    fname=''
   271                    write(fname,'(a2,i4.4,a4)') "E.",k,".tmp"
   272                    open(100+fi,file=fname,status='old')
   273                    read(100+fi,*) (dummychar,i=1,4),E
   274                    close(100+fi)
   275                    write(*,*) "Minimization succesfully converged at ",E
   276                    fname3=''
   277                    write(fname3,'(a1,i4.4,F3.2,a,i4.4,a8)') 'E',int(E),(E−re

al(int(E)))−0.005d0,'_',k,'.opt.out'
   278                    if (E.le.−1d0) write(fname3,'(a1,i4.3,F3.2,a,i4.4,a8)') '

E',int(E),−(E−real(int(E))+0.005d0),'_',k,'.opt.out'
   279                    if ((E.gt.−1d0).and.(E.lt.0.d0)) write(fname3,'(a2,i3.3,F

3.2,a,i4.4,a8)')&
   280                                       'E−',int(E),−(E−real(int(E))+0.005d0),
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'_',k,'.opt.out'
   281           
   282                    !Preparing script for saving geometry of checked−minimum
   283                    fname=''
   284                    fname2=''
   285                    write(fname, '(a8,i4.4,a4)') 'do.save.',k,'.sht'
   286                    write(fname2,'(a15,i4.4,4a)') 'PM6.random.opt.',k,'.out'
   287                    open(100+fi,file=fname,status='new')
   288                    write(100+fi,'(a3,a23,x,a24)') "cp ",fname2,fname3
   289                    write(100+fi,*) "bzip2 ",fname3
   290                    write(100+fi,'(a20,a24,a15,i2)') "echo done saving ",fnam

e3," in thread ",thread
   291                    close(100+fi)
   292           
   293                    !Save geometry
   294                    write(commandline,'(a3,a16)') "sh ",fname
   295                    call system (commandline)
   296                    
   297                    !Append energy
   298                    open(100+fi,file='E.dat',status='old',position='append')
   299                    write(100+fi,'(E20.10E3)') E
   300                    close(100+fi)
   301                 endif
   302                 !End loop positive frequencies
   303              endif
   304              !End loop of converged point
   305
   306           !For TS search
   307           elseif((tipo.eq.'TS')) then
   308              !Prepare input mopac file
   309              write(fname,'(a18,i4.4,4a)') 'PM6.random.opt.H1.',k,'.mop'
   310              open(100+fi,file=fname,status='new')
   311              write(100+fi,'(99a)') 'PM6 LET NOXYZ GRAPH PRNT=2 COMPFG  GEO−O

K '
   312              write(100+fi,'(a30)')
   313              write(100+fi,'(a30)')
   314              do i=1,na
   315                 if (natomI(i).ne.'H') write(100+fi,'(a1,3x,3(F13.6,2x,i1,x),

3(i2.2,x))') natomI(i),&
   316                                                       (cnctvt_V(i,j),0,j=1,3

),(cnctvt_AI(i,j),j=1,3)
   317                 if (natomI(i).eq.'H') write(100+fi,'(a1,3x,3(F13.6,2x,i1,x),

3(i2.2,x))') natomI(i),&
   318                                                       (cnctvt_V(i,j),1,j=1,3

),(cnctvt_AI(i,j),j=1,3)
   319              enddo
   320              write(100+fi,*)
   321              write(100+fi,*) "oldgeo PM6 1SCF  NOXYZ"  !This is to force the

 production of an .arc file!!!
   322              write(100+fi,*)
   323              close(100+fi)
   324
   325             !Call mopac on opt H1 (all filenames iteration dependent)
   326             commandline=''
   327             call system ("echo 'Hs opt....'")
   328             write(commandline,'(15a,x,26a)') './MOPAC2009.exe ',fname
   329             call system (commandline)
   330             call system ("echo '...done Hs opt'")
   331
   332             !Check for succesfull opt of H1
   333             fname3=''
   334             write(fname3,'(a18,i4.4,4a)') 'PM6.random.opt.H1.',k,'.arc'
   335             inquire(file=fname3,exist=exi)
   336             !Fish geom
   337             if (exi) then
   338                fname2=''
   339                write(fname2,'(a17,i4.4,4a)') 'PM6.random.TS.Cs.',k,'.mop'
   340                commandline=''
   341                write(commandline,'(a40,x,a25)') "echo XX 0.0 0 0.0 0 0.0 0 0

 0 0 > ", fname2
   342                call system (commandline)
   343                commandline=''
   344                write(commandline,'(a6,i3,x,a26,a4,a25)') "tail ",−na,fname3,

" >> ", fname2
   345                call system(commandline)
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   346                !Check for succesfull tailing for H1.arc
   347                inquire(file=fname2,exist=exi)
   348                if (exi) then
   349                   !Extract geometry
   350                   call getzmatmopac (fname2,na,natom,cnctvt_A,cnctvt_V,cnctv

t_S)
   351                   !Prepare mop file for optimizing TS all not TS carbon (all

 filenames iteration dependent)
   352                   open(100+fi,file=fname2,status='old')
   353                   write(100+fi,*) "PM6 RECALC=5 TS LET  NOXYZ GRAPH PRNT=2 C

OMPFG  GNORM=.10 GEO−OK "
   354                   write(100+fi,*)
   355                   write(100+fi,*)
   356                   do i=1,na
   357                      if (natomI(i).eq.'H') write(100+fi,'(a1,3x,3(F13.6,2x,i

