Strukturelle Untersuchungen an polymeren Koordinationsverbindungen mit Anionen von Benzolcarbonsäuren und der Quadratsäure

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena

von Diplomchemiker Roberto Köferstein geboren am 16.08.1973 in Friedrichroda

Gutachter:

- 1. Prof. Dr. C. Robl
- 2. Prof. Dr. W. Weigand
- 3. Prof. Dr. H. Hartl (FU Berlin)

Tag der öffentlichen Verteidigung (Disputation): 02.07.2003

" Die menschliche Wissenschaft gleicht einer Kugel, die ununterbrochen wächst. In dem Maß wie ihr Umfang zunimmt, wächst auch die Zahl ihrer Berührungspunkte mit dem Unbekannten." Blaise Pascal (1623-1662)

Inhaltsverzeichnis

2.1.	Quadra	tate
	2.1.1.	dreidimensionaler Struktur
	2.1.2.	Das μ -Hydroxo- μ -peroxo-bis[bis(ethylendiamin)cobalt(III)]- quadratat und das Tris(ethylendiamin)cobalt(III)-quadratat
Benz	zolcarbo	nsäuren
3.1.	Phthala	
	5.1.1.	Die Kettenstruktur des $Mn(pyz)[C_6H_4(COO)_2] \cdot 4H_2O$
	3.1.3.	$M(4,4 \text{`bipy})[C_6H_4(COO)_2] \cdot 4H_2O \text{ (M} = \text{Mn}^{2+}, \text{Co}^{2+}), \text{ zwei isotype}$ Verbindungen mit Schichtstruktur
3.2.	Trimesi	nate
	3.2.1.	Cadmiumhydrogentrimesinat-Dihydrat
3.3	Trimell	
	3.3.1.	Die dreidimensionale Struktur des $Cd_{1.5}[C_6H_3(COO)_3] \cdot 4.25H_2O$
3.4.	Pyrome	$P_{a} [C \mid H(COO) \mid H \mid O \text{und} P_{b} [C \mid H(COO) \mid H \mid O Z_{WO}]$
	5.4.1.	$Ba_{2}[C_{6}II_{2}(COO)_{4}] \cdot II_{2}O$ and $Fb_{2}[C_{6}II_{2}(COO)_{4}] \cdot II_{2}O$ - Zwe isostrukturelle Verbindungen
	3.4.2.	Cadmiumpyromellitat-Hexahydrat
	3.4.3.	Zinkdihydrogenpyromellitat und Nickeldihydrogenpyromellitat
	3.4.4.	$Co(phen)[C_6H_2(COO)_4]_{0.5}$ · $4H_2O$, $Ni(2,2$ 'bipy) $[C_6H_2(COO)_4]_{0.5}$ · $4H_2O$ Zwei strukturanaloge Dimere
	3.4.5.	$Co(imi)_2[C_6H_2(COO)_4]_{0.5}$ - Eine eindimensionale Struktur
	3.4.6.	$Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}\cdot 3H_2O$ - Eine Schichtverbindung
	3.4.7.	$Mn_4(INS)_2[C_6H_2(COO)_4]_2 \cdot 12H_2O$ - Eine Gerüststruktur
	3.4.8.	Die Kettenstruktur des $Ni(H_2DACH)[C_6H_2(COO)_4]\cdot 8H_2O$
	3.4.9.	$Co(H_2DACH)[C_6H_2(COO)_4]\cdot 2H_2O$ - Eine Hohlraumstruktur
	3.4.10.	Das $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot\frac{1}{2}H_2O$
	3 4 11	Zwei zeolithartige Verbindungen im Vergleich
	5.1.11.	$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$ und $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4] \cdot 3H_2O$
	3.4.12.	Das $Cu_4(H_2DAN)(OH)_2[C_6H_2(COO)_4]_2 \cdot 5H_2O$
	3 4 1 3	$Cu_1 s(H_2 DAB)_0 s[C_4H_2(COO)_4] \cdot 4H_2O$ - Fine kanaldurehzogene
	2	Gerüststruktur

	3.5.	Mellitate	219
		3.5.1. $Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2]\cdot 3H_2O$ - Unendliche Polyanionenketten	219
4	Zusa	Immenfassung	230
5	Liter	aturverzeichnis	240
	Anh	ang	245
	Ι	Atomparameter	245
	II	Identifizierung des TG/DTA Rückstandes	264
	III	Pulverdiffraktogramme Vergleich der Pulverdiffraktogramme beim De- und	272
		Rehydratisieren des $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$	272
		Vergleich der Pulverdiffraktogramme beim Austausch der Gastmoleküle im $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$	274
	IV V	R-Werte	275 276

Abkürzungen und Anmerkungen

2,2'bipy	2,2 [°] -Bipyridin [C ₁₀ H ₈ N ₂]
4,4'bipy	4,4°-Bipyridin [C ₁₀ H ₈ N ₂]
en	Ethylendiamin $[C_2H_8N_2]$
H ₂ DAB	1,4-Butyldiammoniumkation [H ₃ N(CH ₂) ₄ NH ₃] ²⁺
H ₂ DACH	<i>trans</i> -1,4-Cyclohexyldiammoniumkation $[H_3N(C_6H_{10})NH_3]^{2+}$
H ₂ DAH	1,6-Hexyldiammoniumkation [H ₃ N(CH ₂) ₆ NH ₃] ²⁺
H ₂ DAN	1,9-Nonyldiammoniumkation [H ₃ N(CH ₂) ₉ NH ₃] ²⁺
imi	Imidazol [C ₃ H ₄ N ₂]
INS	Isonicotinsäure $[(C_5H_4N^+H)COO^-]$
phen	1,10-Phenanthrolin $[C_{12}H_8N_2]$
pyz	Pyrazin [C ₄ H ₄ N ₂]
urea	Harnstoff [CH ₄ N ₂ O]
А	Akzeptoratom
А	Index, bezeichnet ein symmetrieäquivalentes Atom
ber.	berechnet
D	Donoratom
DTA	Differenzthermoanalyse
exo	exotherm
gef.	gefunden (experimentell)
i	Inversionszentrum
М	Metallatom/-kation
OW	Sauerstoffatom des Wassers
RG	Raumgruppe
RT	Raumtemperatur
S	Bindungsstärke
Т	Temperatur
TG	Thermogravimetrie
χ_{mol}	molare Suszeptibilität
δ	Deformationsschwingung
μ_{eff}	magnetisches Moment (in Einheiten von μ_B)
Θ	paramagnetische Curie-Temperatur
ν	Valenzschwingung; symmetrisch (s), asymmetrisch (as)

- Die thermoanalytischen Untersuchungen wurden in den meisten Fällen von 25°C bis 1000°C, mit einer Aufheizrate von 10K/min durchgeführt. IR-Messungen (ATR-Technik) erfolgten in einem Bereich von 4000 cm⁻¹ bis 600 cm⁻¹.
- 2) Ausdehnung von Hohlräumen und Kanälen erfolgen unter Angabe des längsten Atom-Atom Abstandes unter Berücksichtigung der Raumerfüllung selbiger (*van der Waals* Radien) [102-104].
- 3) Wasserstoffbrückenbindungen wurden bis zu einem D-H…A Winkel von 110° berücksichtigt [105,106].
- 4) Schwingungsellipsoide wurden mit einer Aufenthaltswahrscheinlichkeit von 50% dargestellt.

Kapitel 1

Einleitung

Zum Aufbau von polymeren Komplexverbindungen eignen sich insbesondere polyfunktionelle Liganden. Sie erlauben ein-, zwei- und dreidimensionale Verknüpfungsmuster aufzubauen. Diese Komplexverbindungen zeichnen sich durch interessante Eigenschaften aus, so können Ketten-, Schicht- oder Gerüststrukturen dargestellt werden. Solche Verbindungen eignen sich zur Durchführung von topotaktischen Reaktionen, und sie ermöglichen den Aufbau von Käfigeinschlußverbindungen sowie zeolithartigen Strukturen [1].

Die systematischen Untersuchungen auf diesem Gebiet haben zum Ziel strukturprägende Einflüsse, insbesondere der Art des Kations, des polyfunktionellen Liganden und der Reaktionsbedingungen, zu erkennen. Als polyfunktionelle Liganden eignen sich besonders organische Liganden, welche über mehrere Koordinationsstellen verfügen, die nach Möglichkeit an einem starren Gerüst gebunden sein sollten.

Unter den polyfunktionellen Liganden, bietet sich aus der Gruppe der Oxokohlenstoffsäuren besonders das Dianion der Quadratsäure ($C_4O_4H_2$) an, welches Resonanzstabilisiert ist und über vier gleichwertige Sauerstoffatome verfügt, die an ein Kohlenstoffgerüst gebunden sind. Wie frühere Arbeiten zeigen, bauen anorganische Quadratate in Abhängigkeit der Reaktionsbedingungen unterschiedliche Kristallstrukturen auf [2]

Eine zweite interessante Gruppe stellen die Anionen der Benzolcarbonsäuren dar. Diese Bausteine verfügen über eine unterschiedliche Anzahl an Koordinationsstellen. Da die Carboxylatgruppen starr am aromatischen C₆-Ring gebunden, aber um die C–C Einfachbindung frei drehbar sind, ist eine Anpassung an die Gegebenheiten des Kations möglich. Dadurch wird die Bildung von Schicht- und Gerüststrukturen begünstigt. Vorangegangene Arbeiten zeigen, daß sich gerade mit den Anionen der Benzolcarbonsäuren interessante festkörperchemische Strukturen bilden können, die beispielsweise Eigenschaften eines Kationenaustauschers aufweisen [1].

Kapitel 2

Quadratsäurekomplexe

Die starke, zweibasige Quadratsäure (3,4-Dihydroxy-3-cyclobuten-1,2-dion ; $pk_1 = 0.5$, $pk_2 = 3.5$ [3]) gehört zu der Gruppe der Oxokohlenstoffsäuren der allgemeinen Formel $C_nO_nH_2$.

Das resultierende Quadratatdianion ist resonanzstabilisiert und fungiert als mehrfach einzähniger Ligand, sowie auch als Bis-chelatligand.

Auf dem Gebiet der Quadratsäurekomplexe wurden schon zahlreiche Untersuchungen durchgeführt, insbesondere zeigt sich, daß je nach Reaktionsbedingungen unterschiedliche Strukturen möglich sind. So liegen beispielsweise die Salze der zweiwertigen Übergangsmetalle Mn, Co, Ni, Zn sowohl als Ketten-, als auch als Käfigstrukturen vor [2,4,5,6]. Ein direkter Zusammenhang zwischen der Summenformel des Quadratats und seiner Kristallstruktur ist nicht gegeben. Insbesondere bei den Erdalkaliquadrataten können selbst formelgleiche Verbindungen unterschiedliche Strukturmuster aufweisen [7-11]. Vor allem gegenüber dreiwertigen Metallkationen gelangt man zu zweikernigen Dimeren, in denen das Quadratatdianion auch als Brückenligand fungiert [4,12].

Im folgenden wurde die Struktur eines kristallwasserfreien Bariumquadratats, sowie die Struktur von zwei Cobalt(III)quadrataten in Gegenwart von Ethylendiamin untersucht.

2.1.1. BaC₄O₄ - Eine kristallwasserfreie Verbindung mit dreidimensionaler Struktur

Einkristalle von BaC_4O_4 wurden durch Kristallisation in wässriger Lösung erhalten. Dazu wurden 10ml einer 0.1M Natriumquadratatlösung erhitzt und mit 10ml einer 1M $Ba(NO_3)_2$ -Lösung, sowie 20ml Wasser versetzt. Das Ganze wurde bei 80°C stehen gelassen. Nach 48h bildeten sich farblose Kristalle.

Die chemische Analyse ergab folgenden Kohlenstoffgehalt: ber./gef. 19.28% / 18.13%. Der experimentelle Wert weicht vom erwarteten Wert ab, dies ist auf die Bildung von BaCO₃ zurückzuführen, welches selbst bei hohen Temperaturen noch stabil ist.

IR-Spektrum

Das IR-Spektrum (Abb.2.1) zeigt die typischen Absorptionsbanden des Quadratatdianions [13,14]. Eine scharfe Bande ist bei 1088 cm⁻¹ zu beobachten, an der sich eine Schulter bei 1062 cm⁻¹ anschließt. Dies kann auf eine C–C Streckschwingung zurückgeführt werden. Die C–O Streckschwingung verursacht ein Signal bei 1451 cm⁻¹. Hieraus berechnet sich die Bindungsordnung der C–O Bindung nach *Siebert* [15] zu 1.4, was auf die Delokalisierung des π -Elektronensystems hinweist.

Abbildung 2.1: IR-Spektrum des BaC₄O₄.

Thermoanalytische Untersuchung

Die thermische Untersuchung erfolgte in einem Bereich zwischen 25°C und 800°C.

Die Verbindung ist thermisch relativ stabil. Ab ca. 490°C erfolgt ein exothermer Zersetzungsvorgang mit zwei lokalen Höhepunkten, die bei 557°C und 602°C liegen (Abb.2.2). Das Zersetzungsprodukt konnte als BaCO₃ (Witherit) identifiziert werden (Anhang II).

Abbildung 2.2: Thermoanalyse des BaC₄O₄.

Strukturbeschreibung

BaC₄O₄ kristallisiert in der tetragonalen Raumgruppe I 4/mcm. Röntgenbeugungsintensitäten einer Vollkugel des reziproken Raumes wurden bis zu einem maximalen Winkel von $\theta = 26.97^{\circ}$ gemessen. Ferner wurde eine numerische Absorptionskorrektur vorgenommen. Die wichtigsten kristallographischen Daten sind in Tabelle 2.1 zusammengefaßt.

Kristallographische Daten				
Summenformel	C_4BaO_4			
Kristallsystem	Tetragonal			
Raumgruppe	I4/mcm (Nr.140)			
Reflexionsbedingungen	hkl: $h + k + l = 2n$			
	h0l: $h = 2n$			
	0kl: k = 2n			
Gitterkonstanten	a = 635.95(5) pm			
	c = 1240.77(13) pm			
Wellenlänge	71.073 pm			
Temperatur	293(2) K			
Elementarzellvolumen	$0.50181(8) \text{ nm}^3$			
Formeleinheiten in der Elementarzelle	4			
Molmasse	249.38 g/mol			
berechnete Dichte	3.301 Mg/m ³			
Absorptionskoeffizient	7.832 mm^{-1}			
numerische Absorptionskorrektur	min./max. Transmission 0.53/0.57			
F(000)	448			
Gemessener θ – Bereich	3.25° bis 26.97°			
Indexgrenzen	$-8 \le h \le 8$, $-8 \le k \le 8$, $-15 \le l \le 15$			
Anzahl der gemessenen Reflexe	1962			
unabhängige Reflexe	163 (R _{int} =0.0235)			
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$			
Goodness-of-Fit an $ F ^2$	2.375			
endgültige R-Werte [I> $2\sigma(I)$]	$R_1 = 0.0107$ $wR_2 = 0.0257$			
R-Werte (sämtliche Daten)	$R_1 = 0.01122$ $wR_2 = 0.0258$			
Extinktionskoeffizient	0.0055(6)			
Gewichtung	$w = 1/[\sigma^2(F_0 ^2) + (0.005 \cdot P)^2]$			
Größtes Maximum und Minimum der letzten				
Differenz-Fouriersynthese	515 und -363e·nm ⁻³			

Tabelle 2.1: Die wichtigsten kristallographischen Daten des BaC₄O₄

 $P = \frac{1}{3} \max(|F_0|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination des Ba²⁺-Kations

Die Ba²⁺-Kationen liegen auf der speziellen Punktlage 4a.

Ba²⁺ ist von acht Quadratatsauerstoffatomen umgeben, so daß ein quadratisches Antiprisma ausgebildet wird (Abb.2.3). Hierbei sind die gegenüberliegenden Quadratflächen des $\overline{8} 2m$ 31.7° Polyeders um gegeneinander verdreht, so daß keine (D_{4d}) Punktgruppensymmetrie [16], sondern nur noch eine 422 (D₄) Punktgruppensymmetrie vorliegt. Die Quadratatsauerstoffatome stammen von acht verschiedenen Quadratatdianionen. Die Ba–O Abstände sind, aufgrund der Symmetrie, völlig identisch und betragen 276.12(10) pm (Tab.2.2).

Berechnet man die Bindungsordnung nach *Brown* [17], so ergibt sich ein Wert von 2.206, dieser liegt etwa 10% über den theoretischen Wert von 2.0.

Der kleinste Ba…Ba Abstand beträgt 449.68(4) pm und liegt damit in den Bereich des Ba…Ba Abstandes im metallischen Barium [18].

Die Koordinationspolyeder sind über gemeinsame Kanten so miteinander verknüpft, daß sich Schichten ausbilden, welche sich parallel zu (001) erstrecken (Abb.2.4).

Abbildung 2.3: Das Koordinationspolyeder des Bariumkations (Ortep Plot).

Abbildung 2.4: Die Verknüpfung der Koordinationspolyeder des Ba²⁺ (Ortep Plot).

Bindungslängen (pm)					
Ba-O	276.12(10) 8x				
Ba····Ba#2	449.68(4)				
Bindungswinkel (°)					
O#1-Ba-O#2	153.28(7)	O#1-Ba-O#4	73.53(3)		
O#2-Ba-O#3	131.29(6)	O#3-Ba-O#4	115.65(6)		
O#2-Ba-O	70.97(6)	O#2-Ba-O#4	84.68(7)		

Tabelle 2.2:	Die Koordination	des Ba ²⁺ -Kations

Symmetrietransformationen: #1: -x;-y;z, #2: -x+0.5;-y+0.5;-z+0.5, #3: -y;x;z, #4: y;-x;z

Das Quadratatdianion

Das Quadratatdianion weist hier die Punktgruppensymmetrie 4/mmm (D_{4h}) auf. Das Kohlenstoffgerüst ist streng Orthogonal. Die C–O Bindungsabstände betragen 125.9(3) pm, und die C–C Abstände sind innerhalb der Fehlergrenzen gleich (Tab.2.3). Nach *Pauling* [19] ergibt sich für die C–O Bindungen ein Bindungsgrad von etwa 1.51, aufgrund dessen, kann man für das Quadratatdianion eine weitgehende Delokalisierung des π -Elektronensystems annehmen.

Betrachtet man die Bindungen, an denen die Sauerstoffatome des Quadratatdianions beteiligt sind, so tritt jedes Sauerstoffatom formal dreibindig auf (eine Bindung zu C, zwei Bindungen zu Ba). Ähnliche Verhältnisse sind auch im $Ag_2C_4O_4$ [20] anzutreffen.

Tabelle 2.3:	Bindungslängen und -winkel des Anions	

	Bindungsl	ängen (pm)				
C-C#11	145.7(5)	O-C	125.9(3)			
C-C#12	146.6(5)					
	Bindungswinkel (°)					
O-C-C#12	134.17(13)	C#11-C-C#12	90.0			
O-C-C#11	135.83(13)					

Symmetrietransformationen: #11: x;y;-z , #12: -x;-y+1;z

Struktur

Die Ba²⁺-Kationen verknüpfen die Quadratatdianionen zu einer dreidimensionalen Gerüststruktur (Abb.2.5). Die aus den Koordinationspolyedern gebildeten Schichten werden in c-Richtung über die Quadratatdianionen verbunden. Wie man in Abbildung 2.6 erkennen kann, sind die Anionen und Kationen in c-Richtung schichtartig angeordnet, wobei die Ebenen der Quadratatdianionen benachbarter Schichten senkrecht zueinander orientiert sind. Dabei tritt das Anion als mehrfach einzähniger Ligand auf und betätigt alle vier Sauerstoffatome zur Koordination.

Bereits 1986 untersuchten *Robl* und *Weiss* [8] ein triklines BaC₄O₄·3H₂O. Hierbei liegt eine Raumnetzstruktur vor, wobei nicht alle Quadratatsauerstoffatome am Ba²⁺ koordinieren. Das Dianion wird über Wasserstoffbrückenbindungen stabilisiert.

Abbildung 2.5: Dreidimensionale Gerüststruktur des BaC₄O₄. Die Ba²⁺-Polyeder sind mit offenem Bindungsstab gezeichnet (Blick entlang [100]).

Abbildung 2.6: Die Struktur des BaC₄O₄ mit Blick auf (001).

2.1.2. Das μ-Hydroxo-μ-peroxo-bis[bis(ethylendiamin)cobalt(III)]quadratat und das Tris(ethylendiamin)cobalt(III)-quadratat

Zu 10ml einer 0.1M Co(NO₃)₂-Lösung wurden 0.06g Ethylendiamin und 10ml einer 0.1M Natriumquadratatlösung gegeben. Ein Teil der Gesamtlösung wurde mehrere Tage bei RT an Luft stehengelassen und anschließend mit Aceton überschichtet. Nach ca. 3-4 Tagen bildeten sich dunkle, schwarzbraune Nadeln der Zusammensetzung Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O. Der andere Teil der Lösung wurde sofort mit Aceton überschichtet, worauf sich nach einigen Tagen rote, quaderförmige Kristalle der Zusammensetzung Co(en)₃[C₄O₄]_{1.5}·4.5H₂O abscheideten.

Elementaranalyse	$Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5} \cdot 4H_2O$		$Co(en)_3[C_4O_4]_{1.5} \cdot 4.5H_2O$	
	Ber.(%)	Gef.(%)	Ber.(%)	Gef.(%)
С	25.97	25.94	29.51	29.57
Н	6.38	6.42	6.81	6.66
Ν	17.31	16.98	17.21	17.06

IR-Spektren

Die IR-Spektren beider Verbindungen unterscheiden sich nur geringfügig voneinander (Abb.2.7,2.8).

Die Ausbildung von O–H- und N–H Wasserstoffbrückenbindungen ist an den breiten, strukturierten Banden im Bereich von 3500 cm⁻¹ bis 2900 cm⁻¹ zu erkennen. Absorptionen im Bereich von 1592 cm⁻¹ bis 1450 cm⁻¹ sind im wesentlichen auf C–O und C–C Schwingungen der Quadratatdianionen zurückzuführen [14,21]. Im Spektrum des $Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5}$ ·4H₂O ist die Schwingung der Peroxogruppe bei 889 cm⁻¹ zu erkennen [22].

 $\label{eq:abbildung 2.7:} Abbildung 2.7: \quad Das \, IR-Spektrum \, des \, Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5} \cdot 4H_2O.$

Abbildung 2.8: Das IR-Spektrum des $Co(en)_3[C_4O_4]_{1.5}$ ·4.5H₂O.

Thermoanalysen

$Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5} \cdot 4H_2O$

Bis etwa 215°C ist ein Gewichtsverlust von 20.2% zu erkennen (Abb.2.9), was nur zum Teil auf die Abgabe des Kristallwassers zurückzuführen ist (ber. 11.1%). Die weitere Zersetzung der Verbindung wird durch eine exotherme Reaktion, deren Maxima bei 435°C liegt, begleitet. Am Ende der Heizperiode tritt ab 954°C eine endotherme Reaktion auf (T_{max} : 961°C), mit einem Gewichtsverlust von 2.5%^{*}). Der grau-schwarze Zersetzungs-rückstand konnte wegen der geringen Menge nicht röntgenographisch untersucht werden.

 $Co(en)_3[C_4O_4]_{1.5}$ ·4.5H₂O

Wie in Abbildung 2.10 zu sehen, tritt zunächst eine endotherm verlaufende Reaktion auf, deren Maxima bei 177°C liegt. Ein damit verbundener Gewichtsverlust von 15.5% wird durch die Abgabe des Kristallwassers verursacht (ber. 16.6%). Ab 241°C schließt sich eine weitere endotherme Zersetzungsreaktion an, deren Höhepunkt bei 259°C erreicht wird. Es folgen weitere exotherme Prozesse, deren maximale Wärmetönungen bei 381°C und 661°C liegen. Am Ende der Heizperiode ist bei 969°C noch ein endothermer Prozeß sichtbar, welcher mit einer Gewichtsabnahme von 1.3% verbunden ist^{*)}. Aufgrund der geringen Probenmenge wurde der grau-schwarze Rückstand nicht identifiziert.

Abbildung 2.9: Thermoanalyse des $Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5}$ ·4H₂O.

Abbildung 2.10: Thermoanalyse des $Co(en)_3[C_4O_4]_{1.5}$ ·4.5H₂O.

Strukturbeschreibung

Reflexintensitäten wurden bis zu einem Winkel von $\theta = 25^{\circ}$ gemessen. Ein Teil der Wasserstoffatome der CH₂- und NH₂-Gruppen wurden geometrisch positioniert. Alle restlichen Wasserstoffpositionen wurden Differenzfourierkarten entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Die wichtigsten kristallographischen Daten sind in Tabelle 2.4 dargestellt.

^{*} Da die Gewichtsabnahme und der verursachende endotherme Vorgang oberhalb 900°C stattfinden, ist diese Reaktion vermutlich auf die Zersetzung des gebildeten Co₃O₄ zu CoO zurückzuführen. Bei vollständiger Zersetzung sollte der Gewichtsverlust hierbei 6.6% betragen. Es ist sicherlich davon auszugehen, daß bis zum Ende der Heizperiode (1000°C) diese Umwandlung noch nicht vollständig abgeschlossen war. Weswegen u.a. der Zersetzungsrückstand auch grau-schwarz ist. Außerdem neigt CoO dazu Sauerstoff zu adsorbieren, was sich ebenfalls in einer grau-schwarzen Färbung bemerkbar macht [23,24].

Kristallographische Daten					
	$Co(en)_3[C_4O_4]_{1.5} \cdot 4.5H_2O$				
Summenformel Kristallsystem	$\begin{array}{l} C_{14}H_{41}N_8Co_2O_{13}\\ Triklin \end{array}$	$C_{12}H_{33}N_6CoO_{10.5}$ Orthorhombisch			
Raumgruppe	P1 (Nr.2)	Pnma (Nr.62)			
Reflexionsbedingung	keine	hk0: $h = 2n$, 0kl: $k + l = 2n$			
Gitterkonstanten	$a = 800.20(10) \text{pm}$ $\alpha = 100.28^{\circ}$	a= 1331.2(2) pm			
	b= 1225.50(10) pm β = 94.510(10)°	b= 2871.2(2) pm			
	$c= 1403.80(10) \text{ pm} \gamma = 95.600(10)^{\circ}$	c= 1085.60(10) pm			
Wellenlänge	71.073	pm			
Temperatur	293(2)	K			
Elementarzellvolumen	$1.3416(2) \text{ nm}^3$	$4.1493(8) \text{ nm}^3$			
Formeleinheiten pro Elementarzelle	2	8			
Molmasse	647.41 g/mol	488.37 g/mol			
berechnete Dichte	1.603 g/cm^3	1.564 g/cm^3			
Absorptionskoeffizient	1.310 mm^{-1}	0.892 mm^{-1}			
numerische Absorptionskorrektur	min./max. Transmission 0.783/0.846				
F (000)	678	2064			
Gemessener θ - Bereich	2.03° bis 25.00°	2.01° bis 25.00°			
Indexgrenzen	$-1 \le h \le 9$	$-15 \le h \le 15$			
	$-14 \leq k \leq 14$	$-34 \leq k \leq 34$			
	$-16 \le 1 \le 16$	$-12 \le 1 \le 12$			
Anzahl der gemessenen Reflexe	5821	7446			
unabhängige Reflexe	$4715 (R_{int} = 0.0137)$	$3724 (R_{int} = 0.0232)$			
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$				
Goodness-of-Fit an $ F ^2$	2.432	2.605			
endgültige R-Werte $[I \ge 2\sigma(I)]$	$R_1 = 0.0359$, $wR_2 = 0.0645$	$R_1 = 0.0427$, $wR_2 = 0.0727$			
R-Werte (sämtliche Daten)	$R_1 = 0.0424$, $wR_2 = 0.0652$	$R_1 = 0.0543$, $wR_2 = 0.0743$			
Extinktionskoeffizient		0.00366(12)			
Gewichtung	$w = 1/\sigma^2 \left(\mathbf{F}_0 ^2 \right)$	$w = 1/\sigma^2 (F_o)^2$			
größtes Maximum und Minimum	× · · · /	· · · · ·			
der letzten Differenz-Fouriersynthese	684 und -533e·mn ⁻³	578 und -411e·mn ⁻³			

Tabelle 2.4:	Die wichtigsten kristallographischen Daten des Co ₂ (en) ₄ (O ₂)(OH)[C ₄ O ₄] _{1.5} ·4H ₂ O und des
	$Co(en)_{3}[C_{4}O_{4}]_{1.5} \cdot 4.5H_{2}O$

$Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5}$ ·4H₂O

Die Koordination der Co³⁺-Kationen im Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

In dieser Verbindung liegen zwei symmetrieunabhängige Cobalt(III)-Kationen (Co(1), Co(2)) vor. Beide Kationen sind verzerrt oktaedrisch umgeben, wobei jeweils vier Stickstoffatome der Ethylendiaminmoleküle und zwei Sauerstoffatome koordinieren, die von einer Hydroxogruppe und einer Peroxogruppe stammen. Beide Co³⁺-Oktaeder werden damit über eine gemeinsame Hydroxogruppe (O(9)H(33)) eckenverknüpft, und desweiteren werden beide Co³⁺-Kationen über eine gemeinsame Peroxogruppe (O(7)–O(8)) miteinander verbunden, so daß eine μ -hydroxo- μ -peroxo-Brücke entsteht, was zur Bildung des

zweikernigen Kations $[(en)_2Co(O_2)(OH)Co(en)_2]^{3+}$ führt (Abb.2.11). Der O(7)–O(8) Abstand in der Peroxogruppe beträgt 146.5(2) pm und ist etwas kleiner als der Wert für eine ideale O–O Einfachbindung von 149 pm [25]. Wie man in der Abbildung sehen kann, sind beide Oktaeder gegeneinander um 16° verdreht. Die Bindungslängen und -winkel in beiden Oktaedern unterscheiden sich nur geringfügig voneinander (Tab.2.5,2.6).

Die magnetische Messung bei RT ergab Diamagnetismus, demzufolge liegen die Co^{3+} -Kationen in einer low-spin Elektronenkonfiguration vor. Die Bindungsordnungen nach *Brese* [26,27] weichen vom erwarteten Wert ab. Für das Co(1)-Kation beträgt die Bindungsordnung 3.375 und für das Co(2)-Kation 3.401.

Abbildung 2.11: Darstellung der Koordinationssphären der Co^{3+} -Kationen im $Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5}$ ·4H₂O (Ortep Plot).

Tabelle 2.5: Die Bindungslängen der Co³⁺-Koordinationspolyeder im Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

Bindungslängen (pm)						
	s (Brese[26,27])				s (Brese[26,27])	
Co(1)-O(7)	187.1(2)	0.6299	Co(2)-O(8)	187.4(2)	0.6248	
Co(1)-N(3)	193.2(2)	0.5952	Co(2)-N(7)	193.4(2)	0.5919	
Co(1)-N(1)	196.3(2)	0.5473	Co(2)-N(8)	196.1(2)	0.5503	
Co(1)-O(9)	192.0(2)	0.5518	Co(2)-O(9)	191.7(2)	0.5563	
Co(1)-N(4)	196.1(2)	0.5503	Co(2)-N(5)	195.5(2)	0.5593	
Co(1)-N(2)	199.6(2)	0.5006	Co(2)-N(6)	198.3(2)	0.5185	
		3.3751			3.4011	
O(7)-O(8)	146.5(2)					

Bindungswinkel (°)							
O(7)-Co(1)-O(9)	87.95(8)	O(8)-Co(2)-N(7)	89.11(9)				
O(9)-Co(1)-N(3)	93.38(9)	O(8)-Co(2)-N(5)	90.89(9)				
O(9)-Co(1)-N(4)	175.20(9)	N(7)-Co(2)-N(5)	176.75(10)				
O(7)-Co(1)-N(1)	90.69(9)	O(9)-Co(2)-N(8)	173.31(10)				
N(3)-Co(1)-N(1)	176.98(10)	N(5)-Co(2)-N(8)	91.73(11)				
O(7)-Co(1)-N(2)	175.11(10)	O(9)-Co(2)-N(6)	90.30(9)				
N(3)-Co(1)-N(2)	94.00(11)	N(5)-Co(2)-N(6)	85.47(10)				
N(1)-Co(1)-N(2)	85.29(11)	O(8)-Co(2)-O(9)	88.69(8)				
O(7)-Co(1)-N(3)	90.16(9)	O(9)-Co(2)-N(7)	89.12(9)				
O(7)-Co(1)-N(4)	87.49(9)	O(9)-Co(2)-N(5)	94.12(9)				
N(3)-Co(1)-N(4)	85.14(10)	O(8)-Co(2)-N(8)	87.89(9)				
O(9)-Co(1)-N(1)	89.55(10)	N(7)-Co(2)-N(8)	85.03(10)				
N(4)-Co(1)-N(1)	91.99(10)	O(8)-Co(2)-N(6)	176.11(10)				
O(9)-Co(1)-N(2)	89.23(9)	N(7)-Co(2)-N(6)	94.63(10)				
N(4)-Co(1)-N(2)	95.43(10)	N(8)-Co(2)-N(6)	93.39(10)				
O(8)-O(7)-Co(1)	109.28(13)	O(7)-O(8)-Co(2)	109.41(13)				
		Co(2)-O(9)-Co(1)	115.83(9)				

Tabelle 2.6: Die Bindungswinkel der Co³⁺-Koordinationspolyedern im Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

Die Quadratatdianionen und die Ethylendiaminmoleküle

Es liegen zwei symmetrieunabhängige Quadratatdianionen (I, II) vor. Die C-C Bindungsabstände im zentrosymmetrischen Quadratatdianion I unterscheiden sich nur geringfügig, wobei man das Kohlenstoffgerüst als orthogonal betrachten kann (Tab.2.7). Auch die C-O Bindungen unterscheiden sich mit 125.5(3) pm (C(1)–O(1)) und 124.9(4) pm (C(2)–O(2)) nicht signifikant voneinander. Ebenfalls vernachlässigbar ist die geringe Abweichung des Anions I von einer berechneten Ausgleichsebene (max.: C(1)/C(1)A: ±1.3 pm, Tab.2.8). Damit ergibt sich eine 4/mmm-Punktgruppensymmetrie (D_{4h}). Im Quadratatdianion II liegen die Verhältnisse etwas anders. Die Bindungsabstände innerhalb des Kohlenstoffgerüstes liegen in einen Bereich von 144.5(4) pm bis 147.0(4) pm. Auch die C-O Abstände unterscheiden sich signifikant, so weist die längste C-O Bindung mit 127.0(3) pm (C(5) - O(5))einen zunehmenden Einfachbindungscharakter, ähnlich wie im Quadratsäuremolekül [3] auf. Die Abweichung des Anion II von einer planaren Gestalt ist zwar, im Gegensatz zum Anion I, größer, aber dennoch als gering anzusehen. Das Quadratatdianion II kann folglich gut mit der Punktgruppensymmetrie m (C_s) beschrieben werden.

In dieser Struktur finden sich vier kristallographisch unabhängige Ethylendiaminmoleküle (I,II,III,IV) wieder. Die C–N Bindungen der Ethylendiaminmoleküle unterscheiden sich nur

geringfügig voneinander. Während sich die C–C Bindungen der Ethylendiaminmoleküle II, III und IV nicht signifikant unterscheiden (150.2(4) pm -150.7(4) pm), ist jene beim Molekül I mit 143.3(5) pm deutlich verkürzt (Tab.2.9). Diese Bindungsverkürzung spiegelt sich auch in den um bis zu 5° gedehnten N–C–C Winkeln wieder (Tab.2.10).

	Bindungsabstände (pm)						
Ι							
C(1)-C(2)	144.1(4)	C(1)-C(2)#1	145.0(4)	C(1)-O(1)	125.5(3)		
				C(2)-O(2)	124.9(4)		
II							
C(3)-C(4)	147.0(4)	C(5)-C(6)	144.5(4)	C(4)-O(4)	124.1(4)		
C(4)-C(5)	145.2(4)	C(3)-C(6)	145.8(4)	C(5)-O(5)	127.0(3)		
		C(3)-O(3)	125.5(3)	C(6)-O(6)	124.4(4)		
		Bindungswink	cel (°)				
Ι							
O(1)-C(1)-C(2)	133.6(3)	C(2)-C(1)-C(2)#1	90.4(3)	O(2)-C(2)-C(1)#1	136.0(3)		
O(1)-C(1)-C(2)#1	136.0(3)	O(2)-C(2)-C(1)	134.3(3)	C(1)-C(2)-C(1)#1	89.6(3)		
II							
O(3)-C(3)-C(6)	134.7(3)	C(6)-C(3)-C(4)	90.2(2)	O(6)-C(6)-C(5)	134.5(3)		
O(3)-C(3)-C(4)	135.2(3)	C(5)-C(4)-C(3)	88.8(3)	O(6)-C(6)-C(3)	135.9(3)		
O(4)-C(4)-C(5)	134.7(3)	O(5)-C(5)-C(6)	134.8(3)	C(6)-C(5)-C(4)	91.4(2)		
O(4)-C(4)-C(3)	136.4(3)	O(5)-C(5)-C(4)	133.7(3)	C(5)-C(6)-C(3)	89.6(3)		

Tabelle 2.7: Bindungsabstände und -winkel der Quadratatdianionen im Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

Symmetrietransformation: #1: -x;-y+1;-z+2

Tabelle 2.8:	Die Ausgleichsebenen	der Q	Quadratatdianionen	im	$Co_2(en)_4($	O_2	(OH)	C_4O_4	₄] _{1.5} ·4H	$_2O$
	0						· · · · · ·			_

I Ebene aus C(1), C(2), O(1), O(2), C(1)A, C(2)A, O(1)A, O(2)A Ebenengleichung: 7.098 x + 0.298 y + 4.887 z = 5.0359 Abweichungen von der Ebene (pm) C(1): 1.30; C(2): -0.30; O(1): -0.58; O(2): 0.14; C(1)A: -1.30; C(2)A: 0.30; O(1)A: 0.58; O(2)A: -0.14 mittlere Abweichung von der Ausgleichsebene: 0.58 pm II Ebene aus C(3), C(4), C(5), C(6), O(3), O(4), O(5), O(6) Ebenengleichung: -2.882 x + 11.805 y - 1.730 z = 1.1867 Abweichungen von der Ebene (pm) C(3): -1.89; C(4): -1.16; C(5): -2.42; C(6): -0.25; O(3): -1.42; O(4): 4.41; O(5): -1.29; O(6): 4.01 mittlere Abweichung von der Ausgleichsebene: 2.11 pm

Bindungslängen (pm)							
Ι		II					
C(7)-N(1)	147.7(4)	C(9)-N(3)	147.8(3)				
C(8)-N(2)	147.0(4)	C(10)-N(4)	148.1(4)				
C(7)-C(8)	143.3(5)	C(9)-C(10)	150.7(4)				
III		IV					
C(11)-N(5)	148.3(3)	C(13)-N(7)	148.2(4)				
C(12)-N(6)	148.4(4)	C(14)-N(8)	147.8(4)				
C(11)-C(12)	150.2(4)	C(13)-C(14)	150.5(4)				

Tabelle 2.9: Bindungsabstände der Ethylendiaminmoleküle im Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

Aufgrund der geometrischen Positionierung der H-Atome betragen alle N-H Bindungen 90 pm und alle C-H Bindungen 97 pm.

Tabelle 2.10: Bindungswinkel der Ethylendiaminmoleküle im Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

Bindungswinkel (°)						
Ι		II				
C(8)-C(7)-N(1)	110.0(3)	N(3)-C(9)-C(10)	06.0(2)			
C(7)-C(8)-N(2)	111.3(3)	N(4)-C(10)-C(9)	107.4(2)			
III		IV				
N(5)-C(11)-C(12)	107.2(3)	N(7)-C(13)-C(14)	06.6(3)			
N(6)-C(12)-C(11)	108.0(2)	N(8)-C(14)-C(13)	06.8(2)			

Struktur des Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O

Wie in Abbildung 2.12 zu sehen, sind die Quadratatdianionen nicht über kovalente Bindungen mit dem zweikernigen Kation $[(en)_2Co(O_2)(OH)Co(en)_2]^{3+}$ verknüpft. Die Verknüpfung erfolgt nur über Wasserstoffbrückenbindungen, welche auch insbesondere für die Stabilität der Quadratatdianionen eine große Rolle spielen. Die Quadratatdianionen I stapeln sich hierbei entlang der [100] Richtung. Der Abstand zwischen den Anionen I beträgt etwa 800 pm, womit eine Wechselwirkung der aromatischen π -Systeme ausgeschlossen werden kann [28,29]. Entlang der [001] Richtung sind die Anionen und Kationen schichtartig angeordnet.

Alle Quadratatsauerstoffatome treten als Protonenakzeptoren in schwachen bis starken Wasserstoffbrückenbindungen auf. Die Ethylendiaminmolekülen treten ausschließlich als Protonendonatoren auf und bilden intermolekulare Wasserstoffbrücken (N–H…O) zu den Quadratatdianionen und den Wassermolekülen OW(1) und OW(3) aus. Hierbei bildet die N(4)–H(23)-Gruppe eine Dreizentren-Wasserstoffbrückenbindung aus [30], wobei OW(2)

und O(7) als Akzeptoratome fungieren. Innerhalb des zweikernigen Kations sind Wasserstoffbrücken zwischen der Peroxogruppe (O(7)–O(8)) und den Ethylendiaminmolekülen II und IV zu erkennen. Die als Brückenmolekül fungierende Hydroxogruppe (O(9)–H(33)) tritt als Protonendonator auf und bildet zu O(4) eine mittelstarke bis schwache Wasserstoffbrückenbindung aus ((O9)···O(4): 292.0 pm).

Mit Ausnahme von OW(3) und OW(4) bilden die Wassermoleküle keine Wasserstoffbrücken untereinander aus (Tab.2.12).

Abbildung 2.12: Ausschnitt aus der Struktur des Co₂(en)₄(O₂)(OH)[C₄O₄]_{1.5}·4H₂O. Die Quadratatdianionen I sind mit offenem Bindungsstab gezeichnet.

Bindungslängen (pm)						
OW(1)-H(34)	79(4)	OW(3)-H(38)	76(4)			
OW(1)-H(35)	95(4)	OW(3)-H(39)	77(4)			
OW(2)-H(36)	67(4)	OW(4)-H(40)	99(4)			
OW(2)-H(37) 88(4)		OW(4)-H(41)	71(4)			
	Bindun	gswinkel (°)				
H(11)-OW(1)-H(12)	114(4)	H(41)-OW(4)-H(42)	100(4)			
H(21)-OW(2)-H(22)	106(4)	H(51)-OW(5)-H(52)	107(4)			
H(31)-OW(3)-H(32)	111(3)					

	N····O Abstand (pm)	H…O Abstand (pm)*	N–H \cdots O Winkel (°) [*]
N(1)-H(17)····OW(1)	301.9	214	165
N(1)-H(18)O(5)	343.1	256	163
N(2)-H(19) O(4)	294.9	210	156
N(2)-H(20)····O(3)	317.2	247	135
N(3)-H(21)····O(5)	285.4	209	143
N(3)-H(22)····O(8)	277.7	219	122
N(4)-H(23)····OW(1)	326.8	250	143
N(4)-H(23)····O(7)	311.0	240	136
N(4)-H(24)····OW(2)	297.8	214	156
N(5)-H(25)O(1)	281.3	197	156
N(5)-H(26)····O(5)	319.8	236	156
N(6)-H(27)····O(6)	288.3	201	163
N(6)-H(28)····OW(3)	298.8	211	163
N(7)-H(29)···O(5)	288.2	204	155
N(7)-H(30)····O(7)	274.6	214	124
N(8)-H(31)····O(1)	289.6	206	155
N(8)-H(32)···OW(3)	293.4	209	156
	O…O Abstand (pm)	H…O Abstand (pm)	O-H···O Winkel (°)
O(9)-H(33)····O(4)	292.0	218	165
OW(1)-H(34)···O(8)	274.4	198	162
OW(1)-H(35)···O(2)	277.4	182	176
OW(2)-H(36)····O(3)	293.6	238	142
OW(3)-H(38)····OW(4)	273.2	198	170
OW(3)-H(39)…O(6)	268.2	192	170
OW(4)-H(41)···O(1)	307.0	240	157
	C···O Abstand (pm)	H…O Abstand $(pm)^*$	$C-H\cdots O$ Winkel (°) [*]
C(8)-H(4)-O(6)	346.6	258	152
C(10)-H(7)···O(2)	334.9	255	140

* Hier wurden die H-Atomlagen geometrisch bestimmt.

Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

Die Koordination des Co³⁺-Kations im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

Das Co^{3+} -Kation wird oktaedrisch von drei Ethylendiaminmolekülen chelatartig koordiniert (Abb.2.13). Die Co–N Bindungen reichen hierbei von 194.9(2) pm bis 197.2(3) pm (Tab.2.13). Da die Verbindung die Raumgruppe Pnma aufstellt, liegt das gebildete $[Co(en)_3]^{3+}$ -Kation in beiden Spiegelbildisomeren vor. Die Bindungsordnung nach *Brese* [26,27] weicht ebenfalls etwas ab und beträgt 3.305. Auch hier liegt das Co³⁺ diamagnetisch vor, so daß sich eine low-spin Elektronenkonfiguration ergibt.

Abbildung 2.13: Die koordinative Umgebung des Co³⁺-Kations im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O (Ortep Plot).

Bindungslängen (pm)							
	S	(Brese[26,27])		s (Brese[26,27])		
Co-N(1)	196.3(3)	0.5473	Co-N(4)	195.3(3)	0.5623		
Co-N(2)	194.9(2)	0.5684	Co-N(5)	196.7(3)	0.5414		
Co-N(3)	196.0(2)	0.5518	Co-N(6)	197.2(3)	0.5342		
			Summe der H	Bindungsstä	rken (s): 3.3054		
Bindungswinkel (°)							
N(2)-Co-N(4)	93.86(11)	N(5)-Co-1	N(6)	85.25(11)		
N(4)-Co-N(3)	84.95(11)	N(2)-Co-1	N(3)	90.46(11)		
N(4)-Co-N(1)	90.73(12)	N(2)-Co-1	N(2)-Co-N(1)			
N(2)-Co-N(5)	90.28(11)	N(3)-Co-1	N(3)-Co-N(1)			
N(3)-Co-N(5)	92.81(11)	N(4)-Co-1	N(4)-Co-N(5)			
N(2)-Co-N(6)	175.06(12)	N(1)-Co-1	N(5)	91.81(11)		
N(3)-Co-N(6)	91.85(11)		N(4)-Co-1	N(4)-Co-N(6)			
			N(1)-Co-1	N(6)	92.47(11)		

Tabelle 2.13: Die Bindungslängen des Co^{3+} -Koordinationspolyeders im $Co(en)_3[C_4O_4]_{1.5}$ ·4.5H₂O

Die Quadratatdianionen und die Ethylendiaminmoleküle

Auch in dieser Verbindung finden sich zwei kristallographisch unterscheidbare Quadratatdianionen (I, II) wieder. Das Anion I weicht nur sehr wenig von einer planaren Gestalt ab. Die C–C Bindungen bewegen sich zwischen 145.2(4) pm und 146.7(4) pm und die C(1)–O(1), C(3)–O(3) und C(4)–O(4) Bindungen unterscheiden sich nicht signifikant ((125.2(3) pm - 125.8(3) pm), während die Bindung C(2)–O(2) mit 123.6(4) pm kürzer ist. Dieses Anion kann man somit näherungsweise mit der Punktgruppe m (C_s) beschreiben. Bis auf C(6) und O(6) liegen alle Atome des Quadratatdianions II auf speziellen Atompositionen (*Wyckoff*-Lage 4c). Die C–C Bindungen sind innerhalb der Fehlergrenzen gleich und die C–O Bindungsabstände unterscheiden sich nicht signifikant. Das Kohlenstoffgerüst weicht nur geringfügig von der Orthogonalität ab. Die Abweichung des Anions II von der planaren Gestalt ist stärker ausgeprägt als beim Anion I. Die größte Abweichung beträgt 12.21 pm für O(6)/O(6)A, so daß sich eine wannenartige Form ergibt (Abb.2.14, Tab.2.15). Folglich ergibt sich für das Anion II ebenfalls die Punktgruppe m (C_s).

Die N–C Abstände der drei symmetrieunabhängigen Ethylendiaminmoleküle (**I**, **II**, **III**) unterscheiden sich nur geringfügig voneinander. Die Bindungslängen liegen zwischen 147.4(4) pm bis 148.8(4) pm. Hingegen zeigen sich bei den C–C Bindungslängen deutliche Unterschiede. So zeigen die Moleküle **I** und **II** mit 141.3(5) pm und 143.2(5) pm merklich kürzere C–C Bindungslängen, als im Molekül **III** mit 149.9(4) pm. Aufgrund des größeren C–C Abstandes weist das Ethylendiamin **III** auch deutlich kleinere C–C–N Winkel von 107.3(2)° und 106.8(2)° auf (Tab.2.16,2.17).

Abbildung 2.14: Das Quadratatdianion II (Schwingungsellipsoide mit einer Aufenthaltswahrscheinlichkeit von 30%, Ortep Plot).

Bindungsabstände (pm)							
Ι							
C(1)-C(2)	146.6(4)	C(2)-C(3)	146.7(4)	O(2)-C(2)	123.6(4)		
C(1)-C(4)	146.2(4)	C(3)-C(4)	145.2(4)	O(3)-C(3)	125.8(3)		
		O(1)-C(1)	125.2(3)	O(4)-C(4)	125.3(4)		
II							
C(5)-C(6)	145.7(4)	C(6)-C(7)	145.4(4)	O(6)-C(6)	125.4(3)		
		O(5)-C(5)	125.7(5)	O(7)-C(7)	124.2(5)		
		Bindungswink	tel (°)				
Ι							
C(1)-C(2)-C(3)	89.2(2)	O(1)-C(1)-C(4)	134.4(3)	O(3)-C(3)-C(4)	135.1(3)		
C(3)-C(4)-C(1)	89.9(2)	O(1)-C(1)-C(2)	135.3(3)	O(3)-C(3)-C(2)	134.2(3)		
C(4)-C(1)-C(2)	90.3(2)	O(2)-C(2)-C(1)	136.5(3)	O(4)-C(4)-C(3)	133.8(3)		
C(4)-C(3)-C(2)	90.6(2)	O(2)-C(2)-C(3)	134.3(3)	O(4)-C(4)-C(1)	136.3(3)		
II							
C(7)-C(6)-C(5)	90.9(2)	C(6)-C(5)-C(6)#1	88.8(3)	O(6)-C(6)-C(7)	134.4(3)		
C(6)-C(7)-C(6)#1	89.0(3)	O(5)-C(5)-C(6)	135.6(2)	O(6)-C(6)-C(5)	134.5(3)		
				O(7)-C(7)-C(6)	135.5(2)		

Tabelle 2.14: Bindungsabstände und -winkel der Quadratatdianionen im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

Symmetrietransformation: #1: x;-y+0.5;z

Tabelle 2.15 Die Ausgleichsebenen des Quadratat dianions im $Co(en)_3[C_4O_4]_{1.5}$ ·4.5H₂O

I Ebene aus C(1), C(2), C(3), C(4), O(1), O(2), O(3), O(4) Ebenengleichung: -6.159 x + 9.997 y + 8.851 z = 3.5699 Abweichungen von der Ebene (pm) C(1): -0.51 ; C(2): -1.60 ; C(3): -1.38 ; C(4): -1.06 ; O(1): 2.00 ; O(2): -0.21 ; O(3): 2.39 ; O(4): -0.05 mittlere Abweichung von der Ausgleichsebene: 1.15 pm II Ebene aus C(5), C(6), C(7), C(6)A, O(5), O(6), O(7), O(6)A Ebenengleichung: 5.041 x + 0.000 y + 10.048 z = 1.2929 Abweichungen von der Ebene (pm) C(5): -4.25 ; C(6): 0.03 ; C(7): -5.24 ; C(6)A: 0.30 ; O(5): -7.94 ; O(6): 12.21 ; O(7): -7.59 ; O(6)A: 12.21 mittlere Abweichung von der Ausgleichsebene: 6.26 pm

Tabelle 2.16: Bindungsabstände der Ethylendiaminmoleküle im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

	Bindungslängen (pm)							
Ι								
N(1)-C(8)	148.2(4)	C(8)-C(9)	141.3(5)	N(1)-H(13)	94(3)			
N(2)-C(9)	147.8(4)	N(1)-H(14)	86(3)	N(2)-H(15)	101(3)			
				N(2)-H(16)	83(3)			
II								
N(3)-C(10)	148.2(4)	C(10)-C(11)	143.2(5)	N(3)-H(17)	89(3)			
N(4)-C(11)	147.4(4)	N(3)-H(18)	83(3)	N(4)-H(19)	92(3)			
				N(4)-H(20)	70(3)			
III								
N(5)-C(12)	148.0(4)	C(12)-C(13)	149.9(4)	N(5)-H(21)	71(3)			
N(6)-C(13)	148.8(4)	N(5)-H(22)	81(3)	N(6)-H(23)	96(3)			
				N(6)-H(24)	78(3)			

Aufgrund der geometrischen Positionierung der H-Atome am Kohlenstoff betragen alle C-H Bindungen 97 pm.

Bindungswinkel (°)						
Ι						
C(9)-C(8)-N(1)	112.1(3)	C(8)-N(1)-H(13)	107(2)	C(9)-N(2)-H(16)	110(2)	
C(8)-C(9)-N(2)	112.0(3)	C(8)-N(1)-H(14)	106(2)	H(15)-N(2)-H(16)	108(3)	
		C(9)-N(2)-H(15)	104(2)	H(13)-N(1)-H(14)	111(3)	
II						
C(11)-C(10)-N(3)	110.7(3)	C(10)-N(3)-H(17)	111(2)	C(11)-N(4)-H(20)	112(3)	
C(10)-C(11)-N(4)	109.5(3)	C(10)-N(3)-H(18)	112(2)	H(17)-N(3)-H(18)	102(3)	
		C(11)-N(4)-H(19)	109(3)	H(19)-N(4)-H(20)	96(3)	
III						
N(6)-C(13)-C(12)	107.3(2)	C(13)-N(6)-H(23)	107(2)	C(12)-N(5)-H(22)	109(2)	
N(5)-C(12)-C(13)	106.8(2)	C(13)-N(6)-H(24)	111(3)	H(21)-N(5)-H(22)	110(4)	
		C(12)-N(5)-H(21)	108(3)	H(23)-N(6)-H(24)	99(3)	

Tabelle 2.17: Bindungswinkel der Ethylendiaminmoleküle im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

Struktur des Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

Wie in Abbildung 2.15 zu sehen, sind die komplexen $[Co(en)_3]^{3+}$ -Kationen und die Quadratatdianionen ausschließlich über Wasserstoffbrückenbindungen miteinander verbunden. Aus dieser Verknüpfung bildet sich ein dreidimensionales supramolekulares Netzwerk [31-33] aus. Hierbei treten die NH₂-Gruppen der Ethylendiaminmoleküle als Protonendonatoren gegenüber den Quadratatsauerstoffatomen auf. Die N…O Bindungslängen dieser Wasserstoffbrücken reichen dabei von 289.2 pm bis 310.6 pm.

Mit Blick auf die (001)-Ebene kann man jeweils nebeneinander liegende Schichten aus Ouadratatdianionen II, $[Co(en)_3]^{3+}$ -Kationen und den Ouadratatdianionen I erkennen (Abb.2.16). Das Netz weist entlang [100] Hohlräume auf, in denen sich Kristallwasser befindet. Diese Gastwassermoleküle werden über mittelstarke und schwache Wasserstoffbrückenbindungen fixiert. Die Wassermoleküle OW(1) und OW(2) treten gegenüber den Ethylendiaminmolekülen als Protonenakzeptoren, und gegenüber den Quadratatdianionen als Protonendonatoren auf. OW(3) bildet nur zum Quadratatdianion II eine derartige Wasserstoffbrücke aus (Tab.2.19). Zwischen den Wassermolekülen werden ebenfalls Wasserstoffbrückenbindungen aufgebaut. Die O…O Abstände liegen zwischen 272.2 pm und 281.3 pm, wobei es sich hauptsächlich um starke bis mittelstarke Wechselwirkungen handelt. Wie man in Abbildung 2.17 erkennen kann, sind OW(1), OW(4), OW(5) und OW(6) über Wasserstoffbrückenbindungen zu einem Sechsringe verknüpft, an dem OW(2) und OW(3) assoziiert sind. Über die Wasserstoffbrücke OW(5)...OW(6) sind die Sechsringe untereinander verknüpft. Die Wassermoleküle, welche keine Wasserstoffbrücken

zu den Ethylendiaminmolekülen und den Quadratatdianionen aufbauen (OW(4), OW(5), OW(6)) fungieren hierbei sowohl als Protonendonatoren, sowie auch als Protonenakzeptoren.

Abbildung 2.15: Ausschnitt aus der Struktur des Co(en)₃[C₄O₄]_{1.5}·4.5H₂O mit Blick in [100] (Wasserstoffatome sind aus Übersichtsgründen nicht eingezeichnet). Gestrichelte Linien stellen einen Ausschnitt der N…O Wasserstoffbrückenbindungen dar. Das Quadratatdianion **II** ist mit offenem Bindungsstab abgebildet.

Abbildung 2.16: Perspektivische Darstellung der Struktur des Co(en)₃[C₄O₄]_{1.5}·4.5H₂O mit Blick entlang [001]. Das Quadratatdianion II ist mit offenem Bindungsstab gezeichnet, Wassermoleküle und Wasserstoffatome sind nicht abgebildet.

Abbildung 2.17: Sechsgliedrige Ringe aus Wassermolekülen, welche sich in den Hohlräumen des Co(en)₃[C₄O₄]_{1.5}·4.5H₂O befinden (Ausschnitt). Die Wassermoleküle stehen untereinander sowie auch teilweise mit den Sauerstoffatomen der Quadratatdianionen und den NH₂-Gruppen der Ethylendiaminmoleküle in Kontakt.

Bindungslängen (pm)								
OW(1)-H(25)	91.2(11)	OW(2)-H(28)	90.1(11)	OW(4)-H(32)	89.0(11)			
OW(1)-H(26)	90.2(11)	OW(3)-H(29)	90.4(10)	OW(5)-H(33)	90.0(10)			
OW(2)-H(27)	89.7(11)	OW(3)-H(30)	90.3(10)	OW(6)-H(34)	90.7(11)			
		OW(4)-H(31)	90.3(10)	OW(6)-H(35)	90.5(10)			
	Bindungswinkel (°)							
H(25)-OW(1)-H(H(25)-OW(1)-H(26) 101(2)			H(31)-OW(4)-H(32)				
H(27)-OW(2)-H((28) 102	(2)	H(33)-OW(5)-H(33)#1	71(2)			
H(29)-OW(3)-H((30) 102	(2)	H(34)-OW(6)-H(35)	101(2)			

Tabelle 2.18: Bindungslängen und -winkel der Wassermoleküle im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

Symmetrietransformation: #1: x;-y+0.5;z

	N····O Abstand (pm)	H···O Abstand (pm)	N-H…O Winkel (°)
N(1)-H(13)O(7)	302.8	212	164
N(1)-H(14)-O(6)	310.6	228	161
N(2)-H(15)O(3)	291.2	192	168
N(2)-H(16)O(4)	293.4	211	170
N(3)-H(17)····OW(2)	318.7	237	154
N(3)-H(18)O(2)	292.2	221	144
N(4)-H(19)O(6)	289.2	210	143
N(4)-H(20)O(3)	289.5	220	172
N(5)-H(21)O(1)	297.1	231	154
N(5)-H(22)O(6)	304.8	226	165
N(6)-H(23)OW(1)	305.9	215	158
N(6)-H(24)O(5)	296.9	220	170
	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(26)····O(1)	O…O Abstand (pm) 280.1	H···O Abstand (pm) 216	O–H…O Winkel (°) 127
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2)	O…O Abstand (pm) 280.1 291.3	H…O Abstand (pm) 216 231	O–H…O Winkel (°) 127 125
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4)	O…O Abstand (pm) 280.1 291.3 267.4	H…O Abstand (pm) 216 231 199	O–H…O Winkel (°) 127 125 132
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4)	O…O Abstand (pm) 280.1 291.3 267.4 272.2	H…O Abstand (pm) 216 231 199 190	O–H…O Winkel (°) 127 125 132 151
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3	H…O Abstand (pm) 216 231 199 190 191	O–H…O Winkel (°) 127 125 132 151 175
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(30)···O(7)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7	H…O Abstand (pm) 216 231 199 190 191 204	O–H…O Winkel (°) 127 125 132 151 175 162
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(30)···O(7) OW(4)-H(31)···OW(1)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7 273.5	H…O Abstand (pm) 216 231 199 190 191 204 185	O–H…O Winkel (°) 127 125 132 151 175 162 166
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(29)···OW(5) OW(3)-H(30)···O(7) OW(4)-H(31)···OW(1) OW(4)-H(32)···OW(6)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7 273.5 273.8	H…O Abstand (pm) 216 231 199 190 191 204 185 201	O-H…O Winkel (°) 127 125 132 151 175 162 166 138
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(29)···OW(5) OW(3)-H(31)···OW(1) OW(4)-H(31)···OW(1) OW(4)-H(32)···OW(6) OW(5)-H(33)···OW(1)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7 273.5 273.8 277.3	H…O Abstand (pm) 216 231 199 190 191 204 185 201 212	O-H…O Winkel (°) 127 125 132 151 175 162 166 138 129
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(30)···O(7) OW(4)-H(31)···OW(1) OW(4)-H(32)···OW(6) OW(5)-H(33)···OW(1) OW(6)-H(34)···OW(5)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7 273.5 273.8 277.3 275.1	H…O Abstand (pm) 216 231 199 190 191 204 185 201 212 188	O–H…O Winkel (°) 127 125 132 151 175 162 166 138 129 159
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(30)···O(7) OW(4)-H(31)···OW(1) OW(4)-H(32)···OW(6) OW(5)-H(33)···OW(1) OW(6)-H(34)···OW(5)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7 273.5 273.8 277.3 275.1 C…O Abstand (pm)	H…O Abstand (pm) 216 231 199 190 191 204 185 201 212 188 H…O Abstand (pm)*	O–H…O Winkel (°) 127 125 132 151 175 162 166 138 129 159 C–H…O Winkel (°) [*]
OW(1)-H(26)···O(1) OW(2)-H(27)···O(2) OW(2)-H(27)···O(4) OW(2)-H(28)···OW(4) OW(3)-H(29)···OW(5) OW(3)-H(29)···OW(5) OW(3)-H(30)···O(7) OW(4)-H(31)···OW(1) OW(4)-H(32)···OW(6) OW(5)-H(33)···OW(1) OW(6)-H(34)···OW(5) C(9)-H(4)···O(2)	O…O Abstand (pm) 280.1 291.3 267.4 272.2 281.3 291.7 273.5 273.8 277.3 275.1 C…O Abstand (pm) 335.9	H…O Abstand (pm) 216 231 199 190 191 204 185 201 212 188 H…O Abstand (pm) [*] 239	O–H…O Winkel (°) 127 125 132 151 175 162 166 138 129 159 C–H…O Winkel (°) [*] 176

Tabelle 2.19: Wasserstoffbrückenbindungen im Co(en)₃[C₄O₄]_{1.5}·4.5H₂O

* Hier wurden die H-Atomlagen geometrisch bestimmt.

Kapitel 3

Benzolcarbonsäuren

Wie anhand von früheren Arbeiten zu erkennen ist, sind die Anionen von Benzolcarbonsäuren gut geeignet zum Aufbau von polymeren Koordinationsverbindungen. In der vorliegenden Arbeit wurden insbesondere die Anionen der Phthalsäure (Benzol-1,2-dicarbonsäure), der Trimesinsäure (Benzol-1,3,5-tricarbonsäure), der Trimellitsäure (Benzol-1,2,4-tricarbonsäure) der Pyromellitsäure (Benzol-1,2,4,5tetracarbonsäure), sowie der Mellitsäure (Benzolhexacarbonsäure) verwendet.

Hierbei können sich, Strukturen bilden, die auf Grund ihrer Eigenschaften von besonderen Interesse sind [1,34-37]. So können sich Schichtstrukturen ausbilden, welche Merkmale eines Ionenaustauschharzes aufweisen, wie dies z.B. beim Zinkpyromellitat-Heptahydrat [38] der Fall ist. Von besonderen Interesse sind offene Gerüststrukturen, welche zeolithartige Strukturmerkmale, oder molekularsiebähnliche Eigenschaften aufweisen [39]. Insbesondere offene Gerüststrukturen lassen sich mit Hilfe von Templatmolekülen als strukturdirigierende Teilchen darstellen. Dieses Konzept wurde früher schon erfolgreich bei den Metallphosphaten [40,41] und in jüngster Zeit auch bei den Oxalaten [42,43] angewandt In der vorliegenden Arbeit wurden als Templatmoleküle Diamine (1,4-Diaminobutan, 1,6-Diaminohexan, *trans*-1,4-Diaminocyclohexan, 1,9-Diaminononan) verwendet. Außerdem wurde versucht, neben den Anionen der Benzolcarbonsäuren auch andere neutrale
Komplexbildner, wie 1,10-Phenanthrolin, 2,2'-Bipyridin, 4,4'-Bipyridin, Imidazol, Isonicotinsäure und Pyrazin am Metallkation zu koordinieren, um so weitere Verknüpfungsstellen zu erhalten.

Im folgendem konnten besonders bei den Pyromellitaten interessante und mannigfaltige Strukturmöglichkeiten, vor allem der strukturdirigierende Einfluß von Templatmolekülen bei der Bildung von offenen Gerüststrukturen dargestellt werden.

3.1. Phthalate

Auf dem Gebiet der Phthalate sind bereits zahlreiche Untersuchungen vorgenommen wurden. Zu erwähnen sei das Cd[C₆H₄(COO)₂]·H₂O [44] mit einer Schichtstruktur, das durch eine kettenartige Struktur geprägte $Hg[C_6H_4(COO)_2]$ [35], sowie einige Kupferhydrogenphthalate [45-47], die sich durch kurze Wasserstoffbrückenbindungen auszeichnen. Seit kurzem untersucht man Strukturen, bei den neben den Phthalatanionen auch N-Donor-Liganden am Metallzentrum koordinieren. Exemplarisch sei das 1999 von Lightfoot und Snedden [48] veröffentlichte kristallwasserfreie $Co(4,4'bipy)[C_6H_5(COO)_2]_2$ genannt. Die Strukturelemente, Ketten aus Co-4,4'bipy-Co und Co-C₆H₅(COO)₂-Co, sind analog denen, der von uns dargestellten isotypen Verbindungen Co(4,4'bipy)[C₆H₄(COO)₂]·4H₂O $Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O.$ Hauptsächlich daß und dadurch, im $Co(4,4'bipy)[C_6H_5(COO)_2]_2$ die Koordinationsstellen des Co^{2+} -Kations (KZ = 6) nicht mit Wassermolekülen belegt werden können, ist eine Verknüpfung der Strukturelemente zu einem dreidimensionalen Gerüst möglich. Während die von uns untersuchten Verbindungen Schichtverbände aufweisen.

Weiterhin charakterisierten wir ein durch unendliche Polykationenketten geprägtes $Mn(pyz)[C_6H_4(COO)_2]\cdot 4H_2O$.

3.1.1. Die Kettenstruktur des Mn(pyz)[C₆H₄(COO)₂]·4H₂O

Die Züchtung von Einkristallen erfolgte in Lösung. Hierzu wurden 5ml einer 0.1M Mn(NO₃)₂-Lösung mit 5ml einer 0.1M Pyrazinlösung versetzt. Danach wurden noch 5ml einer 0.1M Natriumphthalatlösung und 10ml H₂O zugegeben. Nach 2 Tagen bildeten sich bei RT gelbliche Kristalle.

Elementaranalyse - Mn(pyz)[C ₆ H ₄ (COO) ₂]·4H ₂ O			
	Ber.(%)	Gef.(%)	
С	38.83	38.71	
Н	4.34	4.29	
Ν	7.55	7.54	

IR-Spektrum

In Abbildung 3.1 ist das IR-Spektrum der Verbindung dargestellt. Die breite Absorptionsbande zwischen 3200 cm⁻¹ und 3000 cm⁻¹ deutet auf die Ausbildung von Wasserstoffbrückenbindungen hin. Die Bande bei 1662 cm⁻¹ dürfte im wesentlichen die C=C Schwingung der aromatischen Systeme widerspiegeln. Die asymmetrische Valenzschwingung der COO⁻ Gruppe des Phthalatdianions erscheint bei 1546 cm⁻¹ und jene bei 1396 cm⁻¹ ist der symmetrischen COO⁻ Valenzschwingung zuzuordnen. Die Differenz zwischen v_{as} und v_s von 150 cm⁻¹ ist ein Indiz dafür, daß die Carboxylatgruppen nicht am Mn²⁺ koordinativ gebunden sind [49]. Zwischen 1151 cm⁻¹ und 900 cm⁻¹ liegen die Banden der C–H in-plane Deformationsschwingungen [50].

Abbildung 3.1: IR-Spektrum des $Mn(pyz)[C_6H_4(COO)_2]\cdot 4H_2O$.

Thermoanalyse

Die thermoanalytische Untersuchung (Abb.3.2) zeigt zwischen 130°C und 196°C einen endothermen Prozeß, der statistisch auf die Abgabe von 2.5 Mol Wasser pro Formeleinheit zurückzuführen ist. Der Gewichtsverlust hierbei beträgt 12.2% (ber. 12.1%). Es schließt sich ein zweiter endothermer Prozeß an, dessen Höhepunkt bei 227°C liegt. Dies kann mit der weiteren Abgabe von 1.5 Mol Wasser und 1 Mol Pyrazin pro Formeleinheit erklärt werden. Hierbei würde sich ein Gewichtsverlust von 28.8% ergeben, was sehr gut mit dem

experimentellen Wert von 28.5% übereinstimmt. Ab ca. 330°C sind mehrstufige exotherme Zersetzungsvorgänge zu beobachten, deren lokale Höhepunkte bei 410°C, 450°C und 500°C liegen, sowie einen breiten exothermer Prozeß zwischen 516°C und 670°C.

Der schwarze Zersetzungsrückstand konnte als Mn₂O₃ identifiziert werden (Anhang II).

Abbildung 3.2: Thermoanalytischer Verlauf des Mn(pyz)[C₆H₄(COO)₂]·4H₂O.

Strukturbeschreibung

Röntgenbeugungssymmetrie und Reflexionsbedingungen einer Halbkugel des reziproken Raumes führten auf die orthorhombische Raumgruppe Imm2. Die Positionen der Wasserstoffatome wurden der Differenzfourierkarte entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Absorptionseffekte wurden numerisch korrigiert. Die wichtigsten kristallographischen Daten sind in Tabelle 3.1 angegeben.

Summenformel	$C_{12}H_{16}N_2MnO_8$
Kristallsystem	Orthorhombisch
Raumgruppe	Imm2 (Nr.44)
Reflexionsbedingung	hkl: $h + k + l = 2n$
Gitterkonstanten	a = 1039.00(6) pm
	b = 954.46(13) pm
	c = 737.86(5) pm
Wellenlänge	71.073 pm
Temperatur	293(2) K
Elementarzellvolumen	$0.73172(12) \text{ nm}^3$
Formeleinheiten in der Elementarzelle	2
Molmasse	371.21 g/mol
berechnete Dichte	1.685 g/cm^3
Absorptionskoeffizient	0.948 mm ⁻¹
numerische Absorptionskorrektur	min./max. Transmission 0.715/0.870
F (000)	382
Gemessener θ - Bereich	2.90° bis 26.99°
Indexgrenzen	$0 \le h \le 13$, $-12 \le k \le 12$, $-9 \le l \le 9$
Anzahl der gemessenen Reflexe	1690
unabhängige Reflexe	$897 (R_{int} = 0.0244)$
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$
Goodness-of-Fit an $ F ^2$	1.982
endgültige R-Werte $[I \ge 2\sigma(I)]$	$R_1 = 0.0198$, $wR_2 = 0.0449$
R - Werte (sämtliche Daten)	$R_1 = 0.0199$, $wR_2 = 0.0449$
Extinktionskoeffizient	0.0148(12)
Gewichtung	$w = 1/\sigma^2 (F_0 ^2)$
größtes Maximum und Minimum der letzten	
Differenz-Fouriersynthese	263 und -323e·mn ⁻³

Tabelle 3.1: Die wichtigsten kristallographischen Daten des Mn(pyz)[C₆H₄(COO)₂]·4H₂O

Die Koordination des Kations

Das Mn^{2+} -Kation besetzt eine spezielle Atomposition der Lagesymmetrie mm2 (*Wyckoff*-Lage 2b). Die Koordinationssphäre wird von vier äquatorial gebundenen Wassermolekülen (4x OW) und zwei transständig koordinierten Stickstoffatomen (N(1), N(2)) des Pyrazins gebildet. Die Wassermoleküle bilden mit 215.02(11) pm den kürzeren Abstand zum Zentralatom aus, so daß sich ein gestauchtes Oktaeder formt (Tab.3.2). Die magnetische Messung bei RT ergab einen Wert von $\mu_{eff} = 6.15\mu_B/Mn^{2+}$. Dies deutet auf eine high-spin Elektronenkonfiguration des Mn²⁺ hin (⁶S-Grundzustand [51]). Somit ist die Verzerrung des Polyeders nicht auf einen *Jahn-Teller*-Effekt [52] zurückzuführen.

Die Bindungsordnung nach der Methode von Brese [26] beträgt 2.142.

Bindungslängen (pm)						
			s (Brese[26])			s (Brese[26])
Mn-OW	215.02(11)	4x	0.3778	Mn-N(2)	230.7(4)	0.3069
Mn-N(1)	228.7(4)		0.3239			
				Summe der I	Bindungsstärke	en (s): 2.1420
Bindungswinkel (°)						
OW#2-Mn-OW		87.09(7)	OW-Mn-N	N(2)	87.69(4)
OW#2-Mn-OW	#3	92.73(7)	OW-Mn-N	N(1)	92.31(4)
OW-Mn-OW#3]	175.38(9)	N(1)-Mn-	N(2)	180.0

Taballa 2.2.	Die Cosmotnie des Mus	$^{2+}$ V and in a time to m	1
Tabelle 3.2:	Die Geometrie des Min	-Koodinations	olyeaers

Symmetrietransformationen: #2: x;-y;z, #3: -x+1;-y;z

Das Phthalatdianion und das Pyrazin

Sämtliche Kohlenstoffatome des Dianions liegen auf der speziellen kristallographischen Lage 4c. Die C–C Abstände innerhalb des C₆-Ringes variieren zwischen 137.8(5) pm und 140.2(4) pm. Die C–C Einfachbindungen betragen 151.1(3) pm. Der C–O Abstand in den Carboxylatgruppen beträgt 125.4(2) pm (Tab.3.3), was einen Bindungsgrad nach *Pauling* [19] von etwa 1.53 entspricht. Da sämtliche Kohlenstoffatome auf einer speziellen Lage angeordnet sind, ist jenes Kohlenstoffgerüst ideal planar, die Carboxylatgruppen sind aus dieser Ebene um 90.0° herausgedreht. Die Punktgruppe des Anions ist somit 2mm (C_{2v}). Die Nichtwasserstoffatome des Pyrazinmoleküls liegen in einer Ebene. Die Stickstoffatome und die Kohlenstoffgatome liegen auf speziellen Atompositionen (*Wyckoff*-Lagen: C: 4c, N: 2b) Durch die Koordination am Mn²⁺ kommt es zu einer leichten Verzerrung des Moleküls [18]. Die C–N Abstände unterscheiden sich hierbei um 1.8 pm (Tab.3.4). Das Molekül kann ebenfalls mit einer 2mm (C_{2v}) Punktgruppensymmetrie beschrieben werden.

	Bindungslängen (pm)				
C(1)-C(2)	151.1(3)	C(4)-C(4)#4	137.8(5)		
C(2)-C(2)#4	140.2(4)	O(1)-C(1)	125.4(2)		
C(2)-C(3)	138.4(3)	C(3)-H(1)	92(3)		
C(3)-C(4)	139.2(4)	C(4)-H(2)	101(3)		
	Bindu	ungswinkel (°)			
C(3)-C(2)-C(2)#4	119.5(2)	O(1)-C(1)-C(2)	117.56(12)		
C(2)#4-C(2)-C(1)	122.41(13)	O(1)#2-C(1)-O(1)	124.9(2)		
C(4)#4-C(4)-C(3)	119.9(2)	C(2)-C(3)-H(1)	120(2)		
C(3)-C(2)-C(1)	118.1(2)	C(3)-C(4)-H(2)	124.5(14)		
C(2)-C(3)-C(4)	120.6(3)	C(4)-C(3)-H(1)	119(2)		
		C(4)#4- $C(4)$ -H(2)	115.6(14)		

Tabelle 3.3: Bindungslängen und -winkel des Phthalatdianions

Symmetrietransformation: #4: -x;-y;z

Bindungsabstände (pm)			
N(1)-C(5)	134.5(4)	C(5)-C(6)	137.6(3)
N(2)-C(6)	132.7(3)	C(5)-H(3)	103(4)
		C(6)-H(4)	97(4)
	Bindung	swinkel (°)	
C(5)#3-N(1)-C(5)	115.5(4)	C(5)#6-C(6)-H(4)	125(2)
N(2)-C(6)-C(5)#6	121.5(3)	N(1)-C(5)-H(3)	122(2)
N(1)-C(5)-C(6)#5	122.1(3)	N(2)-C(6)-H(4)	113(2)
C(6)-N(2)-C(6)#3	117.3(4)	C(6)#5-C(5)-H(3)	116(2)

Tabelle 3.4: Bindungsabstände und -winkel des Pyrazins

Symmetrietransformationen: #3: -x+1;-y;z, #5: x;y;z-1, #6: x,y,z+1

Struktur

Die Mn^{2+} -Kationen verbinden die Pyrazinmoleküle zu unendlich langen Ketten, die sich parallel zu [001] erstrecken (Abb.3.3). Diese Ketten sind Polykationen der Zusammensetzung $[Mn(H_2O)_4(pyz)]_n^{2n+}$, mit einer Äquivalentlänge (reziproke lineare Ladungsdichte) von 3.689 Å/Äquivalentladung. Die Polykationenketten sind entlang der [100] Richtung in ...AAA... Folge gestapelt (Abb.3.4). Eine Wechselwirkung zwischen den π -Systemen der aromatischen Pyrazinringe ist aufgrund des Abstandes (1039 pm) auszuschließen [53,54]. Die positiven Ladungen dieser Ketten werden durch die Phthalatdianionen kompensiert, welche sich zwischen jenen Ketten befinden und nur über Wasserstoffbrückenbindungen mit den Polykationen verbunden sind. Wie zu erkennen zeigen die Carboxylatgruppen des Phthalatdianions in eine Richtung, so daß die Struktur, welche die Raumgruppe Imm2 aufstellt, einen polaren Charakter erhält (Abb.3.5). Die sich daraus ergebenen pyro- und piezoelektrischen Eigenschaften wurden allerdings nicht näher untersucht.

Abbildung 3.3: Die Polykationenkette des Mn(pyz)[C₆H₄(COO)₂]·4H₂O (Ortep Plot).

Abbildung 3.4: Die Anordnung der Polykationenketten in [100] Richtung. Wassermoleküle und Wasserstoffatome sind nicht mit dargestellt.

Abbildung 3.5: Ausschnitt aus der Struktur des Mn(pyz)[C₆H₄(COO)₂]·4H₂O (Ortep Plot).

Wasserstoffbrückenbindungen

Die Polykationenketten sind über Wasserstoffbrücken mit dem Phthalatdianionen verknüpft (Tab.3.6). Die Wassermoleküle fungieren dabei als Protonendonatoren. Hierbei handelt es sich im sehr starke Wasserstoffbrücken, die entscheidend zur Stabilisierung des Anions beitragen.

Tabelle 3.5:	Bindungslängen u	und -winkel des	Wassermoleküls
--------------	------------------	-----------------	----------------

Bindungslängen (pm)				
OW-H5 87(2) OW-H6 80(3)				
Bindungswinkel (°)				
H(5)-OW-H(6) 113(2)				

Tabelle 3.6:	Wasserstoffbrückenbindungen im Mn(pyz)[C ₆ H ₄ (COO) ₂]·4H ₂ O
--------------	---

	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW-H(6)-O(1)	274.5	189	175
OW-H(5)-O(1)#2	275.4	194	172

Symmetrietransformation: #2: x;-y;z

3.1.3. $M(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$ (M = Mn²⁺, Co²⁺), zwei isotype Verbindungen mit Schichtstruktur

Zu 5ml einer 0.1M $M(NO_3)_2$ -Lösung (M = Mn^{2+} , Co^{2+}) wurden 10ml einer heißen 0.1M 4,4'-Bipyridinlösung und 5ml einer 0.1M Natriumphthalatlösung gegeben. Dieses Reaktionsgemisch wurde mehrere Tage bei 80°C stehen gelassen, worauf sich rote (Co-Verbindung) bzw. farblose (Mn-Verbindung) quaderförmige Kristalle bildeten.

Elementaranalyse	Mn(4,4'bip	$y)[C_6H_4(COO)_2]\cdot 4H_2O$	Co(4,4'bip	$y)[C_6H_4(COO)_2]\cdot 4H_2O$
	Ber.(%)	Gef.(%)	Ber.(%)	Gef.(%)
С	48.33	47.90	47.91	47.63
Н	4.51	4.32	4.47	4.50
Ν	6.26	6.04	6.21	6.16

IR-Spektren

In den Abbildungen 3.6 und 3.7 sind die IR-Spektren der beiden isostrukturellen Verbindungen zu sehen. Aufgrund von Wasserstoffbrückenbindungen sind die O–H Schwingungsbanden (3000 cm⁻¹ - 3453 cm⁻¹) zu kleineren Frequenzen verschoben. Die Ringstreckschwingung des 4,4^c-Bipyridins ist bei 1606 cm⁻¹ (1608 cm⁻¹)^{*}) zu erkennen [55]. Die C–O Banden des Phthalatdianions liegen bei 1556 cm⁻¹ (1539 cm⁻¹, v_{as}) und bei 1393 cm⁻¹ (1395 cm⁻¹, v_s). Eine Absorptionsbande bei 1216 cm⁻¹ (1214 cm⁻¹) wird durch die in-plane C–H Deformationsschwingung verursacht.

^{*} Die in Klammern stehenden Werte sind die der Co-Verbindung.

Abbildung 3.6: IR-Spektrum des $Mn(4,4^{\circ}bipy)[C_6H_4(COO)_2]\cdot 4H_2O$.

Abbildung 3.7: IR-Spektrum des $Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$.

Thermoanalyse

 $Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$

In Abbildung 3.8 ist der thermogravimetrische Verlauf dargestellt. Ab ca. 169°C beginnt ein endothermes Ereignis, dessen Höhepunkt bei 204°C liegt. Dieser Prozeß verursacht ein Gewichtsverlust von 15.9%. Dies kann auf die vollständige Abgabe des Kristallwassers

zurückgeführt werden (ber. 16.0%). Anschließend erfolgt die Zersetzung der Verbindung, wobei bis 337°C ein weiterer Gewichtsverlust von 33.2% zu verzeichnen ist. Die Abgabe eines 4,4'-Bipyridinmoleküls pro Formeleinheit würde ein Verlust von 34.6% ergeben. Diese Abgabe ist ebenfalls durch einen endothermen Reaktionsverlauf gekennzeichnet (T_{max} : 312°C). Es schließt sich ein exothermes Ereignis an, dessen maximale Wärmetönung bei 420°C liegt. Bis zum Ende der Heizperiode (1000°C) finden sich noch weitere schwache und diffuse Prozesse wieder. Im Rückstand wurden CoO und Co₃O₄ gefunden (Anhang II).

 $Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$

Das thermische Verhalten (Abb.3.9) ist analog zur Cobaltverbindung. Ein Gewichtsverlust von 17.6%, begleitet durch ein endothermes Ereignis, dessen Höhepunkt bei 188°C liegt, wird durch die vollständige Abgabe des Kristallwassers hervorgerufen (ber. 16.1%). Nachfolgend erscheinen zwei schwache endotherme Prozesse, deren maximalen Reaktionstemperaturen bei 257°C und 284°C liegen. Dabei ergibt sich ein Masseverlust von insgesamt 30.3%. In Anlehnung an das thermische Verhalten der Cobaltverbindung kann man auch hier den Verlust eines 4,4'-Bipyridinmoleküls pro Formeleinheit vermuten, was einen theoretischen Masseverlust von 34.9% zur Folge hätte. Anschließend folgt eine exotherme Zersetzungsreaktion (T_{max} : 413°C) an die sich kleinere exotherme Prozesse anschließen, die ihre maximale Wärmetönung bei 460°C und 498°C entwickeln.

Abbildung 3.8: Thermochemischer Verlauf des $Co(4,4^{\circ}bipy)[C_6H_4(COO)_2]\cdot 4H_2O$.

Abbildung 3.9: Thermochemischer Verlauf des $Mn(4,4^{\circ}bipy)[C_6H_4(COO)_2]\cdot 4H_2O$.

Strukturbeschreibung

Röntgenbeugungssymmetrie und Reflexionsbedingungen führten auf die monokline Raumgruppe P2/n. Sämtliche C–H Wasserstoffatome (Ausnahme H(2)) wurden geometrisch positioniert, die restlichen Wasserstofflagen wurden Differenzfourierkarten entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Außerdem wurde eine numerische Absorptionskorrektur durchgeführt. Die wichtigsten Daten sind in Tabelle 3.7 dargestellt.

Kristallographische Daten			
	$Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4$	H ₂ O	$Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$
Summenformel	$C_{18}H_{20}N_2MnO_8$		$C_{18}H_{20}N_2CoO_8$
Kristallsystem	10 20 2 0 M	Ionokli	n
Raumgruppe	P	2/n (Nr	.13)
Reflexionsbedingung	h	01: $\hat{1} = 2$	2n
Gitterkonstanten	a = 769.20(10) pm		a = 761.18(9) pm
	b = 1158.80(10) pm		b = 1135.69(9) pm
	c = 1075.00(10) pm		c = 1080.89(9) pm
	$\beta = 92.67(2)^{\circ}$		$\beta = 92.276(7)^{\circ}$
Wellenlänge	71	1.073 p	m
Temperatur	2	293(2) k	X
Elementarzellvolumen	$0.9572(2) \text{ nm}^3$		$0.9337(2) \text{ nm}^3$
Formeleinheiten pro Elementarzelle		2	
Molmasse	447.30 g/mol		451.29 g/mol
berechnete Dichte	1.552 g/cm^3		1.602 g/cm^3
Absorptionskoeffizient	0.739 mm^{-1}		0.970 mm ⁻¹
numerische Absorptionskorrektur	min./max. Transmission		min./max. Transmission
	0.767/0.835		0.798/0.844
F (000)	462		466
Gemessener θ - Bereich	2.59° bis 25.00°		2.60° bis 25.00°
Indexgrenzen	$-9 \le h \le 9$		$0 \le h \le 9$
	$-13 \le k \le 13$		$0 \le k \le 13$
	$-12 \le 1 \le 12$		$-12 \le 1 \le 12$
Anzahl der gemessenen Reflexe	3638		1780
unabhängige Reflexe	$1694 (R_{int} = 0.0219)$		$1652 (R_{int} = 0.0203)$
Strukturverfeinerung	Vollmatrix L	least-Sq	$ uares an F ^2$
Goodness-of-Fit an $ F ^2$	1.540		1.189
endgültige R-Werte [I>2 σ (I)]	$R_1 = 0.0274$, $wR_2 = 0.0642$		$R_1 = 0.0306$, $wR_2 = 0.0591$
R-Werte (sämtliche Daten)	$R_1 = 0.0298$, $wR_2 = 0.0649$		$R_1 = 0.0386$, $wR_2 = 0.0620$
Extinktionskoeffizient	0.087(2)		0.0029(3)
Gewichtung	$w = 1/[\sigma^2(F_0 ^2) + 0.40 \cdot P]$		$w = 1/[\sigma^2(\mathbf{F}_0 ^2) + 0.59 \cdot \mathbf{P}]$
größtes Maximum und Minimum			
der letzten Differenz-Fouriersynthese	378 und -233e⋅nm ⁻³		229 und -304e·nm ⁻³

Tabelle 3.7:Die wichtigsten kristallographischen Daten des $Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$ und des $Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$

 $P = \frac{1}{3} \max(|F_0|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordinationssphären der Kationen

Die Kationen (Mn^{2+} , Co^{2+}) sind auf einer speziellen Atomposition der Lagesymmetrie 2 angeordnet (*Wyckoff*-Symbol 2f).

Die Koordinationssphäre wird von zwei Carboxylatsauerstoffatomen (2x O(2)), zwei Wassermolekülen (2x OW(1)) und von den Stickstoffatomen N(1) und N(2) der 4,4'-Bipyridinmoleküle aufgestellt (Abb.3.10). In der Mn-Verbindung liegen die Bindungslängen des verzerrten Oktaeders zwischen 219.5(2) pm und 227.2(2) pm, während mit 212.7(2) pm bis 214.9(3) pm sich die Abstände in der Co-Verbindung weniger stark

unterscheiden (Tab.3.8). Da N(1) und N(2) ebenfalls auf der *Wyckoff*-Lage 2f liegen, beträgt der N(1)–M–N(2) Winkel 180°, die anderen Winkel weichen von den Idealwerten ab (Tab.3.9).

