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Abstract

More than a decade of investigations on the use of the interferometric ERS-1/2 tandem
coherence for forest applications have increased the understanding of the behaviour of
C-band repeat-pass coherence over forested terrain. It has been shown that under
optimal imaging conditions, ERS-1/2 tandem coherence can be used for forest stem
volume retrieval with accuracies in the range of ground surveys (Santoro et al. 2002).
Large-area applications of ERS-1/2 tandem coherence are rare though. One of the main
limitations concerning large-area exploitation of the existing ERS-1/2 tandem archives
for forest stem volume retrieval is related to the considerable dependence of repeat-pass
coherence upon the meteorological (rain, temperature, wind speed) and environmental
(soil moisture variations, snow metamorphism) acquisition conditions. Conventional
retrieval algorithms require accurate forest inventory data for a dense grid of forest sites
to tune models that relate coherence to stem volume to the local conditions. Accurate
forest inventory data is, however, a rare commodity that is often not freely available.

In this thesis, a fully automated algorithm was developed, based on a synergetic use of
the MODIS Vegetation Continuous Field product (Hansen et al., 2002), that allowed the
training of the Interferometric Water Cloud Model IWCM (Askne et al., 1997) without
further need for forest inventory data. The algorithm was developed using forest
inventory data for five test sites in Central Siberia and three test sites in Northeast China
for which a multi-temporal and multi-baseline ERS-1/2 tandem dataset was available.
With the new algorithm it was possible to train the IWCM on a frame-by-frame basis
and thus to account for the spatial and temporal variability of the meteorological and
environmental acquisition conditions.

Limitations concerning the exploitation of the existing ERS-1/2 tandem archives were
related to the influence of topography on the interferometric coherence measurements,
forest structural diversity and the early saturation of coherence with increasing forest
stem volume in case of tandem pairs that were acquired under unstable imaging
conditions. When rain or freeze/thaw occurred in the timeframe of the tandem
acquisitions, only a few low stem volume classes could be distinguished with sufficient
accuracy.

The new algorithm was applied to a multi-seasonal ERS-1/2 tandem dataset covering
Northeast China that was acquired between 1995 and 1998 with baselines up to 400 m.
m. Because of the early saturation of coherence in case of unstable imaging conditions,
only a few low stem volume classes could be classified. Due to the lack of reliable
ground data for Northeast China, the produced map could not be validated. A first
assessment of the accuracy of the approach for the Central Siberian test sites, however,
indicated its potential for large-area forest mapping, at least for forest/non-forest
discrimination..
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Zusammenfassung

Der beschleunigte 6konomische Wandel der letzten Jahrzehnte und das immense
Bevolkerungswachstum haben den Holzbedarf Chinas in die Hohe schnellen lassen. Die
Konsequenz dieser Entwicklung war eine libermiBige Abholzung der chinesischen
Wailder. Besonders deutlich sind die Folgen der Abholzung in der Manchurei, der
wichtigsten Waldregion im Nordosten Chinas, zu erkennen. Die Waldfliche hat
erheblich abgenommen und der durchschnittliche Holzvorrat pro Fliche bewegt sich auf
sehr niedrigem Niveau (Li et al., 2004; Liu, 2005). Der chinesische Holzbedarf kann
nicht mehr aus den eigenen Waldbestinden gedeckt werden, weshalb grof3e Mengen an
Holz importiert werden miissen. Weitere Konsequenzen der Abholzung sind verstérkte
Erosion, Desertifikation sowie Uberschwemmungen. Erst spit stellte sich die Politik
den 6konomischen und 6kologischen Folgen der iibermadBigen Abholzung der Wilder.
Dem Riickgang der Waldressourcen wurde versucht durch groBangelegte
Aufforstungsmallnahmen entgegenzuwirken. Der Erfolg dieser Aufforstungs-
mafBnahmen war jedoch bescheiden. Die Wachstumsraten der aufgeforsteten Wélder
liegen bis heute deutlich unter den erwarteten Wachstumsraten. Griinde hierfiir sind vor
allem in der Beschrinkung auf wenige schnell wachsende Baumarten zu finden, die
besonders anfillig fiir Krankheiten und Insektenbefall sind (Thomas et al., 2007).