1,x),3(i2.2,x))')& 
   358                                            natomI(i),(cnctvt_V(i,j),0,j=1,3)

,(cnctvt_AI(i,j),j=1,3)
   359                      if (natomI(i).ne.'H') write(100+fi,'(a1,3x,3(F13.6,2x,i

1,x),3(i2.2,x))')&
   360                                            natomI(i),(cnctvt_V(i,j),1,j=1,3)

,(cnctvt_AI(i,j),j=1,3)
   361                   enddo
   362                   write(100+fi,*)
   363                   write(100+fi,*) "oldgeo PM6 1SCF  NOXYZ"  !This is to forc

e the production of an .arc file!!!
   364                   write(100+fi,*)
   365                   close(100+fi)
   366                   !Call mopac on opt TS C only (all filenames iteration depe

ndent)
   367                   commandline=''
   368                   call system ("echo 'Cs opt TS...'")
   369                   write(commandline,'(15a,x,25a)') './MOPAC2009.exe ',fname2
   370                   call system (commandline)
   371                   call system ("echo '...done TS Cs opt'")
   372                   !Check for succesfull opt TS of C only
   373                   fname3=''
   374                   write(fname3,'(a17,i4.4,4a)') 'PM6.random.TS.Cs.',k,'.arc'
   375                   inquire(file=fname3,exist=exi)
   376                   if (exi) then
   377                      !Fish geom
   378                      fname2=''
   379                      write(fname2,'(a18,i4.4,4a)') 'PM6.random.opt.H2.',k,'.

mop'
   380                      commandline=''
   381                      write(commandline,'(a40,x,a26)') "echo XX 0.0 0 0.0 0 0

.0 0 0 0 0 > ", fname2
   382                      call system (commandline)
   383                      commandline=''
   384                      write(commandline,'(a6,i3,x,a25,a4,a26)') "tail ",−na,f

name3," >> ", fname2
   385                      call system (commandline)
   386                      !Check for succesfull tailing for TS.Cs.arc
   387                      inquire(file=fname2,exist=exi)
   388                      if (exi) then
   389                         !Extract geometry
   390                         call getzmatmopac (fname2,na,natom,cnctvt_A,cnctvt_V

,cnctvt_S)
   391                         ! Prepare mop file for reoptimizing only HS (all fil

enames iteration dependent)
   392                         open(100+fi,file=fname2,status='old')
   393                         write(100+fi,*) "PM6 LET NOXYZ GRAPH PRNT=2 COMPFG  

GEO−OK"
   394                         write(100+fi,*)
   395                         write(100+fi,*)
   396                         do i=1,na
   397                            if (natomI(i).ne.'H')write(100+fi,'(a1,3x,3(F13.6

,2x,i1,x),3(i2.2,x))') natomI(i),(cnctvt_V(i,j),0,j=1,3),(cnctvt_AI(i,j),j=1
,3)

   398                            if (natomI(i).eq.'H')write(100+fi,'(a1,3x,3(F13.6
,2x,i1,x),3(i2.2,x))') natomI(i),(cnctvt_V(i,j),1,j=1,3),(cnctvt_AI(i,j),j=1
,3)

   399                         enddo
   400                         write(100+fi,*)
   401                         write(100+fi,*) "oldgeo PM6 1SCF  NOXYZ"  !This is t
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o force the production of an .arc file!!!
   402                         write(100+fi,*)
   403                         close(100+fi)
   404                         !Call mopac reoptimizing H only (all filenames itera

tion dependent)
   405                         commandline=''
   406                         call system ("echo 'Hs reopt...'")
   407                         write(commandline,'(15a,x,26a)') './MOPAC2009.exe ',

fname2
   408                         call system (commandline)
   409                         call system ("echo '...done Hs reopt'")
   410                         !Check for succesfull reop of H2
   411                         fname3=''
   412                         write(fname3,'(a18,i4.4,4a)') 'PM6.random.opt.H2.',k

,'.arc'
   413                         inquire(file=fname3,exist=exi)
   414                         if (exi) then
   415                            !Fish geom
   416                            fname2=''
   417                            write(fname2,'(a18,i4.4,4a)') 'PM6.random.opt.TS.

',k,'.mop'
   418                            commandline=''
   419                            write(commandline,'(a40,x,a26)') "echo XX 0.0 0 0

.0 0 0.0 0 0 0 0 > ", fname2
   420                            call system (commandline)
   421                            commandline=''
   422                            write(commandline,'(a6,i3,x,a26,a4,a26)') "tail "

,−na,fname3," >> ", fname2
   423                            call system (commandline)
   424                            !Check for succesfull tailing for opt.H2s.arc
   425                            inquire(file=fname2,exist=exi)
   426                            if (exi) then
   427                               !Extract geometry
   428                               call getzmatmopac (fname2,na,natom,cnctvt_A,cn

ctvt_V,cnctvt_S)
   429                               !Prepare mop file for optimizing FULL TS HS (a

ll filenames iteration dependent)
   430                               open(100+fi,file=fname2,status='old')
   431                               write(100+fi,*) "PM6 TS LET NOXYZ GRAPH PRNT=2

 COMPFG  GNORM=.1 GEO−OK "
   432                               write(100+fi,*)
   433                               write(100+fi,*)
   434                               do i=1,na
   435                                  write(100+fi,'(a1,3x,3(F13.6,2x,i1,x),3(i2.