Die Bindungsordnungen nach *Brese* [26] liegen mit 2.021 (Mn-Verbindung) und 2.102 (Co-Verbindung) sehr nahe am Erwartungswert von 2.

Abbildung 3.10: Die Geometrie des Koordinationspolyeders (Ortep Plot, $M = Mn^{2+}$, Co^{2+}).

Bindungslängen (pm)							
$Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$							
			s (Brese[26])			s (Brese[26])	
Mn-O(2)	219.5(2)	2x	0.3347	Mn-N(1)	225.3(2)	0.3552	
Mn-OW(1)	220.1(2)	2x	0.3293	Mn-N(2)	227.2(2)	0.3374	
				Summ	e der Bindungsstärke	en (s): 2.0206	
$Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$							
			s (Brese[26])			s (Brese[26])	
Co-O(2)	213.7(2)	2x	0.3004	Co-N(1)	213.5(3)	0.4505	
Co-OW(1)	212.7(2)	2x	0.3086	Co-N(2)	214.9(3)	0.4338	
				Summ	e der Bindungsstärke	en (s): 2.1023	

Tabelle 3.8: Bindungslängen der Koordinationspolyeder

		Bindungswinkel (°)		
Mn(4,4'bipy)[C ₆ H	$H_4(COO)_2] \cdot 4H_2$	2O		
O(2)#1-Mn-O(2)	172.65(8)		OW(1)-Mn-N(1)	90.85(4)
O(2)-Mn-OW(1)	86.99(6)		OW(1)-Mn-OW(1)#1	178.30(8)
O(2)-Mn-OW(1)#1	92.90(6)		O(2)-Mn-N(2)	86.33(4)
O(2)-Mn-N(1)	93.67(4)		OW(1)-Mn-N(2)	89.15(4)
			N(1)-Mn-N(2)	180.0
$Co(4,4'bipy)[C_6H]$	$[_4(COO)_2] \cdot 4H_2$	0		
O(2)#1-Co-O(2)	172.87(10)		OW(1)-Co-N(1)	90.65(5)
O(2)-Co-OW(1)	86.45(7)		OW(1)-Co-OW(1)#1	178.70(10)
O(2)-Co-OW(1)#1	93.47(7)		O(2)-Co-N(2)	86.43(5)
O(2)-Co-N(1)	93.57(5)		OW(1)-Co-N(2)	89.35(5)
			N(1)-Co-N(2)	180.0

Tabelle 3.9:	Bindungswinkel	der Koordination	nspolyeder
--------------	----------------	------------------	------------

Symmetrietransformation: #1: -x+0.5;y;-z+1.5

Die Phthalatdianionen und die 4,4'-Bipyridinmoleküle

Die Phthalatdianionen (Abb.3.11) unterscheiden sich in beiden Verbindungen nur geringfügig voneinander. Das Kohlenstoffgerüst kann als planar angesehen werden, wobei die Carboxylatgruppen um 121.0° (Mn-Verbindung) und um 121.2° (Co-Verbindung) bezüglich jener Ebene verdreht sind (Tab.3.12). Die C–C Bindungen des C₆-Ringes liegen typischerweise zwischen 137.2(5) pm und 140.0(4) pm und die C–C Einfachbindungen betragen 151.3(3) pm bzw. 151.0(3) pm. Innerhalb der Carboxylatgruppen unterscheiden sich die C–O Bindungslängen signifikant. Da O(2) koordinativ am Metallkation gebunden ist, ist der C(4)–O(2) Abstand größer als der C(4)–O(1) Bindungsabstand (Tab.3.10). Das Anion kann mit einer zweizähligen Symmetrie (C₂) beschrieben werden.

Die 4,4'-Bipyridinmoleküle (Abb.3.11) sind bezüglich ihrer Geometrie nicht signifikant verschieden (Tab.3.11). Die C₅N-Ringe sind planar und zueinander um 126.3° (Mn-Verbindung) bzw. um 126.2° (Co-Verbindung) verdreht (Tab.3.13). Die Bindung C(7)–C(8), wodurch beide Pyridinringe miteinander verknüpft werden, betragen 148.9(4) pm und 148.1(4) pm. Aufgrund des Abstandes handelt es sich um eine Einfachbindung, deren Doppelbindungsanteil nach *Pauling* [19] etwa 5% - 8% beträgt. Die 4,4'-Bipyridinmoleküle lassen sich gut mit einer 222 (D₂) Punktgruppensymmetrie beschreiben.

Abbildung 3.11: Ortep Plot des 4,4'-Bipyridins und des Phthalatdianions.

Tabelle 3.10:	Bindungslängen	und -winkel	der P	hthalatdianionen
	6 6			

	Bindungslängen (pm)						
Mn(4,4'bipy)[$C_6H_4(COO)_2]\cdot 4$	H ₂ O					
C(1)-C(1)#2	139.0(4)	C(2)-C(3)	138.5(3)	O(1)-C(4)	124.5(3)		
C(1)-C(2)	139.4(3)	C(3)-C(3)#2	137.2(5)	O(2)-C(4)	125.8(3)		
		C(1)-C(4)	151.3(3)	C(3)-H(2)	91(2)		
Co(4,4'bipy)[$C_6H_4(COO)_2]\cdot 4H_{1}$	H_2O					
C(1)-C(1)#2	140.0(4)	C(2)-C(3)	138.0(3)	O(1)-C(4)	124.3(3)		
C(1)-C(2)	138.4(3)	C(3)-C(3)#2	139.1(6)	O(2)-C(4)	126.3(3)		
		C(1)-C(4)	151.0(3)	C(3)-H(2)	100(3)		
	Bindungswinkel (°)						
Mn(4,4'bipy)[$C_6H_4(COO)_2]\cdot 4$	H ₂ O					
C(1)#2-C(1)-C(2) 119.25(13)	C(1)#2-C(1)-C(4)	121.31(11)	O(1)-C(4)-C(1)	117.7(2)		
C(2)-C(1)-C(4)	119.4(2)	C(3)-C(2)-C(1)	120.8(2)	O(2)-C(4)-C(1)	117.6(2)		
C(3)#2-C(3)-C(2) 119.90(14)	O(1)-C(4)-O(2)	124.7(2)	C(2)-C(3)-H(2)	122(2)		
				C(3)#2-C(3)-H(2)	119(2)		
$Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$							
C(1)#2-C(1)-C(2) 119.1(2)	C(1)#2-C(1)-C(4)	121.08(13)	O(1)-C(4)-C(1)	117.8(2)		
C(2)-C(1)-C(4)	119.8(2)	C(3)-C(2)-C(1)	121.4(3)	O(2)-C(4)-C(1)	118.0(2)		
C(3)#2-C(3)-C(2) 119.4(2)	O(1)-C(4)-O(2)	124.1(2)	C(2)-C(3)-H(2)	121(2)		
				C(3)#2-C(3)-H(2)	120(2)		

Die H-Atome (außer H(2)) wurden geometrisch positioniert, so daß die C–H Bindungen 93 pm betragen. Symmetrietransformation: #2: -x-0.5;y;-z+1.5

	Bindungslängen (pm)						
Mn(4,4'bipy)	$[C_6H_4(COO)_2]$	4H ₂ O					
N(1)-C(5)	133.8(2)	C(5)-C(6)	138.6(3)	C(7)-C(8)	148.9(4)		
N(2)-C(10)	133.2(2)	C(6)-C(7)	138.9(3)	C(8)-C(9)	138.4(3)		
				C(9)-C(10)	138.4(3)		
Co(4,4'bipy)	$[C_6H_4(COO)_2]$	4H ₂ O					
N(1)-C(5)	134.0(3)	C(5)-C(6)	138.5(3)	C(7)-C(8)	148.1(4)		
N(2)-C(10)	133.8(3)	C(6)-C(7)	138.9(3)	C(8)-C(9)	138.6(3)		
				C(9)-C(10)	138.2(3)		
		Bindungswin	kel (°)				
Mn(4,4'bipy)	$[C_6H_4(COO)_2]$	4H ₂ O					
N(2)-C(10)-C(9) 123.1(2)	C(10)-C(9)-C(8)	118.8(2)	C(9)-C(8)-C(7)	120.79(13)		
C(10)-N(2)-C(1	0)#1 117.8(3)	C(5)-N(1)-C(5)#1	117.4(2)	C(5)-C(6)-C(7)	119.1(2)		
C(9)#1-C(8)-C(9) 118.4(3)	C(6)#1-C(7)-C(6)	118.0(3)	C(6)-C(7)-C(8)	121.00(13)		
				N(1)-C(5)-C(6)	123.2(2)		
$Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$							
N(2)-C(10)-C(9) 123.1(2)	C(10)-C(9)-C(8)	119.3(2)	C(6)-C(7)-C(8)	121.1(2)		
C(10)-N(2)-C(1	0)#1 117.4(3)	C(9)-C(8)-C(7)	121.1(2)	N(1)-C(5)-C(6)	123.1(2)		
C(9)#1-C(8)-C(9) 117.9(3)	C(5)-C(6)-C(7)	119.3(2)	C(6)#1-C(7)-C(6)	117.7(3)		
				C(5)-N(1)-C(5)#1	117.4(2)		

F 1 11 0 1 1	D' 1 1	1 . 1 1	1 4 46 D	• 1• 1 1 • 1
abelle 3.11:	Bindungslängen	und -winkel	der 4,4 - Bip	yridinmolekule

Symmetrietransformation: #1: -x+0.5;y;-z+1.5

Tabelle 3.12:	Die Ausgleichsebenen der Phthalatdianionen
---------------	--

 $Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$ Ebene 1 aus C(1), C(2), C(3), C(4), C(1)A, C(2)A, C(3)A, C(4)A, Ebenengleichung: 6.266 x + 0.000 y - 6.636 z = -6.5432Abweichungen von der Ebene (pm): C(1): 1.11 ; C(2): -0.21 ; C(3): -1.47 ; C(4): 0.36 ; C(1)A: -1.10 ; C(2)A: 0.21 ; C(3)A: 1.47 ; C(4)A: -0.36 mittlere Abweichung von der Ausgleichsebene: 0.79 pm Ebene 2 aus O(1), O(2), C(1), C(4) Ebenengleichung: -0.013 x - 5.260 y + 9.569 z = 0.8079Abweichungen von der Ebene (pm): O(1): 0.36 ; O(2): 0.35 ; C(1): 0.27 ; C(4): -0.98 mittlere Abweichung von der Ausgleichsebene: 0.49 pm Winkel zur Ebene 1: 121.2° $Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$ Ebene 1 aus C(1), C(2), C(3), C(4), C(1)A, C(2)A, C(3)A, C(4)A Ebenengleichung: 6.155 x + 0.000 y - 6.701 z = -6.5647Abweichungen von der Ebene (pm): C(1): 1.37 ; C(2): -0.35 ; C(3): -1.62 ; C(4): 0.43 ; C(1)A: -1.37 ; C(2)A: 0.35 ; C(3)A: 1.61 ; C(4)A: -0.44 mittlere Abweichung von der Ausgleichsebene: 0.94 pm Ebene 2 aus O(1), O(2), C(1), C(4) Ebenengleichung: 0.083 x - 5.148 y + 9.622 z = 6.8745Abweichungen von der Ebene (pm): O(1): 0.41 ; O(2): 0.40 ; C(4): -1.12 ; C(1): 0.31 mittlere Abweichung von der Ausgleichsebene: 0.56 pm Winkel zur Ebene 1: 121.0°

ruberie 5.15. Die rubgielenbebeelen der 1,1 Dipyriummeren	Ausgieichsebenen der 4,4°-Bipyridinmoleküle
---	---

$\begin{aligned} &Mn(4,4`bipy)[C_6H_4(COO)_2]\cdot 4H_2O\\ &Ebene 1 \text{ aus } N(1), C(5), C(6), C(7), C(5)A, C(6)A\\ &Ebenengleichung: 6.960 x + 0.000 y - 5.026 z = -2.0300\\ &Abweichungen von der Ebene (pm): N(1): 0.00 ; C(5): 0.56 ; C(6): -0.53 ; C(7): 0.00 ; C(5)A: -0.56 ; C(6)A: 0.53\\ &mittlere Abweichung von der Ausgleichsebene: 0.36 pm \end{aligned}$
Ebene 2 aus N(2), C(8), C(9), C(10), C(9)A, C(10)A Ebenengleichung: -1.486 x + 0.000 y + 10.633 z = 7.6032 Abweichungen von der Ebene (pm): N(2): 0.00 ; C(8): 0.00 ; C(9): 0.82 ; C(10): -0.86 ; C(9)A: -0.82 ; C(10)A: 0.86 mittlere Abweichung von der Ausgleichsebene: 0.56 pm Winkel zur Ebene 1: 126.3°
$Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$
Ebene 1 aus N(1), C(5), C(6), C(7), C(5)A, C(6)A Ebenengleichung: $6.984 \text{ x} + 0.000 \text{ y} - 4.690 \text{ z} = -1.7717$ Abweichungen von der Ebene (pm): N(1): 0.00 ; C(5): 0.70 ; C(6): -0.67 ; C(7): 0.00 ; C(5)A: -0.70 ; C(6)A: 0.67 mittlere Abweichung von der Ausgleichsebene: 0.46 pm
Ebene 2 aus N(2), C(8), C(9), C(10), C(9)A, C(10)A Ebenengleichung: $-1.678 \times + 0.000 \times + 10.629 \times z = 7.5524$ Abweichungen von der Ebene (pm): N(2): 0.00 ; C(8): 0.00 ; C(9): 1.10 ; C(10): -1.15 ; C(9)A: -1.10 ; C(10)A: 1.15 mittlere Abweichung von der Ausgleichsebene: 0.75 pm

Struktur

Zunächst werden die 4,4'-Bipyridinmoleküle über die Metallkationen zu einer Kette verknüpft, die sich entlang der [010] Richtung erstreckt. Diese Ketten werden durch die Phthalatdianionen in [100] so miteinander verknüpft, daß sich parallel zur (001) Ebene eine gewellte Schichtstruktur aufbaut (Abb.3.12-3.14). Zwischen den Schichten ist Kristallwasser (OW(2)) eingelagert. Die Phthalatdianionen, welche parallel zur (101) Ebene liegen, koordinieren ausschließlich einzähnig über das Carboxylatsauerstoffatom O(2).

Die Schichten werden untereinander über die Wasserstoffbrücke $O(1)\cdots H(22)-OW(2)-H(21)\cdots O(2)$ zusammengehalten. Innerhalb einer Schicht bildet sich eine starke Wasserstoffbrücke zwischen OW(1) und O(1) aus (Tab.3.15,3.16). Die beiden Wassermoleküle bilden ebenfalls untereinander eine Wasserstoffbrücke aus, in der OW(1) als Protonendonator agiert.

Abbildung 3.12: Die Verknüpfung der 4,4'-Bipyridinmoleküle und der Phthalatdianionen mit den Metallkationen (Ortep Plot, $M = Mn^{2+}$, Co^{2+}).

Abbildung 3.13: Ausschnitt aus der Schichtstruktur des $M(4,4^{\circ}bipy)[C_6H_4(COO)_2] \cdot 4H_2O$ (M = Mn²⁺, Co²⁺), die aus der Verknüpfung der 4,4^{\circ}-Bipyridineinheiten und den Phthalatdianionen mit den Metallzentren resultiert (Wassermoleküle und Wasserstoffatome sind nicht dargestellt).

Abbildung 3.14: Darstellung der Struktur mit Blick in [010]. Wasserstoffbrückenbindungen (gestrichelte Linien) sind unvollständig eingezeichnet, Wasserstoffatome am Kohlenstoff sind nicht dargestellt.

Bindungslängen (pm)					
Mn(4,4'bipy)[C ₆ H ₄ (CO	$O)_2]\cdot 4H_2O$				
OW(1)-H(11)	90(3)	OW(2)-H(21)	85(3)		
OW(1)-H(12)	74(3)	OW(2)-H(22)	74(3)		
Co(4,4'bipy)[C ₆ H ₄ (COC	$)_2] \cdot 4H_2O$				
OW(1)-H(11)	90(3)	OW(2)-H(21)	85(3)		
OW(1)-H(12)	74(3)	OW(2)-H(22)	74(3)		
Bindungswinkel (°)					
Mn(4,4'bipy)[C ₆ H ₄ (CO	$O)_2]\cdot 4H_2O$	Co(4,4'bipy)[C ₆ H ₄ (CO	$O)_2]\cdot 4H_2O$		
H(11)-OW(1)-H(12)	109(3)	H(11)-OW(1)-H(12)	109(3)		
H(21)-OW(2)-H(22)	106(3)	H(21)-OW(2)-H(22)	106(3)		

Tabelle 3.14: Bindungslängen und -winkel der Wassermoleküle

	O-O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(11)O(1)	269.2	179	177
OW(1)-H(12)OW(2)	271.7	201	163
OW(2)-H(21)O(2)	282.8	207	147
OW(2)-H(22)-O(1)	284.4	211	174
	C-O Abstand (pm)	H…O Abstand (pm)*	$C-H\cdots O$ Winkel (°) [*]
C(5)-H(3)OW(1)	317.3	255	125

Tabelle 3.15: Wasserstoffbrückenbindungen im $Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$

* Die Position des H-Atoms wurde geometrisch bestimmt.

Tabelle 3.16: Wasserstoffbrückenbindungen im Co(4,4 bipy) $[C_6H_4(COO)_2]$ ·4H₂O

	O-O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(11)O(1	270.3	196	179
OW(1)-H(12)····OW(2)	271.5	192	160
OW(2)-H(21)····O(2)	281.0	199	149
OW(2)-H(22)····O(1)	283.3	202	166
	C-O Abstand (pm)	H…O Abstand $(pm)^*$	C–H···O Winkel $(^{\circ})^{*}$
C(5)-H(3)···OW(1)	303.4	243	123

* Die Position des H-Atoms wurde geometrisch bestimmt.

3.2. Trimesinate

In der Trimesinsäure (Benzol-1,3,5-tricarbonsäure) sind alle drei Carboxygruppen jeweils metaständig angeordnet, so daß sie sich coplanar bezüglich des aromatischen C₆-Ringes ausrichten können [56]. Aufgrund dessen sollten nahezu planare Schichtstrukturen möglich sein.

3.2.1. Cadmiumhydrogentrimesinat-Dihydrat

Farblose, stäbchenförmige Einkristalle dieser Verbindung konnten bei 80°C dargestellt werden. Zu 5ml einer 0.1M Cd(NO₃)₂-Lösung wurden 5ml einer 0.06M Natriumtrimesinatlösung gegeben. Ein sich hierauf bildender Niederschlag wurde mit wenig 2M HNO₃ wieder in Lösung gebracht. Anschließend wurde noch etwas Harnstoff hinzugegeben. Nach etwa 3 Tagen scheideten sich Kristalle ab. Sehr schöne Einkristalle erhält man, wenn man zum Reaktionsansatz noch 5ml einer 0.2M wäßrigen 1,4-Butandiollösung hinzugibt.

Elementaranalyse - $Cd[C_6H_3(COO)_2(COOH)] \cdot 2H_2O$			
	Ber.(%)	Gef.(%)	
С	30.32	29.53	
Н	2.26	2.21	

IR-Spektrum

Die Banden (Abb.3.15) im Bereich zwischen 3520 cm⁻¹ und 3000 cm⁻¹ sind O–H Valenzschwingungen des Wassers. Die vom Hydrogentrimesinatdianion verursachten Schwingungsbanden liegen bei 3091 cm⁻¹ (C–H Streckschwingung), sowie bei 2639 cm⁻¹ und 2539 cm⁻¹, welche auf Valenzschwingungen der O–H Gruppe zurückfallen [50]. Die Absorptionsbanden der COOH-Gruppe liegen bei 1680 cm⁻¹ (C=O Valenzschwingung) und bei 1277 cm⁻¹ (C–OH Valenzschwingung, gekoppelt mit der C–O–H Deformationsschwingung [57]). Ferner finden sich für die COO⁻-Gruppe Absorptionsbanden bei 1396 cm⁻¹ (v_s). Die C–C Streckschwingung des aromatischen

C₆-Ringes ist bei 1426 cm⁻¹ und die C–H in-plane Deformationsschwingung ist bei 1199 cm⁻¹ zu beobachten [50, 58].

Abbildung 3.15: IR-Spektrum des $Cd[C_6H_3(COO)_2(COOH)] \cdot 2H_2O$.

Thermoanalyse

Ab ca. 187°C kommt es zur Abgabe des Kristallwassers (Abb.3.16). Der Gewichtsverlust beträgt dabei 10.2% (ber. 10.1%). Begleitet wird dies durch einen endothermen Prozeß, dessen maximale Wärmetönung bei 207°C liegt. Die dehydratisierte Stufe bleibt bis etwa 390°C stabil. Danach beginnt die Zersetzung der Verbindung, wobei bei 513°C ein starkes exothermes Ereignis zu erkennen ist. Ein weiterer bei 932°C auftretender exothermer Prozeß war bis zum Ende der Heizperiode (1000°C) noch nicht vollständig abgeklungen. Der Zersetzungsrückstand konnte röntgenographisch als CdO identifiziert werden (Anhang II).

Abbildung 3.16: Thermoanalyse des $Cd[C_6H_3(COO)_2(COOH)] \cdot 2H_2O$.

Strukturbeschreibung

Röntgenbeugungssymmetrie und Reflexionsbedingungen führten zu der monoklinen Raumgruppe C2/c. Die Positionen der Wasserstoffatome wurden durch Differenzfouriersynthesen ermittelt und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Es wurde eine numerische Absorptionskorrektur durchgeführt. Die wichtigsten kristallographischen Daten sind in Tabelle 3.17 angegeben.

Kristallogra	bhische Daten
Summenformel	C ₉ H ₈ CdO ₈
Kristallsystem	Monoklin
Raumgruppe	C2/c (Nr.15)
Reflexionsbedingung	hkl: $h + k = 2n$
	h01: $h + 1 = 2n$
Gitterkonstanten	a = 1973.0(2) pm
	$b = 910.74(7) \text{ pm}$ $\beta = 117.897(8)^{\circ}$
	c = 1336.81(10) pm
Wellenlänge	71.073 pm
Temperatur	293(2) K
Elementarzellvolumen	$2.1230(3) \text{ nm}^3$
Formeleinheiten in der Elementarzelle	8
Molmasse	356.55 g/mol
berechnete Dichte	2.231 g/cm^3
Absorptionskoeffizient	2.091 mm ⁻¹
numerische Absorptionskorrektur	min./max. Transmission 0.715/0.807
F (000)	1392
Gemessener θ - Bereich	2.34° bis 25.00°
Indexgrenzen	$-1 \le h \le 23$, $-1 \le k \le 10$, $-15 \le l \le 14$
Anzahl der gemessenen Reflexe	23257
unabhängige Reflexe	$1864 (R_{int} = 0.0179)$
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$
Goodness-of-Fit an $ F ^2$	1.442
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0233$, $wR_2 = 0.0522$
R-Werte (sämtliche Daten)	$R_1 = 0.0262$, $wR_2 = 0.0530$
Extinktionskoeffizient	0.044(2)
Gewichtung	$w = 1/[\sigma^2(\mathbf{F}_0 ^2) + 2.6 \cdot \mathbf{P}]$
größtes Maximum und Minimum der letzten	
Differenz-Fouriersynthese	539 und -508e·nm ⁻³

Tabelle 3.17: Die wichtigsten kristallographischen Daten des Cd[C₆H₃(COO)₂(COOH)]·2H₂O

 $P = \frac{1}{3} max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Das Cd²⁺-Kation

Das Cd^{2+} -Kation besetzt die allgemeine Lage der Raumgruppe C2/c und wird in den äquatorialen Positionen von fünf Carboxylatsauerstoffatomen (O(1), O(2), O(3), O(4), O(5)) koordiniert Die Sauerstoffatome weichen geringfügig von einer ebenen Anordnung ab (max.: O(1): -9.3 pm), die Bindungslängen reichen hierbei von 224.0(2) pm bis 255.0(2) pm. Die beiden axialen Positionen besetzen die Wassermoleküle OW(1) und OW(2) mit einem Abstand von 238.3(3) pm und 231.8(3) pm. Hieraus ergibt sich eine verzerrte pentagonale Bipyramide (Abb.3.17,Tab.3.18). Die Bindungsordnung nach *Brown* [17] liegt mit 2.047 in sehr guter Übereinstimmung mit den zu erwartenden Wert von 2.0.

Abbildung 3.17: Die Koordinationssphäre des Cd²⁺ (Ortep Plot).

Tabelle 3.18:	Bindungslängen und -winkel de	s Cd ²⁺ -Koordinationspolyeders
	D' 1 1. /	

Bindungslängen (pm)					
		s (Brown[17])		s (Brown[17])
Cd-O(1)	252.3(3)	0.1727	Cd-O(5)	229.6(2)	0.3470
Cd-O(2)	224.0(2)	0.4166	Cd-OW(1)	238.3(3)	0.2635
Cd-O(3)	228.1(2)	0.3642	Cd-OW(2)	231.8(3)	0.3234
Cd-O(4)	255.0(2)	0.1596			
			Summe der	Bindungsstärk	ten (s): 2.0470
		Bindu	ngswinkel (°)		
O(2)-Cd-O(3)	145.9	0(8)	O(2)-Cd	-O(5)	134.07(9)
O(3)-Cd-O(5)	80.00(8)		O(2)-Cd	-OW(2)	89.39(10)
O(3)-Cd-OW(2)	88.58(10)		O(5)-Cd	-OW(2)	94.85(11)
O(2)-Cd-OW(1)	89.13(10)		O(3)-Cd	-OW(1)	90.74(10)
O(5)-Cd-OW(1)	88.61(10)		OW(2)-0	Cd-OW(1)	176.30(10)
O(2)-Cd-O(1)	54.4	7(8)	O(3)-Cd	-O(1)	159.43(8)
O(5)-Cd-O(1)	79.8	6(9)	OW(2)-0	Cd-O(1)	88.98(10)
OW(1)-Cd-O(1)	92.93(9)		O(2)-Cd	-O(4)	92.62(8)
O(3)-Cd-O(4)	53.3	60(8)	O(5)-Cd	-O(4)	133.30(8)
OW(2)-Cd-O(4)	84.6	66(9)	OW(1)-0	Cd-O(4)	92.01(9)
			O(1)-Cd	-O(4)	146.59(8)

Das Hydrogentrimesinatdianion

Das Anion der Trimesinsäure liegt hier als Dianion vor. Die C–C Bindungen des aromatischen C₆-Ringes liegen zwischen 137.9(4) pm und 139.9(5) pm. Ähnlich wie in der Trimesinsäure [56] liegen die C–C Einfachbindungen zwischen 148.4(4) pm und 150.1(4) pm. Die C–O Bindungslängen innerhalb der Carboxylatgruppen unterscheiden sich signifikant. Man kann einen eindeutigen Zusammenhang zwischen den C–O Bindungslängen und den entsprechenden Cd–O Abständen erkennen. In der protonierten Carboxylatgruppe

H(4)O(6)–C(9)–O(5) betragen die C–O Bindungen 130.3(4) pm und 122.5(4) pm (Tab.3.19), so daß die C(9)–O(5) Bindung eindeutig als Doppelbindung beschrieben werden kann. Das Kohlenstoffgerüst des Anions kann man als planar ansehen, die größte Abweichung von einer berechneten Ausgleichsebene beträgt 2.38 pm (C(7)). Die Carboxylatgruppen sind mit 5.7°, 2.6° und 1.5° nur geringfügig aus dieser Ebene herausgedreht (Tab.3.20). Da somit die Carboxylatgruppen annähernd coplanar angeordnet sind, beträgt die Punktgruppensymmetrie des Hydrogentrimesinatdianions m (C_s).

		Bindungslänge	en (pm)		
C(1)-C(6)	139.3(5)	C(1)-C(7)	149.9(4)	O(4)-C(8)	124.0(4)
C(1)-C(2)	139.9(5)	C(5)-C(9)	148.4(4)	O(5)-C(9)	122.5(4)
C(2)-C(3)	139.0(4)	C(3)-C(8)	150.1(4)	O(6)-C(9)	130.3(4)
C(3)-C(4)	138.4(4)	O(1)-C(7)	124.7(4)	O(6)-H(4)	99(6)
C(4)-C(5)	137.9(4)	O(2)-C(7)	127.7(4)	C(2)-H(1)	90(3)
C(5)-C(6)	139.3(4)	O(3)-C(8)	126.5(4)	C(6)-H(3)	92(3)
				C(4)-H(2)	91(3)
		Bindungswin	kel (°)		
C(6)-C(1)-C(2)	119.5(3)	C(3)-C(2)-C(1)	120.7(3)	O(5)-C(9)-C(5)	120.8(3)
C(2)-C(1)-C(7)	119.6(3)	C(4)-C(3)-C(8)	119.7(3)	O(6)-C(9)-C(5)	115.3(3)
C(4)-C(3)-C(2)	119.2(3)	C(5)-C(4)-C(3)	120.8(3)	O(5)-C(9)-O(6)	123.9(3)
C(2)-C(3)-C(8)	121.1(3)	O(1)-C(7)-C(1)	121.4(3)	C(9)-O(6)-H(4)	110(3)
C(4)-C(5)-C(6)	120.5(3)	O(2)-C(7)-C(1)	117.9(3)	C(3)-C(2)-H(1)	118(2)
C(6)-C(5)-C(9)	122.7(3)	O(1)-C(7)-O(2)	120.7(3)	C(1)-C(2)-H(1)	121(2)
C(4)-C(5)-C(9)	116.9(3)	O(3)-C(8)-C(3)	118.3(3)	C(5)-C(4)-H(2)	115(2)
C(1)-C(6)-C(5)	119.5(3)	O(4)-C(8)-C(3)	120.7(3)	C(3)-C(4)-H(2)	124(2)
C(6)-C(1)-C(7)	120.9(3)	O(4)-C(8)-O(3)	121.0(3)	C(5)-C(6)-H(3)	120(2)
				C(1)-C(6)-H(3)	120(2)

Tabelle 3.19: Bindungslängen und -winkel des Hydrogentrimesinatdianions

Tabelle 3.20: Die Ausgleichsebenen des Hydrogentrimesinatdianions im Cd[C₆H₃(COO)₂(COOH)]·2H₂O

Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9) Ebenengleichung: -12.706 x - 0.086 y + 13.066 z = -1.7002Abweichungen von der Ebene (pm): C(1): -1.66 ; C(2): -0.86 ; C(3): -0.50 ; C(4): 0.24 ; C(5): 0.53 ; C(6): -1.75 C(7): 2.38 ; C(8): 0.82 ; C(9): 0.80 mittlere Abweichung von der Ausgleichsebene: 1.06 pm Ebene 2 aus O(1), O(2), C(1), C(7)Ebenengleichung: -12.900 x + 0.810 y + 12.967 z = -0.7960Abweichungen von der Ebene (pm): O(1): 0.46 ; O(2): 0.43 ; C(1): 0.37 ; C(7): -1.26 mittlere Abweichung von der Ausgleichsebene: 0.63 pm Winkel zur Ebene 1: 5.7° Ebene **3** aus O(3), O(4), C(3), C(8) Ebenengleichung: -13.075 x + 0.265 y + 12.986 z = -1.3394Abweichung von der Ebene (pm): O(3): 0.09 ; O(4): 0.10 ; C(3): 0.08 ; C(8): -0.27 mittlere Abweichung von der Ausgleichsebene: 0.14 pm Winkel zur Ebene 1: 2.6°; Winkel zur Ebene 2: 3.5° Ebene 4 aus O(5), O(6), C(5), C(9) Ebenengleichung: -12.327 x - 0.002 y + 13.133 z = -1.6047Abweichung von der Ebene (pm): O(5): -0.06 ; O(6): -0.06 ; C(5): -0.05 ; C(9): 0.17 mittlere Abweichung von der Ausgleichsebene: 0.08 pm Winkel zur Ebene 1: 1.5°; Winkel zur Ebene 2: 5.6°; Winkel zur Ebene 3: 3.3°

Struktur

Wie in Abb.3.18 zu sehen, entsteht aus der Verknüpfung der Cd²⁺-Kationen mit den Hydrogentrimesinatdianionen eine Schichtstruktur. Die am Cd²⁺ koordinierten Wassermoleküle stehen senkrecht auf dieser Ebene. Die Koordination der Carboxylatgruppen erfolgt sowohl einzähnig als auch chelatartig. Man kann erkennen, daß wie zu erwarten nur die deprotonierten Carboxylatgruppen chelatartig fungieren. Da sich die Cd–O Bindungslängen innerhalb einer Chelateinheit signifikant unterscheiden, trägt die Chelatbindung einen starken asymmetrischen Charakter (Tab.3.18).

Die Schichten liegen parallel zur (101) Ebene, wobei eine Stapelung selbiger in [001] Richtung erfolgt (Abb.3.19). Der mittlere Abstand zwischen den Schichten beträgt 354 pm, so daß eine $\pi \cdots \pi$ Wechselwirkung zwischen den aromatischen Systemen vorstellbar ist [28,29].

Die Struktur kann man als die protonierte Form eines Kationenaustauschers mit Schichtstruktur betrachten. Die theoretische Austauschkapazität beträgt 2.80 mval/g und die Flächenladungsdichte liegt bei 0.0115 e/Å^2 .

Abbildung 3.18: Die aus Cd²⁺ und Hydrogentrimesinatdianionen aufgebaute Schicht (Wassermoleküle sind nicht dargestellt), Blick auf (101).

Abbildung 3.19: Die Stapelung der Schichten im Cd[C₆H₃(COO)₂(COOH)]·2H₂O mit Blick entlang [101].

Wasserstoffbrückenbindungen

Benachbarte Schichten werden über starke bis sehr starke Wasserstoffbrücken verbunden, indem die Carboxylatsauerstoffatome O(1), O(2) und O(4) als Protonenakzeptoren gegenüber den Wassermolekülen OW(1) und OW(2) fungieren. Die O…O Abstände liegen zwischen 273.6 pm bis 286.5 pm. OW(2) bildet als Protonendonator zum Wassermolekül OW(1) der übernächsten Schicht eine schwache Wasserstoffbrücke aus. Das protonierte Carboxylatsauerstoffatom O(6) ist an einer kurzen intermolekularen Brücke zu O(3) der gleichen Schicht involviert. Das Carboxylatsauerstoffatom O(5) ist an keiner Wasserstoffbrücke beteiligt (Tab.3.22).

Tabelle 3.21: Bindungslängen und -winkel der Wassermoleküle

	Dindungslängen (nm)				
	Diliuuligsi	langen (phi)			
OW(1)-H(11)	90(6)	OW(2)-H(21)	94(6)		
OW(1)-H(12)	OW(2)-H(22)	85(6)			
Bindungswinkel (°)					
H(11)-OW(1)-H(12)	122(5)	H(21)-OW(2)-H(22)	98(5)		

Tabelle 3.22: Wasserstoffbrückenbindungen im Cd[C₆H₃(COO)₂(COOH)]·2H₂O

	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
$O(6)-H(4)-O(3)^{*}$	260.1	163	165
OW(1)-H(11)····O(1)**	286.5	197	170
OW(1)-H(12)····O(4)**	284.1	198	169
OW(2)-H(21)····O(2)**	273.6	180	171
OW(2)-H(22)····OW(1)***	304.2	240	134

* intermolekulare Wasserstoffbrücke, ** Wasserstoffbrücke zur nächsten Schicht

*** Wasserstoffbrücke zur übernächsten Schicht

3.3. Trimellitate

Einkristalluntersuchungen über polymere Koordinationsverbindungen mit Anionen der Trimellitsäure (Benzol-1,2,4-tricarbonsäure) sind bisher wenig veröffentlicht worden. Die untersuchten Verbindungen bilden zweidimensionale Strukturen aus [37,59]. Im folgendem haben wir ein Cadmiumtrimellitat untersucht, in dessen dreidimensionale Struktur deutlich das Bestreben zur Schichtbildung erkennbar ist.

3.3.1. Die dreidimensionale Struktur des Cd_{1.5}[C₆H₃(COO)₃]·4.25H₂O

Einkristalle dieser Verbindung konnten aus einem Ansatz aus 10ml einer 0.05M Cd(NO₃)₂-Lösung und 10ml einer 0.03M Natriumtrimellitatlösung bei 80°C dargestellt werden. Die farblosen Kristalle bildeten sich innerhalb weniger Tage.

Elementaranalyse - Cd _{1.5} [C ₆ H ₃ (COO) ₃]·4.25H ₂ O			
	Ber.(%)	Gef.(%)	
С	23.90	25.25	
Н	2.56	2.51	

IR-Spektrum

Die breite Bande zwischen 3500 cm⁻¹ und 2800 cm⁻¹ ist ein Indiz für die Ausbildung von Wasserstoffbrückenbindungen (Abb.3.20). Die typischen Schwingungen der Carboxylatgruppen treten bei 1523 cm⁻¹ (v_{as}) und bei 1362 cm⁻¹(v_s) auf. Bei 1177 cm⁻¹ und 1138 cm⁻¹ liegen die C–H in-plane Deformationsschwingungen, und die out-of-plane Deformationsschwingung ist bei 797 cm⁻¹ zu erkennen [50].

Abbildung 3.20: IR-Spektrum des Cd_{1.5}[C₆H₃(COO)₃]·4.25H₂O

Thermoanalyse

Eine ab ca. 111°C eintretende endotherme Reaktion ist mit einem Gewichtsverlust von 10.6% verbunden (Abb.3.21), anschließend erfolgen zwei weitere Masseverluste von insgesamt 6.3%. Der sich somit ergebene Gesamtgewichtsverlust von 16.9% wird durch die vollständige Abgabe des Kristallwassers bestimmt (ber. 16.9%). Die weitere Zersetzung der Verbindung wird durch einen ab 417°C eintretenden exotherme Prozeß verursacht (T_{max} : 492°C). Bis zum Ende der Heizperiode (1000°C) traten keine weiteren Prozesse auf. Das Zersetzungsprodukt ist CdO (Monteponit, Anhang II).

Abbildung 3.21: Thermoanalyse des $Cd_{1.5}[C_6H_3(COO)_3] \cdot 4.25H_2O$.

Strukturbeschreibung

Röntgenreflexintensitäten wurden bis zu einem Winkel von $\theta = 25^{\circ}$ gemessen. Die Wasserstoffpositionen der CH-Gruppen wurden geometrisch bestimmt (C–H: 93 pm) und als "starre Gruppe" verfeinert (constraints). Die Wasserstofflagen der Wassermoleküle wurden ebenfalls geometrisch positioniert (O–H: 80.0(10) pm), wobei jedes Atom individuell verfeinert wurde (restraints) [60]. Die wichtigsten kristallographischen Daten sind in Tabelle 3.23 angegeben.

Kristallograp	bhische Daten	
Summenformel	C ₉ H _{11.5} Cd _{1.5} O _{10.25}	
Kristallsystem	Triklin	
Raumgruppe	$P\bar{1}(Nr.2)$	
Reflexionsbedingung	keine	
Gitterkonstanten	$a = 769.81(4) \text{ pm}$ $\alpha = 105.652(4)^{\circ}$	
	$b = 889.24(6) \text{ pm}$ $\beta = 92.939(5)^{\circ}$	
	$c = 1032.75(10) \text{ pm}$ $\gamma = 105.606(5)^{\circ}$	
Wellenlänge	71.073 pm	
Temperatur	293(2) K	
Elementarzellvolumen	$0.64978(6) \text{ nm}^3$	
Formeleinheiten in der Elementarzelle	2	
Molmasse	452.28 g/mol	
berechnete Dichte	2.312 g/cm^3	
Absorptionskoeffizient	2.528 mm ⁻¹	
numerische Absorptionskorrektur	min./max. Transmission 0.508/0.906	
F (000)	439	
Gemessener θ - Bereich	2.07° bis 25.00°	
Indexgrenzen	$-1 \le h \le 9$, $-10 \le k \le 9$, $-12 \le l \le 12$	
Anzahl der gemessenen Reflexe	2801	
unabhängige Reflexe	$2254 (R_{int} = 0.0231)$	
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$	
Goodness-of-Fit an $ F ^2$	1.628	
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0272$, $wR_2 = 0.0690$	
R-Werte (sämtliche Daten)	$R_1 = 0.0290$, $wR_2 = 0.0697$	
Extinktionskoeffizient	0.044(2)	
Gewichtung	$w = 1/[\sigma^2(F_o ^2) + 0.50 \cdot P]$	
größtes Maximum und Minimum der letzten	_	
Differenz-Fouriersynthese	786 und -980 $e \cdot nm^{-3}$	

Tabelle 3.23: Die wichtigsten kristallographischen Daten des Cd_{1.5}[C₆H₃(COO)₃]·4.25H₂O

 $P = \frac{1}{3} max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die koordinative Umgebung der Cd²⁺-Kationen

In dieser Verbindung konnten zwei kristallographisch unabhängige Cd^{2+} -Kationen (Cd(1), Cd(2)) lokalisiert werden. Wobei Cd(1) eine spezielle Atomposition der Lagesymmetrie $\overline{1}$ besetzt (*Wyckoff*-Lage 1f) und Cd(2) auf einer allgemeinen Lage der Raumgruppe P $\overline{1}$ liegt. Cd(1) ist oktaedrisch von vier Wassermolekülen (je 2x OW(1), OW(2)) und zweimal vom Carboxylatsauerstoffatom O(1) koordiniert. Der Bindungsabstand zu O(1) beträgt 226.7(3) pm , während die Wassermoleküle mit 228.6(4) pm und 232.5(4) pm einen deutlich längeren Abstand aufweisen.

Cd(2) wird von fünf Carboxylatsauerstoffatomen (O(2), O(3), O(4), O(5), O(6)) und dem Wassermolekül OW(3) umgeben (Abb.3.22). Das Polyeder ist stark verzerrt. Insbesondere die Bindung Cd(2)–O(5) ist mit 242.8(3) pm erheblich länger, während sich die übrigen

Bindungen zwischen 222.4(3) pm und 234.0(3) pm bewegen. Wie in Abbildung 3.24 zu sehen, koordiniert die Carboxylatgruppe O(6)–C(9)–O(5) chelatartig am Cd(2)-Kation. Dadurch bedingt beträgt der O(6)–Cd(2)–O(5) Winkel nur 55.12(10)°. Die Ligatoratome O(3), O(5), O(6) und OW(3) liegen nicht in einer Ebene.

Die Bindungsordnung nach Brown [17] beträgt für Cd(1) 2.112 und für Cd(2) 2.046.

			Bindungsah	ostände (pm)		
			s (Brown[17])		s (Brown[17])
Cd(1)-O(1)	226.7(3)	2x	0.3812	Cd(2)-O(3)	222.4(3)	0.4393
Cd(1)-OW(2)	228.6(4)	2x	0.3584	Cd(2)-O(6)	229.8(3)	0.3448
Cd(1)-OW(1)	232.5(4)	2x	0.3162	Cd(2)-O(4)	234.0(3)	0.3015
		_	Σ=2.1116	Cd(2)-OW(3)	224.3(4)	0.4125
				Cd(2)-O(2)	232.3(3)	0.3182
				Cd(2)-O(5)	242.8(3)	0.2294
						Σ=2.0457
			Bindungs	winkel (°)		
O(1)-Cd(1)-O(1)	#1	1	80.0	O(3)-Cd(2)-O(6)	97.35(11)
O(1)-Cd(1)-OW	(2)	88.83	8(12)	O(3)-Cd(2)-O(2)	83.26(11)
O(1)#1-Cd(1)-O	W(2)	91.17	7(12)	O(6)-Cd(2)-O(2)	100.74(11)
O(1)-Cd(1)-OW	(1)	89.10)(14)	OW(3)-Cd(2)-0	O(4)	95.88(12)
OW(2)#1-Cd(1)-	-OW(1)	95	.4(2)	O(2)-Cd(2)-O(4)	4)	169.06(10)
O(1)-Cd(1)-OW	(1)#1	90.90	0(14)	OW(3)-Cd(2)-0	O(5)	93.56(14)
OW(1)-Cd(1)-O'	W(1)#1	1	80.0	O(2)-Cd(2)-O(5)	100.50(10)
OW(2)-Cd(1)-O	W(2)#1	1	80.0	O(3)-Cd(2)-OV	W(3)	113.9(2)
OW(2)-Cd(1)-O	W(1)	84	.6(2)	OW(3)-Cd(2)-0	O(6)	148.57(14)
OW(2)-Cd(1)-O	W(1)#1	95	.4(2)	OW(3)-Cd(2)-0	O(2)	80.90(13)
				O(3)-Cd(2)-O(4)	4)	88.58(11)
				O(6)-Cd(2)-O(4	4)	87.49(11)
				O(3)-Cd(2)-O(5)	152.46(11)
				O(6)-Cd(2)-O(5)	55.12(10)
				O(4)-Cd(2)-O(5)	90.10(10)

Tabelle 3.25:	Geometrie der Cd ²⁺ -Koordinationspolyeder

Symmetrietransformationen: #1: -x+1;-y;-z+1
Das Trimellitattrianion

Die C–C Bindungen innerhalb des C₆-Ringes unterscheiden sich nicht signifikant, und die C–C Einfachbindungen sind innerhalb der Fehlergrenzen gleich. Das Kohlenstoffgerüst kann mit einer maximalen Abweichung von -6.28 pm (C(9)) als weitgehend planar betrachtet werden. Die Carboxylatgruppen sind bezüglich dieser Ebene verdreht. So beträgt der Interplanarwinkel für die Carboxylatgruppe mit C(7) 69.0° und mit C(8) 38.9°. Aufgrund der sterisch günstigeren Lage ist die Carboxylatgruppe mit C(9) annähernd coplanar orientiert, die Verdrillung beträgt nur 3.3° (Tab.3.27,Abb.3.23). Abgesehen von der Carboxylatgruppe mit C(8) unterscheiden sich die C–O Bindungen innerhalb einer Carboxylatgruppe signifikant. Die C–O Bindungslängen liegen zwischen 124.7(5) pm und 127.3(5) pm. Beim Vergleich der O–C–O Bindungswinkel erkennt man, daß diejenigen Carboxylatgruppen, welche nicht chelatartig koordinieren (C(7), C(8)) eine größere Aufweitung dieses Winkels aufweisen, während der Winkel der Carboxylatgruppe mit C(9) sich nicht signifikant vom idealen Wert für sp²-hybridisierten Kohlenstoff (120°) unterscheidet (Tab.3.26).

Abbildung 3.23: Das Trimellitattrianion (Ortep Plot).

Bindungslängen (pm)						
C(1)-C(2)	140.0(6)	C(1)-C(6)	139.5(6)	C(7)-O(2)	124.7(5)	
C(2)-C(3)	138.8(5)	C(1)-C(7)	150.1(5)	C(8)-O(3)	126.3(5)	
C(3)-C(4)	139.0(5)	C(2)-C(8)	150.1(5)	C(8)-O(4)	124.8(5)	
C(4)-C(5)	139.3(6)	C(4)-C(9)	149.7(5)	C(9)-O(6)	126.9(5)	
C(5)-C(6)	138.8(6)	C(7)-O(1)	127.3(5)	C(9)-O(5)	125.1(5)	
		Bindungswin	kel (°)			
C(6)-C(1)-C(2)	119.3(4)	C(3)-C(2)-C(1)	119.5(4)	O(2)-C(7)-C(1)	119.9(4)	
C(2)-C(1)-C(7)	122.1(3)	C(1)-C(2)-C(8)	121.5(3)	O(4)-C(8)-O(3)	124.9(4)	
C(3)-C(2)-C(8)	118.9(4)	C(3)-C(4)-C(5)	119.4(4)	O(3)-C(8)-C(2)	116.2(4)	
C(4)-C(3)-C(2)	121.1(4)	C(5)-C(4)-C(9)	120.7(4)	O(4)-C(8)-C(2)	118.9(4)	
C(3)-C(4)-C(9)	119.9(4)	C(5)-C(6)-C(1)	120.7(4)	O(5)-C(9)-O(6)	120.6(4)	
C(6)-C(5)-C(4)	119.9(4)	O(2)-C(7)-O(1)	123.7(4)	O(6)-C(9)-C(4)	118.6(4)	
C(6)-C(1)-C(7)	118.5(4)	O(1)-C(7)-C(1)	116.3(4)	O(5)-C(9)-C(4)	120.8(4)	

Die H-Atome wurden geometrisch positioniert, so daß die C-H Abstände 93 pm betragen

Tabelle 3.27	Die Ausgleichsebenen des	Trimellitattrianions
--------------	--------------------------	----------------------

Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9) Ebenengleichung: -6.282 x - 6.595 y + 0.757 z = -3.9972Abweichungen von der Ebene (pm): C(1): -1.21 ; C(2): 2.65 ; C(3): 4.42 ; C(4): 1.40 ; C(5): 2.65 ; C(6): 1.40 ; C(7): -3.56 ; C(8): -1.46 ; C(9): -6.28 mittlere Abweichung von der Ausgleichsebene: 2.78 pm Ebene 2 aus O(1), O(2), C(1), C(7) Ebenengleichung: 1.410 x + 5.298 y + 4.959 z = 3.1683Abweichungen von der Ebene (pm): O(1): 0.55 ; O(2): 0.58 ; C(1): 0.45 ; C(7): -1.58 mittlere Abweichung von der Ausgleichsebene: 0.79 pm Winkel zur Ebene 1: 69.0° Ebene 3 aus O(3), O(4), C(2), C(8) Ebenengleichung: -2.712 x + 8.834 y - 3.373 z = -7.0939Abweichung von der Ebene (pm): O(3): -0.40 ; O(4): -0.41 ; C(2): -0.31 ; C(8): 1.13 mittlere Abweichung von der Ausgleichsebene: 0.56 pm Winkel zur Ebene 1: 38.9°; Winkel zur Ebene 2: 59.5° Ebene 4 aus O(5), O(6), C(4), C(9) Ebenengleichung: -6.476 x + 6.247 y + 1.099 z = -3.5536Abweichung von der Ebene (pm): O(5): 0.02 ; O(6): 0.02 ; C(4): 0.02 ; C(9): -0.06 mittlere Abweichung von der Ausgleichsebene: 0.03 pm Winkel zur Ebene 1: 3.3°; Winkel zur Ebene 2: 70.5°; Winkel zur Ebene 3: 42.1°

Struktur

Aus der Verknüpfung der Cd(2)-Kationen mit den Trimellitattrianion entstehen parallel zu (010) unendlich gewellte Schichten. Die Koordination des Anions erfolgt einzähnig als auch chelatartig, wobei die Chelatbindung stark asymmetrisch ist, da sich beide Cd(2)–O(5)/(O6) Abstände um 13 pm unterscheiden (Tab.3.25). Der Abstand zwischen den Schichten beträgt

etwa 590 pm^{*)} (Abb.3.24). Diese Schichten werden über die Bindung O(1)–Cd(1)–O(1)^{**)} so verbunden, daß ein dreidimensionales Gerüst entsteht (Abb.3.25,3.26). Die nicht an den Cd²⁺-Kationen gebunden Wassermoleküle (OW(4), OW(5)) sind zwischen den Schichten eingelagert.

Abbildung 3.24: Die dreidimensionale Struktur des Cd_{1.5}[C₆H₃(COO)₃]·4.25H₂O (Cd(1)–O(1) Bindungen sind mit offenem Bindungsstab dargestellt, Wassermoleküle sind nicht eingezeichnet), Blick auf (010).

* längster Atom-Atom Abstand bei Verwendung von van der Waals Radien

^{**} O(1) der jeweils nächsten Schicht

Abbildung 3.25: Die Struktur mit Blick in [100]. OW(5) wird in diesen Strukturausschnitt durch Cd(1) verdeckt, Cd(1)–O Bindungen sind mit hellem Bindungsstab abgebildet.

Abbildung 3.26: Kalottenmodell (van der Waals Radien) der Schichten aus Cd(2)-Kationen und den Trimellitattrianionen.

Wasserstoffbrückenbindungen

Die Struktur wird durch ein ausgedehntes System von Wasserstoffbrückenbindungen stabilisiert (Tab.3.29). Die am Cd(1)-Kation koordinierten Wassermoleküle (OW(1), OW(2)) treten in Wasserstoffbrückenbindungen ausschließlich als Protonendonatoren auf. Sie bilden zu den Carboxylatsauerstoffatomen O(2), O(3), O(4), O(6) Wasserstoffbrücken aus, deren O…O Abstände zwischen 266.2 pm und 308.0 pm liegen. OW(3) fungiert als Protonendonator in einer starken Wasserstoffbrückenbindung zu O(1) (O…O Distanz 272.2 pm). Das nicht koordinativ gebundene Wassermolekül OW(4) tritt als Protonendonator in einer eher als schwach einzuordnenden Wasserstoffbrücke zu O(5) und als Protonenakzeptor zu OW(3) und OW(1) auf. Da für OW(5) keine Wasserstoffpositionen ermittelt werden konnten, sind keine

Aussagen über das Donor-/Akzeptorverhalten möglich. OW(5) ist fehlgeordnet, die Besetzung der spezielle Lage (*Wyckoff*-Symbol 1b) erfolgt statistisch zu 50% besetzt.

Tabelle 3.28: Bindungswinkel der Wassermoleküle

Bindungswinkel (°)					
H(11)-OW(1)-H(12)	113(8)	H(31)-OW(3)-H(32)	95(8)		
H(21)-OW(2)-H(22)	102(8)	H(41)-OW(4)-H(42)	105(9)		

Tabelle 3.29: Wasserstoffbrückenbindungen im $Cd_{1.5}[C_6H_3(COO)_3] \cdot 4.25H_2O$

	O…O Abstand (pm)	H…O Abstand $(pm)^*$	O-H…O Winkel (°)
Ow(1)-H(11)Ow(4)	305.1	226	172
Ow(1)-H(12)····O(4)	285.4	207	169
Ow(2)-H(21)····O(6)	266.2	192	155
Ow(2)-H(22)····O(3)	308.0	259	120
Ow(2)-H(22)····O(2)	286.9	217	146
Ow(3)-H(31)····Ow(4)	281.0	217	138
Ow(3)-H(32)····O(1)	272.2	194	163
Ow(4)-H(41)···O(5)	279.6	231	119

* Die H-Atomlagen wurden geometrisch bestimmt.

3.4. Pyromellitate

Pyromellitsäure (Benzol-1,2,4,5-tetracarbonsäure) entsteht bei der Decarboxylierung von Mellitsäure (Benzolhexacarbonsäure).

Wie aus früheren Arbeiten zu sehen, bilden die Pyromellitate häufig Schichtverbindungen aus [38,61]. Vor allem in jüngster Zeit ist es gelungen auch dreidimensionale Strukturen darzustellen [39,62].

Im Rahmen dieser Arbeit gelang es insbesondere durch die Verwendung von Templatmolekülen (Diamine) zeolithartige Gerüststrukturen aufzubauen. Als besonders interessant erweist sich hierbei das $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]\cdot 4H_2O$, da aufgrund einer kurzen Cu...Cu Distanz eine antiferromagnetische Kopplung zu beobachten ist.

3.4.1. Ba₂[C₆H₂(COO)₄]·H₂O und Pb₂[C₆H₂(COO)₄]·H₂O: Zwei isostrukturelle Verbindungen

Einkristallines Material dieser schwerlöslichen Verbindungen wurde durch Gelkristallisation erhalten. Hierzu wurde zu einem Gemisch aus 10ml 2N HNO₃, 5ml H₂O und 10ml 0.1M Natriumpyromellitatlösung soviel 2M Na₂H₂SiO₄ zugegeben, bis ein pH-Wert von 5 erreicht wurde. Nach erstarren des Gels wurde dies mit einer 0.05M Ba(NO₃)₂-, bzw. mit 0.05M Pb(NO₃)₂-Lösung überschichtet. Das Ganze wurde bei 60°C stehen gelassen. Innerhalb weniger Tage bildeten sich farblose Stäbchen aus.

Elementaranalyse	$Ba_2[C_6H_2(0)]$	$COO)_4]\cdot H_2O$	$Pb_2[C_6H_2(C$	$OO)_4] \cdot H_2O$
	Ber.(%)	Gef.(%)	Ber.(%)	Gef.(%)
С	22.13	19.77	17.60	17.64
Н	0.74	0.80	0.59	0.81

Der Kohlenstoffgehalt weicht bei der Bariumverbindung erheblich vom erwarteten Wert ab. Dies kann mit der Bildung von BaCO₃ erklärt werden, welches selbst bei hohen Temperaturen noch stabil ist.

IR-Spektren

Die zwei Verbindungen zeigen ähnliche IR-Spektren (Abb.3.27,3.28). Die Absorptionsbande für die O–H Valenzschwingungen bei 3420 cm⁻¹ (Ba₂[C₆H₂(COO)₄]·H₂O) und bei 3380 cm⁻¹ (Pb₂[C₆H₂(COO)₄]·H₂O) deuten auf eine Wasserstoffbrückenbindung hin. Für das Ba₂[C₆H₂(COO)₄]·H₂O liegt jene Bande in den nach *Lippincott* und *Schroeder* [63] zu erwartenden Bereich (3348 cm⁻¹). Der Vergleich läßt den Schluß zu, daß die Wasserstoffbrückenbindung im Pb₂[C₆H₂(COO)₄]·H₂O geringfügig stärkerer Natur ist. Zwischen 1544 cm⁻¹ und 1358 cm⁻¹ liegen die Banden der C=C Valenzschwingungen der aromatischen Systeme, sowie die C–O Valenzschwingungen der Carboxylatgruppen. Bei 1136 cm⁻¹ bzw. 1138 cm⁻¹ sind die in-plane Deformationsschwingungen und bei 925 cm⁻¹ bzw. 933 cm⁻¹ sind die out-of-plane Deformationsschwingungen der C–H Gruppen zu erkennen [50].

Abbildung 3.27: IR-Spektrum des $Ba_2[C_6H_2(COO)_4]$ · H_2O .

Abbildung 3.28: IR-Spektrum des $Pb_2[C_6H_2(COO)_4] \cdot H_2O$.

Thermoanalyse

$Pb_2[C_6H_2(COO)_4] \cdot H_2O$

In Abbildung 3.29 ist der thermoanalytische Abbau der Verbindung dargestellt. Zwischen 25°C und 175°C ist ein exothermer Vorgang sichtbar. Ab 255°C tritt ein Gewichtsverlust von 3.0% auf, begleitet von einem schwachen endothermen Ereignis (T_{max} : 290°C). Der Gewichtsverlust ist auf die Abgabe des Kristallwassers zurückzuführen (ber. 2.6%). Dieses Dehydrat bleibt bis etwa 350°C stabil. Danach beginnt die Zersetzung mit einer exothermen Reaktion, welche zwei Maxima bei 428°C und 480°C aufweist. Am Ende der Heizperiode ist noch ein endothermer Vorgang erkennbar (T_{max} : 866°C), welcher vermutlich auf das Schmelzen des entstanden PbO zurückzuführen ist [108]. Der Zersetzungsrückstand konnte als orthorhombisches Massicot röntgenographisch identifiziert werden (Anhang II).

$Ba_2[C_6H_2(COO)_4] \cdot H_2O$

Das Diagramm der thermoanalytischen Untersuchung (Abb.3.30) zeigt einen exothermen Vorgang, dessen maximale Wärmetönung bei 125°C liegt, es schließen sich ab 430°C zwei kleinere exotherme Vorgänge an (T_{max} : 462°C und 496°C). Bis etwas 510°C ergibt sich hierbei ein Gewichtsverlust von ca. 7.2%, was nur teilweise mit der Abgabe des Kristallwassers zu erklären ist (ber. 3.3%). Die sich anschließende starke exotherme Reaktion mit einer maximalen Reaktionstemperatur von 562°C und einer Schulter bei etwa 630°C, geht

einher mit einer starken Gewichtsabnahme. Im folgenden sind noch zwei weitere endotherme Prozesse erkennbar, deren lokale Maxima bei 807°C und 972°C liegen. Im Rückstand wurde BaCO₃ (Witherit) gefunden (Anhang II).

Abbildung 3.29: Thermisches Verhalten von Pb₂[C₆H₂(COO)₄]·H₂O.

Abbildung 3.30: Thermisches Verhalten von Ba₂[C₆H₂(COO)₄]·H₂O.

Strukturbeschreibung

Die beiden Monohydrate kristallisieren in der monoklinen Raumgruppe C2/c. Beim $Pb_2[C_6H_2(COO)_4]$ ·H₂O wurde das Wasserstoffatom der CH-Gruppe geometrisch positioniert, außerdem konnte hier die Wasserstoffposition am Wassermolekül nicht ermittelt werden. Die wichtigsten kristallographischen Daten sind in Tabelle 3.30 angegeben.

Tabelle 3.30:	Kristallographische Dater	von Ba ₂ [C ₆ H ₂ (COO) ₄]·H ₂ O	und Pb ₂ [C ₆ H ₂ (COO) ₄]·H ₂ O
---------------	---------------------------	--	--

Kristallographische Daten					
	$Ba_2[C_6H_2(CO$	$O)_4] \cdot H_2O$	$Pb_2[C_6H_2(CO)]$	$O)_4] \cdot H_2O$	
Summenformel	$C_{10}H_4Ba_2O_9$		$C_{10}H_4Pb_2O_9$		
Kristallsystem		Monokli	n		
Raumgruppe		C2/c (Nr	.15)		
Reflexionsbedingungen		hkl: $h + k = 2n$, l	h01: $h + 1 = 2n$		
Gitterkonstanten	a=780.89(4) pm		a=756.70(10) pm	ı	
	b=1756.19(8) pn	n	b=1772.8(2) pm		
	c=914.80(5) pm		c=890.2(2) pm		
	β=114.512(5)°		β=113.590(10)°		
Wellenlänge		71.073 p	m		
Temperatur		293(2) K			
Elementarzellvolumen	$1.14149(10) \text{ nm}^3$		$1.0635(3) \text{ nm}^3$		
Formeleinheiten pro Elementarzelle		4			
Molmasse	542.81 g/mol		682.51 g/mol		
berechnete Dichte	3.159 Mg/m ³		4.263 Mg/m^3		
Absorptionskoeffizient	6.907 mm ⁻¹		31.672 mm ⁻¹		
numerische Absorptionskorrektur			min./max.	Transmission	
			0.02781/0.29190		
F(000)	992		1200		
Gemessener θ – Bereich	2.32° bis 30.00°		2.36° bis 27.00°		
Indexgrenzen	$-1 \le h \le 10$		$0 \le h \le 9$		
	$-1 \leq k \leq 24$		$0 \le k \le 22$		
	$-12 \le 1 \le 12$		$-11 \le 1 \le 10$		
Anzahl der gemessenen Reflexe	2109		1247		
unabhängige Reflexe	1658 (R _{int} =0.019	9)	1162 (R _{int} =0.017	3)	
Strukturverfeinerung		Vollmatrix Least-	Squares an $ F ^2$		
Goodness-of-Fit an $ F ^2$	3.621		4.853		
endgültige R-Werte[I> $2\sigma(I)$]	$R_1 = 0.0203$	$wR_2 = 0.0441$	$R_1 = 0.0464$	$wR_2 = 0.1094$	
R-Werte (sämtliche Daten)	$R_1 = 0.0225$	$wR_2 = 0.0446$	$R_1 = 0.0525$	$wR_2 = 0.1096$	
Extinktionskoeffizient	0.00124(5)		0.0028(2)		
Gewichtung		$w = 1/\sigma^2$	$ \mathbf{F}_{0} ^{2}$		
Größtes Maximum und Minimum					
der letzten Differenz-Fouriersynthese	800 und -806e·m	m ⁻³	3722 und -5156e	••nm ^{−3}	

Die Koordination der Kationen

Es liegen zwei kristallographisch unabhängige M^{2+} -Kationen ($M^{2+} = Ba^{2+}$, Pb^{2+}) vor, welche beide auf Symmetriezentren der Raumgruppe C2/c liegen (*Wyckoff*-Position 4e). Das M(1) Kation ist im Kristallverband von acht Carboxylatsauerstoffatomen der Pyromellitattetraanionen umgeben. Desweiteren koordiniert ein Molekül Wasser. Die Koordinationspartner bilden ein dreifach überkapptes trigonales Prisma aus (Abb.3.31). Die M–O Bindungslängen liegen zwischen 265.4(2) pm und 294.0(2) pm für Ba₂[C₆H₂(COO)₄]·H₂O und 255.9(11) pm bis 282.3(13) pm für Pb₂[C₆H₂(COO)₄]·H₂O (Tab.3.30). Die M(1) Koordinationspolyeder sind durch O(3), O(3') kantenverknüpft, so daß sich in Richtung [001] verlaufende Polyederketten ausbilden (Abb.3.32).

M(2) besitzt die Koordinationszahl 6 + 4. Die innere Koordinationssphäre, bestehend aus sechs Carboxylatsauerstoffen, stellt ein verzerrtes Oktaeder dar (Abb.3.31). Die Bindungslängen reichen von 278.2(2) pm bis 282.6(2) pm (Bleiverbindung: 259.0(14) pm bis 277.0(14) pm). Desweiteren wird M(2) noch von vier weiteren Carboxylatsauerstoffatomen (je 2x O(3) und (O1')) tetraederförmig koordiniert, deren Bindungslängen 301.5(2) pm und 309.0(2) pm (Bariumverbindung), sowie 290.8(14) pm und 294.0(13) pm (Bleiverbindung) betragen (Tab.3.30). Auch hier sind die Koordinationspolyeder durch O(1) und O(1') kantenverknüpft, so daß die M(2)-Polyederstränge ebenfalls in Richtung [001] verlaufen. Beide Polyederketten [M(1), M(2)] sind über O(1), O(2) und O(3) so miteinander kanten-und flächenverknüpft, daß sich in der (010)-Ebene unendliche Schichten aufbauen (Abb.3.32).

Die Bindungsordnung (Wertigkeit) nach Brown [17] ist bei M(1) höher als bei M(2).

 $Ba_2[C_6H_2(COO)_4] \cdot H_2O: Ba(1) 2.355 Ba(2) 1.956$

Pb₂[C₆H₂(COO)₄]·H₂O: Pb(1) 1.945 Pb(2) 1.863

Beim Vergleich des Abstandes Ba(1)…Ba(2) mit den Ba…Ba Abstand des metallischen Bariums fällt auf, daß dieser mit 426.46(2) pm kleiner ist als im metallischen Barium (434.7 pm [18]).

	Bindungslängen (pm)						
$Ba_2[C_6H_2(CC)]$	$(OO)_4] \cdot H_2O$						
			s (Brown [17])				s (Brown [17])
Ba(1)-OW	272.5(3)		0.3024	Ba(2)-O(2)	278.2(2)	2x	0.2616
Ba(1)-O(2)	265.4(2)	2x	0.3637	Ba(2)-O(1)	287.5(2)	2x	0.2078
Ba(1)-O(1)	279.8(2)	2x	0.2513	Ba(2)-O(4)	282.6(2)	2x	0.2343
Ba(1)-O(3)	282.7(2)	2x	0.2338	Ba(2)-O(1')	309.0(2)	2x	0.1254
Ba(1)-O(3')	294.0(2)	2x	0.1777	Ba(2)-O(3)	301.5(2)	2x	0.1490
			$\Sigma = 2.3554$				$\Sigma = 1.9562$
OW-H(2)	75(4)			Ba(1)…Ba(2)	426.46(2)		
$Pb_2[C_6H_2(CC)]$	$OO)_4] \cdot H_2O$						
			s (Brown [17])				s (Brown [17])
Pb(1)-OW	262(2)		0.2553	Pb(2)-O(2)	259.0(14)	2x	0.2719
Pb(1)-O(2)	255.9(11)	2x	0.2906	Pb(2)-O(1)	275.8(12)	2x	0.1925
Pb(1)-O(1)	272.6(13)	2x	0.2052	Pb(2)-O(4)	277.0(14)	2x	0.1879
Pb(1)-O(3)	279.3(14)	2x	0.1796	Pb(2)-O(1')	290.8(14)	2x	0.1438
Pb(1)-O(3')	282.3(13)	2x	0.1693	Pb(2)-O(3)	294.0(13)	2x	0.1354
			$\Sigma = 1.9447$				$\Sigma = 1.8630$
				Pb(1)…Pb(2)	411.02(9)		

Tabelle 3 30 [.]	Koordination	der	Kationen
1 abene 5.50.	Rooramation	uu	Rationen

O(3'), O(1') bezeichnen immer den längeren M-O Abstand

Abbildung 3.31: Koordination von M²⁺ (Ba²⁺, Pb²⁺). Die Verbindungsachse M(1)–OW ist parallel [010]. O(1⁴), O(3⁴) bezeichnen immer den längeren M–O(1) und M–O(3) Abstand (Ortep Plot).

Abbildung 3.32: Verknüpfung der Koordinationspolyeder zu unendlichen Schichten. a): M(2)-Polyeder sind mit offenem Bindungsstab gezeichnet. b): M(2)-Polyeder sind hell dargestellt.

Tabelle 3 31.	Bindungswinkel	der Koordinations	nolveder im	BallC.H.(CO	O).1.H.O
	Dinuungswinker	del Koordinations	polyedel III.	$Da_2 C_6 \Pi_2 (CO)$	0_{14} n_{20}

	Bindun	gswinkel (°)	
O(2)#1-Ba(1)-O(2)#2	151.10(9)	O(2)#6-Ba(2)-O(1)#3	98.57(6)
O(2)#2- Ba(1)-OW	75.55(5)	O(2)#1-Ba(2)-O(1')#3	66.19(6)
O(2)#2-Ba(1)-O(1)	68.99(6)	O(2)#1-Ba(2)-O(4)	109.70(6)
OW-Ba(1)-O(1)#3	117.38(5)	O(1')#8-Ba(2)-O(4)	110.20(7)
O(2)#1-Ba(1)-O(3)	69.93(7)	O(1')#3-Ba(2)-O(4)	83.40(7)
OW-Ba(1)-O(3)	136.21(4)	O(2)#6-Ba(2)-(O1')#6	44.21(6)
O(1)#3-Ba(1)-O(3)	74.00(6)	O(1)#3-Ba(2)-O(1')#6	59.99(7)
O(3)-Ba(1)-O(3)#3	87.58(9)	O(4)-Ba(2)-O(1')#6	141.55(7)
O(2)#2-Ba(1)-O(3')#2	64.09(9)	O(2)#6-Ba(2)-O(2)#1	62.58(9)
O(1)-Ba(1)-O(3')#2	128.57(6)	O(2)#6-Ba(2)-O(4)	169.72(7)
O(3)-Ba(1)-O(3')#2	144.99(7)	O(4)-Ba(2)-O(4)#7	78.73(9)
O(2)#2-Ba(1)-O(1)#3	126.01(7)	O(2(#6-Ba(2)-O(1')#1	67.93(6)
O(1)-Ba(1)-O(1)#3	125.24(9)	O(1)#3-Ba(2)-O(1')#1	108.03(6)
O(2)#2-Ba(1)-O(3)	134.70(6)	O(4)-Ba(2)-O(1')#1	101.84(6)
O(1)-Ba(1)-O(3)	67.15(6)	O(1')#8-Ba(2)-O(3)	111.86(6)
O(2)#1-Ba(1)-O(3')#2	105.36(7)	O(4)#7-Ba(2)-O(3)	123.19(6)
OW-Ba(1)-O(3')#1	69.82(4)	O(1')#8-Ba(2)-O(3)#7	70.11(6)
O(1)#3-Ba(1)-O(3')#2	72.17(6)	O(4)#7-Ba(2)-O(3)#7	44.42(6)
O(3)#3-Ba(1)-O(3')#2	71.27(7)	O(2)#6-Ba(2)-O(3)	126.76(6)
O(3')#2-Ba(1)-O(3')#1	139.65(8)	O(1')#6-Ba(2)-O(3)	121.64(6)
		O(2)#1-Ba(2)-O(3)	65.54(6)
		O(1')#1-Ba(2)-O(3)	67.26(6)
		O(3)-Ba(2)-O(3)#7	167.61(8)

Bindungswinkel(°)				
O(2)#1-Pb(1)-O(2)	153.7(7)	O(2)-Pb(2)-O(1)#6	99.0(4)	
O(2)-Pb(1)-OW	76.8(3)	O(2)-Pb(2)-O(1)#2	65.5(4)	
O(2)-Pb(1)-O(1)#2	66.4(4)	O(2)#5-Pb(2)-O(4)#7	110.6(4)	
OW-Pb(1)-O(1)#3	115.8(3)	O(1)#2-Pb(2)-O(4)#7	109.3(4)	
O(2)#1-Pb(1)-O(3)#2	69.2(4)	O(1)#2-Pb(2)-O(4)#3	84.9(4)	
OW-Pb(1)-O(3)#2	135.9(3)	O(2)-Pb(2)-O(1')	47.1(4)	
O(1)#3-Pb(1)-O(3)#2	75.2(4)	O(1)#6-Pb(2)-O(1')	58.4(5)	
O(3)#2-Pb(1)-O(3)#3	88.2(6)	O(4)#7-Pb(2)-O(1')	139.9(4)	
O(2)-Pb(1)-O(3')	66.7(4)	O(2)-Pb(2)-O(2)#5	64.6(6)	
O(1)#2-Pb(1)-O(3')	129.1(4)	O(2)-Pb(2)-O(4)#7	171.2(4)	
O(3)#2-Pb(1)-O(3')	144.2(4)	O(4)#7-Pb(2)-O(4)#3	75.0(6)	
O(2)-Pb(1)-O(1)#3	126.8(4)	O(2)#5-Pb(2)-O(1')	70.8(4)	
O(1)#2-Pb(1)-O(1)#3	128.4(6)	O(1)#2-Pb(2)-O(1')	110.0(3)	
O(2)-Pb(1)-O(3)#2	133.1(4)	O(4)#3-Pb(2)-O(1')	100.5(4)	
O(1)#2-Pb(1)-O(3)#2	68.3(4)	O(1)-Pb(2)-O(1')#5	106.7(5)	
O(2)#1-Pb(1)-O(3')	104.1(4)	O(1)#2-Pb(2)-O(3)#7	110.2(4)	
OW-Pb(1)-O(3')	70.3(3)	O(4)#3-Pb(2)-O(3)#7	119.7(4)	
O(1)#3-Pb(1)-O(3')	70.2(4)	O(1)#2-Pb(2)-O(3)#3	72.4(4)	
O(3)#3-Pb(1)-O(3')	70.9(5)	O(4)#3-Pb(2)-O(3)#3	44.7(4)	
O(3)-Pb(1)-O(3')#1	140.7(6)	O(2)-Pb(2)-O(3)#7	129.1(4)	
		O(1')-Pb(2)-O(3)#7	124.5(4)	
		O(2)-Pb(2)-O(3)#3	66.4(4)	
		O(1')-Pb(2)-O(3)#3	66.2(4)	
		O(3)#7-Pb(2)-O(3)#3	164.3(6)	

Tabelle 3.32: Bindungswinkel der Koordinationspolyeder im Pb₂[C₆H₂(COO)₄]·H₂O

Symmetrietransformationen: #1: -x+2;y;-z-0.5 , #2: x;-y+1;z-0.5 , #3: -x+2;-y+1;-z , #5: -x+1;y;-z-0.5 #6: -x+1;-y+1;-z , #7: x-1;-y+1;z-0.5

Die Pyromellitattetraanionen

Die Pyromellitattetraanionen liegen auf kristallographischen Symmetriezentren. Ihre Bindungsabstände und -winkel unterscheiden sich nur unwesentlich voneinander. Die Bindungslängen im C₆-Ring liegen zwischen 138.9(4) pm und 143(2) pm, die C–C Einfachbindungen sind innerhalb der Fehlergrenzen gleich, und für die C–O Bindungen finden sich Werte zwischen 123(2) pm und 128.4(3) pm (Tab.3.33,3.34). Die Carboxylatgruppen mit C(1) sind aus der jeweiligen Ebene der Kohlenstoffatome herausgedreht, während die Carboxylatgruppen mit C(2) coplanar bezüglich jener Ebenen angeordnet sind (Abb.3.33). Die Kohlenstoffgerüste weichen nur im geringem Umfang von der ideal-planaren Gestalt ab (Tab.3.35).

Abbildung 3.33: Das Pyromellitattetraanion im $M_2[C_6H_2(COO)_4]\cdot H_2O$ (M = Ba²⁺, Pb²⁺) (Ortep Plot).

Bindungslängen (pm)					
$Ba_2[C_6H_2(CC)]$	$OO)_4] \cdot H_2O$				
C(1)-C(3)	151.0(4)	C(3)-C(4)	139.5(4)	O(2)-C(1)	125.9(3)
C(2)-C(4)	151.4(4)	C(5)-C(4)	139.8(4)	O(3)-C(2)	128.4(3)
C(3)-C(5)	138.9(4)	O(1)-C(1)	126.2(4)	O(4)-C(2)	124.5(4)
				C(5)-H(1)	72(4)
$Pb_2[C_6H_2(CC)]$	$OO)_4] \cdot H_2O$				
C(1)-C(3)	151(3)	C(3)-C(4)	143(2)	O(4)-C(2)	123(2)
C(2)-C(4)	152(2)	C(5)-C(4)	137(3)	O(1)-C(1)	126(2)
C(3)-C(5)	138(2)	O(2)-C(1)	127(2)	O(3)-C(2)	123(2)
				C(5)-H(1)	93

Tabelle 3.33: Bindungslängen der Pyromellitattetraanionen

Tabelle 3.34: Bindungswinkel der Pyromellitattetraanionen

Bindungswinkel (°)					
$Ba_2[C_6H_2(COC$	$)_4] \cdot H_2O$				
C(5)-C(3)-C(4)	120.3(3)	C(5)-C(4)-C(2)	119.1(3)	O(4)-C(2)-C(4)	119.9(3)
C(5)-C(3)-C(1)	116.7(3)	C(4)-C(5)-C(3)	121.7(3)	O(1)-C(1)-O(2)	124.2(3)
C(5)-C(4)-C(3)	118.0(3)	O(1)-C(1)-C(3)	118.6(3)	O(3)-C(2)-O(4)	122.3(3)
C(3)-C(4)-C(2)	122.8(2)	O(3)-C(2)-C(4)	117.8(3)	C(3)-C(5)-H(1)	120(4)
C(4)-C(3)-C(1)	122.9(3)	O(2)-C(1)-C(3)	117.1(3)	C(4)-C(5)-H(1)	118(4)
$Pb_2[C_6H_2(COC)]$	$0)_4] \cdot H_2O$				
C(5)-C(3)-C(4)	121(2)	C(5)-C(4)-C(2)	121(2)	O(4)-C(2)-C(4)	117(2)
C(5)-C(3)-C(1)	118(2)	C(4)-C(5)-C(3)	121(2)	O(1)-C(1)-O(2)	122(2)
C(5)-C(4)-C(3)	118(2)	O(1)-C(1)-C(3)	122(2)	O(3)-C(2)-O(4)	124(2)
C(3)-C(4)-C(2)	120(2)	O(3)-C(2)-C(4)	119(2)	C(3)-C(5)-H(1)	119.5(11)
C(4)-C(3)-C(1)	122(2)	O(2)-C(1)-C(3)	115(2)	C(4)-C(5)-H(1)	119.5(10)

Tabelle 3.35:	Die Ausgleichsebenen	der Pyromellitattetraanionen
	L /	

$Ba_2[C_6H_2(COO)_4] \cdot H_2O$
Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: $-2.974 \text{ x} + 2.528 \text{ y} + 9.048 \text{ z} = 10.2000$ Abweichungen von der Ebene (pm): C(1): 3.16 ; C(2): -1.86 ; C(3): -2.83 ; C(4): 0.24 ; C(5): 4.01 ; C(1)A: -3.17 ; C(2)A: 1.86 ; C(3)A: 2.83 ; C(4)A: -0.24 ; C(5)A: -4.01 mittlere Abweichung von der Ausgleichsebene: 2.42 pm
Ebene 2 aus O(3), O(4), C(2), C(4) Ebenengleichung: $-2.892 \text{ x} + 1.560 \text{ y} + 9.102 \text{ z} = 9.5801$ Abweichungen von der Ebene (pm): O(3): -0.15 ; O(4): -0.16 ; C(2): 0.43 ; C(4): -0.12 mittlere Abweichung von der Ausgleichsebene: 0.22 pm Winkel zur Ebene 1: 3.3°
Ebene 3 aus O(1), O(2), C(1), C(3) Ebenengleichung: $6.823 \text{ x} + 2.971 \text{ y} + 0.479 \text{ z} = 4.2848$ Abweichung von der Ebene (pm): O(1): 0.59 ; O(2): 0.58 ; C(1): -1.62 ; C(3): 0.45 mittlere Abweichung von der Ausgleichsebene: 0.81 pm Winkel zur Ebene 1: 83.8° , Winkel zur Ebene 2: 83.5°
$Pb_2[C_6H_2(COO)_4] \cdot H_2O$
Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: $-2.817 \text{ x} - 2.346 \text{ y} + 8.816 \text{ z} = -3.8721$ Abweichungen von der Ebene (pm): C(1): -2.48 ; C(2): 2.09 ; C(3): 1.10 ; C(4): -0.36 ; C(5): 4.18 ; C(1)A: 2.48 ; C(2)A: -2.09 ; C(3)A: -1.10 ; C(4)A: 0.36 ; C(5)A: -4.17 mittlere Abweichung von der Ausgleichsebene: 2.04 pm
Ebene 2 aus O(1), O(2), C(1), C(3) Ebenengleichung: $6.694 \times 2.846 \times 0.406 \times 2.30013$ Abweichungen von der Ebene (pm): O(1): -1.68 ; O(2): -1.56 ; C(1): 4.54 ; C(3): -1.31 mittlere Abweichung von der Ausgleichsebene: 2.27 pm Winkel zur Ebene 1: 84.6°
Ebene 3 aus O(3), O(4), C(2), C(4) Ebenengleichung: $-2.879 \times -1.881 \text{ y} + 8.847 \text{ z} = -3.6047$ Abweichung von der Ebene (pm): O(3): 0.24 ; O(4): 0.23 ; C(2): -0.65 ; C(4): 0.18 mittlere Abweichung von der Ausgleichsebene: 0.32 pm Winkel zur Ebene 1: 1.6°, Winkel zur Ebene 2: 85.3°

Struktur des M₂[C₆H₂(COO)₄]·H₂O (M = Ba²⁺, Pb²⁺)

Aus M(1), M(2) und den Pyromellitattetraanion baut sich eine dreidimensionale Gerüststruktur auf (Abb.3.34). Hierbei werden die Schichten der Koordinationspolyeder durch die Pyromellitattetraanionen in b-Richtung verknüpft. Die Carboxylatgruppen betätigen sich hierbei gegenüber M(1) als mehrfach einzähnige Liganden und gegenüber M(2) auch als Bischelatliganden, da O(2)/O(1') und O(3)/O(4) jeweils ein und dasselbe M(2)-Kation koordinieren (Vierring C(1)–O(2)–M(2)–O(1') und C(2)–O(3)–M(2)–O(4)). Zu bemerken sei allerdings, daß die Bindungen M(2)–O(1') und M(2)–O(3) länger sind, so daß die chelatartige Bindung asymmetrisch ist. Der Chelatcharakter ist auch dadurch eingeschränkt, daß O(1), O(2) und O(3) noch zu Koordinationssphären weiterer M^{2+} -Kationen gehören.

Abbildung 3.34: Perspektivische Darstellung der dreidimensionalen Gerüststruktur des M₂[C₆H₂(COO)₄]·H₂O. M(2)-Polyeder sind mit offenem Bindungsstab gezeichnet (Blick auf (100)).

Wasserstoffbrückenbindungen

In diesen zwei Verbindungen wird jeweils eine Wasserstoffbrücke zwischen OW und O4 aufgebaut. Der O···O Abstand im Ba₂[C₆H₂(COO)₄]·H₂O beträgt 280.4 pm und der OW–H(2)···O(4) Winkel 155°, so daß es sich um eine mittelstarke Wasserstoffbrücke handelt [64]. In der isostrukturellen Bleiverbindung ergibt sich ein Abstand von 276.8 pm. Da hier die Wasserstoffpositionen des Wassermoleküls nicht bestimmt werden konnten, ist keine weitere Aussage über das Donor-/Akzeptorverhalten möglich. Die Wassermoleküle liegen auf einer vierzähligen speziellen kristallographischen Position (*Wyckoff*-Position 4e).

3.4.2. Cadmiumpyromellitat-Hexahydrat

Einkristallines Material dieser Verbindung konnte aus 10ml einer 0.05M Cd(NO₃)₂-Lösung und 5ml einer 0.05M Natriumpyromellitatlösung bei 80°C gewonnen werden. Nach etwa 4-5 Tagen bildeten sich rautenartige, farblose Kristalle.

Elementaranalyse - $Cd_2[C_6H_2(COO)_4] \cdot 6H_2O$					
	Ber.(%)	Gef.(%)			
С	20.60	20.55			
Н	2.42	2.40			

IR-Spektrum

Die breite Absorptionsbande (Abb.3.35) zwischen 3500 cm⁻¹ und 3000 cm⁻¹ deutet auf die Ausbildung von Wasserstoffbrückenbindungen hin. Bei 1529 cm⁻¹ ist die asymmetrische Valenzschwingung und bei 1384 cm⁻¹ ist die symmetrische Valenzschwingung der Carboxylatgruppen zu erkennen. Die C–H in-plane Deformationsschwingung erscheint bei 1137 cm⁻¹ und die out-of-plane Deformationsschwingung bei 926 cm⁻¹ [50].

Abbildung 3.35: IR-Spektrum des $Cd_2[C_6H_2(COO)_4]$ ·6H₂O.

Thermochemische Analyse

Die thermoanalytische Untersuchung (Abb.3.36) zeigt, daß ab ca. 95°C die Abgabe des gesamten Kristallwassers beginnt. Der Masseverlust beträgt dabei 18.2% (ber. 18.5%). Diese endotherme Reaktion weist eine maximale Reaktionstemperatur von 154°C auf. Das so erhaltene Dehydrat bleibt bis etwa 357°C stabil, anschließend erfolgt eine exotherme Zersetzungsreaktion, welche bis 446°C ansteigt, danach bis 489°C abfällt, dann erneut bis 493°C ansteigt und schließlich absinkt. Der Rückstand konnte als CdO röntgenographisch identifiziert werden (Anhang II).

Abbildung 3.36: Thermoanalyse des $Cd_2[C_6H_2(COO)_4] \cdot 6H_2O$.

Strukturbeschreibung

Röntgenbeugungsintensitäten wurden an einem Einkristall bis zu einem Winkel von 25° gemessen. Durch Differenzfouriersynthesen konnten die Positionen aller Wasserstoffatome ermittelt werden, welche mit individuellen, isotropen Auslenkungsparameter in die letzten Verfeinerungszyklen aufgenommen wurden. Desweiteren wurde eine numerische Absorptionskorrektur vorgenommen. Die kristallographischen Daten sind in Tabelle 3.36 zusammengefaßt.

Kristallographische Daten				
Summenformel	$C_{10}H_{14}Cd_2O_{14}$			
Kristallsystem	Triklin			
Raumgruppe	P1 (Nr.2)			
Reflexionsbedingung	keine			
Gitterkonstanten	a = 560.05(4) pm	$\alpha = 111.936(5)^{\circ}$		
	b = 776.86(6) pm	$\beta = 101.806(4)^{\circ}$		
	c = 968.76(4) pm	$\gamma = 98.256(6)^{\circ}$		
Wellenlänge	71.073 pm			
Temperatur	293(2) K			
Elementarzellvolumen	$0.37130(4) \text{ nm}^3$			
Formeleinheiten in der Elementarzelle	1			
Molmasse	583.01 g/mol			
berechnete Dichte	2.607 g/cm^{3}			
Absorptionskoeffizient	2.946 mm ⁻¹			
numerische Absorptionskorrektur	min./max. Transmissio	on 0.590/0.847		
F (000)	282			
Gemessener θ - Bereich	2.89° bis 25.00°			
Indexgrenzen	$-1 \le h \le 6$, $-8 \le k$	$\leq 8, -11 \leq 1 \leq 11$		
Anzahl der gemessenen Reflexe	1696			
unabhängige Reflexe	$1267 (R_{int} = 0.0178)$			
Strukturverfeinerung	Vollmatrix Least-Squa	ares an $ \mathbf{F} ^2$		
Goodness-of-Fit an $ F ^2$	1.581			
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0185$, $wR_2 = 0$.0480		
R-Werte (sämtliche Daten)	$R_1 = 0.0190$, $wR_2 = 0$.0482		
Extinktionskoeffizient	0.044(2)			
Gewichtung	$w = 1/[\sigma^2(\mathbf{F}_0 ^2) + 0.35]$	·P]		
größtes Maximum und Minimum der letzten	2			
Differenz-Fouriersynthese	628 und -598e.nm ⁻³			

Tabelle 3.36: Die wichtigsten kristallographischen Daten des Cd₂[C₆H₂(COO)₄]·6H₂O

 $P = \frac{1}{3} \max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination des Cd²⁺-Kations

In dieser Struktur wird das Cd^{2+} -Kation von sechs Sauerstoffatomen koordiniert. Drei Sauerstoffatome stammen von Wassermolekülen und die anderen drei von den Carboxylatgruppen der Pyromellitattetraanionen. Die Cd–O Bindungslängen liegen mit 224.2(3) pm bis 235.3(2) pm eng beieinander. Die Bindungswinkel weichen teils erheblich von den idealen Werten für eine oktaedrische Koordination ab (Tab.3.37). Je zwei Koordinationspolyeder werden durch eine gemeinsame Kante (O(2)/O(2)) miteinander verknüpft (Abb.3.37). Aufgrund des Symmetriezentrums (i) liegen sich beide Polyeder zentrosymmetrisch gegenüber. O(2) tritt gegenüber Cd²⁺ zweibindig auf, wobei der Cd–O(2) Abstand 231.7(2) pm und der Cd–O(2⁺) Abstand 235.3(2) pm beträgt. Nach der Methode von *Brown* [17] errechnet sich eine Gesamtbindungsordnung von 1.942.