Insgesamt sind die Waldressourcen Chinas nur unzureichend erfasst. Existierende
Erhebungen der Waldfldche und des Holzvorrats widersprechen sich deutlich (Bull &
Nilsson, 2004). Eine Moglichkeit, Informationen iiber die Verdnderungen und den
Zustand der Wilder Chinas zu erlangen ist die Fernerkundung. Im Gegensatz zur
gingigen Forstinventur, die zeitaufwendig und kostspielig ist, konnen mithilfe von
Fernerkundungssensoren in kurzen Zeitabstainden Walder groB3flachig kartiert werden.
Eine Technik, die immer wieder diskutiert, bislang aber kaum groBfldchig eingesetzt
wurde, ist die der Radarinterferometrie. Obwohl urspriinglich entwickelt fiir die
Erstellung Digitaler Gelindemodelle (Graham, 1974; Goldstein & Zebker, 1987), stellt
die Radarinterferometrie eine interessante Technik fiir die Waldkartierung dar. Die
Radarinterferometrie basiert auf der kohdrenten arbeitsweise von sogenannten
Syntetischen Apertur Radarsystemen (SAR), die Mikrowellen im Wellenldngenbereich
von 1 mm bis 1 m senkrecht zur Bewegungsrichtung der Plattform, d.h. des Flugzeugs
oder Satelliten, aussenden und das auf der Erdoberflache reflektierte Signal empfangen.
Die Phase des empfangenen Signals ist eine Funktion des Abstands des Sensors zum
reflektierenden Objekt. Die Intensitdt des empfangenen Signals gibt Auskunft iiber die
geometrischen und dielektrischen Eigenschaften des reflektierenden Objekts. Mithilfe
zweier Phasenmessungen aus leicht unterschiedlichen Perspektiven ist es moglich,
Interferogramme zu erstellen. Interferogramme ermoglichen die Berechnung Digitaler
Geldandemodelle. Die interferometrische Technik erfuhr einen bedeutenden
Entwicklungsschub mit dem Start der ersten europdischen SAR Missionen ERS-1 und
ERS-2. Der ERS-1 Satellit mit einem SAR Sensor an Bord, der mit Mirowellen von ~5
cm  Wellenlinge (dem sogenannten C-Band) arbeitete, wurde 1991 in die
Erdumlaufbahn gebracht. Ein zweiter baugleicher Sensor folgte 1995 mit dem ERS-2
Satelliten. Von 1995 bis 2000 erfassten beide Sensoren den selben Erdausschnitt mit
einem Tag Zeitabstand (im sogenannten Tandemmodus). Die Tandem Mission endete
mit dem Ausfall von ERS-1 im Jahr 2000. Die Nutzbarkeit von Interferogrammen fiir
die Berechnung Digitaler Geldndemodelle setzt voraus, dass sich die
Aufnahmebedingungen auf der Erdoberfliche zwischen den beiden SAR Messungen,
die zur Berechnung des Interferogramms verwendet werden, nicht oder nur geringfiigig
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dndern. Ein Mal fiir die Stabilitdit der Aufnahmebedingungen, und somit fiir die
Qualitdt der topographischen Information in einem Interferogramm, ist die
interferometrische Kohdrenz. Eine bedeutende Erkenntnis fiir die Anwendung der
Radarinterferometrie zur Kartierung der Erdoberfldche war, dass die Kohdrenz fiir SAR
Messungen, die mit einem gewissen zeitlichen Abstand aufgenommen wurden, vom
Landoberfldchentyp abhidngt (Wegmiiller & Werner, 1995; Dammert et al., 1999;
Strozzi et al., 2000; Weydahl, 2000; Engdahl & Hyyppi, 2003; Srivastava et al., 2001,
2006). Insbesondere dichte Wélder zeigen in Kohérenzbildern fiir ERS-1/2 Bildpaare
eine niedrige Kohdrenz wohingegen vegetationsfreie Fldchen in der Regel eine deutlich
hohere Kohérenz aufweisen. Die niedrigere Kohérenz iiber dichten Waldern erklart sich
im Wesentlichen aus den stindigen windbedingten Bewegungen der Aste in den oberen
Schichten der Baumkronen, welche im Wellenldngenbereich von 5 cm fiir den Grossteil
der Riickstreuung des Radarsignals zum Sensor verantwortlich sind (Chauhan et al.,
1991). Die Bewegungen bedeuten eine stindige Verdnderung der Riickstreugeometrie
(Zebker & Villasenor, 1992; Narayanan et al., 1992, 1994). Zusitzlich senkt die
Volumendekorrelation das Kohédrenzniveau iiber Wald. Dieser Effekt hingt vom
rdumlichen Abstand der Sensoren, der sogenannten Basislinie, bei der Messung iiber
demselben Erdausschnitt ab. Es gilt, je groBer die Basislinie, desto mehr tragt
Volumendekorrelation zum Kohédrenzkontrast zwischen vegetationsfreien und dicht
bewaldeten Gebieten bei. Solange die Aufnahmebedingungen am Boden stabil sind —
Verdnderungen werden hier vor allem durch Bodenfeuchtevariationen, Regen und
Anderungen in den Schneeeigenschaften bewirkt — zeigen Kohirenzbilder einen
deutlichen Kontrast zwischen Wald und vegetationsfreien Flachen. Fiir die Kohédrenz
eines Bildpunktes bedeutet dies, dass die Kohédrenz abnimmt, je dichter der Wald ist, da
mit zunehmender Waldbedeckung gréflere Anteile der Riickstreuung zum Sensor von
den Baumkronen und geringere Anteile von der Bodenoberfliche kommen.
Untersuchungen konnten zeigen, dass der Riickgang der ERS-1/2 Tandem Kohérenz mit
der Dichte des Waldes zur Kartierung biophysikalischer Forstparameter genutzt werden
kann (Hyyppa et al., 2000; Manninen et al., 2000; Koskinen et al., 2001; Fransson et al.,
2001; Santoro et al., 2002, 2005, 2007; Askne et al., 2003; Pulliainen et al., 2003;
Wagner et al., 2003; Engdahl et al., 2004; Askne & Santoro, 2005; Drezet & Quegan,
2006, 2007). Besonders erfolgreich waren dabei Ansétze, die die ERS-1/2 Tandem
Kohirenz zur Bestimmung des Stammvolumens borealer Wilder nutzten. Hier wurden
mitunter Genauigkeiten im Bereich von Vorort-Messungen erreicht (Santoro et al.,
2002).

Obwohl das Verstdndnis des Zusammenhangs von Kohédrenz und biophysikalischen
Forstparametern seit dem Beginn der ERS-1/2 Tandem Mission stetig zugenommen hat
und Modelle entwickelt wurden (Askne et al., 1997; Koskinen et al., 2001; Treuhaft et
al., 1996; Papathanassiou & Cloude, 2001), die es erlauben die Kohirenz mit
biophysikalischen Forstparametern und den jeweiligen Aufnahmebedingungen in
Verbindung zu setzen, sind grossflachige Anwendungen dieser Technik bisher selten.
Eine wesentliche Ursache hierfiir ist, dass die Kohdrenz sowohl iiber Wald als auch {iber
vegetationsfreien Flachen stark von den Aufnahmebedingungen (z.B. Temperatur,
Windgeschwindigkeit, Niederschlag, Bodenfeuchtevariationen, Schneeeigenschaften)
abhingt und sich diese Abhangigkeiten nicht einfach vorhersagen lassen, z.B. mittels
meteorologischen Messungen im Zeitraum der Radarmessungen (Drezet & Quegan,
2006). Die Folge ist, dass Modelle, die die Kohdrenz zu den biophysikalischen
Forstparametern in Verbindung setzen, an die jeweiligen Aufnahmebedingungen
angepasst werden miissen. Hierzu sind Forstinventurdaten nétig. Diese sind jedoch
schwer zugdnglich und héufig nur fiir kleinere Testgebiete verfiigbar.
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Das ERS-1/2 Datenarchiv der Europdischen Raumfahrtagentur ESA umfasst eine grofe
Menge an Daten, die von grolem Interesse fiir die Erstellung grofflachiger Karten der
Wilder fiir die neunziger Jahre sind. Von besonderem Interesse, insbesondere im
Kontext des globalen Klimawandels, sind dabei das Stammvolumen und die Biomasse
der Wilder, da im Holz der Bdume erhebliche Mengen an Kohlenstoff gespeichert sind.
Um die ERS Daten fiir die Forstkartierung nutzbar zu machen, sind jedoch neue
Ansdtze vonnoten, die es erlauben, Modelle, die die Kohdrenz mit den
biophysikalischen Forstparametern in Verbindung setzen, unabhdngig von
Forstinventurdaten an die lokalen Aufnahmebedingungen anzupassen. Die Entwicklung
einer solchen Methodik, am Beispiel Nordostchinas, war das Hauptziel der hier
vorgestellten Arbeit. Ein ERS-1/2 Datensatz bestehend aus 223 ERS-1/2 Tandem-
Bildpaaren stand hierzu zur Verfiigung. Die Tandempaare wurden zwischen 1995 und
1998 in allen Jahreszeiten {iber Nordostchina aufgenommen. Fiir die
Algorithmenentwicklung standen jedoch nur begrenzt Forstinventurdaten fiir drei
kleinere Testgebiete zur Verfiigung weshalb ein weiterer multisaisonaler ERS-1/2
Datensatz fiir mehrere Testgebiete in Zentralsibirien, bestehend aus acht Tandempaaren,
hinzugezogen wurde. Fiir diese Testgebiete konnte auf eine umfassende
Forstinventurdatenbank zuriickgegriffen werden.