2,x))') natomI(i),&
   436                                                   (cnctvt_V(i,j),1,j=1,3),(c

nctvt_AI(i,j),j=1,3)
   437                               enddo
   438                               write(100+fi,*)
   439                               write(100+fi,*) "oldgeo PM6 1SCF NOXYZ GRAD"  

!This is to force the production of an .arc file!!!
   440                               write(100+fi,*)
   441                               close(100+fi)
   442                               !Call mopac FULL TS OPTIMIZING (all filenames 

iteration dependent)
   443                               commandline=''
   444                               call system ("echo 'FULL TS opt...'")
   445                               write(commandline,'(15a,x,26a)') './MOPAC2009.

exe ',fname2
   446                               call system (commandline)
   447                               call system ("echo '...done FULL TS opt'")
   448                            else
   449                               write(*,*) fname2,"does not exist after tailin

g H2.arc?"
   450                               STOP
   451                            endif
   452                         else
   453                             write(*,*) fname3,"does not exist after reopting

 H2?"
   454                             STOP
   455                         endif
   456                         
   457                      else
   458                         write(*,*) fname2,"does not exist after tailing TS.C

S.arc?"
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   459                         STOP
   460                      endif
   461           
   462                   else
   463                      write(*,*) fname3,"does not exist after opting TS C?"
   464                      STOP
   465                   endif
   466                else 
   467                   write(*,*) fname2,"does not exist after tailing H1.arc?"
   468                   STOP
   469                endif
   470             else
   471                write(*,*) fname3,"does not after opt H1?"
   472                STOP
   473             endif
   474
   475             !Get energy (just one commandline, no script)
   476             commandline=''
   477             fname2=''
   478             write(fname2,'(a18,i4.4,4a)') 'PM6.random.opt.TS.',k,'.arc'
   479             write(commandline,'(a26,x,a26,a5,i4.4,4a)') "grep 'HEAT OF FORMA

TION' ",fname2," > E.",k,".tmp"
   480             call system (commandline)
   481             commandline=''
   482             write(commandline,'(a26,x,a26,a6,i4.4,4a)') "grep 'GRADIENT NORM

 '    ",fname2," >>E.",k,".tmp"
   483             call system (commandline)
   484             fname=''
   485             write(fname,'(a2,i4.4,a4)') "E.",k,".tmp"
   486             open(100+fi,file=fname,status='old')
   487             read(100+fi,*) (dummychar,i=1,4),E
   488             read(100+fi,*) (dummychar,i=1,3),G   
   489             close(100+fi)
   490             write(*,*) "Last energy is ",E
   491             write(*,*) "Last gradient  ",G   
   492             fname3=''
   493             write(fname3,'(a1,i4.4,F3.2,a,a,i3.3,F3.2,a,i4.4,a8)') 'E',int(E

),(E−real(int(E)))−0.005d0,'_',&
   494                                                                    'G',int(G

),(G−real(int(G)))−0.005d0,'_',k,'.opt.out'
   495             if (E.le.−1d0) &
   496             write(fname3,'(a1,i4.3,F3.2,a,a,i3.3,F3.2,a,i4.4,a8)') &
   497                                                                    'E',int(E

),−(E−real(int(E))+0.005d0),'_',&
   498                                                                    'G',int(G

), (G−real(int(G))−0.005d0),'_',k,'.opt.out'
   499             if ((E.gt.−1d0).and.(E.lt.0.d0)) &
   500             write(fname3,'(a2,i3.3,F3.2,a,a,i3.3,F3.2,a,i4.4,a8)') &
   501                                                                   'E−',int(E

),−(E−real(int(E))+0.005d0),'_',&
   502                                                                    'G',int(G

), (G−real(int(G))−0.005d0),'_',k,'.opt.out'
   503
   504             !Preparing script for saving geometry of checked−minimum
   505             fname=''
   506             write(fname, '(a6,i4.4,a4)') 'do.cp.',k,'.sht'
   507             open(100+fi,file=fname,status='new')
   508             write(100+fi,'(a3,a26,x,a35)')"cp ",fname2,fname3
   509             write(100+fi,*) "bzip2 ",fname3
   510             write(100+fi,'(a20,a24,a15,i2)') "echo done saving ",fname3," in

 thread ",thread
   511             close(100+fi)
   512
   513             !Save geometry
   514             write(commandline,'(a3,a16)') "sh ",fname
   515             call system (commandline)
   516
   517             !Append energy
   518             open(100+fi,file='E.dat',status='old',position='append')
   519             write(100+fi,'(E20.10E3)') E
   520             close(100+fi)
   521
   522
   523          endif
   524
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   525    
   526    !Clean files
   527    counter=counter+1  
   528    fname=''
   529    write(fname,'(a12,i4.4,4a)') 'clean.after.',k,'.sht'
   530    open(100+fi,file=fname,status='new')
   531    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.mop"
   532    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.arc"
   533    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.gpt"
   534    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.sht"
   535    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.tmp"
   536    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.out"
   537    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.dat"
   538    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.res"
   539    write(100+fi,'(a4,i4.4,a5)') "rm *",k,"*.den"
   540    write(100+fi,'(a21,x,i4.4,x,a15)') "echo Already tried",counter,"geometri