Abbildung 3.37: Die Verknüpfung von jeweils zwei Cd²⁺-Koordinationspolyedern (Ortep Plot).

Bindungslängen (pm)					
		s (Brown[17	7])		s (Brown[17])
Cd-O(3)	224.2(3)	0.4138	Cd-OW(1)	239.7(4)	0.2523
Cd-O(2)	231.7(2)	0.3244	Cd-OW(2)	228.3(3)	0.3619
Cd-O(2')	235.3(2)	0.2894	Cd-OW(3)	234.1(3)	0.3006
			Summe der	Bindungsstärk	en (s): 1.9424
Bindungswinkel (°)					
O(3)-Cd-OW(2)	115.07((11)	O(3)-C	Cd-O(2)	87.50(9)
OW(2)-Cd-O(2)	149.98((10)	O(3)-C	Cd-OW(3)	91.28(10)
OW(2)-Cd-OW(3)) 86.56((11)	O(2)-C	Cd-OW(3)	113.78(10)
O(3)-Cd-O(2')	84.54((10)	OW(2))-Cd-O(2')	88.09(10)
O(2)-Cd-O(2')	73.97	7(9)	OW(3))-Cd-O(2)	171.09(9)
O(3)-Cd-OW(1)	162.22((12)	OW(2))-Cd-OW(1)	78.85(13)
O(2)-Cd-OW(1)	75.81((11)	OW(3))-Cd-OW(1)	100.96(13)
O(2)-Cd-OW(1)	84.97((12)	Cd#1-0	O(2)-Cd#3	106.03(9)

Tabelle 3.37: Bindungslängen und -winkel des Cd²⁺-Koordinationspolyeders

 $O(2^\circ)$ bezeichnet immer den längeren Cd–O(2) Abstand Symmetrietransformation: #1: -x;-y+1;-z , #3: x-1;y,z

Das Pyromellitattetraanion

Die C–C Bindungslängen des zentrosymmetrischen Pyromellitattetraanions liegen in einen typischen Bereich für Benzolcarbonsäuren. Die Bindungen innerhalb des C₆-Ringes, als auch die C–C Einfachbindungen sind innerhalb der Fehlergrenzen gleich (Tab.3.38). Bei den

Carboxylatgruppen ist deutlich zu erkennen, daß die Sauerstoffatome, welche koordinativ am Cd^{2+} gebunden sind auch einen größeren C–O Abstand aufweisen. So beträgt die C(4)–O(2) Bindung 126.6(4) pm, die C(5)–O(3) Bindung 126.9(4) pm, während hingegen die Bindungen C(4)–O(1) 125.0(4) pm und C(5)–O(4) 124.6(5) pm betragen. Das Kohlenstoffgerüst ist planar, die mittlere Abweichung von einer berechneten Ausgleichsebene beträgt 0.96 pm. Die Carboxylatgruppen sind bezüglich dieser Ebene um 78.2° und um 15.5° verdreht (Tab.3.39).

Bindungslängen (pm)						
C(1)-C(2)	139.7(5)	C(1)-C(4)	151.0(5)	O(2)-C(4)	126.6(4)	
C(2)-C(3)	139.5(5)	C(2)-C(5)	150.8(5)	O(3)-C(5)	126.9(4)	
C(1)-C(3)	139.4(5)	O(1)-C(4)	125.0(4)	O(4)-C(5)	124.6(5)	
				C(3)-H(1)	96(4)	
	Bindungswinkel (°)					
C(2)-C(1)-C(3)	119.3(3)	C(2)-C(1)-C(4)	124.2(3)	O(4)-C(5)-O(3)	123.7(3)	
C(3)-C(1)-C(4)	116.5(3)	C(1)-C(2)-C(3)	119.2(3)	O(4)-C(5)-C(2)	119.6(3)	
C(1)-C(2)-C(5)	121.9(3)	O(1)-C(4)-O(2)	122.8(3)	O(3)-C(5)-C(2)	116.7(3)	
C(2)-C(3)-C(1)	121.6(3)	O(1)-C(4)-C(1)	117.7(3)	C(1)-C(3)-H(1)	123(2)	
C(3)-C(2)-C(5)	118.9(3)	O(2)-C(4)-C(1)	119.3(3)	C(2)-C(3)-H(1)	116(2)	

 Tabelle 3.38:
 Bindungslängen und -winkel des Pyromellitattetraanions

Tabelle 3.39 Die Ausgleichsebenen des Pyromellitattetraanions im Cd₂[C₆H₂(COO)₄]·6H₂O

Ebene **1** aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: 3.242 x + 5.618 y - 4.650 z = 3.2932Abweichungen von der Ebene (pm): C(1): -0.85 ; C(2): 0.43 ; C(3): 1.55 ; C(4): 1.10 ; C(5): -0.88 ; C(1)A: 0.85 ; C(2)A: 0.42 ; C(3)A: -1.55 ; C(4)A: 1.10 ; C(5)A: 0.88 mittlere Abweichung von der Ausgleichsebene: 0.96 pm Ebene **2** aus O(1), O(2), C(1), C(4) Ebenengleichung: 5.134 x - 4.089 y - 0.050 z = -3.9703Abweichungen von der Ebene (pm): O(1): -1.05 ; O(2): -1.05 ; C(1): -0.83 ; C(4): 2.93 mittlere Abweichung von der Ausgleichsebene: 1.47 pm Winkel zur Ebene 1: 78.2° Ebene **3** aus O(3), O(4), C(2), C(5) Ebenengleichung: 3.638 x + 4.887 y - 2.331 z = 3.7313Abweichung von der Ebene (pm): O(3): -0.18 ; O(4): -0.19 ; C(2): -0.14 ; C(5): 0.51 mittlere Abweichung von der Ausgleichsebene: 0.26 pm Winkel zur Ebene 1: 15.5° ; Winkel zur Ebene 2: 72.0°

Struktur

In Abbildung 3.38-3.40 erkennt man, daß sich die Cd²⁺-Kationen und die Pyromellitattetraanionen zu einen Schichtverband verknüpfen. Die Koordination der Carboxylatgruppen erfolgt ausschließlich einzähnig. Die gewellten Schichten liegen parallel zur (011) Ebene. Der Abstand zwischen benachbarten Schichten beträgt 326 pm, so daß sich die Schichten, unter Berücksichtigung von *van der Waals* Radien, berühren. Zwischen den Schichten bestehen keine Kontakte über koordinative Bindungen, jedoch sind sie über Wasserstoffbrückenbindungen verbunden.

die mittelstarken Zur Vernetzung benachbarter Schichten tragen bis starken Wasserstoffbrückenbindungen OW(2)···O(4), OW(3)···O(1) und OW(3)···O(4) bei, welche O…O Abstände von 278.9 pm bis 281.7 pm aufweisen (Tab.3.41). Man kann erkennen, daß vorrangig die nicht am Cd²⁺ gebundenen Carboxylatsauerstoffatome (O(1), O(4)) als Protonenakzeptoren fungieren. Innerhalb der Schicht richtet OW(1) über H(11) eine Wasserstoffbrücke zu O(1) aus. Ebenfalls über H(11) tritt eine schwache Wechselwirkung zu O(3) auf. H(12) ist in keiner Wasserstoffbrücke involviert. Die Wassermoleküle OW(2) und OW(3) bilden untereinander eine Wasserstoffbrückenbindung aus, wobei OW(2) als Protonendonator wirkt.

Diese Verbindung ist isotyp mit dem von *Robl* untersuchten $Ca_2[C_6H_2(COO)_4]\cdot 6H_2O$ [61]. Hier bilden sich analoge Schichten aus, in denen aber die Carboxylatgruppen des Pyromellitattetraanions auch chelatartig wirken.

Abbildung 3.38: Darstellung einer aus Cd^{2+} und $[C_6H_2(COO)_4]^{4-}$ gebildeten Schicht mit Blick in Richtung [01 $\overline{1}$] (Ortep Plot).

Abbildung 3.39: Die Struktur mit Blick in [011] (Wassermoleküle sind nicht dargestellt, Cd–O(2^c) Bindungen sind mit offenen Bindungsstäben eingezeichnet).

Abbildung 3.40: Vollständige Struktur des Cd₂[C₆H₂(COO)₄]·6H₂O mit Blick entlang [100] (Cd–O(2[•]) Bindungen sind mit offenen Bindungsstäben abgebildet, gestrichelte Linien stellen einen Ausschnitt der Wasserstoffbrückenbindungen dar).

Bindungslängen (pm)					
OW(1)-H(11)	97(7)	OW(2)-H(22)	91(7)		
OW(1)-H(12)	57(7)	OW(3)-H(31)	68(7)		
OW(2)-H(21)	68(7)	OW(3)-H(32)	94(7)		
Bindungswinkel (°)					
H(11)-OW(1)-H(12)	94(9)	H(21)-OW(2)-H(22)	108(7)		
		H(31)-OW(3)-H(32)	116(7)		

Tabelle 3.40: Bindungslängen und -winkel der Wassermoleküle

Tabelle 3.41: Wasserstoffbrückenbindungen im $Cd_2[C_6H_2(COO)_4] \cdot 6H_2O$

	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(11)····O(1)*	281.7	198	144
OW(1)-H(11)····O(3)*	304.7	245	119
OW(2)-H(21)-O(4)	278.9	211	170
OW(2)-H(22)····OW(3)*	301.1	210	175
OW(3)-H(31)O(1)	272.9	206	170
OW(3)-H(32)-O(4)	281.7	189	169

* Wasserstoffbrücke innerhalb einer Schicht

3.4.3. Zinkdihydrogenpyromellitat und Nickeldihydrogenpyromelliat

Einkristalle dieser Verbindungen wurden in wäßriger Lösung erhalten.

10ml einer 0.2M Pyromellitsäurelösung wurden mit 10ml einer 0.2M Imidazollösung, 10ml einer 0.1M Zn(NO₃)₂- bzw. Ni(NO₃)₂-Lösung und 10ml Wasser versetzt. Nach 3 Tagen bildeten sich bei Raumtemperatur grüne bzw. farblose rautenförmige Kristalle.

Elementaranalyse	$Zn[C_6H_2(CC)]$	$OOH_2(COO)_2] \cdot 6H_2O$	Ni[C ₆ H ₂ (COC	$OH_2(COO)_2] \cdot 6H_2O$
	Ber.(%)	Gef.(%)	Ber.(%)	Gef.(%)
С	28.22	28.22	28.67	28.63
Н	3.79	3.88	3.85	3.95

IR-Spektren

Die IR-Spektren beider Verbindungen sind nahezu identisch (Abb.3.41,3.42). Die breiten Absorptionsbanden der O–H Valenzschwingungen zwischen 3400 cm⁻¹ und 2600 cm⁻¹ deuten auf die Ausbildung von Wasserstoffbrückenbindungen hin. Bei 1678 (1677)^{*}) cm⁻¹ kann man die Valenzschwingung der Carboxygruppe beobachten. Die C=C Schwingungen des Aromaten treten bei 1514 (1515) cm⁻¹ auf. Eine Bande bei 1354 (1353) cm⁻¹, sowie bei 1294 (1292) cm⁻¹ deutet auf die Anwesenheit einer COO⁻ und einer COOH (Kopplung von v_{C-OH} und δ_{C-O-H}) Gruppe hin [57]. Die bei 1134 (1134) cm⁻¹ auftretende Bande ist der inplane Deformationsschwingung der C–H Gruppe zuzuordnen, und die C–H out-of-plane Deformationsschwingung ist bei 973 (971) cm⁻¹ zu beobachten [50].

* Die in Klammern stehenden Werte sind die der Ni-Verbindung.

Abbildung 3.41: IR-Spektrum des $Zn[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$.

Abbildung 3.42: IR-Spektrum des Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O.

Thermoanalyse

Der thermoanalytische Verlauf des $Zn[C_6H_2(COOH)_2(COO)_2]\cdot 6H_2O$ wurde zwischen 25°C und 600°C untersucht. Das Diagramm der Zinkverbindung (Abb.3.43) zeigt zwischen 105°C und 180°C einen endothermen Zersetzungsprozeß starker Wärmetönung. Der Gewichtsverlust von 25.4% läßt auf die Abgabe des gesamten Kristallwassers schließen (ber. 25.4%). Es folgt ein weiterer endothermer Prozeß, dessen Maximum bei 242°C liegt, hierbei tritt ein Gewichtsverlust von 4.6% ein, was der Abgabe von 1 Mol Wasser pro Formeleinheit entsprechen würde. Da es sich bei dieser Verbindung um ein Dihydrogenpyromellitat handelt, kann durch eine intermolekulare Anhydridbildung Wasser

abgespaltet werden. In Abbildung 3.44 ist ein IR-Spektrum des Zn[C₆H₂(COOH)₂(COO)₂]·6H₂O bei 240°C dargestellt. Gut zu erkennen ist die Verschiebung der Carbonylbande zu höheren Wellenzahlen und die für Anhydride charakteristische Ausbildung einer Doppelbande [57,65] zwischen 1855 cm⁻¹ und 1767 cm⁻¹. Es schließt sich eine endotherme Zersetzungsreaktion, geringerer Wärmetönung an, deren Maxima bei 282°C liegt. Der Gewichtsverlust beträgt hierbei 20.7%. Dies erklärt sich durch die Abgabe von 2 Mol CO₂ pro Formeleinheit. Die Maxima weiterer endothermer Ereignisse liegen bei 371°C, 424°C und 562°C. Desweiteren sind bei 429°C und 474°C zwei exotherme Prozesse zuerkennen. Die Rückstand besteht aus ZnO (Anhang II).

In Abbildung 3.45 ist die thermische Untersuchung des Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O dargestellt. Ab 123°C tritt ein Gewichtsverlust von 24.9% ein, begleitet von einen starken endothermen Ereignis, dessen Höhepunkt bei 188°C liegt. Dies kann mit der Abgabe von 6 Mol Kristallwasser pro Formeleinheit erklärt werden. Zwischen 250°C und 277°C kann man am Graphen der Thermogravimetrie einen veränderten Anstieg erkennen. Der damit verbundene Gewichtsverlust kann, wie schon bei der Zinkverbindung, auf eine Anhydridbildung zurückgeführt werden. Wie man sieht, ist hier die Anhydridbildung weit weniger stark ausgeprägt. Es schließen sich weitere exotherme Prozesse an, deren Maxima bei 415°C, 458°C, 611°C und 842 °C liegen. Ein bei 933°C einsetzender exothermer Prozeß war bis zum Ende der Heizperiode (1000°C) noch nicht abgeklungen. Das Zersetzungsprodukt konnte als NiO identifiziert werden (Anhang II).

Abbildung 3.43: Thermoanalyse des $Zn[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$.

Abbildung 3.44: IR-Spektrum des Zn[C₆H₂(COOH)₂(COO)₂]·6H₂O bei 240°C.

Abbildung 3.45: Thermoanalyse des Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O (kleines Fenster: 1. Ableitung des thermogravimetrischen Verlaufes).

Strukturbeschreibung

Die beiden isotypen Verbindungen kristallisieren in der monoklinen Raumgruppe C2/c. Die Positionen der Wasserstoffatome wurden Differenzfourierkarten entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Außerdem wurde eine numerische Absorptionskorrektur vorgenommen. Die wichtigsten kristallographischen Daten, sowie einige Meßparameter sind in Tabelle 3.42 wiedergegeben.

Kristallographische Daten				
	Ni[C ₆ H ₂ (COOH) ₂ (COO) ₂]·6H ₂ O		$Zn[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$	
Summenformel	C ₁₀ H ₁₆ NiO ₁₄		$C_{10}H_{16}ZnO_{14}$	
Kristallsystem	Monoklin			
Raumgruppe		C2/c (Nr.	15)	
Reflexionsbedingung	hkl: h+	k = 2n, h	01: $h + 1 = 2n$	
Gitterkonstanten	a = 2186.61(13) pm	,	a = 2196.5(2) pm	
	b = 973.61(6) pm		b = 976.1(2) pm	
	c = 724.79(7) pm		c = 729.66(7) pm	
	$\beta = 105.398(4)^{\circ}$		$\beta = 105.522(8)^{\circ}$	
Wellenlänge		71.073 pn	n	
Temperatur	293(2) K			
Elementarzellvolumen	$1.4876(2) \text{ nm}^3$		$1.5073(3) \text{ nm}^3$	
Formeleinheiten pro Elementarzelle		4		
Molmasse	418.94 g/mol		425.60 g/mol	
berechnete Dichte	1.871 g/cm^3		1.876 g/cm^3	
Absorptionskoeffizient	1.385 mm ⁻¹		1.709 mm ⁻¹	
numerische Absorptionskorrektur	min./max. Transmission		min./max. Transmission	
	0.531/0.830		0.384/0.645	
F (000)	864		872	
Gemessener θ - Bereich	2.30° bis 25.00°		2.30° bis 26.99°	
Indexgrenzen	$-1 \le h \le 25$		$-28 \le h \le 28$	
	$-1 \leq k \leq 11$		$-12 \leq k \leq 12$	
	$-8 \le 1 \le 8$		$-9 \le 1 \le 9$	
Anzahl der gemessenen Reflexe	1612		3376	
unabhängige Reflexe	$1315 (R_{int} = 0.0158)$		$1653 (R_{int} = 0.0118)$	
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$			
Goodness-of-Fit an $ F ^2$	1.277		1.259	
endgültige R-Werte $[I>2\sigma(I)]$	$R_1 = 0.0235$, $wR_2 = 0.0498$		$R_1 = 0.0239$, $wR_2 = 0.0518$	
R-Werte (sämtliche Daten)	$R_1 = 0.0243$, $wR_2 = 0.050$	00	$R_1 = 0.0249$, $wR_2 = 0.0522$	
Extinktionskoeffizient	0.0046(2)		0.0043(2)	
Gewichtung	$w = 1/[\sigma^2(F_o ^2) + 3.00 \cdot P]$		$w = 1/[\sigma^2(F_0 ^2) + (0.0001 \cdot P)^2 + 3.00 \cdot P]$	
größtes Maximum und Minimum				
der letzten Differenz-Fouriersynthese	275 und -577e·mn ⁻³		447 und $-418e \cdot mn^{-3}$	

Tabelle 3.42: Die wichtigsten kristallographischen Daten

 $P = \frac{1}{3} \max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination der Kationen ($M = Zn^{2+}, Ni^{2+}$)

Die Kationen liegen auf einer vierzähligen speziellen Atomlage der Raumgruppe C2/c (*Wyckoff*-Notation 4e). Sie sind oktaedrisch von sechs Wassermolekülen koordiniert. Die Koordinationspolyeder sind unterschiedlich stark verzerrt (Tab.3.43,3.44).

In beiden Verbindungen beträgt der OW(4)–M–OW(1) Winkel symmetriebedingt 180°, da beide Wassermoleküle ebenfalls die spezielle Lage 4e besetzen.

Die Gesamtbindungsordnung des Kations nach *Brown* [17] beträgt im $[Ni(H_2O)_6]^{2+}$ -Oktaeder 2.021 und im $[Zn(H_2O)_6]^{2+}$ -Oktaeder 2.033.

Bindungslängen (pm)						
$Zn[C_6H_2(COOH)_2(COO)_2]\cdot 6H_2O$						
		-	s (Brown [17])			s (Brown [17])
Zn-OW(3)	206.93(14)	2x	0.3578	Zn-OW(1)	211.0(2)	0.3180
Zn-OW(2)	212.29(14)	2x	0.3065	Zn-OW(4)	204.3(2)	0.3866
				Summe	der Bindungsstärl	ken (s): 2.0332
$Ni[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$						
			s (Brown [17])			s (Brown [17])
Ni-OW(3)	204.3(2)	2x	0.3477	Ni-OW(1)	207.4(2)	0.3206
Ni-OW(2)	207.6(2)	2x	0.3189	Ni-OW(4)	202.3(2)	0.3667
Summe der Bindungsstärken (s): 2.0205						

Tabelle 3.43: Bindungslängen in den Koordinationspolyedern

Bindungswinkel (°)						
$Zn[C_6H_2(COOH)_2(CO$	$OO)_2] \cdot 6H_2O$					
OW(4)-Zn- $OW(3)$	87.44(5)	OW(3)#1-Zn-OW(2)	90.41(6)			
OW(3)#1-Zn-OW(3)	174.89(9)	OW(3)-Zn- $OW(2)$	89.95(6)			
OW(4)-Zn- $OW(1)$	180.0	OW(1)-Zn- $OW(2)$	86.04(4)			
OW(3)-Zn- $OW(1)$	92.56(5)	OW(2)#1-Zn- $OW(2)$	172.08(8)			
OW(4)-Zn-OW(2)	93.96(4)					
$Ni[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$						
OW(4)-Ni-OW(3)	87.28(5)	OW(3)#1-Ni-OW(2)	90.07(6)			
OW(3)#1-Ni-OW(3)	174.56(10)	OW(3)-Ni-OW(2)	90.22(6)			
OW(4)-Ni-OW(1)	180.0	OW(1)-Ni-OW(2)	86.94(5)			
OW(3)-Ni-OW(1)	92.72(5)	OW(2)#1-Ni-OW(2)	173.88(9)			
OW(4)-Ni-OW(2)	93.06(5)					

Tabelle 3.44: Bindungswinkel der Koordinationspolyeder

Symmetrietransformation: #1: -x;y;-z+0.5

Die Dihydrogenpyromellitatdianionen

In beiden Verbindungen liegen die Pyromellitatanionen als Dihydrogendianionen vor, sie unterscheiden sich nur unwesentlich in ihren Bindungslängen und -winkeln (Tab.3.45,3.46). Die C–C Bindungen des C₆-Ringes, als auch die C–C Einfachbindungen unterscheiden sich innerhalb eines Anions teils signifikant. Innerhalb der Carboxylatgruppen weisen die Bindungen C(1)–O(1) und C(5)–O(3) den kürzesten Abstand und damit einen deutlichen Doppelbindungscharakter auf [66]. Die C(5)–O(4) Bindungen haben in beiden Verbindungen mit 128.3 pm den größten Abstand, was nicht überrascht, da an O(4) noch das Wasserstoffatom H(2) gebunden ist. Wie in Tabelle 3.47 zu erkennen, sind die Carboxylatgruppen gegenüber dem Kohlenstoffgerüst deutlich verdreht. Aufgrund dessen weisen die Anionen die Punktgruppensymmetrie $\overline{1}$ (C_i) auf.

Tabelle 3.45: Bindungsabstände der Dihydrogenpyromellitatdianionen

Bindungsabstände (pm)						
Zn[C ₆ H ₂ (CO	$Zn[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$					
C(2)-C(3)	139.0(2)	C(1)-C(2)	152.0(2)	O(3)-C(5)	123.4(2)	
C(2)-C(4)	140.9(2)	C(4)-C(5)	151.2(2)	O(4)-C(5)	128.3(2)	
C(3)-C(4)	139.0(2)	O(1) - C(1)	123.5(2)	C(3)-H(1)	94(2)	
		O(2)-C(1)	126.9(2)	O(4)-H(2)	106(3)	
$Ni[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$						
C(2)-C(3)	138.5(3)	C(4)-C(5)	151.1(3)	O(3)-C(5)	123.3(2)	
C(2)-C(4)	141.3(3)	C(1)-C(2)	152.1(3)	O(4)-C(5)	128.3(3)	
C(3)-C(4)	139.0(3)	O(1)-C(1)	123.4(2)	C(3)-H(1)	92(2)	
	~ /	O(2)-C(1)	127.3(3)	O(4)-H(2)	103(4)	

Tabelle 3.46: Bindungswinkel der Dihydrogenpyromellitatdianionen

Bindungswinkel (°)						
$Zn[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$						
C(3)-C(2)-C(4)	117.7(2)	C(2)-C(4)-C(5)	127.4(2)	O(4)-C(5)-C(4)	120.0(2)	
C(3)-C(2)-C(1)	114.9(2)	C(3)-C(4)-C(5)	114.4(2)	O(3)-C(5)-C(4)	119.0(2)	
C(4)-C(2)-C(1)	127.4(2)	O(1)-C(1)-C(2)	118.6(2)	O(3)-C(5)-O(4)	120.9(2)	
C(4)-C(3)-C(2)	124.1(2)	O(2)-C(1)-C(2)	118.4(2)	C(5)-O(4)-H(2)	112(2)	
C(3)-C(4)-C(2)	118.2(2)	O(1)-C(1)-O(2)	122.9(2)	C(4)-C(3)-H(1)	119.8(13)	
				C(2)-C(3)-H(1)	116.1(13)	
$Ni[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$						
C(3)-C(2)-C(4)	117.7(2)	C(3)-C(4)-C(2)	118.0(2)	O(4)-C(5)-C(4)	120.2(2)	
C(3)-C(2)-C(1)	115.1(2)	C(2)-C(4)-C(5)	127.4(2)	O(3)-C(5)-C(4)	118.9(2)	
C(4)-C(2)-C(1)	127.2(2)	O(1)-C(1)-C(2)	118.7(2)	O(3)-C(5)-O(4)	120.8(2)	
C(3)-C(4)-C(5)	114.6(2)	O(2)-C(1)-C(2)	118.6(2)	C(5)-O(4)-H(2)	112(2)	
C(4)-C(3)-C(2)	124.3(2)	O(1)-C(1)-O(2)	122.6(2)	C(4)-C(3)-H(1)	118.0(14)	
				C(2)-C(3)-H(1)	117.7(14)	

Tabelle 3.47: Die Ausgleichsebenen der Dihydrogenpyromellitatdianions

 $Zn[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$ Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: -9.195 x - 2.827 y + 6.869 z = 1.5922Abweichungen von der Ebene (pm): C(1): -0.15 ; C(2): -0.54 ; C(3): 1.08 ; C(4): 1.34 ; C(5): -1.11 ; C(1)A: 0.15; C(2)A: 0.54; C(3)A: -1.09; C(4)A: -1.35; C(5)A: 1.10 mittlere Abweichung von der Ausgleichsebene: 0.85 pm Ebene 2 aus O(3), O(4), C(4), C(5) Ebenengleichung: -15.775 x - 0.466 y + 6.283 z = 3.9616Abweichungen von der Ebene (pm): O(3): -0.57 ; O(4): -0.55 ; C(4): -0.46 ; C(5): 1.58 mittlere Abweichung von der Ausgleichsebene: 0.79 pm Winkel zur Ebene 1: 24.2° Ebene **3** aus O(1), O(2), C(1), C(2) Ebenengleichung: -3.316 x + 0.467 y + 7.237 z = 0.8343Abweichung von der Ebene (pm): O(1): 0.59 ; O(2): 0.58 ; C(1): -1.63 ; C(2): 0.46 mittlere Abweichung von der Ausgleichsebene: 0.82 pm Winkel zur Ebene 1: 25.9°; Winkel zur Ebene 2: 37.7° $Ni[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$ Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: -9.084 x - 2.788 y + 6.833 z = 1.5739Abweichungen von der Ebene (pm): C(1): -0.15 ; C(2): -0.61 ; C(3): 1.19 ; C(4): 1.60 ; C(5): -1.27 ; C(1)A: 0.16; C(2)A: 0.61; C(3)A: -1.20; (4)A: -1.60; C(5)A: 1.27 mittlere Abweichung von der Ausgleichsebene: 0.97 pm Ebene 2 aus O(3), O(4), C(4), C(5)Ebenengleichung: -15.656 x - 0.430 y + 6.246 z = 3.9425Abweichungen von der Ebene (pm): O(3): -0.49 ; O(4): -0.48 ; C(4): -0.40 ; C(5): 1.36 mittlere Abweichung von der Ausgleichsebene: 0.68 pm Winkel zur Ebene 1: 24.3° Ebene 3 aus O(1), O(2), C(1), C(2) Ebenengleichung: -3.257 x + 0.475 y + 7.188 z = 0.8232Abweichung von der Ebene (pm): O(1): 0.60 ; O(2): 0.58 ; C(1): -1.65 ; C(2): 0.47 mittlere Abweichung von der Ausgleichsebene: 0.83 pm Winkel zur Ebene 1: 25.8°; Winkel zur Ebene 2: 37.6°

Struktur

Die Dihydrogenpyromellitatdianionen stapeln sich entlang [001]. Die Kationen werden ausschließlich von Wassermolekülen koordiniert, wobei die Koordinationspolyeder sich ebenfalls in Richtung [001] stapeln. Die daraus resultierende Struktur kann man als "sandwichartig" bezeichnen. In den Abbildungen 3.46 und 3.47 kann man alternierende Schichten aus Koordinationspolyedern und Dihydrogenpyromellitatdianionen erkennen. Die Kationen sind nur über Wasserstoffbrückenbindungen mit den Anionen vernetzt.

In der Literatur wurden bereits ein Hexaaquacobaltdihydrogenpyromellitat [68], sowie ein Hexaaquanickeldihydrogenpyromellitat [67] beschrieben, welche in der Raumgruppe P2/m

kristallisieren. Diese Verbindungen sind mit den hier besprochenen Verbindungen strukturell vergleichbar. Der Unterschied zu den hier besprochenen Verbindungen wird am deutlichsten beim Vergleich der Symmetrie der Dihydrogendianionen. Den Anionen wird in diesen Verbindungen eine 2/m (C_{2h}) Symmetrie zugeordnet. Die Carboxylatgruppen sind nur um etwa 2° bezüglich des Kohlenstoffgerüstes verdreht. Wie auch in Abbildung 3.48 zu erkennen, ist das Wasserstoffatom H(4) nicht an einem Sauerstoffatom O(4) lokalisiert. Dadurch ergibt sich im Molekül eine zusätzliche Spiegelebene.

Abbildung 3.46: Die Struktur der isostrukturellen Verbindungen $Zn[C_6H_2(COOH_2(COO)_2]\cdot 6H_2O$ und $Ni[C_6H_2(COOH_2(COO)_2]\cdot 6H_2O$. Perspektivische Sicht auf (001).

Abbildung 3.47: Strukturausschnitt des $M[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$ (M = Zn²⁺, Ni²⁺). Wasserstoffatome der Wassermoleküle sind aus Übersichtsgründen nicht dargestellt.

Abbildung 3.48: Vergleich der beiden Dihydrogenpyromellitatdianionen. a) Das Anion des Hexaaquanickeldihydrogenpyromellitat in P2/m [67]. b) Das Anion des Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O in C2/c (eigene Arbeit, Ortep Plot).

Wasserstoffbrücken im $M[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$ (M = Ni²⁺, Zn²⁺)

Wasserstoffbrücken spielen in diesen isostrukturellen Verbindungen eine wesentliche Rolle. Die Kationen stehen ausschließlich über Wasserstoffbrückenbindungen mit den Dihydrogenpyromellitatdianionen in Kontakt. Das Carboxylatsauerstoffatom O(3) bildet zwei mittelstarke Wasserstoffbrückenbindungen zu den Wassermolekülen OW(2) und OW(3) aus. OW(3) bildet desweiteren zu O(2) eine Wasserstoffbrückenbindung aus. Die Wassermoleküle
OW(2) und OW(4) stehen mit dem Sauerstoffatom O(1) in Wechselwirkung. Nur OW(1) und OW(2) bilden untereinander eine Wasserstoffbrückenbindung aus. Da das Anion als Dihydrogendianion vorliegt, kommt es zur Ausbildung einer intramolekularen Wasserstoffbrücke zwischen O(4)–H(2) und O(2) (Tab.3.49,3.50).

	Bindungslängen (pm)				
Zn[C ₆ H ₂ (COO	$H)_2(COO)$	$_{2}] \cdot 6 H_{2}O$			
OW(1)-H(11)	78(3)	OW(2)-H(22)	89(3)	OW(3)-H(32)	78(3)
OW(2)-H(21)	81(3)	OW(3)-H(31)	77(3)	OW(4)-H(41)	78(3)
Ni[C ₆ H ₂ (COOI	$H)_2(COO)$	2]·6H2O			
OW(1)-H(11)	87(3)	OW(2)-H(22)	86(3)	OW(3)-H(32)	79(3)
OW(2)-H(21)	83(3)	OW(3)-H(31)	87(3)	OW(4)-H(41)	82(3)
		Bindungswir	nkel (°)		
Zn[C ₆ H ₂ (COO	$H)_2(COO)$	$_{2}] \cdot 6H_{2}O$			
H(11)-OW(1)-H(1	1) 1	04(2)	H(31))-OW(3)-H(32)	108(3)
H(21)-OW(2)-H(2	22) 10	09(2)	H(41)-OW(4)-H(41)	114(3)
Ni[C ₆ H ₂ (COOI	$H)_2(COO)$	2]·6H2O			
H(11)-OW(1)-H(1	1) 1	08(3)	H(31))-OW(3)-H(32)	109(3)
H(21)-OW(2)-H(2	22) 1	08(3)	H(41)-OW(4)-H(41)	111(3)

Tabelle 3.48: Bindungslängen und -winkel der Wassermoleküle

Tabelle 3.49: Wasserstoffbrückenbindungen im Zn[C₆H₂(COOH)₂(COO)₂]·6H₂O

	O…O Abstand (pm)	H…O Abstand (pm)	O-H…O Winkel (°)
$O(4)-H(2)-O(2)^{*}$	241.9	136	170
OW(1)-H(11)····OW(2)	281.6	204	174
OW(2)-H(22)····O(1)	272.7	184	173
OW(2)-H(21)····O(3)	268.7	189	168
OW(3)-H(32)····O(2)	275.6	197	179
OW(3)-H(31)····O(3)	279.2	202	172
OW(4)-H(41)···O(1)	275.4	197	175

* intramolekulare Wasserstoffbrücke

Tabelle 3.50: Wasserstoffbrückenbindungen im Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O

	O…O Abstand (pm)	H…O Abstand (pm)	O-H…O Winkel (°)
$O(4)-H(2)-O(2)^{*}$	241.6	141	167
OW(1)-H(11)···OW(2)	281.8	195	177
OW(2)-H(22)···O(1)	272.8	188	172
OW(2)-H(21)····O(3)	267.9	187	166
OW(3)-H(32)····O(2)	276.4	198	178
OW(3)-H(31)····O(3)	278.5	192	176
OW(4)-H(41)····O(1)	275.6	194	172

* intramolekulare Wasserstoffbrücke

3.4.4. Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O und Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O: Zwei strukturanaloge Dimere

Einkristalle von Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O wurden aus wäßriger Lösung dargestellt. 10ml einer 0.025M 1,10-Phenanthrolinlösung wurden zu 10ml einer 0.05M Co(NO₃)₂-Lösung gegeben. Anschließend wurde das Ganze mit 10ml einer 0.025M Natriumpyromellitatlösung versetzt. Nach 24h (RT) bildeten sich rotfarbene Stäbchen. Das Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O wurde analog dargestellt. Dazu wurden 10ml einer 0.05M Ni(NO₃)₂-Lösung mit je 5ml einer 0.2M 2,2'-Bipyridinlösung und einer 0.05M Natriumpyromellitatlösung versetzt. Anschließend wurden noch 10ml H₂O zugegeben und bei 40°C stehengelassen. In der Lösung entstanden nach 24h blaue Kristalle.

Elementaranalyse	Co(phen)[C	$C_{6}H_{2}(COO)_{4}]_{0.5} \cdot 4H_{2}O$	Ni(2,2'bipy	$V [C_6 H_2 (COO)_4]_{0.5} \cdot 4 H_2 O$
	Ber.(%)	Gef.(%)	Ber.(%)	Gef.(%)
C	46.80	46.80	43.73	43.49
Н	3.93	3.97	4.16	4.44
N	6.42	6.38	6.80	6.81

IR-Spektren

In beiden Spektren (Abb.3.49,3.50) sind die breiten Absorptionsbanden der O–H Valenzschwingungen im Bereich von 3300 cm⁻¹ bis 2900 cm⁻¹ zu erkennen. Dies deutet auf die Ausbildung von Wasserstoffbrückenbindungen hin. Beim $Co(phen)[C_6H_2(COO)_4]_{0.5}$ ·4H₂O ist zusätzlich noch eine scharfe Bande bei 3631 cm⁻¹ zu erkennen. Diese resultiert wahrscheinlich aus einer nahezu freien O–H Valenzschwingung [69], deren Ursache im nicht koordinativ gebundenen Wassermolekül OW(4) liegt. Dessen Protonen H(42) ist nicht an einer Wasserstoffbrückenbindung (Tab.3.62) beteiligt (im Gegensatz zum Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O). In beiden Spektren ist gut die symmetrische Valenzschwingung der COO⁻ Gruppe bei 1381 cm⁻¹ bzw. bei 1369 cm⁻¹ [57] zu erkennen.

Abbildung 3.49: IR-Spektrum des $Co(phen)[C_6H_2(COO)_4]_{0.5}$ ·4H₂O.

Abbildung 3.50: IR-Spektrum des $Ni(2,2^{\circ}bipy)[C_6H_2(COO)_4]_{0.5} \cdot 4H_2O$.

Thermoanalytisches Verhalten

Die thermoanalytische Untersuchung des $Co(phen)[C_6H_2(COO)_4]_{0.5}$ ·4H₂O im Bereich zwischen 25°C und 800°C (Abb.3.51) zeigt einen starken endothermen Prozeß, dessen Höhepunkt bei 173°C liegt und auf die Abgabe des Kristallwassers zurückzuführen ist. Der Gewichtsverlust beträgt hierbei 16.9%. Ab 347°C schließen sich exotherme Zersetzungsprozesse an, deren maximale Reaktionstemperaturen bei 376°C, 456°C und 752°C liegen. Der Zersetzungsrückstand konnte röntgenographisch nicht identifiziert werden (Anhang II). Das Diagramm (Abb.3.52) der Thermoanalyse (25° C bis 600°C) des Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O zeigt drei endotherme Vorgänge, einen zwischen 99°C und 161°C, einen zwischen 161°C und 234°C, sowie einen weiteren Prozeß geringer Wärmetönung, dessen Maximum bei 244°C liegt. Die Gewichtsverluste liegen bei 4.4%, 9.4% und 4.6%, diese werden durch die stufenweise Abgabe des Kristallwassers bestimmt. Es folgen weitere exotherme Zersetzungsreaktionen deren Maxima bei 350°C und 452°C liegen. Der Rückstand konnte ebenfalls nicht eindeutig identifiziert werden (Anhang II).

Abbildung 3.51: Thermisches Verhalten des Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O.

Abbildung 3.52: Thermisches Verhalten des Ni $(2,2^{\circ}bipy)$ [C₆H₂(COO)₄]_{0.5}·4H₂O.

Strukturbeschreibung

Die beiden strukturanalogen Verbindungen kristallisieren in der triklinen Raumgruppe $P\bar{1}$. Reflexintensitäten einer Halbkugel des reziproken Raumes wurden bis zu einem Winkel von $\theta = 25^{\circ}$ gemessen. Die wichtigsten kristallographischen Daten sind in Tabelle 3.51 wiedergegeben.

Kristallagraphische Daten					
	Kristallographische Daten				
	$Co(phen)[C_6H_2(COO)_4]_{0.5} \cdot 4H_2O$	$Ni(2,2'bipy)[C_6H_2(COO)_4]_{0.5}\cdot 4H_2O$			
Summenformel	$C_{17}H_{17}N_2CoO_8$	C ₁₅ H ₁₇ N ₂ NiO ₈			
Kristallsystem	Triklin				
Raumgruppe	$P\bar{1}$ (Nr.2)	1			
Reflexionsbedingung	keine				
Gitterkonstanten	$a = 741.58(7) \text{ pm}$ $\alpha = 66.630(5)^{\circ}$	$a = 758.98(5) \text{ pm} \alpha = 76.910(5)^{\circ}$			
	$b = 1106.27(9) \text{ pm}$ $\beta = 76.400(7)^{\circ}$	$b = 973.16(7) \text{ pm}$ $\beta = 87.378(5)^{\circ}$			
	$c = 1222.65(7) \text{ pm}$ $\gamma = 70.902(9)^{\circ}$	$c = 1197.80(6) \text{ pm } \gamma = 79.790(5)^{\circ}$			
Wellenlänge	, 71.073 pn	a i i i i i i i i i i i i i i i i i i i			
Temperatur	293(2) K				
Elementarzellvolumen	0.86364(12) nm ³	$0.84806(9) \text{ nm}^3$			
Formeleinheiten pro Elementarzelle	2				
Molmasse	436.26 g/mol	412.02 g/mol			
berechnete Dichte	1.678 g/cm^3	1.613 g/cm^3			
Absorptionskoeffizient	1.046 mm^{-1}	1.192 mm^{-1}			
numerische Absorptionskorrektur		min./max. Transmission			
		0.796/0.885			
F (000)	448	426			
Gemessener θ - Bereich	2.08° bis 25.02°	2.18° bis 25.00°			
Indexgrenzen	$0 \le h \le 8$	$0 \le h \le 8$			
	$-11 \leq k \leq 12$	$-11 \leq k \leq 11$			
	$-14 \le 1 \le 14$	$-14 \le 1 \le 14$			
Anzahl der gemessenen Reflexe	3245	3220			
unabhängige Reflexe	2995 ($R_{int} = 0.0169$)	2970 ($R_{int} = 0.0159$)			
Strukturverfeinerung	Vollmatrix Least-S	Squares an $ \mathbf{F} ^2$			
Goodness-of-Fit an $ F ^2$	1.597	1.625			
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0308$, $wR_2 = 0.0575$	$R_1 = 0.0308$, $wR_2 = 0.0569$			
R-Werte (sämtliche Daten)	$R_1 = 0.0388$, $wR_2 = 0.0589$	$R_1 = 0.0395$, $wR_2 = 0.0586$			
Extinktionskoeffizient	0.0011(2)	0.0179(5)			
Gewichtung	$w = 1/\sigma^2($	$ \mathbf{F}_{o} ^{2}$)			
größtes Maximum und Minimum	_	-			
der letzten Differenz-Fouriersynthese	270 und -250e·mn ⁻³	354 und -477e⋅mn ⁻³			

 Tabelle 3.51:
 Die wichtigsten kristallographischen Daten

Die Koordination der Kationen

Die Kationen sind jeweils oktaedrisch koordiniert. Die Koordinationspolyeder sind unterschiedlich stark verzerrt (Tab.3.52,3.53).

 $Co(phen)[C_6H_2(COO)_4]_{0.5} \cdot 4H_2O$

 Co^{2+} wird von einem Carboxylatsauerstoffatom O(1), 3 Molekülen Wasser (OW(1), OW(2) und OW(3)) und den Stickstoffatomen N(1) und N(2) des 1,10-Phenanthrolins umgeben. Die Bindungslängen reichen dabei von 205.9(2) pm bis 213.8(2) pm.

Die Bindungsordnung nach Brese [26] ergibt sich zu 2.199.

Die bei Raumtemperatur durchgeführte magnetische Messung ergab einen Wert von $\mu_{eff} = 5.17 \mu_B / \text{Co}^{2+}$, damit liegt der Komplex in der high-spin Elektronenkonfiguration vor [70].

Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O

Die oktaedrische Koordination um das Ni^{2+} -Kation wird ebenfalls von 3 Wassermolekülen (OW(1), OW(2) und OW(3)), einem Carboxylatsauerstoffatom O(1), sowie von den Stickstoffatomen N(1) und N(2) des 2,2'-Bipyridins aufgestellt. Die Verzerrung des Oktaeders ist hierbei weniger stark ausgeprägt. Die Abstände zum Zentralatom liegen zwischen 205.9(2) pm und 208.4(2) pm. Aufgrund der Abstände liegt die Bindungsordnung nach *Brese* [26] bei 2.151.

Tabelle 3.52:	Bindungsabstände	der K	oordinations	polyeder
---------------	------------------	-------	--------------	----------

Bindungsabstände (pm)					
Co(phen)[C ₆]	$H_2(COO)_4]_0$	5·4H₂O			
	:	s (Brese[26]))		s (Brese[26])
Co-OW(2)	205.9(2)	0.3709	Co-O(1)	209.1(2)	0.3401
Co-OW(1)	211.2(2)	0.3214	Co-N(1)	212.8(2)	0.4591
Co-OW(3)	213.8(2)	0.2603	Co-N(2)	213.8(2)	0.4469
			Summe der	Bindungsstärk	en (s): 2.1987
Ni(2,2'bipy)	$[C_6H_2(COO)]$	$[4]_{0.5} \cdot 4H_2$	С		
	:	s (Brese[26]))		s (Brese[26])
Ni-O(1)	205.9(2)	0.3347	Ni-OW(1)	208.4(2)	0.3347
Ni-OW(3)	205.9(2)	0.3171	Ni-N(1)	207.0(2)	0.4211
Ni-OW(2)	207.9(2)	0.4303	Ni-N(2)	206.2(2)	0.3128
			Summe der	Bindungsstärk	en (s): 2.1507

	Bindungs	winkel (°)	
$Co(phen)[C_6H_2(COC)]$	$(D)_4]_{0.5} \cdot 4H_2O$		
OW(2)-Co-O(1)	99.52(7)	N(2)-Co-OW(3)	98.56(7)
O(1)-Co-OW(1)	83.15(7)	OW(2)-Co-OW(1)	175.44(8)
O(1)-Co-N(1)	92.83(7)	O(1)-Co-OW(3)	91.79(7)
OW(2)-Co-N(2)	92.32(8)	N(1)-Co-OW(3)	171.21(8)
OW(1)-Co-N(2)	85.68(8)	OW(1)-Co-N(1)	97.31(9)
OW(2)-Co-OW(3)	85.58(8)	O(1)-Co-N(2)	164.84(7)
OW(1)-Co-OW(3)	90.66(8)	N(1)-Co- $N(2)$	78.44(8)
		OW(2)-Co-N(1)	86.29(8)
$Ni(2,2'bipy)[C_6H_2(0)]$	$COO_{4}]_{0.5} \cdot 4H_{2}O$		
O(1)-Ni-OW(3)	89.75(7)	OW(2) -Ni-OW(1)	92.09(9)
OW(3)-Ni-N(2)	88.23(8)	O(1) -Ni-N(2)	97.66(7)
OW(3)-Ni-N(1)	91.85(8)	N(1) -Ni-OW(1)	86.80(9)
O(1)-Ni-OW(2)	85.17(7)	OW(3) -Ni-OW(2)	90.55(8)
N(2) -Ni-OW(2)	176.91(8)	N(1) -Ni-OW(2)	97.45(8)
O(1) -Ni-OW(1)	91.48(7)	OW(3) -Ni-OW(1)	177.18(8)
N(2) -Ni-OW(1)	89.09(9)	O(1) -Ni-N(1)	176.91(8)
		N(2) - Ni - N(1)	79.76(8)

Tabelle 3.53: Bindungswinkel der Koordinationspolyeder

Die Pyromellitattetraanionen, das 1,10-Phenanthrolin, sowie das 2,2'-Bipyridin

Die Pyromellitattetraanionen in beiden Verbindungen besitzen die Punktgruppensymmetrie 1 und unterscheiden sich in ihren Bindungslängen und -winkel nur unwesentlich (Tab.3.54). Obwohl nur das Carboxylatsauerstoffatom O(1) am Metallzentrum koordiniert, differieren die C–O Bindungslängen nur geringfügig. Die nicht an der Koordination beteiligten Carboxylatgruppen werden über Wasserstoffbrückenbindungen stabilisiert (s.dort). Die Bindungslängen innerhalb der C₆-Ringe liegen mit 139.1(3) pm bis 139.9(3) pm in einen typischen Bereich für aromatische Systeme [66]. Das Kohlenstoffgerüst der Anionen kann in beiden Fällen als näherungsweise planar angesehen werden. Die Carboxylatgruppen sind bezüglich dieser Ebene verdreht (Tab.3.55,3.56).

Die Bindungslängen und -winkel (Tab.3.57-3.60) des 1,10-Phenanthrolins, sowie des 2,2'-Bipyridins liegen in einem Bereich für die nicht koordinativ gebundenen Moleküle [109,71]. Im 2,2'-Bipyridin sind beide Pyridinringe coplanar (Diederwinkel 1.5°). Die C(10)-C(11) Einfachbindung zwischen den Pyridinringen hat eine Länge von 147.5(4) pm und besitzt nach *Pauling* [19] etwa 10% Doppelbindungscharakter.

Bindungslängen (pm)					
$Co(phen)[C_6H_2]$	$(COO)_4]_{0.5}$	4H ₂ O			
C(1)-C(3)	150.9(3)	C(3)-C(5)	139.3(3)	O(3)-C(2)	125.1(3)
C(2)-C(4)	151.8(3)	C(4)-C(5)	139.1(3)	O(2)-C(1)	124.8(3)
C(3)-C(4)	139.7(3)	O(1)-C(1)	126.0(3)	O(4)-C(2)	125.0(3)
				C(5)-H(9)	97(3)
Ni(2,2'bipy)[C	$_{5}H_{2}(COO)_{4}$	$]_{0.5} \cdot 4H_2O$			
C(1)-C(2)	151.3(3)	C(2)-C(4)	139.9(3)	O(2)-C(1)	125.0(3)
C(4)-C(5)	152.3(3)	C(3)-C(4)	139.2(3)	O(3)-C(5)	124.2(3)
C(2)-C(3)	139.4(3)	O(1)-C(1)	125.8(3)	O(4)-C(5)	125.8(3)
				C(3)-H(1)	94(2)
		Bindungswink	tel (°)		
$Co(phen)[C_6H_2]$	$(COO)_4]_{0.5}$	$4H_2O$			
C(5)-C(3)-C(4)	119.2(2)	C(5)-C(3)-C(1)	119.3(2)	O(2)-C(1)-O(1)	125.7(2)
C(4)-C(3)-C(1)	121.4(2)	C(3)-C(4)-C(2)	123.4(2)	O(4)-C(2)-O(3)	125.9(2)
C(5)#1-C(4)-C(2)	117.4(2)	O(2)-C(1)-C(3)	117.0(2)	O(4)-C(2)-C(4)	115.3(2)
C(4)#1-C(5)-C(3)	121.6(2)	O(1)-C(1)-C(3)	117.3(2)	C(4)-C(5)-H(9)	120(2)
C(5)#1-C(4)-C(3)	119.2(2)	O(3)-C(2)-C(4)	118.8(2)	C(3)-C(5)-H(9)	118(2)
Ni(2,2'bipy)[Ca	$_{5}H_{2}(COO)_{4}$	$]_{0.5} \cdot 4H_2O$			
C(3)-C(2)-C(1)	118.9(2)	C(2)-C(4)-C(5)	123.9(2)	O(2)-C(1)-C(2)	118.7(2)
C(4)-C(3)-C(2)	122.2(2)	C(3)-C(4)-C(5)	117.8(2)	O(2)-C(1)-O(1)	124.9(2)
C(3)-C(2)-C(4)	119.5(2)	O(3)-C(5)-C(4)	117.6(2)	O(3)-C(5)-O(4)	125.1(2)
C(4)#-C(2)-C(1)	121.4(2)	O(4)-C(5)-C(4)	117.1(2)	C(2)-C(3)-H(1)	119(2)
C(3)#-C(4)-C(2)	118.3(2)	O(1)-C(1)-C(2)	116.3(2)	C(4)-C(3)-H(1)	119(2)

Tabelle 3.54: Bindungslängen und -winkel der Pyromellitattetraanionen

Tabelle 3.55: Die Ausgleichsebenen des Pyromellitattetraanions im Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O

Ebene **1** aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: -0.778 x + 6.861 y - 5.386 z = 0.3483 Abweichungen von der Ebene (pm): C(1): 0.43 ; C(2): -0.57 ; C(3): 0.13 ; C(4): 0.16 ; C(5): -1.09 ; C(1)A: -0.43 ; C(2)A: 0.58 ; C(3)A: -0.13 ; C(4)A: -0.16 ; C(5)A: 1.09 mittlere Abweichung von der Ausgleichsebene: 0.48 pm Ebene **2** aus O(1), O(2), C(1), C(3) Ebenengleichung: 3.935 x - 0.469 y + 9.673 z = 6.5980Abweichungen von der Ebene (pm): O(1): -0.11 ; O(2): -0.11 ; C(1): 0.29 ; C(3): -0.08 mittlere Abweichung von der Ausgleichsebene: 0.15 pm Winkel zur Ebene 1: 142.8° Ebene **3** aus O(3), O(4), C(2), C(4) Ebenengleichung: 6.522 x - 1.749 y - 0.130 z = 2.2109 Abweichung von der Ebene (pm): O(3): 0.70 ; O(4): 0.67 ; C(2): -1.88 ; C(4): 0.51 mittlere Abweichung von der Ausgleichsebene: 0.94 pm Winkel zur Ebene 1: 112.0°, Winkel zur Ebene 2: 58.5°

Tabelle 3.56: Die Ausgleichsebenen des Pyromellitattetraanions im Ni(2,2 bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O

Ebene **1** aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: 4.925 x + 5.135 y - 5.938 z = -5.9381Abweichungen von der Ebene (pm): C(1): -4.18; C(2): 2.39; C(3): 6.86; C(4): 2.13; C(5): -4.08; C(1)A: 4.18; C(2)A: -2.39; C(3)A: -6.86; C(4)A: -2.13; C(5)A: 4.08mittlere Abweichung von der Ausgleichsebene: 3.93 pmEbene **2** aus O(1), O(2), C(1), C(2) Ebenengleichung: 3.377 x + 6.141 y - 6.409 z = -6.2938Abweichungen von der Ebene (pm): O(1): -0.49; O(2): -0.50; C(1): 1.37; C(2): -0.38mittlere Abweichung von der Ausgleichsebene: 0.69 pmWinkel zur Ebene 1: 14.7° Ebene **3** aus O(3), O(4), C(4), C(5) Ebenengleichung: 1.441 x + 4.320 y + 11.582 z = 11.4417Abweichung von der Ebene (pm): O(3): 0.79; O(4): 0.78; C(4): 0.59; C(5): -2.16mittlere Abweichung von der Ausgleichsebene: 1.08 pmWinkel zur Ebene 1: 105.5° , Winkel zur Ebene 2: 107.6°

Tabelle 3.57: Bindungslängen des 1,10-Phenanthrolins im Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O

Bindungslänge (pm)					
N(1)-C(17)	136.9(3)	C(7)-C(8)	137.2(4)	C(11)-C(12)	143.1(4)
N(2)-C(16)	135.7(3)	C(8)-C(9)	139.6(4)	C(12)-C(13)	140.2(4)
N(1)-C(6)	131.3(3)	C(9)-C(17)	141.2(3)	C(12)-C(16)	141.3(3)
N(2)-C(15)	132.4(3)	C(9)-C(10)	143.9(4)	C(13)-C(14)	136.3(4)
C(6)-C(7)	140.4(4)	C(10)-C(11)	134.8(4)	C(14)-C(15)	140.6(4)
				C(16)-C(17)	143.0(3)

Die H-Atome wurden geometrisch positioniert, so daß die C-H Bindungen 93 pm betragen.

Tabelle 3.58: Bindungswinkel des 1,10-Phenanthrolins im Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O

	Bindungswinkel (°)					
N(1)-C(17)-C(16)	117.4(2)	C(11)-C(10)-C(9)	120.6(2)			
N(1)-C(6)-(C7)	123.4(3)	C(10)-C(11)-C(12)	122.0(2)			
N(1)-C(17)-C(9)	122.2(2)	C(12)-C(16)-C(17)	119.5(2)			
N(2)-C(15)-C(14)	122.9(3)	C(9)-C(17)-C(16)	120.3(2)			
N(2)-C(16)-C(12)	122.6(2)	C(13)-C(12)-C(16)	117.1(2)			
N(2)-C(16)-C(17)	117.9(2)	C(13)-C(12)-C(11)	124.2(2)			
C(6)-N(1)-C(17)	118.1(2)	C(14)-C(13)-C(12)	120.1(2)			
C(15)-N(2)-C(16)	118.3(2)	C(16)-C(12)-C(11)	118.8(2)			
C(8)-C(7)-(C6)	118.9(3)	C(13)-C(14)-C(15)	118.9(3)			
C(7)-C(8)-(C9)	119.6(3)	C(8)-C(9)-C(10)	123.5(2)			
C(8)-C(9)-(C17)	117.7(2)	C(17)-C(9)-C(10)	118.7(3)			

Tabelle 3.59: Bindungslängen des 2,2'-Bipyridins im Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5'}4H₂O

Bindungslänge (pm)					
N(1)-C(6)	133.4(4)	C(9)-C(10)	138.4(4)	C(10)-C(11)	147.5(4)
N(1)-C(10)	134.8(3)	C(6)-C(7)	138.3(4)	C(11)-C(12)	137.5(4)
N(2)-C(15)	133.6(3)	C(7)-C(8)	136.4(5)	C(12)-C(13)	136.8(5)
N(2)-C(11)	134.4(3)	C(8)-C(9)	136.8(5)	C(13)-C(14)	137.0(5)
				C(14)-C(15)	138.1(4)

Die H-Atome wurden geometrisch positioniert, so daß die C-H Bindungen 93 pm betragen.

Bindungswinkel (°)					
C(6)-N(1)-C(10)	119.2(3)	C(8)-C(7)-C(6)	118.7(3)		
C(15)-N(2)-C(11)	118.9(2)	C(7)-C(8)-C(9)	120.0(3)		
N(1)-C(6)-C(7)	122.1(3)	C(8)-C(9)-C(10)	119.1(3)		
N(1)-C(10)-C(9)	121.0(3)	C(9)-C(10)-C(11)	123.1(3)		
N(1)-C(10)-C(11)	116.0(2)	C(13)-C(12)-C(11)	119.4(3)		
N(2)-C(11)-C(12)	121.3(3)	C(12)-C(11)-C(10)	122.9(3)		
N(2)-C(11)-C(10)	115.7(2)	C(12)-C(13)-C(14)	119.8(3)		
N(2)-C(15)-C(14)	122.3(3)	C(13)-C(14)-C(15)	118.3(3)		

Tabelle 3.60: Bindungswinkel des 2,2'-Bipyridins im Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O

Struktur

Beide Verbindungen liegen als zentrosymmetrische Dimere vor (Abb.3.53,3.54.).

Jeweils ein Pyromellitattetraanion verknüpft dabei zwei Metallzentren. Von den vier möglichen Carboxylatgruppen werden nur zwei zur Koordination genutzt, wobei jeweils nur das Carboxylatsauerstoffatom O(1) am Metall bindet. Weiterhin koordiniert jeweils ein 1,10-Phenanthrolinmolekül bzw. 2,2'-Bipyridinmolekül und Kristallwasser am Metallzentrum.

Im Gegensatz zum $Co_2[C_6H_2(COO)_2]\cdot 18H_2O$ [1] bildet sich keine Kettenstruktur aus, da die Ligatoratome des 1,10-Phenanthrolins bzw. des 2,2'-Bipyridins, als auch die des Pyromellitattetraanions die äquatoriale Position im Koordinationspolyeder einnehmen. Die Dimere sind untereinander über Wasserstoffbrückenbindungen verknüpft.

Abbildung 3.53: Die dimere Struktur des Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O (Ortep Plot).

Abbildung 3.54: Die dimere Struktur des Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O (Ortep Plot).

Wasserstoffbrückenbindungen

 $Co(phen)[C_6H_2(COO)_4]_{0.5}$ ·4H₂O

Da das Pyromellitattetraanion nur über O(1) am Co^{2+} koordiniert, spielen Wasserstoffbrückenbindungen eine wichtige Rolle für die Stabilität des Anions. Hierbei fungieren die nicht am Cobalt gebundenen Carboxylatsauerstoffatome als Protonenakzeptoren. Die sich ausbildenden Wasserstoffbrückenbindungen sind mittlerer bis starker Natur (Tab.3.62). Auch die Wassermoleküle bilden untereinander Wasserstoffbrücken aus, deren O…O Abstände 276.8 pm und 271.2 pm betragen. Die Dimere sind untereinander über die intermolekularen Wasserstoffbrückenbindungen $OW(1)...OW(3)^*$ und $OW(3)...O(3)^*$ verknüpft.

$Ni(2,2'bipy)[C_6H_2(COO)_4]_{0.5} \cdot 4H_2O$

Ähnlich wie in der Cobaltverbindung wird das Anion über Wasserstoffbrückenbindungen stabilisiert. Die nicht am Ni²⁺ koordinierten Carboxylatsauerstoffe agieren auch hier als Protonenakzeptoren, die O···O Abstände bewegen sich in ein Bereich von 267.4 pm bis 299.6 pm (Tab.3.63). Auch hier kommt es zur Ausbildung von intermolekularen Wasserstoffbrücken zwischen $OW(1)\cdots O(4)^*$ und $OW(2)\cdots O(3)^*$. Ferner wird zwischen OW(3) und OW(4) eine starke Wasserstoffbrücke ausgebildet.

^{*} des jeweilig benachbarten Dimers

Bindungslängen (pm)					
$Co(phen)[C_6H_2(COC)]$	$(D)_4]_{0.5} \cdot 4H_2$	0			
OW(1)-H(11)	78(3)	OW(3)-H(31)	74(3)		
OW(1)-H(12)	80(3)	OW(3)-H(32)	75(3)		
OW(2)-H(21)	77(3)	OW(4)-H(41)	97(3)		
OW(2)-H(22)	83(3)	OW(4)-H(42)	73(3)		
$Ni(2,2'bipy)[C_6H_2(0)]$	$(COO)_4]_{0.5} \cdot 4$	4H ₂ O			
OW(1)-H(11)	82(4)	OW(3)-H(31)	96(3)		
OW(1)-H(12)	85(3)	OW(3)-H(32)	74(3)		
OW(2)-H(21)	75(3)	OW(4)-H(41)	90(4)		
OW(2)-H(22)	102(3)	OW(4)-H(42)	79(4)		
Bindungswinkel (°)					
$Co(phen)[C_6H_2(COC)]$	$Co(phen)[C_6H_2(COO)_4]_{0.5}\cdot 4H_2O$				
H(11)-OW(1)-H(12)	106(3)	H(31)-OW(3)-H(32)	106(3)		
H(21)-OW(2)-H(22)	106(3)	H(41)-OW(4)-H(42)	104(3)		
$Ni(2,2'bipy)[C_6H_2(COO)_4]_{0.5}\cdot 4H_2O$					
H(21)-OW(2)-H(22)	103(3)	H(31)-OW(3)-H(32)	107(3)		
H(11)-OW(1)-H(12)	107(3)	H(41)-OW(4)-H(42)	108(4)		

Bindungslängen und -winkel der Wassermoleküle Tabelle 3.61:

Tabelle 3.62: Wasserstoffbrückenbindungen im Co(phen)[C₆H₂(COO)₄]_{0.5}.4H₂O

	O…O Abstand (pm)	H…O Abstand (pm)	O-H…O Winkel (°)
OW(1)-H(11)···OW(3)**	276.8	199	171
OW(1)-H(12)····O(3)	271.7	192	174
OW(2)-H(21)····O(4)	262.0	185	174
OW(2)-H(22)···OW(4)	271.2	189	169
OW(3)-H(31)····O(3)**	278.9	209	157
OW(3)-H(32)····O(2)	259.3	185	172
OW(4)-H(41)····O(4)	272.9	177	168
	C…O Abstand (pm)	H···O Abstand $(pm)^*$	C–H···O Winkel (°) *
C(8)-H(3)···O(2)	338.7	252	155

* Hier wurde die H-Atomlage geometrisch bestimmt. ** intermolekulare Wasserstoffbrücke

Tabelle 3.63: Wasserstoffbrückenbindungen im Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O

	O…O Abstand (pm)	H…O Abstand (pm)	O-H…O Winkel (°)
OW(1)-H(11)····O(2)	270.0	194	154
OW(1)-H(12)····O(4)**	275.0	194	159
OW(2)-H(22)····O(3)**	271.2	170	174
OW(2)-H(21)····O(4)	299.6	225	173
OW(3)-H(31)····O(4)	273.7	178	171
OW(3)-H(32)···OW(4)	268.2	195	174
OW(4)-H(41)····O(2)	267.4	178	173
OW(4)-H(42)····O(3)	278.2	200	169
	C…O Abstand (pm)	H…O Abstand (pm)*	C-H-O Winkel (°) [*]
C(7)-H(3)OW(4)	316.8	235	146

* Hier wurde die H-Atomlage geometrisch bestimmt.

** intermolekulare Wasserstoffbrücke

3.4.5. Co(imi)₂[C₆H₂(COO)₄]_{0.5} - Eine eindimensionale Struktur

Zu einer $0.1M \text{ Co}(\text{NO}_3)_2$ -Lösung wurden je 5ml einer 0.2M Imidazollösung und einer 0.05MNatriumpyromellitatlösung gegeben. Die so erhaltene Lösung wurde noch mit 60ml H₂O versetzt und 24h bei 80°C stehengelassen, worauf sich lilafarbene Kristalle abscheideten.

Elementaranalyse - $Co(imi)_2[C_6H_2(COO)_4]_{0.5}$					
Ber.(%) Gef.(%)					
С	41.27	41.20			
Н	2.83	2.81			
Ν	17.50	17.10			

IR-Spektrum

In Abbildung 3.55 ist das IR-Spektrum dargestellt. Deutlich zu erkennen, sind die Banden der N–H- und C–H Streckschwingung im Bereich zwischen 3300 cm⁻¹ und 2600 cm⁻¹. Die Schwingungen der Carboxylatgruppen sind bei 1592 cm⁻¹ (C=O, v_{as}) und 1367 cm⁻¹ (C–O, v_s) zu beobachten [72]. Die Differenz zwischen v_{as} und v_s von 225 cm⁻¹ läßt vermuten, daß das Co²⁺ einzähnig von den Carboxylatgruppen koordiniert wird [49,73].

Abbildung 3.55: IR-Spektrum des Co(imi)₂[C₆H₂(COO)₄]_{0.5}.

Thermoanalytisches Verhalten

Die Differenzthermoanalyse (Abb.3.56) zeigt einen breiten exothermen Prozeß, dessen Höhepunkt bei etwa 118°C liegt. Ab ca. 364°C schließt sich ein endothermer Vorgang, mit einer maximalen Reaktionstemperatur von 378°C an. Dieser ist verbunden mit einem Gewichtsverlust von 33.8%. Im weiteren Verlauf erkennt man mehrere exotherme und endotherme Vorgänge, deren Höhepunkte bei 455°C, 567°C, 583°C liegen. Ein bei 909°C erkennbares endothermes Ereignis liegt wahrscheinlich in der Umwandlung des Co₃O₄ in CoO begründet. Der Rückstand konnte nicht eindeutig identifiziert werden.

Abbildung 3.56: Thermoanalytische Untersuchung des Co(imi)₂[C₆H₂(COO)₄]_{0.5}.

Strukturbeschreibung

Die Verbindung kristallisiert in der triklinen Raumgruppe P1. Differenzfouriersynthesen lokalisierten die Positionen sämtlicher Wasserstoffatome, die mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen wurden. Sämtliche auf allgemeinen kristallographischen Atome liegen Lagen. Die wichtigsten kristallographischen Daten sind in Tabelle 3.64 angegeben.

Kristallographische Daten				
Summenformel	C ₁₁ H ₉ N ₄ CoO ₄			
Kristallsystem	Triklin			
Raumgruppe	P1 (Nr.2)			
Reflexionsbedingung	keine			
Gitterkonstanten	a = 792.50(10) pm	$\alpha = 116.800(10)^{\circ}$		
	b = 962.9(2) pm	$\beta = 96.750(10)^{\circ}$		
	c = 967.3(2) pm	$\gamma = 102.760(10)^{\circ}$		
Wellenlänge	71.073 pm	• • • • •		
Temperatur	293(2) K			
Elementarzellvolumen	$0.6226(2) \text{ nm}^3$			
Formeleinheiten in der Elementarzelle	1			
Molmasse	320.15 g/mol			
berechnete Dichte	1.709 g/cm^{3}			
Absorptionskoeffizient	1.398 mm ⁻¹			
F (000)	324			
Gemessener θ - Bereich	2.44° bis 24.99°			
Indexgrenzen	$0 \le h \le 9, -9 \le k \le$	≤ 9 , -11 $\leq 1 \leq 11$		
Anzahl der gemessenen Reflexe	2217			
unabhängige Reflexe	$2054 (R_{int} = 0.0169)$	2		
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$			
Goodness-of-Fit an $ F ^2$	1.805			
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0260$, $wR_2 = 0.0657$			
R-Werte (sämtliche Daten)	$R_1 = 0.0291$, $wR_2 = 0$.0574		
Gewichtung	$w = 1/\sigma^2(\mathbf{F}_{\rm o} ^2)$			
größtes Maximum und Minimum der letzten				
Differenz-Fouriersynthese	263 und -228e·mn ⁻³			

Tabelle 3.64: Die wichtigsten kristallographischen Daten des Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Die Koordination des Co²⁺-Kations

 Co^{2+} wird von zwei Carboxylatsauerstoffatomen O(2) und O(4), sowie von den Stickstoffatomen N(1) und N(3) der Imidazolmoleküle tetraedrisch koordiniert (Abb.3.57). Die Co–N Abstände unterscheiden sich nur geringfügig voneinander, während die Co–O Bindungen nicht signifikant verschieden sind. Die Winkel im Koordinationspolyeder weichen deutlich vom Tetraederwinkel ab (Tab.3.65).

Die sich aus den Abständen nach *Brese* [26] errechnete Bindungsordnung ergibt einen Wert von 2.135.

Abbildung 3.57: Die tetraedrische Koordination des Co²⁺ (Ortep Plot).

		- 2+
Tabelle 3 65.	Koordinationspolveder des	Co^{2T}
	Koorumanonsporyeuer ues	5 U U

Bindungslängen (pm)						
		s (Brese[26])			s (Brese[26])	
Co-O(2)	198.3(2)	0.4554	Co-N(1)	200.5(2)	0.6402	
Co-O(4)	198.6(2)	0.4518	Co-N(3)	203.7(2)	0.5872	
			Summe c	ler Bindungsstärke	en (s): 2.1346	
		Bindu	ngswinkel (°)			
O(2)-Co-O(4)	102.88(7))	О	(2)-Co-N(3)	115.85(8)	
O(4)-Co-N(1)	115.31(8)	О	(2)-Co-N(1)	120.49(8)	
O(4)-Co-N(3)	97.19(7))	N	(1)-Co-N(3)	103.09(8)	

Das Pyromellitattetraanion und die Imidazolmoleküle

Das Pyromellitattetraanion liegt auf einem Symmetriezentrum $(0;\frac{1}{2};\frac{1}{2})$ der Lagesymmetrie 1. Die Bindungslängen im C6-Ring unterscheiden sich nicht signifikant, die C-C Einfachbindungen liegen zwischen 151.0(3) pm und 151.8(3) pm. Ein deutlicher Unterschied ist bei den C-O Bindungen innerhalb der Carboxylatgruppen zu erkennen. Die Bindungen C(10)-O(2) und C(11)-O(4) bilden mit 127.5(3) pm und 128.0(3) pm den deutlich längeren Abstand. O(4) und O(2) koordinieren am Co^{2+} -Kation, während O(3) und O(1) eine derartige Bindung nicht betätigen, demzufolge liegen die C(10)–O(1) und C(11)–O(3) Abstände bei 123.6(3) pm und 123.5(3) pm (Tab.3.66). Nach Pauling [19] ergibt sich für die längeren C-O Bindungen ein Doppelbindungsanteil von 40 - 42%, und für die kürzeren C-O Bindungen errechnet sich ein Anteil von 65%. Das Kohlenstoffgerüst des Anions ist planar. Die mittlere Abweichung von einer berechneten Ausgleichsebene beträgt 1.43 Die pm. Carboxylatgruppen sind aus dieser Ebene herausgedreht, die Interplanarwinkel betragen 14.9° und 93.0° (Tab.3.69).

In dieser Verbindung treten zwei kristallographisch unabhängige Imidazolmoleküle (I, II) auf. Die Imidazolmoleküle sind planar, ihre Bindungslängen und Bindungswinkel unterscheiden sich kaum voneinander (Tab.3.67,3.68,3.70). Vergleicht man die Bindungsverhältnisse mit denen eines nicht koordinativ gebundenen Imidazolmoleküls [74], so tritt durch die Koordination am Co^{2+} keine wesentliche Beeinträchtigung auf. Die Moleküle besitzen die Punktgruppensymmetrie m (C_s).

Bindungslängen (pm)					
O(1)-C(10)	123.6(3)	O(4)-C(11)	128.0(3)	C(7)-C(10)	151.0(3)
O(2)-C(10)	127.5(3)	C(7)-C(9)	139.6(3)	C(8)-C(9)	139.1(3)
O(3)-C(11)	123.5(3)	C(7)-C(8)	139.7(3)	C(8)-C(11)	151.8(3)
				C(9)-H(9)	99(3)
		Bindungswinl	kel (°)		
C(9)-C(7)-C(8)	119.3(2)	C(9)-C(8)-C(7)	118.9(2)	O(1)-C(10)-C(7)	120.3(2)
C(8)-C(7)-C(10)	122.6(2)	C(7)-C(8)-C(11)	124.0(2)	O(1)-C(10)-O(2)	122.9(2)
C(9)-C(8)-C(11)	117.0(2)	O(2)-C(10)-C(7)	116.8(2)	O(3)-C(11)-O(4)	124.7(2)
C(8)-C(9)-C(7)	121.8(2)	O(3)-C(11)-C(8)	119.7(2)	C(7)-C(9)-H(9)	117.8(14)
C(9)-C(7)-C(10)	118.1(2)	O(4)-C(11)-C(8)	115.4(2)	C(8)-C(9)-H(9)	120.3(14)

Tabelle 3.66: Bindungslängen und -winkel des Pyromellitattetraanions

Tabelle 3.67: Bindungslängen der Imidazolmoleküle

Bindungslängen (pm)					
Ι					
N(1)-C(3)	132.6(3)	N(2)-C(2)	136.3(5)	C(1)-H(1)	93(3)
N(1)-C(1)	137.6(3)	C(1)-C(2)	134.6(4)	C(2)-H(2)	93(3)
N(2)-C(3)	132.9(4)	N(2)-H(3)	80(3)	C(3)-H(4)	97(3)
I		., .,			
N(3)-C(6)	137.6(3)	N(4)-C(5)	135.6(4)	C(4)-H(5)	93(3)
N(3)-C(4)	131.4(3)	C(5)-C(6)	134.8(4)	C(5)-H(7)	95(3)
N(4)-C(4)	132.7(3)	N(4)-H(6)	89(3)	C(6)-H(8)	87(3)

Tabelle 3.68: Bindungswinkel der Imidazolmoleküle

	Bindungswinkel (°)				
Ι					
C(3)-N(1)-C(1)	106.0(2)	C(1)-C(2)-N(2)	106.5(3)	N(1)-C(3)-H(4)	123(2)
C(3)-N(2)-C(2)	108.0(3)	C(2)-C(1)-H(1)	130(2)	C(3)-N(2)-H(3)	132(3)
C(2)-C(1)-N(1)	109.0(3)	C(1)-C(2)-H(2)	130(2)	C(2)-N(2)-H(3)	120(3)
N(1)-C(3)-N(2)	110.4(3)	N(2)-C(2)-H(2)	123(2)	N(1)-C(1)-H(1)	121(2)
				N(2)-C(3)-H(4)	127(2)
II					
C(4)-N(3)-C(6)	105.1(2)	C(6)-C(5)-N(4)	106.5(3)	C(4)-N(4)-H(6)	127(2)
C(4)-N(4)-C(5)	107.4(2)	N(3)-C(4)-H(5)	125(2)	N(4)-C(5)-H(7)	124(2)
C(5)-C(6)-N(3)	109.2(3)	N(4)-C(4)-H(5)	124(2)	C(5)-N(4)-H(6)	125(2)
N(3)-C(4)-N(4)	111.7(2)	C(6)-C(5)-H(7)	130(2)	C(5)-C(6)-H(8)	127(2)
				N(3)-C(6)-H(8)	124(2)

I

Tabelle 3.69: Die Ausgleichsebenen des Pyromellitattetraanions im Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Ebene **1** aus C(7), C(8), C(9), C(10), C(11), C(7)A, C(8)A, C(9)A, C(10)A, C(11)A Ebenengleichung: -5.004 x + 8.424 y - 1.334 z = 3.5449 Abweichungen von der Ebene (pm): C(7): -0.52 ; C(8): 1.35 ; C(9): 2.34 ; C(10): 1.27 ; C(11): -1.68 ; C(7)A: 0.52 ; C(8)A: -1.35 ; C(9)A: -2.34 ; C(10)A: -1.27 ; C(11)A: 1.68 mittlere Abweichung von der Ausgleichsebene: 1.43 pm Ebene **2** aus O(1), O(2), C(7), C(10) Ebenengleichung: -6.262 x + 6.940 y + 0.331 z = 3.5881 Abweichung von der Ebene (pm): O(1): 0.19 ; O(2): 0.18 ; C(7): 0.14 ; C(10): -0.51 mittlere Abweichung von der Ausgleichsebene: 0.25 pm Winkel zur Ebene 1: 14.9° Ebene **3** aus O(3), O(4), C(8), C(11) Ebenengleichung: 4.541 x + 0.854 y + 4.904 z = 2.7437 Abweichungen von der Ebene (pm): O(3): 0.88 ; O(4): 0.82 ; C(8): 0.66 ; C(4): -2.36 mittlere Abweichung von der Ausgleichsebene: 1.18 pm

Winkel zur Ebene 1: 93.0°, Winkel zur Ebene 2: 97.6°

Tabelle 3.70: Die Ausgleichsebenen der Imidazolmoleküle im Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Ebene 1 aus N(1), N(2), C(1), C(2), C(3) Ebenengleichung: -1.199 x - 1.024 y + 9.027 z = 0.1226 Abweichungen von der Ebene (pm) N(1): 0.04 ; N(2): -0.20 ; C(1): -0.16 ; C(2): 0.22 ; C(3): 0.10 mittlere Abweichung von der Ausgleichsebene: 0.14 pm **II** Ebene 2 aus N(3), N(4), C(4), C(5), C(6) Ebenengleichung: 7.551 x + 0.393 y - 0.959 z = 2.4881 Abweichungen von der Ebene (pm) N(3): -0.47 ; N(4): -0.63 ; C(4): 0.70 ; C(5): 0.32 ; C(6): 0.08 mittlere Abweichung von der Ausgleichsebene: 0.44 pm Winkel zur Ebene 1: 91.3°

Struktur des Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Die Pyromellitattetraanionen werden über die Co^{2+} -Kationen, welche sich zentrosymmetrisch gegenüberstehen, verbunden. Die dadurch entstehenden Ketten (Abb.3.58) verlaufen parallel zu [001]. Die Carboxylatgruppen koordinieren über O(4) und O(2) einzähnig am Co^{2+} . Die Imidazolmoleküle dienen nur zu Auffüllung der Koordinationssphäre des Kations, dabei sind die zwei symmetrieunabhängigen Moleküle um 91.3° gegeneinander verdreht.

Zwischen benachbarten Ketten bestehen keine koordinativen Bindungen. Die Ketten sind nur über N…O Wasserstoffbrückenbindungen miteinander verknüpft (Abb.3.59).

Etwa zeitgleich mit unseren Untersuchungen, berichteten Lu und Mitarbeiter über ein $Zn_2(imi)_4[C_6H_2(COO)_4]\cdot 2H_2O$ [75]. In dieser Verbindung findet man ein völlig analoges kettenförmiges Muster wieder.

Abbildung 3.58: Die Ketten des Co(imi)₂[C₆H₂(COO)₄]_{0.5} (Ortep Plot).

Abbildung 3.59: Die Struktur des Co(imi)₂[C₆H₂(COO)₄]_{0.5} mit Blickrichtung auf (100). Benachbarte Ketten sind nur über Wasserstoffbrückenbindungen verknüpft (gestrichelte Linien).

Wasserstoffbrückenbindungen

In dieser kristallwasserfreien Verbindung agieren die Stickstoffatome N(2), N(4) als Protonendonatoren. Dadurch werden Wasserstoffbrücken zu den Carboxylatsauerstoffatomen O(3) und O(4), der jeweils benachbarten Kette aufgebaut. O(3) ist nicht am Co²⁺ koordiniert und bildet die vergleichsweise stärkere Wasserstoffbrückenbindung zu N(4) aus (Tab.3.71). Desweiteren bilden sich Wasserstoffbrücken zwischen den Kohlenstoffatomen C(1), C(3), C(4) des Imidazols und den Carboxylatsauerstoffatomen O(1) und O(3) aus. Hierbei handelt es sich um vergleichsweise schwache Wechselwirkungen.

	N…O Abstand (pm)	H…O Abstand (pm)	N-H…O Winkel (°)
$N(4)-H(6)-O(3)^{*}$	277.5	189	176
N(2)-H(3)····O(4)*	292.5	216	160
	C…O Abstand (pm)	H····O Abstand (pm)	C–H…O Winkel (°)
$C(1)-H(1)-O(1)^*$	342.4	256	155
C(3)-H(4)····O(3)	321.9	258	123
C(4)-H(5)O(1)	308.7	250	121

Tabelle 3.71: Wasserstoffbrückenbindungen im Co(imi)₂[C₆H₂(COO)₄]_{0.5}

* Wasserstoffbrücke zur benachbarten Kette

3.4.6. $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ · $3H_2O$ - Eine Schichtverbindung

Zu einem Gemisch aus 10ml 2N HNO₃, 5ml H₂O und 10ml 0.1M Natriumpyromellitatlösung wurde solange eine 2M Na₂H₂SiO₄-Lösung zugegeben, bis sich ein pH-Wert von 5.5 einstellte. Nach dem Erstarren des Gels, wurde jenes mit einer Lösung aus äquimolaren Mengen an Cu(NO₃)₂-Lösung und wäßriger Pyrazinlösung überschichtet. Im Verlaufe von 10 Tagen entstanden bei RT hellblaue Kristalle.

Elementaranalyse - $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ · $3H_2O$					
	Ber.(%)	Gef.(%)			
С	29.74	29.33			
Н	3.21	3.12			
Ν	4.95	4.95			

IR-Spektrum

Im Bereich zwischen 3500 cm⁻¹ bis 3400 cm⁻¹ sind die Absorptionsbanden (Abb.3.60) der O–H Valenzschwingungen des Wassers zu erkennen. Die bei 3101 cm⁻¹, 3052 cm⁻¹ und bei 3016 cm⁻¹ auftretenden Banden werden durch C–H Valenzschwingungen hervorgerufen. Valenzschwingungen der Carboxylatgruppen liegen bei 1588 cm⁻¹, 1534 cm⁻¹, sowie bei 1413 cm⁻¹ und 1372 cm⁻¹, was erwarten läßt, daß die Carboxylatgruppen sowohl einzähnig als auch chelatartig koordinieren [49].

Abbildung 3.60: IR-Spektrum des $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ ·3H₂O.

Thermoanalyse

Bei der thermischen Zersetzung (Abb.3.61) der Verbindung tritt ab 115°C ein Gewichtsverlust von 19.7% ein, begleitet von einem endothermen Ereignis, dessen Höhepunkt bei 146°C liegt. Dieser Prozeß ist auf die Abgabe des Kristallwassers zurückzuführen. Zwischen 250°C und 400°C ist ein starker exothermer Prozeß sichtbar. Die maximale Reaktionstemperatur liegt bei 324°C. Bis zum Ende der Heizperiode (1000°C) traten keine weiteren Prozesse auf. Der Rückstand konnte röntgenographisch als CuO identifiziert werden (Anhang II).

Abbildung 3.61: Thermoanalyse des $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ ·3H₂O.

Strukturbeschreibung

Die Verbindung kristallisiert in der triklinen Raumgruppe P1. Die Positionen der Wasserstoffatome wurden der Differenzfourierkarte entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Sämtliche Atome liegen auf allgemeinen kristallographischen Lagen. Die wichtigsten kristallographischen Daten sind in Tabelle 3.72 dargestellt.

Kristallographische Daten				
Summenformel	C7H9NCuO7			
Kristallsystem	Triklin			
Raumgruppe	P1 (Nr.2)			
Reflexionsbedingung	keine			
Gitterkonstanten	a = 723.94(7) pm	$\alpha = 74.24(2)^{\circ}$		
	b = 813.38(14) pm	$\beta = 79.24(2)^{\circ}$		
	c = 931.0(2) pm	$\gamma = 65.451(10)^{\circ}$		
Wellenlänge	71.073 pm	•		
Temperatur	293(2) K			
Elementarzellvolumen	0.47819(14) nm ³			
Formeleinheiten in der Elementarzelle	1			
Molmasse	282.69 g/mol			
berechnete Dichte	1.963 g/cm^3			
Absorptionskoeffizient	2.306 mm^{-1}			
numerische Absorptionskorrektur	min./max. Transmissio	on 0.468/0.681		
F (000)	286			
Gemessener θ - Bereich	2.28° bis 27.03°			
Indexgrenzen	$-1 \le h \le 9$, $-9 \le k$	$\leq 10, -11 \leq 1 \leq 11$		
Anzahl der gemessenen Reflexe	2587			
unabhängige Reflexe	$2083 (R_{int} = 0.0160)$			
Strukturverfeinerung	Vollmatrix Least-Squa	ares an $ \mathbf{F} ^2$		
Goodness-of-Fit an $ F ^2$	1.435			
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0332$, $wR_2 = 0.0332$.0742		
R-Werte (sämtliche Daten)	$R_1 = 0.0351$, $wR_2 = 0.0351$.0750		
Extinktionskoeffizient	0.018(2)			
Gewichtung	$w = 1/[\sigma^2(F_o ^2) + 0.80$	·P]		
größtes Maximum und Minimum der letzten				
Differenz-Fouriersynthese	939 und -807e·mn ⁻³			

Tabelle 3.72: Die wichtigsten kristallographischen Daten des Cu(pyz)_{0.5}[C₆H₂(COO)₄]_{0.5}·3H₂O

 $P = \frac{1}{3} \max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination des Cu²⁺-Kations

Das Cu^{2+} -Kation ist oktaedrisch koordiniert. Die Koordinationssphäre wird von drei Carboxylatsauerstoffatomen O(1), O(2) und O(4), sowie von zwei Wassermolekülen (OW(1) und OW(2)) und einem Stickstoffatom des Pyrazins gebildet (Abb.3.62,Tab.3.73). Im Koordinationspolyeder tritt eine für Kupferverbindungen typische tetragonale Verzerrung auf [76]. Die Cu–N und Cu–O(4) Abstände sind mit 202.0(3) pm und 194.1(2) pm auffallend kleiner als die übrigen Bindungslängen. Diese Stauchung kann u.a. als Folge des *Jahn-Teller*-Effektes [52] angesehen werden. Im Cu²⁺ (3d⁹) ist der energetisch höherliegende e_g-Zustand (d_z²⁻, d_x²⁻y²-Orbital) unsymmetrisch besetzt. Wird das d_x²⁻y²-Orbital zweifach besetzt, kommt es zu einer Verringerung der Elektronendichte in Richtung der z-Achse, so daß der hier vorliegende gestauchte Oktaeder resultiert [77]. Zu bemerken sei, daß die unterschiedlichen Bindungslängen im Koordinationspolyeder nicht allein auf das *Jahn-Teller*-Theorem zurückzuführen sind, sondern auch in den räumlichen und sterischen Gegebenheiten der Kristallstruktur (z.B. Packungseffekte) zu suchen sind. Die Berechnung der Bindungsordnung nach *Brese* [26] ergibt einen Wert von 1.890 und liegt damit etwa 5% unter den Erwartungswert von 2.

Abbildung 3.62: Die Koordinationssphäre des Cu²⁺ (Ortep Plot).