Der Vergleich der Kohdrenzwerte mit den Stammvolumenangaben in den Sibirischen
Inventurdaten zeigte deutlich die Abhingigkeit der ERS-1/2 Tandem Kohirenz von den
vorherrschenden Aufnahmebedingungen. Ein exponentieller Riickgang der Kohérenz
mit zunehmendem Stammvolumen konnte flir jedes der Tandempaare beobachtet
werden. Deutliche Unterschiede im Zusammenhang von Kohérenz und Stammvolumen
zeigten sich insbesondere zwischen den Tandempaaren, die im Winter unter gefrorenen
Bedingen aufgenommen wurden, und denen, die im Frithjahr und Herbst unter
ungefrorenen Bedingungen aufgenommen wurden. Die Winterszenen waren durch eine
hohe Kohédrenz iiber vegetationsfreien Flidchen, einen ausgepréigten Kontrast zwischen
dichtem Wald und vegetationsfreien Flichen und eine hohe Korrelation von Kohérenz
und Stammvolumen gekennzeichnet. Die Kohérenz zeigte eine deutliche Abhingigkeit
vom Stammvolumen bis zu Stammvolumina von mindestens 200 m*/ha. Die Kohérenz
iiber vegetationsfreien Flachen zeigte leichte Unterschiede zwischen den Tandempaaren
aufgrund unterschiedlicher Schneeeigenschaften. Die Kohérenz iiber dichtem Wald hing
von den Windgeschwindigkeiten und der Lange der Basislinie ab. Die Kohérenz im Fall
der Tandempaare, die im Friihjahr und Herbst unter ungefrorenen Bedingungen
aufgenommen wurden, zeigte deutlich niedrigere Werte {iber vegetationsfreien Fldchen
und eine friihe Sittigung mit zunehmendem Stammvolumen bei etwa 100 m’/ha. Dies
war eine Konsequenz der insgesamt deutlich instabileren Aufnahmebedingungen. Der
Aufnahme mehrerer der fiinf Tandempaare gingen Regenfille voraus, welche das
Kohirenzniveau iiber vegetationsfreien sowie dicht bewaldeten Flichen absenkten.
Lediglich eines der fiinf Kohédrenzbilder, die unter ungefrorenen Bedingungen
aufgenommen wurden, zeigte eine hohe Kohirenz tiber vegetationsfreien Flichen und
keine Séttigung mit zunehmendem Stammvolumen unterhalb von 200 m>/ha.

Im Fall der drei chinesischen Testgebiete waren lediglich Tandempaare verfligbar, die
unter gefrorenen Bedingungen aufgenommen wurden. Im Gegensatz zu den Tandem-
paaren fiir die sibirischen Testgebiete konnte fast keine Korrelation von Stammvolumen
und Kohérenz festgestellt werden. Eine geringe Genauigkeit der Inventurdaten diirfte
der Hauptgrund fiir die niedrige Korrelation gewesen sein. Ein weiterer Grund fiir die
niedrige Korrelation konnte jedoch die Struktur der Wélder Nordostchinas gewesen
sein. Im Fall der sibirischen Testgebiete wurde beobachtet, dass die Korrelation von
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Stammvolumen und Kohérenz fiir Bestinde mit niedrigem Bestockungsgrad niedriger
ausfiel als fiir Bestdinde mit hohem Bestockungsgrad (Santoro et al., 2007). Der
Bestockungsgrad bezeichnet das Verhiltnis von gemessener und einer erwarteten
,optimalen’ Bestandsgrundfliche (Pretzsch, 2002). Bestinde mit niedrigem
Bestockungsgrad sind bei gegebenem Stammvolumen durch eine niedrigere
Baumdichte und eine heterogenere Bestandsstruktur gekennzeichnet. Angaben iiber den
Bestockungsgrad waren lediglich fiir die sibirischen Testgebiete verfligbar. Mittels
allometrischer Betrachtungen konnte jedoch fiir die chinesischen Testgebiete gezeigt
werden, dass die Wilder Nordostchinas infolge der iiberméfigen Abholzung im Schnitt
einen niedrigeren Bestockungsgrad aufweisen als die Wélder in den sibirischen
Testgebieten, sodass die niedrige Korrelation von Kohirenz und Stammvolumen,
zumindest teilweise, auch darauf zuriickzufiihren sein kénnte.

Insgesamt bestitigte der Vergleich von Kohdrenz und Stammvolumen fiir die
Testgebiete die Erwartung, dass ein Algorithmus, der auf die groBfldchige Bestimmung
des Stammvolumens mittels ERS-1/2 Tandem Kohérenz abzielt, die Abhéngigkeit der
Kohérenz von den Aufnahmebedingungen beriicksichtigen muss. Wie bereits erwihnt,
existieren mehrere Modelle, die es erlauben die Kohirenz als Funktion des
Stammvolumens zu modellieren. Ein semiempirisches Modell, das erfolgreich fiir die
Bestimmung des Stammvolumens borealer Wilder mittles ERS-1/2 Tandem Kohérenz
getestet wurde, ist das ‘Interferometric Water Cloud Modell”’ IWCM (Askne et al.,
1997). Das Modell beruht auf der ‘Radiative Transfer’ Theorie und modelliert die
Kohirenz tiber Wald als Summe der Kohérenzbeitrage von Waldboden und Baumkrone.
Die von der Basislinie und Baumhdhe abhéngige Volumendekorrelation wird ebenfalls
beriicksichtigt. Die Beitrdge der Kohdrenz des Waldbodens und der Baumkrone zur
gemessenen Kohirenz werden durch die Transmissvitdt der Baumkronen bestimmt. Die
Transmissivitdt kann laut Pulliainen et al. (1994) als Funktion des Stammvolumens
modelliert werden und hidngt im Wesentlichen von den Liicken in der Baumkrone,
durch die das Radarsignal ungehindert zum Boden vordringen kann, ab (Askne et al.,
1995). Eine relativ kleine Rolle spielt hingegen die Transmissvitit der Bdume, da das
kurzwellige C-Band Signal kaum in Baumkronen eindringen kann. Das IWCM umfasst
finf zu bestimmende Parameter. Diese Parameter werden {iblicherweise mittels
Regression fiir Testgebiete mit vorhandenen Stammvolumenangaben bestimmt. Zwei
der Parameter, . und .., kennzeichnen die Kohérenz des Waldbodens und der
komplett geschlossenen Baumkrone. Die Parameter aog, und Uoveg geben die
Riickstreuintensitit ~ von ~ Waldboden @ und  Baumkrone an und  der
Transmissivititskoeffizient £ wird benotigt, um die Transmissvitit mit dem
Stammvolumen in Verbindung zu setzen.

Fiir die Bestimmung der Parameter wurde der Zusammenhang von Kohirenz und den
Kronenbedeckungsangaben im optischen Fernerkundungsprodukt ,MODIS Vegetation
Continuous Field” VCF (Hansen et al., 2003) analysiert. VCF liefert globale
Schitzungen der Kronenbedeckung mit einer Pixelgrofe von 500x500 m”. Zum
Zeitpunkt der Untersuchung stand VCF nur fiir das Jahr 2001 zur Verfiigung.
Mittlerweile (Jahr 2009) ist VCF fiir die Jahre 2000 bis 2005 verfiigbar. Trotz der
unterschiedlichen Pixelgrofle (die geokodierten ERS Daten hatten eine Pixelgrofle von
50x50 m?) zeigte der Vergleich von Kohirenz und den Kronenbedeckungsangaben in
VCF eine deutliche Korrelation. Der beobachtete enge Zusammenhang von ERS-1/2
Tandem Kohérenz und VCF deutete an, dass es mithilfe des VCF Produkts mdglich sein
sollte, die rdumliche und zeitliche Variabilitit der Kohidrenz zu beschreiben, d.h. die
unbekannten Parameter des IWCM zu bestimmen. Grundgedanke der synergetischen
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Nutzung des VCF Produkts war, mittels einfacher Schwellwerte fiir den VCF
Kronenbedeckungsgrad in den ERS-1/2 Tandem Kohédrenz- und Intensitdtsbildern
offene und dicht bewaldete Gebiete zu identifizieren und mittels einfacher statistischer
Malle der Zentraltendenz (der Modus erwies sich als optimal) die Parameter yg,, Yyeg, aog,

0 .
und ¢\, abzuleiten.