es"
   541    close(100+fi)
   542    write(commandline,'(a3,a25,x,a19,x,a18)') "sh ",fname
   543    call system (commandline)
   544   
   545 enddo
   546 !$OMP END PARALLEL DO
   547 end
   548 !######################
   549 function signo(arg)
   550 implicit none
   551 integer signo,arg
   552
   553 if (arg.lt.0.d0) signo=−1
   554 if (arg.ge.0.d0) signo=+1
   555 end function
   556 !#######################
   557 subroutine getzmatmopac(fname,na,natom,cnctvt_A,cnctvt_V,cnctvt_S)
   558 implicit none
   559 integer,parameter :: DP=kind(1.d0)
   560 !coming from the main program
   561 character*35,intent(IN) :: fname
   562 character*1   natom(1:na)
   563 integer na
   564 real(kind=DP) cnctvt_V(1:na,1:3)  !Conectivity value
   565 integer       cnctvt_A(1:na,1:3)  !Conectivity atom 
   566 integer       cnctvt_S(1:na,1:3)  !Conectivity status
   567
   568 !subroutine internal
   569 integer i,j,k
   570 cnctvt_A(:,:)=0
   571 cnctvt_S(:,:)=0
   572 cnctvt_V(:,:)=0.d0
   573 open(200,file=fname,status='old')
   574
   575 i=1
   576 read(200,*)    natom(i),(cnctvt_V(i,j),cnctvt_S(i,j),j=1,3)
   577 !write(*,'(a1,x,3(F10.3,x,i2),x,3(i2,x))') natom(i),(cnctvt_V(i,j),cnctvt_S(

i,j),j=1,3),(cnctvt_A(i,j),j=1,3)
   578 do i=2,na
   579    read(200,*) natom(i),(cnctvt_V(i,j),cnctvt_S(i,j),j=1,3),(cnctvt_A(i,j),j

=1,3)
   580 !   write(*,'(a1,x,3(F10.3,x,i2),x,3(i2,x))') natom(i),(cnctvt_V(i,j),cnctvt

_S(i,j),j=1,3),(cnctvt_A(i,j),j=1,3)
   581 enddo
   582 close(200)
   583
   584 end subroutine
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• alignMOPAC.f90

This program complements the main conformer search-algorithm, since the only
output of randomizeparallel consists only of the master energy-file E.dat and
and the compressed bz2-files. The task lying ahead is that of sorting the randomly
generated population of geometries into meaningful groups of similar (energetically
and structurally) individuals. alignMOPAC performs that first step by selecting an
energy range out of the original distribution, sorting the geometries within that range
by relative stabilities, and re-aligning them in Cartesian coordinates with the same
orientation.

alignMOPAC starts by creating a list of converged bz2-files that is sorted by energy
values (line 37). This task is straightforward because the zipped bz2-files contain
their respective energy values directly in their filenames, and so there is no need to
unzip and open each separate file to retrieve the energy values. Bearing in mind
that up to 5000 geometries were computed at once while testing the program, this
is a valuable time saving. With the energy information made available, the program
prompts the user for a given energy range (see lines 78-81). Then, the algorithm
advances the list of bz2-files until the energy range has been reached and extracts
each geometry within that range (lines 97-100). For the first geometry, the code
calls the molecular visualization software MOLDEN [130] and displays the first opti-
mization in full (lines 102-113). This way, a the user can select four atoms that will
determine the orientation of the retrieved geometries (na1,na2,na3,na4).

The rest of geometries are retrieved, converted to Cartesian and oriented (lines 136
and 137) accordingly. The subroutine orientate handles the orientation (see bot-
tom of the source code). For completeness, the code also tries to reorient pairs of
enantiomers, too (lines 139-185). The sorted, oriented population of geometries
are finally stored in the file aligned.mld. Visualization of this file with MOLDEN
provides a quick overview of all obtained geometries and energies. Further handling
of the geometries is done by the program isocheck.f90, explained in the follow-
ing.



     1 program alginMOPAC!This program reads .xyz geometries from a bunch
     2                   !of randomly generated isomers through MOPAC's semiempiric

al 
     3 implicit none
     4 integer,parameter :: DP=kind(1.d0)
     5 integer i,j,k
     6 integer n,na,counter
     7 integer na1,na2,na3,na4
     8 character*40 dummychar
     9 character*35 filename
    10 character*150 command
    11 character*1 answer
    12 real(kind=DP) EL,EH                        !E_high,E_low,E_rough
    13 real(kind=DP),allocatable:: E(:),Er(:)
    14 real(kind=DP),allocatable:: cart    (:,:)  !cartesian coords
    15 real(kind=DP),allocatable:: cartp   (:,:)  !cartesian coords of previous ite

r
    16 real(kind=DP),allocatable:: cartn   (:,:)  !cartesian coords after correctio

n
    17 real(kind=DP),allocatable:: cnctvt_V(:,:)  !Conectivity value
    18 integer,allocatable ::      cnctvt_A(:,:)  !Conectivity atom 
    19 integer,allocatable ::      cnctvt_S(:,:)  !Conectivity status
    20 character*1,allocatable::   natom(:)
    21 character*5                 operation
    22 real(kind=DP)               diff,thres
    23 character*75 commandline
    24 logical exi
    25
    26 inquire(file='align.in',exist=exi)
    27 if (exi) then
    28 else
    29    write(*,*) "Need align.in to work!"
    30    STOP
    31 endif 
    32 filename=''
    33 open(10,file='align.in',status='old')
    34 read(10,*) filename
    35 close(10)
    36 call system ("ls −1 *.bz2 > files.tmp")
    37 call system ("ls −1 *.bz2 | sed 's/_/ /' | sed 's/E//' > files_seg.tmp")
    38 !ATTENTION. IN THIS PROGRAM THE RANDOM ORDER IN WHICH GEOMS WERE GENERATED I