Bindungslängen (pm)					
		s (Brese [26])			s (Brese [26])
Cu-O(4)	194.1(2)	0.4926	Cu-N	202.0(2)	0.3302
Cu-OW(2)	208.5(3)	0.3338	Cu-OW(1)	212.8(3)	0.2972
Cu-O(2)	219.8(3)	0.2459	Cu-O(1)	229.3(3)	0.1902
			Summe der	Bindungsstärk	ten (s): 1.8899
Bindungswinkel (°)					
O(4)-Cu-N	173.3	35(9)	OW(2)-0	Cu-OW(1)	94.70(12)
O(4)-Cu-OW(2)	90.13	5(10)	O(4)-Cu	-O(2)	88.64(9)
N-Cu-OW(2)	92.34	4(10)	N-Cu-O(2)	84.76(10)
O(4)-Cu-OW(1)	94.92	2(10)	OW(2)-0	Cu-O(2)	104.93(12)
N-Cu-OW(1)	91.02	2(10)	OW(1)-0	Cu-O(2)	160.05(11)
O(2)-Cu-O(1)	58.13	3(10)	OW(2)-0	Cu-O(1)	161.95(11)
O(4)-Cu- $O(1)$	83.0	66(9)	OW(1)-0	Cu-O(1)	102.70(11)

Tabelle 3.73: Die Geometrie des Cu^{2+} -Polyeders

Das Pyromellitattetraanion und das Pyrazinmolekül

Das Anion liegt auch hier als Tetraanion vor. Die mittlere Abweichung der Kohlenstoffatome von einer berechneten Ausgleichsebene beträgt 5.51 pm. Die Kohlenstoffatome C(3)/C(3A) und C(4)/C(4A) zeigen dabei die größten Abweichungen. Die Carboxylatgruppen sind bezüglich dieser Ausgleichsebene verdreht (Tab.3.76).

Die Bindungslängen innerhalb des aromatischen Rings unterscheiden sich nicht signifikant. Die Bindungslängen in der Carboxylatgruppe O(2)-C(3)-O(1), welche als Chelatzange wirkt, unterscheiden sich innerhalb der Fehlergrenzen nicht.

Der C(4)–O(3) Abstand ist mit 123.0(4) pm deutlich kleiner, als der C(4)–O(4) Abstand mit 127.8(3) pm (Tab.3.74), was nicht verwundert, da O(3) nicht am Cu²⁺ koordiniert. Vergleicht man die Kation-Sauerstoff Abstände und die entsprechenden Kohlenstoff-Sauerstoff Abstände, so kann man diesbezüglich eine Korrelation feststellen. Sauerstoffatome, welche fester am Cu²⁺ gebunden sind, zeigen einen längeren C–O Abstand (vgl. Tab.3.73). Das Anion besitzt hier die Punktgruppe $\overline{1}$ (C_i).

Das Pyrazinmolekül ist planar, die durchschnittliche Abweichung von der Ausgleichsebene beträgt 0.22 pm (Tab.3.77). Die C(1)–C(2) Bindung beträgt 139.2(4) pm und die N–C Bindungen sind innerhalb der Fehlergrenzen gleich (Tab.3.75). Durch die Koordination am Cu²⁺-Kation wird das delokalisierte π -Elektronensystem nicht beeinträchtigt [18]. Das Molekül kann somit durch eine mmm (D_{2h}) Punktgruppensymmetrie beschrieben werden.

Bindungslängen (pm)					
C(5)-C(7)	139.1(4)	C(4)-C(6)	150.7(4)	O(2)-C(3)	124.6(5)
C(5)-C(6)	139.8(4)	C(3)-C(5)	150.7(4)	O(3)-C(4)	123.0(4)
C(6)-C(7)	139.2(4)	O(1)-C(3)	125.1(5)	O(4)-C(4)	127.8(3)
				C(7)-H(3)	96(4)
		Bindungswin	ikel(°)		
O(2)-C(3)-O(1)	122.0(3)	O(4)-C(4)-C(6)	114.6(2)	C(7)-C(6)-C(4)	120.1(2)
O(3)-C(4)-O(4)	125.8(3)	C(7)-C(5)-C(6)	119.3(3)	C(5)-C(6)-C(4)	120.5(2)
O(1)-C(3)-C(5)	120.0(3)	C(7)-C(5)-C(3)	117.2(2)	C(5)-C(7)-C(6)	121.4(3)
O(2)-C(3)-C(5)	117.7(3)	C(6)-C(5)-C(3)	123.5(2)	C(5)-C(7)-H(3)	119(2)
O(3)-C(4)-C(6)	119.6(3)	C(7)-C(6)-C(5)	119.4(3)	C(6)-C(7)-H(3)	119(2)

Tabelle 3.74: Bindungslängen und -winkel des Pyromellitattetraanions

Tabelle 3.75: Bindungslängen und -winkel im Pyrazin

Bindungslängen (pm)				
C(1)-C(2)	139.2(4)	N-C(2)	133.5(4)	
N-C(1) 133.2(4)		C(1)-H(1)	100(4)	
		C(2)-H(2)	98(4)	
	Bindungs	swinkel (°)		
N-C(1)-C(2)	121.1(3)	C(1)-C(2)-H(2)	120(2)	
N-C(2)-C(1)	121.3(3)	C(2)-C(1)-H(1)	122(2)	
C(1)-N-C(2)	117.7(3)	N-C(1)-H(1)	116(2)	
		N-C(2)-H(2)	119(2)	

Tabelle 3.76: Die Ausgleichsebenen des Pyromellitattetraanions im $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ · $3H_2O$

Ebene 1 aus C(3), C(4), C(5), C(6), C(7), C(3)A, C(4)A, C(5)A, C(6)A, C(7)A Ebenengleichung: 0.012 x + 5.640 y - 4.271 z = 1.3737Abweichungen von der Ebene (pm): C(3): 9.32; C(4): 8.23; C(5): 1.82; C(6): 2.99; C(7): 5.18; C(3)A: -10.25; C(4)A: -8.00; C(5)A: 1.59; C(6)A: -2.76; C(7)A: -4.95mittlere Abweichung von der Ausgleichsebene: 5.51 pmEbene **2** aus O(1), O(2), C(3), C(5) Ebenengleichung: 5.512 x - 1.152 y - 3.323 z = -3.8094Abweichungen von der Ebene (pm): O(1): -5.77; O(2): 1.59; C(3): -71.17; C(5): 75.35mittlere Abweichung von der Ausgleichsebene: 38.47 pmWinkel zur Ebene 1: 96.7° Ebene **3** aus O(3), O(4), C(4), C(6) Ebenengleichung: -2.213 x + 5.154 y - 2.936 z = 1.0827Abweichung von der Ebene (pm): O(3): 0.14; O(4): 0.13; C(4): -0.37; C(6): 0.10mittlere Abweichung von der Ausgleichsebene: 0.18 pmWinkel zur Ebene 1: 21.3° ; Winkel zur Ebene 2: 117.9°

Tabelle 3.77: Die Ausgleichsebenen des Pyrazins im Cu(pyz)_{0.5}[C₆H₂(COO)₄]_{0.5}·3H₂O

Ebene aus C(1), C(2), N, C(1)A, C(2)A, N(A) Ebenengleichung: 4.662 x - 1.625 y - 4.962 z = -3.2935 Abweichungen von der Ebene (pm) C(1): -0.22 ; C(2): -0.22 ; N: 0.22 ; C(1A): 0.22 ; C(2A): 0.22 ; N(A): -0.22 mittlere Abweichung von der Ausgleichsebene: 0.22 pm

Struktur des Cu(pyz)_{0.5}[C₆H₂(COO)₄]_{0.5}·3H₂O

Aus den Cu^{2+} -Kationen und den Pyromellitattetraanionen bilden sich zu [100] parallel verlaufende unendliche Ketten (Abb.3.63). Die Carboxylatgruppen, welche chelatartig oder einzähnig koordinieren, sind jeweils paraständig zueinander angeordnet. Die Chelatbindungen sind asymmetrisch, da der Abstand Cu–O(2) mit 219.8(3) pm wesentlich kürzer ist, als der Cu–O(1) Abstand (229.3(3) pm).

Die Ketten werden über die Pyrazinmoleküle in [011] Richtung verknüpft, so daß eine zweidimensionale Struktur entsteht (Abb.3.64,3.65). Zwischen den Schichten, welche nur über Wasserstoffbrückenbindungen verbunden sind, befindet sich nicht koordinativ gebundenes Kristallwasser (OW(3)).

Abbildung 3.63: Die aus Cu²⁺-Kationen und Pyromellitattetraanionen gebildeten zentrosymmetrischen Ketten (Wassermoleküle sind nicht dargestellt). Ortep Plot

Abbildung 3.64: Struktur des $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ ·3H₂O in Blick auf (010). OW(3) ist nicht eingezeichnet. Pyrazinmoleküle sind mit offenem Bindungsstab dargestellt.

Abbildung 3.65: Die Schichten mit Blick entlang der a-Achse. Wasserstoffbrückenbindungen sind mit gestrichelten Linien eingezeichnet, Pyrazinmoleküle sind mit offenem Bindungsstäben dargestellt.

Wasserstoffbrückenbindungen

Alle Carboxylatsauerstoffatome treten als Protonenakzeptoren in Wasserstoffbrückenbindungen auf (Tab.3.79). Das nicht am Cu^{2+} gebundene Sauerstoffatom O(3) bildet mit 264.0 pm die kürzeste Wasserstoffbrückenbindung aus. Über die starke Wasserstoffbrücke OW(1)···O(1) und der schwachen Wasserstoffbrückenbindung C(1)···O(1) werden die Schichten miteinander verknüpft (Abb.3.65). Die Wassermoleküle bilden untereinander ebenfalls Wasserstoffbrücken aus. Das nicht koordinativ gebundene Wassermolekül OW(3) wird über mittelstarke und schwache Wasserstoffbrücken zwischen den Schichten fixiert und fungiert sowohl als Protonenakzeptor, sowie auch als Protonendonator. Die O···O Abstände liegen hierbei zwischen 273.6 pm und 298.8 pm.

Bindungslängen (pm)					
OW(1)-H(11)	81(5)	OW(2)-H(22)	79(5)		
OW(1)-H(12)	70(5)	OW(3)-H(31)	67(5)		
OW(2)-H(21)	80(5)	OW(3)-H(32)	87(5)		
Bindungswinkel (°)					
H(11)-OW(1)-H(12)	110(5)	H(31)-OW(3)-H(32)	103(5)		
H(21)-OW(2)-H(22)	111(5)				

Tabelle 3.78: Bindungslängen und -winkel der Wassermoleküle

Tabelle 3.79: Wasserstoffbrückenbindungen im $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ · $3H_2O$

	O…O Abstand (pm)	H…O Abstand (pm)	O-H…O Winkel (°)
OW(1)-H(11)····O(3)	264.0	186	164
$OW(1)-H(12)-O(1)^*$	266.6	197	169
OW(2)-H(21)····OW(1)	276.8	197	173
OW(2)-H(22)····OW(3)	273.6	195	171
OW(3)-H(31)····O(2)	298.8	232	174
OW(3)-H(32)····O(4)	290.2	205	165
	C…O Abstand (pm)	H…O Abstand (pm)	C-H···O Winkel (°)
$C(1)-H(1)-O(1)^*$	342.6	244	168

* Wasserstoffbrücke zur benachbarten Schicht

3.4.7. $Mn_4(INS)_2[C_6H_2(COO)_4]_2 \cdot 12H_2O$ - Eine Gerüststruktur

Zu 5ml einer $0.1M \text{ Mn}(\text{NO}_3)_2$ -Lösung und 5ml einer 0.1M Isonicotinsäurelösung wurden 10ml einer 0.025M Natriumpyromellitatlösung gegeben. Bei 55°C bildeten sich innerhalb einer Woche blaßgelbe Kristalle.

Elementaranalyse - $Mn_4(INS)_2[C_6H_2(COO)_4]_2 \cdot 12H_2O$				
	Ber.(%)	Gef.(%)		
С	32.51	32.55		
Н	3.24	3.16		
Ν	2.37	2.45		

IR-Spektrum

Die breite Absorptionsbande für die O–H Valenzschwingung zwischen 3500 cm⁻¹ und 3000 cm⁻¹ wird durch die Bildung von Wasserstoffbrückenbindungen verursacht. Die C–O Schwingungen der Carboxylatgruppen sind bei 1559 cm⁻¹ (v_{as}) und 1379 cm⁻¹ (v_s) zu erkennen. Die Bande bei 1141 cm⁻¹ ist der C–H Deformationsschwingung zuzuordnen (Abb.3.66).

Abbildung 3.66: IR-Spektrum des Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O.

Thermoanalytische Untersuchung

In Abbildung 3.67 ist zwischen 97°C und 129°C ein schwaches endothermes Ereignis zu beobachten. Ein darauf folgender intensiver endothermer Prozeß (Höhepunkt bei 168°C, mit einer Schulter bei 186°C), liegt ein zweistufiger Massenverlust zugrunde. Die erste Stufe (15.8%) ist auf die Abgabe von 10 Mol Kristallwasser pro Formeleinheit zurückzuführen (ber.15.2%). Die zweite Stufe zeigt einen Gewichtsverlust von 2.6%, was durch die Abgabe der restlichen 2 Mol Wasser pro Formeleinheit hervorgerufen wird. Die verbleibende dehydratisierte Stufe ist bis ca. 340°C stabil. Anschließend folgen weitere Zersetzungsvorgänge, eine exotherme Reaktion zwischen 352°C und 482°C, an der sich ein scharfer endothermer Prozeß mit einer maximalen Reaktionstemperatur von 490°C anschließt. Ein bei 903°C einsetzender exothermer Vorgang war bis zum Ende der Heizperiode (1000°C) noch nicht vollständig abgeklungen. Der Rückstand konnte röntgenographisch als Mn₃O₄ (Hausmannit) identifiziert werden (Anhang II).

Abbildung 3.67: Thermoanalyse des $Mn_4(INS)_2[C_6H_2(COO)_4]_2 \cdot 12H_2O$.

Strukturbeschreibung

Die Verbindung kristallisiert in der triklinen Raumgruppe P1. Die Positionen der Wasserstoffatome wurden der Differenzfourierkarte entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Sämtliche Atome liegen auf allgemeinen Lagen. Die wichtigsten kristallographischen Daten sind in Tabelle 3.80 aufgeführt.

Kristallographische Daten			
Summenformel	$C_{32}H_{38}N_2Mn_4O_{32}$		
Kristallsystem	Triklin		
Raumgruppe	P1 (Nr.2)		
Reflexionsbedingung	keine		
Gitterkonstanten	$a = 999.7(2) \text{ pm}$ $\alpha = 101.096(8)^{\circ}$		
	$b = 1314.4(2) \text{ pm}$ $\beta = 92.796(14)^{\circ}$		
	$c = 1645.8(2) \text{ pm}$ $\gamma = 96.03(2)^{\circ}$		
Wellenlänge	71.073 pm		
Temperatur	293(2) K		
Elementarzellvolumen	$2.1053(5) \text{ nm}^3$		
Formeleinheiten in der Elementarzelle	2		
Molmasse	1182.40 g/mol		
berechnete Dichte	1.865 g/cm ³		
Absorptionskoeffizient	1.287 mm ⁻¹		
numerische Absorptionskorrektur	min./max. Transmission 0.779/0.976		
F (000)	1200		
Gemessener θ - Bereich	2.05° bis 25.00°		
Indexgrenzen	$-1 \le h \le 11$, $-15 \le k \le 15$, $-19 \le l \le 19$		
Anzahl der gemessenen Reflexe	8803		
unabhängige Reflexe	$7406 (R_{int} = 0.0286)$		
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$		
Goodness-of-Fit an F ²	1.198		
endgültige R-Werte $[1>2\sigma(1)]$	$R_1 = 0.0369$, $wR_2 = 0.0621$		
R-Werte (sämtliche Daten)	$R_1 = 0.0603$, $wR_2 = 0.0677$		
Extinktionskoeffizient	0.00109(7)		
Gewichtung	$w = 1/\sigma^{2}(\mathbf{F}_{0} ^{2})$		
großtes Maximum und Minimum der letzten	aa. 1 a.a. 3		
Differenz-Fouriersynthese	331 und -318e·mn ⁻³		

Tabelle 3.80: Die wichtigsten kristallographischen Daten des Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O

Die Koordination der Mn²⁺-Kationen

In dieser Struktur liegen vier symmetrieunabhängige Mn^{2+} -Kationen vor (Mn(1), Mn(2), Mn(3), Mn(4)), welche die allgemeinen Lagen der Raumgruppe P1 besetzen. Die Koordinationspolyeder sind unterschiedlich stark verzerrte Oktaeder. Die Koordinations-

sphären (Abb.3.68) bestehen jeweils aus zwei Wassermolekülen, drei Carboxylatsauerstoffatomen der Pyromellitattetraanionen und einem Carboxylatsauerstoffatom stammend von den Isonicotinsäuremolekülen. Die Bindungslängen liegen in einen Bereich von 208.6(2) pm bis 227.3(3) pm (Tab.3.81,3.82), wobei die Wassermoleküle tendenziell den größeren Abstand zum Zentralatom aufweisen. Die Bindungswinkel weichen größtenteils erheblich von den Idealwerten für ein Oktaeder ab. Die Bindungsordnungen nach *Trömel* [78] liegen geringfügig über den Erwartungswert von 2.0. So beträgt die Bindungsordnung für Mn(1) 2.133, für Mn(2) 2.113, für Mn(3) 2.161 und für Mn(4) 2.071. Das magnetische Moment bei RT beträgt $\mu_{eff} = 6.13\mu_B/Mn^{2+}$, somit liegt eine high-spin Elektronenkonfiguration vor.

Abbildung 3.68: Die Koordination der Mn²⁺-Kationen (Ortep Plot).

Bindungsabstände (pm)					
		s (Trömel[78])	· · · ·		s (Trömel[78])
Mn(1)-O(12)	208.6(2)	0.4254	Mn(2)-O(9)	211.0(2)	0.4046
Mn(1)-O(3)	217.0(2)	0.3588	$Mn(2)-O(19)^{*}$	214.9(2)	0.3739
Mn(1)-O(1)	221.5(2)	0.3294	Mn(2)-OW(3)	223.6(2)	0.3169
Mn(1)-OW(2)	227.3(3)	0.2966	Mn(2)-O(7)	214.5(2)	0.3769
Mn(1)-OW(1)	214.7(3)	0.3754	Mn(2)-OW(4)	225.0(2)	0.3090
$Mn(1)-O(18)^*$	218.7(2)	0.3473	Mn(2)-O(2)	221.2(2)	0.3313
	2	Σ=2.1329			Σ=2.1126
		s (<i>Trömel</i> [78])			s (<i>Trömel</i> [78])
$Mn(3)-O(20)^{*}$	212.5(2)	0.3924	Mn(4)-O(13)	215.5(2)	0.3695
Mn(3)-OW(5)	216.3(3)	0.3638	Mn(4)-O(5)	217.4(2)	0.3561
Mn(3)-O(8)	217.7(2)	0.3540	Mn(4)-OW(7)	220.7(3)	0.3344
Mn(3)-OW(6)	221.3(3)	0.3307	$Mn(4)-O(17)^{*}$	216.9(2)	0.3595
Mn(3)-O(16)	216.1(2)	0.3652	Mn(4)-OW(8)	226.6(3)	0.3003
Mn(3)-O(6)	217.6(2)	0.3547	Mn(4)-O(4)	218.1(2)	0.3513
		Σ=2.1608			Σ=2.0711

Tabelle 3.81: Bindungsabstände in den Mn²⁺-Koordinationspolyedern

* Carboxylatsauerstoffatom der Isonicotinsäuremoleküle

Bindungswinkel (°)						
O(12)-Mn(1)-OW(1)	88.03(10)	O(20)-Mn(3)-O(16)	90.24(10)			
OW(1)-Mn(1)-O(3)	167.65(9)	O(16)-Mn(3)-OW(5)	90.44(12)			
OW(1)-Mn(1)-O(18)	92.42(11)	O(16)-Mn(3)-O(6)	178.41(10)			
O(12)-Mn(1)-O(1)	164.42(9)	O(20)-Mn(3)-O(8)	90.67(9)			
O(3)-Mn(1)-O(1)	81.75(8)	OW(5)-Mn(3)-O(8)	168.11(10)			
O(12)-Mn(1)-OW(2)	85.38(10)	O(20)-Mn(3)-OW(6)	168.31(10)			
O(3)-Mn(1).OW(2)	84.87(9)	OW(5)-Mn(3)-OW(6)	90.40(11)			
O(1)-Mn(1)-OW(2)	80.83(9)	O(8)-Mn(3)-OW(6)	77.98(10)			
O(12)-Mn(1)-O(3)	104.29(9)	O(20)-Mn(3)-OW(5)	100.80(11)			
O(12)-Mn(1)-O(18)	98.32(10)	O(20)-Mn(3)-O(6)	90.67(10)			
O(3)-Mn(1)-O(18)	86.73(9)	OW(5)-Mn(3)-O(6)	90.66(12)			
OW(1)-Mn(1)-O(1)	86.10(9)	O(16)-Mn(3)-O(8)	92.67(8)			
O(18)-Mn(1)-O(1)	96.34(9)	O(6)-Mn(3)-O(8)	86.03(9)			
OW(1)-Mn(1)-OW(2)	95.44(11)	O(16)-Mn(3)-OW(6)	93.04(10)			
O(18)-Mn(1)-OW(2)	171.44(10)	O(6)-Mn(3)-OW(6)	85.80(11)			
O(9)-Mn(2)-O(19)	89.41(9)	O(13)-Mn(4)-O(5)	169.35(10)			
O(9)-Mn(2)-O(2)	168.99(9)	O(13)-Mn(4)-O(4)	88.32(9)			
O(19)-Mn(2)-O(2)	88.43(10)	O(5)-Mn(4)-O(4)	87.60(9)			
O(7)-Mn(2)-OW(3)	89.67(9)	O(17)-Mn(4)-OW(7)	90.75(10)			
O(2)-Mn(2)-OW(3)	93.54(10)	O(4)-Mn(4)-OW(7)	176.56(10)			
O(7)-Mn(2)-OW(4)	166.59(9)	O(17)-Mn(4)-OW(8)	173.90(9)			
O(2)-Mn(2)-OW(4)	84.69(9)	O(4)-Mn(4)-OW(8)	93.07(9)			
O(9)-Mn(2)-O(7)	108.34(9)	O(13)-Mn(4)-O(17)	101.33(9)			
O(7)-Mn(2)-O(19)	88.50(9)	O(17)-Mn(4)-O(5)	88.41(9)			
O(7)-Mn(2)-O(2)	82.40(9)	O(17)-Mn(4)-O(4)	88.59(9)			
O(9)-Mn(2)-OW(3)	89.04(9)	O(13)-Mn(4)-OW(7)	95.12(10)			
O(19)-Mn(2)-OW(3)	177.12(10)	O(5)-Mn(4)-OW(7)	89.01(10)			
O(9)-Mn(2)-OW(4)	84.73(9)	O(13)-Mn(4)-OW(8)	84.60(9)			
O(19)-Mn(2)-OW(4)	94.81(10)	O(5)-Mn(4)-OW(8)	85.80(9)			
OW(3)-Mn(2)-OW(4)	87.47(9)	OW(7)-Mn(4)-OW(8)	87.24(10)			

Tabelle 3.82: Bindungswinkel in den Mn²⁺-Koordinationspolyedern

Die Pyromellitattetraanionen und die Isonicotinsäuremoleküle

In dieser Verbindung sind drei kristallographisch unabhängige Pyromellitattetraanionen (I, III) anzutreffen (Tab.3.83,3.84). Wobei nur die Anionen II und III zentrosymmetrisch sind. Die Kohlenstoffgerüste der Anionen können näherungsweise als planar angesehen werden, die Carboxylatgruppen sind unterschiedlich stark aus den jeweiligen Ebenen der Kohlenstoffatome herausgedreht (Tab.3.85). Das Anion I betätigt alle Carboxylatsauerstoffatome zur Koordination an den Mn²⁺-Kationen. Die C–O Bindungslängen liegen in einem Bereich zwischen 124.4(4) pm und 126.6(4) pm, wobei kein Zusammenhang zwischen den C–O Bindungsabstand und den Mn–O Abstand erkennbar ist. Die Anionen II und III betätigen pro Carboxylatgruppe nur ein Sauerstoffatom zur Koordination. Die

Sauerstoffatome welche nicht koordinieren (O(10), O(11), O(14), O(15)), weisen tendenziell einen geringeren C–O Abstand auf.

Beide kristallographisch unterscheidbaren Isonicotinsäuremoleküle (I, II) liegen, infolge von Prototropie, als Zwitterionen ($HN^+C_5H_4COO^-$) vor. Die Carboxylatgruppen koordinieren einzähnig, die C–O Bindungslängen unterscheiden sich nicht signifikant und liegen zwischen der einer typischen Doppel- und Einfachbindung [66]. Die C–C Bindungen der C₅N-Ringe liegen zwischen 137.4(5) pm und 138.9(5) pm und die C–N Bindungen sind innerhalb der Fehlergrenzen gleich (Tab.3.86). Auch die Bindungswinkel der Isonicotinsäuremoleküle unterscheiden sich nur geringfügig voneinander (Tab.3.87). Die C₅N-Ringe sind planar, die Carboxylatgruppen sind annähernd coplanar bezüglich des Ringes (Diederwinkel: I: 0.6°, II: 8.5°, Tab.3.88). Den Molekülen kann somit die Punktgruppe mm2 (C_{2v}) zugeordnet werden.

	Bindungsabstände (pm)					
Ι			* .			
C(1)-C(2)	139.5(4)	C(1)-C(7)	150.3(4)	O(3)-C(8)	126.6(4)	
C(2)-C(3)	139.8(4)	C(2)-C(8)	152.3(4)	O(5)-C(9)	124.5(4)	
C(3)-C(4)	139.4(4)	C(4)-C(9)	151.3(4)	O(6)-C(9)	124.8(4)	
C(4)-C(5)	139.6(4)	C(5)-C(10)	151.5(4)	O(7)-C(10)	124.9(4)	
C(5)-C(6)	138.6(4)	O(2)-C(7)	125.2(4)	O(8)-C(10)	125.4(4)	
C(1)-C(6)	139.1(4)	O(1)-C(7)	126.5(4)	C(3)-H(1)	89(3)	
		O(4)-C(8)	124.4(4)	C(6)-H(2)	93(3)	
Π						
C(11)-C(12)	139.9(4)	C(11)-C(14)	151.3(4)	O(9)-C(14)	126.0(4)	
C(12)-C(13)	139.2(4)	C(12)-C(15)	151.3(4)	O(12)-C(15)	125.5(4)	
C(11)-C(13)	139.0(4)	O(10)-C(14)	124.4(4)	O(11)-C(15)	124.4(4)	
				C(13)-H(3)	92(3)	
III						
C(16)-C(18)	139.3(4)	C(16)-C(19)	150.6(4)	O(14)-C(19)	124.7(4)	
C(16)-C(17)	139.8(4)	C(17)-C(20)	150.9(4)	O(15)-C(20)	124.4(4)	
C(17)-C(18)	138.7(4)	O(13)-C(19)	126.3(4)	O(16)-C(20)	127.2(4)	
				C(18)-H(4)	89(3)	

Tabelle 3.83: Bindungsabstände der Pyromellitattetraanionen

Bindungswinkel (°)					
I		Dindungswink	<i>(</i>)		
C(6)-C(1)-C(2)	119.2(3)	C(3)-C(4)-C(5)	118.7(3)	O(2)-C(7)-C(1)	117.6(3)
C(2)-C(1)-C(7)	122.9(3)	C(5)-C(4)-C(9)	124.8(3)	O(4)-C(8)-O(3)	125.3(3)
C(1)-C(2)-C(8)	126.6(3)	C(6)-C(5)-C(10)	115.6(3)	O(3)-C(8)-C(2)	118.9(3)
C(4)-C(3)-C(2)	122.5(3)	C(5)-C(6)-C(1)	122.5(3)	O(5)-C(9)-C(4)	115.0(3)
C(3)-C(4)-C(9)	116.4(3)	O(7)-C(10)-C(5)	114.8(3)	O(7)-C(10)-O(8)	124.7(3)
C(6)-C(5)-C(4)	118.8(3)	O(2)-C(7)-O(1)	124.2(3)	O(8)-C(10)-C(5)	120.3(3)
C(4)-C(5)-C(10)	125.5(3)	O(1)-C(7)-C(1)	118.2(3)	C(4)-C(3)-H(1)	119(2)
C(6)-C(1)-C(7)	117.8(3)	O(4)-C(8)-C(2)	115.6(3)	C(1)-C(6)-H(2)	117(2)
C(1)-C(2)-C(3)	118.2(3)	O(5)-C(9)-O(6)	124.4(3)	C(2)-C(3)-H(1)	118(2)
C(3)-C(2)-C(8)	115.3(3)	O(6)-C(9)-C(4)	120.6(3)	C(5)-C(6)-H(2)	120(2)
II					
C(13)-C(11)-C(12)	119.4(3)	C(13)-C(12)-C(11)	119.8(3)	O(10)-C(14)-O(9)	125.7(3)
C(12)-C(11)-C(14)	121.0(3)	C(11)-C(12)-C(15)	119.8(3)	O(9)-C(14)-C(11)	116.3(3)
C(13)-C(12)-C(15)	120.4(3)	O(10)-C(14)-C(11)	117.9(3)	O(11)-C(15)-C(12)	118.2(3)
C(11)-C(13)-C(12)	120.8(3)	O(11)-C(15)-O(12)	125.9(3)	C(12)-C(13)-H(3)	118(2)
C(13)-C(11)-C(14)	119.3(3)	O(12)-C(15)-C(12)	116.0(3)	C(11)-C(13)-H(3)	121(2)
III					
C(18)-C(16)-C(19)	119.0(3)	C(18)-C(17)-C(20)	119.1(3)	O(15)-C(20)-O(16)	125.1(3)
C(18)-C(17)-C(16)	120.4(3)	C(17)-C(18)-C(16)	121.3(3)	O(16)-C(20)-C(17)	117.5(3)
C(16)-C(17)-C(20)	120.4(3)	O(14)-C(19)-O(13)	125.2(3)	O(14)-C(19)-C(16)	117.9(3)
C(18)-C(16)-C(17)	118.3(3)	O(13)-C(19)-C(16)	116.9(3)	C(17)-C(18)-H(4)	116(2)
C(17)-C(16)-C(19)	122.8(3)	O(15)-C(20)-C(17)	117.5(3)	C(16)-C(18)-H(4)	123(2)

Tabelle 3.84: Bindungswinkel der Pyromellitattetraanionen

Tabelle 3.85: Die Ausgleichsebenen der Pyromellitattetraanionen im Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O

I Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10) Ebenengleichung: 8.697 x - 7.577 y - 2.066 z = 0.5837Abweichungen von der Ebene (pm): C(1): 1.43 ; C(2): 0.38 ; C(3): -0.58 ; C(4): -3.41 ; C(5): -3.39 ; C(6): 1.17; C(7): 0.54; C(8): -0.47; C(9): 3.69; C(10): 0.65 mittlere Abweichung von der Ausgleichsebene: 1.57 pm Ebene 2 aus O(1), O(2), C(1), C(7) Ebenengleichung: 9.242 x - 6.257 y + 0.734 z = 2.0000Abweichungen von der Ebene (pm): O(1): -0.30 ; O(2): -0.30 ; C(1): -0.24 ; C(7): 0.84 mittlere Abweichung von der Ausgleichsebene: 0.42 pm Winkel zur Ebene 1: 7.6° Ebene **3** aus O(3), O(4), C(2), C(8)Ebenengleichung: 0.777 x + 10.435 y + 6.742 z = 8.6019Abweichungen von der Ebene (pm): O(3): -0.95 ; O(4): -0.94 ; C(2): -0.72 ; C(8): 2.61 mittlere Abweichung von der Ausgleichsebene: 1.31 pm Winkel zur Ebene 1: 106.5°; Winkel zur Ebene 2: 103.1° Ebene 4 aus O(5), O(6), C(4), C(9) Ebenengleichung: 9.029 x + 2.022 y - 7.164 z = 8.1253Abweichungen von der Ebene (pm): O(5): -0.33 ; O(6): -0.35 ; C(4): -0.26 ; C(9): 0.94 mittlere Abweichung von der Ausgleichsebene: 0.47 pm Winkel zur Ebene 1: 50.3°; Winkel zur Ebene 2: 42.7°; Winkel zur Ebene 3: 86.1° Ebene 5 aus O(7), O(8), C(5), C(10) Ebenengleichung: -1.101 x + 11.345 y + 5.417 z = 7.6245Abweichungen von der Ebene (pm): O(7): 0.72 ; O(8): 0.76 ; C(5): 0.57 ; C(10): -2.05 mittlere Abweichung von der Ausgleichsebene: 1.02 pm Winkel zur Ebene 1: 118.5°; Winkel zur Ebene 2: 114.9°; Winkel zur Ebene 3: 12.1° Winkel zur Ebene 4: 93.5°
Fortsetzung Tabelle 3.85

П Ebene 1 aus C(11), C(12), C(13), C(14), C(15), C(11)A, C(12)A, C(13)A, C(14)A, C(15)A Ebenengleichung: 9.238 x + 3.605 y - 3.280 z = 13.0055Abweichungen von der Ebene (pm): C(11): -4.65; C(12): 0.66; C(13): -5.74; C(14): 4.94; C(15): -2.99; C(11)A: 4.64 ; C(12)A: -0.65 ; C(13)A: 5.74 ; C(14)A: -4.94 ; C(15)A: 2.99 mittlere Abweichung von der Ausgleichsebene: 3.79 pm Ebene 2 aus O(9), O(10), C(11), C(14) Ebenengleichung: 6.306 x - 8.458 y + 9.688 z = -1.6274Abweichungen von der Ebene (pm): O(9): 0.52 ; O(10): 0.53 ; C(11): 0.40 ; C(14): -1.44 mittlere Abweichung von der Ausgleichsebene: 0.72 pm Winkel zur Ebene 1: 71.1° Ebene 3 aus O(11), O(12), C(12), C(15) Ebenengleichung: 8.823 x - 4.703 y - 6.076 z = -1.2406Abweichungen von der Ebene (pm); O(11); 0.04 ; O(12); 0.04 ; C(12); 0.03 ; C(15); -0.11 mittlere Abweichung von der Ausgleichsebene: 0.06 pm Winkel zur Ebene 1: 41.6°; Winkel zur Ebene 2: 59.2° Ш Ebene 1aus C(16), C(17), C(18), C(19), C(20), C(16)A, C(17)A, C(18)A, C(19)A, C(20)A Ebenengleichung: 9.494 x - 3.522 y - 4.455 z = 4.9693 Abweichungen von der Ebene (pm): C(16): 0.17; C(17): 2.58; C(18): -2.46; C(19): 1.21; C(20): -2.37; C(16)A: 0.17; C(17)A: -2.58; C(18)A: 2.46; C(19)A: -1.21; C(20)A: 2.37 mittlere Abweichung von der Ausgleichsebene: 1.76 pm Ebene 2 aus O(13), O(14), C(16), C(19) Ebenengleichung: 3.615 x - 9.389 y + 12.208 = -7.3234Abweichungen von der Ebene (pm): O(13): 0.49 ; O(14): 0.50 ; C(16): 0.38 ; C(19): -1.36 mittlere Abweichung von der Ausgleichsebene: 0.68 Winkel zur Ebene 1: 73.1° Ebene **3** aus O(15), O(16), C(17), C(20) Ebenengleichung: -6.525 x + 9.559 y + 4.282 z = 11.3980Abweichungen von der Ebene (pm): O(15): -0.04 ; O(16): -0.04 ; C(17): -0.03 ; C(20): 0.12 mittlere Abweichung von der Ausgleichsebene: 0.06 pm Winkel zur Ebene 1: 146.0°; Winkel zur Ebene 2: 116.9°

Bindungsabstände (pm)					
Ι					
C(21)-C(25)	138.9(5)	C(21)-C(26)	154.3(4)	C(22)-H(5)	88(4)
C(22)-C(23)	138.2(5)	C(23)-N(1)	133.1(5)	C(23)-H(6)	96(4)
C(24)-C(25)	137.4(5)	N(1)-C(24)	133.2(5)	C(24)-H(8)	89(4)
C(21)-C(22)	138.1(5)	C(26)-O(17)	123.6(4)	C(25)-H(9)	88(4)
		C(26)-O(18)	124.5(4)	N(1)-H(7)	93(4)
II					
C(27)-C(31)	138.1(5)	C(30)-C(31)	138.1(5)	C(28)-H(10)	101(4)
C(27)-C(32)	152.2(4)	C(29)-N(2)	133.2(4)	C(29)-H(11)	93(4)
C(27)-C(28)	138.9(5)	N(2)-C(30)	133.2(5)	C(30)-H(13)	95(4)
C(28)-C(29)	137.9(4)	C(32)-O(20)	124.3(4)	C(31)-H(14)	93(4)
		C(32)-O(19)	124.4(4)	N(2)-H(12)	92(4)

Tabelle 3.86: Bindungsabstände der Isonicotinsäuremoleküle

		Bindungswinke	el (°)		
Ι		C			
C(22)-C(21)-C(25)	118.5(3)	C(21)-C(22)-C(23)	119.1(3)	C(25)-C(24)-H(8)	120(2)
C(25)-C(21)-C(26)	120.1(3)	O(17)-C(26)-O(18)	127.5(3)	C(24)-C(25)-H(9)	122(2)
C(24)-C(25)-C(21)	120.2(3)	O(18)-C(26)-C(21)	114.9(3)	C(23)-C(22)-H(5)	122(3)
N(1)-C(23)-C(22)	120.8(4)	O(17)-C(26)-C(21)	117.5(3)	N(1)-C(23)-H(6)	116(2)
C(23)-N(1)-C(24)	121.7(3)	C(21)-C(22)-H(5)	119(2)	C(24)-N(1)-H(7)	119(2)
N(1)-C(24)-C(25)	119.8(3)	C(22)-C(23)-H(6)	124(2)	N(1)-C(24)-H(8)	120(2)
C(22)-C(21)-C(26)	121.4(3)	C(23)-N(1)-H(7)	120(2)	C(21)-C(25)-H(9)	118(2)
II					
C(31)-C(27)-C(32)	119.2(3)	C(29)-N(2)-C(30)	122.1(3)	N(2)-C(30)-H(13)	118(2)
C(29)-C(28)-C(27)	118.8(3)	O(20)-C(32)-C(27)	115.3(3)	C(27)-C(31)-H(14)	116(4)
C(30)-C(31)-C(27)	119.4(3)	O(20)-C(32)-O(19)	126.2(3)	C(29)-C(28)-H(10)	120(2)
C(28)-C(27)-C(32)	121.5(3)	O(19)-C(32)-C(27)	118.4(3)	C(28)-C(29)-H(11)	123(2)
C(31)-C(27)-C(28)	119.3(3)	C(27)-C(28)-H(10)	121(2)	C(29)-N(2)-H(12)	124(2)
N(2)-C(29)-C(28)	120.4(3)	N(2)-C(29)-H(11)	117(2)	C(31)-C(30)-H(13)	122(2)
N(2)-C(30)-C(31)	119.9(3)	C(30)-N(2)-H(12)	114(2)	C(30)-C(31)-H(14)	125(2)

Tabelle 3.87: Bindungswinkel der Isonicotinsäuremoleküle

Tabelle 3.88: Die Ausgleichsebenen der Isonicotinsäuremoleküle im Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O

I Ebene 1 aus C(21), C(22), C(23), C(24), C(25), N(1) Ebenengleichung: 1.630 x + 12.608 y - 4.915 z = 9.6711Abweichungen von der Ebene (pm): C(21): -0.25 ; C(22): 0.32 ; C(23): -0.10 ; C(24): 0.27 ; C(25): -0.04 ; N(1): -0.20 mittlere Abweichung von der Ausgleichsebene: 0.20 pm Ebene 2 aus O(17), O(18), C(21), C(26) Ebenengleichung: 1.723 x - 12.569 y - 4.988 z = 9.7439 Abweichungen von der Ebene (pm): O(17): 0.19 ; O(18): 0.19 ; C(21): 0.13 ; C(26): -0.51 mittlere Abweichung von der Ausgleichsebene: 0.26 pm Winkel zur Ebene 1: 0.6° П Ebene 1 aus C(27),C(28), C(29), C(30), C(31), N(2) Ebenengleichung: 0.516 x + 12.955 y - 4.350 z = 14.8955Abweichungen von der Ebene (pm): C(27): 0.32 ; C(28): 0.27 ; C(29): -0.42 ; C(30): 0.63 ; C(31): -0.76 ; N(2): -0.04 mittlere Abweichung von der Ausgleichsebene: 0.41 pm Ebene 2 aus O(19), O(20), C(27), C(32) Ebenengleichung: -0.836 x - 13.039 y - 5.174 z = 14.0490Abweichungen von der Ebene (pm): O(19): 0.49 ; O(20): 0.47 ; C(27): 0.35 ; C(32): -1.31 mittlere Abweichung von der Ausgleichsebene: 0.66 pm Winkel zur Ebene 1: 8.5°

Struktur des Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O

Über die Mn^{2+} -Kationen werden die Pyromellitattetraanionen zu einer Gerüststruktur verknüpft. Hierbei werden die Tetraanionen I und II über die Mn(1)- und Mn(2)-Kationen und die Tetraanionen I und III über die Mn(3)- und Mn(4)-Kationen verbunden

(Abb.3.69-3.71). Die Pyromellitattetraanionen treten ausschließlich als einzähnige Koordinationspartner auf. Die Bindungen zwischen den Isonicotinsäuremolekülen, welche ausschließlich als O-Donor-Liganden fungieren, und den Mn^{2+} -Kationen bewirken hierbei nur eine zusätzliche Verfestigung der Struktur. Entlang [110] bilden sich hydrophile und hydrophobe kanalartige Hohlräume aus. Die Isonicotinsäuremoleküle ragen hierbei in die hydrophoben Hohlräume hinein, während sich in den hydrophilen Hohlräumen das an Mn^{2+} gebundene, sowie weiteres Kristallwasser befindet. Die hydrophilen Hohlräume sind ca. 720 pm x 1240 pm groß, während die hydrophoben Hohlräume ein Ausmaß von ca. 580 pm x 1510 pm besitzen²).

Desweiteren kann man entlang [100] und [010] noch kleinere Kanäle erkennen (Abb.3.72).

Abbildung 3.69: Verknüpfung der Pyromellitattetraanionen mit Blick in Richtung [010]. Die Pyromellitattetraanionen I,II sind mit offenem Bindungsstab abgebildet, Wasserstoffatome sind nicht dargestellt.

 Abbildung 3.70: Die Gerüststruktur mit Blick in [110]. Zu erkennen sind die hydrophilen (1) und hydrophoben
(2) Hohlräume (Wasserstoffatome sind nicht vollständig eingezeichnet, das Pyromellitattetraanion III ist mit gefülltem Bindungsstab dargestellt).

Abbildung 3.71: Raumfüllende Darstellung (van der Waals Radien) der Gerüststruktur, Wassermoleküle und Isonicotinsäuremoleküle sind nicht dargestellt (Blick in [110]).

Abbildung 3.72: Struktur des Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O in Blick auf (010), Wasserstoffatome sind nicht vollständig abgebildet, das Pyromellitattetraanion **III** ist an den offenen Bindungsstäben erkennbar.

Wasserstoffbrückenbindungen

Die Wassermoleküle werden über Wasserstoffbrückenbindungen zu einem Cluster verbunden (Abb.3.73). Der Cluster besteht aus einem viergliedrigen zentrosymmetrischen Ring (je 2x OW(9), OW(11)), wobei weitere Wassermoleküle mit diesem Ring verbunden sind (OW(1), OW(2), OW(3), OW(4)). Die Wassermoleküle OW(5), OW(6), OW(7), OW(8), OW(10) und OW(12) sind hingegen zu einer verzweigten Kette assoziiert. OW(1), OW(2) und OW(6) treten ausschließlich als Protonendonatoren auf. Mit Ausnahme von OW(9), starke Wasserstoffbrücke zu O(14), bilden nur koordinativ gebundene Wassermoleküle (OW(1) bis OW(8)) Wasserstoffbrückenbindungen zu den Carboxylatsauerstoffatomen der Pyromellitattetraanionen aus. Die O…O Abstände liegen in einem Bereich von 271.7 pm bis 307.0 pm (Tab.3.90). Die Isonicotinsäuremoleküle bilden über die N–H Gruppe starke Wasserstoffatome der Isonicotinsäuremoleküle nicht an Wasserstoffbrückenbindungen beteiligt sind.

		Bindungsläng	en (pm)		
OW(1)-H(15)	91(5)	OW(5)-H(23)	73(5)	OW(9)-H(31)	81(5)
OW(1)-H(16)	73(5)	OW(5)-H(24)	72(5)	OW(9)-H(32)	86(5)
OW(2)-H(17)	75(5)	OW(6)-H(25)	85(5)	OW(10)-H(33)	88(5)
OW(2)-H(18)	88(5)	OW(6)-H(26)	80(5)	OW(10)-H(34)	72(5)
OW(3)-H(19)	72(5)	OW(7)-H(27)	70(5)	OW(11)-H(35)	80(5)
OW(3)-H(20)	96(5)	OW(7)-H(28)	86(5)	OW(11)-H(36)	81(5)
OW(4)-H(21)	80(5)	OW(8)-H(29)	89(5)	OW(12)-H(37)	77(5)
OW(4)-H(22)	81(5)	OW(8)-H(30)	77(5)	OW(12)-H(38)	79.6(10)
		Bindungswir	ıkel (°)		
H(15)-OW(1)-H(16)		102(5)	H(27)-OV	W(7)-H(28)	108(5)
H(17)-OW(2)-H(18)		92(5)	H(29)-OV	V(8)-H(30)	101(5)
H(19)-OW(3)-H(20)		113(5)	H(31)-OV	V(9)-H(32)	106(5)
H(21)-OW(4)-H(22)		96(5)	H(33)-OV	W(10)-H(34)	113(6)
H(23)-OW(5)-H(24)		116(6)	H(35)-OV	W(11)-H(36)	109(5)
H(25)-OW(6)-H(26)		98(5)	H(37)-OV	W(12)-H(38)	97(6)

Tabelle 3.89: Bindungslängen und -winkel der Wassermoleküle

	N…O Abstand (pm)	H…O Abstand (pm)	N–H…O Winkel (°)
N(1)-H(7)···O(11)	265.2	174	167
N(2)-H(12)····O(15)	260.5	169	171
	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(15)····O(14)	285.4	204	150
OW(1)-H(15)····O(15)	304.3	258	113
OW(1)-H(16)OW(3)	287.0	215	167
OW(2)-H(17)···O(13)	291.5	221	156
OW(2)-H(18)OW(11)	282.4	199	159
OW(3)-H(19)····OW(11)	285.3	216	163
OW(3)-H(20)O(8)	279.9	190	156
OW(4)-H(21)O(16)	277.2	197	174
OW(4)-H(22)····O(1)	271.7	196	154
OW(5)-H(23)O(9)	299.4	233	152
OW(5)-H(24)····OW(12)	279.7	209	169
OW(6)-H(25)OW(10)	273.1	189	174
OW(6)-H(26)····O(10)	291.1	212	171
OW(7)-H(27)····O(12)	307.0	247	144
OW(7)-H(27)····O(14)	279.7	234	125
OW(7)-H(28)O(10)	277.5	192	177
OW(8)-H(29)O(3)	281.2	206	142
OW(8)-H(30)-O(6)	278.0	210	147
OW(9)-H(31)OW(4)	283.5	205	163
OW(9)-H(32)O(14)	275.0	190	170
OW(10)-H(33)····OW(12)	275.1	188	168
OW(10)-H(34)····OW(8)	292.2	234	138
OW(11)-H(35)····OW(9)	270.8	191	172
OW(11)-H(36)OW(9)	284.7	208	159
OW(12)-H(37)···OW(7)	301.1	225	169
OW(12)-H(38)OW(5)	279.7	228	123
	C…O Abstand (pm)	H…O Abstand (pm)	C–H···O Winkel (°)
C(22)-H(5)····O(4)	338.1	253	165
C(28)-H(10)····O(7)	334.8	236	169

 $Tabelle \ 3.90: \ Wasserstoff brücken bindungen \ im \ Mn_4 (INS)_2 [C_6 H_2 (COO)_4]_2 \cdot 12 H_2 O$

3.4.8. Die Kettenstruktur des Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O

Diese Verbindung wurde bei 55°C in wäßriger Lösung dargestellt. Dazu wurden zu 5ml einer 0.1M Ni(NO₃)₂-Lösung jeweils 5ml einer 0.2M *trans*-1,4-Diaminocyclohexanlösung und einer 0.05M Natriumpyromellitatlösung gegeben. Ein dabei auftretender Niederschlag wurde mit etwas HNO₃ aufgelöst, anschließend wurden noch 2 bis 3 Spatelspitzen Harnstoff zugegeben. Nach ca. 2 Tagen bildeten sich hellgrüne Stäbchen.

Elementaranalyse - Ni(H ₂ DACH)[C ₆ H ₂ (COO) ₄]·8H ₂ O				
	Ber.(%)	Gef.(%)		
С	33.77	33.63		
Н	6.09	6.02		
Ν	4.90	4.92		

IR-Spektrum

Die breiten Banden zwischen 3400 cm⁻¹ und 3000 cm⁻¹ sind auf O–H und N–H Valenzschwingungen zurückzuführen (Abb.3.74). Die folgenden scharfen Banden bei 2944 cm⁻¹ und 2869 cm⁻¹ repräsentieren C–H Valenzschwingungen. Die Absorptionsbanden bei 1564 cm⁻¹, 1528 cm⁻¹ und 1372 cm⁻¹ sind Schwingungen der Carboxylatgruppe des Pyromellitattetraanions und der N–C Gruppe des *trans*-1,4-Cyclohexyldiammoniumkations.

Abbildung 3.74: IR-Spektrum des Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O.

Thermoanalyse

Die thermoanalytische Untersuchung (Abb.3.75) zeigt einen endothermen Prozeß, dessen Höhepunkt bei 144°C liegt. Jener ist verbunden mit einem Masseverlust von 19.0%, was auf die Abgabe von 6 Molekülen Wasser pro Formeleinheit zurückzuführen ist. Anschließend erfolgt ein weiteres endothermes Ereignis geringerer Wärmetönung (T_{max}: 175°C), dessen Masseverlust mit 6.7% auf die Abgabe der restlichen 2 Mol Kristallwasser pro Formeleinheit (ber. 6.3%) beruht. Die so entstandene dehydratisierte Probe bleibt bis etwa 320°C stabil. Es schließen sich mehrere, teils diffuse exotherme Zersetzungsvorgänge an, deren Höhepunkte bei 352°C, 473°C, 541°C und 722°C liegen. Der Zersetzungsrückstand wurde als NiO identifiziert (Anhang II).

Abbildung 3.75: Thermoanalytische Untersuchung des Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O.

Strukturbeschreibung

Die Verbindung kristallisiert in der triklinen Raumgruppe P1. Röntgenreflexintensitäten wurden bis zu einem Winkel von $\theta = 25.00^{\circ}$ in ω -Abtastung gemessen. Die wichtigsten kristallographischen Daten sind in Tabelle 3.91 angegeben.

Kristallograp	hische Daten
Summenformel	$C_{16}H_{34}N_2NiO_{16}$
Kristallsystem	Triklin
Raumgruppe	P1 (Nr.2)
Reflexionsbedingung	keine
Gitterkonstanten	$a = 691.23(6) \text{ pm}$ $\alpha = 74.208(6)^{\circ}$
	$b = 924.84(5) \text{ pm}$ $\beta = 75.558(7)^{\circ}$
	$c = 1082.43(7) \text{ pm}$ $\gamma = 68.251(6)^{\circ}$
Wellenlänge	71.073 pm
Temperatur	293(2) K
Elementarzellvolumen	$0.60985(7) \text{ nm}^3$
Formeleinheiten in der Elementarzelle	1
Molmasse	569.16 g/mol
berechnete Dichte	1.550 g/cm^3
Absorptionskoeffizient	0.875 mm ⁻¹
numerische Absorptionskorrektur	min./max. Transmission 0.90/0.94
F (000)	300
Gemessener θ - Bereich	2.42° bis 25.00°
Indexgrenzen	$-1 \le h \le 8$, $-10 \le k \le 10$, $-12 \le 1 \le 12$
Anzahl der gemessenen Reflexe	2710
unabhängige Reflexe	$2129 (R_{int} = 0.0144)$
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$
Goodness-of-Fit an $ F ^2$	1.221
endgültige R-Werte $[I>2\sigma(I)]$	$R_1 = 0.0256$, $wR_2 = 0.0535$
R-Werte (sämtliche Daten)	$R_1 = 0.0284$, $wR_2 = 0.0545$
Extinktionskoeffizient	0.0027(11)
Gewichtung	$w = 1/[\sigma^2(\mathbf{F}_0 ^2) + 0.30 \cdot \mathbf{P}]$
größtes Maximum und Minimum der letzten	
Differenz-Fouriersynthese	261 und -203e.nm ⁻³

Tabelle 3.91: Die wichtigsten kristallographischen Daten des Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O

 $P = \frac{1}{3} \max(|F_0|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination des Ni²⁺-Kations

Das Ni²⁺-Kation besetzt die spezielle Atomposition 1a der Lagesymmetrie $1\bar{1}$ und wird oktaedrisch koordiniert. Die oktaedrische Koordination wird in den axialen Positionen von zwei Carboxylatsauerstoffatomen (2x O(3)) und in der Äquatorebene von vier Wassermolekülen (2x OW(1) und 2x OW(2)) aufgestellt. Die Bindungsabstände liegen zwischen 205.82(12) und 208.11(13) pm (Tab.3.92). Die Bindungsordnung nach *Brown* [17] beträgt 1.963.

			Bindungs	längen (pm)			
			s (Brown[17])				s (Brown[17])
Ni-O(3)	205.82(12)	2x	0.3341	Ni-OW(2)	208.11(13)	2x	0.3147
Ni-OW(1)	205.96(14)	2x	0.3328				
					Summe der Bindun	gsstäi	ken (s): 1.9632
			Bindung	swinkel (°)			
O(3)#1-Ni-O(3	3)	180.	0		OW(1)-Ni-OW(1)#	1	180.0
O(3)-Ni-OW(1	1)#1 88	3.02(5	5)		O(3)-Ni-OW(2)		92.48(5)
O(3)-Ni-OW(1	l) 91	.98(:	5)		OW(1)-Ni-OW(2)		91.53(6)
O(3)-Ni-OW(2	2) 87	7.52(5	5)		OW(2)-Ni-OW(2)#	1	180.0
					OW(1)-Ni-OW(2)#	1	88.47(6)

Tabelle 3.92:	Die Geometrie des M	Ni ²⁺ -Koordinationspo	lveders
			- ,

Symmetrietransformation: #1: -x;-y;-z

Das Pyromellitattetraanion und das trans-1,4-Cyclohexyldiammoniumkation

Das Pyromellitattetraanion liegt auf einem kristallographischen Symmetriezentrum ($\frac{1}{2}$;0; $\frac{1}{2}$). Die C–C Bindungen des C₆-Ringes liegen zwischen 138.8(3) pm und 139.9(3) pm. Für die C–C Einfachbindungen ergeben sich Werte von 151.1(2) pm (C(4)–C(7)) und 150.8(2) pm (C(5)–C(8)). Die C–O Bindungen der Carboxylatgruppen unterscheiden sich signifikant. Da O(3) am Ni²⁺-Kation koordiniert und O(1) in drei mittel- bis starken Wasserstoffbrückenbindungen involviert ist, besitzen jene C–O Bindungen den größten Bindungsabstand (Tab.3.93). Das Kohlenstoffgerüst weicht nur wenig von der Planarität ab (Tab.3.94). Die mittlere Abweichung zu einer berechneten Ausgleichsebene beträgt 2.45 pm. Die Carboxylatgruppen sind aus dieser Ebene herausgedreht. Der Interplanarwinkel für die Carboxylatgruppe mit C(7) beträgt 128.6° und jener mit C(8) 129.1°.

Das *trans*-1,4-Cyclohexyldiammoniumkation liegt in der typischen Sesselformation (Abb.3.76) vor. Die N–C Bindungen haben einen Abstand von 149.4(3) pm, die C–C Bindungen liegen in einen für C–C Einfachbindungen typischen Bereich von 151.8(3) pm bis 153.1(3) pm (Tab.3.95). Das Molekül kann man näherungsweise mit einer 2/m (C_{2h}) Punktgruppensymmetrie beschreiben.

Abbildung 3.76: Das *trans*-1,4-Cyclohexyldiammoniumkation im $Ni(H_2DACH)[C_6H_2(COO)_4]\cdot 8H_2O$ (Ortep Plot).

		Bindungsläng	en (pm)		
C(4)-C(5)	139.9(3)	C(4)-C(7)	151.1(2)	C(7)-O(2)	124.1(2)
C(4)-C(6)	139.4(3)	C(5)-C(8)	150.8(2)	C(8)-O(3)	126.9(2)
C(5)-C(6)	138.8(3)	C(7)-O(1)	126.7(2)	C(8)-O(4)	124.3(2)
				C(6)-H(9)	92(2)
Bindungswinkel (°)					
C(6)-C(4)-C(5)	119.0(2)	C(6)-C(5)-C(4)	119.9(2)	O(3)-C(8)-C(5)	116.0(2)
C(5)-C(4)-C(7)	122.0(2)	C(4)-C(5)-C(8)	120.7(2)	O(2)-C(7)-O(1)	126.1(2)
C(6)-C(5)-C(8)	119.4(2)	O(1)-C(7)-C(4)	117.3(2)	O(4)-C(8)-O(3)	125.5(2)
C(5)-C(6)-C(4)	121.1(2)	O(4)-C(8)-C(5)	118.5(2)	C(4)-C(6)-H(9)	118.6(12)
C(6)-C(4)-C(7)	119.0(2)	O(2)-C(7)-C(4)	116.6(2)	C(5)-C(6)-H(9)	120.2(12)

Tabelle 3.93: Bindungslängen und -winkel des Pyromellitattetraanions

Tabelle 3.94: Die Ausgleichsebenen des Pyromellitattetraanions im Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O

Ebene **1** aus C(4), C(5), C(6), C(7), C(8), C(4)A, C(5)A, C(6)A, C(7)A, C(8)A Ebenengleichung: -1.962 x + 7.209 y + 0.093 z = 1.0275 Abweichungen von der Ebene (pm): C(4): 0.78 ; C(5): 2.02 ; C(6): 4.21 ; C(7): -2.32 ; C(8): -2.92 ; C(4)A: -0.78 ; C(5)A: -2.02 ; C(6)A: -4.21 ; C(7)A: 2.32 ; C(8)A: 2.92 mittlere Abweichung von der Ausgleichsebene: 2.45 pm Ebene **2** aus O(1), O(2), C(4), C(7) Ebenengleichung: 5.734 x - 0.992 y - 2.141 z = -3.9983Abweichungen von der Ebene (pm): O(1): 0.13 ; O(2): 0.13 ; C(4): 0.10 ; C(7): -0.37 mittlere Abweichung von der Ausgleichsebene: 0.18 pm Winkel zur Ebene 1: 128.6° Ebene **3** aus O(3), O(4), C(5), C(8) Ebenengleichung: 5.376 x - 0.524 y + 6.531 z = 0.5058Abweichung von der Ebene (pm): O(3): 0.25 ; O(4): 0.26 ; C(5): 0.20 ; C(8): -0.71 mittlere Abweichung von der Ausgleichsebene: 0.35 pm Winkel zur Ebene 1: 129.1° ; Winkel zur Ebene 2: 50.1°

Bindungsabstände (pm)					
N-C(1)	149.4(3)	N-H(1)	91(3)	C(2)-H(5)	98(3)
C(1)-C(2)	152.0(3)	N-H(2)	100(3)	C(2)-H(6)	103(3)
C(1)-C(3)	151.8(3)	N-H(3)	88(3)	C(3)-H(7)	104(3)
C(2)-C(3)	153.1(3)	C(1)-H(4)	98(3)	C(3)-H(8)	94(3)
		Bindungswin	kel (°)		
N-C(1)-C(2)	100.1(2)	C(1)-N-H(3)	110(2)	C(1)-C(2)-H(5)	110(2)
N-C(1)-C(3)	109.0(2)	H(1)-N-H(2)	105(2)	C(1)-C(2)-H(6)	109.5(14)
C(3)-C(1)-C(2)	111.4(2)	H(1)-N-H(3)	109(2)	C(1)-C(3)-H(8)	112(2)
C(1)-C(2)-C(3)	109.7(2)	H(2)-N-H(3)	109(2)	C(3)-C(2)-H(5)	109(2)
C(1)-C(3)-C(2)	110.8(2)	N-C(1)-H(4)	104(2)	C(3)-C(2)-H(6)	110.1(14)
C(1)-N-H(1)	113(2)	C(3)-C(1)-H(4)	114(2)	C(2)-C(3)-H(7)	107.8(14)
C(1)-N-H(2)	110(2)	C(2)-C(1)-H(4)	108(2)	C(2)-C(3)-H(8)	109(2)
				H(7)-C(3)-H(8)	108(2)

Tabelle 3.95: Bindungsabstände und -winkel des trans-1,4-Cyclohexyldiammoniumkations

Struktur

Die Pyromellitattetraanionen werden über die Ni²⁺-Kationen zu unendlich langen Ketten der Zusammensetzung {Ni(H₂O)₄[C₆H₂(COO)₄]}_n²ⁿ⁻ verknüpft. Die negativen Überschußladungen dieser Ketten werden durch die *trans*-1,4-Cyclohexyldiammoniumkationen, welche sich mit weiterem Kristallwasser zwischen den Ketten befinden, kompensiert. Die Ketten verlaufen entlang der Flächendiagonalen [101]. Entlang der [010] Richtung ist eine Stapelung dieser Polyanionenketten in ...AAA... Folge erkennbar (Abb.3.77-3.79). Die lineare Überschußladungsdichte beträgt 0.177 e/Å. Aufgrund des großen Abstandes (925 pm) ist keine Wechselwirkung zwischen den aromatischen Systemen zu erwarten [29,53,54].

Abbildung 3.77: Die Polyanionenkette des Ni(H2DACH)[C6H2(COO)4]·8H2O (Ortep Plot).

Abbildung 3.78: Verlauf und Anordnung der Polyanionenketten, Wassermoleküle sind nicht eingezeichnet (Blick in Richtung [010]).

Abbildung 3.79: Die Struktur des Ni(H2DACH)[C6H2(COO)4]·8H2O in Blick auf (100).

Wasserstoffbrückenbindungen

Wasserstoffbrückenbindungen spielen für die Stabilität der Struktur einen wichtige Rolle, da insbesondere das Pyromellitattetraanion über Wasserstoffbrückenbindungen stabilisiert wird. Das *trans*-1,4-Cyclohexyldiammoniumkation tritt als Protonendonator auf. Mit der Polyanionenkette ist es über die mittelstarke Wasserstoffbrückenbindung N–H(3)…O(3) verbunden. Desweiteren bilden sich noch Brücken zu den Wassermolekülen OW(2), OW(3) und OW(4) aus, deren N…O Abstände zwischen 284.2 pm und 291.1 pm liegen.

O(1) tritt in drei Wasserstoffbrücken als Protonenakzeptor auf. Die O···O Abstände dieser mittel- bis starken Wechselwirkungen liegen zwischen 273.1 pm und 283.1 pm. O(2) und O(4) bilden teilweise sehr starke Wasserstoffbrücken zu den Wassermolekülen OW(1), OW(2) und OW(4) aus. OW(1) tritt ausschließlich als Protonendonator auf. Nur die Wassermoleküle OW(3) und OW(4) bilden untereinander Wasserstoffbrückenbindungen aus, wobei sie abwechselnd als Protonenakzeptoren und als Protonendonatoren fungieren (Tab.3.97).

Tabelle 3.96: Bindungslängen und -winkel der Wassermoleküle

	Bindun	gslängen (pm)	
OW(1)-H(11)	84(3)	OW(3)-H(31)	75(3)
OW(1)-H(12)	79(3)	OW(3)-H(32)	88(3)
OW(2)-H(21)	90(3)	OW(4)-H(41)	82(3)
OW(2)-H(22)	79(3)	OW(4)-H(42)	86(3)
	Bindu	ngswinkel (°)	
H(11)-OW(1)-H(12)	108(3)	H(31)-OW(3)-H(32)	105(3)
H(21)-OW(2)-H(22)	104(3)	H(41)-OW(4)-H(42)	106(3)

Tabelle 3.97:	Wasserstoffbrückenbindungen im Ni(H2DACH)[C6H2(COO)4]·8H2O
---------------	--

	N…O Abstand (pm)	H…O Abstand (pm)	N-H…O Winkel (°)
N-H(1)····Ow(3)	291.1	207	154
N-H(2)····Ow(4)	284.2	185	173
N-H(3)····Ow(2)	290.1	245	112
N-H(3)····O(3)	289.1	202	168
	O…O Abstand (pm)	H···O Abstand (pm)	O-H…O Winkel (°)
Ow(1)-H(11)O(1)	282.4	199	175
Ow(1)-H(12)O(2)	263.8	185	178
Ow(2)-H(21)····O(4)	268.3	181	161
Ow(2)-H(22)O(1)	273.1	199	156
Ow(3)-H(31)Ow(4)	301.5	236	147
Ow(3)-H(32)O(4)	273.5	187	166
Ow(4)-H(41)Ow(3)	289.2	208	169
Ow(4)-H(42)···O(1)	283.1	199	167

3.4.9. Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O - Eine Hohlraumstruktur

Diese Verbindung wurde in wäßriger Lösung bei 80°C dargestellt. Dazu wurde zu 5ml einer 0.1M Co(NO₃)₂-Lösung das gleiche Volumen einer 0.2M *trans*-1,4-Diaminocyclohexanlösung gegeben. Der hierbei auftretende Niederschlag wurde mit wenig 2M HNO₃ aufgelöst. Zu dieser Lösung wurden noch 5ml einer 0.05M Natriumpyromellitatlösung, sowie 2 Spatelspitzen Harnstoff gegeben. Nach etwa 48h bildeten sich lilafarbene Kristalle.

Elementaranalyse	e - Co(H ₂ DACH)[$C_6H_2(COO)_4]\cdot 2H_2O$
	Ber.(%)	Gef.(%)
С	41.66	41.49
Н	4.81	4.62
Ν	6.07	5.97

IR-Spektrum

In Abbildung 3.80 ist das IR-Spektrum dargestellt. Die Banden im Bereich zwischen 3500 cm⁻¹ bis 2800 cm⁻¹ sind den O–H, N–H und den C–H Valenzschwingungen zuzuordnen. Die typischen Banden bei 1573 cm⁻¹ und 1376 cm⁻¹ werden hauptsächlich von den Carboxylatgruppen des Pyromellitattetraanions verursacht.

Abbildung 3.80: IR-Spektrum des Co(H2DACH)[C6H2(COO)4]·2H2O.

Thermoanalyse

Zu erkennen ist ein endothermes Ereignis, dessen Maximum bei 198°C liegt (Abb.3.81). Der damit verbunden Gewichtsverlust von 8.2% ist auf die Abgabe des Kristallwassers zurückzuführen. Die dehydratisierte Stufe bleibt bis 361°C stabil, danach setzt ein zweiter, scharfer endothermer Prozeß ein. Die maximale Reaktionstemperatur beträgt hierbei 380°C. Der Gewichtsverlust von 26.1%, wird durch die Abgabe des Amins verursacht (ber. 24.7%). Ein weiterer exothermer Vorgang mit geringerer Wärmetönung ist zwischen 498°C und 558°C zu erkennen. Es schließt sich ein breiter exothermer Prozeß an, dessen Maxima bei etwa 783°C liegt. Im Zersetzungsrückstand konnte röntgenographisch CoO nachgewiesen werden (Anhang II).

Abbildung 3.81: Thermoanalyse des $Co(H_2DACH)[C_6H_2(COO)_4]\cdot 2H_2O$.

Strukturbeschreibung

Röntgenbeugungssymmetrie und Reflexionsbedingungen führten auf die monokline Raumgruppe C2/c. Die Positionen der Wasserstoffatome wurden der Differenzfourierkarte entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Es wurde eine numerische Absorptionskorrektur durchgeführt. Die wichtigsten kristallographischen Daten sind in Tabelle 3.98 angegeben.

Kristallogra	phische Daten
Summenformel	$C_{16}H_{22}N_2CoO_{10}$
Kristallsystem	Monoklin
Raumgruppe	C2/c (Nr.15)
Reflexionsbedingungen	hkl: $h + k = 2n$
	h01: $h + 1 = 2n$
Gitterkonstanten	a = 1065.92(8) pm
	$b = 1568.97(9) \text{ pm}$ $\beta = 90.101(6)^{\circ}$
	c = 1140.88(9) pm
Wellenlänge	71.073 pm
Temperatur	293(2) K
Elementarzellvolumen	$1.9080(2) \text{ nm}^3$
Formeleinheiten in der Elementarzelle	4
Molmasse	461.29 g/mol
berechnete Dichte	1.606 g/cm^3
Absorptionskoeffizient	0.958 mm ⁻¹
numerische Absorptionskorrektur	min./max. Transmission 0.79/0.87
F (000)	956
Gemessener θ - Bereich	2.31° bis 25.00°
Indexgrenzen	$-12 \le h \le 12$, $-18 \le k \le 18$, $-13 \le l \le 12$
Anzahl der gemessenen Reflexe	3564
unabhängige Reflexe	$1694 (R_{int} = 0.0246)$
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$
Goodness-of-Fit an $ F ^2$	1.228
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0233$, $wR_2 = 0.0511$
R-Werte (sämtliche Daten)	$R_1 = 0.0269$, $wR_2 = 0.0521$
Extinktionskoeffizient	0.0010(2)
Gewichtung	$w = 1/[\sigma^2(\mathbf{F}_0 ^2) + 1.60 \cdot \mathbf{P}]$
größtes Maximum und Minimum der letzten	
Differenz-Fouriersynthese	237 und -210e·nm ⁻³

Tabelle 3.98: Die wichtigsten kristallographischen Daten des Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O

 $P = \frac{1}{3} \max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination des Co²⁺-Kations

Das Co²⁺-Kation liegt auf einer speziellen Atomposition der Raumgruppe C2/c (*Wyckoff*-Notation 4e)

Co²⁺ wird von vier Carboxylatsauerstoffatomen tetraedrisch koordiniert, welche jeweils von verschiedenen Pyromellitattetraanionen stammen (Abb.3.82). Die Co–O Bindungslängen liegen in Bereich zwischen 197.87(12) pm und 200.64(12) pm (Tab.3.99). Die Bindungsordnung nach *Brown* [17] ist mit 1.797 deutlich kleiner als der zu erwartende Wert von 2.0. Was nicht verwundert, da die durchschnittliche Bindungslänge 199.26 pm beträgt. In der Literatur wird die durchschnittliche Co–O Bindungslänge für tetraedrisch koordiniertes Co²⁺ mit 195.9 pm angegeben [79]. Die Winkel des Polyeders weichen vom Tetraederwinkel ab, das Koordinationspolyeder kann mit einer zweizähligen Symmetrie (C₂) beschrieben werden.

Abbildung 3.82: Das Co²⁺-Koordinationspolyeder (Ortep Plot).

Tabelle 3.99: Bindungsabstände und -winkel des Co²⁺-Koordinationspolyeders

Bindungsabstände (pm)						
			s (Brown[17])			
Co-O(3)	197.87(12)	2x	0.4668			
Co-O(1)	200.64(12)	2x	0.4318			
$\Sigma = 1.7972$						
Bindungswinkel (°)						
O(3)#1-Co-O(3)#2	122.13(7)		O(3)#	2-Co-O(1)	106.99(5)	
O(3)#1-Co-O(1)	101.09(5)		O(1)#	3-Co-O(1)	119.90(7)	

Symmetrietransformationen: #1: x+0.5;y+0.5;z , #2: -x-0.5;y+0.5;-z+0.5 , #3: -x;y;-z+0.5

Das Pyromellitattetraanion und das trans-1,4-Cyclohexyldiammoniumkation

Das Kohlenstoffgerüst des zentrosymmetrischen Pyromellitattetraanions weicht kaum von einer planaren Gestalt ab (max. C(3): 2.47 pm). Auch hier sind die Carboxylatgruppen aus der Ebene der Kohlenstoffatome herausgedreht, die Carboxylatgruppen mit C(4) um 12.2° und mit C(5) um 81.1° (Tab.3.101). Die Bindungslängen des C₆-Ringes liegen zwischen 138.8(2) pm und 140.4(2) pm. Die C–C Einfachbindungen betragen 150.5(2) pm und 150.9(2) pm. In den Carboxylatgruppen läßt sich ein signifikanter Zusammenhang zwischen C–O Bindung und Co–O Bindung feststellen. O(1) und O(3) sind koordinativ am Co²⁺-Kation gebunden und bilden somit die längeren C–O Bindungen aus (127.0(2) pm und 127.3(2) pm), hingegen ergeben sich für C(4)–O(2) und C(5)–O(4) Bindungslängen von 124.3(2) pm und 123.8(2) pm (Tab.3.100).

Das *trans*-1,4-Cyclohexyldiammoniumkation liegt hier in der typischen Sesselform vor. Die Bindungen C(6)–C(7) und C(6)–C(8) sind mit 151.4(3) pm und 151.5(3) pm innerhalb der Fehlergrenzen gleich, während die Bindung C(7)–C(8) mit 153.4(3) pm deutlich aufgeweitet ist. Die N–C(6) Bindungslänge beträgt 149.6(2) pm (Tab.3.102). Das *trans*-1,4-Cyclohexyl-diammoniumkation kann der Punktgruppe 2/m (C_{2h}) zugeordnet werden.

Abbildung 3.83: Das Pyromellitattetraanion und das *trans*-1,4-Cyclohexyldiammoniumkation im Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O (Ortep Plot).

Bindungsabstände (pm)						
C(1)-C(2)	140.4(2)	C(1)-C(3)	139.0(2)	O(2)-C(4)	124.3(2)	
C(2)-C(3)	138.8(2)	C(2)-C(5)	150.9(2)	O(3)-C(5)	127.3(2)	
C(1)-C(4)	150.5(2)	O(1)-C(4)	127.0(2)	O(4)-C(5)	123.8(2)	
				C(3)-H(1)	97(2)	
		Bindungswin	kel (°)			
C(3)-C(1)-C(2)	118.8(2)	C(1)-C(2)-C(5)	125.1(2)	O(3)-C(5)-C(2)	115.7(2)	
C(3)-C(1)-C(4)	118.5(2)	C(2)-C(3)-C(1)	122.1(2)	O(2)-C(4)-O(1)	123.4(2)	
C(2)-C(1)-C(4)	122.7(2)	O(2)-C(4)-C(1)	119.1(2)	O(4)-C(5)-O(3)	125.0(2)	
C(3)-C(2)-C(1)	119.0(2)	O(1)-C(4)-C(1)	117.5(2)	C(2)-C(3)-H(1)	119.7(11)	
C(3)-C(2)-C(5)	115.8(2)	O(4)-C(5)-C(2)	119.0(2)	C(1)-C(3)-H(1)	118.2(11)	

Tabelle 3.100:	Bindungsabstände und -winkel des P	yromellitattetraanions

Tabelle 3.101: Die Ausgleichsebenen des Pyromellitattetraanions im Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O

Ebene **1** aus C(1), C(2), C(3), C(4), C(5), C(1)A, C(2)A, C(3)A, C(4)A, C(5)A Ebenengleichung: 8.224 x - 9.569 y - 2.077 z = -0.7024 Abweichungen von der Ebene (pm): C(1): 0.04 ; C(2): 2.23 ; C(3): 2.47 ; C(4): -1.06 ; C(5): -2.16 ; C(1)A: -0.05 ; C(2)A: -2.23 ; C(3)A: -2.46 ; C(4)A: 1.05 ; C(5)A: 2.16 mittlere Abweichung von der Ausgleichsebene: 1.59 pm Ebene **2** aus O(1), O(2), C(1), C(4) Ebenengleichung: 9.263 x - 7.747 y - 0.380 z = -0.5370 Abweichungen von der Ebene (pm): O(1): -0.19 ; O(2): -0.20 ; C(1): -0.16 ; C(4): 0.55 mittlere Abweichung von der Ausgleichsebene: 0.27 pm Winkel zur Ebene 1: 12.2° Ebene **3** aus O(3), O(4), C(2), C(5) Ebenengleichung: -0.390 x - 8.586 y + 9.540 z = 7.2009 Abweichung von der Ebene (pm): O(3): -1.20 ; O(4): -1.27 ; C(2): -0.95 ; C(5): 3.43 mittlere Abweichung von der Ausgleichsebene: 1.71 pm Winkel zur Ebene 1: 81.1° , Winkel zur Ebene 2: 77.8°

Bindungsabstände (pm)						
C(6)-N	149.6(2)	C(6)-H(5)	95(2)	C(8)-H(9)	89(3)	
C(6)-C(7)	151.4(3)	C(7)-H(6)	100(2)	N-H(2)	99(3)	
C(6)-C(8)	151.5(3)	C(7)-H(7)	97(2)	N-H(3)	93(3)	
C(7)-C(8)	153.4(3)	C(8)-H(8)	98(2)	N-H(4)	94(3)	
		Bindungswir	nkel (°)			
N-C(6)-C(7)	110.0(2)	C(6)-C(7)-H(6)	107.3(12)	C(7)-C(8)-H(9)	112.3(14)	
N-C(6)-C(8)	109.7(2)	C(8)-C(7)-H(6)	110.0(12)	H(8)-C(8)-H(9)	107(2)	
C(7)-C(6)-C(8)	110.8(2)	C(6)-C(7)-H(7)	110.4(12)	C(6)-N-H(2)	108.7(14)	
C(6)-C(7)-C(8)	109.1(2)	C(8)-C(7)-H(7)	111.7(12)	C(6)-N-H(3)	111(2)	
C(6)-C(8)-C(7)	110.0(2)	H(6)-C(7)-H(7)	108(2)	H(2)-N-H(3)	107(2)	
N-C(6)-H(5)	108.3(12)	C(6)-C(8)-H(8)	108.1(13)	C(6)-N-H(4)	112(2)	
C(7)-C(6)-H(5)	109.9(13)	C(7)-C(8)-H(8)	110.7(12)	H(2)-N-H(4)	110(2)	
C(8)-C(6)-H(5)	108.1(12)	C(6)-C(8)-H(9)	108.8(13)	H(3)-N-H(4)	108(2)	

Tabelle 3.102: Bindungsabstände und -winkel des trans-1,4-Cyclohexyldiammoniumkations

Struktur

Hier baut sich aus der Verknüpfung der Co²⁺-Kationen mit den Pyromellitattetraanionen eine dreidimensionale zeolithartige Struktur auf. Die Anionen, welche als mehrfach einzähnige Liganden fungieren, erstrecken sich dabei in [110] und $[1\bar{1}0]$ Richtung. Dadurch bilden sich entlang [001] rautenförmige kanalartige Hohlräume aus, die eine lichte Weite²⁾ von ca. 610 pm x 960 pm besitzen. Weiterhin bilden sich kanalartige Hohlräume entlang [110] und $[1\bar{1}0]$ aus, die ein Ausmaß von etwa 580 pm x 700 pm aufweisen (Abb.8.84,3.85). Die Kanäle werden von Kristallwasser und von den protonierten Templatmolekülen, den *trans*-1,4-Cyclohexyldiammoniumkationen besetzt, welche zugleich die negative Überschußladung des Gerüstverbandes aus Co²⁺ und $[C_6H_2(COO)_4]^{4-}$ kompensieren. Hier zeigen sich parallelen zu den Zeolithen auf. Die Raumladungsdichte des Gerüstes errechnet sich zu 4.193·10⁻³e/Å³. Die Moleküle in den Kanälen werden nur durch Wasserstoffbrückenbindungen fixiert.

Abbildung 3.84: Ausschnitt aus der Struktur des Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O mit Blick in [001]. a) Wasserstoffatome an den *trans*-1,4-Cyclohexyldiammoniumkationen sind nicht vollständig wiedergegeben. b) Darstellung des Gerüstes aus Co²⁺-Kationen und den Pyromellitattetraanionen in *van der Waals* Radien.

Abbildung 3.85: Die Gerüststruktur mit Blick in [110]. a) Wassermoleküle und *trans*-1,4-Cyclohexyldiammoniumkationen sind nicht eingezeichnet b) Darstellung selbiger als Kalottenmodell (*van der Waals* Radien).

Wasserstoffbrückenbindungen

Das *trans*-1,4-Cyclohexyldiammoniumkation ist über Wasserstoffbrückenbindungen mit dem Gerüst verbunden. Die NH_3^+ -Gruppe agiert hierbei als Protonendonator zu den Carboxylatsauerstoffatomen O(1), O(2) und O(4), desweiteren bildet sich eine starke Wasserstoffbrücke zum Kristallwassermolekül aus. Das Kristallwasser bildet mittelstarke Wasserstoffbrücken zu den Carboxylatsauerstoffatomen O(2) und O(4) aus. Wie in Tabelle 3.104 zu sehen, treten insbesondere die nicht koordinativ gebundenen Carboxylatsauerstoffatome als Protonenakzeptoren auf. O(3) ist in keiner Wasserstoffbrückenbindung involviert.

Bindungslängen (pm)					
OW-H(10) 84(3) OW-H(11) 92(3)					
Bindungswinkel (°)					
H(10)-OW-H(11)	113(3)				

Tabelle 3.103: Bindungslängen und -winkel des Wassermoleküls

	N····O Abstand (pm)	H…O Abstand (pm)	N-H…O Winkel (°)	
N-H(2)OW	282.9	186	165	
N-H(3)····O(2)	286.9	196	165	
N-H(4)…O(1)	321.8	238	148	
N-H(4)…O(4)	279.6	220	120	
	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)	
OW-H(10)…O(2)	280.9	202	156	
OW-H(11)…O(4)	287.9	198	167	
	C…O Abstand (pm)	H…O Abstand (pm)	C–H…O Winkel (°)	
C(8)-H(8)OW	335.0	259	135	

Tabelle 3.104: Wasserstoffbrückenbindungen im $Co(H_2DACH)[C_6H_2(COO)_4]\cdot 2H_2O$

3.4.11. Das Zn(H₂DAH)[C₆H₂(COO)₄]· $\frac{1}{2}$ H₂O^{*)}

Farblose Kristalle dieser Verbindung konnten wie folgt dargestellt werden. Zu 10ml einer 0.05M Zn(NO₃)₂-Lösung wurden 5ml einer 0.2M wäßrigen Diaminohexanlösung, sowie 5ml einer 0.05M Natriumpyromellitatlösung gegeben. Der hierauf auftretende Niederschlag wurde mit wenig 2M HNO₃ aufgelöst. Nach Zugabe von 2 Spatelspitzen Harnstoff wurde das Ganze bei 80°C stehen gelassen, worauf sich nach 1-2 Tagen obengenannte Kristalle bildeten.

Elementaranalyse - $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot\frac{1}{2}H_2O$					
	Ber.(%)	Gef.(%)			
С	43.41	42.54			
Н	4.78	4.88			
Ν	6.33	6.07			

Röntgenographisch konnte nur 0.5 Mol Kristallwasser pro Formeleinheit ermittelt werden. Bei der Elementaranalyse zeigt sich aber, daß die Werte besser Übereinstimmen, wenn man von 1 Mol Kristallwasser pro Formeleinheit ausgeht (ber.(%): C: 42.54; H: 4.91; N: 6.20) Dies spiegelt sich auch in der thermoanalytischen Untersuchung wieder.

IR-Spektrum

Die bei 3426 cm⁻¹ auftretende O–H Absorptionsbande, sowie die breite Bande zwischen 3200 cm⁻¹ und 2800 cm⁻¹ (O–H-, N–H- und C–H Valenzschwingungen) lassen auf die Ausbildung von Wasserstoffbrückenbindungen schließen (Abb.3.86). Auch hier finden sich die typischen Banden des Pyromellitattetraanions wieder. Die asymmetrische C–O Schwingung der Carboxylatgruppe liegt bei 1593 cm⁻¹ und die symmetrische Schwingungsbande bei 1349 cm⁻¹. Die Differenz zwischen beiden Banden von 244 cm⁻¹ ist typisch für eine einzähnige Koordination der Carboxylatgruppen am Zn²⁺ [49]. Die C–H in-plane Deformationsschwingung erscheint bei 1138 cm⁻¹.

^{*} Elementaranalyse und Thermogravimetrie deuten auf ein Monohydrat hin $(Zn(H_2DAH)[C_6H_2(COO)_4] \cdot 1H_2O)$

Abbildung 3.86: IR-Spektrum des $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot \frac{1}{2}H_2O$.

Thermochemische Analyse

In Abbildung 3.87 ist zu erkennen, daß bis 124°C ein Gewichtsverlust von 4.2% auftritt. Die Gewichtsabnahme geht einher mit einem endothermen Vorgang, welcher zwei lokale Extrema bei 38°C und 95°C aufweist. Dieser Gewichtsverlust ist auf die Abgabe des Kristallwassers zurückzuführen. Der Masseverlust von 4.2% läßt vermuten, daß pro Formeleinheit 1 Mol Wasser vorhanden sein muß. In diesen Fall wäre ein Gewichtsverlust von 4.0% zu erwarten, was mit dem gemessenen Wert sehr gut übereinstimmt. Die so erhaltene dehydratisierte Probe bleibt bis etwa 340°C stabil. Anschließend erfolgt die Zersetzung der Probe mit einem weiteren endothermen Prozeß, dessen maximale Reaktionstemperatur bei 358°C liegt. Es schließt sich ab ca. 435°C eine breite exotherme Reaktion an, deren lokale Maxima bei 501°C und 515°C liegen. Diese Reaktion klingt dann in einer weiten, diffusen Front ab. Das Zersetzungsprodukt wurde röntgenographisch als ZnO identifiziert (Anhang II).

Abbildung 3.87: Thermochemische Analyse des $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot \frac{1}{2}H_2O$.

Strukturbeschreibung

Röntgenbeugungssymmetrie und Reflexionsbedingungen ließen auf die monokline Raumgruppe P2₁/n schließen. Die Wasserstoffpositionen konnten nicht vollständig ermittelt werden. Wasserstoffatome von CH-Gruppen wurden geometrisch positioniert und als "starre Gruppe" verfeinert (constraints). Die Wasserstofflagen der N(2)H-Gruppe wurden ebenfalls geometrisch positioniert, wobei jedes Atom individuell verfeinert wurde (restraints) [60]. Weiterhin wurden die Bindungslängen C(3)–C(2), C(3)–C(2a), C(14)–C(15), C(15)–C(16), C(16)–C(17), C(17)–C(18), N(1)–C(1), N(1)–C(1a) vorgegeben und jedes Atom separat verfeinert. Die wichtigsten Daten sind in Tabelle 3.105 zusammengefaßt.

Kristallographische Daten				
Summenformel	$C_{16}H_{21}N_2ZnO_{8.5}$			
Kristallsystem	Monoklin			
Raumgruppe	$P2_1/n$ (Nr.14)			
Reflexionsbedingung	h01: $h + 1 = 2n$			
	0k0: k = 2n			
Gitterkonstanten	a = 1087.78(8) pm			
	$b = 1515.18(11) \text{ pm}$ $\beta = 96.249(7)^{\circ}$			
	c = 1162.21(10) pm			
Wellenlänge	71.073 pm			
Temperatur	293(2) K			
Elementarzellvolumen	$1.9042(3) \text{ nm}^3$			
Formeleinheiten in der Elementarzelle	4			
Molmasse	442.72 g/mol			
berechnete Dichte	1.544 g/cm ³			
Absorptionskoeffizient	1.339 mm ⁻¹			
F (000)	916			
Gemessener θ - Bereich	2.22° bis 25.00°			
Indexgrenzen	$-1 \le h \le 12, -1 \le k \le 18, -13 \le 1 \le 13$			
Anzahl der gemessenen Reflexe	4227			
unabhängige Reflexe	$3346 (R_{int} = 0.0333)$			
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$			
Goodness-of-Fit an $ F ^2$	1.557			
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0471$, $wR_2 = 0.1126$			
R-Werte (sämtliche Daten)	$R_1 = 0.0750$, $wR_2 = 0.1157$			
Gewichtung	$w = 1/[\sigma^2(F_0 ^2) + 0.6 \cdot P]$			
größtes Maximum und Minimum der letzten				
Differenz-Fouriersynthese	1166 und -479e·nm ⁻³			

Tabelle 3.105: Die wichtigsten kristallographischen Daten des $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot\frac{1}{2}H_2O$.

 $P = \frac{1}{3} \max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination des Zn²⁺-Kations

Das Zn²⁺-Kation wird von vier Carboxylatsauerstoffatomen tetraedrisch koordiniert (Abb.3.88). Die Sauerstoffatome stammen von vier verschiedenen Pyromellitattetraanionen, wobei die Zn–O Bindungslängen in einem engen Intervall von 195.0(4) pm bis 197.8(4) pm variieren (Tab.3.106). Die Bindungsordnung nach *Brown* [17] liegt mit 1.955 etwa 2% unter dem Erwartungswert.

Abbildung 3.88: Geometrie des Zn²⁺-Tetraeders (Ortep Plot).