Beziiglich der Schitzung der Parameter y,, und crog, war die grundlegende Annahme der
VCF-basierten Parameterschitzung, dass es moglich ist von den iiber offenem Geldnde
gemessenen Kohdrenzen und Intensititen auf die Kohédrenz und Intensitét zu schlief3en,
die iber Waldboden gemessen wiirde (wire dieser nicht von Bdumen verdeckt). Im Fall
der Parameter y,., und croveg war die Grundannahme, dass es moglich ist von den iiber
dichtem Wald gemessenen Kohdrenzen und Intensititen auf die Kohdrenz- und
Riickstreueigenschaften von komplett undurchldssigen Baumkronen zu schlielen. Die
iber (laut VCF) dichtem Wald gemessenen Kohédrenzen und Riickstreuintensititen
spiegeln eine unvollstindige Kronenbedeckung wieder, d.h. um die Parameter y,., und
ooveg bestimmen zu konnen, miissen die Boden- und Volumendekorrelationsanteile in
den Kohidrenz- und Intensititsmessungen iiber (laut VCF) dichtem Wald bestimmt
werden. Der Vergleich der Stammvolumenangaben aus der Sibirischen Forstinventur
und den VCF Kronenbedeckungsangaben zeigte, dass Wailder mit maximalem
Kronenschluss in der VCF Karte - der Maximalwert in Sibirien und Nordostchina lag
bei etwa 80 % - ein Stammvolumen von mindestens 200 m’/ha aufweisen. Eine
Sensitivititsanalyse mittels IWCM zeigte, dass fiir Stammvolumenbereiche iiber 200
m’/ha nur geringe Anderungen in den Boden- und Volumendekorrelationsanteilen zu
erwarten sind. Lediglich im Fall sehr langer Basislinien iiber 200 m kdnnen
nennenswerte Variationen der Volumendekorrelation auftreten. Aufgrund der geringen
zu erwartenden Anderungen der Boden- und Volumendekorrelationsanteile fiir
Stammvolumina iiber 200 m>/ha im Fall von Tandempaaren, die mit Basislinien < 200
m aufgenommen wurden, konnten die Parameter y,., und aoveg bestimmt werden, indem
angenommen wurde, dass die iiber Wildern mit maximalem Kronenschluss (laut VCF)
gemessenen Kohidrenzen und Intensititen ein Stammvolumen von mindestens 250
m’/ha widerspiegeln. Lediglich fiir Tandempaare, die mit langen Basislinien deutlich
iber 200 m  aufgenommen  wurden, koOnnten  Angaben iber die
Stammvolumenverteilung in Wildern mit maximalem Kronenschluss in den VCF-
Karten vonnéten sein, um die Modelparameter bestimmen zu konnen. Da keines der
Testgebiete von einem Tandempaar abgedeckt wurde, dass mit langer Basislinie
aufgenommen wurde, war eine Uberpriifung der Bestimmungsgenauigkeit von y,., fir
Tandempaare, die mit langen Basislinien aufgenommen wurden, nicht moglich.

Der Transmissivitdtskoeffizient f konnte nicht mittels VCF bestimmt werden. Die
Bestimmung des Parameters mithilfe der sibirischen ERS-1/2 Tandem- und
Inventurdaten zeigte jedoch, dass der Zusammenhang von Stammvolumen und
Transmissvitdit des Waldes gegenliber den Radarsignalen im Fall stabiler
Aufnahmebedingungen mit hoher Waldbodenkohdrenz nur geringe Variationen
zwischen den Tandempaaren und den verschiedenen Testgebieten aufwies. Im Fall
instabiler Aufnahmebedingungen mit niedriger Waldbodenkohdrenz fiihrte die
Bestimmung von £ allerdings zu physikalisch bedeutungslosen Ergebnissen. Die starke
Streuung der Kohédrenz gegeniiber dem Stammvolumen (wahrscheinlich durch
kleinrdumige Variationen in den Aufnahmebedingungen) und das insgesamt niedrigere
Kohirenzniveau, welches eine groBere Unsicherheit in der Kohdrenzschédtzung nach
sich zieht, konnten die Griinde hierfiir gewesen sein. Ein rein empirisches Modell
(Wagner et al., 2003) konnte im Fall instabiler Aufnahmebedingungen besser an den
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Kohérenz-Stammvolumen Trend angepasst werden als das IWCM. Dieses empirische
Modell wies eine dhnliche Grundstruktur auf wie das IWCM. Es beriicksichtigte jedoch
nicht die moglichen Volumendekorrelationseffekte. Ein fester Wert fiir den Parameter
des empirischen Modells, der (rein mathematisch) dem Transmissivititskoeffizienten
des IWCM entspricht, erlaubte eine, wenn auch grobe, Charakterisierung des generellen
Trends der Kohérenz als Funktion des Stammvolumens.

Die Giiltigkeit der Grundannahmen des VCF-basierten Modelltrainings wurde fiir die
Testgebiete in Sibirien iiberpriift. Als Referenz dienten die Modellparameter, die
mithilfe der Stammvolumenangaben in den Inventurdaten geschétzt wurden. Zuerst
wurde das VCF-basierte Training auf Bild-Basis getestet, d.h. die Parameter wurden
einmal fiir jedes Tandempaar (entspricht einer Fliche von 100x100 km?) bestimmt. Der
Vergleich der VCF- mit den Inventurdaten-basierten Modellparameterschitzungen
ergab ein zwiespiltig Bild. Eine hohe Ubereinstimmung der geschitzen Parameter
wurde fiir Tandempaare erreicht, die unter gefrorenen Bedingungen aufgenommen
wurden. Deutliche Unterschiede zwischen den Schitzungen fiir y,, und aggr mittels VCF
und den Inventurdaten mussten vor allem fiir die Tandempaare, die bei instabilen
Aufnahmebedingungen aufgenommen wurden, festgestellt werden. Die VCF- und
Inventurdaten-basierten Schétzungen fir y,., und aoveg zeigten hingegen eine deutlich
bessere Ubereinstimmung. Die Ubereinstimmung fiir alle Parameter konnte verbessert
werden, indem die VCF-basierte Modellparameterschiatzung auf das Gebiet der
Testgebiete beschrankt wurde. Dies zeigte, dass rdumliche Variationen der
Aufnahmenbedingungen innerhalb eines Kohidrenz- bzw. Intensititsbildes eine
erhebliche Rolle spielten. Diese rdumlichen Variationen waren am deutlichsten
erkennbar fliir Tandempaare, die unter ungefrorenen Bedingungen aufgenommen
wurden. Doch auch unter gefrorenen Bedingungen konnten leichte rdumliche
Variationen festgestellt werden. Die insgesamt gute Anpassung der Modelle an die
Messungen iliber den Testgebieten bestétigte weitestgehend die Grundannahmen des
VCF-basierten Modelltrainings. Lediglich im Fall des Parameters aog, schien die
Annahme, dass es moglich ist von den Intensitdtsmessungen iiber vegetationsfreien
Flachen auf die Waldbodenintensitdt zu schlieen, nicht immer erfiillt zu sein. Unter
ungefrorenen Bedingungen wurde aog, in mehreren Féllen deutlich tiberschitzt. Dies
deutete auf ein hoheres Bodenfeuchteniveau iiber vegetationsfreien Fldchen im
Vergleich zu Waldboden hin. Da dies vor allem unter feuchten Bedingungen nach
Regenfillen zu beobachten war, konnte eine Erklarung hierfiir sein, dass
Evapotransporation und Interzeption systematische Bodenfeuchteunterschiede zwischen
Waldboden und vegetationsfreien Flachen verursacht haben.