S
    39 !NOT CONSIDERED. INDEED, MAIN GOAL IS TO ORDER GEOMETRIES ACCORDING TO HEATS

 OF FORMATION
    40 call system ("paste files_seg.tmp files.tmp | awk '{print $1,$3}' | sort −n 

 > info.tmp")
    41 call system ("wc −l info.tmp  > n.tmp")
    42 open(50,file='grep.na.sh',status='new')
    43 write(50,'(15a,35a,25a)') "grep '\.' ",filename," | wc −l > na.tmp"
    44 close(50)
    45 !write(commandline,'(15a,35a,25a)') "grep '\.' ",filename," | wc −l > na.tmp

"
    46 call system ("sh grep.na.sh")
    47 call system ("rm grep.na.sh")
    48 open(50,file='n.tmp',status='old')
    49 read (50,*) n
    50 close(50)
    51
    52 open(50,file='na.tmp',status='old')
    53 read (50,*) na
    54 close(50)
    55
    56 allocate(cnctvt_V(1:na,1:3),cnctvt_A(1:na,1:3),cnctvt_S(1:na,1:3))
    57 allocate(cart(1:na,1:3),cartp(1:na,1:3),cartn(1:na,1:3))
    58 allocate(natom(1:na))
    59
    60 !Threshold for difference of geometries
    61 thres=5.d0
    62 !Initialize
    63 cnctvt_V(:,:)=0.d0
    64 cnctvt_A(:,:)=0
    65 cart    (:,:)=0.d0
    66 cartp    (:,:)=0.d0
    67 cartn    (:,:)=0.d0
    68 write(*,*) "Can read up to ",n,"geometries with ",na," atoms."
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    69 allocate(Er(1:n),E(1:n))
    70 write(*,*) "Making an estimate of energies..."
    71 open(80,file='info.tmp',status='old')
    72 do i=1,n
    73    read(80,*) Er(i)
    74 enddo   
    75 close(80)
    76 EL=minval(Er(:))−.5
    77 EH=maxval(Er(:))+.5
    78 write(*,'(a10,i6,a20,i2,a20,F20.10,a10,F20.10,a)') "Found ",n," geometries o

f ",na," atoms between ",EL," and ",EH,"."
    79 write(*,*) "Do you want to lower that number to a particular range of energi

es?(y/n)"
    80 read(*,*)  answer
    81 if (answer.eq.'y') read(*,*) EL,EH
    82     
    83 open(60,file='info.tmp',status='old')
    84 open(70,file='aligned.mld',status='unknown')
    85 counter=1
    86 do i=1,n
    87
    88    !Initialize the marker for the ev. mirroring operation
    89    operation='none'  
    90  
    91    !Get the filenames and energy values
    92    !read(60,*) Er(i),dummychar,filename
    93    read(60,*) Er(i),filename
    94
    95    !Once you are in the energy range you want
    96 !   if (answer.eq.'n') read(*,*) EL,EH
    97    if ((Er(i).ge.EL).and.(Er(i).le.EH)) then
    98       write(commandline,'(a11,a35,a17)') "bunzip2 −c ",filename," > align_wo

rk.tmp"
    99       !write(command,'(a11,a40,a25)') "cp         ",filename,"   align_work.

tmp"
   100       call system (commandline)
   101    
   102       !Perform one first molden viewing to choose atoms of orientaton 
   103       if (counter.eq.1) then
   104          write(*,*) "Choose the atoms for orientation NA1,NA2,NA3 and NA4"
   105          call system ("molden align_work.tmp")
   106          write(*,*) "Center of mass(CM) of NA1 and NA2 in the origin"
   107          write(*,*) "CM−−NA3 on the z−axis"
   108          write(*,*) "CM−NA3−NA4   on the y=0 plane"
   109          write(*,*) "if origin needs to be one atom, then NA1=NA2"
   110          write(*,*) "Please type NA1,NA2,NA3,NA4................."
   111          read(*,*) na1,na2,na3,na4
   112          write(*,*) "Centering in  ",na1,na2,na3,na4
   113       endif
   114
   115       call system (" grep 'FINAL HEAT' align_work.tmp | awk '{print $6}' > E

.align.tmp")
   116       open(66,file='E.align.tmp',status='old') 
   117       read(66,*) E(i)
   118       close(66)
   119       call system ("sed −n '/FINAL HEAT/,/Empirical/p' align_work.tmp | sed 

−n '/NC:NB:NA:I/,/Empirical/p' | grep −v NC > zmat.align.tmp1 ")
   120       call system ("sed  's/XX/X/'  zmat.align.tmp1 > zmat.align.tmp")
   121       
   122       !Get geometry as zmatrix
   123       open(67,file='zmat.align.tmp',status='old')
   124       read(67,*) dummychar,natom(1),(cnctvt_V(1,k),dummychar,k=1,3)
   125       read(67,*) dummychar,natom(2),(cnctvt_V(2,k),dummychar,k=1,3),(cnctvt_

A(2,k),k=1,1)
   126       read(67,*) dummychar,natom(3),(cnctvt_V(3,k),dummychar,k=1,3),(cnctvt_