Tabelle 3.106: Bindungslängen und -winkel des Zn²⁺-Koordinationspolyeders

Bindungslängen (pm)						
		s (Brown [17])		s (Brown [17])	
Zn-O(1)	195.0(4)	0.5125	Zn-O(3)	196.4(4)	0.4908	
Zn-O(7)	197.0(4)	0.4818	Zn-O(5)	197.8(4)	0.4701	
			Summe de	r Bindungsstärk	en (s): 1.9552	
Bindungswinkel (°)						
O(1)-Zn-O(3)	108.1	(2)	O(1)-Zn-0	D(7)	107.7(2)	
O(3)-Zn-O(7)	113.2	(2)	O(1)-Zn-0	D(5)	119.4(2)	
O(3)-Zn- $O(5)$	109.3	(2)	O(7)-Zn-0	D(5)	99.0(2)	

Das Pyromellitattetraanion und die 1,6-Hexyldiammoniumkationen

Die Kohlenstoffatome des Pyromellitattetraanions liegen näherungsweise in einer Ebene, die größte Abweichung von einer berechneten Ausgleichsebene beträgt 9.81 pm für C(11). Die Carboxylatgruppen sind unterschiedlich aus dieser Ebene herausgedreht. Die Carboxylatgruppe mit C(10) ist mit 8.0° fast coplanar zur Ebene, während die Carboxylatgruppen C(11), C(13) mit 87.4° und 85.5° annähernd orthogonal bezüglich jener Ebene ausgerichtet sind. Der Interplanarwinkel der Carboxylatgruppe mit C(12) beträgt 20.5° (Tab.3.108). Die Bindungsabstände der C–C Einfachbindungen liegen zwischen 150.0(8) pm und 151.8(8) pm und die Bindungen im aromatischen Ring bewegen sich zwischen 138.6(7) pm und 140.0(8) pm. Bei den C–O Bindungslängen der Carboxylatgruppen sind hingegen signifikante Unterschiede erkennbar. Es ist eine deutliche Korrelation der C–O Abstände zwischen nicht koordinativ gebundenen Sauerstoff und am Zn²⁺ gebundenen Carboxylatsauerstoff zu erkennen. So betragen die C–O Bindungen der am Metallkation gebundenen Sauerstoffatome (O(1), O(3), O(5), O(7)) 126.5(7) pm bis 128.2(7) pm, während die übrigen C–O Bindungen mit 122.5(7) pm bis 123.3(7) pm einen deutlichen Doppelbindungscharakter aufweisen [66] (Tab.3.107).

Es liegen in dieser Verbindung zwei kristallographisch unabhängige 1,6-Hexyldiammoniumkationen (I, II) vor. Beide Kationen sind fehlgeordnet. Im Kation I sind für die fehlgeordneten Atome C(1) und C(2) jeweils zwei Splitlagen verfeinert worden, und im Kation II sind die Atompositionen C(15) bis C(18) zu 50% besetzt. (Tab.3.109, Anhang I).

Abbildung 3.89: Das Pyromellitattetraanion im Zn(H₂DAH)[C₆H₂(COO)₄]·½H₂O (Ortep Plot).

Bindungslängen (pm)					
C(4)-C(5)	139.3(8)	C(4)-C(10)	150.5(8)	C(11)-O(3)	127.6(7)
C(7)-C(8)	140.0(8)	C(5)-C(11)	151.8(8)	C(11)-O(4)	123.3(7)
C(8)-C(9)	137.8(7)	C(7)-C(12)	150.0(8)	C(12)-O(5)	126.5(7)
C(4)-C(9)	139.8(7)	C(8)-C(13)	151.0(7)	C(12)-O(6)	122.7(6)
C(6)-C(7)	138.6(7)	C(10)-O(1)	128.2(7)	C(13)-O(7)	128.2(7)
C(5)-C(6)	138.6(8)	C(10)-O(2)	122.9(7)	C(13)-O(8)	122.5(7)
Bindungswinkel (°)					
C(5)-C(4)-C(9)	118.6(5)	C(4)-C(5)-C(11)	124.3(5)	O(4)-C(11)-O(3)	125.7(6)
C(9)-C(4)-C(10)	118.5(4)	C(8)-C(7)-C(12)	122.8(5)	O(3)-C(11)-C(5)	115.8(5)
C(6)-C(5)-C(11)	116.4(5)	C(9)-C(8)-C(13)	116.5(5)	O(4)-C(11)-C(5)	118.2(5)
C(7)-C(6)-C(5)	122.7(6)	C(8)-C(9)-C(4)	121.7(5)	O(6)-C(12)-O(5)	123.9(6)
C(9)-C(8)-C(7)	120.0(5)	C(6)-C(7)-C(8)	117.8(5)	O(5)-C(12)-C(7)	116.5(5)
C(7)-C(8)-C(13)	123.5(5)	C(6)-C(7)-C(12)	119.3(5)	O(6)-C(12)-C(7)	119.6(6)
C(5)-C(4)-C(10)	122.9(5)	O(2)-C(10)-O(1)	124.6(6)	O(8)-C(13)-O(7)	126.2(5)
C(6)-C(5)-C(4)	119.1(5)	O(1)-C(10)-C(4)	115.7(5)	O(8)-C(13)-C(8)	120.5(5)
		O(2)-C(10)-C(4)	119.7(5)	O(7)-C(13)-C(8)	113.1(5)

Tabelle 3.107: Bindungsabstände und -winkel des Pyromellitattetraanions

Die C-H Bindungen wurden mit 93 pm festgelegt.

Ebene 1 aus C(4), C(5), C(6), C(7), C(8), C(9), C(10), C(11), C(12), C(13) Ebenengleichung: $-1.872 \text{ x} + 10.676 \text{ y} + 8.171 \text{ z} = 3.2796$ Abweichungen von der Ebene (pm): C(4): -3.12 ; C(5): -3.35 ; C(6): -5.67 ; C(7): -4.44 ; C(8): -1.58 ; C(9): -3.59 ; C(10): 1.17 ; C(11): 9.81 ; C(12): 2.65 ; C(13): 8.12 mittlere Abweichung von der Ausgleichsebene: 4.35 pm
Ebene 2 aus O(1), O(2), C(4), C(10) Ebenengleichung: $-0.618 \text{ x} + 9.962 \text{ y} + 8.752 \text{ z} = 3.7885$ Abweichungen von der Ebene (pm): O(1): 0.19 ; O(2): 0.21 ; C(4): 0.15 ; C(10): -0.55 mittlere Abweichung von der Ausgleichsebene: 0.27 pm Winkel zur Ebene 1: 8.0°
Ebene 3 aus O(3), O(4), C(5), C(11) Ebenengleichung: $9.886 \times + 6.065 \times - 2.506 \times z = 5.5768$ Abweichung von der Ebene (pm): O(3): 1.10 ; O(4): 1.16 ; C(5): 0.85 ; C(11): -3.11 mittlere Abweichung von der Ausgleichsebene: 1.56 pm Winkel zur Ebene 1: 87.4° ; Winkel zur Ebene 2: 82.9°
Ebene 4 aus O(5), O(6), C(7), C(12) Ebenengleichung: $0.375 \times 7.328 \text{ y} - 10.061 \text{ z} = 3.8869$ Abweichung von der Ebene (pm): O(5): 0.17 ; O(6): 0.18 ; C(7): 0.14 ; C(12): -0.49 mittlere Abweichung von der Ausgleichsebene: 0.25 pm Winkel zur Ebene 1: 20.5° ; Winkel zur Ebene 2: 13.3° ; Winkel zur Ebene 3: 83.0
Ebene 5 aus O(7), O(8), C(8), C(13) Ebenengleichung: $9.898 \times + 6.178 \text{ y} - 2.035 \text{ z} = 6.0078$ Abweichung von der Ebene (pm): O(7): -0.89 ; O(8): -0.99 ; C(8): -0.71 ; C(13): 2.59 mittlere Abweichung von der Ausgleichsebene: 1.29 pm Winkel zur Ebene 1: 85.5° ; Winkel zur Ebene 2: 80.9° ; Winkel zur Ebene 3: 2.4° Winkel zur Ebene 4: 80.7°

Tabelle 3.108:	Die Ausgleichsebenen	des Pyromellitattet	raanions
	U	2	

Bindungslängen (pm)					
Ι					
C(1)-C(2)	151(2)	C(3)-C(3)#4	151.5(4)	C(2)…C(2a)	91(2)
C(1a)-C(2a)	153(2)	$C(1) \cdots C(1a)$	111(2)		
II					
N(2)-C(14)	149.7(8)	C(14)-C(18)#7	169(2)		

Tabelle 3.109: Atomabstände der 1,6-Hexyldiammoniumkationen

Die H-Atome wurden geometrisch positioniert, die C–H Bindungen betragen 97 pm und die N(2)–H Bindungen 90.0(10) pm. Außerdem wurden die Bindungen C(3)–C(2), C(3)–C(2a), C(14)–C(15), C(15)–C(16), C(16)–C(17), C(17)–C(18) mit 154.0(10) pm und die Bindungen N(1)–C(1), N(1)–C(1a) mit 145.0(10) pm vorgegeben.

Symmetrietransformationen: #4: -x+1;-y;-z, #7: -x;-y;-z

Struktur

Durch die einzähnige Koordination der Pyromellitattetraanion an die Zn²⁺-Kationen baut sich eine dreidimensionale offene Gerüststruktur auf, welche eine negative Überschußladung trägt. Errechnet man die Raumladungsdichte, so ergibt sich ein Wert von 4.201·10⁻³e/Å³. In dieser Struktur kann man entlang [100] kanalartige Hohlräume erkennen, welche ein

Ausmaß²⁾ von ca. 600 pm x 880 pm besitzen. Die Kanäle werden von den Templatmolekülen, den 1,6-Hexyldiammoniumkationen, und von Kristallwasser besetzt. Außerdem erstrecken sich entlang der Diagonalen [011] und [011] weitere Kanäle mit einer lichten Weite von etwa 350 pm x 595 pm (Abb.3.90-3.92). Die Architektur dieser Gerüststruktur weist große Ähnlichkeit mit der des bereits besprochenen Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O (RG: C2/c) auf (3.4.9.) und ist dieser homöotyp. Die Verwandtschaft zeigt sich auch in der Gruppe-Untergruppe-Beziehung der Raumgruppen. Das Zn(H₂DAH)[C₆H₂(COO)₄]·½H₂O stellt die Raumgruppe P1 auf, welche eine translationsgleiche Untergruppe von C2/c darstellt.

Das Kristallwassermolekül ist fehlgeordnet, der Lagebesetzungsfaktor beträgt 0.54. Da für das Wassermolekül keine Wasserstoffatompositionen lokalisiert werden konnten, sind Betrachtungen über das Donor-/Akzeptorverhalten bezüglich der Ausbildung von Wasserstoffbrückenbindungen nicht möglich.

Abbildung 3.90: Die Verknüpfung der Pyromellitattetraanionen mit den Zn²⁺-Kationen (Blick auf (001)).

Abbildung 3.91: Ausschnitt aus der Struktur mit Blick in [001]. a) Die 1,6-Hexyldiammoniumkationen sind nicht eingezeichnet. b) Das Gerüst aus Pyromellitattetraanionen und Zn²⁺-Kationen als Kalottenmodell (*van der Waals* Radien).

Abbildung 3.92: Blick in die Hohlräume entlang [011]. a) Wassermoleküle und 1,6-Hexyldiammoniumkationen sind nicht abgebildet, b) gleiche Darstellung als Kalottenmodell (*van der Waals* Radien).

3.4.11. Zwei zeolithartige Verbindungen im Vergleich -Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O & Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Zu 5ml einer 0.1M Cu(NO₃)-Lösung wurden gleiche Volumina einer 0.2M 1,6-Diaminohexanlösung und einer 0.05M Natriumpyromellitatlösung gegeben. Ein entstehender Niederschlag wurde mit etwas 2M HNO₃ aufgelöst. Anschließend wurden noch 10 ml Wasser und etwas Harnstoff zugegeben. Ein Teil der Lösung wurde bei 80°C stehen gelassen, wobei sich nach 24h türkisfarbene säulenförmige Kristalle der Zusammensetzung Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O bildeten. Der andere Teil wurde bei 55°C stehen gelassen, so daß sich nach einigen Tagen hellblaue Parallelepipede, der Zusammensetzung Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O abscheideten.

Elementaranalyse	$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$		$Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$		
	Ber.(%)	Gef.(%)	Ber.(%)	Gef.(%)	
С	31.57	31.39	30.78	30.03	
Н	4.28	4.28	3.58	3.65	
Ν	2.83	2.83	2.76	2.72	

IR-Spektren

Beide Verbindungen zeigen ähnliche IR-Spektren (Abb.3.93,3.94). Zwischen 3500 cm⁻¹ und 3000 cm⁻¹ liegen die breiten Banden der O–H- und N–H Valenzschwingungen. Beim Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O sind die Banden der Carboxylatgruppe gut bei 1578 cm⁻¹ (v_{as}) und 1366 cm⁻¹ (v_s) zu erkennen. Im Spektrum des Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O sind zwei Banden bei 1598 cm⁻¹ und 1559 cm⁻¹ zu erkennen, welche auf die Schwingungen der Carboxylatgruppe (v_{as}) und der NH₃⁺-Gruppe [57] zurückzuführen sind. Die Bande bei 1367 cm⁻¹ wird ebenfalls durch die Carboxylatgruppe verursacht (v_s).

Weiterhin ist beim $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$ eine Bande bei 981 cm⁻¹ zu beobachten, welche vermutlich die Cu–O–H Deformationsschwingung repräsentiert [80].

Abbildung 3.93: IR-Spektrum des $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$.

Abbildung 3.94: IR-Spektrum des $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$.

Thermische Analysen

$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$

Die thermoanalytische Untersuchung (Abb.3.95) läßt einen endothermen Prozeß, dessen Höhepunkt bei 161°C liegt, erkennen. Der dabei zu beobachtende Gewichtsverlust von 17.8% wird durch die Abgabe des Kristallwassers bestimmt (ber. 18.2%). Die dehydratisierte Probe bleibt bis ca. 250°C stabil. Anschließend erfolgt die Zersetzung der Verbindung. Ein eintretender Gewichtsverlust von 21.1% ist durch die Abgabe der Aminmoleküle zu erklären (ber. 23.4%). Es schließt sich ein breiter exothermer Vorgang bis etwa 343°C an. Gut zu erkennen ist ein ab 430°C eintretende exotherme Reaktion, deren maximale Wärmetönung bei 439°C liegt. Im Rückstand konnte röntgenographisch CuO (Tenorit) und Cu₂O (Cuprit) nachgewiesen werden (Anhang II).

$Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$

Das Diagramm der Thermoanalyse (Abb.3.96) zeigt einen endothermen Vorgang, dessen Maximum bei 168°C liegt. Der damit verbundene Gewichtsverlust beträgt 10.2%, die Abgabe des gesamten Kristallwassers würde einen Masseverlust von 10.6% hervorrufen. Anschließend erfolgt zwischen 229°C und 257°C ein Gewichtsverlust von 3.4%, dessen Ursache im Vorhandensein jener Hydroxogruppe liegt. Im folgenden sind zwei scharfe exotherme Signale zu erkennen, deren Höhepunkte bei 287°C und 460°C liegen. Es schließt sich ein breiter exothermer Prozeß an, der bis zum Ende der Heizperiode (1000°C) nicht abklang. Das Zersetzungsprodukt bestand ebenfalls aus CuO (Tenorit) und Cu₂O (Cuprit) (Anhang II).

Abbildung 3.95: Thermoanalytischer Verlauf des $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$.

Abbildung 3.96: Thermoanalytischer Verlauf des $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$.

Strukturbeschreibung

Reflexintensitäten wurden bis zu einem Winkel von $\theta = 25^{\circ}$ gemessen. Die Positionen der Wasserstoffatome wurden Differenzfourierkarten entnommen und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Nur beim Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O wurden die H-Atomlagen der NH₃⁺-Gruppen, der CH₂-Gruppen, sowie der Wassermoleküle geometrisch bestimmt. Dabei wurde aber jedes Atom individuell verfeinert (restraints) [60]. Die wichtigsten kristallographischen Daten sind in Tabelle 3.110 wiedergegeben.

Kristallographische Daten					
	$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$	$Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$			
Summenformel	$C_{13}H_{21}NCu_{15}O_{13}$	$C_{13}H_{18}NCu_2O_{12}$			
Kristallsystem	Triklin	Monoklin			
Raumgruppe	$P\bar{1}$ (Nr 2)	P2/c (Nr.13)			
Reflexionsbedingung	keine	h0l: $l = 2n$			
Gitterkonstanten	$a = 772.56(7) \text{ pm} \alpha = 98.720(7)^{\circ}$	a= 1159.34(11) pm			
	$b=1110.36(7) \text{ pm } \beta=108.246(9)^{\circ}$	b= 1059.44(7) pm			
	$c=1111.98(8) \text{ pm } \gamma=95.559(7)^{\circ}$	c=1582.2(2) pm			
		$\beta = 106.130(11)^{\circ}$			
Wellenlänge	71.07	3 pm			
Temperatur	293(2) K			
Elementarzellvolumen	$0.88480(12) \text{ nm}^3$	$1.8669(3) \text{ nm}^3$			
Formeleinheiten pro Elementarzelle	2	4			
Molmasse	494.62 g/mol	507.36 g/mol			
berechnete Dichte	1.857 g/cm^3	1.805 g/cm^3			
Absorptionskoeffizient	1.893 mm ⁻¹	2.342 mm ⁻¹			
numerische Absorptionskorrektur		min./max. Transmission			
		0.747/0.778			
F (000)	507	1028			
Gemessener θ - Bereich	2.44° bis 25.00°	2.34° bis 24.99°			
Indexgrenzen	$-1 \le h \le 9$	$-1 \le h \le 13$			
	$-12 \leq k \leq 12$	$-1 \le k \le 12$			
	$-13 \le 1 \le 12$	$-18 \le 1 \le 18$			
Anzahl der gemessenen Reflexe	3848	4266			
unabhängige Reflexe	$3104 (R_{int} = 0.0196)$	$3297 (R_{int} = 0.0194)$			
Strukturverfeinerung	Vollmatrix Leas	t-Squares an $ F ^2$			
Goodness-of-Fit an $ F ^2$	1.213	1.407			
endgültige R-Werte [I> 2σ (I)]	$R_1 = 0.0258$, $wR_2 = 0.0561$	$R_1 = 0.0326$, $wR_2 = 0.0691$			
R-Werte (sämtliche Daten)	$R_1 = 0.0308$, $wR_2 = 0.0581$	$R_1 = 0.0420$, $wR_2 = 0.0720$			
Extinktionskoeffizient	0.0061(4)	0.0101(3)			
Gewichtung	$w = 1/[\sigma^2(\mathbf{F}_0 ^2) + 0.70 \cdot \mathbf{P}]$	$w = 1/[\sigma^2(F_0 ^2) + 3.10 \cdot P]$			
größtes Maximum und Minimum					
der letzten Differenz-Fouriersynthese	$322 \text{ und } -351 \text{e} \cdot \text{mn}^{-3}$	995 und -489e⋅mn ⁻³			

 $P = \frac{1}{3} \max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$

Die Koordination der Cu²⁺-Kationen im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

Es liegen zwei symmetrieunabhängige Cu^{2+} -Kationen (Cu(1), Cu(2)) vor. Cu(1) besetzt die allgemeine Punktlage der Raumgruppe P1, Cu(2) hingegen liegt auf einer speziellen kristallographischen Lage der Punktgruppensymmetrie 1 (*Wyckoff*-Position 1a).

Die Koordinationszahl des Cu(1) beträgt 4 + 1, das Koordinationspolyeder ist eine quadratische Pyramide (Abb.3.97). In der Äquatorebene koordinieren die drei Carboxylatsauerstoffatome O(2), O(4), O(8), sowie das Wassermolekül OW(1). Die Bindungslängen liegen zwischen 192.6(2) pm und 198.3(2) pm, wobei OW(1) den kürzesten Abstand bildet. O(5) besetzt mit einer Bindungslänge von 240.0(2) pm die axiale Position (Tab.3.111).

Cu(2) ist oktaedrisch (4 + 2) koordiniert (Abb.3.97). Die Carboxylatsauerstoffatome O(1) und O(6) (je 2x) nehmen die äquatorialen Positionen ein, deren Abstände 202.0(2) pm und 194.4(2) pm betragen. Die apikalen Positionen werden durch zwei Wassermoleküle (2x OW(2)) besetzt, deren Abstände mit 243.1(2) pm wesentlich länger sind.

Beim Cu(2)-Koordinationspolyeder handelt es sich um ein gestrecktes Oktaeder, u.a. als Folge des zu erwarteten *Jahn-Teller*-Effektes [52], da der Grundzustand des Cu²⁺ im oktaedrischen Ligandenfeld zweifach bahnentartet ist (²E_g). Durch die *Jahn-Teller*-Verzerrung, im Sinne einer Symmetrieerniedrigung, spaltet dieser Grundzustand nochmals auf, so daß der resultierende Grundzustand nunmehr ein einfacher, nicht bahnentarteter Zustand ist. Im Cu²⁺ (3d⁹) ist der energetisch höherliegende e_g-Zustand (d_z²⁻, d_x²⁻y²-Orbital) unsymmetrisch besetzt. Hier wird nun das d_z²-Orbital doppelt besetzt, so daß in dieser Richtung eine erhöhte Elektronendichte herrscht. Die Liganden werden in dieser Richtung stärker abgestoßen [76,77]. Die quadratische Pyramide des Cu(1)-Polyeders kann man auch als Extremfall eines gestreckten Oktaeders betrachten.

In beiden Koordinationspolyedern weichen die Bindungswinkel teilweise erheblich von den idealen Werten (90° bzw. 180°) ab (Tab.3.111).

Die Bindungsordnung nach *Trömel* [78] beträgt für Cu(1) 2.039, und für Cu(2) ist sie mit 1.941 etwa 3% niedriger als der theoretische Wert von 2.

Abbildung 3.97: Die Geometrie der Cu(1)- und Cu(2)-Koordinationspolyeder (Ortep Plot).

Tabelle 3.111: Die Geometrie der Cu²⁺-Koordinationspolyeder im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

Bindungslängen (pm)						
	S	(Trömel [78])			s (<i>Trömel</i> [78])
Cu(1)-OW(1)	192.6(2)	0.5273	Cu(2)-O(6)	194.4(2)	2x	0.4936
Cu(1)-O(8)	196.0(2)	0.4657	Cu(2)-O(1)	202.0(2)	2x	0.3760
Cu(1)-O(4)	193.7(2)	0.5064	Cu(2)-OW(2)	243.1(2)	2x	0.1009
Cu(1)-O(2)	198.3(2)	0.4287				$\Sigma = 1.9410$
Cu(1)-O(5)	240.0(2)	0.1106				
	Σ	E = 2.0387				
	Bindungswinkel (°)					
OW(1)-Cu(1)-O(4)	91.9	97(8)	O(6)#1	-Cu(2)-O(6)		180.0
OW(1)-Cu(1)-O(8)	91.4	15(8)	O(6)#1	-Cu(2)-O(1)		90.82(7)
O(4)-Cu(1)-O(8)	176.4	2(7)	O(6)-C	u(2)-O(1)		89.18(7)
OW(1)-Cu(1)-O(2)	168.9	94(8)	O(1)-C	u(2)-O(1)#1		180.0
O(4)-Cu(1)-O(2)	87.6	6(7)	O(6)#1	-Cu(2)-OW(2)	82.52(7)
O(8)-Cu(1)-O(2)	89.1	.8(7)	O(6)-C	u(2)-OW(2)		97.49(7)
OW(1)-Cu(1)-O(5)	96.2	28(8)	O(1)-C	u(2)-OW(2)		86.03(7)
O(4)-Cu(1)-O(5)	83.4	9(7)	O(1)-C	u(2)-OW(2)	#1	93.97(7)
O(8)-Cu(1)-O(5)	95.1	2(7)	OW(2)	-Cu(2)-OW(2)#1	180.0
O(2)-Cu(1)-O(5)	94.6	66(6)				

Symmetrietransformation: #1: -x;-y;-z

Die Pyromellitattetraanionen und das 1,6-Hexyldiammoniumkation

Es liegen zwei (**I**, **II**) kristallographisch unabhängige Pyromellitattetraanionen vor, welche auf Symmetriezentren liegen. Die Bindungslängen und Bindungswinkel beider Anionen unterscheiden sich nur geringfügig voneinander (Tab.3.112). O(3) und O(7) sind nicht am Cu^{2+} koordiniert, was sich in den geringeren C–O Bindungslängen widerspiegelt. So beträgt die C(8)–O(3) Bindung nur 124.0(3) pm und die C(13)–O(7) Bindung ist 122.7(3) pm lang. Die Anionen **I** liegen parallel zur Fläche (010) und die Anionen **II** sind parallel zu (201) angeordnet. (Abb.3.98). In Tabelle 3.114 sind die Abweichungen der Atome der Anionen zu einer berechneten Ausgleichsebene angegeben. Während beim Pyromellitattetraanion I die Abweichungen der Kohlenstoffatome sehr gering ausfallen, ist sie beim Pyromellitattetraanion II etwas größer. Die mittlere Abweichung der Kohlenstoffatome zur Ausgleichsebene beträgt beim Anion I 0.79 pm und beim Anion II 24.37 pm.

Abbildung 3.98: Die Anordnung der Pyromellitattetraanionen im $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4]\cdot 5H_2O$, die Pyromellitattetraanionen II sind mit offenem Bindungsstab dargestellt.

Das 1,6-Hexyldiammoniumkation bildet eine zentrosymmetrische zigzag-förmige Kette. Die N–C(1) Bindung beträgt 149.0(4) pm, die C–C Bindungen liegen zwischen 150.5(4) pm und 152.0(4) pm (Tab.3.113). Anders als im 1,6-Diaminohexan bzw. 1,6-Diaminohexan-Dihydrochlorid [81,82] treten die kürzeren und längeren Bindungen nicht alternierend auf. Die Kette (*N) kann als planar angesehen werden. Die größte Abweichung der Nichtwasserstoffatome von einer berechneten Ausgleichsebene beträgt ±4.32 pm für C(2)/C(2^c), die beiden terminalen Stickstoffatome weichen um ±1.96 pm ab (Tab.3.115). Das Kation liegt durchgehend in der antiperiplanaren (trans) Form vor (Abb.3.99).

Abbildung 3.99: Das 1,6-Hexyldiammoniumkation im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]-5H₂O (Ortep Plot).

Bindungsabstände (pm)							
Ι			`				
C(4)-C(6)	139.4(3)	C(4)-C(7)	151.2(3)	C(7)-O(2)	126.4(3)		
C(4)-C(5)	140.3(3)	C(5)-C(8)	151.9(3)	C(8)-O(3)	123.8(3)		
C(5)-C(6)	139.4(3)	C(7)-O(1)	126.3(3)	C(8)-O(4)	127.0(3)		
				C(6)-H(10)	90(3)		
II							
C(9)-C(10)	140.4(3)	C(10)-C(13)	150.7(3)	C(12)-O(6)	126.7(3)		
C(9)-C(11)	138.6(3)	C(9)-C(12)	151.2(3)	C(13)-O(7)	122.7(3)		
C(10)-C(11)	138.6(3)	C(12)-O(5)	125.1(3)	C(13)-O(8)	128.9(3)		
				C(11)-H(13)	89(3)		
		Bindungsv	vinkel (°)				
Ι		-					
C(6)-C(4)-C(5)		119.5(2)	O(2)-C(7)-O(1)	123.0(2)		
C(6)-C(4)-C(7)		117.4(2)	O(1)-C(7)-C(4)		116.3(2)		
C(6)#3-C(5)-C(4)		118.5(2)	O(2)-C(O(2)-C(7)-C(4)			
C(5)-C(4)-C(7)		123.1(2)	O(3)-C(8)-O(4)	123.5(2)		
C(6)#3-C(5)-C(8)		117.1(2)	O(3)-C(8)-C(5)	117.2(2)		
C(4)-C(5)-C(8)		124.3(2)	O(4)-C(8)-C(5)	119.2(2)		
C(4)-C(6)-C(5)#3		121.9(2)	C(4)-C(6)-H(10)	118(2)		
			C(5)#3-	C(6)-H(10)	120(2)		
II							
C(11)#4-C(9)-C(1	10)#5	119.0(2)	O(5)-C(12)-O(6)	126.0(2)		
C(10)#5-C(9)-C(1	12)	122.2(2)	O(5)-C(12)-C(9)	119.2(2)		
C(11)#4-C(9)-C(1	12)	118.7(2)	O(6)-C(12)-C(9)		114.7(2)		
C(11)-C(10)-C(9)	#6	119.2(2)	O(7)-C(13)-O(8)	123.5(2)		
C(11)-C(10)-C(13	3)	117.9(2)	O(7)-C(13)-C(10)	120.2(2)		
C(9)#6-C(10)-C(1	(3)	122.7(2)	O(8) - C(13) - C(10)		116.1(2)		
C(9)#4-C(11)-C(1	10)	121.8(2)	C(9)#4-	C(11)-H(13)	120(2)		
			C(10)-C	(11)-H(13)	118(2)		

Tabelle 3.112:	Bindungsabstände und -winkel der Pyromellitattetraanionen im
	$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$

 $Symmetrie transformationen: \ \#3: \ -x; -y; -z-1 \ , \ \#4: \ -x+1; -y+1; -z \ , \ \#5: \ x+1; y; z \ , \ \#6: \ x-1; y; z$

Tabelle 3.113:	Bindungsabstände und -winkel des 1,6-Hexyldiammoniumkations im
	$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4]$ ·5H ₂ O

Bindungsabstände (pm)							
N-C(1)	149.0(4)	N-H(7)	97(4)	C(1)-H(2)	89(3)		
C(1)-C(2)	150.5(4)	N-H(8)	88(4)	C(2)-H(3)	87(3)		
C(2)-C(3)	152.0(4)	N-H(9)	91(4)	C(2)-H(4)	95(3)		
C(3)-C(3)#2	151.7(6)	C(1)-H(1)	93(3)	C(3)-H(5)	91(3)		
				C(3)-H(6)	100(3)		
		Bindungswin	kel (°)				
N-C(1)-C(2)	112.2(2)	H(8)-N-H(9)	110(3)	C(3)-C(2)-H(3)	109(2)		
C(1)-C(2)-C(3)	112.2(3)	N-C(1)-H(1)	110(2)	C(3)-C(2)-H(4)	109(2)		
C(3)#2-C(3)-C(2)	113.0(3)	N-C(1)-H(2)	108(2)	H(3)-C(2)-H(4)	111(3)		
C(1)-N-H(7)	114(2)	C(2)-C(1)-H(1)	108(2)	C(3)#2-C(3)-H(5)	109(2)		
C(1)-N-H(8)	112(2)	C(2)-C(1)-H(2)	112(2)	C(3)#2-C(3)-H(6)	109(2)		
C(1)-N-H(9)	111(2)	H(1)-C(1)-H(2)	108(2)	C(2)-C(3)-H(5)	109(2)		
H(7)-N-H(8)	103(3)	C(1)-C(2)-H(3)	107(2)	C(2)-C(3)-H(6)	111(2)		
H(7)-N-H(9)	106(3)	C(1)-C(2)-H(4)	109(2)	H(5)-C(3)-H(6)	106(3)		

Symmetrietransformation: #2: -x;-y-1;-z-1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Ebene 2 aus O(1), O(2), C(4), C(7) Ebenengleichung: $-4.162 \text{ x} + 9.809 \text{ y} + 1.325 \text{ z} = -0.6939$ Abweichungen von der Ebene (pm): O(1): 0.01 ; O(2): 0.01 ; C(4): 0.01 ; C(7): -0.03 mittlere Abweichung von der Ausgleichsebene: 0.02 pm Winkel zur Ebene 1: 35.5°
Ebene 3 aus O(3), O(4), C(5), C(8) Ebenengleichung: $-2.920 \text{ x} - 5.419 \text{ y} + 10.275 \text{ z} = -5.0424$ Abweichung von der Ebene (pm): O(3): -0.55 ; O(4): -0.55 ; C(5): -0.43 ; C(8): 1.53 mittlere Abweichung von der Ausgleichsebene: 0.76 pm Winkel zur Ebene 1: 115.9°; Winkel zur Ebene 2: 98.8°
Ebene 1 aus C(9), C(10), C(11), C(12), C(13), C(9)A, C(10)A, C(11)A, C(12)A, C(13)A Ebenengleichung: $-1.337 \times -4.024 \text{ y} + 10.789 \text{ z} = -2.6806$ Abweichungen von der Ebene (pm): C(9): -28.36 ; C(10): 26.03 ; C(11): -9.82 ; C(12): 26.36 ; C(13): -31.27 ; C(9)A: 28.36 ; C(10)A: -26.03 ; C(11)A: 9.82 ; C(12)A: -26.35 ; C(13)A: 31.27 mittlere Abweichung von der Ausgleichsebene: 24.37 pm
Ebene 2 aus O(5), O(6), C(9), C(12) Ebenengleichung: $0.306 \times 1.220 \times 10.375 = -0.3568$ Abweichungen von der Ebene (pm): O(5): -6.03 ; O(6): 1.01 ; C(9): -1.11 ; C(12): 6.12 mittlere Abweichung von der Ausgleichsebene: 3.57 pm Winkel zur Ebene 1: 20.6°
Ebene 3 aus O(7), O(8), C(10), C(13) Ebenengleichung: $2.595 \times + 9.071 \times - 7.033 \times z = 4.3955$ Abweichung von der Ebene (pm): O(7): 0.80 ; O(8): 0.73 ; C(10): 0.60 ; C(13): -2.13 mittlere Abweichung von der Ausgleichsebene: 1.06 pm Winkel zur Ebene 1: 138.2° ; Winkel zur Ebene 2: 118.3°

Tabelle 3.114: Die Ausgleichsebenen der Pyromellitattetraanionen im $Cu_{1,5}(H_2DAH)_{0,5}[C_6H_2(COO)_4]$ ·5H₂O

Tabelle 3.115: Die Ausgleichsebene des 1,6-Hexyldiammoniumkations im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

Ebene aus N, C(1), C(2), C(3), N(A), C(1)A, C(2)A, C(3)A Ebenengleichung: 4.232+8.484 y - 5.242 z = -1.6213Abweichungen von der Ebene (pm) N: -1.96 ; C(1): -0.48 ; C(2): 4.32 ; C(3): 2.99 ; N(A): 1.96 ; C(1)A: 0.48 ; C(2)A: -4.32 ; C(3)A: -2.99 mittlere Abweichung von der Ausgleichsebene: 2.44 pm

Die Struktur des Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

Durch die Verknüpfung der Cu(2)-Kationen mit den Pyromellitattetraanionen bildet sich eine dreidimensionale zeolithartige Gerüststruktur aus [83], welche entlang [100] kanalartige, zentrosymmetrische Hohlräume ausbildet (Abb.3.100-3.102). Die Carboxylatgruppen

koordinieren ausschließlich einzähnig. Die Koordination der Cu(1)-Kationen an die Tetraanionen bewirkt nur eine zusätzliche Stabilisierung des Gerüstes. Die Cu(1)-Polyeder kommen hierbei in den kanalartigen Hohlräumen der aus Cu(2) und den Tetraanionen gebildeten Gerüststruktur zu liegen. Die Hohlräume werden durch das an Cu²⁺ koordinierte, sowie von weiteren Kristallwasser und den protonierten Templatmolekülen (1,6-Hexyldiammoniumkationen) besetzt. Diese Gastmoleküle sind über Wasserstoffbrückenbindungen im Kanal fixiert. Die lichte Weite²⁾ der Kanäle beträgt ca. 930 pm x 600 pm.

Abbildung 3.100:Ausschnitt aus der Struktur des Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O mit Blick auf (100). (Ortep Plot)

Abbildung 3.101:Die Struktur des $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4]$ ·5H₂O mit Blick in Richtung [100]. (Ortep Plot)

Abbildung 3.102:Raumfüllende Darstellung (*van der Waals* Radien) des zeolithartigen Gerüstes aus Cu²⁺-Kationen und Pyromellitattetraanionen im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O (Blick in [100]).

Das Kristallwasser läßt sich bereits bei RT im Exikkator über Schwefelsäure teilweise entfernen. Dabei werden 2 Mol Kristallwasser pro Formeleinheit abgegeben, so daß ein Trihydrat resultiert. Dabei zerfallen die Kristalle in kleine Bruchstücke. Bei der partiellen Abgabe des Kristallwassers, verdoppelt sich die Länge der a-Achse, während sich die beiden anderen Achsen nur geringfügig ändern^{*)}. Bei der anschließenden Rehydratisierung^{**)} erhält man die ursprüngliche Gittermetrik wieder zurück (Abb.3.103). Somit verlaufen die partielle Dehydratisierung (bis zum Trihydrat) und die anschließende Rehydratisierung topotaktisch [84].

* Anhand des Pulverdiffraktogrammes wurden folgende Zellparameter ermittelt [110]:

 $P\bar{1}: a = 1528 \text{ pm}, b = 1122 \text{ pm}, c = 1111 \text{ pm}, \alpha = 99^{\circ}, \beta = 108^{\circ}, \gamma = 95^{\circ}$

** Hierzu wurde die dehydratisierte Probe in einem Exikkator über Wasser ca. 4 Wochen aufbewahrt.

Wasserstoffbrückenbindungen im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

Wie bereits erwähnt, sind die Moleküle in den Kanälen nur über Wasserstoffbrückenbindungen mit dem dreidimensionalen Gerüst verbunden. Mit Ausnahme des Sauerstoffatoms O(6) treten alle Carboxylatsauerstoffatome als Protonenakzeptoren in vor allem starken Wasserstoffbrücken auf (Tab.3.117). Das 1,6-Hexyldiammoniumkation betätigt sich als Protonendonator. Die N···O Abstände liegen zwischen 283.7 pm und 295.5 pm. OW(1) bildet als Protonendonator ausschließlich Wasserstoffbrückenbindungen zu OW(5) und OW(4) aus.

Bindungslängen (pm)							
OW(1)-H(11)	79(4)	OW(3)-H(32)	89(4)				
OW(1)-H(12)	84(4)	OW(4)-H(41)	78(4)				
OW(2)-H(21)	81(4)	OW(4)-H(42)	87(4)				
OW(2)-H(22)	77(4)	OW(5)-H(51)	81(4)				
OW(3)-H(31)	102(4)	OW(5)-H(52)	89(4)				
	Bindungswinkel (°)						
H(11)-OW(1)-H(12)	114(4)	H(31)-OW(3)-H(32)	111(3)				
H(21)-OW(2)-H(22)	106(4)	H(41)-OW(4)-H(42)	100(4)				
		H(51)-OW(5)-H(52)	107(4)				

 $Tabelle \ 3.116: \quad Bindungslängen \ und \ -winkel \ der \ Wassermolek \\ \ddot{u}le \ im \ Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O(H_2OO)_4] \cdot 5H_2O(H_2OO)_4 + 2H_2O(H_2OO)_4 + 2H_2OO)_4 + 2H_2O(H_2OO)_4 + 2H_2OO)_4 + 2H_2OO(H_2OO)_4 + 2H_2OO(H_2OO)_4 + 2H_2$

Tabelle 3.117: Wasserstoffbrückenbindungen im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

	N…O Abstand (pm)	H…O Abstand (pm)	N–H…O Winkel (°)
N-H(7)…O(1)	287.7	194	164
N-H(8)…O(3)	283.7	198	166
N-H(9)OW(4)	295.5	210	156
	O…O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(11)OW(5)	258.9	178	177
OW(1)-H(12)···OW(4)	274.4	191	170
OW(2)-H(21)····O(4)	302.2	239	136
OW(2)-H(21)····O(5)	287.8	218	144
OW(2)-H(22)····O(2)	276.8	202	164
OW(3)-H(31)····O(5)	286.8	186	166
OW(3)-H(32)···OW(2)	289.1	205	158
OW(4)-H(41)····OW(3)	275.5	200	163
OW(4)-H(42)····O(8)	278.9	192	173
OW(5)-H(51)O(7)	276.1	195	175
OW(5)-H(52)O(3)	276.8	190	166
	C···O Abstand (pm)	H…O Abstand (pm)	C–H…O Winkel (°)
C(2)-H(3)OW(3)	339.5	256	161

$Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$

Die Koordination des Cu²⁺ im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Auch hier findet man zwei symmetrieunabhängige Cu^{2+} -Kationen, welche beide die allgemeine Lage der Raumgruppe P2/c besetzen.

Cu(1) wird von drei Carboxylatsauerstoffatomen (O(4), O(6), O(8)), sowie zweimal von dem Hydroxosauerstoffatom (O(9)) quadratisch pyramidal koordiniert. Dabei nimmt O(4) die axiale Position ein und weist mit 227.5(2) pm den größten Abstand zum Cu(1) auf (Tab.3.118). Wie in Abbildung 3.104 zu sehen, werden jeweils zwei Cu(1)-Polyeder über eine di- μ -hydroxo-Brücke transständig miteinander kantenverknüpft, da der Vierring Cu(1)–O(9)–Cu(1)–O(9) auf einem Inversionszentrum liegt. Durch diese Verbrückung beträgt der Cu(1)…Cu(1) Abstand nur 291.76(8) pm. Die Bindungsordnung nach *Trömel* [78] errechnet sich zu 2.202.

Cu(2) ist ebenfalls quadratisch pyramidal koordiniert. Die äquatorialen Positionen werden von drei Carboxylatsauerstoffatomen (O(1), O(5), O(7)) und den Hydroxosauerstoffatom O(9) besetzt. O(3) nimmt mit einen Abstand von 223.0(3) pm die axiale Position ein. Anhand der Bindungsabstände errechnet sich nach *Trömel* [78] für Cu(2) eine Bindungsordnung von 1.937. Über das gemeinsame Hydroxosauerstoffatom O(9) werden die Cu(1)- und Cu(2)-Polyeder eckenverknüpft. Die beiden sich gegenüberliegenden Cu(2)-Polyeder sind ebenfalls transständig angeordnet. Bei beiden Koordinationspolyedern weist die axiale Position den größten Bindungsabstand zum Metallzentrum auf, dessen primäre Ursache in den für d⁹-Systeme typischen *Jahn-Teller*-Effekt [52] zu suchen ist.

Abbildung 3.104:Die Verknüpfung der Cu(1)- und Cu(2)-Koordinationspolyeder im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O (Gretep Plot).

Bindungslängen (pm)						
			s (Trömel [78])	1		s (<i>Trömel</i> [78])
Cu(1)-O(6)	192.3(3)		0.5273	Cu(2)-O(9)	191.7(2)	0.5452
Cu(1)-O(9)	194.5(2)	2x	0.4919	Cu(2)-O(7)	203.4(3)	0.3579
Cu(1)-O(4)	227.5(2)		0.1616	Cu(2)-O(3)	223.0(3)	0.1863
Cu(1)-O(8)	192.5(3)		0.5293	Cu(2)-O(1)	192.9(2)	0.5215
		-	Σ= 2.2019	Cu(2)-O(5)	206.1(3)	0.3260
						Σ= 1.9369
Cu(1)…Cu(1)#1	291.76(8)					
Bindungswinkel (°)						
O(6)-Cu(1)-O(8)	88.5	3(11)		O(9)-Cu(2)-O(7)	89.56(10)
O(8)-Cu(1)-O(9)#1	167.8	6(11)		O(9)-Cu(2)-O(5)	91.60(10)
O(8)-Cu(1)-O(9)	92.4	5(10)		O(7)-Cu(2)-O(5)	143.29(11)
O(6)-Cu(1)-O(4)	89.5	1(11)		O(1)-Cu(2)-O(3)	87.82(11)
O(9)-Cu(1)-O(4)	89.6	3(10)		O(5)-Cu(2)-O(3)	93.30(11)
O(6)-Cu(1)-O(9)#1	94.9	6(10)		O(9)-Cu(2)-O(1)	175.12(11)
O(6)-Cu(1)-O(9)	175.4	3(11)		O(1)-Cu(2)-O(7)	93.60(11)
O(9)#1-Cu(1)-O(9)	83.1	8(10)		O(1)-Cu(2)-O(5)	88.08(11)
O(8)-Cu(1)-O(4)	102.0	4(11)		O(9)-Cu(2)-O(3)	87.34(10)
O(9)-Cu(1)-O(4)#1	94.6	4(10)		O(7)-Cu(2)-O(3)	123.40(11)
Cu(1)#1-O(9)-Cu(1) 96.8	2(10)		Cu(2)-O(9)-Cu(1)	113.45(12)

Tabelle 3.118: Bindungslängen und -winkel der Cu²⁺-Koordinationspolyeder im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Die O(9)-H(12) Bindung der Hydroxogruppe wurde mit 90(10) pm vergegeben. Symmetrietransformation: #1: -x;-y+1;-z

Die Pyromellitattetraanionen und das 1,6-Hexyldiammoniumkation

Es liegen zwei symmetrieunabhängige Pyromellitattetraanionen (**I**, **II**) vor (Abb.3.105). Das Kohlenstoffgerüst des zentrosymmetrischen Anions **I** weicht nur gering von einer planaren Gestalt ab. Die Carboxylatgruppen sind aus der Ausgleichsebene der Kohlenstoffatome herausgedreht, der Torsionswinkel für die Carboxylatgruppe mit C(7) beträgt 25.8° und für C(8) beträgt jener 66.5° (Tab.3.122). Die C–C Abstände innerhalb des C₆-Ringes unterscheiden sich nicht signifikant. Die C–C Einfachbindungen betragen für C(4)–C(7) 150.4(5) pm und für C(5)–C(8) 152.0(5) pm. Die C–O Bindungslängen liegen zwischen 123.6(5) pm und 127.1(5) pm, wobei das nicht am Cu²⁺ gebundene O(2) den kürzesten C–O Abstand aufweist (Tab.3.119).

Die mittlere Abweichung der Kohlenstoffatome des Pyromellitattetraanions II zu einer berechneten Ausgleichsebene beträgt 2.00 pm (Tab.3.122). Die C–C Abstände innerhalb des C₆-Ringes unterscheiden sich geringfügig, so beträgt der Abstand C(9)–C(9)#3 141.0(7) pm, während die Bindung C(9)–C(11) 138.3(5) pm lang ist. Alle Carboxylatsauerstoffatome des Anions II sind am Cu²⁺ koordinativ gebunden. Die C–O Bindungslängen variieren zwischen

124.2(4) pm und 127.1(4) pm, wobei die Carboxylatsauerstoffatome welche einen kürzeren Abstand zum Cu^{2+} aufweisen, einen längeren C–O Abstand aufzeigen (Tab.3.119). Die Carboxylatgruppen sind auch hier aus der Ausgleichsebene herausgedreht. Die Punktgruppensymmetrie des Anions II ist 2 (C₂).

Auch hier bildet das 1,6-Hexyldiammoniumkation eine zentrosymmetrische zigzag-förmige Kette. Die N–C(1) Bindungslänge beträgt 148.3(8) pm und die C–C Bindungen variieren zwischen 149.7(11) pm und 153.5(11) pm (Abb.3.121). Die Kette (^{*}N \longrightarrow N^{*}) weist eine stärkere Abweichung von der planaren Gestalt auf, als im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O. So zeigen die terminalen Stickstoffatome mit 7.58 pm die größte Abweichung von einer berechneten Ausgleichsebene (Tab.3.123).

Abbildung 3.105:Die Pyromellitattetraanionen im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O (Ortep Plot).

Bindungslängen (pm)						
Ι						
C(4)-C(5)	139.7(5)	C(4)-C(7)	150.4(5)	C(7)-O(2)	123.6(5)	
C(4)-C(6)	139.3(5)	C(5)-C(8)	152.0(5)	C(8)-O(3)	125.6(5)	
C(5)-C(6)	139.1(5)	C(7)-O(1)	127.1(5)	C(8)-O(4)	124.8(4)	
				C(6)-H(10)	98(4)	
II						
C(9)-C(9)#3	141.0(7)	C(10)-C(10)#3	140.9(7)	C(12)-O(6)	126.3(4)	
C(9)-C(11)	138.3(5)	C(9)-C(12)	150.1(5)	C(13)-O(7)	124.2(4)	
C(10)-C(11)	139.1(5)	C(10)-C(13)	151.0(5)	C(13)-O(8)	127.1(4)	
		C(12)-O(5)	124.8(4)	C(11)-H(11)	93(4)	

Tabelle 3.119: Bindungslängen der Pyromellitattetraanionen im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Symmetrietransformation: #3: -x;y;-z+0.5

Bindungswinkel (°)						
Ι						
C(6)-C(4)-C(5)	119.5(3)	O(2)-C(7)-O(1)	125.6(3)			
C(6)-C(4)-C(7)	119.5(3)	O(1)-C(7)-C(4)	116.4(3)			
C(5)-C(4)-C(7)	120.9(3)	O(2)-C(7)-C(4)	118.0(3)			
C(6)-C(5)-C(4)	119.2(3)	O(4)-C(8)-O(3)	125.0(3)			
C(6)-C(5)-C(8)	116.6(3)	O(3)-C(8)-C(5)	117.0(3)			
C(4)-C(5)-C(8)	124.0(3)	O(4)-C(8)-C(5)	117.7(3)			
C(5)-C(6)-C(4)	121.3(3)	C(5)-C(6)-H(10)	122(2)			
		C(4)-C(6)-H(10)	117(2)			
П						
C(11)-C(9)-C(9)#3	118.9(2)	O(5)-C(12)-O(6)	127.2(3)			
C(11)-C(9)-C(12)	118.8(3)	O(5)-C(12)-C(9)	118.8(3)			
C(9)#3-C(9)-C(12)	122.2(2)	O(6)-C(12)-C(9)	113.9(3)			
C(11)-C(10)-C(13)	117.2(3)	O(7)-C(13)-O(8)	127.4(4)			
C(11)-C(10)-C(10)#3	118.8(2)	O(7)-C(13)-C(10)	119.1(3)			
C(10)#3-C(10)-C(13)	124.0(2)	O(8)-C(13)-C(10)	113.4(3)			
C(9)-C(11)-C(10)	122.3(3)	C(9)-C(11)-H(11)	120(3)			
		C(10)-C(11)-H(11)	118(3)			

Tabelle 3.120: Bindungswinkel der Pyromellitattetraanionen im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Symmetrietransformationen: #3: -x;-y;-z-1

Tabelle 3.121:	Bindungslängen und -winkel des 1,6-Hexyldiammoniumkations im
	$Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$

	Bindungslängen (pm)					
N-C(1)	148.3(8)	C(2)-C(3)	153.5(11)			
C(1)-C(2)	149.7(11)	C(3)-C(3)#4	151.9(20)			
		Bindungswi	nkel (°)			
N-C(1)-C(2)	112.1(6)	H(2)-N-H(3)	113(5)	H(6)-C(2)-H(7)	114(8)	
C(1)-C(2)-C(3)	110.6(8)	N-C(1)-H(4)	107(6)	C(3)-C(2)-H(6)	105(6)	
C(3)#4-C(3)-C(2	2) 111.7(11)	N-C(1)-H(5)	108(6)	C(3)-C(2)-H(7)	102(5)	
C(1)-N-H(1)	112(4)	C(2)-C(1)-H(4)	110(6)	C(2)-C(3)-H(8)	108(6)	
C(1)-N-H(2)	104(4)	C(2)-C(1)-H(5)	110(6)	C(2)-C(3)-H(9)	110(6)	
C(1)-N-H(3)	105(4)	H(4)-C(1)-H(5)	109(7)	C(3)#4-C(3)-H(8)	111(6)	
H(1)-N-H(2)	116(6)	C(1)-C(2)-H(6)	114(6)	C(3)#4-C(3)-H(9)	99(6)	
H(1)-N-H(3)	105(6)	C(1)-C(2)-H(7)	110(6)	H(8)-C(3)-H(9)	118(8)	

Die N–H und C–H Bindungslängen wurden mit 90(10) pm vorgegeben. Symmetrietransformation: #4: -x-1;y;-z-0.5

Tabelle 3.122: Die Ausgleichsebenen der Pyromellitattetraanionen im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

T Ebene 1 aus C(4), C(5), C(6), C(7), C(8), C(4)A, C(5)A, C(6)A, C(7)A, C(8)A Ebenengleichung: 0.519 x + 10.521 y - 1.855 z = 5.0009Abweichungen von der Ebene (pm): C(4): -2.26 ; C(5): 3.21 ; C(6): 5.44 ; C(7): 3.48 ; C(8): -3.99 ; C(4)A: 2.26 ; C(5)A: -3.21 ; C(6)A: -5.44 ; C(7)A: -3.48 ; C(8)A: 4.00 mittlere Abweichung von der Ausgleichsebene: 3.68 pm Ebene 2 aus O(1), O(2), C(4), C(7)Ebenengleichung: -3.595 x + 9.937 y + 3.723 z = 6.6723Abweichungen von der Ebene (pm): O(1): 0.30 ; O(2): 0.31 ; C(4): 0.23 ; C(7): -0.85 mittlere Abweichung von der Ausgleichsebene: 0.42 pm Winkel zur Ebene 1: 25.8° Ebene **3** aus O(3), O(4), C(5), C(8) Ebenengleichung: 3.766 x + 5.056 y + 10.983 z = 0.8186Abweichung von der Ebene (pm): O(3): -1.00 ; O(4): -1.02 ; C(5): -0.77 ; C(8): 2.79 mittlere Abweichung von der Ausgleichsebene: 1.39 pm Winkel zur Ebene 1: 66.5°; Winkel zur Ebene 2: 61.7° Π Ebene 1 aus C(9), C(10), C(11), C(12), C(13), C(9)A, C(10)A, C(11)A, C(12)A, C(13)A Ebenengleichung: 9.735 x + 0.000 y + 4.563 z = 1.1408Abweichungen von der Ebene (pm): C(9): -1.42; C(10): -0.74; C(11): -3.32; C(12): -0.31; C(13): 4.23; C(9)A: 1.42 ; C(10)A: 0.47 ; C(11)A: 3.33 ; C(12)A: 0.31 ; C(13)A: -4.23 mittlere Abweichung von der Ausgleichsebene: 2.00 pm Ebene 2 aus O(5), O(6), C(9), C(12) Ebenengleichung: 10.356 x - 4.399 y - 6.549 z = -1.6941Abweichungen von der Ebene (pm): O(5): 0.45 ; O(6): 0.42 ; C(9): 0.32 ; C(12): -1.19 mittlere Abweichung von der Ausgleichsebene: 0.60 pm Winkel zur Ebene 1: 49.0° Ebene **3** aus O(7), O(8), C(10), C(13) Ebenengleichung: 10.339 x + 4.649 y - 5.596 z = -1.5534Abweichung von der Ebene (pm): O(7): 0.80 ; O(8): 0.75 ; C(10): 0.57 ; C(13): -2.12 mittlere Abweichung von der Ausgleichsebene: 1.06 pm Winkel zur Ebene 1: 46.5°; Winkel zur Ebene 2: 50.7°

Tabelle 3.123:Die Ausgleichsebene des 1,6-Hexyldiammoniumkations im
 $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$

Ebene aus N, C(1), C(2), C(3), N(A), C(1)A, C(2)A, C(3)A Ebenengleichung: 0.000 + 10.594 y + 0.000 z = 1.4888Abweichungen von der Ebene (pm) N: 7.58 ; C(1): -0.38 ; C(2): -1.79 ; C(3): -5.40 ; N(A): 7.58 ; C(1)A: -0.38 ; C(2)A: -1.79 ; C(3)A: -5.40 mittlere Abweichung von der Ausgleichsebene: 3.79 pm

Struktur des Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Die Verknüpfung der Pyromellitattetraanionen mit den Cu²⁺-Kationen führt, ähnlich wie im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O, zu einer zeolithartigen Struktur (Abb.3.106,3.107). Die Pyromellitattetraanionen I liegen nahezu parallel zur (010) Ebene. Die Anionen betätigen sich als mehrfach einzähnige Liganden. Auch hier trägt das Gerüst eine negative Überschußladung, woraus sich eine Raumladungsdichte von 2.143·10⁻³e/Å³ ergibt. Die negative Ladung wird von den protonierten Templatmolekülen (1,6-Hexyldiammonium-kationen) ausgeglichen. Die quadratförmigen Kanäle, welche sich in [001] Richtung erstrecken, werden von Kristallwasser und den 1,6-Hexyldiammoniumkationen, welche in der antiperiplanaren Form vorliegen, besetzt. Die 1,6-Hexyldiammoniumkationen und die Wasserstoffbrücken im Kanal fixiert. Mit einem Ausmaß²) von ca. 1120 pm x 1120 pm sind die Kanäle etwas größer als im Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O.

Abbildung 3.106: Ansicht eines Kanals im $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$ mit Blick in [001]. Das Pyromellitattetraanion I ist mit offenem Bindungsstab abgebildet.

Abbildung 3.107:Kalottenmodell (*van der Waals* Radien) der Gerüststruktur des $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O.$

Bei Verbindung wurde versucht die Gastmoleküle, insbesondere dieser das 1,6-Hexyldiammoniumkation, in den Kanälen gegen andere Moleküle auszutauschen. Dazu wurden mehrere Kristalle in eine 1 molare ethanolische^{*}) LiCl-Lösung eingebracht. Das Ganze wurde etwa 5 Wochen bei Raumtemperatur stehen gelassen. Dabei wurde die Einkristallnatur zerstört. Der Vergleich der Pulverdiffraktogramme (Abb.3.108) zeigt, daß sich die Lage der Reflexe nicht prinzipiell verändert hat, so daß man davon ausgehen kann, daß das Wirtsgitter erhalten geblieben ist. Jedoch kann man beim Vergleich der Intensitäten feststellen, daß sich die Intensitätsverhältnisse teilweise geringfügig geändert haben. So beträgt beim $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$ beispielsweise die Intensität des (100) Reflexes 94% und die des (010) Reflexes 100%. Im Diffraktogramm nach dem versuchten Austausch der Gastmoleküle beträgt die Intensität des (100) Reflexes 100% und die des (010) Reflexes 92% (Anhang III). Dies kann als Hinweis angesehen werden, daß ein teilweiser Austausch der Gastmoleküle stattgefunden hat. Ein deutliches Indiz für einen teilweisen Austausch liefert die Elementaranalyse, bei der deutlich wird, daß der Stickstoffanteil merklich abgesunken ist (Tab.3.124). Eine flammenphotometrische Untersuchung ergab einen Lithiumanteil von 1.4 % nach dem Austauschexperiment.

^{*} Ethanol 96%

Tabelle 3.124: Elementaranalyse	$Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$		Probe nach dem Austausch
	Ber.(%)	Gef.(%)	Gef.(%)
С	30.78	30.03	24.33
Н	3.58	3.65	3.49
Ν	2.76	2.72	0.74
Li*	-	-	1.4

* flammenphotometrisch

Abbildung 3.108:Pulverdiffraktogramme vor und nach dem Austauschexperiment (CuK_{α}-Strahlung).

Wasserstoffbrückenbindungen im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Die Gastmoleküle im Kanal sind nur über Wasserstoffbrückenbindungen mit dem Gerüst verbunden. Bis auf O(5), O(6) und O(7) sind alle Carboxylatsauerstoffatome in Wasserstoffbrückenbindungen involviert. Insbesondere das nicht am Cu²⁺ gebundene Carboxylatsauerstoffatom O(2) bildet zur Hydroxogruppe O(9)–H(12) eine besonders starke Wasserstoffbrücke aus, welche über einen kleinen O…O Abstand von 256.6 pm verfügt. Das 1,6-Hexyldiammoniumkation ist nur über eine Wasserstoffbrücke zu O(4) mit dem Gerüst verbunden (Tab.3.126).

Tabelle 3.125: Bindungswinkel der Wassermoleküle im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Bindungswinkel (°)				
H(13)-OW(1)-H(14)	95(8)	H(15)-OW(2)-H(16)	120(9)	
		H(17)-OW(3)-H(18)	104(8)	

Die O-H Bindungslängen wurden mit 90(10) pm vorgegeben.

	N····O Abstand (pm)	H…O Abstand $(pm)^*$	N-H…O Winkel (°)
N-H(1)····OW(2)	292.1	207	156
N-H(2)····O(4)	278.6	190	165
N-H(3)OW(3)	278.6	184	168
	O…O Abstand (pm)	H…O Abstand $(pm)^*$	O–H…O Winkel (°)
O(9)-H(12)····O(2)	256.6	171	163
OW(1)-H(13)····OW(2)	289.4	200	176
OW(1)-H(14)····O(3)	274.1	185	173
OW(2)-H(15)O(1)	302.8	217	158
OW(2)-H(16)····OW(1)	289.3	219	135
OW(3)-H(17)····O(8)	286.2	198	169
OW(3)-H(18)····OW(1)	283.8	205	146

Tabelle 3.126: Wasserstoffbrückenbindungen im $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$

* Die Wasserstofflagen wurden geometrisch bestimmt.

3.4.12. Das $Cu_4(H_2DAN)(OH)_2[C_6H_2(COO)_4]_2 \cdot 5H_2O$

Sehr schöne Einkristalle jener Verbindung erhält man bei 80°C in wäßriger Lösung. Dazu werden 5ml einer 0.1M Cu(NO₃)₂-Lösung mit jeweils den gleichen Volumina einer 0.2M 1,9-Diaminononanlösung und einer 0.05M Natriumpyromellitatlösung vereinigt. Eine darauf entstehende Trübung wird mit wenig 2M HNO₃ beseitigt, anschließend wird noch eine Spatelspitze Harnstoff zugefügt. Nach etwa 2-3 Tagen bildeten sich türkisfarbene Parallelepipede aus.

Elementaranalyse - $Cu_4(H_2DAN)(OH)_2[C_6H_2(COO)_4]_2 \cdot 5H_2O$					
Ber.(%) Gef.(%)					
С	33.53	33.58			
Н	3.88	4.09			
Ν	2.70	2.60			

IR-Spektrum

Auch hier finden sich die für diese Verbindungsklasse typischen Absorptionsbanden wieder (Abb.3.109). Oberhalb von 3000 cm⁻¹ erkennt man Banden der O–H- und N–H Valenzschwingungen. Zwei scharfe Signale bei 2923 cm⁻¹ und 2853 cm⁻¹ deuten auf C–H Valenzschwingungen hin. Die Absorptionen der Carboxylatgruppen sind bei 1582 cm⁻¹ (v_{as}) und bei 1367 cm⁻¹ (v_s) zu erkennen, die Differenz von 215 cm⁻¹ spricht für eine einzähnige Koordination der Carboxylatgruppen [49]. Auch hier tritt die Cu–O–H Deformationsschwingung bei 983 cm⁻¹ in Erscheinung [80].

Abbildung 3.109:Das IR-Spektrum des Cu₄(H₂DAN)(OH)₂[C₆H₂(COO)₄]₂·5H₂O.

Thermoanalyse

Die thermoanalytische Untersuchung (Abb.3.110) zeigt, daß zunächst das Kristallwasser vollständig abgegeben wird. Der Gewichtsverlust liegt dabei mit 8.5% in guter Übereinstimmung mit dem theoretischen Wert von 8.7%. Dieser endotherme Vorgang entwickelt seine maximale Reaktionstemperatur bei 155°C. Die so entstandene dehydratisierte Stufe bleibt bis etwa 261°C stabil, anschließend erfolgt die Zersetzung der Verbindung. Hierbei treten zunächst bei 303°C und 347°C vergleichsweise schwache exothermische Prozesse auf. Ab etwa 386°C ist eine starke exotherme Zersetzungsreaktion zu beobachten, deren maximale Wärmetönung sich bei 447°C entfaltet. Bis zum Ende der Heizperiode traten keine weiteren Prozesse auf, der Zersetzungsrückstand konnte röntgenographisch als CuO identifiziert werden (Anhang II).

Abbildung 3.110: Thermoanalyse des $Cu_4(H_2DAN)(OH)_2[C_6H_2(COO)_4]_2 \cdot 5H_2O$.

Strukturbeschreibung

Röntgenreflexintensitäten einer Halbkugel des reziproken Raumes wurden bis zu einem Winkel von $\theta = 25^{\circ}$ gemessen. Die Wasserstoffpositionen der CH₂- und der CH-Gruppen wurden geometrisch positioniert und als "starre Gruppe" verfeinert (constraints). Die übrigen Wasserstofflagen wurden ebenfalls geometrisch bestimmt, wobei aber jedes Atom individuell verfeinert wurde (restraints) [60]. Die wichtigsten kristallographischen Daten sind in Tabelle 3.127 angegeben.

Kristallographische Daten				
Summenformel	$C_{29}H_{40}N_2Cu_4O_{23}$			
Kristallsystem	Triklin			
Raumgruppe	P1 (Nr.2)			
Reflexionsbedingung	keine			
Gitterkonstanten	$a = 1057.5(2) \text{ pm}$ $\alpha = 106.080(10)^{\circ}$			
	$b = 1166.0(2) \text{ pm}$ $\beta = 90.73(2)^{\circ}$			
	$c = 1576.7(2) \text{ pm}$ $\gamma = 94.050(10)^{\circ}$			
Wellenlänge	71.073 pm			
Temperatur	293(2) K			
Elementarzellvolumen	$1.8624(5) \text{ nm}^3$			
Formeleinheiten in der Elementarzelle	2			
Molmasse	1038.79 g/mol			
berechnete Dichte	1.852 g/cm ³			
Absorptionskoeffizient	2.348 mm ⁻¹			
numerische Absorptionskorrektur	min./max. Transmission 0.466/0.797			
F (000)	1056			
Gemessener θ - Bereich	2.32° bis 25.00°			
Indexgrenzen	$0 \le h \le 12, -13 \le k \le 13, -18 \le 1 \le 18$			
Anzahl der gemessenen Reflexe	6850			
unabhängige Reflexe	$6467 (R_{int} = 0.0165)$			
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$			
Goodness-of-Fit an F ²	1.307			
endgültige R-Werte $[1>2\sigma(1)]$	$R_1 = 0.0445$, $wR_2 = 0.1014$			
R-Werte (sämtliche Daten)	$R_1 = 0.0544$, $wR_2 = 0.1093$			
Gewichtung	$w = 1/[\sigma^{2}(\mathbf{F}_{0} ^{2}) + 9.50 \cdot P]$			
größtes Maximum und Minimum der letzten	3			
Differenz-Fouriersynthese	$1076 \text{ und } -616e \cdot \text{nm}^{-3}$			

Tabelle 3.127: Die wichtigsten kristallographischen Daten des Cu₄(H₂DAN)(OH)₂[C₆H₂(COO)₄]₂·5H₂O

 $P = \frac{1}{3} max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die koordinative Umgebung der Cu²⁺-Kationen

In dieser Struktur treten vier symmetrieunabhängige Cu^{2+} -Kationen auf (Cu(1), Cu(2), Cu(3), Cu(4)) auf, welche alle die allgemeine Lage der Raumgruppe P1 besetzen. Alle Cu²⁺-Kationen sind verzerrt quadratisch pyramidal koordiniert (Tab.3.128,3.129).

Cu(1) ist von drei Carboxylatsauerstoffatomen (O(3), O(6), O(13)) und zweimal vom Hydroxosauerstoffatom O(18) umgeben. Die axiale Position O(13) ist mit 229.1(4) pm deutlich länger als die äquatorialen Positionen, die zwischen 193.1(3) pm und 196.8(3) pm liegen. Jeweils zwei Cu(1)-Polyeder werden über eine gemeinsame Kante (O(18)/O(18)) transständig miteinander verknüpft (di- μ -hydroxo-Brücke). An den Ecken dieser gemeinsamen Kante sind desweiteren die Cu(1)-Koordinationspolyeder mit den Cu(3)-Koordinationspolyedern eckenverknüpft, welche sich ebenfalls symmetriebedingt transständig gegenüberstehen. Auch hier ist die apikale Position (O(14)) in z-Richtung signifikant gedehnt (Abb.3.111).

Identische Verhältnisse liegen auch bei den Cu(2)- und Cu(4)-Koordinationspolyedern vor. Zwei Cu(2)-Polyeder werden ebenfalls über eine di- μ -hydroxo-Brücke (O(17)/O(17)) kantenverknüpft. Die Cu(4)-Polyeder sind mit den Cu(2)-Polyedern über ein gemeinsames Hydroxosauerstoffatom O(17) eckenverknüpft. Auch hier liegen gestreckte quadratische Pyramiden vor (Abb.3.112).

Aufgrund der Kantenverknüpfung der Cu(1)-Polyeder beträgt der kleinste Cu(1)…Cu(1) Abstand nur 292.27(12) pm, und bei den Cu(2)-Polyedern beträgt der Cu(2)…Cu(2) Abstand 294.89(13) pm.

Abbildung 3.111:Die Verknüpfung der Cu(1)- und Cu(3)-Koordinationspolyder (Ortep Plot).

Abbildung 3.112:Die Koordination der Cu(2)- und Cu(4)-Kationen (Ortep Plot).

		Bindung	sabstände (nm)			
of Trained (70)						
		s (170mei[78])			s (110mei[18])	
Cu(1)-O(3)	193.1(3)	0.5158	Cu(2)- $O(1)$	191.4(3)	0.5494	
Cu(1)-O(18)	196.8(3)	0.4504	Cu(2)-O(7)	194.6(4)	0.4881	
Cu(1)-O(13)	229.1(4)	0.1522	Cu(2)-O(11)	231.7(4)	0.1404	
Cu(1)-O(6)	193.4(4)	0.5101	Cu(2)-O(17)	194.0(3)	0.4989	
Cu(1)-O(18)#2	194.3(3)	0.4935	Cu(2)-O(17)#4	197.1(3)	0.4455	
		Σ=2.1220			Σ=2.1223	
Cu(1)…Cu(1)#2	292.27(12)		Cu(2)…Cu(2)#4	294.89(13)		
	:	s (<i>Trömel</i> [78])			s (<i>Trömel</i> [78])	
Cu(3)-O(18)	192.8(3)	0.5216	Cu(4)-O(17)	192.3(3)	0.5313	
Cu(3)-O(4)	202.7(4)	0.3648	Cu(4)-O(2)	204.2(3)	0.3461	
Cu(3)-O(14)	221.1(4)	0.1962	Cu(4)-O(12)	220.9(4)	0.1974	
Cu(3)-O(9)	193.5(3)	0.5082	Cu(4)-O(15)	192.5(3)	0.5274	
Cu(3)-O(5)	203.7(4)	0.3522	Cu(4)-O(8)	209.0(4)	0.2932	
		Σ=1.9430			Σ=1.8954	
Cu(3)…H(71)	201(5)		Cu(4)…H(61)	189(5)		

Tabelle 3.128:	Bindungsabstände in den Cu ²⁺ -Koordinationspolyedern

Die O–H Bindungen der Hydroxogruppen betragen aufgrund der geometrischen Positionierung 90.0(10) pm. Symmetrietransformationen: #2: -x;-y+1;-z+1 , #4: -x;-y+1;-z

Bindungswinkel (°)				
O(3)-Cu(1)-O(6)	86.1(2)	O(1)-Cu(2)-O(7)	88.7(2)	
O(6)-Cu(1)-O(18)#2	95.77(14)	O(1)-Cu(2)-O(17)	92.66(14)	
O(6)-Cu(1)-O(18)	168.1(2)	O(7)-Cu(2)-O(17)#4	173.0(2)	
O(3)-Cu(1)-O(13)	100.01(14)	O(17)-Cu(2)-O(11)	93.17(13)	
O(18)#2-Cu(1)-O(13)	89.86(13)	O(17)#4-Cu(2)-O(11)	95.78(13)	
O(18)-Cu(1)-O(13)	95.31(13)	O(1)-Cu(2)-O(17)	167.0(2)	
O(6)-Cu(1)-O(13)	96.5(2)	O(17)-Cu(2)-O(7)	95.08(14)	
O(3)-Cu(1)-O(18)#2	169.7(14)	O(17)-Cu(2)-O(17)#4	82.14(14)	
O(3)-Cu(1)-O(18)	92.82(14)	O(1)-Cu(2)-O(11)	99.2(2)	
O(18)#2-Cu(1)-O(18)	83.29(14)	O(7)-Cu(2)-O(11)	90.8(2)	
Cu(1)#2-O(18)-Cu(1)	96.71(14)	Cu(2)-O(17)-Cu(2)#4	97.86(14)	
O(18)-Cu(3)-O(9)	175.71(14)	O(17)-Cu(4)-O(2)	88.11(14)	
O(9)-Cu(3)-O(4)	91.9(2)	O(17)-Cu(4)-O(8)	92.01(14)	
O(9)-Cu(3)-O(5)	89.2(2)	O(2)-Cu(4)-O(8)	138.8(2)	
O(18)-Cu(3)-O(14)	87.83(14)	O(15)-Cu(4)-O(12)	86.9(2)	
O(4)-Cu(3)-O(14)	116.4(2)	O(8)-Cu(4)-O(12)	91.6(2)	
O(18)-Cu(3)-O(4)	90.70(14)	O(17)-Cu(4)-O(15)	174.5(2)	
O(18)-Cu(3)-O(5)	90.90(14)	O(15)-Cu(4)-O(2)	96.4(2)	
O(4)-Cu(3)-O(5)	142.3(2)	O(15)-Cu(4)-O(8)	86.7(2)	
O(9)-Cu(3)-O(14)	87.9(2)	O(17)-Cu(4)-O(12)	87.75(14)	
O(5)-Cu(3)-O(14)	101.3(2)	O(2)-Cu(4)-O(12)	129.6(2)	
Cu(3)-O(18)-Cu(1)	113.6(2)	Cu(4)-O(17)-Cu(2)#4	111.3(2)	
Cu(3)-O(18)-Cu(1)#2	117.3(2)	Cu(4)-O(17)-Cu(2)	119.6(2)	

Tabelle 3.129:	Bindungswinkel der Cu ²⁺ -Koordinationspolyeder

Symmetrietransformationen: #2: -x;-y+1;-z+1, #4: -x;-y+1;-z

Die Pyromellitattetraanionen und das 1,9-Nonyldiammoniumkation

Kristallographisch lassen sich drei symmetrieunabhängige Pyromellitattetraanionen lokalisieren (I, II, III). Das Tetraanion I benutzt alle Carboxylatsauerstoffatome zur Koordination an den Cu²⁺-Kationen. Die C-O Bindungen liegen zwischen 123.6(6) pm und 127.0(6) pm, während sich die C–C Bindungsabstände des C_6 -Ringes mit 138.9(7) pm bis 140.0(7) pm nicht signifikant unterscheiden, genau wie die C-C Einfachbindungen, welche zwischen 150.3(7) pm und 151.2(7) pm liegen. Bei den beiden zentrosymmetrischen Tetraanionen II und III sind nicht alle Carboxylatsauerstoffatome koordinativ an den Cu²⁺-Kationen gebunden, die Carboxylatgruppen mit C(23) und C(29) betätigen nur je ein Carboxylatsauerstoffatom zur Koordination, was auch deutlich an den C–O Bindungslängen zu erkennen ist. So betragen jene Bindungen, bei denen das Carboxylatsauerstoffatom nicht am Cu²⁺ koordiniert nur 122.2(6) pm (C(23)-O(10)) bzw. 122.1(6) pm (C(29)-O(16)), während die C-O Bindungen der jeweils koordinierten Sauerstoffatome 129.4(6) pm (C(23)-O(9)) und 129.3(6) pm (C(29)-O(15)) betragen (Tab.3.130). Diese Bindungsverhältnisse sind auch in der Pyromellitsäure anzutreffen [85]. Die Kohlenstoffgerüste der Pyromellitattetraanionen sind annähernd planar, und die Carboxylatgruppen sind bezüglich dieser Ebene unterschiedlich stark verdreht (Tab.3.132).

Die zigzag-förmige Kette des 1,9-Nonyldiammoniumkations liegt nicht vollständig antiperiplanar vor (Abb.3.113). Die N–C Bindungslängen unterscheiden sich mit 149.7(10) pm und 148.4(11) pm nicht signifikant. Die C–C Bindungen unterscheiden sich hingegen deutlich, so beträgt die kürzeste C–C Bindung 146.1(11) pm (C(4)–C(5)), während die längste Bindung 154.6(12) pm (C(5)–C(6)) mißt. Die C–C–C Winkel sind in der Regel deutlich größer als der ideale Tetraederwinkel (Tab.3.133).

Abbildung 3.113:Das 1,9-Nonyldiammoniumkation (Ortep Plot).

		Bindungslär	ngen (nm)		
т		Diliquilgsiai	igen (pin)		
1					
C(10)-C(15)	139.4(7)	C(10)-C(16)	151.2(7)	O(3)-C(17)	127.0(6)
C(10)-C(11)	139.7(7)	C(11)-C(17)	151.2(7)	O(4)-C(17)	123.6(6)
C(11)-C(12)	139.7(7)	C(13)-C(18)	150.3(7)	O(5)-C(18)	124.8(6)
C(12)-C(13)	139.5(7)	C(14)-C(19)	151.1(7)	O(6)-C(18)	126.1(6)
C(13)-C(14)	140.0(7)	O(1)-C(16)	125.5(6)	O(7)-C(19)	126.7(6)
C(14)-C(15)	138.9(7)	O(2)-C(16)	125.7(6)	O(8)-C(19)	124.2(6)
Π					
C(20)-C(21)	140.8(7)	C(20)-C(23)	150.5(6)	O(10)-C(23)	122.2(6)
C(21)-C(22)	139.5(7)	C(21)-C(24)	150.2(7)	O(11)-C(24)	124.3(6)
C(20)-C(22)	138.9(7)	O(9)-C(23)	129.4(6)	O(12)-C(24)	127.7(6)
Ш					
C(25)-C(27)	139.0(7)	C(25)-C(28)	151.0(7)	O(14)-C(28)	127.5(6)
C(26)-C(27)	138.7(7)	C(26)-C(29)	149.2(7)	O(15)-C(29)	129.3(6)
C(26)-C(25)	141.5(7)	O(13)-C(28)	124.1(6)	O(16)-C(29)	122.1(6)

Tabelle 3.130: Bindungslängen der Pyromellitattetraanionen

Aufgrund der geometrischen Positionierung der H-Atome betragen alle C-H Bindungslängen 93 pm

 Tabelle 3.131:
 Bindungswinkel der Pyromellitattetraanionen

Bindungswinkel (°)					
Ι					
C(10)-C(11)-C(17)	124.1(4)	C(12)-C(13)-C(14)	118.9(4)	O(4)-C(17)-C(11)	118.6(4)
C(13)-C(12)-C(11)	121.8(5)	C(14)-C(13)-C(18)	122.7(4)	O(4)-C(17)-O(3)	128.5(5)
C(12)-C(13)-C(18)	118.4(4)	C(15)-C(14)-C(19)	118.0(4)	O(5)-C(18)-C(13)	118.2(4)
C(15)-C(14)-C(13)	119.1(4)	C(14)-C(15)-C(10)	122.2(5)	O(6)-C(18)-C(13)	114.5(4)
C(13)-C(14)-C(19)	122.9(4)	O(1)-C(16)-C(10)	113.8(4)	O(5)-C(18)-O(6)	127.2(5)
C(15)-C(10)-C(16)	117.1(4)	O(2)-C(16)-C(10)	118.4(4)	O(7)-C(19)-C(14)	112.9(4)
C(10)-C(11)-C(12)	119.2(4)	O(1)-C(16)-O(2)	127.7(5)	O(8)-C(19)-C(14)	119.1(4)
C(12)-C(11)-C(17)	116.7(4)	O(3)-C(17)-C(11)	112.7(4)	O(8)-C(19)-O(7)	127.9(5)
II					
C(22)-C(20)-C(23)	119.6(4)	C(20)-C(22)-C(21)	121.5(5)	O(10)-C(23)-C(20)	120.2(5)
C(22)#7-C(21)-C(20)	118.1(5)	C(22)-C(20)-C(21)	120.4(4)	O(10)-C(23)-O(9)	124.3(5)
C(20)-C(21)-C(24)	124.1(4)	C(21)-C(20)-C(23)	119.7(4)	O(11)-C(24)-C(21)	119.8(5)
C(22)#7-C(21)-C(24)	117.8(4)	O(9)-C(23)-C(20)	115.5(4)	O(12)-C(24)-C(21)	116.3(5)
				O(11)-C(24)-O(12)	123.6(5)
III					
C(26)-C(25)-C(28)	123.9(4)	C(26)-C(27)-C(25)	122.5(5)	O(13)-C(28)-C(25)	120.2(4)
C(27)-C(26)-C(29)	120.8(4)	C(27)-C(25)-C(28)	117.7(4)	O(13)-C(28)-O(14)	124.1(4)
C(27)-C(26)-C(25)#9	119.2(4)	C(27)-C(25)-C(26)	118.4(4)	O(15)-C(29)-C(26)	116.2(4)
C(25)#9-C(26)-C(29)	120.0(4)	O(14)-C(28)-C(25)	115.7(4)	O(16)-C(29)-C(26)	119.6(5)
				O(16)-C(29)-O(15)	124.2(5)

Symmetrietransformationen: #7: -x;-y;-z , #9: -x;-y;-z+1

Taballa 2 122.	Die Ausgleichsehenen	der Duromellitettetreenionen
1 abene 5.152.	Die Ausgleichsebenen	uer i yronnennanen aannonen

I Ebene 1 aus C(10), C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18), C(19) Ebenengleichung: 0.362 x + 9.534 y + 4.988 z = 5.7674Abweichungen von der Ebene (pm): C(10): -1.45; C(11): 0.27; C(12): 2.08; C(13): 0.17; C(14): -1.26; C(15): -4.47 ; C(16): 2.44 ; C(17): -0.09 ; C(18): -1.25 ; C(19): 3.54 mittlere Abweichung von der Ausgleichsebene: 1.70 pm Ebene 2 aus O(1), O(2), C(10), C(16) Ebenengleichung: 4.373 x + 10.244 y - 3.633 z = 1.8122Abweichungen von der Ebene (pm): O(1): 0.63 ; O(2): 0.66 ; C(10): 0.47 ; C(16): -1.76 mittlere Abweichung von der Ausgleichsebene: 0.88 pm Winkel zur Ebene 1: 38.8° Ebene **3** aus O(3), O(4), C(11), C(17) Ebenengleichung: -4.791 x + 10.380 y - 7.224 z = 5.8619Abweichung von der Ebene (pm): O(3): -0.83 ; O(4): -0.90 ; C(11): -0.62 ; C(12): 2.36 mittlere Abweichung von der Ausgleichsebene: 1.18 pm Winkel zur Ebene 1: 56.0°; Winkel zur Ebene 2: 53.9° Ebene 4 aus O(5), O(6), C(13), C(18) Ebenengleichung: 3.900 x + 10.487 y - 3.288 z = 2.4605Abweichung von der Ebene (pm): O(5): -0.58 ; O(6): -0.55 ; C(13): -0.42 ; C(18): 1.54 mittlere Abweichung von der Ausgleichsebene: 0.77 pm Winkel zur Ebene 1: 36.1°; Winkel zur Ebene 2: 3.2°; Winkel zur Ebene 3: 51.8° Ebene 5 aus O(7), O(8), C(14), C(19) Ebenengleichung: -4.760 x + 10.404 y - 7.192 z = 5.6156Abweichung von der Ebene (pm): O(7): 0.71 ; O(8): 0.76 ; C(14): 0.53 ; C(19): -2.00 mittlere Abweichung von der Ausgleichsebene: 1.00 pm Winkel zur Ebene 1: 55.8°; Winkel zur Ebene 2: 53.7°; Winkel zur Ebene 3: 0.3° Winkel zur Ebene 4: 51.6° П Ebene 1 aus C(20), C(21), C(22), C(23), C(24), C(20)A, C(21)A, C(22)A, C(23)A, C(24)A Ebenengleichung: 10.411 x + 1.147 y - 1.676 z = 0.0000Abweichungen von der Ebene (pm): C(20): -4.07; C(21): 1.21; C(22): -5.42; C(23): 4.42; C(24): -3.07; C(20)A: 4.07 ; C(21)A: -1.21 ; C(22)A: 5.41 ; C(23)A: -4.41 ; C(24)A: 3.07 mittlere Abweichung von der Ausgleichsebene: 3.64 pm Ebene 2 aus O(9), O(10), C(20), C(23) Ebenengleichung: 10.108 x - 3.2147 y + 3.859 z = -0.1311 Abweichungen von der Ebene (pm): O(9): 0.38 ; O(10): 0.42 ; C(20): 0.31 ; C(23): -1.12 mittlere Abweichung von der Ausgleichsebene: 0.56 pm Winkel zur Ebene 1: 26.4° Ebene **3** aus O(11), O(12), C(21), C(24) Ebenengleichung: 4.296 x + 3.910 y + 11.000 z = 0.1407Abweichung von der Ebene (pm): O(11): -1.14 ; O(12): -1.07 ; C(21): -0.87 ; C(24): 3.09 mittlere Abweichung von der Ausgleichsebene: 1.54 pm Winkel zur Ebene 1: 65.1°; Winkel zur Ebene 2: 61.0° ш Ebene 1 aus C(25), C(26), C(27), C(28), C(29), C(25)A, C(26)A, C(27)A, C(28)A, C(29)A Ebenengleichung: 10.390 x - 0.719 y + 2.589 z = 1.2946Abweichung von der Ebene (pm): C(25): -0.99; C(26): -1.83; C(27): -3.96; C(28): 2.29; C(29): 2.67; C(25)A: 0.99 ; C(26)A: 1.83 ; C(27)A: 3.96 ; C(28)A: -2.29 ; C(29)A: -2.68 mittlere Abweichung von der Ausgleichsebene: 2.35 pm Ebene 2 aus O(13), O(14), C(25), C(28) Ebenengleichung: -5.311 x + 3.640 y + 11.284 z = 5.7675Abweichung von der Ebene (pm): O(13): -0.73 ; O(14): -0.68 ; C(25): -0.55 ; C(28): 1.97 mittlere Abweichung von der Ausgleichsebene: 0.98 pm Winkel zur Ebene 1: 109.8°

Fortsetzung Tabelle 3.132

Ebene **3** aus O(15), O(16), C(26), C(29) Ebenengleichung: 10.023 x + 2.873 y - 2.401 z = -1.2668 Abweichung von der Ebene (pm): O(15): 0.19 ; O(16): 0.21 ; C(26): 0.16 ; C(29): -0.57 mittlere Abweichung von der Ausgleichsebene: 0.28 pm Winkel zur Ebene 1: 22.6° ; Winkel zur Ebene 2: 115.7°

Bindungslängen (pm)					
N(1)-C(1)	149.7(10)	C(2)-C(3)	150.5(10)	C(5)-C(6)	154.6(12)
N(2)-C(9)	148.4(11)	C(3)-C(4)	153.9(11)	C(6)-C(7)	148.8(12)
C(1)-C(2)	148.5(11)	C(4)-C(5)	146.1(11)	C(7)-C(8)	151.5(11)
				C(8)-C(9)	148.2(11)
		Bindungswink	el (°)		
C(2)-C(1)-N(1)	113.1(6)	C(6)-C(7)-C(8)	117.1(7)	H(24)-N(1)-H(25)	109(7)
C(8)-C(9)-N(2)	115.6(6)	C(9)-C(8)-C(7)	108.3(7)	C(9)-N(2)-H(26)	98(5)
C(2)-C(3)-C(4)	111.3(6)	C(1)-N(1)-H(23)	111(5)	H(26)-N(2)-H(27)	110(7)
C(5)-C(4)-C(3)	114.3(7)	H(23)-N(1)-H(24)	108(7)	H(26)-N(2)-H(28)	115(7)
C(1)-C(2)-C(3)	115.8(6)	H(23)-N(1)-H(25)	101(7)	C(9)-N(2)-H(27)	103(6)
C(4)-C(5)-C(6)	115.4(8)	C(1)-N(1)-H(24)	119(5)	C(9)-N(2)-H(28)	110(6)
C(7)-C(6)-C(5)	112.1(8)	C(1)-N(1)-H(25)	108(5)	H(27)-N(2)-H(28)	119(8)

Tabelle 3.133: Bindungslängen und -winkel des 1,9-Nonyldiammoniumkations

Die H-Atome wurden geometrisch positioniert, die C-H Bindungen betragen 97 pm und die N-H Bindungen 90.0(10) pm.

Struktur

Die Pyromellitattetraanionen koordinieren die Cu^{2+} -Kationen derart, daß sich eine dreidimensionale offene Gerüststruktur aufbaut. Aus der Verknüpfung der Tetraanionen I mit den Cu^{2+} -Kationen bilden sich Schichten parallel zur (010) Ebene aus, ebenfalls werden Schichten in der (100) Ebene aus der Koordination der Tetraanionen II und III mit den Cu^{2+} -Kationen ausgebildet. Während das Tetraanion II koordinative Bindungen zu Cu(2), Cu(3), Cu(4) und das Tetraanion III zu Cu(1), Cu(3) und Cu(4) ausbildet, ist das Tetraanion I an allen Cu^{2+} -Kationen gebunden, so daß sich die obengenannte Gerüststruktur aufbaut. Die Koordination erfolgt dabei ausschließlich einzähnig (Abb.3.114-3.116). Auch hier trägt das Gerüst aus Cu^{2+} und $[C_6H_2(COO)_4]^{4-}$ eine negative Überschußladung (Raumladungsdichte: 2.148·10⁻³e/Å³), welche durch die protonierten Templatteilchen (1,9-Nonyldiammoniumkationen) kompensiert wird In dieser Struktur bilden sich in [001] Richtung kanalartige Hohlräume aus, in denen die protonierte Templatverbindung und Kristallwasser eingelagert ist. Die Hohlräume haben eine lichte Weite²⁾ von ca. 1110 pm x 1110 pm. Die Struktur ist analog zur Struktur des $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot3H_2O (RG: P2/c) (3.4.10.), bei$

der sich Hohlräume vergleichbarer Größe und Architektur ausbilden, was nicht verwundert, da auch hier beide Raumgruppen über eine translationsgleiche Gruppe-Untergruppe-Beziehung gekennzeichnet sind.