Ein weiteres Kapitel beschiftigte sich mit dem Einfluss der Topographie auf die ERS-
1/2 Tandem Kohirenz. Es ist bekannt, dass topographische Effekte in Kohdrenzbildern
die Information iiber die Waldbedeckung erheblich stéren konnen (Castel et al., 2000).
Der topographiebedingte Kohirenzverlust hat mehrere Ursachen. Ein Grund liegt in der
Frequenzverschiebung, die die Radarsignale mit der Reflektion an der Erdoberfldche
erfahren. Da diese Frequenzverschiebung vom Einfallswinkel der Radarwellen abhéngt,
erfahren die Radarmessungen aus leicht unterschiedlichen Perspektiven, d.h. mit einer
gewissen Basislinie, eine unterschiedliche Frequenzverschiebung (Gatelli et al., 1994).
Diese relative Frequenzverschiebung hingt nicht nur von der Basislinie, sondern auch
von der lokalen Hangneigung ab. Die nicht iibereinstimmenden Anteile der
Frequenzbénder beider fiir die Generierung des Interferogramms genutzten SAR Bilder
fiihren zu einem Verlust an Kohdrenz. Eine die Bandbreite der Signale iiberschreitende
relative Frequenzverschiebung fiithrt zu einem kompletten Verlust der Kohirenz.
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Solange die relative Frequenzverschiebung die Bandbreite der Signale nicht
iiberschreitet, kann die Kohdrenz durch eine Entfernung der nicht iibereinstimmenden
Anteile der Frequenzbinder wiederhergestellt werden. Dieser sogenannte ,commonband
filter’ (Gatelli et al., 1994) muss jedoch ohne exakte Informationen iiber die lokale
Topographie eine Frequenzverschiebung annehmen, die der iiber flachem Untergrund
entspricht. Uber Gebirge fiihrt dies dazu, dass nicht iibereinstimmende Anteile der
Frequenzbédnder in den Daten verbleiben und somit die Kohérenz nicht vollstindig
wiederhergestellt wird. Dieser Effekt zeigte sich deutlich in den ERS-1/2 Tandem
Kohirenzbildern, die liber den Gebirgsregionen Nordostchinas aufgenommen wurden.
Besonders stark fiel der Verlust der Kohédrenz iiber Hiangen aus, die zum Sensor hin
geneigt waren. Auf sensorabgewandeten Héngen blieb die Kohérenz hingegen bis zu
Basislinien von etwa 100 m weitestgehend erhalten. Fiir alle Hiange steiler als 5 bis 10°
(abhingig von der Basislinie) nahm der topographiebedingte Verlust der Kohdrenz mit
der Lange der Basislinie zu. Weitere topographiebedingte Koharenzverluste konnten auf
die unvollstindige Kompensation des topographischen Phasenanteils im
Interferogramm vor der Kohédrenzschitzung zuriickgefiihrt werden. Prinzipiell zeigten
vegetationsfreie und bewaldete Flachen sehr dhnliche topographische Effekte in der
Kohédrenz, d.h. auch iiber Wald ist der Kohédrenzverlust durch nicht iibereinstimmende
Anteile der Frequenzbédnder nach dem ,common band filtering’ der wichtigste Effekt.
Weitere topographiebedingte Effekte im Zusammenhang von Kohdrenz und
Stammvolumen konnten mit der Abhdngigkeit des Kronenbedeckungsgrads oder der
Volumendekorrelation vom Einfallswinkel des Radarsignals zusammenhingen. Diese
konnten jedoch mangels akkurater Forstinventurdaten fiir Wilder in den Gebirgen
Nordostchinas nicht untersucht werden. Die Konsequenz topographiebedingter
Kohirenzverluste ist, dass iiber steilen Hangen, abhingig von der Lange der Basislinie
und der Ausrichtung der Hénge, eine Stammvolumenbestimmung nicht moglich ist. Im
Fall der ERS-1/2 Tandemdaten fiir Nordostchina war dies fiir fast ein Drittel der
abgedeckten Gesamtfliche von ungefahr 1,5 Mio. km? der Fall.

Anhand des ERS-1/2 Tandemdatensatzes fiir Nordostchina wurde eine Forstkarte
erstellt. Dazu wurde fiir jedes der 223 Kohérenzbilder das VCF-basierte Modelltraining
durchgefiihrt. Das mittels VCF trainierte Modell wurde invertiert, um aus der Kohérenz
das Stammvolumen zu berechnen. Da etwa ein Drittel der 223 Tandempaare unter
instabilen Wetter- und Umweltbedingungen aufgenommen wurde, konnten
Stammvolumenklassen iiber 100 m>/ha nicht zuverldssig unterschieden werden. Deshalb
wurden die geschitzten Stammvolumina in die Klassen 0-20, 20-50, 50-80 und >80
m’/ha zusammengefasst. Die Klassifikationsgenauigkeit konnte lediglich fiir die
sibirischen Testgebiete bestimmt werden. Die Genauigkeitsanalyse zeigte hohe
Ubereinstimmungen mit den Inventurdaten fiir die Klassen 0-20 und >80 m>/ha, solange
keine rdumlichen Variationen der Aufnahmebedingungen innerhalb der Kohérenzbilder
auftraten; diese traten vor allem in Kohdrenzszenen auf, die unter feuchten Bedingungen
aufgenommen wurden. Die Ubereinstimmung der Klassen 20-50 und 50-80 m’/ha mit
den Inventurdaten war hingegen immer gering. Diese niedrige Ubereinstimmung fiir die
mittleren Stammvolumenklassen war teilweise eine Konsequenz ungenauer
Stammvolumenangaben in den Inventurdaten. Die Ubereinstimmung der produzierten
Stammvolumenkarten mit den Inventurangaben verbesserte sich deutlich mit der
Berticksichtigung der Mdglichkeit ungenauer Stammvolumenangaben aus der Inventur.
Unter Beriicksichtigung fehlerhafter Inventurdaten ergaben sich fiir die Tandempaare,
die unter ungefrorenen Bedingungen aufgenommen wurden, Kappa-Koeffizienten der
Ubereinstimmung von mindestens 0,5 und fiir Tandempaare, die unter gefrorenen
Bedingen aufgenommen wurden, von mindestens 0,7. Es zeigte sich jedoch auch, dass
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fiir Bestdnde mit niedrigem Bestockungsgrad deutlich niedrigere Genauigkeiten erreicht
wurden.