A(3,k),k=1,2)
   127       do j=4,na
   128          read(67,*) dummychar,natom(j),(cnctvt_V(j,k),dummychar,k=1,3),(cnct

vt_A(j,k),k=1,3)
   129       enddo 
   130       close(67)
   131 !      do j=1,na
   132 !         write(*,'(a1,2x,3(F13.6,2x,i2,2x))') natom(j),(cnctvt_V(j,k),cnctv

t_A(j,k),k=1,3)
   133 !      enddo
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   134
   135       !Orient
   136       call zmatcart (na,cnctvt_V(:,:),cnctvt_A(:,:),cart(:,:))
   137       call orientate (na,cart(:,1),cart(:,2),cart(:,3),na1,na2,na3,na4)
   138
   139       !Calculate difference with previous geometry
   140       if (i.gt.1) then 
   141          diff=0.d0
   142          !Sum differences in coordinates
   143          do j=1,na
   144             do k=1,3 
   145                diff=diff+(cartp(j,k)−cart(j,k))**2
   146             enddo
   147          enddo
   148          write(700,'(a25,2(F13.6,x),i3,a4,i3)') filename,E(i),diff,counter,"

<−−>",counter−1
   149
   150          !If found different geometries
   151          if    (dabs(diff).gt.thres) then
   152             write(*,*) "Found different geometries, diff=",diff
   153    
   154             !Mirror geometry and reorient
   155             cartn(:,:)= cart(:,:)
   156             cartn(:,3)=−cart(:,3)
   157             call orientate (na,cartn(:,1),cartn(:,2),cartn(:,3),na1,na2,na3,

na4)
   158             operation='mirror'
   159             
   160             !Recalculate differences after mirroring and orientation (check 

if succesful)
   161             diff=0.d0
   162             do k=1,3
   163                do j=1,na
   164                   diff=diff+(cartn(j,k)−cartp(j,k))**2
   165                enddo
   166             enddo
   167             write(*,'(a40,F13.6,x,i6,a4,i6)') 'After mirror on xy and reorie

nt, diff=',diff,counter,"<−−>",counter−1
   168
   169 !            write(* ,*) na+4
   170 !            write(* ,*) 'SCF Done',E(i)
   171 !            do j=1,na
   172 !               if ((j.eq.2).or.(j.eq.10).or.(j.eq.11)) then
   173 !                  write(* ,'(a1,2x,3(F13.6,2x))') 'B'     ,(cartn(j,k),k=1,

3)
   174 !               else
   175 !                  write(* ,'(a1,2x,3(F13.6,2x))') natom(j),(cartn(j,k),k=1,

3)
   176 !               endif
   177 !            enddo
   178 !            write(* ,*) "X 0.0 0.0 0.0"
   179 !            write(* ,*) "X 1.0 0.0 0.0"
   180 !            write(* ,*) "X 0.0 2.0 0.0"
   181 !            write(* ,*) "X 0.0 0.0 3.0"
   182             
   183             cart(:,:)=cartn(:,:)
   184          endif 
   185       endif
   186       write(*,*) filename,E(i),diff
   187       write(70,*) na+4
   188       write(70,*) 'SCF Done',E(i)
   189       do j=1,na
   190          if ((j.eq.2).or.(j.eq.10).or.(j.eq.11)) then
   191             !write(70,'(a1,2x,3(F13.6,2x))') 'B'     ,(cart(j,k),k=1,3)
   192             write(70,'(a1,2x,3(F13.6,2x))') natom(j),(cart(j,k),k=1,3)
   193          else
   194             write(70,'(a1,2x,3(F13.6,2x))') natom(j),(cart(j,k),k=1,3)
   195          endif
   196       enddo
   197       write(70,*) "X 0.0 0.0 0.0"
   198       write(70,*) "X 1.0 0.0 0.0"
   199       write(70,*) "X 0.0 2.0 0.0"
   200       write(70,*) "X 0.0 0.0 3.0"
   201       counter=counter+1
   202       cartp(:,:)=cart(:,:)
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   203    else 
   204 !      write(*,*) filename," not read."
   205    endif
   206 enddo
   207 write(*,*) "aligned.mld has",counter−1," geoms."
   208 close(60)
   209 close(70)
   210 !call system ("rm *.tmp")
   211 end 
   212 !###############################
   213 subroutine orientate  (na,x,y,z,na1,na2,na3,na4)
   214 ! Orients n atoms with respect to 4 of them: NA1,NA2,NA3,NA4 resulting in
   215 ! Center of mass(CM) of NA1 and NA2 in the origin
   216 ! CM−−NA3 on the z−axis
   217 ! CM−NA3−NA4   on the y=0 plane
   218 ! if origin needs to be one atom, then NA1=NA2
   219 implicit none
   220
   221 integer na,na1,na2,na3,na4
   222 integer,parameter :: DP=kind(1.d0)
   223 integer i,j,k
   224
   225 real(kind=DP)  x(1:na),y(1:na),z(1:na)
   226 real*8 xd(1:na),yd(1:na),zd(1:na)
   227
   228 real*8 rho(1:na),theta(1:na),h(1:na)
   229
   230 !Center the geometry in CM(NA1,NA2)
   231 x=x−(x(na1)+x(na2))/2.d0 
   232 y=y−(y(na1)+y(na2))/2.d0 
   233 z=z−(z(na1)+z(na2))/2.d0 
   234
   235 !CM−na3 on the z−axis:
   236 !First, Bond CM−na3 on the zx−plane
   237 call cart2cyl (na,x,y,z,rho,theta,h) !Transform to cylindrical coordinates
   238 theta=theta−theta(na3)
   239 call cyl2cart (na,rho,theta,h,x,y,z) !Transform back to cartesian
   240
   241 !Second, Bond CM−na3 on the z−axis,careful:theta defined with this axis
   242 call cart2cyl (na,z,x,y,rho,theta,h)
   243 theta=theta−theta(na3)
   244 call cyl2cart (na,rho,theta,h,z,x,y)
   245
   246 !Plane CM−na3−na4 is on the xz−plane
   247 call cart2cyl (na,x,y,z,rho,theta,h)
   248 theta=theta−theta(na4)
   249 call cyl2cart (na,rho,theta,h,x,y,z)
   250 !Molecule is oriented!
   251 end subroutine
   252 !#####################################
   253 SUBROUTINE cart2cyl (n,x,y,z,rho,theta,h)
   254 implicit none
   255 integer i
   256 integer n
   257 !real*8,parameter :: pi=dacos(−1.d0)
   258 real*8           :: pi
   259 real*8,parameter :: zero=1.d−8
   260 real*8 x(1:n),y(1:n),z(1:n)
   261 real*8 rho(1:n),theta(1:n),h(1:n)
   262 logical debug
   263
   264 pi=dacos(−1.d0)
   265 debug=.false.
   266
   267 !Defintion of cylindrical coordinates in I. quadrant
   268 !Rho
   269 rho=dsqrt(x**2+y**2)
   270 !Make sure theta=90° is defined
   271 do i=1,n
   272    if (dabs(x(i)).lt.zero) then
   273       theta(i)=dacos(−1.d0)/2
   274    else
   275       theta(i)=datan(dabs(y(i)/x(i)))
   276    endif
   277 enddo