Abbildung 3.114:Die Verknüpfung der Pyromellitattetraanionen mit den Cu²⁺-Kationen. a) Pyromellitattetraanion I, b) Pyromellitattetraanionen II und III (offene Bindungsstäbe für Anion III).

Abbildung 3.115:Kalottenmodell (van der Waals Radien) des Gerüstes aus Cu²⁺-Kationen und den Pyromellitattetraanionen.

Abbildung 3.116:Die Struktur des Cu₄(H₂DAN)(OH)₂[C₆H₂(COO)₄]₂·5H₂O mit Blick in [001] (Wasserstoffatome nicht vollständig abgebildet). Die sich in den Hohlräumen befindlichen Wassermoleküle sind nicht dargestellt, die Pyromellitattetraanionen **II** und **III** sind mit offenem Bindungsstab gezeichnet.

Wasserstoffbrückenbindungen

Die Gastmoleküle werden über Wasserstoffbrückenbindungen in den kanalartigen Hohlräumen fixiert. Das 1,9-Nonyldiammoniumkation steht dabei über die Wasserstoffbrücken N(1)····O(12) und N(2)····O(3) mit dem Gerüst in Kontakt. Mit einem N····O Abstand von 276.8 pm und 296.0 pm handelt es sich um starke bis mittelstarke Wechselwirkungen. Desweitern bildet das 1,9-Nonyldiammoniumkation starke Wasserstoffbrückenbindungen zu den ebenfalls in den Hohlräumen befindlichen Wassermolekülen aus (außer OW(2)), wobei die Wassermoleküle als Protonenakzeptoren fungieren. Alle Wassermoleküle treten als Protonendonatoren in Wasserstoffbrückenbindungen zu den Carboxylatsauerstoffatomen auf. Die O…O Abstände liegen hierbei zwischen 271.6 pm und 308.7 pm. Bis auf OW(4) bilden die Wassermoleküle auch untereinander Wasserstoffbrücken aus (Tab.3.135).

Nicht alle Carboxylatsauerstoffatome sind an Wasserstoffbrückenbindungen beteiligt. Überraschend ist, daß die Carboxylatsauerstoffatome O(10) und O(16), die nicht am Cu²⁺ gebunden sind, auch an keinen Wasserstoffbrücken beteiligt sind. Auch die Hydroxogruppen O(17)–H(61) und O(18)–H(71) sind in keinerlei Wasserstoffbrückenbindungen involviert.

Tabelle 3.134: Bindungswinkel der Wassermoleküle

Bindungswinkel (°)			
H(11)-OW(1)-H(12)	95(10)	H(31)-OW(3)-H(32)	110(10)
H(21)-OW(2)-H(22)	95(10)	H(41)-OW(4)-H(42)	96(2)
		H(51)-OW(5)-H(52)	162(10)

Die H-Atome wurden geometrisch positioniert und der O-H Abstand mit 80.0(10) pm festgelegt.

	N…O Abstand (pm)	H…O Abstand $(pm)^*$	N-H…O Winkel (°)
N(1)-H(23)OW(5)	288.1	203	158
N(1)-H(24)···OW(1)	283.8	197	161
N(1)-H(25)····O(12)	276.8	190	175
N(2)-H(26)····O(3)	296.0	208	165
N(2)-H(27)····OW(3)	287.6	202	159
N(2)-H(28)····OW(4)	272.3	188	156
	O…O Abstand (pm)	H…O Abstand $(pm)^*$	O–H…O Winkel (°)
OW(1)-H(31)OW(2)	276.4	200	159
OW(1)-H(32)···O(9)	289.9	212	163
OW(2)-H(33)····O(7)	300.1	221	169
OW(2)-H(34)···O(11)	277.3	213	138
OW(3)-H(35)····O(14)	271.6	192	172
OW(3)-H(36)···OW(1)	287.5	215	152
OW(4)-H(38)····O(13)	276.5	205	146
OW(5)-H(39)···OW(3)	288.2	209	173
OW(5)-H(40)O(8)	308.7	244	138

Tabelle 3.135: Wasserstoffbrückenbindungen im Cu₄(H₂DAN)(OH)₂[C₆H₂(COO)₄]₂·5H₂O

* Wasserstofflagen wurden geometrisch bestimmt.

3.4.13. $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4] \cdot 4H_2O$ - Eine kanaldurchzogene Gerüststruktur

Grüne quaderförmige Einkristalle dieser Verbindung wurden bei 55°C in wäßriger Lösung gezüchtet. Dazu wurden zu 5ml einer 0.1M Cu(NO₃)₂-Lösung das äquivalente Volumina einer 0.2M 1,4-Diaminobutanlösung hinzugefügt und weitere 5ml einer 0.05M Natriumpyromellitatlösung zugegeben. Ein auftretender Niederschlag wurde mit wenig 2M HNO₃ gelöst, anschließend wurden noch 2 Spatelspitzen Harnstoff hinzugegeben. Nach etwa 2 bis 3 Tagen scheideten sich obengenannte Kristalle ab.

Elementaranalyse - $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]\cdot 4H_2O$			
	Ber.(%)	Gef.(%)	
С	31.16	30.87	
Н	3.70	3.76	
Ν	3.03	3.07	

IR-Spektrum

Zwischen 3610 cm⁻¹ und 2800 cm⁻¹ sind die O–H-, N–H- und C–H Valenzschwingungsbanden zu erkennen. Die Schwingungsbanden der Carboxylatgruppe liegt auch hier im typischen Bereich bei 1568 cm⁻¹ (v_{as}) und 1374 cm⁻¹ (v_{s}). Die C–H in-plane- und out-of-plane Deformationsschwingungen sind bei 1139 cm⁻¹ und 930 cm⁻¹ zu erkennen (Abb.3.117).

Abbildung 3.117:IR-Spektrum des $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]\cdot 4H_2O$.

Thermochemisches Verhalten

Wie man in Abbildung 3.118 sehen kann, treten ab 63°C mehrere endotherme Prozesse mit vergleichsweiser geringer Wärmetönung auf. Die maximalen Reaktionstemperaturen liegen dabei bei 126°C, 232°C und 256°C. Mit diesen Prozessen geht ein Gesamtgewichtsverlust von 14.1% einher. Die Abgabe des gesamten Kristallwassers würde eine Gewichtsverlust von 15.6% ergeben. Danach beginnt die rasche Zersetzung der Verbindung, wobei bei 412°C ein starkes exothermes Ereignis zu beobachten ist. Der Zersetzungsrückstand bestand aus CuO (Tenorit, Anhang II).

Abbildung 3.118: Thermochemisches Verhalten des Cu_{1.5}(H₂DAB)_{0.5}[C₆H₂(COO)₄]·4H₂O.

Strukturbeschreibung

Röntgenreflexintensitäten wurden bis zu einem Winkel von $\theta = 26^{\circ}$ gemessen. Die Wasserstoffpositionen wurden aus der Differenzfourierkarte ermittelt und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Die wichtigsten kristallographischen Daten sind in Tabelle 3.136 angegeben.

Kristallographische Daten			
Summenformel	$C_{12}H_{17}NCu_{1.5}O_{12}$		
Kristallsystem	Triklin		
Raumgruppe	P1 (Nr.2)		
Reflexionsbedingung	keine		
Gitterkonstanten	$a = 799.73(7) \text{ pm}$ $\alpha = 87.194(7)^{\circ}$		
	$b = 977.43(8) \text{ pm}$ $\beta = 84.679(7)^{\circ}$		
	$c = 1086.27(9) \text{ pm}$ $\gamma = 74.744(6)^{\circ}$		
Wellenlänge	71.073 pm		
Temperatur	293(2) K		
Elementarzellvolumen	$0.81540(12) \text{ nm}^3$		
Formeleinheiten in der Elementarzelle	2		
Molmasse	462.58 g/mol		
berechnete Dichte	1.884 g/cm ³		
Absorptionskoeffizient	2.043 mm ⁻¹		
numerische Absorptionskorrektur	min./max. Transmission 0.667/0.838		
F (000)	471		
Gemessener θ - Bereich	2.16° bis 26.00°		
Indexgrenzen	$-1 \le h \le 9$, $-11 \le k \le 12$, $-13 \le 1 \le 13$		
Anzahl der gemessenen Reflexe	3929		
unabhängige Reflexe	$3202 (R_{int} = 0.0208)$		
Strukturverteinerung	Vollmatrix Least-Squares an $ F ^2$		
Goodness-of-Fit an F ²	1.158 D 0.0211 D 0.0660		
endgultige K-Werte $[1>2\sigma(1)]$	$K_1 = 0.0311$, $WK_2 = 0.0668$		
K-werte (samtliche Daten)	$K_1 = 0.0359$, $WK_2 = 0.0686$		
Gewichtung	$w = 1/[\sigma^{-}(F_0 ^2) + 1.50 \cdot P]$		
großtes Maximum und Minimum der letzten			
Differenz-Fouriersynthese	$434 \text{ und } -742 \text{e} \cdot \text{nm}^{-3}$		

Tabelle 3.136: Die wichtigsten kristallographischen Daten des Cu_{1.5}(H₂DAB)_{0.5}[C₆H₂(COO)₄]·4H₂O

 $P = \frac{1}{3} max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Die Koordination der Cu²⁺-Kationen

Es liegen zwei symmetrieunabhängige Cu²⁺-Kationen vor. Cu(1) besetzt die allgemeine Lage, und Cu(2) liegt auf einer speziellen Atomposition (*Wyckoff*-Lage 1h) der Raumgruppe P1. Das Cu(1)-Polyeder wird ausschließlich von fünf Carboxylatsauerstoffatomen (O(1), O(2), O(5), O(6), O(8)) aufgestellt. Die Bindungslängen der äquatorialen Positionen dieser verzerrten quadratischen Pyramide liegen eng beieinander (197.4(2) pm - 198.2(2) pm),

während die axiale Position (O(8)) mit 214.9(2) pm deutlich gestreckt ist.

Cu(2) besitzt die Koordinationszahl 4 + 2, das Koordinationspolyeder stellt einen gestreckten Oktaeder dar. Die innere Koordinationssphäre wird von zwei Carboxylatsauerstoffatomen (2x O(3)) sowie von zwei Wassermolekülen (2x OW(1)) aufgebaut, und die äußere Koordinationssphäre wird von zwei Wassermolekülen (2x OW(2)) aufgestellt (Tab.3.137,Abb.3.119). Die beiden Wassermoleküle OW(2) sind mit einer Bindungslänge
von 240.1(4) pm relativ locker am Cu(2)-Kation gebunden und tragen jeweils nur ca. 5% zur Gesamtbindungsordnung bei. Die aus den Bindungslängen nach *Trömel* [78] berechneten Bindungsordnungen ergeben für Cu(1) einen Wert von 1.996 und für Cu(2) 2.151.

Abbildung 3.119:Die Geometrie der Cu²⁺-Koordinationspolyeder (Ortep Plot).

Bindungsabstände (pm)						
		s (Trömel[78	8])			s (<i>Trömel</i> [78])
Cu(1)-O(5)	197.4(2)	0.4428	Cu(2)-O(3)	191.6(2)	2x	0.5472
Cu(1)-O(2)	197.6(2)	0.4396	Cu(2)-OW(1)	199.0(2)	2x	0.4181
Cu(1)-O(8)	214.9(2)	0.2422	Cu(2)-OW(2)	240.1(4)	2x	0.1102
Cu(1)-O(6)	197.5(2)	0.4412				Σ=2.1510
Cu(1)-O(1)	198.2(2)	0.4302				
		Σ=1.9960	Cu(1)…Cu(1)#1	267.02(6)		
Bindungswinkel (°)						
O(5)-Cu(1)-O(6)		167.28(8)	O(3)#3-C	u(2)-OW(1)		92.48(10)
O(6)-Cu(1)-O(2)		87.70(9)	O(3)-Cu(2	2)-OW(1)		87.52(10)
O(6)-Cu(1)-O(1)		88.92(8)	O(3)#3-C	u(2)-O(3)		180.0
O(5)-Cu(1)-O(8)		93.47(8)	OW(1)-C	u(2)-OW(1)#3	3	180.0
O(2)-Cu(1)-O(8)		105.68(8)	O(3)-Cu(2	2)-OW(2)		92.06(12)
O(5)-Cu(1)-O(2)		89.52(8)	OW(1)-C	u(2)-OW(2)		87.60(13)
O(5)-Cu(1)-O(1)		91.17(8)	O(3)-Cu(2	2)-OW(2)		87.94(12)
O(2)-Cu(1)-O(1)		167.56(8)	OW(1)-C	u(2)-OW(2)		92.40(13)
O(6)-Cu(1)-O(8)		99.22(8)	OW(2)-C	u(2)-OW(2)#3	3	180.0
O(1)-Cu(1)-O(8)		86.68(8)				

Tabelle 3.137: Die Koordination der Cu²⁺-Kationen

Symmetrietransformationen: #1: -x+2;-y;-z , #3: -x+1;-y+1;-z-1

Die Pyromellitattetraanionen und das 1,4-Butyldiammoniumkation

In dieser Struktur liegen zwei symmetrieunabhängige Pyromellitattetraanionen (I, II) vor. Die C–C Bindungslängen innerhalb der C₆-Ringe liegen zwischen 138.5(4) pm und 140.3(4) pm, während sich die C–C Einfachbindungen zwischen 150.7(4) pm und 151.4(3) pm bewegen. Bei den Carboxylatgruppen ist kein eindeutiger Zusammenhang zwischen den Cu–O- und den C–O Abstand erkennbar. Jedoch zeigt sich bei den Sauerstoffatomen O(4) und O(7), welche nicht am Cu²⁺ koordinieren, ein deutlich kürzerer C–O Abstand (Tab.3.138,3.139). Die Kohlenstoffgerüste der Pyromellitattetraanionen weichen nur im geringen Umfang von einer berechneten Ausgleichsebene ab. Die Carboxylatgruppen sind aus dieser Ebene herausgedreht. So betragen die Interplanarwinkel beim Anion I 87.9° und 13.3° und beim Anion II sind jene Carboxylatgruppen um 22.6° bzw. 75.7° verdreht (Tab.3.140).

Das zentrosymmetrische 1,4-Butyldiammoniumkation liegt in der gewohnten antiperiplanaren Form vor (Abb.3.120). Die zigzag-förmige Kette (N) weicht nur gering von der Planarität ab (max. ±6.76 pm für C2/C2A, Tab.3.142). Die N–C(1) Bindungen betragen 148.1(4) pm und die C–C Abstände sind 151.7(5) pm und 152.3(6) pm lang. Betrachtet man die Winkelverhältnisse, so fällt auf, daß sich der Winkel zwischen den Atomen N–C(1)–C(2) mit 109.9(3)° sich nicht signifikant vom idealen Tetraederwinkel (109.47° [31]) unterscheidet (Tab.3.141).

Abbildung 3.120:Das 1,4-Butyldiammoniumkation im Cu_{1.5}(H₂DAB)_{0.5}[C₆H₂(COO)₄]·4H₂O (Ortep Plot).

Tabelle 3.138: Bindungslängen der Pyromellitattetraa	nionen
--	--------

	Bindungslängen (pm)				
Ι					
C(3)-C(5)	138.5(4)	C(3)-C(6)	151.1(4)	C(6)-O(2)	126.5(3)
C(3)-C(4)	140.1(4)	C(4)-C(7)	150.7(4)	C(7)-O(3)	126.2(4)
C(4)-C(5)	139.7(4)	C(6)-O(1)	125.7(3)	C(7)-O(4)	124.0(4)
				C(5)-H(8)	100(3)
II					
C(8)-C(9)	140.3(4)	C(8)-C(10)	139.3(4)	C(11)-O(6)	126.6(3)
C(9)-C(10)	139.1(4)	C(8)-C(11)	150.8(3)	C(12)-O(7)	124.0(3)
C(9)-C(12)	151.4(3)	C(11)-O(5)	125.3(3)	C(12)-O(8)	126.5(3)
				C(10)-H(9)	92(3)

		Bindungswink	tel (°)		
Ι					
C(5)-C(3)-C(4)	119.3(2)	C(5)-C(3)-C(6)	116.7(2)	O(3)-C(7)-C(4)	113.4(2)
C(4)-C(3)-C(6)	124.0(2)	C(5)-C(4)-C(3)#5	119.3(3)	O(4)-C(7)-C(4)	119.8(3)
C(5)-C(4)-C(7)	118.1(2)	O(1)-C(6)-C(3)	116.7(2)	O(4)-C(7)-O(3)	126.7(3)
C(3)-C(5)-C(4)	121.4(3)	O(2)-C(6)-C(3)	116.5(2)	C(3)-C(5)-H(8)	123(2)
C(3)-C(4)-C(7)	122.6(2)	O(1)-C(6)-O(2)	126.5(2)	C(4)-C(5)-H(8)	116(2)
II					
C(10)-C(8)-C(11)	118.5(2)	C(10)-C(9)-C(12)	117.2(2)	O(5)-C(11)-C(8)	117.5(2)
C(10)-C(9)-C(8)	119.3(2)	C(9)-C(10)-C(8)	121.4(2)	O(8)-C(12)-C(9)	117.0(2)
C(8)-C(9)-C(12)	123.3(2)	O(7)-C(12)-C(9)	116.8(2)	O(7)-C(12)-O(8)	126.1(2)
C(10)-C(8)-C(9)	119.4(2)	O(6)-C(11)-C(8)	117.0(2)	C(8)-C(10)-H(9)	121(2)
C(9)-C(8)-C(11)	122.1(2)	O(5)-C(11)-O(6)	125.5(2)	C(9)-C(10)-H(9)	118(2)

Tabelle 3.139: Bindungswinkel der Pyromellitattetraanionen

Symmetrietransformation: #5: -x+2;-y;-z-1

Tabelle 3.140:	Die Ausgleichsebenen der Pyromellit	attetraanionen

I Ebene 1 aus C(3), C(4), C(5), C(6), C(7), C(3)A, C(4)A, C(5)A, C(6)A, C(7)A Ebenengleichung: 6.897 x + 6.886 y - 0.139 z = 6.9664Abweichungen von der Ebene (pm): C(3): -0.35 ; C(4): 1.71 ; C(5): 1.16 ; C(6): -0.34 ; C(7): -1.34 ; C(3)A: 0.35 C(4)A: -1.71 ; C(5)A: -1.16 ; C(6)A: 0.34 ; C(7)A: 1.34 mittlere Abweichung von der Ausgleichsebene: 0.98 pm Ebene 2 aus O(1), O(2), C(3), C(6) Ebenengleichung: -3.699 x + 7.167 y + 0.057 z = -3.8717Abweichungen von der Ebene (pm): O(1): 0.30 ; O(2): 0.31 ; C(3): 0.91 ; C(6): -3.33 mittlere Abweichung von der Ausgleichsebene: 1.67 pm Winkel zur Ebene 1: 87.9° Ebene **3** aus O(3), O(4), C(4), C(7) Ebenengleichung: 6.431 x + 7.593 y + 2.052 z = 5.4543Abweichung von der Ebene (pm): O(3): -0.48 ; O(4): -0.52 ; C(4): -0.37 ; C(7): 1.37 mittlere Abweichung von der Ausgleichsebene: 0.69 pm Winkel zur Ebene 1: 13.3°; Winkel zur Ebene 2: 81.4° Π Ebene 1 aus C(8), C(9), C(10), C(11), C(12), C(8)A, C(9)A, C(10)A, C(11)A, C(12)A Ebenengleichung: -1.588 x - 2.070 y + 10.200 z = -1.8286Abweichungen von der Ebene (pm): C(8): -1.49 ; C(9): -4.26 ; C(10): -6.91 ; C(11): 3.76 ; C(12): 5.15 ; C(8)A: 1.49; C(9)A: 4.26; C(10)A: 6.91; C(11)A: -3.77; C(12)A: -5.14 mittlere Abweichung von der Ausgleichsebene: 4.31 pm Ebene 2 aus O(5), O(6), C(8), C(11) Ebenengleichung: 0.958 x + 0.885 y + 10.852 z = 0.8296Abweichungen von der Ebene (pm): O(5): 0.28 ; O(6): 0.28 ; C(8): 0.22 ; C(11): -0.78 mittlere Abweichung von der Ausgleichsebene: 0.39 pm Winkel zur Ebene 1: 22.6° Ebene **3** aus O(7), O(8), C(9), C(12) Ebenengleichung: 5.668 x - 4.238 y + 3.678 z = 0.5733 Abweichung von der Ebene (pm): O(7): 0.65 ; O(8): 0.64 ; C(9): 0.48 ; C(12): -1.77 mittlere Abweichung von der Ausgleichsebene: 0.88 pm Winkel zur Ebene 1: 75.7°; Winkel zur Ebene 2: 70.5°

Bindungslängen (pm)					
N-C(1)	148.1(4)	N-H(1)	90(5)	C(1)-H(4)	96(4)
C(1)-C(2)	151.7(5)	N-H(2)	88(5)	C(1)-H(5)	99(3)
C(2)-C(2)#4	152.3(6)	N-H(3)	90(5)	C(2)-H(6)	98(4)
				C(2)-H(7)	94(4)
		Bindungswink	cel (°)		
N-C(1)-C(2)	109.9(3)	H(1)-N-H(3)	108(4)	C(2)#4-C(2)-H(6)	108(2)
C(1)-C(2)-C(2)#4	111.1(3)	H(2)-N-H(3)	108(4)	C(2)#4-C(2)-H(7)	110(2)
C(1)-N-H(1)	111(3)	N-C(1)-H(4)	107(2)	C(1)-C(2)-H(6)	108(2)
C(1)-N-H(2)	111(3)	N-C(1)-H(5)	107(2)	C(1)-C(2)-H(7)	109(2)
C(1)-N-H(3)	113(3)	C(2)-C(1)-H(4)	114(2)	H(4)-C(1)-H(5)	107(3)
H(1)-N-H(2)	106(4)	C(2)-C(1)-H(5)	112(2)	H(6)-C(2)-H(7)	111(3)

Symmetrietransformation: #4: -x+1;-y;-z-1

Tabelle 3.142: Die Ausgleichsebene des 1,4-Butyldiammoniumkations

Ebene aus N, C(1), C(2), N(A), C(1)A, C(2)A
Ebenengleichung: $6.721 \text{ x} + 7.271 \text{ y} + 1.152 \text{ z} = 2.7841$
Abweichungen von der Ebene (pm):
N: 3.39 ; C(1): -3.29 ; C(2): -6.76; N(A): -3.38 ; C(1)A: 3.29 ; C(2)A: 6.76
mittlere Abweichung von der Ausgleichsebene: 4.48 pm

Struktur

Durch die Verknüpfung der Pyromellitattetraanionen II mit den Cu(1)-Kationen bilden sich parallel zur (001) Ebene zentrosymmetrische Schichten aus. Diese Schichten werden in [001] Richtung über die Pyromellitattetraanionen I, welche sich entlang der [110] Richtung stapeln, zu einem dreidimensionalen Netzwerk verbunden. Die Carboxylatgruppen der Anionen koordinieren hierbei einzähnig als auch mehrfach einzähnig (Abb.3.121,3.122). Dadurch werden jeweils zwei Cu(1)-Kationen über vier Carboxylatgruppen zu einer zweikernigen Einheit miteinander verbrückt (Abb.3.123). Aufgrund dessen ergibt sich ein sehr kleiner Cu(1)…Cu(1) Abstand von 267.02(6) pm. Analoge zweikernige Baueinheiten mit einem kurzem Metall...Metall Abstand sind beispielsweise bei den Cu^{II}-, Cr^{II}- und Mo^{II}-acetaten [86, 87], sowie auch bei dem Tetra-n-butyratodiruthenium-chlorid [107] und dem Cu^{ll}succinat [88] bekannt. Die Koordination des Anions I an das Cu(2)-Kation bewirkt nur eine zusätzliche Verfestigung der Struktur. Entlang [110] sind Kanäle zu erkennen, welche eine lichte Weite²⁾ von ca. 370 pm x 810 pm aufweisen. Weiterhin kann man entlang der [001] Richtung kanalartige Hohlräume erkennen. Diese Hohlräume besitzen ein Ausmaß²⁾ von ca. 440 pm x 500 pm (A) und 400 pm x 670 pm (B) (Abb.3.124,3.125). Die kanalartigen Hohlräume werden durch die Cu(2)koordinierten Wassermoleküle, am den 1,4-Butyldiammoniumkationen, weiteren Kristallwasser besetzt. sowie Die

1,4-Butyldiammoniumkationen kompensieren die negative Überschußladung des aus Cu²⁺ und den Pyromellitattetraanionen aufgebauten Netzwerkes.

Abbildung 3.121:Blick auf die Schicht, welche durch die Koordination der Pyromellitattetraanionen II mit den Cu(1)-Kationen entsteht (Ortep Plot).

Abbildung 3.122:Die aus den Pyromellitattetraanionen und den Cu²⁺-Kationen aufgebaute dreidimensionale Struktur. Die Pyromellitattetraanionen I sind mit offenen Bindungsstab gezeichnet (Zentralprojektion mit Blick in [010]).

Abbildung 3.123: Darstellung der carboxylatverbrückten Cu(1)-Kationen.

 $Abbildung \ 3.124: Darstellung \ des \ Cu_{1.5}(H_2 DAB)_{0.5}[C_6 H_2 (COO)_4] \cdot 4H_2 O \ mit \ Blick \ auf \ (001).$

(a)

(b)

Abbildung 3.125:Ausschnitt aus der Struktur des Cu_{1.5}(H₂DAB)_{0.5}[C₆H₂(COO)₄]·4H₂O mit Blick in Richtung [110]. a): Gut zu erkennen, sind die mit Wasser und 1,4-Butyldiammoniumkationen besetzten Kanäle. b): Kalottenmodell (*van der Waals* Radien) der Struktur (Wassermoleküle und 1,4-Butyldiammoniumkationen sind nicht dargestellt).

Magnetisches Verhalten

Das magnetische Verhalten der Verbindung wurde im Bereich zwischen 5K und 295K untersucht (H = 5000Gs). In Abbildung 3.126 ist zu erkennen, daß das magnetische Moment eine Funktion der Temperatur ist. Das Absinken des magnetisches Momentes bei niederen Temperaturen, läßt auf eine antiferromagnetische Kopplung schließen. Wie bereits erwähnt, beträgt der Cu(1)…Cu(1) Abstand nur 267.02(6) pm, aufgrund dessen ist eine δ-Wechselwirkung der $d_{x^2-y^2}$ -Orbitale beider Metallzentren möglich [77,89]. Bei vollständiger Kopplung beider Cu(1)-Zentren würde man bei tiefen Temperaturen ein gegen Null gehendes magnetisches Moment erwarten [90]. Wie aber zu erkennen, ändert sich im Bereich zwischen 65K und 5K das magnetische Moment nur sehr wenig, während die molare Suszeptibilität in diesen Bereich stark ansteigt. Wie im strukturellen Aufbau der Verbindung zu erkennen, liegen hier zwei symmetrieunabhängige Cu²⁺-Kationen (Cu(1), Cu(2)) vor. Jeweils zwei Cu(1)-Kationen koppeln miteinander, während die Cu(2)-Kationen an keiner Kopplung beteiligt sind. Ab ca. 65K abwärts kommt ausschließlich das paramagnetische Moment des Cu(2)-Kationen zum tragen, die Cu(1)-Kationen liefern hier keinen Beitrag zum magnetischen Moment, da sie bereits vollständig antiferromagnetisch koppeln (Diamagnetismus). In diesen Bereich (5K - 65K) kann man den Verlauf der Suszeptibilität durch ein Curie-Weiss Gesetz beschreiben ($\Theta = -0.73$ K). Am Ende der Messung (295K) ergibt sich ein magnetisches Moment von $\mu_{eff} = 2.99 \mu_B^{*}$, was darauf hindeutet, daß bis 295K noch keine vollständige Entkopplung des Systems stattfand (siehe auch Abb.3.126c).

Abbildung 3.126:Das magnetische Verhalten des Cu_{1.5}(H₂DAB)_{0.5}[C₆H₂(COO)₄]·4H₂O (bezogen auf ein Mol Kupfer)*. a): Temperaturabhängiger Verlauf der Molsuszeptibilität und der reziproken Molsuszeptibilität. b): magnetisches Moment als Funktion der Temperatur. c): Das Produkt aus Suszeptibilität und Temperatur in Abhängigkeit von T.

Wasserstoffbrückenbindungen

Die Kristallwassermoleküle stabilisieren die Struktur über Wasserstoffbrückenbindungen. Hierbei fungieren die Carboxylatsauerstoffatome als Protonenakzeptoren. Die O···O Abstände liegen in diesen Wasserstoffbrücken zwischen 274.3 pm und 303.2 pm, wobei OW(4) keine Wasserstoffbrückenbindungen zu den Carboxylatsauerstoffatomen ausbildet. Bis auf OW(1) bilden auch die Wassermoleküle untereinander mittelstarke bis schwache Wasserstoffbrücken aus. Das 1,4-Butyldiammoniumkation betätigt seine NH₃⁺-Gruppen als Protonendonatoren zu den Carboxylatsauerstoffatomen O(2), O(6), O(7), O(8). Die N···O Abstände bewegen sich dabei zwischen 280.5 pm bis 307.7 pm. Die stärkste Wasserstoffbrücke wird hierbei zu O(7) ausgebildet, welches nicht koordinativ am Cu²⁺ gebunden ist (Tab.3.144).

^{*} entspricht der Formeleinheit: Cu(H2DAB)1/3[C6H2(COO)4]2/3·8/3H2O

Bindungslängen (pm)				
OW(1)-H(11)	84(7)	OW(3)-H(31)	94(7)	
OW(1)-H(12)	91(7)	OW(3)-H(32)	92(7)	
OW(2)-H(21)	107(8)	OW(4)-H(41)	118(11)	
OW(2)-H(22)	118(8)	OW(4)-H(42)	85(11)	
Bindungswinkel (°)				
H(11)-OW(1)-H(12)	114(6)	H(31)-OW(3)-H(32)	108(5)	
H(12)-OW(2)-H(22)	92(5)	H(41)-OW(4)-H(42)	65(8)	

Tabelle 3.143: Bindungslängen und -winkel der Wassermoleküle

Tabelle 3.144: Wasserstoffbrückenbindungen im $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]\cdot 4H_2O$

	N····O Abstand (pm)	H···O Abstand (pm)	N–H…O Winkel (°)
N-H(1)…O(2)	307.7	243	130
N-H(1)…O(6)	294.8	231	128
N-H(2)…O(8)	290.2	207	157
N-H(3)…O(7)	280.5	191	170
	O····O Abstand (pm)	H…O Abstand (pm)	O–H…O Winkel (°)
OW(1)-H(11)O(4)	274.3	194	159
OW(1)-H(12)····O(7)	286.0	204	150
OW(2)-H(21)···OW(4)	330.5	239	142
OW(2)-H(22)···OW(4)	279.8	164	166
OW(3)-H(31)····O(4)	300.8	211	158
OW(3)-H(32)O(8)	303.2	211	178
OW(4)-H(41)····OW(3)	272.5	161	154

3.5. Mellitate

Am bekanntesten ist das Mineral *Mellit* ($Al_2[C_6(COO)_6]\cdot 16H_2O$), welche sich häufig in Kohlelagerstätten wiederfindet. Die Struktur dieser gelb bis orangefarbenen Kristalle wurde erstmals 1972 von *Giacovazzo* und *Menchetti* [91] veröffentlicht. Hierbei baut sich durch Wasserstoffbrückenbindungen ein dreidimensionales Netzwerk aus $[Al(H_2O)_6]^{3+}$ -Oktaedern und den Mellitathexaanionen auf. Die Mellitate zeichnen sich durch eine breite Strukturvielfalt aus [1].

Das von uns charakterisierte $Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2]\cdot 3H_2O$ zeichnet sich durch unendliche Polyanionenketten aus.

3.5.1. Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O - Unendliche Polyanionenketten

Blaue, wasserlösliche Einkristalle dieser Verbindung wurden wie folgt dargestellt. Zu einer Lösung aus 5ml einer $0.1M \text{ Cu}(\text{NO}_3)_2$ -Lösung und 5ml einer 0.2M 1,6-Diaminohexanlösung wurden ebenfalls 5ml einer 0.03M Natriummellitatlösung gegeben. Ein dabei auftretender Niederschlag wurde mit 2M HNO₃ aufgelöst. Anschließend wurden noch 0.06g Harnstoff hinzugegeben. Die so erhaltene Lösung läßt man langsam bei RT eindunsten, wobei sich quaderförmige Kristalle der Zusammensetzung Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O abscheiden.

Elementaranalyse - $Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2]\cdot 3H_2O$				
	Ber.(%)	Gef.(%)		
C	35.99	35.15		
Н	4.77	4.87		
Ν	8.84	8.81		

IR-Spektrum

In Abbildung 3.127 sind zwischen 3500 cm⁻¹ und 2900 cm⁻¹ mehrere, teils breite Banden zu erkennen, welche O–H-, N–H- und C–H Schwingungsbanden repräsentieren. Die Banden bei 1710 cm⁻¹, 1670 cm⁻¹ und 1617 cm⁻¹ sind C–O Schwingungen des Dihydrogen-mellitattetraanions und des Harnstoffs [80,50].

Abbildung 3.127:IR-Spektrum des Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O.

Thermoanalyse

Wie im thermogravimetrischen Verlauf (Abb.3.128) zu sehen, tritt ab 133°C ein Gewichtsverlust ein, begleitet von einem endothermen Prozeß ($T_{max} = 189$ °C). Der Gewichtsverlust beträgt dabei etwa 20.6%, was dem Verlust von 3 Mol Kristallwasser und 2 Mol CO₂ pro Formeleinheit entsprechen würde (21.9%). Anschließend erfolgen weitere Gewichtsverluste, deren exotherme Zersetzungsreaktionen ihre maximale Wärmetönung bei 327°C und 450°C entfalten. Der Rückstand wurde als CuO (Tenorit) röntgenographisch identifiziert (Anhang II).

Abbildung 3.128: Thermisches Verhalten des Cu(urea)(H_2DAH)[C₆(COO)₄(COOH)₂]·3H₂O.

Strukturbeschreibung

Röntgenbeugungssymmetrie und Reflexionsbedingungen führten auf die monokline Raumgruppe $P2_1/n$. Die Wasserstoffatome der CH_2 -Gruppen wurden geometrisch positioniert. Wasserstoffpositionen von NH_3 - und OH-Gruppen bzw. Wassermolekülen wurden aus Differenzfouriersynthesen erhalten und mit isotropen Temperaturfaktoren in die letzten Verfeinerungszyklen aufgenommen. Es wurde eine numerische Absorptionskorrektur durchgeführt. Die wichtigsten kristallographischen Daten sind in Tabelle 3.145 angegeben.

Tabelle 3.145: Die wichtigsten kristallographischen Daten des	$S Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2]\cdot 3H_2C$
---	---

Kristallographische Daten					
Summenformel	$C_{19}H_{30}N_4CuO_{16}$				
Kristallsystem	Monoklin				
Raumgruppe	$P2_1/n$ (Nr.14)				
Reflexionsbedingung	h0l: $h + l = 2n$				
	0h0: $k = 2n$				
Gitterkonstanten	a = 958.48(9)pm				
	$b = 1465.374(11) \text{ pm}$ $\beta = 97.655(8)^{\circ}$				
	c = 1821.14(12) pm				
Wellenlänge	71.073 pm				
Temperatur	293(2) K				
Elementarzellvolumen	$2.5357(3) \text{ nm}^3$				
Formeleinheiten in der Elementarzelle	4				
Molmasse	634.01 g/mol				
berechnete Dichte	1.661 g/cm^3				
Absorptionskoeffizient	0.949 mm^{-1}				
numerische Absorptionskorrektur	min./max. Transmission 0.743/0.828				
F (000)	1316				
Gemessener θ - Bereich	2.26° bis 24.99°				
Indexgrenzen	$0 \le h \le 11, 0 \le k \le 17, -21 \le l \le 21$				
Anzahl der gemessenen Reflexe	4751				
unabhängige Reflexe	4467 ($R_{int} = 0.0241$)				
Strukturverfeinerung	Vollmatrix Least-Squares an $ F ^2$				
Goodness-of-Fit an $ F ^2$	1.211				
endgültige R-Werte $[I \ge 2\sigma (I)]$	$R_1 = 0.0323$, $wR_2 = 0.0704$				
R-Werte (sämtliche Daten)	$R_1 = 0.0436$, $wR_2 = 0.0747$				
Extinktionskoeffizient	0.0018(2)				
Gewichtung	$w = 1/[\sigma^2(F_0 ^2) + 1.50 \cdot P]$				
größtes Maximum und Minimum der letzten					
Differenz-Fouriersynthese	342 und -363e·mn ⁻³				

 $P = \frac{1}{3} max(|F_o|^2, 0) + \frac{2}{3} |F_c|^2$

Das Cu²⁺-Polyeder

Das Cu^{2+} -Kation ist quadratisch pyramidal koordiniert. Die äquatorialen Positionen werden von zwei Carboxylatsauerstoffatomen (O(8), O(1)), welche von jeweils verschiedenen Dihydrogenmellitattetraanionen stammen, von einem Carbonylsauerstoffatom (O(13)) des Harnstoffmoleküls, sowie von einem Wassermolekül (OW(2)) besetzt. Die Bindungslängen liegen zwischen 193.3(2) pm und 200.2(2) pm (Tab.3.146). Das Wassermolekül OW(3) ist in der axialen Position koordiniert und hat mit 229.4(2) pm den deutlich längeren Abstand zum Zentralatom (Abb.3.129). Die Bindungsordnung nach *Trömel* [78] beträgt 2.009.

Abbildung 3.129:Cu²⁺-Koordinationspolyeder (Ortep Plot)

Bindungsabstände (pm)					
		s (<i>Trömel</i> [78]))		s (<i>Trömel</i> [78])
Cu-O(8)	193.3(2)	0.5139	Cu-OW(3)	229.4(2)	0.1524
Cu-O(13)	196.5(2)	0.4574	Cu-OW(2)	200.2(2)	0.4006
Cu-O(1)	194.9(2)	0.4847			
			Summe der	Bindungsstärk	cen (s): 2.0090
		Bindur	ngswinkel (°)		
O(8)-Cu-O(1)	177.32	(8)	O(8)-C	Cu-O(13)	87.28(8)
O(1)-Cu-O(13)	90.58	(8)	O(8)-C	Cu-OW(2)	88.04(8)
O(1)-Cu-OW(2)	94.47	(8)	O(13)-	Cu-OW(2)	162.57(9)
O(8)-Cu-OW(3)	89.69	(8)	O(1)-C	Uu-OW(3)	89.32(8)
O(13)-Cu-OW(3)	105.16	(8)	OW(2)	-Cu-OW(3)	91.59(9)

Tabelle 3.146: Die Geometrie des Cu²⁺-Polyeders

Das Dihydrogenmellitattetraanion, das 1,6-Hexyldiammoniumkation und der Harnstoff

In dieser Verbindung liegt das Mellitatanion als Dihydrogentetraanion vor (Abb.3.130), was sich auch in den Bindungslängen innerhalb der Carboxylatgruppen widerspiegelt. Die Bindungslängen innerhalb des C₆-Ringes liegen in einen typischen Bereich von 139.4(3) pm bis 140.7(3) pm und die C–C Einfachbindungen liegen zwischen 150.9(3) pm und 152.1(3) pm. Die C–O Bindungen der nichtprotonierten Carboxylatgruppen liegen zwischen 123.1(3) pm und 127.1(3) pm, wobei kein signifikanter Zusammenhang zwischen C–O und Cu–O Bindungsabständen gegeben ist. Die C–O Bindungen der COOH Gruppen, welche metaständig angeordnet sind, variieren zwischen 121.7(3) pm und 129.8(3) pm, wobei sich in den COOH Gruppen, nach *Pauling* [19], für die C–OH Bindungen ein Doppelbindungsanteil von ca. 32% bis 35% und für die kürzeren C=O Bindungen ein Anteil von etwa 77% ergibt (Tab.3.147). Das Kohlenstoffgerüst weicht nur im geringem Umfang von einer berechneten Ausgleichsebene ab (max. 17.44 pm C(9), Tab.3.149). Die Carboxylatgruppen sind aus dieser Ebene herausgedreht. Das Anion enthält als einziges Symmetrieelement die Identität (C₁).

Das 1,6-Hexyldiammoniumkation liegt nicht vollständig antiperiplanar vor. Schaut man entlang der C(18)–C(19) Bindungsachse, so liegt eine schiefe (skew) Konformation vor (Abb.3.131). Die C–C Bindungen bewegen sich zwischen 150.2(5) pm und 152.2(4) pm, wobei kurze und lange C–C Bindungen alternierend auftreten. Mit 147.4(4) pm ist die C(19)–N(2) Bindung kleiner als die C(14)–N(1) Bindung (149.1(4) pm).

Das Harnstoffmolekül kann man genähert als planar betrachten, so daß es der Punktgruppensymmetrie m (C_s) zugeschrieben werden kann. Die C–O Bindung beträgt 126.1(3) pm und ist damit, aufgrund der Koordination am Cu²⁺, 2 pm länger als im nicht koordinativ gebundenen Molekül [18], die C–N Bindungen sind mit 132.2(4) pm und 134.3(4) pm diesbezüglich leicht verkürzt (Tab.3.150,3.151).

Abbildung 3.130:Das Dihydrogenmellitattetraanion (Ortep Plot).

Abbildung 3.131:a) Das 1,6-Hexyldiammoniumkation (Ortep Plot). b) Newman-Projektion des 1,6-Hexyldiammoniumkations mit Blick in die C(18)–C(19) Bindung (schematisch).

Bindungsabstände (pm)					
C(1)-C(2)	139.3(3)	C(3)-C(9)	150.9(3)	C(9)-O(6)	129.8(3)
C(1)-C(6)	140.7(3)	C(4)-C(10)	151.0(3)	C(10)-O(7)	124.6(3)
C(2)-C(3)	140.0(3)	C(5)-C(11)	151.4(3)	C(10)-O(8)	125.8(3)
C(3)-C(4)	139.9(3)	C(6)-C(12)	152.1(3)	C(11)-O(9)	121.8(3)
C(4)-C(5)	139.4(3)	C(7)-O(1)	127.1(3)	C(11)-O(10)	129.0(3)
C(5)-C(6)	139.6(3)	C(7)-O(2)	123.1(3)	C(12)-O(11)	124.5(3)
C(1)-C(7)	151.9(3)	C(8)-O(3)	126.8(3)	C(12)-O(12)	125.9(3)
C(2)-C(8)	151.7(3)	C(8)-O(4)	124.1(3)	O(6)-H(19)	102(4)
		C(9)-O(5)	121.7(3)	O(10)-H(20)	76(4)

Tabelle 3.147: Bindungsabstände des Dihydrogenmellitattetraanions

Bindungswinkel (°)					
C(2)-C(1)-C(6)	119.7(2)	C(2)-C(3)-C(9)	119.5(2)	O(6)-C(9)-C(3)	115.7(2)
C(6)-C(1)-C(7)	122.2(2)	C(5)-C(4)-C(3)	120.1(2)	O(5)-C(9)-O(6)	125.2(2)
C(1)-C(2)-C(8)	120.8(2)	C(3)-C(4)-C(10)	120.9(2)	O(7)-C(10)-C(4)	119.2(2)
C(2)-C(3)-C(4)	119.2(2)	C(4)-C(5)-C(11)	116.7(2)	O(8)-C(10)-C(4)	113.5(2)
C(4)-C(3)-C(9)	121.0(2)	C(5)-C(6)-C(1)	119.4(2)	O(7)-C(10)-O(8)	127.3(2)
C(5)-C(4)-C(10)	119.0(2)	C(1)-C(6)-C(12)	121.5(2)	O(9)-C(11)-C(5)	120.1(2)
C(4)-C(5)-C(6)	120.7(2)	O(1)-C(7)-C(1)	115.7(2)	O(10)-C(11)-C(5)	114.1(2)
C(6)-C(5)-C(11)	122.6(2)	O(2)-C(7)-C(1)	118.5(2)	O(9)-C(11)-O(10)	125.7(2)
C(5)-C(6)-C(12)	119.1(2)	O(2)-C(7)-O(1)	125.8(2)	O(11)-C(12)-C(6)	116.3(2)
C(2)-C(1)-C(7)	118.1(2)	O(3)-C(8)-C(2)	115.0(2)	O(12)-C(12)-C(6)	117.9(2)
C(1)-C(2)-C(3)	120.8(2)	O(4)-C(8)-C(2)	118.4(2)	O(11)-C(12)-O(12)	125.7(2)
C(3)-C(2)-C(8)	118.3(2)	O(4)-C(8)-O(3)	126.5(2)	C(9)-O(6)-H(19)	108(2)
		O(5)-C(9)-C(3)	119.0(2)	C(11)-O(10)-H(20)	113(4)

Tabelle 3.148: Bindungswinkel des Dihydrogenmellitattetraanions

Tabelle 3.149:Die Ausgleichsebenen des Dihydrogenmellitattetraanions im
 $Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2]\cdot 3H_2O$

Ebene 1 aus C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), C(11), C(12) Ebenengleichung: $1.845 \text{ x} + 14.383 \text{ y} - 0.329 \text{ z} = -4.0553$ Abweichungen von der Ebene (pm): C(1): -3.52 ; C(2): -1.30 ; C(3): -0.34 ; C(4): -3.79 ; C(5): -1.31 ; C(6): -0.05 ; C(7): -9.02 ; C(8): -1.05 ; C(9): 17.44 ; C(10): -13.19 ; C(11): 3.06 ; C(12): 13.07 mittlere Abweichung von der Ausgleichsebene: 5.59 pm
Ebene 2 aus O(1), O(2), C(1), C(7) Ebenengleichung: 7.135 x + 8.067 y + 5.021 z = -0.8517 Abweichungen von der Ebene (pm): O(1): 0.31 ; O(2): 0.32 ; C(1): 0.24 ; C(7): -0.86 mittlere Abweichung von der Ausgleichsebene: 0.43 pm Winkel zur Ebene 1: 46.7°
Ebene 3 aus O(3), O(4), C(2), C(8) Ebenengleichung: $0.681 \text{ x} + 7.138 \text{ y} + 15.540 \text{ z} = 8.3898$ Abweichung von der Ebene (pm): O(3): 0.23 ; O(4): 0.24 ; C(2): 0.18 ; C(8): -0.66 mittlere Abweichung von der Ausgleichsebene: 0.33 pm Winkel zur Ebene 1: 60.1° ; Winkel zur Ebene 2: 49.5°
Ebene 4 aus O(5), O(6), C(3), C(9) Ebenengleichung: -5.389 x + 11.141 y + 7.243 z = 3.9133 Abweichungen von der Ebene (pm): O(5): 0.24 ; O(6): 0.22 ; C(3): 0.17 ; C(9): -0.63 mittlere Abweichung von der Ausgleichsebene: 0.32 pm Winkel zur Ebene 1: 50.2° ; Winkel zur Ebene 2: 82.9° ; Winkel zur Ebene 3: 52.1° Ebene 5 aus O(7), O(8), C(4), C(10) Ebenengleichung: 6.725 x - 8.096 y + 6.425 z = 3.9010 Abweichung von der Ebene (pm): O(7): -0.10 ; O(8): -0.09 ; C(4): -0.07 ; C(10): 0.26 mittlere Abweichung von der Ausgleichsebene: 0.13 pm Winkel zur Ebene 1: 113.8° ; Winkel zur Ebene 2: 67.1° ; Winkel zur Ebene 3: 80.0° Winkel zur Ebene 4: 131.9°
Ebene 6 aus O(9), O(10), C(5), C(11) Ebenengleichung: 1.091 x + 10.409 y - 12.816 z = -11.1337 Abweichung von der Ebene (pm): O(9): -0.33 ; O(10): -0.30 ; C(5): -0.24 ; C(11): 0.87 mittlere Abweichung von der Ausgleichsebene: 0.44 pm Winkel zur Ebene 1: 44.5° ; Winkel zur Ebene 2: 77.7° ; Winkel zur Ebene 3: 104.5° Winkel zur Ebene 4: 75.6° ; Winkel zur Ebene 5: 128.7° Ebene 7 aus O(11), O(12), C(6), C(12) Ebenengleichung: 8.210 x + 3.939 y - 10.031 z = -10.1828 Abweichung von der Ebene (pm): O(11): -0.22 ; O(12): -0.22 ; C(6): -0.17 ; C(12): 0.62

Fortsetzung Tabelle 3.149

mittlere Abweichung von der Ausgleichsebene: 0.31 pm Winkel zur Ebene 1: 64.8°; Winkel zur Ebene 2: 51.8°; Winkel zur Ebene 3: 101.1° Winkel zur Ebene 4: 114.9°; Winkel zur Ebene 5: 75.3°; Winkel zur Ebene 6: 53.5°

Tabelle 3.150: Bindungslängen des Harnstoffes und des 1,6-Hexyldiammoniumkations

Bindungslängen (pm)					
Harnstoff					
O(13)-C(13)	126.1(3)	C(13)-N(3)	134.3(4)	N(3)-H(28)	80(4)
C(13)-N(4)	132.2(4)	N(3)-H(27)	91(4)	N(4)-H(30)	82(4)
				N(4)-H(29)	86(4)
1,6-Hexyldiamn	noniumkation				
N(1)-C(14)	149.1(4)	C(16)-C(17)	150.9(4)	N(1)-H(13)	95(3)
N(2)-C(19)	147.4(4)	C(17)-C(18)	152.2(4)	N(1)-H(15)	95(5)
C(14)-C(15)	150.6(4)	C(18) - C(19)	150.2(5)	N(2)-H(16)	82(5)
C(15)-C(16)	152.1(4)	N(1)-H(14)	83(4)	N(2)-H(17)	80(5)
				N(2)-H(18)	92(5)

Da die H-Atome der CH2-Gruppen geometrisch positioniert wurden, betragen die C-H Bindungen 97 pm.

Tabelle 3.151: Bindungswinkel im Harnstoffmolekül und im 1,6-Hexyldiammoniumkation

		Bindungswinke	l (°)		
Harnstoff					
O(13)-C(13)-N(4)	123.1(3)	C(13)-N(3)-H(27)	115(2)	C(13)-N(4)-H(29)	122(3)
N(4)-C(13)-N(3)	118.3(3)	C(13)-N(3)-H(28)	117(3)	C(13)-N(4)-H(30)	120(3)
O(13)-C(13)-N(3)	118.7(3)	H(27)-N(3)-H(28)	127(4)	H(29)-N(4)-H(30)	117(4)
1,6-Hexyldiammoniu	umkation				
N(1)-C(14)-C(15)	111.5(2)	C(14)-N(1)-H(13)	110(2)	C(19)-N(2)-H(16)	107(3)
N(2)-C(19)-C(18)	113.7(3)	C(14)-N(1)-H(14)	113(3)	C(19)-N(2)-H(17)	111(3)
C(14)-C(15)-C(16)	112.6(3)	C(14)-N(1)-H(15)	112(3)	C(19)-N(2)-H(18)	107(3)
C(17)-C(16)-C(15)	111.9(3)	H(13)-N(1)-H(14)	109(3)	H(16)-N(2)-H(17)	115(4)
C(16)-C(17)-C(18)	113.7(3)	H(13)-N(1)-H(15)	108(3)	H(16)-N(2)-H(18)	105(4)
C(19)-C(18)-C(17)	113.8(3)	H(14)-N(1)-H(15)	105(3)	H(17)-N(2)-H(18)	111(4)

Struktur

Die Dihydrogenmellitattetraanionen verbinden die Cu^{2+} -Kationen zu unendlich langen Ketten der Zusammensetzung { $Cu(H_2O)_2(urea)[C_6(COO)_4(COOH)_2]$ }_n²ⁿ⁻. Das Dihydrogenmellitattetraanion koordiniert einzähnig, die Verknüpfung erfolgt über die Carboxylatsauerstoffatome O(1) und O(8), deren Carboxylatgruppen paraständig zueinander

angeordnet sind. Diese Polyanionenketten verlaufen parallel zur Flächendiagonale [101]. Durch die 1,6-Hexyldiammoniumkationen, welche neben Kristallwasser, zwischen den Ketten angeordnet sind, wird die negative Überschußladung kompensiert (Abb.3.132,3.133). Anion Da das als Dihydrogenanion vorliegt, läßt sich Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O auch formal als die protonierte Form eines Kationenaustauscher betrachten [92], allerdings ist diese Verbindung gut wasserlöslich. Die $\{Cu(H_2O)_2(urea)[C_6(COO)_4(COOH)_2]\}_n^{2n}$ -Ketten Austauschkapazität der theoretische beträgt 3.15 mval/g, und die lineare Überschußladungsdichte beträgt 0.185 e/Å.

Abbildung 3.132:Die Verknüpfung der Cu²⁺-Kationen mit den Dihydrogenmellitattetraanionen zu unendlichen langen Ketten (Blick auf (010), Wassermoleküle und Harnstoffmoleküle sind nicht dargestellt).

Abbildung 3.133:Ausschnitt aus der Struktur des Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O mit Blick in [100]. Gestrichelte Linien stellen einen Ausschnitt der N···O Wasserstoffbrücken dar.

Wasserstoffbrückenbindungen

Die Polyanionenketten werden über kurze Wasserstoffbrückenbindungen zwischen den Hydroxygruppen und den Carboxylatsauerstoffatomen der Dihydrogenmellitattetraanionen der jeweils benachbarten Kette vernetzt. Die Hydroxygruppe O(6)–H(19) baut hierbei eine sehr starke Wasserstoffbrücke, mit einen geringen H…O Abstand von 150 pm, zum Carboxylatsauerstoffatom O(12) auf (O…O: 253.4 pm), während die Hydroxygruppe O(10)–H(20) eine Brücke zu O(3) mit einem O…O Abstand von 246.5 pm ausbildet. Weiterhin werden die Ketten über Wasserstoffbrücken zwischen den Stickstoffatome des Harnstoffs (N(3), N(4)) und den Carboxylatsauerstoffatomen O(1) und O(3) verknüpft (Tab.3.153). Das nicht koordinierte Kristallwasser (OW(1)) und die 1,6-Hexyldiammonium-kationen sind zwischen den Ketten eingelagert und stabilisieren die Struktur über

Wasserstoffbrückenbindungen. Die N···O Abstände liegen hierbei zwischen 275.2 pm und 312.4 pm. Die Wassermoleküle OW(2) und OW(3) treten als Protonendonatoren in Wasserstoffbrückenbindungen zu O(4), O(5) und O(9) innerhalb der selben Kette auf.

Bindungslängen (pm)					
OW(1)-H(21)	79(4)	OW(2)-H(24)	84(4)		
OW(1)-H(22)	79(4)	OW(3)-H(25)	83(4)		
OW(2)-H(23)	77(4)	OW(3)-H(26)	71(4)		
Bindungswinkel (°)					
H(21)-OW(1)-H(22)	104(4)	H(25)-OW(3)-H(26)	110(4)		
H(23)-OW(2)-H(24)	107(4)				

Tabelle 3.152: Bindungslängen und -winkel der Wassermoleküle

Tabelle 3.153: Wasserstoffbrückenbindungen im Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O

	N····O Abstand (pm)	H…O Abstand (pm)	N-H…O Winkel (°)
N(1)-H(13)····OW(1)	280.6	186	166
N(1)-H(14)····O(7)	290.2	209	169
N(1)-H(15)····O(4)	286.9	196	164
N(2)-H(16)····O(2)	291.2	221	142
N(2)-H(17)···O(10)	287.6	246	115
N(2)-H(17)···O(12)	312.4	241	155
N(2)-H(18)····O(7)	275.2	188	166
N(3)-H(27)···O(11)	305.8	224	150
$N(3)-H(28)-O(1)^*$	327.9	256	155
N(4)-H(29)···OW(3)	293.4	211	162
$N(4)-H(30)-O(3)^*$	297.7	219	166
	O…O Abstand (pm)	HO Abstand (pm)	O–H···O Winkel (°)
O(6)-H(19)····O(12)*	253.4	150	172
O(10)-H(20)····O(3)*	246.5	175	173
OW(1)-H(21)···O(11)	281.3	207	155
OW(1)-H(22)…O(11)	275.4	196	175
OW(2)-H(23)····O(9)	293.3	218	173
OW(2)-H(24)···O(5)	270.1	188	161
OW(3)-H(25)O(4)	292.8	216	164
OW(3)-H(26)···OW(1)	280.8	209	167

* Wasserstoffbrücke zwischen benachbarten Ketten

Kapitel 4

Zusammenfassung

Mit Hilfe von mehrzähnigen Liganden konnten Koordinationspolymere mit ein-, zwei-, und dreidimensionalen Baumustern dargestellt werden, welche durch eine Einkristallstrukturbestimmung charakterisiert worden sind.

Zunächst wurde als primärer Baustein das Anion der Quadratsäure eingesetzt. Ein damit synthetisiertes kristallwasserfreies Bariumquadratat weist eine kompakte dreidimensionale Struktur auf. Die Koordinationssphäre des Ba²⁺ besteht aus acht Quadratatsauerstoffatomen, wobei das Quadratatdianion als mehrfach einzähniger Ligand fungiert. Die Koordinationspolyeder sind über gemeinsame Kanten miteinander verknüpft. Die Struktur weist eine beachtliche thermische Stabilität auf, die Zersetzung der Verbindung beginnt erst ab ca. 490°C.

Abbildung 4.1. Die dreidimensionale Struktur des BaC₄O₄.

Aus früheren Arbeiten wird deutlich, daß insbesondere Übergangsmetallquadratate sowohl Ketten-, als auch Käfigstrukturen aufbauen können [4-6]. In dieser Arbeit wurden zwei Cobalt(III)quadratate in Gegenwart von Ethylendiamin dargestellt. Es zeigt sich, daß in beiden Verbindungen keine kovalenten Bindungen zwischen den Quadratatdianionen und den Co^{3+} -Kationen ausgebildet werden. Beim orthorhombischen $Co(en)_3[C_4O_4]_{1.5}$ ·4.5H₂O wird die Koordinationssphäre des Kations ausschließlich von den Ethylendiaminmolekülen abgesättigt. Die $[Co(en)_3]^{3+}$ Baueinheiten und die Quadratatdianionen sind über N···O Wasserstoffbrückenbindungen vernetzt, so daß ein dreidimensionales supramolekulares Netzwerk ausgebildet wird, welches entlang [100] Hohlräume aufweist. In diesen Hohlräumen befindet sich Kristallwasser. Etwas anders liegen die Verhältnisse im triklinen $Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5}$ ·4H₂O. Hier werden jeweils zwei Co^{3+} -Kationen über eine µ-hydroxo-µ-peroxo-Brücke miteinander verknüpft. Die restlichen Koordinationsstellen werden auch wieder von den Ethylendiaminmolekülen aufgefüllt. Das dadurch gebildete zweikernige Kation [(en)₂Co(O₂)(OH)Co(en)₂]³⁺ ist ebenfalls über N···O Wasserstoffbrückenbindungen mit den Quadratatdianionen verbunden. Allerdings führt diese Verknüpfung über Wasserstoffbrückenbindungen nicht zu einen offenen Netzwerk.

Abbildung 4.2. Das Netzwerk des $Co(en)_3[C_4O_4]_{1.5} \cdot 4.5H_2O$ (Kreise = Sauerstoffatome der Wassermoleküle).

Abbildung 4.3. Ortep Plot des zweikernigen Kations im $Co_2(en)_4(O_2)(OH)[C_4O_4]_{1.5}$ ·4H₂O.

Bei Koordinationspolymeren mit Anionen von aromatischen Carbonsäuren als Liganden, konnte, insbesondere bei den Pyromellitaten, eine große Strukturvielfalt aufgezeigt werden. Neben den Benzolcarbonsäureanionen wurden auch u.a. N-Donor-Liganden an den Metallkationen koordiniert.

Setzt man eine Pyromellitsäurelösung mit einer Ni(NO₃)₂-Lösung, bzw. einer Zn(NO₃)₂-Lösung um, bilden sich lediglich Molekülkristalle der Zusammensetzung $M[C_6H_2(COOH)_2(COO)_2] \cdot 6H_2O$ (M = Ni²⁺, Zn²⁺) aus. Das Ni²⁺ (Zn²⁺) wird dabei von 6 Wassermolekülen koordiniert, während die Pyromellitatanionen als Dihydrogendianionen vorliegen. Zwischen den Koordinationspolyedern und den Dihydrogenpyromellitatdianionen werden keine koordinativen Bindungen ausgebildet.

Im Mn(pyz)[C₆H₄(COO)₂]·4H₂O liegen kettenförmige Polykationen der Zusammensetzung $[Mn(H_2O)_4(pyz)]_n^{2n+}$ vor. Die positive Überschußladung jener Ketten wird durch Phthalatdianionen, welche zwischen den Ketten eingelagert sind, kompensiert. Die Mn²⁺-Kation Phthalatdianionen Bindungen zum bilden keine koordinativen aus. Ein eindimensionales, kettenartiges Baumuster liegt auch beim Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O vor. Hier bilden sich durch die Koordination der Pyromellitattetraanionen an die Ni²⁺-Kationen Polyanionenketten aus. Diese Polyanionen verlaufen entlang der Flächendiagonalen [101]. Die oktaedrische Koordinationssphäre des Ni²⁺ wird von zwei Carboxylatsauerstoffatomen und vier Wassermolekülen aufgestellt. Zum Ladungsausgleich sind zwischen den Ketten trans-1,4-Cyclohexyldiammoniumkationen plaziert. Auch beim Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O treten koordinative Bindungen zwischen dem Metallzentrum (Cu²⁺) und dem Dihydrogenmellitattetraanion auf.

Aus dieser Verknüpfung erstrecken sich in [101] Richtung unendliche Polyanionenketten der Zusammensetzung $\{Cu(H_2O)_2(urea)[C_6(COO)_4(COOH)_2]\}_n^{2n}$. 1,6-Hexyldiammoniumkationen sind zur Ladungskompensation zwischen den Polyanionensträngen intercaliert. Da das Mellitatanion als Dihydrogentetraanion vorliegt, kann man die Verbindung auch als Form eines Kationenaustauschers betrachten, protonierte dessen theoretische Austauschkapazität bei 3.15 mval/g liegt. Die Koordinationssphäre (quadratische Pyramide) des Cu2+ wird außerdem von Wasser und einen Harnstoffmolekül, welches über den Carbonylsauerstoff bindet, abgesättigt. Im Co(imi)₂[C₆H₂(COO)₄]_{0.5} bilden sich ebenfalls Ketten aus. Diese Ketten sind elektrisch neutral. Das Co²⁺ wird vom Pyromellitattetraanion einzähnig koordiniert, so daß die zentrosymmetrischen Ketten entlang [001] verlaufen. Die Imidazolmoleküle dienen nur zum auffüllen der tetraedrischen Koordinationssphäre des Co²⁺. Die Ketten sind über N…O Wasserstoffbrückenbindungen verknüpft.

Abbildung 4.5. Die Struktur des Mn(pyz)[C₆H₄(COO)₂]·4H₂O (Ortep Plot).

Abbildung 4.6. Die Kettenstruktur des Co(imi)₂[C₆H₂(COO)₄]_{0.5} (Ortep Plot).

Versucht man zur Auffüllung der Koordinationssphäre größere N-Donor-Liganden als das Imidazol zu verwenden, kommt es zu einem Kettenabbruch und es bilden sich bevorzugt Dimere aus, wie das beim Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O und beim Ni(bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O der Fall ist. Hier werden jeweils zwei Metallkationen (Co²⁺ bzw. Ni²⁺) über ein Pyromellitattetraanion zentrosymmetrisch verknüpft. Die restlichen Koordinationsstellen der Metallzentren werden durch Wassermoleküle und den 1,10-Phenanthrolinmolekülen, bzw. den 2,2'-Bipyridinmolekülen, welche über die Stickstoffzentren chelatartig koordinieren, besetzt.

Abbildung 4.7. Das zentrosymmetrische Dimer des Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O (Ortep Plot).

Das Anion der Trimesinsäure zeichnet sich dadurch aus, daß sich die Carboxylatgruppen coplanar anordnen können. Auf Grund dessen bildet sich im $Cd[C_6H_3(COO)_2(COOH)]\cdot 2H_2O$ eine Schichtstruktur aus. Diese planaren Schichten liegen parallel zur (101) Ebene, wobei das Cd^{2+} siebenfach koordiniert wird und die Carboxylatgruppen des Hydrogentrimesinatdianions auch chelatartig fungieren. Die Verbindung stellt einen protonierten Kationenaustauscher, mit einer theoretischen Austauschkapazität von 2.80 mval/g dar.

Auch im $Cd_2[C_6H_2(COO)_4]\cdot 6H_2O$ liegt parallel zur (011) Ebene eine gewellte Schichtstruktur vor. Das Cd^{2+} -Kation wird hierbei ausschließlich einzähnig vom Pyromellitattetraanion koordiniert. Die Koordinationssphäre des Kations stellt ein verzerrtes Oktaeder dar, wobei jeweils zwei Polyeder miteinander kantenverknüpft sind.

Abbildung 4.8. Die Verknüpfung der Hydrogentrimesinatdianionen mit den Cd²⁺-Kationen zu einer Schicht im Cd[C₆H₃(COO)₂(COOH)]·2H₂O (Blick auf (101)).

Abbildung 4.9. Ausschnitt aus der Schichtstruktur des Cd₂[C₆H₂(COO)₄]·6H₂O mit Blick entlang der a-Achse.

Verwendet man hingegen neben den Anionen der Benzolcarbonsäuren auch N-Donor-Liganden, deren basischen *Lewis*-Zentren *para*ständig angeordnet sind (Pyrazin, 4,4'-Bipyridin), eröffnet sich ebenfalls der Zugang zu Schichtverbindungen. Im $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}\cdot 3H_2O$ bildet sich zunächst aus der Koordination der Pyromellitattetraanionen mit den Cu²⁺-Kationen entlang [100] unendliche Ketten aus. Dabei koordiniert das Pyromellitattetraanion auch chelatartig. Diese Ketten werden nun über die Pyrazinmoleküle in [011] Richtung zu einem zweidimensionalen Verband verknüpft. Bei den isotypen Verbindungen $Mn(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$ und $Co(4,4'bipy)[C_6H_4(COO)_2]\cdot 4H_2O$ werden durch die 4,4'-Bipyridinmoleküle und den M^{2+} -Kationen (Mn^{2+} , Co^{2+}) in [010] Richtung Ketten aufgebaut, die über die Phthalatdianionen zu Schichten verbunden werden. Diese gewellten Schichten liegen parallel zu (001).

Abbildung 4.10. Die zweidimensionale Struktur des $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5}$ · $3H_2O$.

Das $Cd_{1.5}[C_6H_3(COO)_3]$ ·4.25H₂O zeichnet sich durch eine dreidimensionale Strukturen aus. Es treten zwei symmetrieunabhängige Cd^{2+} -Kationen auf. Aus der Verknüpfung der Cd(1)-Kationen mit den Trimellitattrianionen entstehen parallel zur (010) Ebene Schichtverbände. Die einzelnen Schichten werden hierbei über das Cd(2)-Kation zu einem dreidimensionalen Gerüst verbunden. Auch hier koordiniert das Trimellitattrianion sowohl einzähnig als auch chelatartig.

Auch bei den isostrukturellen Ba₂[C₆H₂(COO)₄]·H₂O und Pb₂[C₆H₂(COO)₄]·H₂O findet sich eine dreidimensionale Struktur wieder. Die zwei kristallographisch unabhängigen Metallkationen M(1) und M(2) (M = Ba²⁺, Pb²⁺) sind dabei acht und zehnfach koordiniert. Die Koordinationspolyeder sind sowohl kanten- als auch flächenverknüpft, so daß sich parallel zur (010) Ebene Polyederschichten ergeben. Diese Schichten werden in b-Richtung über die Pyromellitattetraanionen verbrückt.

Abbildung 4.11. Die dreidimensionale Struktur des $Ba_2[C_6H_2(COO)_4]$ ·H₂O und des $Pb_2[C_6H_2(COO)_4]$ ·H₂O.

Im $Mn_4(INS)_2[C_6H_2(COO)_4]_2\cdot 12H_2O$ bildet sich eine offene Hohlraumstruktur aus, welche aus der Verknüpfung der Mn^{2+} -Kationen mit den Pyromellitattetraanionen resultiert. Die Isonicotinsäuremoleküle, welche als O-Donor-Liganden auch am Mn^{2+} koordinieren, bewirken dabei nur eine zusätzliche Verfestigung der Struktur. Es treten kanalartige Hohlräume auf, in denen sich ausschließlich Wassermoleküle befinden und Hohlräume in denen die Isonicotinsäuremoleküle zum liegen kommen.

Führt man die Reaktion zwischen einer Metallsalzlösung und einer Natriumpyromellitatlösung in Gegenwart von Diammoniumkationen (1,4-Butyl-, *trans*-1,4-Cyclohexyl-, 1,6-Hexyl-, 1,9-Nonyldiammoniumkationen) durch, gelangt man zu offenen dreidimensionalen Gerüsten mit zeolithartigen Strukturmerkmalen. Die Diammoniumkationen fungieren hierbei als strukturdirigierende Teilchen (Template). Im einzelnen konnten sechs solcher Verbindungen synthetisiert und charakterisiert werden :

$$Co(H_2DACH)[C_6H_2(COO)_4]\cdot 2H_2O$$

 $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot\frac{1}{2}H_2O$

 $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$

$$Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$$

 $Cu_4(H_2DAN)(OH)_2[C_6H_2(COO)_4]_2 \cdot 5H_2O \quad Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4] \cdot 4H_2O$

In all diesen Verbindungen baut sich aus den Metallkationen (Co^{2+} , Cu^{2+} , Zn^{2+}) und den Pyromellitattetraanionen eine offene Gerüststruktur auf, welche eine negative Überschußladung trägt. Die Überschußladungsdichte liegt etwa in einem Bereich zwischen $2.14 \cdot 10^{-3}$ e/Å³ und $4.20 \cdot 10^{-3}$ e/Å³. Zum Vergleich, beim natürlichem Thomsonit (Na₂Ca₄Al₁₀Si₁₀O₄₀) beträgt die Überschußladungsdichte des Gerüstes $7.62 \cdot 10^{-3}$ e/Å³, und beim Sodalith (Na₈Si₆Al₆O₂₄Cl₂) beträgt sie $8.60 \cdot 10^{-3}$ e/Å³ [93,94].

Die Pyromellitattetraanionen betätigen sich bei diesen Verbindungen ausschließlich als einzähnige Koordinationspartner. Es entstehen kanalartige Hohlräume unterschiedlicher Größe, die von Wassermolekülen und den Diammoniumkationen besetzt werden. Wie man beispielhaft in Abbildung 4.12. sehen kann, bilden die Diammoniumkationen keine koordinativen Bindungen zum Gerüst aus.

Abbildung 4.12. Die zeolithartige Struktur des Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O, wobei sich Kanäle in [001], [110] und [110] Richtung ergeben. a) Blick in einen Kanal entlang [001], welcher mit Kristallwassermolekülen und den *trans*-1,4-Cyclohexyldiammoniumkationen besetzt ist. b) Darstellung des Gerüstes in *van der Waals* Radien (Blick in [001]), c) gleiche Darstellung mit Blick in [110].

Betrachtet man die Architektur und Größe der kanalartigen Hohlräume, so scheinen die Templatteilchen keinen eindeutig direkten Einfluß darauf auszuüben. So bildeten sich bei Verwendung zwei verschiedener Template im $Co(H_2DACH)[C_6H_2(COO)_4]\cdot 2H_2O$ und im $Zn(H_2DAH)[C_6H_2(COO)_4]\cdot \frac{1}{2}H_2O$ analoge Strukturmuster und Kanalgrößen heraus. Ähnliches ist auch bei den Kupferpyromellitaten zu beobachten, bei denen aliphatische Diammoniumkationen unterschiedlicher Kettenlänge verwendet wurden. Dabei zeigt sich, daß mit Hilfe des 1,6-Hexyldiammoiniumkations und des 1,9-Nonyldiammoniumkations homöotype Strukturen gebildet werden.

Einen wesentlicheren Einfluß auf die Architektur des Wirtsgitters üben offenbar die Art des verwendeten Kations und die Reaktionstemperatur^{*)} aus.

Es sei noch auf das $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]\cdot 4H_2O$ hingewiesen, daß neben den zeolithartigen Strukturmerkmalen auch ein interessantes magnetisches Verhalten aufweist. Die Carboxylatgruppen der Pyromellitattetraanionen verbrücken zwei Cu^{2+} -Kationen, dadurch beträgt der Abstand zwischen beiden nur noch 267.02(6) pm. Dies führt zu einer antiferromagnetischen Wechselwirkung dieser benachbarten Kupferzentren. Die antiferromagnetische Kopplung nimmt mit sinkender Temperatur zu, wobei ab 65K beide benachbarte Cu^{2+} -Kationen vollständig miteinander koppeln.

^{*} Da zu den Reaktionsansätzen immer etwas Harnstoff zugegeben wurde, ist auch der pH-Wert der Reaktionslösung bei unterschiedlichen Temperaturen zu berücksichtigen.

Literaturverzeichnis

- [1] S. Hentschel Untersuchung über strukturprägende Einflüsse von Anionen multifunktioneller Carbonsäuren und Sulfonsäuren in polymeren Koordinationsverbindungen , Dissertation (1993), München
- [2] E. Riegler Über ein-, zwei- und dreidimensionale Koordinationspolymere von Übergangsmetallen , Dissertation (1979), München
- [3] D. Semmingsen The Crystal Structure of Squaric Acid, Acta Chem. Scand. 27 (1973) 3961
- [4] R. Köferstein Koordinationspolymere zwei- und dreiwertiger Metalle, Diplomarbeit (1998), Jena
- [5] A. Weiss, E. Riegler, C. Robl On the Structure of Cubic $(MC_4O_4 \cdot 2H_2O)_3CH_3COOH \cdot H_2O$ $(M=Zn^{2+}, Ni^{2+})$, Z. Naturforsch. **41b** (1986) 1329
- [6] A. Weiss, E. Riegler, C. Robl Über die trikline Käfigstruktur des $(MC_4O_4 \cdot 2H_2O)_3CH_3COOH \cdot H_2O$ $(M=Zn^{2+}, Mn^{2+})$, Z. Naturforsch. **41b** (1986) 1333
- [7] C. Robl, D. Kinkeldey Eine neue Koordinationsverbindung des Quadratatdianions in BeC₄O₄·3H₂O , Z. Naturforsch.45b (1990) 931
- [8] C. Robl, A. Weiss BaC₄O₄·3H₂O, Z. Naturforsch. 41b (1986) 1485
- [9] C. Robl, A. Weiss SrC₄O₄·3H₂O Typ I, Z. Naturforsch. 41b (1986) 1490
- [10] C. Robl, V. Gnutzmann, A. Weiss SrC₄O₄·3H₂O Typ II, Z. anorg. allg. Chem. 549 (1987) 187
- [11] C. Robl SrC₄O₄·3H₂O, Typ III, Z. Naturforsch. 43b (1988) 99
- [12] J.P. Chesick Chromium Squarates: $Cr(C_4O_4)(OH) \cdot 3H_2O$ and $Cr(C_4O_4)_{1.5} \cdot 7H_2O$, Acta Cryst. **B37** (1981) 1076
- [13] J. van Ooijen, J. Reedijk, A.L. Spek Crystal and Molecular Structure, Spectroscopy, and Magnetism of Diaquobis(imidazole)-catena-μ-(squarato-1,3)nickel(II). A One-Dimensional Polymer, *Inorg. Chem.* 18 (1979) 1184
- [14] R. West, H.Y. Niu Complexes of Squarate Ion with some Divalent and Trivalent Metals , J. Am. Chem. Soc. 85 (1963) 2589
- [15] H. Siebert Über die Verwendung der molekularen Kraftkonstanten zu struktur-chemischen Aussagen, Z. anorg. allg. Chemie 273 (1953) 170
- [16] R.B. King Chemical Applikations of Topology and Group Theory. IV. Polyhedra for Coordination Numbers 10-16, J. Am. Chem. Soc. 92 (1970) 6460
- [17] I.D. Brown, K.K. Wu Empirical Parameters for Calculating Cation-Oxygen Bond Valences, Acta Cryst. B32 (1976) 1957
- [18] H.J.M. Bowen, at.al. *Tables of Interatomic Distances and Configuration in Molecules and Ions*, London:The Chemical Society Burlington House W1 (1958, 1965)
- [19] L. Pauling Die Natur der Chemischen Bindung, Verlag Chemie GmbH, Weinheim/Bergstr. (1962)
- [20] C. Robl, A. Weiss Darstellung und Struktur von Ag₂C₄O₄, Z. anorg. allg. Chem. 546 (1987) 161
- [21] S. Cohen, J.R. Lacher, J.D. Park Diketocyclobutenediol, J. Am. Chem. Soc. 81 (1959) 3480
- [22] M.H.Gubelmann, A.F. Williams The Structure and Reaktivität of Dioxygen Complexes of the Transition Metals, *Structure and Bonding* 55 (1983) 1
- [23] *Gmelins Handbuch der anorganischen Chemie*, Nr. 58 Kobalt Teil A, Ergänzungsband (8. Auflage), Verlag Chemie GmbH, Weinheim/Bergstr. (1961)

- [24] *Gmelins Handbuch der anorganischen Chemie*, Nr. 58 Kobalt Teil A, Das Element und seine Verbindungen (8. Auflage), Verlag Chemie GmbH, Berlin (1932)
- [25] J.S. Valentine The Dioxygen Ligand in Mononuclear Group VIII Transition Metal Complexes, *Chem. Rev. Vol.* 73(3) (1973) 235
- [26] N.E. Brese, M. O'Keeffe Bond-Valence Parameters for Solids, Acta Cryst. B47 (1991) 192
- [27] M. O'Keeffe, N.E. Brese Atom Sizes and Bond Lengths in Molecules and Crystals , J. Am. Chem. Soc. 113 (1991) 3226
- [28] B. Ma, S. Gao and co-workers A dimer Structure ([Cu(phen)₂Cl][OH]·6H₂O]₂ constructed through C-H···Cl hydrogen bondings and π - π interactions, *Inorg. Chem. Commun.* **3** (2000) 93
- [29] R. Kiralj, B. Kojic-Prodic, I. Piantanida, M. Zinic Crystal and Molecular structures of diazapyrenes and a study of π - π interactions, *Acta Cryst.* **B55** (1999) 55
- [30] T.Steiner, W.Saenger Role of C-H…O Hydrogen Bonds in the Coordination of Water Molecules. Analysis of Neutron Diffraction Data , J. Am. Chem. Soc. 115 (1993) 4540
- [31] J. Falbe, M. Reglitz CD Römpp Chemie Lexikon (Version 1.0), Georg Thieme Verlag, Stuttgart (1995)
- [32] J.M. Lehn Design of Organic Complexing Agents. Strategie towards Properties, Structure and Bonding 16 (1973) 1
- [33] J.M. Lehn Cryptates: Inclusion Complexes of Macropolycyclic Receptor Molecules , *Pure Appl. Chem.* 50 (1978) 871
- [34] Y. Li, C.W. Yang, X.H. Kong Synthesis, Charakterization and Magnetic Properties of Tetracarboxylato-Bridged Binuclear Co(II) Complexes, *Polish J. Chem.* 73 (1999) 1665
- [35] B. Lindh The Crystal Structure of Mercury(I) o-Phthalate, Acta Chem. Scan. 21 (1967) 2743
- [36] W. Schuckmann, H. Fuess, J.W. Bats Refinement of the Structure of Calcium Phthalate Monohydrate *Acta Cryst.* **B34** (1978) 3754
- [37] J. Zhong-Sheng, D. Zhi-Bang, W. Ge-Cheng, N. Jia-Zan Crystal Structure of Neodymium(III) Complex with 1,2,4-Benzenetricarboxylic Acid, *Jiegou Huaxue (J. Struct. Chem.)* Vol.9(1) (1990) 69
- [38] C. Robl Darstellung und Struktur von Zinkpyromellitat-Heptahydrat, Z. anorg. allg. Chem. 554 (1987) 79
- [39] C. Robl Water Clustering in the Zeolith-like Channel Structure of Na₂Zn[C₆H₂(COO)₄]·9H₂O , Mat. Res. Bull. Vol 27 (1991) 99
- [40] C.H. Lin, S.L. Wang Hydrothermal Synthesis and Charakterization of Two New Microporous Zinc-Substituted Gallium Phophates Templated by Diaminocyclohexane, *Chem. Mater.* 12 (2000) 3617
- [41] A.K. Cheetham, G. Ferey, T. Loiseau Anorganische Materialien mit offenen Gerüsten, *Angew. Chem.* 111 (1999) 3466
- [42] R. Vaidhyanathan, S. Natarajan, A.K. Cheetham, C.N.R. Rao New Open-Framework Zinc Oxalates Synthesized in the Presence of Structure-Directing Organic Amines, *Chem. Mater.* **11** (1999) 3636
- [43] R. Vaidhyanathan, S. Natarajan, C.N.R. Rao Three-Dimensional Yttrium Oxalates Possessing Large Channels , *Chem. Mater.* 13 (2001) 185
- [44] C. Robl Über die Schichtstruktur von Cd[C₆H₄(COO)₂]·H₂O, Z. anorg. allg. Chem. 566 (1988) 144
- [45] M.B. Cingi, C.Guastini, A. Musatti, M. Nardelli The Crystal and Molecular Structure of Bis(hydrogen o-phthalato)diaquocopper(II), Acta Cryst. B25 (1969) 1833
- [46] H. Bartl Neutronenbeugungsuntersuchung der extrem kurzen Wasserstoffbrücke im Kupfer-Dihydrogen-Diphthalat.Dihydrat, Z. Krist. 152 (1980) 161
- [47] B.L. Rodrigues, M.D.D. Costa, N.G. Fernandes Diaquabis(hydrogen phthalato)copper(II), a new phase , *Acta Cryst.* C55 (1999) 1997

- [48] P. Lightfoot, A. Snedden Metal-organic co-ordination frameworks based on mixed N- and O-donor ligands: crystal structures of [Co(phth)₂(bipy)] and [Co₂(mal)₂(bipy)(H₂O)₂] (phth=phthlalte, mal=malonate, bipy=4,4^c-bipyridine), *J. Chem. Soc., Dalton Trans. (1999) 3541*
- [49] G.B. Deacon, R.J. Phillips Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination , *Coord. Chem Rev.* 33 (1980) 227
- [50] F. González-Sánchez Infra-red spectra of the benzene carboxylic acid , Spectrochimica Acta Vol. 12 (1958) 17
- [51] H.L. Schläfer, G. Gliemann *Einführung in die Ligandenfeldtheorie*, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig (1967)
- [52] H.A. Jahn, E. Teller Stability of Polyatomic Molecules in Degenerate Electronic States , *Proc. Roy.* Soc. (London) Ser.A 161 (1937) 220
- [53] G.R. Desiraju, A. Gavezzotti From Molecular to Crystal Structure; Polynuclear Aromatic Hydrocarbons, J. Chem. Soc., Chem. Commun. (1989) 624
- [54] R. Goddard, M.W. Haenel Crystallization of Large Polycyclic Aromatic Hydrocarbons: The Molecular and Crystal Structures of Hexabenzo(bc,ef,hi,kl,no,qr)corone and Benzol(1,2,3-bc:4,5,6b'c')dicorone, J. Am. Chem. Soc. 117 (1995) 30
- [55] A. Topacli, S. Akyüz 4,4-Bipyridyl: vibrational assignments and force field, *Spectrochim. Acta Vol.* 51A(4) (1995) 633
- [56] D.J. Duchamp, R.E. Marsh The Crystal Structure of Trimesic Acid, Acta Cryst. B25 (1969) 5
- [57] Günzler, Böck IR-Spektroskopie, Eine Einführung, Zweite, überarbeitete Auflage, Verlag Chemie GmbH Weinheim (1990)
- [58] E. Kalalova, F. Petru Trimesinsäuresalze von Metallen der III. Gruppe, Z. Chem. 12 (1972) 187
- [59] M.J. Plater, M.R.J. Foreman and co-workers Hydrothermal synthesis of polymeric metal carboxylates from benzene-1,2,4,5-tetracarboxylic acid and benzene-1,2,4-tricarboxylic acid, *Inorg. Chim. Acta* 315 (2001 126)
- [60] W. Massa Kristallstrukturbestimmung (2., überarbeitete Auflage), B.G. Teubner, Stuttgart (1996)
- [61] C. Robl Komplexe mit aromatischen Carbonsäuren, IV $Ca_2[C_6H_2(COO)_4]\cdot 6H_2O$ Eine neue Schichtstruktur, Z. Naturforsch. 43b (1988) 993
- [62] F. Jaber, F. Charbonnier, R. Faure Crystal structure of a silver(I) complex with the 1,2,4,5benzenetetracarboxylic acid (pyromellitic acid), J. Chem. Cryst. Vol.27(7) (1997) 397
- [63] E. Lippincott, R. Schroeder One-Dimensional Model of the Hydrogen Bond, J. Chem. Phys. 23(6) (1955) 1099
- [64] I.D. Brown On the Geometry of O-H…O Hydrogen Bonds, Acta Cryst. A32 (1976) 24
- [65] Merck FT-IR Atlas, VCH Verlagsgesellschaft mbH, Weinheim (1988)
- [66] International Tables for X-Ray Crystallography Vol.III (Physical and Chemical Tables) Birmingham (1962)
- [67] S.M. Jessen, H. Küppers Hydrogen Bonding in Acid Li-, Ni-, Tetrabutylammonium, and Ammonium Salts of Benzene-1,2,4,5-tetracarboxylic Acid (Pyromellitic Acid), *Z. Naturforsch.* 47b (1992) 1141
- [68] D.L. Ward, D.C. Luehrs Hexaaquacobalt(II) Dihydrogen 1,2,4,5-Benzenetetracarboxylate, [Co(H₂O)₆][C₁₀H₄O₈], *Acta Cryst.* C39 (1983) 1370
- [69] J.C. Speakman Acid Salts of Carboxylic Acids, Crystals with some "Very Short" Hydrogen Bonds, Struct. Bonding 12 (1972) 186
- [70] E. Jäger, R. Perthel Magnetische Eigenschaften von Festkörpern, Akademie-Verlag, Berlin (1983)
- [71] L.L. Merritt, E.D. Schroeder The Crystal Structure of 2,2'-Bipyridine, Acta Cryst. 9 (1956) 801
- [72] D. Cheng Synthesis and Crystal Structure of a Polymeric 1,2,4,5-Benzenetetracarboxylato Complex of Cu(II) with Imidazole , *J. Coord Chem.* 52 (2001) 245

- [73] D.C. Luehrs, B.C. Cornilsen, C.B. Glover, T.L. Neils Infrared and Raman Spectra of Metal 1,2,4,5-Benzenetetracarboxylates: Evidence of Very Short, Strong Hydrogen Bonds, *Inorg. Chim. Acta* 145 (1988)81
- [74] S. Martinez-Carrera The Crystal Structure of Imidazole at -150°C, Acta Cryst. 20 (1966) 783
- [75] C. Wu, C. Lu, D. Wu, H. Zhuang, J. Huang Hydrothermal synthesis of two new zinc coordination polymers with mixed ligands, *Inorg. Chem. Commun.* 4 (2001) 561
- [76] L.E. Orgel, J.D. Dunitz Stereochemistry of Cupric Compounds, Nature 179 (1957) 462
- [77] L. Kolditz Anorganische Chemie (Teil 2), VEB Deutscher Verlag der Wissenschaften, Berlin (1980)
- [78] M. Trömel Empirische Beziehung zu den Bindungslängen in Oxiden. 1. Die Nebengruppenelemente Titan bis Eisen , *Acta Cryst.* **B39** (1983) 664
- [79] M. Trömel Empirische Beziehung zu den Bindungslängen in Oxiden. 2. Leichtere Hauptgruppenelemente sowie Kobalt, Nickel und Kupfer, *Acta Cryst.* **B40** (1984) 338
- [80] K Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th Edition), John Wiley & Sons, New York (1983)
- [81] W.P. Binnie, J.M. Robertson The Crystal Structure of Hexamethylenediamine, *Acta Cryst.* 3 (1950) 424
- [82] W.P. Binnie, J.M. Robertson The Crystal Structure of Hexamethylenediamine Dihydrochloride, *Acta Cryst.* 2 (1949) 180
- [83] U. Müller Anorganische Strukturchemie, B.G. Teubner, Stuttgart (1996)
- [84] H.R. Oswald Chemische Anwendung der Elektronenmikroskopie: Topotaktische Reaktionen , *Angew. Chem.* **81** (1969) 470
- [85] F. Takusagawa, K. Hirotsu, A. Shimada The Crystal and Molecular Strukture of Pyromellitic Acid Dihydrate, *Bull. Chem. Soc. Japan* 44 (1971) 1274
- [86] J.N. van Niekerk, F.R.L. Schoening A New Type of Copper Complex as found in the Crystal Strukture of Cupric Acetate, *Acta Cryst.* 6 (1953) 227
- [87] D. Lawton, R. Mason The Molecular Strukture of Molybdenum (II) Acetate , J. Am. Chem. Soc. 87 (1965) 921
- [88] B.H. O'Connor, E.N. Malsen The Crystal Structure of Cu(II) Succinate Dihydrate, Acta Cryst. 20 (1966) 824
- [89] M. Kato, H.B. Jonassen, J.C. Fanning Copper(II) Complexes with Subnormal Magnetic Momentes, Chem. Rev. 64 (1964) 99
- [90] A. Weiss, H. Witte Magnetochemie, Verlag Chemie GmbH, Weinheim/Bergstr. (1973)
- [91] C. Giacovazzo, S. Menchetti, F. Scordari The Crystal Structure of Mellite, Acta Cryst. B29 (1973) 26
- [92] A. Kokotov *Ionenaustauscher und Ionenaustausch*, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1984)
- [93] F. Pechar An X-ray Diffraction Refinement of the Strukture of Natural Thomsonite, *Crystal Res.* & *Technol.* **17(9)** (1982) 1141
- [94] J. Löns, H. Schulz Strukturverfeinerung von Sodalith, Na₈Si₆Al₆O₂₄Cl₂, Acta Cryst. 23 (1967) 434
- [95] G.M. Sheldrick SHELXL 93 Programm zur Verfeinerung von Kristallstrukturen, Göttingen (1993)
- [96] E. Dowty Atoms for Windows (Version 3.0), Shape Software (1994)
- [97] C.K. Johnson, M.N. Burnett Ortep-III (Version 1.075 by F.L. Ferrugia), Oak Ridge National Laboratory (1996); L.F. Ferrugia J. Appl. Cryst. 30 (1997) 565
- [98] J. Laugier, B. Bochu *Gretep* (Grenoble Thermal Ellipsoids Plot, Version 2), Laboratoire des Matériaux et du Génie Physique, Ecole Nationale Supérieure de Physique de Grenoble (INPG) (2000)
- [99] Herbert J. Bernstein *RasMol* (Version 2.7.1.1), Bernstein + Sons, Bellport, NY 11713-2803, (USA) (2001)

- [100] XP Interactive Molecular Graphics (Version 4.2 for MSDOS), Siemens Analytical Xray Inst. Inc. (1990)
- [101] A.L. Spek Platon A Multipurpose Crystallographic Tool (Version 3.5), Utrecht University, Utrecht (Netherlands) (1998); Acta Cryst. A46(Suppl.) (1990) C-34
- [102] A. Bondi van der Waals Volumes and Radii, J. Phys. Chem. 68 (1964) 441
- [103] J.E. Huheey Anorganische Chemie, Walther de Gruyter, Berlin, New York (1988)
- [104] H.H. Binder Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart (1999)
- [105] G.R. Desiraju The C-H…O Hydrogen Bond: Structural Implications and Supramolecular Design, Acc. Chem. Res. 29 (1996) 441
- [106] T. Steiner Unrolling the hydrogen bond properties of C-H…O interactions , *Chem. Commun. (1997)* 727
- [107] M.J. Bennett, K.G. Caulton, F.A. Cotton The Structure of Tetra-n-butyratodiruthenium Chloride, a Compound with a Strong Metal-Metal Bond , *Inorg. Chem.* 8 (1969) 1
- [108] R. Blachnik D' Ans, Lax Taschenbuch für Chemiker und Physiker (Band III), 4. Auflage, Springer-Verlag Berlin, Heidelberg (1998)
- [109] S. Nishigaki, H. Yoshioka, K. Nakatsu The Crystal and Moleculare Structure of o-Phenanthroline, Acta Cryst. B34 (1978) 875
- [110] J. Laugier, B. Bochu Cellref (Beta Version), Institut National Polytechnique de Grenoble (2000)
I. Atomparameter

- Die Tabellen der beobachteten und berechneten Strukturfaktoren sind im Institut für Anorganische und Analytische Chemie der Universität Jena bei Prof. Dr. Ch. Robl hinterlegt und können dort eingesehen werden.
- + U_{eq} wird berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.
- Der anisotrope Auslenkungsfaktorexponent hat die Form: $-2\pi^2[(ha^*)^2U_{11}+...+2hka^*b^*U_{12}]$.