Der Nutzen der produzierten Forstkarte Nordostchinas ist mangels Validierung unklar.
Die Ergebnisse fiir die Testgebiete in Zentralsibirien deuteten an, dass die Karte derzeit
besser als Indikator fiir dichte und sparliche Bewaldung interpretiert werden sollte. Mit
dem VCF-basierten Modelltraining wurde jedoch eine Methodik entwickelt, die auch
fiir andere Radardatentypen, insbesondere der L-Band SAR- und InSAR-Daten des
PALSAR Sensors an Bord des japanischen Advanced Land Observing Satellites ALOS
oder der C-band SAR- und InSAR-Daten des nichsten europdischen Radarsatelliten
SENTINEL-1, von hohem Nutzen sein konnte.
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Chapter 1 - Introduction

1.1 Forests in Northeast China: Ecological and socioeconomic context

The forests of Northeast China represent, together with those in the Southwest, the main
wood supply for China, being important for the economic development of a highly
wood demanding industry as well as for the livelihood of the Chinese people, e.g. as
fuel-wood. The rapid development of the Chinese population and industry has increased
in the last decades the pressure on forest land in China. According to the ‘Food and
Agriculture Organization’ Forest Resource Assessment (FAO, 2001), China ranks fifth
in the world considering forest area and seventh when considering stem volume.
Massive logging and expansion of agricultural areas to forest or arid grassland areas
have changed the Chinese landscape and the quality of its natural environment
tremendously. Desertification (Yang et al., 2007), erosion, a higher intensity of forest
fires because of an active suppression of fire over several decades (Chang et al., 2008)
as well as a loss of biodiversity are some of the prominent consequences of this
development.

The immoderate exploitation of Northeast Chinas forest resources was first promoted
with the construction of the Russian railway at the end of the 19™ century and the
Japanese takeover of Manchuria, i.e. the Northeastern provinces, in the early 20"
century and reached its peak during the ‘Great Leap Forward (1958-1960)’ when the
government boosted intense logging, mainly for the provision of fuel for backyard steel
furnaces (Chen et al., 2007), and the conversion of forest, marshland, grassland and
fallow land to farmland. The consequences of this policy were most pronounced in
Chinas Northeast, which represents the ‘grain base’ of China (Gao et al., 2006) as the
main producer of soybean and wheat.

As recently as in the 1980s the Chinese government tried to counteract the emerging
environmental consequences of this policy, introducing a number of programs which
aimed at increasing the wood supply from Chinese forests as well as to mitigate the
ecological consequences of the immoderate forest exploitation. This comprised a
change in the agricultural management, departing from a purely quantitative paradigm
(Gao et al., 2006), and a huge plantation program which since 1980 has made China the
country with the largest plantation area worldwide. With the ‘Natural Forest Protection
Program’, introduced in 1998, the logging of natural forest was mostly forbidden in
order to allow for regeneration. Plantations of fast growing tree species are now
designated to cover the Chinese wood demand. Even though increases in forest area
(FAO, 2006; Zhao & Zhou, 2005) have been reported since the beginning of the
protection and plantation activities, the condition of the Chinese forests, in particular in
the Northeast, is still considered alarming in both ecological and economic perspective.

Currently, the forest resources in China are not considered adequate to meet the need of
the Chinese people and industry (Bull & Nilsson, 2004; Li et al., 2004). A consequence
is the increasing need for imported wood, mainly from Russia (Lu, 2004; Nemilostiv &
Reymer, 2007). The current state of the Chinese forests was summarized in Li et al.
(2004) as follows:

1) Insufficient total volume: Even though China hosts the fifth largest forest area of
the world, the average growing stock of 78 m’/ha is low (Li et al., 2004; Liu,
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2005); everything below 100 m’/ha is usually considered unproductive (Bull &
Nilsson, 2004).

2) Natural forests are of low quality with 70 % of the forest area being young or
middle age forest. The proportion of mature and over-mature forest still declines
(Yin, 1998; Li et al., 2006) because of extensive illegal logging (Xu et al., 2003
as quoted in Bull & Nilsson, 2004). The residual mature and over-mature forest
will likely be restricted to remote areas soon.

3) The growth rates of the plantations of about 3-3.5 m’/ha/year fall by far below
the expected growth rates of 8-18 m’/ha/year (Bull & Nilsson, 2004). These low
growth rates trace back to the planting of a few single species (mainly fast
growing species like larch, pine and to a lesser extent also poplar and birch),
which are susceptible to diseases, and bad seedling quality with low survival rate
(Liu, 2005). According to model simulations, the planting of slower growing
hardwood species would reduce these problems and result in a higher
productivity (Thomas et al., 2007). Other modeling results suggest active
thinning as effective way to improve yield and to lower the susceptibility to
diseases (Lei et al., 2007). Currently, the management status of most plantations
is low (Li et al., 2004) and the planned 6.39 million hectares, not only in the
Northeast, of new plantations for the period between 2001 and 2010 comprise
mostly conventional fast growing species (Thomas et al., 2007).

The loss of mature and over-mature forests on one side and the badly growing
plantations on the other side lead to predictions that a large fraction of forest enterprises
will have to cease production of timber in the foreseeable future (Rozelle et al., 1997 as
quoted in Bull & Nilsson, 2004). The statistics about forest area, growing stock and
forest types published in different official reports or scientific studies differ
considerably though. These differences were pointed out in Bull & Nilsson (2004).
When considering the reported discrepancies in forest statistics, it is obvious that there
is a need for repeated and consistent measurements in order to provide decision makers
an appropriate decisional base. Not to forget, China has signed the Kyoto Protocol on
August 30™ 2002. Even though not one of the Annex-I countries, China can participate
in Clean Development Mechanisms projects, for which, if related to afforestation and
reforestation, transparent forest resource assessments are crucial (Chen et al., 2007).

Most of the described developments are valid for the Chinese forests in general. Some
specific characteristics of the forests in the Northeast, however, have been of interest in
particular. Northeast China represents a transitional zone between the temperate and the
boreal zone and hosts all the major forest types of Northeast Asia. The climate changes
latitudinally from warm temperate to cool temperate and the forests change from
deciduous broadleaf forest, needle-leaf and broadleaf mixed forest (abbr. NBMF) to
boreal forest. The climax vegetation is mixed broadleaved Korean pine forest for
latitudes below 50° and Dahurian larch forest above 50° North (Chen & Li, 2003; Qian
et al., 2003), which only dominates under extreme continental climate conditions with
very cold winters (Krestov, 2003). A significant climatic control of the structure of
these forests has been reported in Wang et al. (2006a, 2006b) and a substantial effect of
climate change on the Northeast Chinese forests has been predicted (Ni, 2002; Chen,
2002). Since Northeast China has experienced the largest increase in temperature in
China over the last decades and also a drier and warmer future climate has been
predicted (Ding & Dai, 1994 as quoted in Tan et al., 2007), the development of




Northeast Chinas forests is of high interest for vegetation modelers. The forests
represent a showcase scenario for forest development under the premises of global
climate change and anthropogenic disturbance (Chen et al., 2003; Wang et al., 2006;
Xiaodong & Shugart, 2005; Leng et al., 2008). The models predict, for instance, a
significant loss of the potential growing area for Dahurian larch (Leng et al., 2008) and
a change in species composition in the mixed broadleaf Korean pine forests (Chen et al.,
2003).

Thus, the forests of Northeast China represent a vulnerable ecosystem, highly
threatened by recent climatic and socioeconomic developments. The existing
information about the region is not sufficient and, as the disagreeing statistics show, the
National Forest Inventory or the Local Forest Management Planning Inventory, the
main inventory levels in China (Pang et al., 2005), can hardly fill this gap. The need for
information about quantity and quality of forests is obvious and remote sensing as an
alternative information source, capable of delivering large area information on a regular
basis, an obvious choice.