198 alignMOPAC.f90



   278 h=z
   279 !Correct theta for the appropiate quadrant
   280 do i=1,n
   281    if(debug) write(*,*) i
   282    if    (x(i).gt.+zero)        then
   283
   284          if    (y(i).gt.+zero)       then
   285                theta(i)=theta(i)
   286                if(debug) write(*,*)"+ +"
   287          elseif(dabs(y(i)).le.+10.d−5) then
   288                theta(i)=0.d0
   289                if(debug) write(*,*)"+ 0"
   290          elseif(y(i).lt.−zero)       then
   291                theta(i)=2.d0*pi−theta(i)
   292                if(debug) write(*,*)"+ −"
   293          endif
   294
   295    elseif(dabs(x(i)).le.+zero)  then 
   296          
   297          if    (y(i).gt.+zero)       then
   298                theta(i)=pi/2.d0
   299                if(debug) write(*,*)"0 +"
   300          elseif(dabs(y(i)).le.+zero) then
   301                 theta(i)=0.d0
   302                 if(debug) write(*,*)"0 0"
   303          elseif(y(i).lt.zero)        then
   304                theta(i)=1.5*pi/2.d0
   305                if(debug) write(*,*)"0 −"
   306          endif
   307
   308    elseif((x(i).lt.−zero))      then
   309          
   310          if    (y(i).gt.+zero)      then
   311                theta(i)=pi−theta(i)
   312                if(debug) write(*,*)"− +"
   313          elseif(dabs(y(i)).lt.+zero) then
   314                theta(i)=pi
   315                if(debug) write(*,*)"− 0"
   316          elseif(y(i).lt.−zero)      then
   317                theta(i)=pi+theta(i)
   318                if(debug) write(*,*)"− −"
   319          endif
   320    endif
   321 if(debug) then
   322    write (*,'(3(F13.6,x))') x(i),y(i),z(i)
   323    write (*,'(3(F13.6,x))') rho(i),(180.0d0/pi)*theta(i),h(i)
   324    write (*,*) 
   325 endif
   326 enddo
   327
   328 !Re−transform and return to main program, just for test
   329 x=rho*dcos(theta)
   330 y=rho*dsin(theta)
   331 z=h
   332
   333 end subroutine
   334 !###############################
   335 SUBROUTINE cyl2cart (n,rho,theta,h,x,y,z)
   336 implicit none
   337 integer i
   338 integer n
   339 real*8 x(1:n),y(1:n),z(1:n)
   340 real*8 rho(1:n),theta(1:n),h(1:n)
   341
   342 x=rho*dcos(theta)
   343 y=rho*dsin(theta)
   344 z=h
   345
   346 end subroutine
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• isocheck.f90

This program further complements the random search program randomizeparallel
and the geometry-extractor program alignMOPAC. isocheck takes the file aligned.mld
as an input, which in turn is the output of alignMOPAC (see above). All the geome-
tries of interest are sorted by stability and oriented in aligned.mld. Operated on
that file, isocheck reduces the whole sample of geometries to a set of unique indi-
viduals and groups the redundant geometries into separate files. Operated on any
other input that is not preoriented, isocheck cannot function, because it relies upon
superposition of the molecules’ Cartesian coordinates to decide whether two geome-
tries are the same or not. The threshold for difference in Cartesian coordinates,
thres, is read from standard input, together with the filename with the sample of
geometries (lines 27-28).

In a recurring scheme, isocheck defines a structure as unique if it is not identical
(diff>thres) to another previously defined (and thus stored) unique structure (lines
71-91). The code is written so that the check-loop is escaped as soon as a match
between the current geometry and a unique geometry occurs (diff<thres), see line
80, the if-else-conditions in lines 92, and 109-110. For example, if the 457-th
structure is a duplicate of the 4-th (out of 12) individuals, the checks 5 to 12 are
escaped.