I.1. BaC₄O₄

Tabelle I.1: Atomparameter des BaC₄O₄

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(pm^2 \cdot 10^{-1})$					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
	х	У	Z	U _{eq}	U_{11}	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂	
Ba	0	0	0.25	11(1)	11(1)	11(1)	11(1)	0	0	0	
С	0.1791(2)	0.3209(2)	0.1315(1)	16(1)	16(1)	16(1)	14(1)	4(1)	-4(1)	0(1)	
0	0.0815(3) 0.4185(3) 0.0587(2) 11(10(1)	13(1)	0(1)	0(1)	-3(1)	

I. 2. $Co_2(en)_4[(O_2)(OH)](C_4O_4)_{1.5}$ ·4H₂O

Atomko	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(\pi m^2 10^{-1})$				Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)					
		$(pm^2 \cdot 10^{-1})$								
	х	У	Z	U _{eq}	U_{11}	U ₂₂	U33	U ₂₃	U ₁₃	U_{12}
Co(1)	0.4122(1)	0.9774(1)	0.7921(1)	26(1)	26(1)	26(1)	25(1)	3(1)	-1(1)	4(1)
Co(2)	0.4150(1)	0.7080(1)	0.7497(1)	25(1)	29(1)	26(1)	21(1)	3(1)	4(1)	3(1)
C(1)	0.0421(4)	0.5253(3)	0.9400(2)	42(1)	37(2)	51(2)	48(2)	26(2)	16(2)	15(2)
C(2)	0.0220(4)	0.4200(3)	0.9723(2)	42(1)	38(2)	41(2)	54(2)	21(2)	14(2)	8(2)
C(3)	0.0873(4)	0.2029(3)	0.5341(2)	38(1)	38(2)	43(2)	33(2)	6(1)	1(2)	8(2)
C(4)	-0.0356(4)	0.1610(3)	0.4788(2)	39(1)	33(2)	50(2)	33(2)	7(2)	-1(2)	2(2)
C(5)	0.0960(4)	0.1830(3)	0.4169(2)	38(1)	35(2)	45(2)	31(2)	9(1)	-5(2)	-1(2)
C(6)	0.2164(4)	0.2265(3)	0.5005(2)	37(1)	35(2)	42(2)	31(2)	7(1)	-5(2)	2(2)
C(7)	0.6692(5)	1.1011(4)	0.7148(3)	76(1)	59(3)	95(3)	86(3)	54(3)	11(3)	-5(3)
C(8)	0.5294(5)	1.0804(3)	0.6412(3)	65(1)	62(3)	84(3)	56(2)	40(2)	4(2)	-10(2)
C(9)	0.1088(4)	1.0413(3)	0.8628(2)	40(1)	33(2)	47(2)	39(2)	-1(2)	1(2)	14(2)
C(10)	0.2458(4)	1.0942(3)	0.9420(2)	39(1)	40(2)	41(2)	34(2)	-2(1)	2(2)	10(2)
C(11)	0.1510(4)	0.5705(3)	0.6267(2)	49(1)	46(2)	49(2)	42(2)	-9(2)	1(2)	-11(2)
C(12)	0.2825(4)	0.5948(3)	0.5604(2)	48(1)	53(2)	55(2)	29(2)	-7(2)	2(2)	-3(2)
C(13)	0.7254(4)	0.6520(3)	0.8287(2)	44(1)	37(2)	46(2)	48(2)	8(2)	-2(2)	14(2)
C(14)	0.5901(4)	0.5990(3)	0.8801(2)	45(1)	55(2)	43(2)	39(2)	14(2)	-4(2)	14(2)
N(1)	0.6516(3)	1.0196(2)	0.7802(2)	35(1)	33(2)	34(1)	39(1)	9(1)	2(1)	1(1)
N(2)	0.3681(3)	1.0583(2)	0.6830(2)	40(1)	48(2)	34(1)	37(1)	8(1)	-4(1)	8(1)
N(3)	0.1760(3)	0.9438(2)	0.8072(2)	32(1)	29(1)	36(1)	28(1)	1(1)	-3(1)	3(1)
N(4)	0.4050(3)	1.1067(2)	0.8959(2)	35(1)	35(2)	32(1)	34(1)	-1(1)	-5(1)	8(1)

Tabelle I.2: Atomparameter des Co₂(en)₄[(O₂)(OH)](C₄O₄)_{1.5}·4H₂O

			I	Fortsetzung	Tabelle I.2					
N(5)	0.1742(3)	0.6637(2)	0.7118(2)	33(1)	36(2)	34(1)	28(1)	5(1)	4(1)	0(1)
N(6)	0.4480(3)	0.6233(2)	0.6198(2)	34(1)	43(2)	30(1)	30(1)	3(1)	10(1)	4(1)
N(7)	0.6535(3)	0.7444(2)	0.7905(2)	32(1)	35(2)	33(1)	28(1)	3(1)	3(1)	6(1)
N(8)	0.4338(3)	0.5789(2)	0.8130(2)	35(1)	43(2)	32(1)	32(1)	7(1)	8(1)	8(1)
O(1)	0.0904(4)	0.5542(2)	0.8643(2)	77(1)	86(2)	96(2)	83(2)	67(2)	55(2)	49(2)
O(2)	0.0503(4)	0.3231(2)	0.9380(2)	70(1)	81(2)	41(2)	95(2)	12(1)	42(2)	10(2)
O(3)	0.0830(3)	0.2155(2)	0.6545(2)	59(1)	54(2)	93(2)	29(1)	5(1)	4(1)	8(2)
O(4)	-0.1880(3)	0.1264(2)	0.4642(2)	59(1)	35(2)	91(2)	48(1)	11(1)	-1(1)	-8(1)
O(5)	0.1000(3)	0.1715(2)	0.3254(1)	55(1)	42(2)	91(2)	27(1)	14(1)	-3(1)	-16(1)
O(6)	0.3662(3)	0.2684(2)	0.5120(2)	55(1)	42(2)	81(2)	36(1)	10(1)	-7(1)	-18(1)
O(7)	0.4700(2)	0.8977(2)	0.8895(1)	29(1)	33(1)	27(1)	24(1)	2(1)	-4(1)	2(1)
O(8)	0.3686(3)	0.7885(2)	0.8694(1)	30(1)	38(1)	26(1)	24(1)	2(1)	7(1)	2(1)
O(9)	0.4179(3)	0.8431(2)	0.6986(1)	28(1)	35(1)	26(1)	23(1)	4(1)	2(1)	4(1)
OW(2)	0.1934(4)	0.8392(2)	1.0289(2)	59(1)	65(2)	52(2)	53(2)	-13(1)	30(1)	-13(1)
OW(3)	0.3194(5)	1.3121(3)	0.8263(2)	7/(1)	99(3)	53(2)	83(3)	20(2)	19(2)	14(2)
OW(4)	0.458/(4)	0.5935(3)	0.3354(2)	/1(1)	81(3)	53(2)	65(2)	-22(1)	-19(2)	25(2)
UW(5)	0.1312(5)	0.6239(3) 1.1762(4)	0.2873(3) 0.7521(2)	90(1)	76(3)	91(3)	106(3)	-12(2)	-19(2)	9(2)
H(1)	0.0734(5)	1.1/02(4) 1.0051(4)	0.7521(3)	$\frac{0}{(3)}$						
$\Pi(2)$	0.7737(3) 0.5451(5)	1.0931(4)	0.0840(3)	67(3)						
H(3)	0.5451(5) 0.5253(5)	1.0100(3) 1.1446(3)	0.3922(3) 0.6098(3)	67(3)						
H(5)	0.0233(3) 0.0071(4)	1.1440(3) 1.0180(3)	0.0096(3)	67(3)						
H(6)	0.0071(4) 0.0826(4)	1.0936(3)	0.8700(2) 0.8210(2)	67(3)						
H(7)	0.0020(1) 0.2190(4)	1 1666(3)	0.0210(2) 0.9736(2)	67(3)						
H(8)	0.2566(4)	1.0475(3)	0.9906(2)	67(3)						
H(9)	0.0389(4)	0.5654(3)	0.5933(2)	67(3)						
H(10)	0.1645(4)	0.5004(3)	0.6476(2)	67(3)						
H(11)	0.2860(4)	0.5299(3)	0.5099(2)	67(3)						
H(12)	0.2559(4)	0.6567(3)	0.5293(2)	67(3)						
H(13)	0.8249(4)	0.6804(3)	0.8736(2)	67(3)						
H(14)	0.7569(4)	0.5978(3)	0.7759(2)	67(3)						
H(15)	0.6213(4)	0.5292(3)	0.8956(2)	67(3)						
H(16)	0.5741(4)	0.6484(3)	0.9401(2)	67(3)						
H(17)	0.7048(3)	1.0497(2)	0.8393(2)	51(3)						
H(18)	0.6999(3)	0.9585(2)	0.7565(2)	51(3)						
H(19)	0.2914(3)	1.0166(2)	0.6372(2)	51(3)						
H(20)	0.3273(3)	1.1231(2)	0.7051(2)	51(3)						
H(21)	0.1175(3)	0.9237(2)	0.7482(2)	51(3)						
H(22)	0.1626(3)	0.8859(2)	0.8385(2)	51(3)						
H(23)	0.4936(3)	1.1119(2)	0.9408(2)	51(3)						
H(24) H(25)	0.4110(3) 0.1248(3)	1.1090(2)	0.8/10(2) 0.7618(2)	51(3) 51(2)						
H(26)	0.1248(3) 0.1251(3)	0.0420(2) 0.7221(2)	0.7018(2) 0.6965(2)	51(3) 51(3)						
H(27)	0.1231(3) 0.5189(3)	0.7221(2) 0.6647(2)	0.0903(2)	51(3) 51(3)						
H(28)	0.3137(3) 0.4937(3)	0.5604(2)	0.5001(2) 0.6262(2)	51(3)						
H(29)	0.7080(3)	0.5004(2) 0.7588(2)	0.0202(2) 0.7397(2)	51(3)						
H(30)	0.6695(3)	0.8064(2)	0.8370(2)	51(3)						
H(31)	0.3438(3)	0.5683(2)	0.8463(2)	51(3)						
H(32)	0.4362(3)	0.5171(2)	0.7678(2)	51(3)						
H(33)	0.3508(51)	0.8392(33)	0.6561(27)	89(6)						
H(34)	0.2405(54)	0.8104(34)	0.9851(28)	89(6)						
H(35)	0.1138(52)	0.7818(33)	1.0416(28)	89(6)						
H(36)	0.2729(69)	1.3178(44)	0.7864(33)	89(6)						
H(37)	0.4192(53)	1.3354(37)	0.8583(31)	89(6)						
H(38)	0.3692(55)	0.6090(38)	0.3271(33)	89(6)						
H(39)	0.5088(56)	0.6388(34)	0.3755(30)	89(6)						
H(40)	0.1718(57)	0.6848(34)	0.2536(30)	89(6)						
H(41)	0.0685(60)	0.5975(40)	0.2491(32)	89(6)						

I.3. Co(en)₃(C₄O₄)_{1.5}·4.5H₂O

Tabelle I.3:	Atomparameter des Co(en) ₃ (C ₄ O ₄) _{1.5} ·4.5H ₂ O
rubene 1.5.	11011purumeter des co(en)3(c404)1.3 1.51120

Atomkoo	rdinaten und äqui	Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)								
	х	у	Z	U _{eq}	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co	0.2152(1)	0.3838(1)	0.0918(1)	21(1)	23(1)	15(1)	23(1)	2(1)	1(1)	1(1)
N(1)	0.1773(2)	0.3407(1)	0.2245(2)	27(1)	31(2)	22(1)	29(1)	5(1)	1(1)	0(1)
N(2)	0.2443(2)	28(1)	33(2)	20(1)	30(1)	-2(1)	-1(1)	3(1)		

				Fortsetzung	g Tabelle I.3					
N(3)	0.2436(2)	0.4317(1)	-0.0321(3)	30(1)	36(2)	23(1)	29(2)	6(1)	3(1)	-1(1)
N(4)	0.0757(2)	0.4038(1)	0.0747(2)	29(1)	31(2)	24(1)	33(2)	1(1)	1(1)	2(1)
N(5)	0.3554(2)	0.3622(1)	0.0947(2)	27(1)	29(2)	22(1)	31(2)	2(1)	0(1)	0(1)
N(6)	0.1955(2)	0.3358(1)	-0.0361(3)	29(1)	38(2)	21(1)	28(1)	-1(1)	-2(1)	-2(1)
O(1)	0.5181(2)	0.5928(1)	0.0966(2)	48(1)	65(2)	27(1)	50(2)	11(1)	3(1)	-3(1)
O(2)	0.3402(2)	0.5166(1)	0.0568(2)	40(2)	35(1)	41(1)	45(1)	7(1)	-6(1)	5(1)
O(3)	0.4604(2)	0.4437(1)	0.2253(2)	41(1)	41(1)	23(1)	59(2)	11(1)	-9(1)	-4(1)
O(4)	0.6388(2)	0.5175(1)	0.2633(2)	44(1)	41(2)	35(1)	56(2)	4(1)	-13(1)	-2(1)
O(5)	0.1048(2)	0.25	0.0682(3)	35(1)	32(2)	25(2)	48(2)	0	13(2)	0
O(6)	-0.0493(2)	0.3290(1)	0.1656(3)	59(1)	51(2)	19(1)	107(2)	-9(1)	36(2)	-3(1)
O(7)	-0.2131(2)	0.25	0.2280(3)	33(1)	30(2)	28(2)	42(2)	0	8(2)	0
C(1)	0.5026(2) 0.4220(2)	0.5516(1)	0.1295(3) 0.1107(2)	30(1)	40(2)	24(2)	26(2)	2(1)	8(1)	1(1)
C(2)	0.4220(2) 0.4777(2)	0.3170(1) 0.4843(1)	0.1107(3) 0.1872(3)	30(1)	30(2)	27(2)	$\frac{2}{2}$	1(1) 1(1)	$\frac{6(2)}{4(1)}$	$\frac{0(1)}{4(1)}$
C(3)	0.4777(2)	0.4643(1) 0.5180(1)	0.1872(3) 0.2051(3)	29(1) 20(1)	30(2) 34(2)	20(2) 26(2)	30(2)	0(1)	$\frac{4(1)}{7(2)}$	$\frac{4(1)}{2(1)}$
C(4)	0.0370(2) 0.0185(3)	0.3180(1)	0.2051(3) 0.1152(4)	$\frac{29(1)}{26(1)}$	29(2)	20(2) 26(2)	29(2) 22(2)	0(1)	-4(2)	2(1)
C(6)	-0.0525(2)	0.2855(1)	0.1152(4) 0.1553(3)	20(1) 29(1)	32(2)	20(2) 21(1)	35(2)	1(1)	5(2)	-1(1)
C(7)	-0.1261(3)	0.25	0.1867(4)	$\frac{2}{26(1)}$	25(2)	23(2)	28(2)	0	2(2)	0
C(8)	0.1705(4)	0.3665(1)	0.3424(3)	63(1)	109(4)	51(2)	30(2)	1(2)	10(2)	-21(3)
C(9)	0.2353(4)	0.4055(1)	0.3454(3)	62(1)	117(4)	44(2)	25(2)	-4(2)	5(2)	-15(2)
C(10)	0.1532(3)	0.4609(1)	-0.0518(4)	56(1)	43(2)	52(2)	72(3)	36(2)	-9(2)	3(2)
C(11)	0.0636(3)	0.4341(1)	-0.0338(3)	52(1)	44(2)	59(2)	54(2)	25(2)	-3(2)	18(2)
C(12)	0.3646(3)	0.3178(1)	0.0261(3)	35(1)	40(2)	24(2)	40(2)	1(1)	9(2)	10(2)
C(13)	0.2958(2)	0.3212(1)	-0.0828(3)	36(1)	48(2)	26(2)	33(2)	-5(1)	8(2)	5(2)
OW(1)	0.4590(3)	0.6646(1)	0.2553(3)	82(1)	98(3)	54(2)	94(3)	0(2)	41(2)	7(2)
OW(2)	0.2438(3)	0.5943(1)	0.1829(3)	72(1)	101(2)	46(2)	68(2)	2(2)	20(2)	11(2)
OW(3)	-0.4075(4)	0.25	0.1039(5)	99(2)	84(4)	112(4)	102(4)	0	-4(3)	0
OW(4)	0.1235(4)	0.6631(1)	0.0938(3)	111(1)	172(4)	95(3) 70(4)	67(2)	2(2)	-7(3)	42(3)
OW(5)	0.4061(7)	0.75	0.1552(6)	146(3)	261(9)	/0(4)	10/(5)	0	-49(6)	0
UW(6)	0.1999(6) 0.1018(4)	0.75	0.138/(8) 0.2542(2)	180(3)	244(10)	130(5)	165(7)	0	-49(6)	0
H(1)	0.1018(4) 0.1873(4)	0.3770(1) 0.3457(1)	0.3342(3) 0.4097(3)	74(4) 74(4)						
H(3)	0.1873(4) 0.3013(4)	0.3457(1) 0.3956(1)	0.4097(3) 0.3728(3)	74(4) 74(4)						
H(4)	0.3013(4) 0.2100(4)	0.3730(1) 0.4280(1)	0.3728(3) 0.4044(3)	74(4)						
H(5)	0.1540(3)	0.4868(1)	0.0054(4)	74(4)						
H(6)	0.1541(3)	0.4734(1)	-0.1348(4)	74(4)						
H(7)	0.0506(3)	0.4153(1)	-0.1063(3)	74(4)						
H(8)	0.0069(3)	0.4548(1)	-0.0217(3)	74(4)						
H(9)	0.3454(3)	0.2918(1)	0.0780(3)	74(4)						
H(10)	0.4334(3)	0.3132(1)	-0.0008(3)	74(4)						
H(11)	0.3212(2)	0.3439(1)	-0.1412(3)	74(4)						
H(12)	0.2909(2)	0.2913(1)	-0.1239(3)	74(4)						
H(13)	0.2228(23)	0.3162(10)	0.2373(28)	39(3)						
H(14)	0.1184(25)	-0.3305(10)	0.2095(29)	39(3)						
H(15)	0.316/(25)	0.4378(10)	0.2196(28)	39(3)						
H(17)	0.2090(24) 0.2646(24)	0.4318(10) 0.4103(11)	0.2208(29)	39(3) 30(3)						
H(18)	0.2040(24) 0.2034(24)	0.4193(11) 0.4475(11)	-0.1024(29)	39(3)						
H(19)	0.2334(24) 0.0336(24)	0.3786(11)	0.0660(28)	39(3)						
H(20)	0.0524(27)	0.4130(12)	0.1272(30)	39(3)						
H(21)	0.3827(26)	0.3797(11)	0.0621(30)	39(3)						
H(22)	0.3793(25)	0.3586(11)	0.1631(28)	39(3)						
H(23)	0.1553(24)	0.3436(10)	-0.1060(28)	39(3)						
H(24)	0.1650(26)	0.3145(11)	-0.0121(30)	39(3)						
H(25)	0.4089(42)	0.6531(28)	0.2066(71)	297(18)						
H(26)	0.5054(41)	0.6420(20)	0.2468(87)	297(18)						
H(27)	0.2324(62)	0.5642(8)	0.1654(79)	297(18)						
H(28)	0.1957(49)	0.6068(24)	0.1386(72)	297(18)						
H(29)	-0.4031(84)	0.25	0.0208(11)	297(18)						
H(30)	-0.3420(26)	0.25	0.1259(98)	297(18)						
H(31)	0.0639(34)	0.6611(34)	0.1332(79) 0.1406(72)	297(18)						
H(32)	0.1383(39)	0.062/(20) 0.7317(22)	0.1400(73) 0.2221(42)	297(18)						
H(34)	0.3990(08)	0.7517(25)	0.2221(43) 0.1640(106)	297(18)						
H(35)	0.2078(91)	0.75	0.0559(15)	297(18)						

I.4. $Mn(pyz)[C_6H_4(COO)_2] \cdot 4H_2O$

Atomko	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(pm^2 \cdot 10^{-1})$				1	Anisotrope A	Auslenkung	sparameter ($pm^2 \cdot 10^{-1})$	
	Х	у у	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mn	0.5	0	0.5335(1)	18(1)	22(1)	20(1)	13(1)	0	0	0
N(1)	0.5	0	0.2235(5)	23(1)	28(2)	24(2)	18(2)	0	0	0
N(2)	0.5	0	0.8461(5)	23(1)	28(2)	27(2)	15(2)	0	0	0
C(1)	0.1454(3)	0	-0.1121(3)	21(1)	20(1)	25(1)	17(1)	0	1(1)	0
C(2)	0.0675(2)	0	0.0607(3)	19(1)	21(1)	20(1)	16(1)	0	3(1)	0
C(3)	0.1331(3)	0	0.2240(4)	29(1)	18(1)	47(2)	22(1)	0	-5(1)	0
C(4)	0.0663(2)	0	0.3875(3)	28(1)	33(1)	38(1)	14(1)	0	-7(1)	0
C(5)	0.5	0.1192(3)	0.1262(4)	28(1)	42(2)	21(2)	21(2)	-2(1)	0	0
C(6)	0.5	0.1187(3)	0.9397(4)	28(1)	42(2)	20(2)	21(2)	1(1)	0	0
O(1)	0.1761(1)	0.1165(1)	-0.1778(2)	34(1)	47(1)	25(1)	30(1)	4(1)	17(1)	3(1)
OW	0.3502(1)	0.1552(1)	0.5452(2)	31(1)	32(1)	28(1)	34(1)	8(1)	8(1)	9(1)
H(1)	0.2220(31)	0	0.2254(40)	28(7)						
H(2)	0.1084(23)	0	0.5110(39)	27(7)						
H(3)	0.5	0.2162(41)	0.1868(51)	45(11)						
H(4)	0.5	0.2017(38)	0.8640(44)	34(9)						
H(5)	0.2961(24)	0.1508(26)	0.6356(26)	44(7)						
H(6)	0.3383(20)	0.2224(28)	0.4818(29)	41(7)						

Tabelle I.4: Atomparameter des Mn(pyz)[C₆H₄(COO)₂]·4H₂O

I.5. Co(4,4'bipy)[C₆H₄(COO)₂]·4H₂O

Atomkoo	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(nm^2 10^{-1})$				1	Anisotrope A	Auslenkung	sparameter ($pm^2 \cdot 10^{-1})$	
		(pm ² ·10 ⁻¹)								
	Х	У	Z	Ueq	U_{11}	U ₂₂	U33	U ₂₃	U13	U12
Co	0.25	0.2796(1)	0.75	19(1)	16(1)	14(1)	27(1)	0	-1(1)	0
OW(1)	0.4158(2)	0.2817(2)	0.9131(2)	26(1)	21(1)	25(1)	31(1)	-5(1)	-2(1)	-1(1)
OW(2)	-0.2150(3)	0.5878(2)	0.9365(2)	44(1)	35(1)	49(1)	47(1)	-20(1)	-3(1)	3(1)
O(1)	-0.2417(2)	0.3413(2)	0.8996(2)	42(1)	22(1)	39(1)	67(1)	-26(1)	3(1)	-2(1)
O(2)	0.0347(2)	0.2913(2)	0.8705(2)	29(1)	17(1)	34(1)	35(1)	-8(1)	1(1)	-4(1)
C(1)	-0.1915(3)	0.1592(2)	0.8016(2)	21(1)	14(1)	23(1)	24(1)	0(1)	3(1)	0(1)
C(2)	-0.1384(3)	0.0527(2)	0.8530(2)	29(1)	22(1)	32(1)	34(2)	10(1)	3(1)	4(1)
C(3)	-0.1950(4)	-0.0531(2)	0.8030(3)	38(1)	33(2)	22(1)	59(2)	11(1)	15(1)	8(1)
C(4)	-0.1289(3)	0.2730(2)	0.8605(2)	23(1)	19(1)	27(1)	23(1)	-1(1)	-1(1)	-1(1)
N(1)	0.25	0.0916(2)	0.75	22(1)	22(2)	18(1)	27(2)	0	5(1)	0
N(2)	0.25	0.4688(2)	0.75	25(1)	22(2)	18(1)	35(2)	0	1(1)	0
C(5)	0.1855(3)	0.0303(2)	0.6524(2)	25(1)	29(1)	21(1)	24(1)	2(1)	0(1)	2(1)
C(6)	0.1814(3)	-0.0916(2)	0.6492(2)	27(1)	32(1)	21(1)	27(1)	-3(1)	-2(1)	-1(1)
C(7)	0.25	-0.1549(3)	0.75	24(1)	25(2)	17(1)	32(2)	0	7(2)	0
C(8)	0.25	0.7147(3)	0.75	23(1)	28(2)	18(2)	25(2)	0	4(1)	0
C(9)	0.4032(3)	0.6517(2)	0.7752(2)	29(1)	24(1)	20(1)	41(2)	0(1)	-3(1)	-4(1)
C(10)	0.3981(3)	0.5301(2)	0.7723(2)	28(1)	23(1)	20(1)	42(2)	0(1)	-2(1)	2(1)
H(1)	-0.0629(3)	0.0525(2)	0.9228(2)	32(3)						
H(2)	-0.1570(33)	-0.1293(23)	0.8419(23)	32(3)						
H(3)	0.1414(3)	0.0716(2)	0.5837(2)	32(3)						
H(4)	0.1332(3)	-0.1307(2)	0.5803(2)	32(3)						
H(5)	0.5083(3)	0.6908(2)	0.7939(2)	32(3)						
H(6)	0.5025(3)	0.4888(2)	0.7865(2)	32(3)						
H(11)	0.5095(45)	0.2990(31)	0.9088(33)	62(6)						
H(12)	0.3784(44)	0.3285(31)	0.9647(31)	62(6)						
H(21)	-0.1234(44)	0.6099(30)	0.9886(31)	62(6)						
H(22)	-0.2052(46)	0.5151(31)	0.9297(32)	62(6)						

Tabelle I.5: Atomparameter des Co(4,4 bipy)[C₆H₄(COO)₂]·4H₂O

I.6. $Mn(4,4'bipy)[C_6H_4(COO)_2] \cdot 4H_2O$

Atomkoo	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter				ter Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
		$(pm^2 \cdot 10^{-1})$					-		- /		
	х	У	Z	Ueq	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Mn	0.25	0.2811(1)	0.75	22(1)	21(1)	14(1)	30(1)	0	0(1)	0	
OW(1)	0.4216(2)	0.2839(1)	0.9196(2)	30(1)	27(1)	28(1)	34(1)	-5(1)	-1(1)	0(1)	
OW(2)	-0.2180(3)	0.5866(2)	0.9349(2)	48(1)	41(1)	50(1)	53(1)	-21(1)	-3(1)	3(1)	
O(1)	-0.2425(2)	0.3437(1)	0.9004(2)	45(1)	26(1)	40(1)	71(1)	-26(1)	5(1)	-2(1)	
O(2)	0.0309(2)	0.2933(1)	0.8730(1)	32(1)	21(1)	38(1)	37(1)	-8(1)	2(1)	-5(1)	
C(1)	-0.1930(2)	0.1649(2)	0.8021(2)	23(1)	16(1)	24(1)	28(1)	1(1)	4(1)	0(1)	
C(2)	-0.1396(3)	0.0600(2)	0.8545(2)	34(1)	30(1)	35(1)	37(1)	11(1)	2(1)	6(1)	
C(3)	-0.1964(3)	-0.0436(2)	0.8028(3)	42(1)	41(2)	22(1)	64(2)	12(1)	14(1)	6(1)	
C(4)	-0.1306(3)	0.2765(2)	0.8622(2)	26(1)	24(1)	28(1)	25(1)	-1(1)	0(1)	-1(1)	
N(1)	0.25	0.0867(2)	0.75	26(1)	30(1)	16(1)	31(1)	0	5(1)	0	
N(2)	0.25	0.4771(2)	0.75	29(1)	31(1)	16(1)	39(2)	0	1(1)	0	
C(5)	0.1810(3)	0.0267(2)	0.6534(2)	30(1)	37(1)	21(1)	31(1)	2(1)	-3(1)	2(1)	
C(6)	0.1770(3)	-0.0928(2)	0.6499(2)	30(1)	40(1)	20(1)	31(1)	-3(1)	-3(1)	-1(1)	
C(7)	0.25	-0.1545(2)	0.75	26(1)	30(2)	15(1)	32(2)	0	6(1)	0	
C(8)	0.25	0.7170(2)	0.75	26(1)	36(2)	16(1)	27(2)	0	3(1)	0	
C(9)	0.4028(3)	0.6558(2)	0.7721(2)	31(1)	30(1)	20(1)	43(1)	0(1)	-2(1)	-5(1)	
C(10)	0.3970(3)	0.5365(2)	0.7697(2)	32(1)	27(1)	21(1)	47(1)	1(1)	-2(1)	3(1)	
H(1)	-0.0650(3)	0.0595(2)	0.9251(2)	38(3)							
H(2)	-0.1609(31)	-0.1123(22)	0.8354(22)	38(3)							
H(3)	0.1335(3)	0.0672(2)	0.5853(2)	38(3)							
H(4)	0.1260(3)	-0.1311(2)	0.5815(2)	38(3)							
H(5)	0.5076(3)	0.6943(2)	0.7883(2)	38(3)							
H(6)	0.5005(3)	0.4958(2)	0.7825(2)	38(3)							
H(11)	0.5348(42)	0.3009(25)	0.9130(27)	61(5)							
H(12)	0.3845(42)	0.3215(27)	0.9666(29)	61(5)							
H(21)	-0.1302(41)	0.6039(27)	0.9827(28)	61(5)							
H(22)	-0.2191(44)	0.5228(28)	0.9301(30)	61(5)							

Tabelle I.6: Atomparameter des Mn(4,4'bipy)[C₆H₄(COO)₂]·4H₂O

I.7. Cd[C₆H₃(COO)₂(COOH)]·2H₂O

	1							2 4 6 1		
Atomkoo	rdinaten und äqui	ivalente isotrop	e Auslenkungsp	arameter	A	Anisotrope A	Auslenkungs	sparameter ($pm^{2} \cdot 10^{-1})$	
		$(pm^2 \cdot 10^{-1})$								
	х	У	Z	U _{eq}	U_{11}	U ₂₂	U33	U ₂₃	U13	U12
Cd	0.3120(1)	0.9033(1)	0.1937(1)	24(1)	14(1)	16(1)	30(1)	-1(1)	-1(1)	1(1)
OW(1)	0.2794(2)	0.9073(3)	0.3443(2)	34(1)	30(2)	29(2)	37(2)	4(1)	12(1)	4(1)
OW(2)	0.3411(2)	0.8837(3)	0.0452(2)	37(1)	42(2)	28(2)	41(2)	-4(1)	20(1)	-2(1)
O(1)	0.2201(1)	1.1083(3)	0.0886(2)	35(1)	18(1)	26(1)	43(2)	-6(1)	-1(1)	0(1)
O(2)	0.1875(1)	0.8757(3)	0.0708(2)	27(1)	19(1)	17(1)	33(1)	2(1)	2(1)	5(1)
O(3)	-0.0753(1)	0.7129(3)	-0.1934(2)	33(1)	23(1)	11(1)	47(2)	-1(1)	1(1)	1(1)
O(4)	-0.1650(1)	0.8731(3)	-0.2870(2)	29(1)	16(1)	20(1)	40(1)	-4(1)	2(1)	-1(1)
O(5)	-0.1103(2)	1.3971(3)	-0.2256(2)	39(1)	19(1)	15(1)	58(2)	3(1)	-3(1)	2(1)
O(6)	0.0083(1)	1.4785(3)	-0.1143(3)	41(1)	20(1)	14(1)	63(2)	2(1)	-3(1)	-1(1)
C(1)	0.0982(2)	1.0471(4)	-0.0378(2)	17(1)	14(2)	18(2)	17(1)	1(1)	6(1)	3(1)
C(2)	0.0362(2)	0.9338(4)	-0.0894(3)	18(1)	18(2)	14(2)	20(2)	0(1)	8(1)	1(1)
C(3)	-0.0401(2)	0.9650(3)	-0.1632(2)	16(1)	16(2)	13(2)	18(2)	0(1)	7(1)	0(1)
C(4)	-0.0635(2)	1.1101(4)	-0.1844(3)	18(1)	11(2)	18(2)	21(2)	2(1)	4(1)	2(1)
C(5)	-0.0120(2)	1.2228(3)	-0.1333(3)	18(1)	15(2)	14(2)	20(2)	0(1)	5(1)	0(1)
C(6)	0.0649(2)	1.1925(4)	-0.0606(3)	19(1)	17(2)	15(2)	21(2)	-2(1)	5(1)	-4(1)
C(7)	0.1706(2)	1.0104(4)	0.0443(3)	20(1)	13(2)	21(2)	21(2)	-4(1)	5(1)	0(1)
C(8)	-0.0975(2)	0.8444(4)	-0.2187(3)	20(1)	18(2)	17(2)	21(2)	-2(1)	7(1)	-2(1)
C(9)	-0.0423(2)	1.3748(4)	-0.1616(3)	22(1)	18(2)	13(2)	27(2)	1(1)	5(1)	1(1)
H(1)	0.0506(19)	0.8393(39)	-0.0759(26)	17(5)						
H(2)	-0.1132(19)	1.1391(37)	-0.2276(27)	17(5)						
H(3)	0.0992(18)	1.2676(39)	-0.0280(26)	17(5)						
H(4)	-0.0155(33)	1.5756(63)	-0.1428(48)	95(9)						
H(11)	0.2743(33)	0.8161(68)	0.3661(47)	95(9)						
H(12)	0.2415(34)	0.9694(68)	0.3181(50)	95(9)						
H(21)	0.3267(34)	0.7934(67)	0.0061(48)	95(9)						
H(22)	0.3026(34)	0.9343(68)	-0.0005(49)	95(9)						

Tabelle I.7: Atomparameter des $Cd[C_6H_3(COO)_2(COOH)] \cdot 2H_2O$

I.8. $Cd_{1.5}[C_6H_3(COO)_3] \cdot 4.25H_2O$

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					er Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)					
		$(pm^2 \cdot 10^{-1})$				1	c	1	. ,	
	Х	у	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cd(1)	0.5	0	0.5	29(1)	38(1)	27(1)	28(1)	16(1)	12(1)	10(1)
Cd(2)	0.8398(1)	-0.3844(1)	0.6673(1)	21(1)	23(1)	25(1)	17(1)	10(1)	3(1)	6(1)
C(1)	0.4433(5)	-0.2788(5)	0.8116(4)	20(1)	20(2)	24(2)	20(2)	11(2)	4(2)	10(2)
C(2)	0.2899(5)	-0.4157(5)	0.7823(4)	18(1)	20(2)	20(2)	16(2)	7(2)	4(2)	10(2)
C(3)	0.2301(6)	-0.4817(5)	0.8851(4)	21(1)	22(2)	21(2)	20(2)	7(2)	3(2)	7(2)
C(4)	0.3210(6)	-0.4149(5)	1.0167(4)	20(1)	25(2)	23(2)	17(2)	9(2)	5(2)	10(2)
C(5)	0.4695(6)	-0.2750(5)	1.0469(4)	25(1)	31(2)	26(2)	15(2)	6(2)	-2(2)	4(2)
C(6)	0.5298(6)	-0.2077(5)	0.9448(4)	25(1)	25(2)	23(2)	23(2)	9(2)	1(2)	0(2)
C(7)	0.5150(6)	-0.2018(5)	0.7050(4)	20(1)	22(2)	21(2)	20(2)	9(2)	4(2)	5(2)
C(8)	0.1930(6)	-0.4980(5)	0.6405(4)	19(1)	25(2)	20(2)	17(2)	10(2)	3(2)	11(2)
C(9)	0.2614(6)	-0.4955(5)	1.1234(4)	22(1)	27(2)	26(2)	19(2)	9(2)	7(2)	12(2)
O(1)	0.4166(4)	-0.1286(4)	0.6589(3)	30(1)	27(2)	42(2)	36(2)	26(2)	11(1)	18(2)
O(2)	0.6670(4)	-0.2060(4)	0.6706(3)	26(1)	22(2)	35(2)	31(2)	19(1)	10(1)	12(1)
O(3)	0.2923(4)	-0.5050(4)	0.5468(3)	31(1)	32(2)	48(2)	14(1)	7(1)	4(1)	16(2)
O(4)	0.0241(4)	-0.5581(3)	0.6234(3)	25(1)	24(2)	26(2)	24(2)	7(1)	-2(1)	6(1)
O(5)	0.1321(4)	-0.6245(4)	1.0953(3)	28(1)	32(2)	29(2)	22(2)	11(1)	5(1)	3(1)
O(6)	0.3446(5)	-0.4302(4)	1.2433(3)	31(1)	38(2)	37(2)	15(1)	12(1)	1(1)	3(2)
OW(1)	0.2126(7)	-0.1336(5)	0.3768(5)	63(1)	67(3)	35(2)	73(3)	23(2)	-33(2)	-10(2)
OW(2)	0.3694(5)	0.1951(4)	0.6044(3)	36(1)	49(2)	35(2)	30(2)	11(2)	2(2)	18(2)
OW(3)	1.0658(5)	-0.1519(4)	0.7020(5)	46(1)	25(2)	31(2)	71(3)	4(2)	13(2)	4(2)
OW(4)	1.0420(11)	-0.0955(7)	1.1188(6)	100(2)	131(6)	55(3)	73(4)	-21(3)	13(4)	0(3)
OW(5) 0.25(1)*	0	0	0.5	195(19)						
H(1)	0.1277(6)	-0.5722(5)	0.8657(4)	20(6)						
H(2)	0.5282(6)	-0.2267(5)	1.1354(4)	20(6)						
H(3)	0.6290(6)	-0.1143(5)	0.9654(4)	20(6)						
H(11)	0.1721(109)	-0.1134(96)	0.3133(54)	98(11)						
H(12)	0.1518(97)	-0.2166(56)	0.3874(84)	98(11)						
H(21)	0.4449(82)	0.2815(50)	0.6366(78)	98(11)						
H(22)	0.3213(107)	0.2089(98)	0.5394(52)	98(11)						
H(31)	1.0723(120)	-0.0939(84)	0.7769(33)	98(11)						
H(32)	1.1729(27)	-0.1422(98)	0.7057(86)	98(11)						
H(41)	1.0587(122)	-0.1832(60)	1.0906(89)	98(11)						
H(42)	1.0024(132)	-0.0769(110)	1.0533(61)	98(11)						

Tabelle I.8: Atomparameter des $Cd_{1.5}[C_6H_3(COO)_3]$ ·4.25H₂O

* Lagebesetzungsfaktor

I.9. Ba₂[C₆H₂(COO)₄]·H₂O

Tabelle I.9: Atomparameter des Ba₂[C₆H₂(COO)₄]·H₂O

Atomko	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(pm^2 \cdot 10^{-1})$					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
	Х	<u>у</u>	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
Ba(1)	0	0.4708(1)	0.75	11(1)	11(1)	9(1)	15(1)	0	6(1)	0		
Ba(2)	-0.5	0.5684(1)	0.75	14(1)	11(1)	10(1)	21(1)	0	6(1)	0		
OW	0	0.3156(2)	0.75	21(1)	25(2)	14(1)	27(1)	0	15(1)	0		
O(1)	0.3240(3)	0.5440(1)	0.9668(3)	17(1)	15(1)	13(1)	24(1)	-6(1)	9(1)	1(1)		
O(2)	0.2980(3)	0.5669(1)	1.1962(3)	15(1)	14(1)	13(1)	18(1)	5(1)	7(1)	-1(1)		
O(3)	-0.0796(3)	0.5870(1)	0.9265(3)	15(1)	13(1)	9(1)	22(1)	-1(1)	5(1)	-2(1)		
O(4)	-0.2485(3)	0.6928(1)	0.8547(3)	22(1)	9(1)	13(1)	37(1)	0(1)	4(1)	0(1)		
C(1)	0.2950(4)	0.5878(2)	1.0636(3)	11(1)	5(1)	9(1)	17(1)	0(1)	2(1)	-1(1)		
C(2)	-0.0936(4)	0.6596(2)	0.9103(3)	11(1)	12(1)	9(1)	13(1)	-2(1)	5(1)	-3(1)		
C(3)	0.2644(4)	0.6716(2)	1.0235(3)	10(1)	11(1)	6(1)	12(1)	2(1)	5(1)	-1(1)		
C(4)	0.0865(4)	0.7051(2)	0.9590(3)	11(1)	12(1)	8(1)	13(1)	0(1)	6(1)	-2(1)		
C(5)	0.0755(5)	0.7840(2)	0.9376(4)	12(1)	10(1)	11(1)	15(1)	1(1)	5(1)	0(1)		
H(1)	-0.0159(63)	0.8011(24)	0.9042(49)	26(12)								
H(2)	0.0889(54)	0.2925(22)	0.7775(49)	22(11)								

I.10. $Pb_2[C_6H_2(COO)_4] \cdot H_2O$

Atomko	ordinaten und äqui	ivalente isotrop (pm ² ·10 ⁻¹)	e Auslenkungsp	arameter	Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)					
	х	у	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pb(1)	1.0	0.5307(1)	-0.25	21(1)	16(1)	20(1)	28(1)	0	10(1)	0
Pb(2)	0.5	0.4375(1)	-0.25	21(1)	26(1)	14(1)	24(1)	0	12(1)	0
OW	1.0	0.6826(14)	-0.25	22(5)	15(9)	43(16)	4(8)	0	1(7)	0
O(1)	0.6727(18)	0.5382(9)	0.0337(15)	19(3)	22(7)	21(9)	16(6)	6(6)	9(6)	0(7)
O(2)	0.6982(17)	0.5645(8)	-0.2007(15)	18(3)	14(6)	22(9)	21(7)	-12(6)	11(6)	-3(6)
O(3)	1.0828(18)	0.5858(9)	0.0697(16)	19(3)	16(7)	12(8)	30(8)	4(7)	12(6)	5(6)
O(4)	1.2579(17)	0.6900(9)	0.1488(17)	23(3)	13(6)	23(10)	35(8)	2(7)	10(6)	2(7)
C(1)	0.7075(24)	0.5848(12)	-0.0604(21)	13(4)	6(8)	11(11)	15(9)	0(8)	-1(7)	1(8)
C(2)	1.1007(25)	0.6565(13)	0.0896(20)	14(4)	17(9)	21(12)	7(8)	1(8)	8(7)	0(9)
C(3)	0.7331(24)	0.6708(12)	-0.0252(19)	10(4)	12(8)	11(10)	6(7)	-3(7)	2(7)	-3(8)
C(4)	0.9202(23)	0.7061(12)	0.0423(19)	9(4)	9(7)	12(10)	8(7)	-7(8)	5(6)	-3(8)
C(5)	0.5687(24)	0.7151(11)	-0.0625(20)	12(4)	14(8)	10(11)	15(8)	-4(8)	10(7)	-5(8)
H(1)	0.4487(24)	0.6910(11)	-0.1019(20)	50						

Tabelle I.10. Atomparameter des Pb₂[C₆H₂(COO)₄]·H₂O

I.11. Cd₂[C₆H₂(COO)₄]·6H₂O

Atomkoo	rdinaten und äqu	arameter	Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)							
		$(pm^2 \cdot 10^{-1})$								
	х	У	Z	U _{eq}	U_{11}	U ₂₂	U ₃₃	U ₂₃	U13	U ₁₂
Cd	0.4619(1)	0.4265(1)	0.1584(1)	15(1)	20(1)	16(1)	13(1)	7(1)	7(1)	7(1)
OW(1)	0.6358(7)	0.1814(5)	0.0077(5)	40(1)	35(2)	33(2)	49(2)	10(2)	15(2)	17(2)
OW(2)	0.8029(6)	0.4439(5)	0.3429(4)	28(1)	28(2)	37(2)	25(2)	19(1)	8(1)	9(1)
OW(3)	0.2211(6)	0.2589(4)	0.2601(3)	24(1)	29(2)	20(2)	18(2)	8(1)	1(1)	-4(1)
O(1)	-0.0633(5)	0.8930(4)	0.0924(3)	23(1)	34(2)	20(1)	13(1)	7(1)	9(1)	-2(1)
O(2)	-0.2715(5)	0.6315(3)	0.0960(3)	16(1)	19(1)	13(1)	11(1)	2(1)	2(1)	-1(1)
O(3)	0.2746(5)	0.6691(4)	0.2313(3)	21(1)	29(2)	23(1)	12(1)	4(1)	9(1)	14(1)
O(4)	0.4188(5)	0.6724(4)	0.4635(3)	22(1)	27(2)	22(1)	20(1)	9(1)	5(1)	12(1)
C(1)	-0.0567(7)	0.8978(5)	0.3388(4)	12(1)	15(2)	9(2)	10(2)	3(1)	5(1)	0(1)
C(2)	0.1382(7)	0.8686(5)	0.4367(4)	13(1)	17(2)	10(2)	13(2)	4(1)	7(2)	3(1)
C(3)	0.1928(7)	0.9716(5)	0.5968(4)	14(1)	16(2)	13(2)	11(2)	5(1)	2(2)	3(2)
C(4)	-0.1299(7)	0.7987(5)	0.1639(4)	14(1)	13(2)	16(2)	10(2)	2(1)	2(1)	4(2)
C(5)	0.2901(7)	0.7274(5)	0.3747(4)	15(1)	17(2)	9(2)	15(2)	1(1)	4(2)	-2(2)
H(1)	0.3360(72)	0.9523(49)	0.6582(43)	7(9)						
H(11)	0.7759(129)	0.2052(88)	-0.0323(75)	75(10)						
H(12)	0.6915(158)	0.1598(115)	0.0519(94)	75(10)						
H(21)	0.7612(142)	0.4094(99)	0.3912(81)	75(10)						
H(22)	0.9368(133)	0.3954(90)	0.3217(78)	75(10)						
H(31)	0.1389(139)	0.1734(96)	0.2144(85)	75(10)						
H(32)	0.3310(130)	0.2662(88)	0.3512(80)	75(10)						

Tabelle I.11: Atomparameter des Cd₂[C₆H₂(COO)₄]·6H₂O

I.12. Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O

Tabelle I 12 [.]	Atomparameter	des Ni[C ₄ H ₂ (COOH) ₂ (COO) ₂]·6H ₂ O
1 400110 1.12.	riomparameter	

Atomkoo	ordinaten und äqui	Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)								
	х	у	Z	U _{eq}	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	0	0.6989(2)	0.25	16(1)	12(1)	14(1)	21(1)	0	2(1)	0
O(1)	-0.0984(1)	0.0758(2)	0.0657(2)	29(1)	13(1)	21(1)	53(1)	6(1)	6(1)	3(1)
O(2)	-0.1674(1)	-0.0917(2)	0.0455(3)	35(1)	18(1)	14(1)	69(1)	2(1)	3(1)	3(1)
O(3)	-0.1464(1)	0.5010(2)	0.2980(2)	25(1)	19(1)	19(1)	33(1)	-2(1)	-2(1)	-3(1)
O(4)	-0.2220(1)	0.6263(2)	0.1172(2)	28(1)	21(1)	14(1)	44(1)	-1(1)	1(1)	0(1)
C(1)	-0.1535(1)	0.0349(2)	0.0404(3)	20(1)	18(1)	17(1)	25(1)	0(1)	4(1)	2(1)

			I	Fortsetzung T	abelle I.12					
C(2)	-0.2064(1)	0.1404(2)	0.0123(3)	16(1)	14(1)	15(1)	18(1)	2(1)	5(1)	2(1)
C(3)	-0.1880(1)	0.2682(2)	0.0917(3)	16(1)	11(1)	18(1)	21(1)	1(1)	3(1)	-1(1)
C(4)	-0.2289(1)	0.3787(2)	0.0830(3)	16(1)	16(1)	14(1)	18(1)	1(1)	6(1)	0(1)
C(5)	-0.1973(1)	0.5091(2)	0.1740(3)	18(1)	15(1)	17(1)	23(1)	-1(1)	8(1)	-1(1)
OW(1)	0	0.4859(2)	0.25	28(1)	33(1)	17(1)	30(1)	0	0(1)	0
OW(2)	0.0561(1)	0.6875(2)	0.0600(2)	21(1)	17(1)	19(1)	28(1)	5(1)	6(1)	3(1)
OW(3)	0.0794(1)	0.7089(2)	0.4745(2)	26(1)	18(1)	23(1)	32(1)	5(1)	-4(1)	-4(1)
OW(4)	0	0.9067(2)	0.25	33(1)	20(1)	15(1)	55(2)	0	-8(1)	0
H(1)	-0.1457(11)	0.2806(22)	0.1546(31)	17(5)						
H(2)	-0.2676(17)	0.6167(36)	0.0334(49)	73(11)						
H(11)	-0.0165(14)	0.4338(31)	0.1526(40)	53(9)						
H(21)	0.0880(13)	0.6412(30)	0.1121(39)	41(6)						
H(22)	0.0684(13)	0.7659(32)	0.0295(39)	41(6)						
H(31)	0.0995(14)	0.6404(33)	0.5404(42)	49(6)						
H(32)	0.1039(14)	0.7670(34)	0.4689(43)	49(6)						
H(41)	-0.0288(13)	0.9547(32)	0.1855(43)	54(9)						

I.13. Zn[C₆H₂(COOH)₂(COO)₂]·6H₂O

Tabelle I.13: Ato:	mparameter d	les Zn[C ₆ H ₂ ((COOH) ₂ ($(COO)_2] \cdot 6H$	I_2O
--------------------	--------------	--	-----------------------	---------------------	--------

Atomkoordinaten und äquivalente isotrope AuslenkungsparameterAnisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)XYColspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6"XYColspan="6">Colspan="6"XYColspan="6"ZColspan="6"Colspan="6"XYColspan="6"XYUUXYColspan="6"XYColspan="6"XYUUColspan="6"Colspan="6"Colspan="6"XYZUColspan="6"UUColspan="6"UUColspan="6"Colspan="6"UColspan="6" <th colsp<="" th=""><th>r</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>r</th> <th></th>	r										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Atomkoo	rdinaten und äqu	ivalente isotrop	e Auslenkungsp	arameter	I	Anisotrope A	Auslenkungs	sparameter ($pm^{2} \cdot 10^{-1}$)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(pm^2 \cdot 10^{-1})$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		х	У	Z	U_{eq}	U_{11}	U22	U ₃₃	U ₂₃	U ₁₃	U12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn	0	0.7018(1)	0.25	19(1)	16(1)	18(1)	21(1)	0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	-0.0990(1)	0.0767(2)	0.0658(2)	30(1)	16(1)	22(1)	50(1)	6(1)	6(1)	4(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	-0.1677(1)	-0.0905(1)	0.0451(3)	37(1)	21(1)	16(1)	68(1)	2(1)	2(1)	3(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3)	-0.1468(1)	0.4995(1)	0.2982(2)	27(1)	22(1)	20(1)	32(1)	-2(1)	-2(1)	-3(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	-0.2220(1)	0.6252(1)	0.1185(2)	29(1)	23(1)	15(1)	42(1)	-1(1)	-1(1)	-1(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	-0.1538(1)	0.0355(2)	0.0402(3)	21(1)	18(1)	18(1)	24(1)	0(1)	0(1)	4(1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	-0.2067(1)	0.1405(2)	0.0122(2)	16(1)	16(1)	15(1)	18(1)	2(1)	2(1)	2(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	-0.1881(1)	0.2682(2)	0.0919(2)	17(1)	14(1)	17(1)	19(1)	0(1)	0(1)	-1(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	-0.2290(1)	0.3783(2)	0.0828(2)	16(1)	18(1)	14(1)	17(1)	-1(1)	-1(1)	-1(1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(5)	-0.1975(1)	0.5081(2)	0.1749(3)	18(1)	18(1)	16(1)	22(1)	-2(1)	-2(1)	-2(1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OW(1)	Ó	0.4856(2)	0.25	30(1)	37(1)	19(1)	28(1)	Ó	Ô	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OW(2)	0.0571(1)	0.6868(2)	0.0575(2)	23(1)	20(1)	21(1)	26(1)	5(1)	5(1)	4(1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OW(3)	0.0805(1)	0.7113(2)	0.4754(2)	28(1)	22(1)	24(1)	32(1)	5(1)	5(1)	-4(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	OW(4)	Ó	0.9112(2)	0.25	36(1)	21(1)	18(1)	57(2)	Ó	Ó	Ó	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(1)	-0.1449(10)	0.2792(21)	0.1500(29)	18(5)							
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(2)	-0.2698(16)	0.6158(34)	0.0363(48)	75(10)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(11)	-0.0134(14)	0.4362(29)	0.1642(38)	52(9)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(21)	0.0873(13)	0.6396(28)	0.1064(37)	39(5)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(22)	0.0709(12)	0.7671(29)	0.0267(37)	39(5)							
H(32) 0.1056(13) 0.7673(30) 0.4708(39) 40(5) H(41) -0.0288(14) 0.9546(33) 0.1929(46) 66(10)	H(31)	0.0982(13)	0.6486(30)	0.5290(38)	40(5)							
H(41) -0.0288(14) 0.9546(33) 0.1929(46) 66(10)	H(32)	0.1056(13)	0.7673(30)	0.4708(39)	40(5)							
	H(41)	-0.0288(14)	0.9546(33)	0.1929(46)	66(10)							

I.14. Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O

Tabelle L14:	Atomparameter des Ni $(2,2^{\circ}bipv)$ [C ₆ H ₂ (COO) ₄] _{0.5} ·4H ₂
1 40 6116 1.1 1.	11011parameter des 11(2,2 01p3)[06112(000)4]0.5 1112

Atomkoo	rdinaten und äqui	ivalente isotrope (pm ² ·10 ⁻¹)	Auslenkungsp	arameter	Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)					
	х	у	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	-0.2299(1)	0.4555(1)	1.2260(1)	24(1)	26(1)	23(1)	23(1)	-9(1)	-3(1)	1(1)
OW(1)	0.0416(3)	0.4660(2)	1.2285(2)	35(1)	30(1)	32(1)	44(1)	-12(1)	-1(1)	-5(1)
OW(2)	-0.2551(3)	0.5715(2)	1.0572(2)	37(1)	38(1)	36(1)	30(1)	-5(1)	-4(1)	5(1)
OW(3)	-0.4984(3)	0.4431(2)	1.2323(2)	35(1)	26(1)	36(1)	40(1)	-10(1)	-3(1)	3(1)
OW(4)	0.4546(3)	0.1819(2)	1.2153(2)	52(1)	40(1)	44(1)	68(2)	-6(1)	4(1)	-6(1)
O(1)	-0.1773(2)	0.2779(2)	1.1556(1)	30(1)	26(1)	31(1)	36(1)	-19(1)	-3(1)	5(1)
O(2)	0.1010(2)	0.1879(2)	1.2160(2)	40(1)	32(1)	46(1)	46(1)	-29(1)	-16(1)	10(1)
O(3)	0.4499(2)	-0.2220(2)	1.0154(2)	38(1)	24(1)	33(1)	56(1)	-10(1)	-5(1)	3(1)
O(4)	0.2551(2)	-0.3626(2)	1.0920(2)	35(1)	35(1)	24(1)	40(1)	-1(1)	-2(1)	4(1)

			H	Fortsetzung	Fabelle I.14					
N(1)	-0.2738(3)	0.6280(2)	1.3039(2)	36(1)	38(1)	26(1)	45(1)	-14(1)	-7(1)	1(1)
N(2)	-0.2136(3)	0.3496(2)	1.3960(2)	28(1)	30(1)	30(1)	26(1)	-9(1)	-2(1)	-2(1)
C(1)	-0.0292(3)	0.1967(3)	1.1529(2)	27(1)	29(1)	25(1)	26(1)	-9(1)	-2(1)	0(1)
C(2)	-0.0139(3)	0.0987(2)	1.0699(2)	24(1)	26(1)	21(1)	23(1)	-8(1)	0(1)	0(1)
C(3)	0.1283(3)	-0.0158(3)	1.0812(2)	25(1)	25(1)	25(1)	23(1)	-7(1)	-6(1)	2(1)
C(4)	0.1432(3)	-0.1169(2)	1.0141(2)	23(1)	23(1)	21(1)	24(1)	-6(1)	1(1)	2(1)
C(5)	0.2983(3)	-0.2444(3)	1.0404(2)	26(1)	27(1)	25(1)	24(1)	-11(1)	-5(1)	6(1)
C(6)	-0.2983(5)	0.7664(3)	1.2518(3)	57(1)	71(2)	30(2)	68(2)	-12(2)	-21(2)	3(2)
C(7)	-0.3219(6)	0.8735(3)	1.3124(4)	76(1)	90(3)	25(2)	114(4)	-26(2)	-27(3)	8(2)
C(8)	-0.3207(6)	0.8358(4)	1.4293(4)	82(1)	98(3)	53(2)	110(4)	-58(3)	-10(3)	2(2)
C(9)	-0.2953(5)	0.6943(4)	1.4841(3)	64(1)	81(3)	58(2)	64(2)	-42(2)	5(2)	-8(2)
C(10)	-0.2697(4)	0.5910(3)	1.4194(2)	37(1)	35(2)	41(2)	41(2)	-23(1)	2(1)	-4(1)
C(11)	-0.2364(4)	0.4359(3)	1.4706(2)	34(1)	34(2)	43(2)	28(1)	-16(1)	0(1)	-8(1)
C(12)	-0.2251(5)	0.3811(4)	1.5869(3)	61(1)	92(3)	67(2)	28(2)	-20(2)	2(2)	-17(2)
C(13)	-0.1931(6)	0.2360(4)	1.6277(3)	77(1)	114(4)	86(3)	26(2)	2(2)	-5(2)	-24(3)
C(14)	-0.1741(5)	0.1469(4)	1.5526(3)	59(1)	78(3)	46(2)	43(2)	11(2)	-3(2)	-8(2)
C(15)	-0.1845(4)	0.2079(3)	1.4367(2)	40(1)	51(2)	32(2)	36(2)	-5(1)	-2(1)	-3(1)
H(1)	0.2757(32)	-0.0261(25)	1.1370(20)	26(7)						
H(2)	-0.2995(5)	0.7916(3)	1.1721(3)	26(4)						
H(3)	-0.3384(6)	0.9694(3)	1.2743(4)	76(4)						
H(4)	-0.3372(6)	0.9063(4)	1.4716(4)	76(4)						
H(5)	-0.2951(5)	0.6679(4)	1.5637(3)	76(4)						
H(6)	-0.2391(5)	0.4423(4)	1.6374(3)	76(4)						
H(7)	-0.1843(6)	0.1978(4)	1.7062(3)	76(4)						
H(8)	-0.1546(5)	0.0479(4)	1.5790(3)	76(4)						
H(9)	-0.1708(4)	0.1483(3)	1.3851(2)	76(4)						
H(11)	0.0919(52)	0.3841(40)	1.2287(32)	85(14)						
H(12)	0.0873(42)	0.5208(33)	1.1735(26)	54(11)						
H(21)	-0.2634(45)	0.5217(35)	1.0190(28)	57(7)						
H(22)	-0.3632(41)	0.6502(32)	1.0358(25)	57(7)						
H(31)	-0.5748(45)	0.5140(35)	1.1780(28)	68(6)						
H(32)	-0.5183(48)	0.3728(36)	1.2291(31)	68(6)						
H(41)	0.3373(51)	0.1769(39)	1.2156(32)	84(10)						
H(42)	0.4917(54)	0.1841(42)	1.1523(32)	84(10)						

I.15. Co(phen)[C₆H₂(COO)₄]_{0.5}·4H₂O

Atomkoo	rdinaten und äqui	arameter	Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)							
		$(pm^2 \cdot 10^{-1})$					•		. ,	
	Х	У	Z	U _{eq}	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co	-0.0720(1)	0.7452(1)	0.8074(1)	23(1)	26(1)	21(1)	23(1)	-12(1)	-2(1)	-4(1)
N(1)	-0.0066(3)	0.9365(2)	0.7475(2)	26(1)	27(1)	26(1)	27(1)	-12(1)	-3(1)	-8(1)
N(2)	-0.1972(3)	0.8107(2)	0.9576(2)	25(1)	28(1)	24(1)	26(1)	-12(1)	-4(1)	-4(1)
O(1)	0.1155(2)	0.6887(2)	0.6684(1)	26(1)	29(1)	25(1)	28(1)	-17(1)	3(1)	-7(1)
O(2)	0.0408(3)	0.5003(2)	0.6896(2)	48(1)	41(1)	50(1)	69(2)	-44(1)	27(1)	-28(1)
O(3)	0.5068(2)	0.5640(2)	0.7733(1)	31(1)	31(1)	41(1)	24(1)	-14(1)	-3(1)	-8(1)
O(4)	0.5517(3)	0.7435(2)	0.6120(2)	37(1)	58(1)	33(1)	33(1)	-15(1)	-8(1)	-21(1)
OW(1)	0.1637(3)	0.6269(2)	0.9059(2)	40(1)	32(1)	48(1)	25(1)	-9(1)	-3(1)	3(1)
OW(2)	-0.3148(3)	0.8512(2)	0.7219(2)	34(1)	42(1)	25(1)	41(1)	-14(1)	-19(1)	-4(1)
OW(3)	-0.1850(3)	0.5667(2)	0.8655(2)	28(1)	28(1)	29(1)	29(1)	-12(1)	0(1)	-9(1)
OW(4)	0.3797(4)	0.8780(2)	0.4066(2)	53(1)	68(2)	36(1)	52(1)	-4(1)	-2(1)	-11(1)
C(1)	0.1482(3)	0.5786(2)	0.6502(2)	24(1)	26(1)	25(1)	24(1)	-13(1)	-2(1)	-6(1)
C(2)	0.5181(3)	0.6290(2)	0.6628(2)	24(1)	20(1)	30(1)	27(1)	-17(1)	0(1)	-5(1)
C(3)	0.3320(3)	0.5385(2)	0.5731(2)	21(1)	22(1)	19(1)	23(1)	-11(1)	0(1)	-5(1)
C(4)	0.5023(3)	0.5626(2)	0.5792(2)	21(1)	27(1)	17(1)	20(1)	-8(1)	-2(1)	-5(1)
C(5)	0.3325(3)	0.4752(2)	0.4947(2)	23(1)	23(1)	25(1)	25(1)	-11(1)	-1(1)	-10(1)
C(6)	0.0845(4)	0.9978(3)	0.6445(2)	36(1)	38(2)	40(2)	33(2)	-15(1)	0(1)	-14(1)
C(7)	0.0923(4)	1.1337(3)	0.6071(3)	44(1)	49(2)	43(2)	27(2)	-4(1)	-2(1)	-24(2)
C(8)	0.0031(4)	1.2069(3)	0.6819(3)	42(1)	49(2)	28(2)	53(2)	-7(1)	-15(2)	-16(1)
C(9)	-0.0929(4)	1.1451(2)	0.7932(2)	33(1)	33(2)	24(1)	47(2)	-13(1)	-16(1)	-6(1)
C(10)	-0.1822(4)	1.2114(3)	0.8800(3)	43(1)	44(2)	29(2)	68(2)	-30(2)	-16(2)	-4(1)
C(11)	-0.2622(4)	1.1431(3)	0.9889(3)	42(1)	40(2)	42(2)	60(2)	-39(2)	-12(2)	1(1)
C(12)	-0.2708(4)	1.0057(3)	1.0208(2)	31(1)	26(1)	37(1)	36(2)	-24(1)	-10(1)	1(1)
C(13)	-0.3525(4)	0.9305(3)	1.1326(2)	41(1)	34(2)	57(2)	35(2)	-32(1)	-7(1)	4(1)
C(14)	-0.3534(4)	0.7997(3)	1.1554(2)	39(1)	36(2)	50(2)	25(1)	-14(1)	-1(1)	-4(1)
C(15)	-0.2763(4)	0.7435(3)	1.0642(2)	34(1)	35(2)	33(2)	31(2)	-10(1)	-3(1)	-7(1)
C(16)	-0.1909(3)	0.9395(2)	0.9359(2)	24(1)	22(1)	26(1)	30(1)	-16(1)	-9(1)	-1(1)
C(17)	-0.0962(3)	1.0087(2)	0.8228(2)	25(1)	25(1)	24(1)	32(1)	-14(1)	-8(1)	-4(1)

Tabelle I.15: Atomparameter des $Co(phen)[C_6H_2(COO)_4]_{0.5}$ ·4H₂O

]	Fortsetzung T	Tabelle I.15
H(1)	0.1471(4)	0.9486(3)	0.5937(2)	43(3)	
H(2)	0.1569(4)	1.1734(3)	0.5328(3)	43(3)	
H(3)	0.0065(4)	1.2970(3)	0.6587(3)	43(3)	
H(4)	-0.1848(4)	1.3021(3)	0.8608(3)	43(3)	
H(5)	-0.3133(4)	1.1866(3)	1.0449(3)	43(3)	
H(6)	-0.4063(4)	0.9700(3)	1.1913(2)	43(3)	
H(7)	-0.4042(4)	0.7484(3)	1.2301(2)	43(3)	
H(8)	-0.2810(4)	0.6552(3)	1.0794(2)	43(3)	
H(9)	0.2118(40)	0.4623(27)	0.4894(24)	43(3)	
H(11)	0.1598(49)	0.5704(32)	0.9695(28)	60(4)	
H(12)	0.2677(48)	0.6034(33)	0.8714(29)	60(4)	
H(21)	-0.3529(48)	0.8146(32)	0.6935(29)	60(4)	
H(22)	-0.3307(47)	0.9313(32)	0.6746(28)	60(4)	
H(31)	-0.2825(48)	0.5743(34)	0.8545(30)	60(4)	
H(32)	-0.1170(49)	0.5404(34)	0.8192(29)	60(4)	
H(41)	0.4513(46)	0.8386(31)	0.4751(28)	60(4)	
H(42)	0.3079(51)	0.8397(35)	0.4244(33)	60(4)	

I.16. Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Tabelle I.16: Atomparameter des Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Atomkoo	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					Anisotrope Auslenkungsparameter $(pm^2 \cdot 10^{-1})$						
	1	$(pm^2 \cdot 10^{-1})^{-1}$	01					·F	P · ·)			
	х	у	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
Co	0.3020(1)	0.7590(1)	0.1387(1)	17(1)	17(1)	18(1)	17(1)	10(1)	4(1)	5(1)		
N(1)	0.5616(3)	0.7752(3)	0.1759(2)	22(1)	21(1)	27(1)	24(1)	15(1)	7(1)	9(1)		
N(2)	0.8207(4)	0.7353(4)	0.2055(4)	49(1)	31(2)	78(2)	79(2)	60(2)	27(1)	36(2)		
C(1)	0.6928(4)	0.9139(4)	0.2088(4)	37(1)	27(2)	40(2)	56(2)	34(2)	14(1)	10(1)		
C(2)	0.8530(4)	0.8900(5)	0.2277(5)	58(1)	23(2)	76(3)	98(3)	63(2)	17(2)	10(2)		
C(3)	0.6453(4)	0.6699(4)	0.1751(3)	31(1)	33(2)	37(2)	34(2)	22(1)	13(1)	19(1)		
N(3)	0.3075(3)	0.9975(2)	0.2408(2)	23(1)	25(1)	22(1)	26(1)	15(1)	10(1)	9(1)		
N(4)	0.2995(3)	1.2370(3)	0.2775(3)	35(1)	48(2)	25(1)	46(2)	24(1)	22(1)	19(1)		
C(4)	0.2957(4)	1.0873(3)	0.1726(3)	30(1)	38(2)	27(2)	34(2)	20(1)	15(1)	15(1)		
C(5)	0.3187(5)	1.2468(4)	0.4231(4)	47(1)	79(3)	29(2)	35(2)	12(1)	19(2)	24(2)		
C(6)	0.3232(5)	1.0990(4)	0.4003(3)	37(1)	61(2)	31(2)	24(1)	15(1)	11(1)	20(2)		
O(1)	-0.3293(2)	0.2146(2)	0.1166(2)	35(1)	33(1)	33(1)	23(1)	12(1)	-1(1)	-8(1)		
O(2)	-0.1380(2)	0.3891(2)	0.0767(2)	28(1)	34(1)	29(1)	17(1)	14(1)	1(1)	1(1)		
O(3)	0.2781(2)	0.4899(2)	0.2184(2)	29(1)	40(1)	29(1)	39(1)	24(1)	26(1)	21(1)		
O(4)	0.1730(2)	0.7011(2)	0.2788(2)	21(1)	26(1)	22(1)	24(1)	17(1)	11(1)	9(1)		
C(7)	-0.0890(3)	0.4208(3)	0.3378(3)	18(1)	23(1)	17(1)	18(1)	11(1)	6(1)	7(1)		
C(8)	0.0818(3)	0.5331(3)	0.3922(3)	17(1)	22(1)	16(1)	18(1)	11(1)	7(1)	9(1)		
C(9)	0.1680(3)	0.6111(3)	0.5537(3)	19(1)	21(1)	17(1)	20(1)	11(1)	4(1)	3(1)		
C(10)	-0.1941(3)	0.3332(3)	0.1655(3)	21(1)	25(1)	22(1)	19(1)	12(1)	6(1)	9(1)		
C(11)	0.1838(3)	0.5731(3)	0.2847(3)	18(1)	20(1)	18(1)	15(1)	10(1)	2(1)	3(1)		
H(1)	0.6632(43)	1.0017(38)	0.2068(38)	57(5)								
H(2)	0.9672(44)	0.9627(39)	0.2614(38)	57(5)								
H(3)	0.9026(45)	0.7020(41)	0.2150(41)	57(5)								
H(4)	0.5820(42)	0.5610(37)	0.1546(37)	57(5)								
H(5)	0.2807(40)	1.0498(37)	0.0637(37)	50(5)								
H(6)	0.2980(41)	1.3194(36)	0.2594(36)	50(5)								
H(7)	0.3366(40)	1.3449(37)	0.5199(37)	50(5)								
H(8)	0.3363(41)	1.0698(37)	0.4727(37)	50(5)								
H(9)	0.2923(34)	0.6848(29)	0.5934(29)	23(7)								

I.17. Cu(pyz)_{0.5}[C₆H₂(COO)₄]_{0.5}·3H₂O

Tabelle I.17: Atomparameter des Cu(pyz)_{0.5}[C₆H₂(COO)₄]_{0.5}·3H₂O

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter (pm ² ·10 ⁻¹)					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
	х	У	Z	U _{eq}	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂	
Cu	0.2123(1)	0.6845(1)	0.6772(1)	17(1)	13(1)	23(1)	22(1)	-13(1)	0(1)	-9(1)	
N	0.0959(4)	0.5730(4)	0.5657(3)	20(1)	18(1)	26(1)	24(1)	-13(1)	1(1)	-12(1)	
O(1)	-0.0909(4)	0.9328(5)	0.6896(3)	47(1)	39(2)	94(2)	38(2)	-37(2)	20(1)	-50(2)	

			F	ortsetzung T	abelle I.17					
O(2)	-0.0357(4)	0.6691(4)	0.8504(3)	48(1)	25(1)	52(2)	66(2)	-44(2)	-18(1)	11(1)
O(3)	0.5680(4)	0.8294(4)	0.6588(3)	33(1)	29(1)	60(2)	29(1)	-27(1)	9(1)	-30(1)
O(4)	0.2967(3)	0.7939(3)	0.8010(2)	23(1)	19(1)	36(1)	28(1)	-19(1)	3(1)	-17(1)
OW(1)	0.3664(4)	0.7808(4)	0.4756(3)	35(1)	30(1)	55(2)	38(2)	-28(1)	6(1)	-26(1)
OW(2)	0.4576(4)	0.4344(4)	0.7363(4)	41(1)	29(1)	44(2)	55(2)	-33(1)	-12(1)	-3(1)
OW(3)	0.7533(5)	0.4094(5)	0.8956(4)	50(1)	58(2)	67(2)	37(2)	0(2)	-14(1)	-38(2)
C(1)	-0.0018(5)	0.6701(5)	0.4431(4)	26(1)	31(2)	25(2)	31(2)	-7(1)	-5(1)	-17(1)
C(2)	0.0969(5)	0.4033(5)	0.6231(4)	26(1)	29(2)	28(2)	27(2)	-6(1)	-7(1)	-16(1)
C(3)	0.1437(5)	1.1648(5)	1.1951(4)	30(1)	13(1)	53(2)	38(2)	-34(2)	0(1)	-12(2)
C(4)	0.4491(4)	0.8420(4)	0.7723(3)	18(1)	16(1)	21(1)	23(1)	-11(1)	-2(1)	-7(1)
C(5)	0.3329(4)	1.0777(4)	1.0981(3)	17(1)	13(1)	19(1)	21(1)	-9(1)	0(1)	-7(1)
C(6)	0.4770(4)	0.9224(4)	0.8908(3)	16(1)	14(1)	19(1)	20(1)	-8(1)	-2(1)	-9(1)
C(7)	0.3122(4)	1.0008(4)	0.9887(3)	19(1)	13(1)	23(1)	26(2)	-12(1)	-1(1)	-9(1)
H(1)	0.0053(57)	0.7935(54)	0.3990(42)	33(6)						
H(2)	0.1703(58)	0.3296(53)	0.7116(43)	33(6)						
H(3)	0.1833(58)	0.9957(52)	0.9838(41)	33(6)						
H(11)	0.4378(73)	0.8051(66)	0.5170(53)	54(6)						
H(12)	0.3044(79)	0.8619(70)	0.4292(58)	54(6)						
H(21)	0.5163(72)	0.3745(69)	0.6744(54)	54(6)						
H(22)	0.5344(73)	0.4275(67)	0.7904(54)	54(6)						
H(31)	0.8008(81)	0.4660(74)	0.8908(60)	54(6)						
H(32)	0.7480(72)	0.3601(67)	0.9908(56)	54(6)						

I.18. $Mn_4(INS)_2[C_6H_2(COO)_4]_2 \cdot 12H_2O$

Tabelle I.18:	Atomparameter	des $Mn_4(INS)_2[C_6H_2(COO)_4]_2 \cdot 12H_2O$

Atomkoon	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
	1	$(pm^2 \cdot 10^{-1})$	01			F-		· · · · · · · (r ·)			
	х	у	Z	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
Mn(1)	0.8830(1)	0.7402(1)	0.2619(1)	17(1)	19(1)	18(1)	15(1)	6(1)	-2(1)	1(1)		
Mn(2)	0.9164(1)	1.1324(1)	0.2382(1)	15(1)	17(1)	15(1)	12(1)	0(1)	1(1)	-1(1)		
Mn(3)	1.4601(1)	1.2230(1)	0.2588(1)	18(1)	21(1)	20(1)	14(1)	5(1)	0(1)	3(1)		
Mn(4)	1.3768(1)	1.6301(1)	0.2424(1)	16(1)	19(1)	15(1)	13(1)	1(1)	0(1)	-1(1)		
O(1)	0.7862(2)	0.8682(2)	0.2219(1)	20(1)	34(2)	17(1)	11(1)	3(1)	0(1)	3(1)		
O(2)	0.8695(3)	0.9827(2)	0.1486(1)	33(1)	53(1)	20(1)	20(1)	-3(1)	6(1)	-17(1)		
O(3)	0.7081(2)	0.6470(2)	0.1914(1)	19(1)	22(1)	20(1)	17(1)	8(1)	-3(1)	-2(1)		
O(4)	0.5058(2)	0.6865(2)	0.1535(1)	25(1)	17(2)	39(1)	22(1)	14(1)	4(1)	2(1)		
O(5)	0.6607(3)	0.5180(2)	-0.1548(1)	33(1)	60(2)	15(1)	22(1)	-1(1)	-14(1)	9(1)		
O(6)	0.5835(3)	0.6346(2)	-0.2192(1)	35(1)	65(1)	19(1)	19(1)	2(1)	-15(1)	3(1)		
O(7)	0.9449(2)	0.8353(2)	-0.1485(1)	24(1)	17(1)	40(1)	17(1)	11(1)	0(1)	-2(1)		
O(8)	0.7410(2)	0.8425(2)	-0.2050(1)	23(1)	20(2)	34(1)	19(1)	13(1)	-1(1)	2(1)		
C(1)	0.7650(3)	0.8195(2)	0.0746(2)	13(1)	14(2)	13(1)	12(2)	1(1)	0(1)	0(1)		
C(2)	0.6830(3)	0.7261(2)	0.0722(2)	15(1)	15(2)	17(2)	13(2)	5(1)	-1(1)	4(1)		
C(3)	0.6444(3)	0.6619(2)	-0.0052(2)	17(1)	15(2)	15(2)	19(2)	5(1)	1(1)	-2(1)		
C(4)	0.6823(3)	0.6889(2)	-0.0795(2)	14(1)	18(2)	12(1)	13(2)	0(1)	-1(1)	3(1)		
C(5)	0.7634(3)	0.7830(2)	-0.0762(2)	14(1)	14(2)	16(2)	13(2)	3(1)	1(1)	4(1)		
C(6)	0.8048(3)	0.8453(2)	0.0007(2)	16(1)	16(2)	16(2)	15(2)	4(1)	0(1)	-2(1)		
C(7)	0.8112(3)	0.8954(2)	0.1540(2)	17(1)	17(2)	17(2)	16(2)	2(1)	-2(1)	3(1)		
C(8)	0.6290(3)	0.6855(2)	0.1463(2)	16(1)	18(2)	12(2)	16(2)	0(1)	1(1)	-4(1)		
C(9)	0.6393(3)	0.6088(2)	-0.1579(2)	17(1)	19(2)	18(2)	13(2)	2(1)	0(1)	-3(1)		
C(10)	0.8192(3)	0.8214(2)	-0.1502(2)	14(1)	20(1)	10(1)	12(2)	0(1)	0(1)	-2(1)		
O(9)	0.9273(2)	1.2658(2)	0.3341(1)	28(1)	38(2)	19(1)	23(1)	-5(1)	4(1)	-6(1)		
O(10)	1.1058(2)	1.3651(2)	0.3046(2)	32(1)	31(2)	32(1)	29(1)	-5(1)	13(1)	-1(1)		
O(11)	0.8492(3)	1.4820(2)	0.2902(1)	34(1)	47(2)	35(1)	17(1)	4(1)	-12(1)	1(1)		
O(12)	0.9618(3)	1.6403(2)	0.3312(2)	32(1)	38(2)	31(1)	32(1)	21(1)	-8(1)	0(1)		
C(11)	0.9982(3)	1.4250(2)	0.4268(2)	14(1)	15(2)	12(1)	14(2)	1(1)	-1(1)	-1(1)		
C(12)	0.9640(3)	1.5248(2)	0.4239(2)	15(1)	17(2)	17(2)	11(2)	4(1)	1(1)	2(1)		
C(13)	1.0335(3)	1.4010(2)	0.5031(2)	18(1)	23(2)	11(2)	19(2)	3(1)	0(1)	2(1)		
C(14)	1.0112(3)	1.3466(2)	0.3481(2)	18(1)	23(2)	16(2)	15(2)	3(1)	-5(1)	4(1)		
C(15)	0.9208(3)	1.5505(2)	0.3415(2)	20(1)	18(2)	29(2)	17(2)	8(1)	3(1)	8(2)		
O(13)	1.4516(2)	1.7696(2)	0.3316(1)	24(1)	23(1)	21(1)	23(1)	-9(1)	1(1)	2(1)		
O(14)	1.2599(2)	1.7780(2)	0.3949(1)	28(1)	23(1)	25(1)	31(1)	-5(1)	1(1)	-5(1)		
O(15)	1.3210(2)	1.9611(2)	0.2967(1)	25(1)	25(1)	33(1)	14(1)	4(1)	-6(1)	-3(1)		
O(16)	1.4977(2)	2.0807(2)	0.2988(1)	24(1)	27(1)	26(1)	21(1)	12(1)	-1(1)	2(1)		
C(16)	1.4400(3)	1.9105(2)	0.4433(2)	16(1)	15(2)	18(2)	15(2)	0(1)	-2(1)	2(1)		
C(17)	1.4666(3)	2.0060(2)	0.4183(2)	15(1)	17(2)	15(2)	11(2)	1(1)	-2(1)	2(1)		
C(18)	1.4746(3)	1.9062(2)	0.5255(2)	18(1)	21(2)	16(2)	17(2)	4(1)	-1(1)	0(1)		
C(19)	1.3777(3)	1.8125(2)	0.3850(2)	18(1)	24(2)	17(2)	13(2)	4(1)	-8(1)	3(1)		
C(20)	1.4244(3)	2.0164(2)	0.3313(2)	16(1)	18(2)	17(2)	13(2)	0(1)	-1(1)	5(1)		

			F	ortsetzung T	abelle I.18					
C(21)	1.1211(3)	0.6373(2)	0.0394(2)	19(1)	27(2)	15(2)	17(2)	6(1)	2(1)	2(1)
C(22)	1.2425(4)	0.6107(3)	0.0102(2)	26(1)	30(2)	34(2)	15(2)	2(2)	-2(2)	9(2)
C(23)	1.2503(4)	0.5765(3)	-0.0741(2)	32(1)	31(2)	40(2)	22(2)	-1(2)	5(2)	11(2)
N(1)	1.1429(3)	0.5697(2)	-0.1268(2)	29(1)	42(2)	30(2)	15(2)	2(1)	0(1)	6(2)
C(24)	1.0247(4)	0.5955(3)	-0.1008(2)	34(1)	35(2) 24(2)	44(2)	22(2)	2(2)	-12(2)	10(2)
C(25)	1.0114(4) 1.1063(3)	0.6293(3) 0.6759(2)	-0.01/5(2) 0.1328(2)	$\frac{28(1)}{20(1)}$	24(2) 25(2)	33(2) 19(2)	23(2) 16(2)	4(2) 7(1)	-2(2)	$\frac{\delta(2)}{3(1)}$
O(17)	1.1003(3) 1.2070(2)	0.0739(2) 0.6817(2)	0.1328(2) 0.1808(1)	$\frac{20(1)}{30(1)}$	25(2) 26(1)	44(2)	20(1)	$\frac{7(1)}{1(1)}$	-6(1)	12(1)
O(18)	0.9923(2)	0.6991(2)	0.1506(1)	34(1)	21(1)	64(2)	20(1) 20(1)	8(1)	3(1)	16(1)
C(27)	0.6768(3)	1.1336(2)	0.0314(2)	19(1)	22(2)	19(2)	18(2)	3(1)	0(1)	4(1)
C(28)	0.8017(4)	1.1183(3)	0.0008(2)	23(1)	24(2)	27(2)	19(2)	8(1)	1(2)	4(2)
C(29)	0.8096(4)	1.0891(3)	-0.0838(2)	24(1)	26(2)	28(2)	19(2)	4(1)	3(2)	2(2)
N(2)	0.6992(3)	1.0766(2)	-0.1351(2)	26(1)	35(2)	28(2)	12(1)	2(1)	-1(1)	3(1)
C(30)	0.5781(4)	1.0911(3)	-0.1076(2)	33(1)	32(2)	44(2)	21(2)	2(2)	-7(2)	10(2)
C(31)	0.5640(4) 0.6614(3)	1.1189(3) 1.1680(2)	-0.0234(2) 0.1238(2)	$\frac{28(1)}{20(1)}$	$\frac{2}{(2)}$	$\frac{39(2)}{10(2)}$	20(2) 16(2)	2(2) 5(1)	1(2) 2(2)	$\frac{12(2)}{7(1)}$
O(19)	0.0014(3) 0.7653(2)	1.1080(2) 1.1949(2)	0.1238(2) 0.1712(1)	$\frac{20(1)}{32(1)}$	$\frac{2}{2}$	$\frac{19(2)}{46(2)}$	10(2) 18(1)	0(1)	-5(1)	12(1)
O(19)	0.5434(2)	1.1699(2)	0.1441(1)	36(1)	25(2)	62(2)	21(1)	4(1)	7(1)	6(1)
OW(1)	1.0417(3)	0.8587(2)	0.3196(2)	40(1)	25(2)	26(1)	64(2)	8(1)	-13(1)	-2(1)
OW(2)	0.7411(3)	0.7726(2)	0.3652(2)	36(1)	28(2)	51(2)	24(1)	0(1)	2(1)	1(1)
OW(3)	1.0806(3)	1.0747(2)	0.3080(2)	26(1)	22(1)	31(1)	25(1)	9(1)	1(1)	4(1)
OW(4)	0.7700(2)	1.0598(2)	0.3163(2)	22(1)	23(1)	22(1)	21(1)	2(1)	5(1)	0(1)
OW(5)	1.6378(3)	1.3054(3)	0.3324(2)	45(1)	26(2)	56(2)	40(2)	-12(1)	2(1)	-6(2)
OW(6) OW(7)	1.3338(3) 1.2421(3)	1.2/11(2) 1.5646(2)	0.3630(2)	40(1) 21(1)	$\frac{38(2)}{20(2)}$	59(2)	23(1) 42(2)	2(1)	4(1) 14(1)	$\frac{19(2)}{2(1)}$
OW(7)	1.2421(3) 1.5449(3)	1.5040(2) 1.5588(2)	0.3200(2) 0.3003(2)	26(1)	$\frac{30(2)}{27(1)}$	24(1) 25(1)	$\frac{42(2)}{24(1)}$	9(1) 0(1)	-2(1)	$\frac{2(1)}{2(1)}$
OW(9)	1.1323(3)	1.9004(3)	0.5005(2) 0.5147(2)	46(1)	42(2)	71(2)	25(2)	1(2)	2(1) $2(1)$	22(2)
OW(10)	1.3763(5)	1.3820(4)	0.5221(2)	78(1)	88(3)	112(3)	30(2)	9(2)	1(2)	8(3)
OW(11)	0.8608(3)	0.8937(2)	0.5169(2)	45(1)	37(2)	51(2)	42(2)	0(2)	2(2)	1(2)
OW(12)	1.6462(5)	1.4136(4)	0.4969(2)	82(1)	77(3)	108(3)	50(2)	-8(2)	-22(2)	18(3)
H(1)	0.5946(37)	0.6010(26)	-0.0066(21)	36(3)						
H(2)	0.8625(37)	0.9065(26)	0.0045(21)	36(3)						
H(3)	1.0553(37) 1.4546(37)	1.3356(27)	0.50/2(21) 0.5463(22)	$\frac{36(3)}{26(2)}$						
П(4) Н(5)	1.4340(37) 1.3126(38)	1.6466(27) 0.6173(27)	0.3403(22) 0.0456(22)	36(3)						
H(6)	1.3309(38)	0.5567(27)	-0.0986(22)	36(3)						
H(7)	1.1481(37)	0.5422(26)	-0.1826(23)	36(3)						
H(8)	0.9556(38)	0.5923(27)	-0.1374(22)	36(3)						
H(9)	0.9355(38)	0.6500(27)	0.0013(22)	36(3)						
H(10)	0.8862(37)	1.1327(26)	0.0388(21)	36(3)						
H(11)	0.8891(38)	1.0721(27)	-0.1074(22)	36(3)						
H(12) H(13)	0.7001(37) 0.5030(38)	1.0009(20) 1.0800(27)	-0.1920(23) 0.1475(22)	30(3) 36(3)						
H(13) H(14)	0.4835(38)	1.0300(27) 1.1316(27)	0.001(22)	36(3)						
H(15)	1.1224(51)	0.8343(37)	0.3250(30)	80(4)						
H(16)	1.0624(55)	0.9116(37)	0.3134(21)	80(4)						
H(17)	0.6727(53)	0.7896(41)	0.3593(33)	80(4)						
H(18)	0.7596(52)	0.8183(37)	0.4117(31)	80(4)						
H(19)	1.0936(55)	1.0947(38)	0.3519(30)	80(4)						
H(20) H(21)	1.1565(51)	1.0889(35)	0.2771(29) 0.3087(21)	80(4)						
H(22)	0.0922(32) 0.7605(52)	0.9969(37)	0.3087(31) 0.2997(30)	80(4)						
H(23)	1.7039(54)	1.2970(41)	0.3168(33)	80(4)						
H(24)	1.6383(56)	1.3398(40)	0.3723(33)	80(4)						
H(25)	1.3511(52)	1.3084(38)	0.4110(31)	80(4)						
H(26)	1.2772(53)	1.3026(38)	0.3470(32)	80(4)						
H(27)	1.1978(54)	1.6009(38)	0.3418(33)	80(4)						
H(28)	1.1990(52)	1.5032(37)	0.3183(30)	80(4)						
H(29) H(30)	1.0231(52)	1.3/34(3/) 1.4080(37)	0.2791(30)	80(4)						
H(31)	1.3330(34)	1.4909(37)	0.2670(31) 0.5596(31)	80(4)						
H(32)	1.1688(52)	1.8562(37)	0.4800(31)	80(4)						
H(33)	1.4631(54)	1.4000(42)	0.5194(33)	80(4)						
H(34)	1.3574(59)	1.3833(43)	0.5642(31)	80(4)						
H(35)	0.9402(53)	0.8902(40)	0.5131(32)	80(4)						
H(36)	0.8449(55)	0.9518(38)	0.5144(32)	80(4)						
H(37)	1.6835(56)	1.41613(41)	0.5395(31)	80(4)						
н(38)	1.0821(53)	1.30/6(31)	0.4/14(31)	80(4)						