1.2 Forest stem volume retrieval by means of ERS-1/2 Tandem coherence

One of the most desired forest parameters, in particular in the context of Global Climate
Change, is forest biomass as forests store large amounts of carbon in their biomass
(Houghton, 2005). National forest inventories usually do not include biomass, which is
defined as the fraction of dry organic matter in trees. Therefore, forest biomass
assessments utilize the stem volume measurements for a high number of forest sample
plots, i.e. circles of several meters diameter for which foresters have measured the main
tree parameters. The definition of forest stem volume differs from country to country
and ranges from total volume of all tree stems per hectare including bark to different
utilization levels of stem volume excluding bark, stump, stem top and very thin trees
(Wulder et al., 2008). The knowledge about stem volume allows estimating the total
forest biomass (above- and belowground) through forest type and forest age specific
conversion factors (IPCC, 2006). The results of a forest biomass assessment for China
that utilized the National Forest Inventory (NFI) stem volume measurements and
volume-to-biomass conversion factors have been published in Fang et al. (2001).

A biomass assessment based on forest inventory data is time consuming, costly and
only feasible for countries with an established forest inventory system. The different
stem volume definitions between the countries or even between provinces further
complicate a consistent biomass assessment. In contrast, remote sensing provides
repeated measurements in short intervals for almost every place on the Earth. Wall-to-
wall mapping of forests and forest biophysical parameters in Northeast China has yet
been conducted with medium resolution optical remote sensing data, i.e. with the data
of the Advanced Very High Resolution Radiometer AVHRR or SPOT-4
VEGETATION missions with 1 km resolution (Xiao et al., 2002; Tan et al., 2007).
Based on a multitemporal analysis of spectral band ratios like the widely exploited
Normalized Difference Vegetation Index (abbr. NDVI) or the Normalized Difference
Water Index (abbr. NDWI), forest types, percentage of forest cover and biomass were
classified. No accuracy assessment was reported for the biomass map yet. When
validated, this product may be of interest for regional- to country-level biomass
reporting. Wall-to-wall biomass maps in a scale of interest for local forest management
authorities do not exist.




A remote sensing data type that has the potential to close this gap is spaceborne active
radar. Radar is the abbreviation for ‘RAdio Detection And Ranging’ and denotes active
sensors that transmit and receive electromagnetic waves with wavelengths in the
microwave range of ~1 mm to 1 m. Modern so-called Synthetic Aperture Radars (abbr.
SAR) allow the mapping of the Earth’s surface from space with resolutions in the range
of few meters to 100 m, dependent on the mode of acquisition. The intensity of the
radar echo that is received at the sensor, after travelling through the atmosphere and
being scattered back on the ground, contains information about the geometry (size,
shape, orientation) and dielectric properties of the illuminated object and can be used to
map the Earth’s land cover as well as the ocean surface. The phase of the echo is related
to the distance between the sensor and the backscattering object and has led to
applications in the field of topographic measurement. When having acquisitions from
two identical SAR sensors that illuminated the same spot on the Earth from slightly
different perspectives, the two images can be combined to compute a so-called
interferogram. Interferograms allow the generation of Digital Elevation Models (DEM).
The first publications about interferometric SAR measurements (abbr. InSAR) were
released in the 1970s and 80s (Graham, 1974; Goldstein & Zebker, 1987). After a rather
decelerated start of this technique, the first spaceborne radar mission of the European
Space Agency (ESA), the ‘European Remote Sensing Satellites” ERS-1 (launched in
1991) and ERS-2 (launched in 1995), pushed the development of interferometric
techniques for the mapping of topography as well as displacements or mass movements
with the newer techniques of Differential Interferometry and Persistent Scatterers,
which can be applied when more than two acquisitions are available (Feretti et al.,
2007). Between 1995 and 2000, both satellites flew in an interferometric constellation
with one-day time lag between the ERS-1 and ERS-2 overpasses. The radar instruments
onboard the satellites were identical and transmitted and received microwaves with a
wavelength of 5.67 cm. This wavelength is referred to as the C-band.

Although SAR interferometry was initially intended for topographic mapping, it
represents an interesting tool for forest mapping (see review in Balzter et al., 2001). One
type of application is the determination of tree height by means of the interferogram as
forests appear as topographic features in the interferograms (e.g. Kellndorfer et al.,
2004; Balzter et al., 2007). Another type of application utilizes the interferometric
coherence, which 1is a measure for the stability of the backscattering
conditions/geometry between the images used to form the interferogram. The quality of
the topographic information in the interferogram is a function of coherence. High
coherence means good and low coherence means weak topographic information in the
interferogram. Interferometric C-band repeat-pass coherence (repeat-pass means that the
images were acquired with a certain time lag) was observed to decrease with increasing
forest cover which in turn means that the quality of the topographic information in the
interferograms is lower over densely forested areas. This decrease in coherence can be
exploited to map forest stem volume or biomass (Askne et al., 1995, 1996, 1997;
Koskinen et al., 2001; Santoro et al., 2002, 2007; Gaveau et al., 2003; Pulliainen et al.,
2003; Wagner et al., 2003; Engdahl et al., 2004; Askne & Santoro, 2005a, 2007).

Stem volume retrieval by means of ERS-1/2 tandem coherence has been discussed
mainly for the forests in the boreal zone (Hyyppé et al., 2000; Manninen et al., 2000;
Koskinen et al., 2001; Fransson et al., 2001; Santoro et al., 2002, 2007; Askne et al.,
2003; Pulliainen et al., 2003; Engdahl et al., 2004; Askne & Santoro, 2005, 2007a,
2007b). For managed boreal forest in Scandinavia, stem volume retrieval by means of
ERS-1/2 tandem coherence has been found to be possible with accuracies in the range




of the accuracy of ground surveys (Santoro et al., 2002), in particular when having a
multitemporal stack of images and combining the single image retrieval results. The
retrieval accuracy possible with ERS-1/2 tandem coherence exceeds that of SAR
intensity measurements with wavelengths between 3 and 23 cm; i.e. the wavelengths
that were available from spaceborne SAR missions yet (Hyyppa et al., 2000; Askne et
al., 2003). A large number of publications have shown that SAR intensity measurements
in these wavelengths are somewhat correlated to forest stem volume and biomass but a
considerable response of the measurements to, for instance, soil moisture variations
(Pulliainen et al., 1994; Rignot et al., 1994; Wang et al., 1995) and an early signal
saturation with respect to increasing forest stem volume or biomass present severe
limitations (Le Toan et al. 1992; Kasischke et al. 1994; Dobson et al. 1995b; Kasischke
et al., 1995; Imhoff, 1995; Harrel et al., 1995; Pulliainen et al., 1994, 1996, 1999;
Fransson & Israelsson, 1999; Kurvonen et al., 1999; Quegan et al., 2000; Santoro et al.,
2006). With SAR instruments using wavelengths between 3 and 23 cm, biomass levels
above 50 to 100 t/ha can hardly be distinguished. A spaceborne SAR instrument with a
long wavelength of ~70 cm, which would not experience such early saturation (Le Toan
et al., 1992; Rignot et al., 1995; Ranson et al., 1994, 1997; Saatchi et al., 2007), may be
launched in the next decade in the frame of ESA’s Earth Explorer Missions (Bensi et
al., 2007) but yet 23 cm is the maximum wavelength that is available from spaceborne
SAR missions.