At the end of this process, a sample of distinct, individual geometries are obtained.
These have been written in the file singles.mld. The duplicates of these geometries
are stored in separate files (see line 95) to check if the thres-value is adequate or it
can be further refined.



     1 program isocheck  !This program reads .xyz geometries from a *.mld file
     2                   !If two of them are identical (compared through a threshol

d)
     3                   !it will group them in one file.
     4                   !If the *.mld is not aligned, this program  is useless.
     5                   !The program also eliminates dummy atoms for checking
     6 implicit none
     7 integer,parameter :: DP=kind(1.d0)
     8 integer i,j,k,ii
     9 integer n,na,counter,ngeomax
    10 integer na1,na2,na3,na4
    11 character*40 dummychar,filename,filename2
    12 character*150 command
    13 character*1 answer
    14 real(kind=DP) EL,EH                        !E_high,E_low,E_rough
    15 real(kind=DP),allocatable:: E(:),Er(:)
    16 real(kind=DP),allocatable:: cart    (:,:)  !cartesian coords
    17 real(kind=DP),allocatable:: cartS   (:,:,:)!cartesian coords Saved as unique
    18 real(kind=DP),allocatable:: cartn   (:,:)  !cartesian coords after correctio

n
    19 real(kind=DP),allocatable:: cnctvt_V(:,:)  !Conectivity value
    20 integer,allocatable ::      cnctvt_A(:,:)  !Conectivity atom 
    21 integer,allocatable ::      cnctvt_S(:,:)  !Conectivity status
    22 character*1,allocatable::   natom(:)
    23 logical                     operation,notsaved,saved
    24 real(kind=DP)               diff,thres
    25 integer,allocatable::       listsaved(:)
    26
    27 read(*,*) filename
    28 read(*,*) thres
    29 open(20,file=filename,status='old')
    30 read(20,*) na
    31 close(20)
    32
    33 write(command,'(9a,35a,30a)') "grep SCF ",filename," | wc −l > n.tmp"
    34 open(30,file='dogrep.sh',status='unknown')
    35 write(30,*) command
    36 close(30)
    37
    38 call system ("sh dogrep.sh")
    39
    40 ngeomax=1000
    41 open(50,file='n.tmp',status='old')
    42 read (50,*) n
    43 close(50)
    44 !if (n.gt.ngeomax) STOP
    45 allocate(cnctvt_V(1:na,1:3),cnctvt_A(1:na,1:3),cnctvt_S(1:na,1:3))
    46 !allocate(cart(1:na,1:3),cartS(1:ngeomax,1:na,1:3),cartn(1:na,1:3))
    47 allocate(cart(1:na,1:3),cartS(1:n,1:na,1:3),cartn(1:na,1:3))
    48 allocate(listsaved(1:n))
    49 allocate(natom(1:na))
    50 allocate(Er(1:n),E(1:n))
    51
    52 !Initialize
    53 !Once aligned.mld has the ALL geometries, we "skimm" it to eliminate and gro

up succesive
    54 !identical structures
    55 write(*,*) "Starting the reagrupation of duplicates"
    56 open(90,file=filename,status='old')
    57 open(150,file='singles.mld',status='unknown')
    58 E(:)=0.d0
    59 counter=0
    60 do i=1,n
    61
    62    read(90,*)
    63    read(90,*) dummychar,dummychar,E(i)
    64    do j=1,na
    65       read(90,*) natom(j),(cart(j,k),k=1,3)
    66    enddo
    67
    68    saved=.true.
    69    do ii=1,counter
    70       diff=0.d0
    71       write(*,*) "Cheking ",i,"−th against ",ii,"−th saved..."
    72       do j=1,na
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    73          if ((natom(j).ne.'X').or.(natom(j).ne.'x')) then
    74             do k=1,3
    75                diff=diff+(cartS(ii,j,k)−cart(j,k))**2
    76             enddo
    77          endif
    78       enddo
    79       if (dsqrt(diff).lt.thres) then
    80          saved=.false.
    81          write(filename2,'(i3.3,a10)') ii,'.group.mld'
    82          write(*,*) "saving in ",filename2
    83          open(1,file=filename2,status='old',position='append')
    84          write(1,*) na
    85          write(1,*) 'SCF Done',E(i)
    86          do j=1,na
    87             write(1,'(a1,2x,3(F13.6,2x))') natom(j),(cart(j,k),k=1,3)
    88          enddo
    89          close(1)
    90       endif
    91    enddo
    92    if (saved) then
    93        counter=counter+1
    94        write(*,'(a20,x,i3.3,a4,i3.3,30a,45a)') ".. and saving geom",i," as "

,counter,"−th geom. in file",filename2
    95        write(filename2,'(i3.3,a10)') counter,'.group.mld'
    96         open(1,file=filename2,status='unknown')
    97        listsaved(counter)=i
    98        cartS(counter,:,:)=cart(:,:)
    99        write(150,*) na
   100        write(1,*) na
   101        write(150,*) 'SCF Done',E(i)
   102        write(1,*) 'SCF Done',E(i)
   103        do j=1,na
   104           write(150,'(a1,2x,3(F13.6,2x))') natom(j),(cart(j,k),k=1,3)
   105           write(1,'(a1,2x,3(F13.6,2x))') natom(j),(cart(j,k),k=1,3)
   106        enddo
   107        close(1)
   108    else
   109       write(*,*) "... I've seen this before!"
   110    endif
   111
   112 enddo
   113 close(90)
   114 close(150)
   115 call system ("rm n.tmp dogrep.sh")
   116 end
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