I.19. Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O

Atomkoo	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
	1	$(pm^2 \cdot 10^{-1})$	01		-			·F	P)			
	Х	у	Z	U_{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
Ni	0	0	0	16(1)	18(1)	20(1)	12(1)	-3(1)	-2(1)	-8(1)		
Ν	0.1255(3)	-0.6430(2)	0.7494(2)	33(1)	43(1)	30(1)	27(1)	3(1)	-12(1)	-14(1)		
C(1)	0.1113(4)	-0.5972(3)	0.6077(2)	30(1)	38(1)	28(1)	23(1)	1(1)	-8(1)	-12(1)		
C(2)	0.1060(5)	-0.4259(3)	0.5554(2)	40(1)	63(1)	36(1)	33(1)	7(1)	-21(1)	-29(1)		
C(3)	0.0839(4)	-0.3784(3)	0.4113(2)	39(1)	55(1)	38(1)	31(1)	9(1)	-16(1)	-29(1)		
C(4)	-0.4643(3)	0.0092(2)	0.6192(2)	19(1)	22(1)	21(1)	15(1)	-5(1)	-3(1)	-6(1)		
C(5)	-0.3691(3)	0.0399(2)	0.3848(2)	19(1)	21(1)	19(1)	15(1)	-6(1)	0(1)	-6(1)		
C(6)	-0.3364(3)	0.0503(2)	0.5030(2)	21(1)	21(1)	28(1)	18(1)	-7(1)	-2(1)	-11(1)		
C(7)	-0.4166(3)	0.0163(2)	0.7459(2)	22(1)	19(1)	33(1)	16(1)	-7(1)	-2(1)	-8(1)		
C(8)	-0.2186(3)	0.0756(2)	0.2624(2)	19(1)	21(1)	24(1)	14(1)	-3(1)	-3(1)	-9(1)		
O(1)	-0.4030(4)	-0.1054(2)	0.8365(1)	27(1)	29(1)	34(1)	18(1)	-1(1)	-8(1)	-12(1)		
O(2)	-0.3924(3)	0.1409(2)	0.7507(1)	38(1)	61(1)	40(1)	25(1)	-6(1)	-16(1)	-26(1)		
O(3)	-0.1418(4)	-0.0289(1)	0.1922(1)	20(1)	24(1)	23(1)	13(1)	-5(1)	1(1)	-9(1)		
O(4)	-0.1767(3)	0.2009(2)	-0.2395(1)	37(1)	53(1)	34(1)	29(1)	-14(1)	13(1)	-27(1)		
OW(1)	0.2802(4)	-0.1699(2)	0.0439(1)	24(1)	24(1)	30(1)	19(1)	-6(1)	-7(1)	-6(1)		
OW(2)	0.0985(4)	0.1803(2)	0.0159(1)	23(1)	26(1)	27(1)	20(1)	-4(1)	-5(1)	-13(1)		
OW(3)	-0.3726(3)	0.5171(2)	0.1520(2)	54(1)	48(1)	43(1)	72(1)	-10(1)	-21(1)	-10(1)		
OW(4)	0.2520(3)	-0.5591(2)	0.1279(2)	52(1)	64(1)	38(1)	48(1)	-11(1)	-5(1)	-10(1)		
H(1)	0.2365(43)	-0.6261(31)	0.7666(25)	53(4)								
H(2)	-0.0022(43)	-0.5766(31)	0.7995(25)	53(4)								
H(3)	0.1363(41)	-0.7443(33)	0.7783(25)	53(4)								
H(4)	0.2444(41)	-0.6659(30)	0.5672(24)	51(3)								
H(5)	0.2370(41)	-0.4134(29)	0.5642(24)	51(3)								
H(6)	-0.0197(41)	-0.3524(30)	0.6082(25)	51(3)								
H(7)	0.2175(41)	-0.4496(30)	0.3608(24)	51(3)								
H(8)	0.0801(40)	-0.2720(31)	0.3802(24)	51(3)								
H(9)	-0.2257(33)	0.0814(23)	0.5064(19)	24(5)								
H(11)	0.3742(48)	-0.1559(35)	-0.0191(29)	69(4)								
H(12)	0.3108(48)	-0.1608(36)	0.1059(30)	69(4)								
H(21)	0.0020(47)	0.2099(34)	0.0855(29)	69(4)								
H(22)	0.2075(49)	0.1458(36)	0.0415(29)	69(4)								
H(31)	-0.4869(49)	0.5345(38)	0.1506(32)	69(4)								
H(32)	-0.3270(48)	0.4169(37)	0.1906(29)	69(4)								
H(41)	0.2693(49)	-0.5391(36)	0.0480(30)	69(4)								
H(42)	0.2842(48)	-0.6607(37)	0.1508(29)	69(4)								

Tabelle I.19: Atomparameter des Ni(H2DACH)[C6H2(COO)4]·8H2O

I.20. $Co(H_2DACH)[C_6H_2(COO)_4] \cdot 2H_2O$

Atomko	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(nm^2 10^{-1})$				Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
		(pm ² ·10 ⁻¹)									
	х	У	Z	U _{eq}	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U12	
Co	0	0.0029(1)	0.25	13(1)	14(1)	12(1)	13(1)	0	0(1)	0	
OW	0.1118(2)	0.2718(1)	0.9307(2)	47(1)	58(1)	35(1)	49(1)	-9(1)	8(1)	-4(1)	
O(1)	-0.0940(1)	-0.0612(1)	0.3742(1)	23(1)	28(1)	19(1)	21(1)	2(1)	3(1)	-10(1)	
O(2)	-0.1661(1)	-0.1402(1)	0.2283(1)	31(1)	47(1)	28(1)	16(1)	3(1)	-1(1)	-11(1)	
O(3)	-0.3738(1)	-0.4361(1)	0.3457(1)	23(1)	24(1)	19(1)	24(1)	-6(1)	-4(1)	-5(1)	
O(4)	-0.5365(1)	-0.3595(1)	0.4079(1)	28(1)	18(1)	32(1)	35(1)	-3(1)	0(1)	-7(1)	
C(1)	-0.1995(2)	-0.1898(1)	0.4222(2)	17(1)	18(1)	14(1)	19(1)	1(1)	1(1)	-3(1)	
C(2)	-0.3315(2)	-0.3133(1)	0.4582(2)	16(1)	17(1)	14(1)	18(1)	-1(1)	0(1)	-2(1)	
C(3)	-0.2803(2)	-0.2532(1)	0.3830(2)	19(1)	22(1)	19(1)	14(1)	-1(1)	-1(1)	-4(1)	
C(4)	-0.1496(2)	-0.1267(1)	0.3345(2)	18(1)	18(1)	17(1)	19(1)	1(1)	2(1)	-1(1)	
C(5)	-0.4227(2)	-0.3752(1)	0.4034(2)	18(1)	22(1)	18(1)	14(1)	4(1)	-1(1)	-7(1)	
C(6)	0.3684(2)	0.0208(1)	-0.0159(2)	23(1)	18(1)	26(1)	24(1)	-2(1)	0(1)	3(1)	
C(7)	0.4204(2)	0.0022(2)	0.1050(2)	29(1)	22(1)	42(1)	22(1)	6(1)	6(1)	6(1)	
C(8)	0.5316(2)	-0.0593(1)	0.0939(2)	27(1)	23(1)	37(1)	22(1)	7(1)	3(1)	6(1)	
Ν	0.2594(2)	0.0805(1)	-0.0070(2)	28(1)	19(1)	40(1)	25(1)	2(1)	1(1)	7(1)	
H(1)	-0.3005(16)	-0.2551(11)	0.3001(17)	17(5)							
H(2)	0.2903(23)	0.1366(16)	0.0216(22)	51(4)							

]	Fortsetzung	Tabelle I.20		
H(3)	0.2233(23)	0.0902(15)	-0.802(24)	51(4)			
H(4)	0.1965(23)	0.0597(15)	0.0436(23)	51(4)			
H(5)	0.3400(19)	-0.0306(13)	-0.0514(19)	31(3)			
H(6)	0.4493(19)	0.0577(14)	0.1391(19)	31(3)			
H(7)	0.3556(20)	-0.206(13)	0.1551(19)	31(3)			
H(8)	0.5048(19)	-0.1135(14)	0.0588(19)	31(3)			
H(9)	0.5658(19)	-0.0719(13)	0.1633(20)	31(3)			
H(10)	0.1340(30)	0.2449(20)	0.8705(30)	84(8)			
H(11)	0.0838(29)	0.2367(21)	0.9895(30)	84(8)			

I.21. Zn(H₂DAH)[C₆H₂(COO)₄]· $\frac{1}{2}$ H₂O

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
		$(pm^2 \cdot 10^{-1})$				•					
	х	У	Z	U _{eq}	U_{11}	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂	
Zn	0.2548(1)	0.0124(1)	0.4988(1)	15(1)	14(1)	14(1)	18(1)	1(1)	2(1)	0(1)	
N(1)	0.4727(6)	-0.1019(4)	0.2913(4)	41(2)	56(4)	33(3)	36(3)	-1(3)	15(3)	-8(3)	
C(1) 0.47*	0.5008(21)	-0.1536(9)	0.1909(12)	50(5)	70(13)	35(8)	46(9)	1(7)	13(9)	-4(9)	
C(1a) 0.53	0.4032(15)	-0.1322(10)	0.1876(9)	46(5)	42(10)	51(9)	42(8)	4(6)	-9(7)	-24(8)	
C(2) 0.50	0.5470(24)	-0.0983(11)	0.0968(14)	57(6)	93(15)	46(9)	37(9)	-2(7)	32(10)	-10(11)	
C(2a) 0.50	0.4667(22)	-0.1139(7)	0.0789(14)	41(5)	52(12)	30(7)	43(8)	9(6)	9(8)	-6(7)	
C(3)	0.4729(9)	-0.0162(5)	0.0535(6)	66(2)	83(6)	76(6)	41(4)	21(4)	17(4)	-5(6)	
C(4)	0.4102(5)	0.1755(3)	0.2623(5)	19(1)	19(3)	18(3)	19(3)	4(2)	1(2)	-4(2)	
C(5)	0.5364(5)	0.1699(3)	0.2982(5)	19(1)	20(3)	16(3)	21(3)	8(2)	3(2)	1(2)	
C(6)	0.6176(6)	0.2226(4)	0.2451(5)	29(2)	15(3)	32(4)	38(4)	13(3)	-1(3)	2(3)	
C(7)	0.5785(5)	0.2828(4)	0.1590(5)	24(1)	18(3)	21(3)	33(3)	11(3)	7(3)	0(3)	
C(8)	0.4514(5)	0.2893(3)	0.1249(5)	18(1)	21(3)	14(3)	18(3)	4(2)	1(2)	1(2)	
C(9)	0.3700(5)	0.2352(4)	0.1744(5)	22(1)	14(3)	25(3)	26(3)	7(3)	0(3)	4(3)	
C(10)	0.3150(6)	0.1218(4)	0.3159(5)	26(1)	20(3)	25(3)	33(3)	6(3)	2(3)	-2(3)	
C(11)	0.5920(5)	0.1144(4)	0.3995(5)	24(1)	17(3)	23(3)	31(4)	9(3)	1(3)	-3(3)	
C(12)	0.6717(6)	0.3418(4)	0.1119(5)	31(2)	21(4)	32(4)	40(4)	15(3)	4(3)	-3(3)	
C(13)	0.3953(5)	0.3556(4)	0.0373(5)	20(1)	10(3)	20(3)	29(3)	6(3)	1(3)	-3(3)	
O(1)	0.3577(4)	0.0621(2)	0.3876(3)	25(1)	22(2)	25(2)	31(2)	16(2)	7(2)	1(2)	
O(2)	0.2045(4)	0.1377(4)	0.2908(5)	59(2)	18(3)	74(4)	85(4)	51(3)	4(3)	-2(3)	
O(3)	0.6356(4)	0.0397(3)	0.3736(3)	26(1)	21(2)	23(2)	33(3)	8(2)	-3(2)	2(2)	
O(4)	0.6009(4)	0.1474(3)	0.4971(3)	32(1)	38(3)	36(3)	23(3)	5(2)	3(2)	2(2)	
O(5)	0.6306(4)	0.4120(2)	0.0630(3)	26(1)	25(2)	20(2)	36(3)	11(2)	9(2)	-2(2)	
O(6)	0.7814(5)	0.3210(4)	0.1236(6)	74(2)	18(3)	67(4)	140(6)	66(4)	16(3)	7(3)	
O(7)	0.3575(4)	0.4259(3)	0.0838(3)	24(1)	24(2)	15(2)	30(2)	5(2)	-2(2)	6(2)	
O(8)	0.3818(4)	0.3374(3)	-0.0660(3)	28(1)	34(3)	34(2)	17(2)	4(2)	0(2)	0(2)	
N(2)	-0.0205(5)	0.0473(4)	0.2858(4)	29(1)	29(3)	32(3)	28(3)	1(2)	9(2)	1(3)	
C(14)	-0.0958(7)	0.0175(5)	0.1773(5)	53(2)	45(4)	85(6)	29(3)	-2(4)	-2(3)	-18(5)	
C(15) 0.50	-0.1237(13)	0.1018(7)	0.0976(10)	50(4)	53(8)	62(8)	33(6)	-26(6)	1(6)	14(7)	
C(16) 0.50	-0.0514(14)	0.1691(8)	0.0305(12)	55(4)	71(8)	51(7)	52(7)	-43(6)	56(7)	-34(6)	
C(17) 0.50	0.0545(15)	0.1088(11)	-0.0032(12)	86(6)	95(10)	103(10)	58(8)	42(8)	1(8)	-20(8)	
C(18) 0.50	0.0052(15)	0.0520(9)	-0.1105(11)	50(4)	64(11)	46(8)	40(8)	7(7)	4(8)	-3(9)	
OW 0.54	0.2028(12)	-0.0786(7)	0.1829(9)	84(5)	105(11)	78(8)	74(8)	8(7)	41(8)	13(8)	
H(1)	0.7019(6)	0.2174(4)	0.2681(5)	21(11)							
H(2)	0.2861(5)	0.2385(4)	0.1488(5)	21(11)							
H(3) 0.50	-0.1856(13)	0.0800(7)	0.0380(10)	15(10)							
H(4) 0.50	-0.1687(13)	0.1396(7)	0.1457(10)	15(10)							
H(5) 0.50	-0.0199(14)	0.2178(8)	0.0793(12)	15(10)							
H(6) 0.50	-0.1014(14)	0.1920(8)	-0.0372(12)	15(10)							
H(7) _{0.50}	0.0829(15)	0.0706(11)	0.0611(12)	15(10)							
H(8) 0.50	0.1236(15)	0.1447(11)	-0.216(12)	15(10)							
H(9) 0.50	-0.0306(15)	0.0929(9)	-0.1691(11)	15(10)							
H(10)	-0.0629(15)	0.0170(9)	-0.0874(11)	15(10)							
H(11)	0.505(36)	0.0750(42)	0.2743(61)	61(14)							
H(12)	-0.638(59)	0.0838(38)	0.3275(53)	61(14)							
H(13)	-0.0113(69)	-0.0011(27)	0.3311(49)	61(14)							

* Lagebesetzungsfaktor

I.22. $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$

Atomkoo	Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					er Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)						
		$(pm^2 \cdot 10^{-1})$				-						
	х	У	Z	U_{eq}	U_{11}	U22	U ₃₃	U ₂₃	U ₁₃	U12		
Cu(1)	0.4236(1)	0.2099(1)	-0.1945(1)	14(1)	14(1)	13(1)	18(1)	0(1)	8(1)	3(1)		
Cu(2)	Ó	Ó	Ó	12(1)	16(1)	9(1)	13(1)	3(1)	7(1)	3(1)		
N	0.2748(4)	-0.7577(2)	-0.6915(2)	25(1)	23(1)	22(1)	28(1)	1(1)	8(1)	5(1)		
C(1)	0.2630(5)	-0.6779(3)	-0.5747(3)	29(1)	31(2)	29(2)	25(2)	-1(1)	7(1)	7(1)		
C(2)	0.0999(5)	-0.6101(3)	-0.6058(3)	32(1)	31(2)	33(2)	30(2)	0(1)	10(1)	10(1)		
C(3)	0.0858(4)	-0.5308(3)	-0.4862(3)	31(1)	33(2)	34(2)	29(2)	6(1)	13(1)	11(1)		
C(4)	0.0690(3)	0.0080(2)	-0.3661(2)	13(1)	14(1)	11(1)	13(1)	1(1)	5(1)	1(1)		
C(5)	0.1895(3)	-0.0008(2)	-0.4377(2)	13(1)	14(1)	10(1)	15(1)	2(1)	5(1)	2(1)		
C(6)	-0.1175(3)	0.0094(2)	-0.4290(2)	14(1)	14(1)	16(1)	14(1)	2(1)	9(1)	3(1)		
C(7)	0.1310(3)	0.0148(2)	-0.2218(2)	13(1)	15(1)	11(1)	14(1)	2(1)	6(1)	5(1)		
C(8)	0.3941(3)	-0.0060(2)	-0.3805(2)	14(1)	15(1)	19(1)	11(1)	3(1)	7(1)	3(1)		
C(9)	0.9385(3)	0.3734(2)	-0.0192(2)	13(1)	12(1)	13(1)	15(1)	3(1)	4(1)	3(1)		
C(10)	0.0854(3)	0.4151(2)	-0.0589(2)	14(1)	13(1)	13(1)	18(1)	5(1)	5(1)	5(1)		
C(11)	0.1451(4)	0.5408(2)	-0.0379(2)	16(1)	13(1)	16(1)	23(1)	5(1)	10(1)	2(1)		
C(12)	0.8787(3)	0.2380(2)	-0.0264(2)	13(1)	15(1)	13(1)	11(1)	1(1)	5(1)	2(1)		
C(13)	0.1726(3)	0.3296(2)	-0.1331(2)	16(1)	19(1)	10(1)	21(1)	6(1)	11(1)	3(1)		
O(1)	0.0180(2)	-0.0389(2)	-0.1787(2)	17(1)	17(1)	20(1)	13(1)	2(1)	6(1)	-3(1)		
O(2)	0.2880(2)	0.0718(2)	-0.1503(2)	16(1)	14(1)	18(1)	13(1)	3(1)	4(1)	0(1)		
O(3)	0.4497(2)	-0.1012(2)	-0.4169(2)	23(1)	19(1)	21(1)	24(1)	-2(1)	4(1)	9(1)		
O(4)	0.4998(2)	0.0876(2)	-0.3030(2)	19(1)	13(1)	21(1)	22(1)	-4(1)	7(1)	2(1)		
O(5)	0.7151(2)	0.2011(2)	-0.0376(2)	19(1)	14(1)	15(1)	29(1)	5(1)	7(1)	-1(1)		
O(6)	0.0070(2)	0.1729(2)	-0.0133(2)	18(1)	18(1)	12(1)	31(1)	8(1)	13(1)	6(1)		
O(7)	0.0832(3)	0.2736(2)	-0.2425(2)	23(1)	24(1)	23(1)	20(1)	-2(1)	5(1)	8(1)		
O(8)	0.3453(2)	0.3261(2)	-0.0780(2)	19(1)	14(1)	20(1)	24(1)	-2(1)	9(1)	5(1)		
OW(1)	0.5118(3)	0.3418(2)	-0.2649(2)	28(1)	36(1)	19(1)	36(1)	6(1)	24(1)	4(1)		
OW(2)	-0.3304(3)	-0.0635(2)	-0.1047(2)	25(1)	28(1)	25(1)	25(1)	9(1)	10(1)	9(1)		
OW(3)	0.6807(3)	0.2250(2)	0.2140(2)	44(1)	36(1)	48(1)	49(2)	10(1)	18(1)	4(1)		
OW(4)	0.4631(3)	-0.5917(2)	0.1886(2)	34(1)	42(1)	29(1)	28(1)	3(1)	9(1)	8(1)		
OW(5)	0.2635(3)	-0.3043(2)	0.3925(2)	30(1)	24(1)	29(1)	35(1)	-2(1)	11(1)	3(1)		
H(1)	0.2513(44)	-0.7259(29)	-0.5149(31)	35(4)								
H(2)	0.3685(47)	-0.6260(29)	-0.5384(31)	35(4)								
H(3)	0.0016(47)	-0.6655(30)	-0.6399(31)	35(4)								
H(4)	0.1112(44)	-0.5593(29)	-0.6654(31)	35(4)								
H(5)	0.0848(44)	-0.5787(29)	-0.4270(31)	35(4)								
H(6)	0.1967(46)	-0.4657(29)	-0.4450(30)	35(4)								
H(7)	0.1629(50)	-0.8144(31)	-0.7406(32)	43(6)								
H(8)	0.3567(49)	-0.8071(31)	-0.6720(32)	43(6)								
H(9)	0.2998(48)	-0.7115(32)	-0.7471(33)	43(6)								
H(10)	-0.1915(38)	0.0193(24)	-0.3809(26)	17(5)								
H(11)	0.5840(57)	0.3309(37)	-0.3013(39)	60(4)								
H(12)	0.5132(55)	0.4162(37)	-0.2351(38)	60(4)								
H(13)	0.2364(39)	0.5656(24)	-0.0651(25)	17(5)								
H(21)	-0.3554(55)	0.0037(36)	-0.1180(38)	60(4)								
H(22)	-0.3407(57)	-0.0679(37)	-0.0387(40)	60(4)								
H(31)	0.7074(53)	0.2292(34)	0.1300(38)	60(4)								
H(32)	0.5834(57)	0.1688(36)	0.2006(38)	60(4)								
H(41)	0.5403(58)	-0.6324(38)	0.2055(40)	60(4)								
H(42)	0.4241(55)	-0.6114(35)	0.1048(40)	60(4)								
H(51)	0.1628(58)	-0.29/2(3/)	0.3449(39)	60(4)								
п(32)	0.3086(33)	-0.2324(37)	0.4459(39)	60(4)								

Tabelle I.22: Atomparameter des $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4]$ ·5H₂O

I.23. $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4] \cdot 3H_2O$

Tabelle I.23: Atomparameter des Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(pm^2 \cdot 10^{-1})$					1	Anisotrope A	Auslenkung	sparameter ($pm^2 \cdot 10^{-1})$	
	х	у	Z	U _{eq}	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
Cu(1)	0.0148(1)	0.6368(1)	0.0008(1)	11(1)	18(1)	7(1)	8(1)	0(1)	4(1)	0(1)
Cu(2)	0.1407(1)	0.4976(1)	0.1856(1)	12(1)	13(1)	12(1)	10(1)	-1(1)	-2(1)	1(1)
Ν	-0.2916(4)	0.1477(5)	0.0275(3)	48(1)	47(3)	42(3)	54(3)	1(3)	12(2)	-13(2)

]	Fortsetzung	Tabelle I.23					
C(1)	-0.4065(6)	0.1402(7)	-0.0430(5)	65(2)	57(4)	56(4)	72(4)	10(4)	1(3)	-10(3)
C(2)	-0.3875(7)	0.1388(6)	-0.1329(5)	73(2)	90(5)	45(4)	64(4)	-4(4)	-9(4)	-13(4)
C(3)	-0.5084(9)	0.1354(8)	-0.2041(6)	97(3)	115(7)	66(5)	79(5)	13(5)	-25(5)	-9(5)
C(4)	-0.3925(3)	0.5044(4)	0.0674(2)	15(1)	8(2)	21(2)	14(2)	0(2)	3(1)	-1(2)
C(5)	-0.3897(3)	0.4941(4)	-0.0200(2)	14(1)	8(2)	18(2)	17(2)	2(2)	4(1)	1(1)
C(6)	-0.4973(3)	0.4898(4)	-0.0865(2)	16(1)	12(2)	25(2)	10(2)	-1(2)	4(1)	0(2)
C(7)	-0.2783(3)	0.5172(4)	0.1407(2)	18(1)	11(2)	21(2)	18(2)	-8(2)	-1(2)	5(2)
C(8)	-0.2754(3)	0.4767(4)	-0.0479(2)	15(1)	9(2)	25(2)	9(2)	-3(2)	1(1)	-2(2)
C(9)	0.0170(3)	0.1110(3)	0.2105(2)	14(1)	21(2)	10(2)	10(2)	1(2)	3(1)	1(2)
C(10)	0.0176(3)	-0.1183(3)	0.2108(2)	15(1)	23(2)	11(2)	10(2)	0(2)	4(1)	1(2)
C(11)	0.0327(3)	-0.0032(4)	0.1729(2)	16(1)	24(2)	13(2)	11(2)	1(2)	7(2)	1(2)
C(12)	0.0387(3)	0.2308(3)	0.1667(2)	13(1)	18(2)	9(2)	14(2)	2(2)	7(1)	3(2)
C(13)	0.0438(3)	-0.2364(3)	0.1659(2)	15(1)	20(2)	11(2)	15(2)	1(2)	8(2)	-3(2)
O(1)	-0.2842(2)	0.4875(3)	0.2173(2)	23(1)	17(1)	28(2)	16(1)	4(1)	-6(1)	-4(1)
O(2)	-0.1882(2)	0.5578(4)	0.1224(2)	40(1)	13(1)	80(3)	30(2)	-28(2)	10(1)	-13(2)
O(3)	-0.2520(2)	0.5595(3)	-0.0975(2)	26(1)	18(1)	36(2)	31(2)	14(1)	17(1)	9(1)
O(4)	-0.2173(2)	0.3772(3)	-0.0255(2)	20(1)	12(1)	21(2)	29(2)	-2(1)	9(1)	0(1)
O(5)	0.1042(2)	0.3137(2)	0.2120(2)	21(1)	29(2)	11(1)	18(1)	3(1)	0(1)	-6(1)
O(6)	-0.0105(3)	0-2332(3)	0.0848(2)	23(1)	42(2)	14(1)	10(1)	1(1)	4(1)	-6(1)
O(7)	0.1082(2)	-0.3195(2)	0.2107(2)	20(1)	32(2)	11(1)	13(1)	-1(1)	-2(1)	6(1)
O(8)	0.0005(2)	-0.2339(2)	0.0828(2)	20(1)	38(2)	12(1)	10(1)	-1(1)	5(1)	5(1)
O(9)	0.0058(2)	0.5016(2)	0.0829(1)	9(1)	8(1)	10(1)	9(1)	0(1)	3(1)	0(1)
OW(1)	-0.3736(4)	0.7835(4)	-0.1356(3)	56(1)	64(3)	42(2)	59(3)	5(2)	11(2)	15(2)
OW(2)	0.3668(4)	0.2165(5)	0.3171(3)	66(1)	75(3)	64(3)	59(3)	0(2)	17(2)	25(3)
OW(3)	0.2059(6)	0.0845(6)	-0.0006(4)	126(3)	112(5)	77(4)	128(5)	-45(4)	-66(4)	57(4)
H(1)	-0.3030(55)	0.1485(62)	0.0818(18)	75(12)						
H(2)	-0.2541(50)	0.2160(36)	0.0132(39)	75(12)						
H(3)	-0.2533(51)	0.0744(32)	0.0243(42)	75(12)						
H(4)	-0.4509(63)	0.2077(49)	-0.0369(55)	124(13)						
H(5)	-0.4447(67)	0.0691(45)	-0.0343(55)	124(13)						
H(6)	-0.3469(67)	0.0705(51)	-0.1434(55)	124(13)						
H(7)	-0.3572(70)	0.2134(40)	-0.1443(54)	124(13)						
H(8)	-0.5481(68)	0.0652(48)	-0.1954(55)	124(13)						
H(9)	-0.5463(67)	0.2105(40)	-0.2058(56)	124(13)						
H(10) H(11)	-0.4990(34)	0.4/9/(38)	-0.1481(20)	19(7)						
H(11)	0.0541(35)	-0.0045(39)	0.1206(27)	19(7)						
$\Pi(12)$ $\Pi(12)$	-0.0013(25)	0.3030(48)	0.0994(30)	43(13) 160(18)						
$\Pi(15)$ $\Pi(14)$	-0.5/1/(8/)	0.7798(99) 0.7077(42)	-01920(21) 0.1212(64)	169(18) 160(18)						
H(14) H(15)	-0.3364(60) 0.3268(77)	0.7077(43)	-0.1213(04) 0.3133(64)	160(18)						
H(13) H(16)	0.3200(77)	0.2901(48) 0.2056(07)	0.3133(04) 0.3504(44)	109(10) 160(10)						
H(17)	0.4559(47) 0.1453(60)	0.2030(97) 0.1310(70)	-0.0326(55)	169(18)						
H(18)	0.1433(00) 0.2643(65)	0.1319(73) 0.1409(73)	-0.0520(55)	169(18)						
H(12) H(13) H(14) H(15) H(16) H(17) H(18)	-0.0613(25) -0.3717(87) -0.3384(80) 0.3268(77) 0.4359(47) 0.1453(60) 0.2643(65)	0.5050(48) 0.7798(99) 0.7077(43) 0.2901(48) 0.2056(97) 0.1319(79) 0.1409(73)	$\begin{array}{c} 0.0994(30)\\ -01920(21)\\ -0.1213(64)\\ 0.3133(64)\\ 0.3594(46)\\ -0.0326(55)\\ 0.0223(63) \end{array}$	45(15) 169(18) 169(18) 169(18) 169(18) 169(18) 169(18) 169(18)						

I.24. $Cu_4(H_2DAN)(OH)_2[C_6H_2(COO)_4]_2 \cdot 5H_2O$

Tabelle I.24: Atomparameter des Cu₄(H₂DAN)(OH)₂[C₆H₂(COO)₄]₂·5H₂O

Atomkou	ordinaten und äquir	arameter	,	Anisotrona /	Juslankung	naramatar ($mm^2 \cdot 10^{-1}$			
Atomkov	Si annateri una aqui	$(nm^2 \cdot 10^{-1})$	Ausienkungsp	arameter	1	Anisou ope 7	sustenkung:	sparameter (pm ·10)	
	x	v	7	Uea	Un	Um	Um	Um	U12	U12
		5	_		- 11	- 22	~ 55	0 25	015	0 12
Cu(1)	0.1378(1)	0.4960(1)	0.4997(1)	11(1)	6(1)	20(1)	7(1)	5(1)	2(1)	2(1)
Cu(2)	-0.1388(1)	0.4748(1)	-0.0018(1)	11(1)	6(1)	21(1)	7(1)	5(1)	1(1)	2(1)
Cu(3)	-0.0132(1)	0.3560(1)	0.3143(1)	11(1)	10(1)	14(1)	9(1)	0(1)	1(1)	2(1)
Cu(4)	0.0074(1)	0.6425(1)	0.1850(1)	13(1)	13(1)	16(1)	9(1)	-1(1)	0(1)	5(1)
N(1)	0.7146(6)	0.8398(6)	0.1199(4)	40(1)	35(3)	48(4)	41(3)	18(3)	12(3)	12(3)
N(2)	0.5985(6)	1.2460(6)	-0.4809(5)	45(2)	40(4)	38(3)	54(4)	9(3)	0(3)	-4(3)
C(1)	0.6242(7)	0.7629(7)	0.0499(5)	50(2)	42(4)	46(4)	65(5)	17(4)	10(4)	7(3)
C(2)	0.6569(8)	0.7676(7)	-0.0405(5)	51(2)	51(5)	41(4)	58(5)	5(4)	8(4)	9(4)
C(3)	0.6511(7)	0.8876(6)	-0.0580(5)	45(2)	40(4)	44(4)	50(5)	11(3)	8(3)	10(3)
C(4)	0.6519(8)	0.8759(7)	-0.1576(5)	55(2)	51(5)	59(5)	54(5)	9(4)	2(4)	13(4)
C(5)	0.6457(9)	0.9891(8)	-0.1798(6)	65(2)	68(6)	70(6)	58(6)	21(5)	-1(5)	12(5)
C(6)	0.6373(9)	0.9789(8)	-0.2796(6)	63(2)	59(6)	74(6)	60(6)	25(5)	-1(4)	2(5)
C(7)	0.6397(9)	1.0983(8)	-0.2967(6)	62(2)	60(6)	66(6)	59(6)	15(4)	-13(4)	3(4)
C(8)	0.6168(8)	1.1001(7)	-0.3913(5)	51(2)	44(5)	57(5)	51(5)	13(4)	-3(4)	3(4)
C(9)	0.6305(8)	1.2262(7)	-0.3944(6)	58(2)	46(5)	56(5)	61(6)	3(4)	-16(4)	-7(4)
O(1)	-0.7302(3)	0.5194(3)	0.0850(2)	19(1)	11(2)	39(2)	10(2)	9(2)	-1(1)	8(2)
O(2)	-0.8160(3)	0.6024(3)	0.2159(2)	19(1)	12(2)	30(2)	12(2)	0(2)	0(1)	8(2)
O(3)	-0.7355(3)	0.5142(3)	0.4163(2)	18(1)	12(2)	31(2)	9(2)	3(2)	2(1)	-1(2)
O(4)	-0.8268(3)	0.3860(3)	0.2928(2)	20(1)	12(2)	28(2)	14(2)	-3(2)	4(2)	-2(2)

			1	Fortsetzung	Tabelle I.24					
0(5)	-0.1896(3)	0.3927(3)	0.2812(2)	21(1)	14(2)	34(2)	13(2)	1(2)	-1(2)	10(2)
0(6)	-0.2758(3)	0.4661(4)	0.4129(2)	26(1)	9(2)	59(3)	11(2)	10(2)	-1(2)	8(2)
O(7)	-0.2680(3)	0.4769(4)	0.0854(2)	22(1)	10(2)	43(2)	10(2)	3(2)	3(1)	1(2)
O(7)	-0.2000(3)	0.4707(4)	0.0034(2)	22(1) 22(1)	10(2)	$\frac{+3(2)}{20(2)}$	10(2)	3(2)	7(2)	5(2)
C(10)	-0.1617(3)	0.0033(3)	0.2111(2) 0.2117(2)	$\frac{23(1)}{14(1)}$	$\frac{12(2)}{2(2)}$	30(2)	19(2)	-3(2)	2(2)	-3(2)
C(10)	-0.01/8(3)	0.3101(4)	0.2117(3)	14(1)	0(2)	21(5)	9(2)	2(2)	-2(2)	-1(2)
$C(\Pi)$	-0.6211(5)	0.4/80(4)	0.2882(3)	14(1)	11(2)	22(3)	9(2)	5(2)	0(2)	-2(2)
C(12)	-0.5077(5)	0.4562(4)	0.3253(3)	15(1)	9(2)	25(3)	11(2)	7(2)	1(2)	3(2)
C(13)	-0.3913(4)	0.4698(4)	0.2872(3)	13(1)	8(2)	22(3)	8(2)	2(2)	-1(2)	1(2)
C(14)	-0.3882(5)	0.5082(4)	0.2106(3)	14(1)	11(2)	21(3)	10(2)	4(2)	3(2)	1(2)
C(15)	-0.5013(5)	0.5285(4)	0.1735(3)	15(1)	15(3)	22(3)	10(2)	6(2)	2(2)	4(2)
C(16)	-0.7331(4)	0.5476(4)	0.1677(3)	12(1)	6(2)	19(3)	14(3)	7(2)	0(2)	-1(2)
C(17)	-0.7413(5)	0.4578(4)	0.3348(3)	13(1)	10(2)	20(3)	11(3)	7(2)	2(2)	3(2)
C(18)	-0.2741(4)	0.4414(4)	0.3299(3)	13(1)	8(2)	19(3)	13(3)	6(2)	2(2)	3(2)
C(19)	-0.2663(5)	0.5314(4)	0.1670(3)	14(1)	12(3)	18(3)	13(3)	8(2)	2(2)	4(2)
O(9)	-0.0285(3)	0.2109(3)	0.2174(3)	19(1)	20(2)	21(2)	12(2)	0(1)	4(2)	4(2)
O(10)	0.0396(4)	0.3152(3)	0.1260(3)	28(1)	50(3)	12(2)	22(2)	7(2)	-9(2)	-2(2)
0(11)	-0.1355(3)	0.2691(3)	-0.0310(2)	20(1)	14(2)	19(2)	28(2)	7(2)	3(2)	4(2)
O(12)	0.0495(4)	0.2511(3)	-0.0968(2)	24(1)	32(2)	23(2)	23(2)	15(2)	12(2)	13(2)
C(20)	-0.0047(5)	0.1058(4)	0.0500(2)	12(1)	17(3)	10(2)	10(2)	4(2)	3(2)	3(2)
C(21)	0.0047(5)	0.1030(4) 0.1088(4)	0.0074(3)	12(1) 16(1)	18(3)	10(2) 14(2)	15(2)	2(2)	2(2)	3(2)
C(21)	-0.0142(5)	0.1000(4)	-0.0211(3) 0.0873(3)	10(1)	16(3)	14(2)	0(2)	$\frac{2(2)}{3(2)}$	$\frac{2(2)}{3(2)}$	3(2)
C(22)	0.0090(3)	-0.0013(4)	0.0875(3)	14(1) 15(1)	10(3) 17(2)	10(2)	$\frac{9(2)}{14(2)}$	3(2)	3(2)	$\frac{3(2)}{7(2)}$
C(23)	0.0023(3)	0.2210(4)	0.1400(3)	13(1) 16(1)	$\frac{1}{(3)}$	14(3) 12(2)	7(2)	$\frac{2(2)}{1(2)}$	-3(2)	n(2)
C(24)	-0.0330(3)	0.2190(4)	-0.0488(3)	10(1)	29(3)	13(2)	7(2)	1(2)	-4(2)	0(2)
O(13)	0.1280(3)	0.2926(3)	0.4/63(2)	19(1)	$\frac{1}{22}$	$\frac{1}{(2)}$	24(2)	$\delta(2)$	2(2)	1(2)
0(14)	-0.0586(4)	0.2442(3)	0.4042(3)	25(1)	33(2)	19(2)	28(2)	16(2)	-9(2)	-3(2)
0(15)	0.0023(4)	-0.2137(3)	0.280/(2)	21(1)	27(2)	18(2)	15(2)	-1(2)	0(2)	5(2)
0(16)	0.0530(5)	-0.3077(3)	0.3/98(3)	33(1)	59(3)	18(2)	29(2)	13(2)	22(2)	1/(2)
C(25)	0.0117(5)	0.1111(4)	0.4803(3)	14(1)	16(3)	13(2)	14(3)	4(2)	-1(2)	1(2)
C(26)	0.0078(4)	-0.1064(4)	0.4321(3)	11(1)	11(2)	11(2)	13(3)	5(2)	0(2)	-1(2)
C(27)	0.0178(5)	0.0040(4)	0.4146(3)	15(1)	20(3)	16(3)	9(2)	3(2)	4(2)	2(2)
C(28)	0.0294(5)	0.2260(4)	0.4538(3)	14(1)	21(3)	11(2)	9(2)	2(2)	6(2)	5(2)
C(29)	0.0222(5)	-0.2188(4)	0.3607(3)	16(1)	10(2)	15(3)	20(3)	2(2)	7(2)	0(2)
OW(1)	0.7180(5)	0.0929(5)	0.1824(4)	50(1)	37(3)	57(4)	54(4)	15(3)	2(3)	-10(3)
OW(2)	0.6587(6)	0.2165(5)	0.0626(5)	59(2)	50(4)	45(3)	84(5)	20(3)	25(3)	0(3)
OW(3)	-0.2805(5)	0.1052(5)	0.3671(4)	48(1)	33(3)	59(3)	48(3)	11(3)	-1(2)	-6(2)
OW(4)	0.6564(6)	0.7845(8)	0.4626(6)	90(2)	34(3)	141(7)	119(6)	75(6)	-2(4)	21(4)
OW(5)	0.7207(7)	0.8485(6)	0.3044(4)	64(2)	71(4)	69(4)	53(4)	15(3)	2(3)	31(4)
O(17)	0.0033(3)	0.5063(3)	0.0827(2)	9(1)	7(2)	15(2)	7(2)	5(1)	3(1)	2(1)
O(18)	-0.0032(3)	0.4936(3)	0.4164(2)	10(1)	7(2)	13(2)	10(2)	6(1)	2(1)	2(1)
H(1)	0.6237(7)	0.6807(7)	0.0524(5)	77(7)						
H(2)	0.5394(7)	0.7885(7)	0.0618(5)	77(7)						
H(3)	0.5997(8)	0.7100(7)	-0.0824(5)	77(7)						
H(4)	0.7421(8)	0.7424(7)	-0.0516(5)	77(7)						
H(5)	0.7232(7)	0.9403(6)	-0.0287(5)	77(7)						
H(6)	0.5745(7)	0.9230(6)	-0.0337(5)	77(7)						
H(7)	0.7287(8)	0.8401(7)	-0.1812(5)	77(7)						
H(8)	0.5804(8)	0.8219(7)	-0.1864(5)	77(7)						
H(9)	0.7203(9)	1.0409(8)	-0.1541(6)	77(7)						
H(10)	0.5722(9)	1.0275(8)	-0.1524(6)	77(7)						
H(11)	0.7079(9)	0.9368(8)	-0.3083(6)	77(7)						
H(12)	0.5595(9)	0.9323(8)	-0.3051(6)	77(7)						
H(13)	0.7217(9)	1.1403(8)	-0.2763(6)	77(7)						
H(14)	0.5762(9)	1.1433(8)	-0.2609(6)	77(7)						
H(15)	0.6778(8)	1.0540(7)	-0.4291(5)	77(7)						
H(16)	0.5323(8)	1.0649(7)	-0.4120(5)	77(7)						
H(17)	0.7175(8)	1.2574(7)	-0.3778(6)	77(7)						
H(18)	0.5767(8)	1.2724(7)	-0.3504(6)	77(7)						
H(19)	-0.5099(5)	0.4321(4)	0.3767(3)	6(6)						
H(20)	-0.4993(5)	0.5512(4)	0.1214(3)	6(6)						
H(21)	0.0149(5)	-0.0018(4)	0.1462(3)	6(6)						
H(22)	0.0289(5)	0.0065(4)	0.3567(3)	6(6)						
H(23)	0.6988(79)	0.8278(72)	0.1729(25)	62(10)						
H(24)	0.7214(80)	0.9193(16)	0.1723(20) 0.1271(54)	62(10)						
H(25)	0.7918(34)	0.8119(68)	0.1098(54)	62(10)						
H(26)	0.6375(70)	1 3201(31)	-0 4711(54)	62(10)						
H(27)	0.6434(67)	1 1926(56)	-0 5186(54)	62(10)						
H(28)	0.5137(15)	1.1920(30) 1.2415(72)	-0 4803(43)	62(10)						
H(31)	0 6887(98)	0.1364(79)	0.1574(55)	95(13)						
H(32)	0.7810(57)	0.1355(78)	0.107 + (0.00)	95(13)						
H(33)	0.6716(103)	0.2877(15)	0.0739(67)	95(13)						
H(34)	0.6968(03)	0 2023(05)	0.0179(71)	95(13)						
H(35)	-0 2173(56)	0.2023(93) 0.1482(76)	0.3828(A0)	95(13)						
H(36)	-0 3053(08)	0 1104(05)	0.3202(40)	95(13)						
H(37)	0.6330(78)	0.7307(68)	0.4835(34)	95(13)						
11(37)	0.000000(/0)	0.7507(00)	0.7055(34)	13(13)						

Fortsetzung Tabelle I.24

			1	onsetzung Ta	/ene 1.2-		
H(38)	0.7310(18)	0.7764(84)	0.4653(72)	95(13)			
H(39)	0.7154(107)	0.9188(21)	0.3248(70)	95(13)			
H(40)	0.7187(108)	0.7782(21)	0.2991(67)	95(13)			
H(61)	-0.0101(46)	0.4765(40)	0.1290(21)	5(8)			
H(71)	0.0131(46)	0.5322(38)	0.3750(23)	5(8)			

I.25. $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]_2 \cdot 4H_2O$

Tabelle I.25: Atomparameter des $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4]_2 \cdot 4H_2O$

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter					Anisotrope Auslenkungsparameter (pm ² ·10 ⁻¹)					
		$(pm^2 \cdot 10^{-1})$								
	х	У	Z	U_{eq}	U_{11}	U ₂₂	U33	U ₂₃	U ₁₃	U12
Cu(1)	0.8771(1)	-0.0706(1)	0.0130(1)	8(1)	9(1)	7(1)	9(1)	-1(1)	-2(1)	0(1)
Cu(2)	0.5	0.5	-0.5	25(1)	31(1)	17(1)	16(1)	2(1)	3(1)	9(1)
N	0.4761(4)	0.0713(3)	-0.7811(2)	25(1)	28(2)	29(2)	18(1)	1(1)	-2(1)	-5(1)
C(1)	0.4150(4)	0.0977(4)	-0.6493(3)	25(1)	24(2)	33(2)	18(2)	-4(1)	0(1)	-9(1)
C(2)	0.5207(4)	-0.0176(4)	-0.5682(3)	24(1)	28(2)	31(2)	16(2)	-2(1)	-1(1)	-11(1)
C(3)	1.0144(3)	-0.0124(3)	-0.3721(2)	13(1)	15(1)	14(1)	11(1)	-1(1)	-2(1)	-4(1)
C(4)	0.8837(4)	0.1180(3)	-0.5499(2)	14(1)	14(1)	14(1)	13(1)	-1(1)	-2(1)	-1(1)
C(5)	0.8996(4)	0.1038(3)	-0.4227(3)	16(1)	18(1)	14(1)	13(1)	-3(1)	0(1)	1(1)
C(6)	1.0209(3)	-0.0160(3)	-0.2334(2)	13(1)	14(1)	7(1)	14(1)	-2(1)	-2(1)	4(1)
C(7)	0.7514(4)	0.2451(3)	-0.5972(3)	19(1)	21(2)	16(1)	17(1)	-1(1)	-2(1)	1(1)
C(8)	0.6248(3)	0.3692(3)	-0.0086(2)	10(1)	11(1)	7(1)	12(1)	0(1)	0(1)	1(1)
C(9)	0.5487(3)	0.6219(3)	0.0281(2)	10(1)	12(1)	7(1)	11(1)	0(1)	-1(1)	-3(1)
C(10)	0.6714(3)	0.4914(3)	0.0182(2)	12(1)	8(1)	12(1)	16(1)	0(1)	-3(1)	-2(1)
C(11)	0.7623(3)	0.2299(3)	-0.0103(2)	11(1)	11(1)	11(1)	9(1)	-1(1)	-3(1)	1(1)
C(12)	0.6084(3)	0.7447(3)	0.0716(2)	12(1)	11(1)	8(1)	18(1)	0(1)	-7(1)	-1(1)
O(1)	0.9109(3)	-0.0670(2)	-0.1701(2)	17(1)	20(1)	23(1)	11(1)	-1(1)	0(1)	-8(1)
O(2)	1.1258(3)	0.0441(2)	-0.1925(2)	18(1)	20(1)	25(1)	12(1)	-3(1)	-2(1)	-8(1)
O(3)	0.6449(3)	0.3101(2)	-0.5130(2)	31(1)	36(1)	23(1)	20(1)	2(1)	3(1)	13(1)
O(4)	0.7514(3)	0.2730(3)	-0.7097(2)	35(1)	45(2)	31(1)	14(1)	4(1)	-1(1)	16(1)
O(5)	0.9182(2)	0.2345(2)	-0.0234(2)	17(1)	11(1)	10(1)	28(1)	1(1)	-3(1)	2(1)
O(6)	0.7104(2)	0.1181(2)	0.0044(2)	16(1)	13(1)	7(1)	28(1)	0(1)	-2(1)	0(1)
O(7)	0.5668(3)	0.7783(2)	0.1810(2)	28(1)	47(2)	24(1)	18(1)	-6(1)	-2(1)	-16(1)
O(8)	0.7030(3)	0.7989(2)	-0.0052(2)	17(1)	18(1)	15(1)	22(1)	0(1)	-3(1)	-10(1)
OW(1)	0.4837(4)	0.4674(3)	-0.3176(2)	36(1)	50(2)	26(1)	19(1)	4(1)	6(1)	7(1)
OW(2)	0.2424(5)	0.4238(4)	-0.5214(4)	70(1)	57(2)	80(3)	73(3)	-3(2)	-5(2)	-19(2)
OW(3)	1.0605(6)	0.3834(4)	-0.7976(4)	90(2)	113(4)	52(2)	106(3)	-31(2)	53(3)	-40(2)
OW(4)	0.0448(8)	0.3591(5)	-0.3111(4)	95(2)	148(5)	76(3)	69(3)	-9(2)	6(3)	-49(1)
H(1)	0.5749(60)	0.0975(46)	-0.8006(41)	51(7)						
H(2)	0.3993(58)	0.1217(47)	-0.8300(41)	51(7)						
H(3)	0.4965(56)	-0.0206(50)	-0.8006(40)	51(7)						
H(4)	0.2928(47)	0.1037(36)	-0.6419(31)	26(5)						
H(5)	0.4280(44)	0.1924(38)	-0.6322(31)	26(5)						
H(6)	0.6438(47)	-0.0228(36)	-0.5892(31)	26(5)						
H(7)	0.4958(44)	-0.1037(38)	-0.5825(31)	26(5)						
H(8)	0.8224(40)	0.1820(33)	-0.3714(28)	15(6)						
H(9)	0.7841(42)	0.4872(32)	0.0339(28)	15(6)						
H(11)	0.4054(92)	0.5382(77)	-0.2910(65)	133(14)						
H(12)	0.4574(92)	0.3825(77)	-0.3017(65)	133(14)						
H(21)	0.1457(96)	0.4468(76)	-0.5869(70)	133(14)						
H(22)	0.1421(95)	0.4009(72)	-0.4418(72)	133(14)						
H(31)	0.9854(89)	0.3307(72)	-0.7595(63)	117(18)						
H(32)	1.1298(89)	0.3292(72)	-0.8589(63)	117(18)						
H(41)	-0.0310(138)	0.4589(114)	-0.2530(109)	218(37)						
H(42)	0.0842(155)	0.3648(133)	-0.2421(109)	218(37)						

I.26. Cu(urea)(H₂DAH)[C₆(COO)₄(COOH)₂]·3H₂O

 $Tabelle \ I.26: \ Atomparameter \ des \ Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2]\cdot 3H_2O$

Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $(pm^2 \cdot 10^{-1})$					1	Anisotrope A	Auslenkung	sparameter ($pm^2 \cdot 10^{-1})$	
	х	У	Z	U_{eq}	U11	U ₂₂	U33	U ₂₃	U13	U12
Cu C(1)	-0.1330(1) -0.2693(2)	-0.2077(1) -0.2363(2)	0.3881(1) 0.5931(1)	18(1) 15(1)	17(1) 15(1)	25(1) 19(1)	13(1) 12(1)	0(1) 2(1)	8(1) 5(1)	1(1) -2(1)

			F	ortsetzung 7	Tabelle I.26					
C(2)	-0.1815(2)	-0.2445(2)	0.6602(1)	15(1)	11(1)	18(1)	15(1)	2(1)	2(1)	-1(1)
C(3)	-0.2351(2)	-0.2354(2)	0.7277(1)	14(1)	12(1)	18(1)	13(1)	1(1)	2(1)	-1(1)
C(4)	-0.3790(2)	-0.2193(2)	0.7273(1)	15(1)	13(1)	19(1)	13(1)	0(1)	6(1)	-2(1)
C(5)	-0.4663(2)	-0.2079(2)	0.6603(1)	15(1)	9(1)	21(1)	14(1)	1(1)	2(1)	-1(1)
C(6)	-0.4126(2)	-0.2155(2)	0.5930(1)	14(1)	12(1)	19(1)	13(1)	0(1)	2(1)	-1(1)
C(7)	-0.2053(2)	-0.2499(2)	0.5220(1)	19(1)	11(1)	32(1)	15(1)	-3(1)	4(1)	-3(1)
C(8)	-0.0258(2)	-0.2642(2)	0.6620(1)	19(1)	13(1)	29(1)	14(1)	-2(1)	2(1)	1(1)
C(9)	-0.1351(2)	-0.2342(2)	0.7991(1)	18(1)	16(1)	23(1)	15(1)	-1(1)	5(1)	4(1)
C(10)	-0.4428(2)	-0.2160(2)	0.7987(1)	17(1)	14(1)	26(1)	12(1)	4(1)	2(1)	5(1)
C(11)	-0.6190(2)	-0.1852(2)	0.6649(1)	19(1)	14(1)	28(1)	14(1)	5(1)	5(1)	1(1)
C(12)	-0.5087(2)	-0.1957(2)	0.5214(1)	18(1)	12(1)	30(1)	12(1)	2(1)	5(1)	-3(1)
O(1)	-0.2365(2)	-0.1899(1)	0.4721(1)	25(1)	26(1)	36(1)	14(1)	6(1)	11(1)	5(1)
O(2)	-0.1265(2)	-0.3155(1)	0.5177(1)	33(1)	33(1)	43(1)	24(1)	1(1)	11(1)	15(1)
O(3)	0.0427(2)	-0.2040(1)	0.6319(1)	26(1)	11(1)	35(1)	34(1)	10(1)	8(1)	-2(1)
O(4)	0.0226(2)	-0.3350(1)	0.6929(1)	26(1)	18(1)	33(1)	29(1)	10(1)	4(1)	6(1)
0(5)	-0.0311(2)	-0.1860(1)	0.8036(1)	31(1)	20(1)	45(1)	25(1)	2(1)	-4(1)	-9(1)
O(6)	-0.1/06(2)	-0.2850(1)	0.8521(1)	28(1)	26(1)	41(1)	15(1)	9(1)	-2(1)	-6(1)
O(7)	-0.4097(2)	-0.152/(1)	0.8433(1)	26(1)	29(1)	35(1)	14(1)	-4(1)	5(1)	-2(1)
0(8)	-0.52/1(2)	-0.2804(1)	0.8054(1)	23(1)	22(1)	30(1)	20(1)	3(1)	12(1)	-2(1)
O(9)	-0.6491(2)	-0.1286(1)	0.7093(1)	$\frac{2}{(1)}$	20(1)	$\frac{30(1)}{40(1)}$	20(1) 21(1)	-6(1)	/(1)	0(1)
O(10)	-0.7070(2)	-0.2319(2)	0.0204(1) 0.5120(1)	29(1)	9(1)	49(1)	21(1)	-14(1)	4(1)	-2(1)
O(11)	-0.550/(2) 0.5347(2)	-0.1108(1)	0.5139(1) 0.4757(1)	29(1) 26(1)	33(1) 28(1)	32(1)	$\frac{21(1)}{14(1)}$	4(1) 2(1)	-4(1)	9(1) 1(1)
N(12)	-0.3347(2)	-0.2399(1)	0.4737(1) 0.2205(2)	20(1) 24(1)	20(1) 27(2)	33(1) 30(1)	$\frac{14(1)}{24(2)}$	-2(1)	-3(1)	-1(1) 2(1)
N(1)	0.3090(3)	-0.0122(2) 0.1654(2)	0.2393(2) 0.0061(1)	34(1) 33(1)	37(2) 32(1)	$\frac{30(1)}{43(2)}$	23(1)	-2(1)	-1(1)	3(1) 0(1)
C(13)	-0.3334(3)	-0.1034(2)	-0.0001(1) 0.4251(2)	33(1) 32(1)	32(1) 30(2)	36(2)	23(1) 33(2)	-1(1)	$\frac{-1(1)}{16(1)}$	-4(1)
C(13)	0.0307(3) 0.2146(3)	-0.0310(2)	0.4231(2) 0.2418(2)	34(1)	37(2)	30(2)	35(2)	2(1)	5(1)	-4(1) 3(1)
C(15)	0.2140(3) 0.1340(3)	-0.0201(2)	0.2410(2) 0.1650(2)	36(1)	$\frac{37(2)}{38(2)}$	30(2) 32(2)	36(2)	-4(1)	2(1)	3(1)
C(16)	-0.0239(3)	-0.0348(2)	0.1658(2)	37(1)	39(2)	32(2) 32(2)	39(2)	-2(1)	$\frac{2(1)}{6(1)}$	-5(1)
C(17)	-0.1030(3)	-0.0397(2)	0.0885(2)	40(1)	36(2)	42(2)	41(2)	-4(1)	5(1)	-6(1)
C(18)	-0.2623(3)	-0.0430(2)	0.0863(2)	45(1)	36(2)	42(2)	57(2)	-16(2)	7(2)	-1(2)
C(19)	-0.3398(4)	-0.0676(2)	0.0118(2)	53(1)	38(2)	43(2)	73(3)	-1(2)	-9(2)	6(2)
O(13)	0.0235(2)	-0.1335(1)	0.4367(1)	30(1)	29(1)	34(1)	26(1)	-4(1)	5(1)	-7(1)
N(3)	0.1703(3)	-0.0151(2)	0.4600(2)	49(1)	37(2)	37(2)	72(2)	-10(1)	2(2)	-9(1)
N(4)	-0.322(3)	0.0016(2)	0.3792(2)	48(1)	45(2)	36(2)	63(2)	6(2)	3(2)	-6(1)
OW(1)	0.5011(3)	-0.237(2)	0.3862(1)	36(1)	53(1)	31(1)	27(1)	0(1)	11(1)	-4(1)
OW(2)	-0.2503(2)	-0.3136(2)	0.3471(1)	29(1)	19(1)	40(1)	27(1)	-5(1)	6(1)	-5(1)
OW(3)	-0.2810(2)	-0.1062(2)	0.3210(1)	35(1)	30(1)	44(1)	30(1)	-2(1)	1(1)	11(1)
H(1)	0.1825(3)	0.0324(2)	0.2673(2)	54(3)						
H(2)	0.1959(3)	-0.0743(2)	0.2695(2)	54(3)						
H(3)	0.1673(3)	-0.0778(2)	0.1395(2)	54(3)						
H(4)	0.1525(3)	0.0287(2)	0.1376(2)	54(3)						
H(5)	-0.0428(3)	-0.0894(2)	0.1928(2)	54(3)						
H(6)	-0.0574(3)	0.0172(2)	0.1914(2)	54(3)						
H(7)	-0.0728(3)	-0.0936(2)	0.0641(2)	54(3)						
H(8)	-0.0786(3)	0.0131(2)	0.0607(2)	54(3)						
H(9)	-0.2853(3)	-0.0873(2)	0.1224(2)	54(3)						
H(10)	-0.2948(3)	0.0162(2)	0.1008(2)	54(3)						
H(11)	-0.43 / /(4)	-0.0498(2)	0.0102(2)	54(5)						
H(12)	-0.3005(4)	-0.0329(2)	-0.0260(2)	54(5) 18(7)						
H(13)	0.41/4(34)	-0.0003(23)	0.2002(19) 0.2145(20)	40(7)						
H(14) H(15)	0.369/(37)	0.0520(25)	0.2143(20) 0.2172(24)	40(7)						
H(16)	-0.3051(43)	-0.0030(32)	0.2172(24) 0.0136(26)	87(6)						
H(17)	-0.3931(40) -0.2553(50)	-0.1911(32) -0.1853(32)	0.0130(20) 0.0050(25)	87(6)						
H(18)	-0.2555(50)	-0.1717(30)	-0.0560(25)	87(6)						
H(19)	-0.3018(40)	-0.2685(20)	0.8999(24)	87(6)						
H(20)	-0 7834(46)	-0.2194(31)	0.6231(25)	87(6)						
H(21)	0.4718(40)	-0.0595(27)	0.4127(21)	58(5)						
H(22)	0.5197(40)	0.0195(26)	0.4119(21)	58(5)						
H(23)	-0.2321(41)	-0.3317(26)	0.3101(21)	58(5)						
H(24)	-0.3378(41)	-0.3093(25)	0.3435(20)	58(5)						
H(25)	-0.3219(39)	-0.1267(26)	0.2817(21)	58(5)						
H(26)	-0.3290(41)	-0.0805(28)	0.3396(22)	58(5)						
H(27)	0.2290(39)	-0.0556(26)	0.4869(20)	57(6)						
H(28)	0.1769(39)	0.0390(27)	0.4601(21)	57(6)						
H(29)	-0.1080(40)	-0.0186(25)	0.3542(21)	57(6)						
H(30)	-0.0189(39)	0.0571(27)	0.3788(20)	57(6)						

II. Identifizierung des TG/DTA Rückstandes

II.1. BaC₄O₄

Der Zersetzungsrückstand besteht aus BaCO₃ (Witherit).

Zersetzungsr	ückstand	PDF-Kartei N	r. 71-2394
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
3,7307	100	3,7199	100
3.6767	46	3.6577	52
2.1522	51	2.1493	28
2.0187	42	2.0163	23
1.9388	29	1.9394	18
1.8610	10	1.8599	3
1.6322	18	1.6318	7
1.5574	13	1.5566	2
1.5073	9	1.5063	2
1.3665	22	1.3654	6
1.3499	21	1.3492	5
1.2382	17	1.2374	3

II.2. $Mn(pyz)[C_6H_4(COO)_2] \cdot 4H_2O$

Das schwarze Zersetzungsprodukt ist Mn_2O_3 .

Zersetzungsi	ückstand	PDF-Kartei	Nr. 24-508
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
3.7189	100	2.7185	100
2.3530	19	2.3540	11
2.0058	20	2.0069	9
1.8455	21	1.8432	10
1.6645	54	1.6643	27
1.4528	12	1.4524	4
1.4200	35	1.4196	11
1.3593	13	1.3589	3
1.2825	13	1.2814	1

II.3. $Co(4,4'bipy)[C_6H_4(COO)_2] \cdot 4H_2O$

Im Zersetzungsprodukt befindet sich CoO und Co₃O₄.

Zersetzungs	rückstand	PDF-Kartei Nr. 4	43-1003 (Co ₃ O ₄)	PDF-Kartei Nr.	72-1474 (CoO)
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
4.6616	39	4.667	16		
2.8576	53	2.858	33		
2.4582	56			2.4521	90
2.4411	100	2.4374	100		
2.1330	96			2.1326	100
2.0201	39	2.0210	20		
1.6540	38	1.6501	9		
1.5555	64	1.5558	32		
1.5065	72	1.5085	19		
1.4284	73	1.4291	38		
1.2836	59			1.2852	13
1.2203	48			1.2260	13
1.2791	64			1.2733	6

II.4. $Cd[C_6H_3(COO)_2(COOH)] \cdot 2H_2O$

Der Zersetzungsrückstand ist CdO.

Zersetzungs	rückstand	PDF-Kartei N	r. 02-1102
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7119	94	2.71	80
2.3476	100	2.34	100
1.6603	96	1.66	90
1.4157	96	1.41	70
1.3553	49	1.35	60
1.1742	26	1.17	40

II.5. Cd_{1.5}[C₆H₃(COO)₃]·4.25H₂O

Der Zersetzungsrückstand ist CdO (Monteponit).

Zersetzungsrückstand		PDF- Kartei Nr. 75-0591	
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7128	100	2.7105	100
2.3473	92	2.3474	84
1.6592	80	1.6598	45
1.4149	68	1.4155	28
1.3543	27	1.3552	12
1.1729	18	1.1737	5

II.6. $Ba_2[C_6H_2(COO)_4] \cdot H_2O$

Der Zersetzungsrückstand besteht aus BaCO₃ (Witherit).

Zersetzungsrückstand		PDF- Kartei	Nr. 5-378
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
4.65	10	4.56	9
3.72	100	3.72	100
3.66	66	3.66	53
3.218	41	3.215	15
2.658	26	2.656	11
2.625	41	2.628	24
2.592	52	2.590	23
2.282	23	2.281	6
2.149	86	2.150	28
2.105	46	2.104	12
2.049	30	2.048	10
2.017	69	2.019	21
1.939	60	1.940	15
1.860	8	1.859	3
1.6758	31	1.677	5

II.7. $Pb_2[C_6H_2(COO)_4] \cdot H_2O$

Der Zersetzungsrückstand besteht aus PbO (Massicot).

Zersetzungsrückstand		PDF- Kartei	Nr. 38-1477
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
3.0686	100	3.068	100
2.9461	44	2.946	24
2.7743	27	2.745	23
2.3769	25	2.3767	17
2.0086	25	2.0078	13
1.8492	30	1.8494	12
1.7964	36	1.7964	13
1.7229	44	1.7232	16
1.6395	39	1.6401	15
1.5341	36	1.5336	11
1.4735	52	1.4730	12

II.8. $Cd_2[C_6H_2(COO)_4] \cdot 6H_2O$

Der Rückstand besteht aus CdO.

Zersetzungsrückstand		PDF- Kartei	Nr. 02-1102
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7113	56	2.71	80
2.3880	100	2.34	100
1.6594	68	1.66	90
1.4153	88	1.41	70
1.3549	31	1.35	60
1.1737	31	1.17	40
1.1030	4	1.08	30

II.9. Ni[C₆H₂(COOH)₂(COO)₂]·6H₂O

Das Zersetzungsprodukt ist NiO.

Zersetzungsrückstand		PDF- Kartei Nr. 22-1189	
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.413	55	2.412	60
2.089	100	2.088	100
1.477	67	1.477	35
1.2599	31	1.2586	12
1.2060	22	1.2064	16

II.10. Zn[C₆H₂(COOH)₂(COO)₂]·6H₂O

Der Rückstand besteht aus ZnO.

Zersetzungsrückstand		PDF-Kartei	Nr. 36-1451
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.816	70	2.814	57
2.605	46	2.603	44
2.4774	100	2.4759	100
1.9116	15	1.9111	23
1.6253	38	1.6247	32
1.4776	22	1.4771	29
1.4057	7	1.4072	4
1.3786	23	1.3782	23
1.3585	11	1.3583	11
1.0938	6	1.0931	7

II.11. Ni(2,2'bipy)[C₆H₂(COO)₄]_{0.5}·4H₂O

Pulverdiffraktogramm des Zersetzungsrückstandes.

Zersetzungsrückstand			
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
5.6050	3	2.0333	100
5.4164	3	1.7603	33
2.4215	3	1.4723	3
2.0867	3	1.2451	15

II.12. Co(phen)[C₆H₂(COO)₄]_{0.5}. 4H₂O

Pulverdiffraktogramm des Zersetzungsrückstandes.

Zersetzungsrückstand			
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
11.1898	15	3.7140	9
9.1659	10	3.6236	21
9.0410	10	3.5879	12
6.9864	46	3.4774	15
6.7730	71	3.4443	25
6.3461	100	3.1991	9
5.5844	38	3.1238	68
5.2161	17	2.8674	15
5.0775	19	2.6157	11
4.6339	50	2.5305	8
4.0026	37	2.3535	13
3.9440	39	2.2249	10
		2.0515	9

II.13. Co(imi)₂[C₆H₂(COO)₄]_{0.5}

Der Rückstand enthält Co₃O₄.

Zersetzungsrückstand		PDF- Kartei Nr. 78-1969	
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
4.6584	20	4.6678	1
2.8642	41	2.8584	29
2.4395	100	2.4377	100
2.3327	11	2.3339	8
2.0237	38	2.0212	17
1.6500	23	1.6503	7
1.5554	65	1.5559	21

II.14. $Cu(pyz)_{0.5}[C_6H_2(COO)_4]_{0.5} \cdot 3H_2O$

Der Rückstand wurde als CuO identifiziert.

Zersetzungsrückstand		PDF- Kartei Nr. 80-1917	
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7521	9	2.7529	7
2.5258	87	2.5263	94
2.3229	100	2.3227	100
1.8682	31	1.8696	28
1.7111	9	1.7134	10
1.5829	13	1.5795	14
1.5059	24	1.5066	19
1.4179	14	1.4186	14
1.4105	19	1.4109	14
1.3767	16	1.3780	10
1.3052	7	1.3037	6
1.2638	4	1.2648	6
1.1963	4	1.1973	2
1.1699	6	1.1713	4
1.1617	4	1.1613	4
1.1563	5	1.1557	3

II.15. Mn₄(INS)₂[C₆H₂(COO)₄]₂·12H₂O

Der dunkelbraune Zersetzungsrückstand besteht aus Mn₃O₄ (Hausmannit).

Zersetzungsrückstand		PDF- Kartei N	Jr. 80-0382
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
4.9342	12	4.9203	28
3.0924	33	3.0854	38
2.8832	15	2.8825	16
2.7708	75	2.7624	76
2.4865	100	2.4871	100
2.4631	4	2.4601	15
2.3689	30	2.3605	18
2.0364	29	2.0382	21
1.8291	5	1.8262	6
1.7992	24	1.7945	22
1.7010	9	1.7006	9
1.5756	23	1.5764	28
1.5445	39	1.5427	49
1.4404	14	1.4412	18
1.2773	6	1.2778	8

II.16. Ni(H₂DACH)[C₆H₂(COO)₄]·8H₂O

Der grüne Rückstand ist NiO.

Zersetzungsrückstand		PDF- Kartei Nr. 44-1159	
d-Wert (Å) I (%)		d-Wert (Å) I (%)	
2.4124	57	2.4119	60
2.0879	100	2.0884	100
1.4767	50	1.4773	30
1.2595	20	1.2595	14
1.2059	14	1.2062	9

II.17. Co(H₂DACH)[C₆H₂(COO)₄]·2H₂O

Im Zersetzungsrückstand wurde CoO gefunden.

Zersetzungsi	rückstand	PDF- Kartei Nr. 71-1178			
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)		
2.4672	65	2.4612	68		
2.1345	100	2.1315	100		
1.5077	52	1.5072	48		
1.2853	18	1.2853	22		

II.18. $Zn(H_2DAH)[C_6H_2(COO)_4] \cdot \frac{1}{2}H_2O$

Der Rückstand besteht aus ZnO.

Zersetzungsi	ückstand	PDF-Kartei N	Ir. 89-0510	
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)	
2.8141	57	2.8135	57	
2.6002	38	2.6027	41	
2.4749	100	2.4751	100	
1.9097	21	1.9105	21	
1.6240	34	1.6244	30	
1.4756	28	1.4768	26	
1.4064	5	1.4067	4	
1.3775	23	1.3780	21	
1.3574	10	1.3580	11	
1.3002	3	1.3013	2	
1.2372	3	1.2375	3	

II.19. $Cu_{1.5}(H_2DAH)_{0.5}[C_6H_2(COO)_4] \cdot 5H_2O$

Das Zersetzungsprodukt besteht aus CuO (Tenorit) und Cu₂O (Cuprite)

Zersetzungsrückstand		PDF-Kartei Nr.	78-2076 (Cu ₂ O)	PDF-Kartei Nr.	48-1548 (CuO)
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
3.0196	8	3.0172	5		
2.5279	43			2.5236	100
2.4663	100	2.4635	100		
2.3230	38			2.3242	99
2.1352	35	2.1335	35		
1.8663	13			1.8676	30
1.7120	5			1.7117	7
1.5809	7			1.5822	10
1.5090	39	1.5086	27		
1.4180	7			1.4178	10
1.4094	11			1.4101	15
1.3773	10			1.3753	14
1.2872	28	1.2865	20		
1.2656	6			1.2656	6

II.20. Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Der Zersetzungsrückstand besteht aus CuO (Tenorit) und Cu₂O (Cuprite)

Zersetzungsrückstand		PDF-Kartei Nr.	78-2076 (Cu ₂ O)	PDF- Kartei Nr. 48-1548 (CuO)		
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)	d-Wert (Å)	I (%)	
3.0190	7	3.0172	5			
2.7503	4			2.7520	13	
2.5260	34			2.5236	100	
2.4651	100	2.4635	100			
2.3245	33			2.3242	99	
2.1351	35	2.1335	35			
1.8657	12			1.8676	30	
1.7122	5			1.7117	7	
1.5821	6			1.5822	10	
1.5090	37	1.5086	27			
1.4180	6			1.4178	10	
1.4093	10			1.4101	15	
1.3763	8			1.3753	14	
1.2872	25	1.2865	20			
1.2321	9	1.2317	4			

II.21. Cu₄(H₂DAN)(OH)₂[C₆H₂(COO)₄]₂·5H₂O

Der Rückstand besteht aus CuO.

Zersetzungs	rückstand	PDF-Kartei	Nr. 80-1268
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7542	12	2.7488	7
2.5275	93	2.5221	92
2.3215	100	2.3208	100
1.9625	4	1.9602	2
1.8674	31	1.8667	28
1.7107	11	1.7104	10
1.5816	15	1.5795	14
1.5051	24	1.5051	19
1.4174	16	1.4168	14
1.4082	17	1.4088	14
1.3749	15	1.3744	16
1.3041	8	1.3027	6

II.22. $Cu_{1.5}(H_2DAB)_{0.5}[C_6H_2(COO)_4] \cdot 4H_2O$

Der Rückstand besteht aus CuO (Tenorit)

Zersetzungs	rückstand	PDF- Kartei	Nr. 48-1548
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7552	13	2.7520	13
2.5252	100	2.5236	100
2.3232	93	2.3242	99
1.8665	30	1.8676	30
1.7776	9	1.7780	1
1.5815	18	1.5822	10
1.5054	23	1.5060	20
1.4177	17	1.4178	10
1.4094	22	1.4101	15
1.3774	19	1.3753	14
1.3036	11	1.3046	5
1.2651	12	1.2656	6
1.2619	11	1.2619	5
1.1699	9	1.1698	4

II.23. $Cu(urea)(H_2DAH)[C_6(COO)_4(COOH)_2] \cdot 3H_2O$

Der Zersetzungsrückstand ist CuO (Tenorit)

Zersetzungs	rückstand	PDF- Kartei	Nr. 72-0629
d-Wert (Å)	I (%)	d-Wert (Å)	I (%)
2.7515	9	2.7499	7
2.5254	95	2.5226	96
2.3224	100	2.3217	100
1.8663	31	1.8663	28
1.7119	10	1.7113	10
1.5814	15	1.5799	14
1.5053	24	1.5050	19
1.4181	15	1.4173	14
1.4094	19	1.4089	14
1.3766	16	1.3749	16
1.3040	8	1.3031	6
1.2651	7	1.2644	5
1.2619	7	1.2613	8

III. Vergleich der Pulverdiffraktogramme

Vergleich der Pulverdiffraktogramme beim De- und Rehydratisieren des Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

Die Probe wurde bis zum Trihydrat entwässert und anschließend wieder rehydratisiert.

Pulverdiffraktogramm des Cu_{1.5}(H₂DAH)_{0.5}[C₆H₂(COO)₄]·5H₂O

d-Wert (Å)	2 Theta (°)*	I (%)	d-Wert (Å)	2 Theta $(^{\circ})^{*}$	I (%)
10.8641	8.132	100	3.0631	29.129	6
10.3860	8.507	62	2.9732	30.031	7
8.3753	10.554	20	2.8429	31.441	6
6.8757	12.865	31	2.7597	32.414	11
6.5155	13.579	6	2.7079	33.052	5
5.6372	15.707	4	2.6786	33.425	4
5.1071	17.350	33	2.6204	34.190	6
4.7530	18.653	14	2.5141	35.683	4
4.6972	18.877	12	2.5728	34.843	6
4.3554	20.373	7	2.4319	36.932	4
4.1794	21.241	10	2.4131	37.230	4
4.0438	21.962	12	2.2902	39.308	6
3.8689	22.968	22	2.2205	40.595	4
3.6430	24.414	16	2.1701	41.580	4
3.6127	24.622	30	2.1406	42.182	4
3.4421	25.862	9	2.0891	43.274	3
3.2687	27.260	4	2.0512	44.114	6
3.2096	27.772	11	2.0066	45.148	6
3.1534	28.277	3	1.9700	46.035	5
			1.8731	48.564	4

Pulverdiffraktogramm der bis zum Trihydrat dehydratisierten Probe

d-Wert (Å)	2 Theta (°)*	I (%)	d-Wert (Å)	2 Theta (°)*	I (%)
10.9930	8.036	100	3.8705	22.958	5
10.3860	8.507	10	3.6421	24.420	11
9.3797	9.421	60	3.2239	27.647	9
6.7822	13.043	21	3.1053	28.725	8
5.7296	15.452	5	3.0740	29.024	7
5.1067	17.351	8	2.9821	29.939	7
4.6673	18.999	13	2.7800	32.172	6
4.1619	21.331	28	2.6021	34.438	5
			2.0021	45.254	4

Pulverdiffraktogramm	der	rehydra	atisierten	Probe

d-Wert (Å)	2 Theta $(^{\circ})^{*}$	I (%)	d-Wert (Å)	2 Theta $(^{\circ})^{*}$	I (%)
10.8779	8.121	100	2.9729	30.033	8
10.3940	8.500	68	2.8466	31.400	8
8.3674	10.564	24	2.7605	32.405	11
6.8706	12.874	33	2.6790	33.420	5
6.5237	13.562	9	2.6200	34.195	9
5.6389	15.702	5	2.5693	34.891	6
5.1841	17.090	19	2.5536	35.113	7
5.1024	17.366	45	2.5169	35.642	5
4.7733	18.573	15	2.4325	36.922	6
4.7173	18.796	15	2.4110	37.264	5
4.3626	20.339	7	2.2884	39.340	6
4.1826	21.224	11	2.2318	40.380	8
4.0473	21.943	18	2.2085	40.825	7
3.8709	22.956	25	2.1933	41.121	7
3.6731	24.210	46	2.1696	41.590	6
3.6186	24.581	35	2.1411	42.170	6
3.4419	25.864	9	2.0891	43.272	5
3.2756	27.202	7	2.0513	44.111	7
3.2101	27.768	11	2.0053	45.178	7
3.1509	28.300	7	1.9703	46.027	8
3.0641	29.119	7	1.8746	48.523	6

^{*} CuK_{α} -Strahlung

Vergleich der Pulverdiffraktogramme beim Austausch der Gastmoleküle im Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

Beim $Cu_2(H_2DAH)_{0.5}(OH)[C_6H_2(COO)_4]\cdot 3H_2O$ wurde versucht die 1,6-Hexyldiammoniumkationen gegen Ethanolmoleküle und Li⁺-Kationen auszutauschen.

Pulverdiffraktogramm des Cu₂(H₂DAH)_{0.5}(OH)[C₆H₂(COO)₄]·3H₂O

h	k	1	d-Wert (Å)	2 Theta (°)*	I (%)	h	k	1	d-Wert (Å)	2 Theta (°)*	I (%)
1	0	0	11.1236	7.941	94	-3	1	2	3.5529	25.042	9
0	1	0	10.5842	8.347	100	0	3	0	3.5277	25.224	13
1	1	0	7.6678	11.531	22	1	3	0	3.3635	26.477	6
2	0	0	5.5568	15.936	9	-1	3	2	3.1750	28.081	3
0	2	0	5.2966	16.724	6	-1	1	5	3.0360	29.395	6
-2	1	2	4.6906	18.904	41	2	0	4	2.7955	31.989	5
2	2	0	3.8369	23.163	10	-1	3	4	2.6298	34.064	5
-3	0	2	3.7688	23.587	13	-1	1	6	2.5535	35.115	6
-1	2	3	3.7092	23.971	8	-2	3	4	2.5337	35.398	7
-2	0	4	3.6427	24.416	6	3	1	4	2.2922	39.272	5
						-2	4	4	2.1415	42.162	5

Pulverdiffraktogramm der Probe nach dem versuchten Austausch der Gastmoleküle

d-Wert (Å)	2 Theta (°)*	I (%)	d-Wert (Å)	2 Theta $(^{\circ})^{*}$	I (%)
11.3418	7.788	100	3.5761	24.878	14
10.7087	8.250	92	3.5346	25.175	11
7.7542	11.402	20	3.3536	26.557	2
5.6271	15.735	8	3.1804	28.032	8
5.2841	16.764	16	3.0549	29.209	6
4.7170	18.797	28	2.8028	31.903	12
3.8475	23.098	12	2.6234	34.149	8
3.7994	23.394	12	2.5830	34.700	6
3.7409	23.765	10	2.5429	35.265	5
3.6402	24.433	5	2.2987	39.156	4
			2.1413	42.164	6

* CuK_α-Strahlung

IV. R-Werte

Die R-Werte (Residual-Werte) sind ein Maß für die Güte eines Strukturmodells und dienen der Übereinstimmung zwischen F_o und F_c . Die in dieser Arbeit angegeben R-Werte sind wie folgt definiert:

$$\mathsf{R} = \frac{\sum \Delta_1}{\sum \left| \mathsf{F}_{\mathsf{o}} \right|}$$

$$w\mathsf{R}_{2} = \sqrt{\frac{\sum w(\Delta_{2})^{2}}{\sum w(|\mathsf{F}_{o}|^{2})^{2}}}$$

Ein anderes Qualitätsmerkmal ist der Goodness-of-Fit Wert (S):

$$S = \sqrt{\frac{\sum w(\Delta_2)^2}{m - n}}$$

$$\Delta_1$$
- $\left\| \mathsf{F}_{\mathsf{o}} \right\| - \left\| \mathsf{F}_{\mathsf{c}} \right\|$

 Δ_2 - $\left|\left|\mathsf{F}_{\mathsf{o}}\right|^2 - \left|\mathsf{F}_{\mathsf{c}}\right|^2\right|$

- F_o beobachteter Strukturfaktor
- F_c berechneter Strukturfaktor
- *w* Gewichtungsfaktor (ist bei jeder Verbindung in der Tabelle "Die wichtigsten kristallographischen Daten" angegeben)
- m Zahl der Reflexe
- n Zahl der Parameter

V. Apparaturen

Röntgenstrukturanalyse

Röntgenbeugungsintensitäten wurden an einem Siemens P4 Vierkreisdiffraktometer (MoK α , Graphitmonochromator) in ω -Abtastung gemessen. Die Strukturlösung erfolgte durch Direkte Methoden (SHELX-Programmsystem [95]). In den meisten Fällen wurde eine numerische Absorptionskorrektur durchgeführt. Die Zeichnungen erfolgten unter Anwendung der Programme ATOMS [96], ORTEP-III [97], GRETEP [98] und RASMOL [99]. Die Ermittlung der Ausgleichsebenen von Molekülen erfolgte mit dem Programm XP [100]. Abstände und Winkel von Wasserstoffbrückenbindungen wurden mit dem Programm PLATON [101] ermittelt.

Pulverdiffraktometrie

Pulverdiffraktogramme wurden an einem Siemens X-Ray Diffraktometer D5000 (CuK α , Germanium-Primärmonochromator) und an einem Seifert Diffraktometer HZG4 (FeK α , Mn-Filter) gemessen Der Meßbereich lag in der Regel zwischen 3° und 90° (20).

Elementaranalyse

Die Kohlenstoff-, Stickstoff- und Wasserstoffanalysen wurden an einem CHNS Automat 932 der Firma LECO Corporation St. Joseph MI USA, sowie an einem CHNS Automat Vario EL III der Firma Elementar Analysensystem GmbH durchgeführt.

Thermographische Analyse

Die thermoanalytischen Untersuchungen wurden an einer STA 429 der Firma Netzsch an Luft durchgeführt.

IR-Spektroskopie

IR-Spektren (ATR-Technik) wurden an einem FTS 25 der Firma Bio-rad aufgenommen.

Magnetische Messung

Die magnetischen Messungen erfolgten nach der *Gouy*-Methode (H = 5000Gs) an einem Magnetic Property Measurement System (MPMS2) der Firma Quantum Design, San Diego USA.

Flammenphotometrie

Die flammenphotometrische Bestimmung des Lithiumanteils wurde an einem Flammenphotometer Janeway PHP7 vorgenommen. Diese Arbeit entstand im Zeitraum von Oktober 1998 bis Februar 2003 am Institut für Anorganische und Analytische Chemie der Universität Jena unter Leitung von Prof. Dr. Christian Robl.

Meinen verehrten Mentor danke ich für die Überlassung dieses interessanten Themas, der wertvollen Anregung und die stete Bereitschaft zur Diskussion.

Ferner möchte ich mich bei Frau Dipl. Ing. Apfel für die Anfertigung von Pulverdiffraktogrammen und den thermographischen Untersuchungen, bei Frau Schönfeld und Frau Lendvogt für die Elementaranalysen, bei Frau Schneider und Frau Sentis für die Aufnahme von IR-Spektren, bei Frau Felbel und Herrn Dipl. Chem. Leibeling für die Durchführung von magnetischen Messungen bedanken, sowie Herrn Dr. Liffka für die flammenphotometrische Untersuchung

Desweiteren bedanke ich mich bei Frl. Erdmann und Frl. Weber, sowie bei Herrn Schubert, die im Rahmen des Fortgeschrittenen-Praktikums zum Gelingen dieser Arbeit beitrugen.

Ganz besonders danke ich Frl. Cindy Münzenberg, die mich durch Ihren unermüdlichen Fleiß, als wiss. Hilfskraft, in meiner Arbeit hervorragend unterstützte.

Außerdem gilt meinen Dank allen Mitarbeiter der Arbeitsgruppe für die Hilfsbereitschaft und dem hervorragendem Arbeitsklima.

Lebenslauf

Name:	Roberto Köferstein	
Geburtstag:	16.08.1973	
Geburtsort:	Friedrichroda	
Familienstand:	ledig	
Schulbildung:		
1980-1990	Polytechnische Oberschule in Gotha	
1990-1992	Arnoldi-Gymnasium in Gotha	
1992-1993	Wehrdienst	
Hochschulstudium:	Chemie - Diplom	
1993-1998	Friedrich-Schiller-Universität Jena	
September 1997	Diplom - Hauptprüfung	
Dez. 1997- August 1998	Diplomarbeit am Institut für Anorganische und Analytische Chemie der FSU Jena	
seit Okt. 1998	Promotion am Institut für Anorganische und Analytische Chemie der FSU Jena unter Leitung von Prof. Dr. Ch. Robl	

Roberto Köferstein

Selbständigkeitserklärung

Ich erkläre, daß ich die vorliegende Arbeit selbständig und unter Verwendung der angegebenen Hilfsmittel, persönlichen Mitteilungen und Quellen angefertigt habe

Jena, den

.....

Roberto Köferstein