Saturation of ERS-1/2 tandem coherence generally occurs at higher stem volumes or
biomass levels and the biophysical forest information in coherence is generally less
distorted by, for instance, soil moisture effects compared to short wavelength SAR
intensity measurements (Askne et al., 2003). However, saturation of coherence is a
complex phenomenon that depends on the meteorological conditions in the period of the
sensor overpasses and the orbital constellation of the interferometric acquisitions, i.e.
the spatial distance between both sensors when acquiring over a certain area.

This brings us to a common demur against the use of interferometric coherence. The
forest biophysical information in repeat-pass coherence traces back to the higher
temporal stability of the backscatter from the forest floor compared to that from the
forest canopies for which the scattering geometry can change within very short periods
due to wind induced movements of the branches (Narayanan et al., 1992, 1994).
Considerable differences in coherence for both, forest floor and canopy, arise between
interferometric image pairs that were acquired in different seasons (e.g. under frozen or
unfrozen conditions), under wet or dry conditions, at different wind speeds or with
different baselines (Castel et al., 2000; Koskinen et al., 2001; Askne et al., 2003,
Pulliainen et al., 2003; Drezet & Quegan, 2006). This variation needs to be captured by
an algorithm that aims at mapping forest biophysical parameters with coherence.

Because of this variability, the mapping of forest biophysical parameters with ERS-1/2
tandem coherence has postulated so far the availability of accurate ground data, i.e.
forest inventory data, to train empirical (Hyyppa et al., 2000; Wagner et al., 2003;
Fransson et al., 2001) or semi-empirical models (Askne et al., 1997, 2003; Koskinen et
al., 2001; Pulliainen et al., 2003; Santoro et al., 2002, 2005, 2007) that relate coherence
to stem volume, tree height (Hagberg et al., 1995; Dammert & Askne, 1998;
Papathanassiou & Cloude, 2001; Santoro et al., 2005a) or forest age (Drezet & Quegan,
2006, 2007). Strong limitation to exploiting these approaches is represented by the need
for dense grids of reliable forest inventory datasets. Inventory data is a rare commodity
and even if it exists often not freely available. Furthermore, it generally delivers a




punctual view, which means that the model training results cannot be transferred
automatically to areas where no inventory data is available.

A first approach to overcome this problem was the so-called SIBERIA algorithm
(Schmullius et al., 2000; Balzter et al., 2002; Wagner et al., 2003). Within the SIBERIA
project, the abbreviation for ‘SAR Imaging for Boreal Ecology and Radar
Interferometry Applications’, a fully automated classification approach was developed,
which derived the required unknown parameters of a simple empirical model, relating
coherence to stem volume, from the coherence histogram; note that in SIBERIA also
the intensity measurements of the Japanese Earth Resource Satellite JERS-1 were used
(mainly for the classification of water surfaces) but this was not of interest in the
context of this thesis as JERS data was not available for Northeast China. The approach
was used to map four forest stem volume classes (0-20, 20-50, 50-80 and >80 m’/ha)
over an area of almost 1 Million km? in Central Siberia. However, the method was
developed for ERS-1/2 tandem coherence data acquired only in fall. Hence, it is
questionable if the same approach works for ERS-1/2 tandem data that has been
acquired in other seasons. Furthermore, the dominance of dense forest in the area
covered by the ERS image was mandatory and the empirical model basis comprised a
number of simplifications that prevented a straightforward transfer of the approach to
other forest areas or multi-seasonal ERS-1/2 tandem datasets.

1.3 Scope of the thesis

It is still considered of high interest to exploit the existing archives of the ERS-1/2
tandem mission for the production of forest resource maps for the mid 1990s in order to
obtain reference information for future forest resource assessments. The overall goal of
this thesis was therefore to investigate, for the showcase scenario of Northeast China,
the possibility to map forest stem volume over large areas with ERS-1/2 tandem
coherence data independently of the availability of reference information in form of
forest inventory data. For Northeast China, the available multi-seasonal ERS-1/2
tandem dataset comprised 223 tandem pairs, providing an almost complete coverage of
Chinas Northeast. For the algorithm development, ground reference information was
given for three test sites in the main forest areas of Northeast China. As the amount of
ground reference data for China was limited, the investigation considered as well
several well-known test sites in Central Siberia for which a multi-seasonal ERS-1/2
tandem dataset and an extensive forest inventory database was available.

A promising information source, that may provide the information required to capture
the temporal and spatial variability of coherence over forested terrain, is the MODIS
Vegetation Continuous Field product VCF (DeFries et al., 2000; Hansen et al., 2002a,
2002b, 2003, 2005). VCF is available since 2003 and provides global estimates of
percent tree canopy cover at 500 m pixel size. VCF represents a new approach in
characterizing global land cover by means of medium resolution optical remote sensing
data, which allows frequent mapping of the Earth’s surface at a global scale. Yet,
traditional global mapping approaches classified the satellite images into a discrete
number of classes, diminishing a lot of the gradual information about the land cover that
was in the imagery. Also the parameter that is focused on in this thesis, 1.e. forest stem
volume, represents a continuous parameter that is known to correlate to some extent
with tree canopy cover (Van Laar & Akca, 2007). The global availability of information




about forest tree cover thus opens up new possibilities for a synergistic use of the main
pillars of Earth Observation, i.e. optical and radar remote sensing.

One type of synergy between radar and optical remote sensing, for which spectral
reflectances in different wavelengths provide information about forest stem volume or
biomass at least for young stands with open canopy structure (Franklin, 1986; Spanner
et al., 1990; Trotter et al., 1997; Reese et al., 2002; Foody et al., 2003; Magnusson &
Fransson, 2004; Mékeld & Pekkirinen, 2004; Houghton et al., 2007), would be to use
the measurements from both sensors for stem volume retrieval and to combine the
estimates. This was, for instance, tested in Magnussen & Fransson (2004). In this study,
however, only coherence was intended for stem volume retrieval. The role of the optical
remote sensing product was to ‘replace’ forest inventory data.

Although the work presented in this thesis focused on a particular radar data type, the
interferometric measurements of the ERS-1/2 tandem mission, the issue of variability in
the measured signals with the prevailing imaging conditions is as well relevant for other
SAR data types, e.g. intensity measurements in different wavelengths or polarizations,
so that the investigations carried out in this thesis may as well indicate solutions for the
use of the data of recent or upcoming SAR missions.

In the context of the overall goal of the thesis, several questions had to be analyzed:

1) Feasibility of an automated training of models that relate coherence to stem
volume:

o Identification of the mechanisms causing spatial and temporal variations
in the interferometric coherence measurements over forested terrain.

e Analysis of the feasibility of the only yet existing approach for an
automated model training which relies solely on coherence histogram
statistics (Schmullius et al., 2000; Balzter et al., 2002; Wagner et al.,
2003).

e Investigation on the relationship between ERS-1/2 tandem coherence and
VCF tree cover and the possibility to capture the spatial and temporal
variability of ERS-1/2 tandem coherence with the aid of VCF.

2) Forest structure:

The forest structure at a given stem volume or biomass can differ significantly;
e.g. in terms of tree species, age composition or stand density. It has been shown
that forest structural diversity has an effect on the accuracy of the retrieval of
forest biophysical parameters by means of SAR and InSAR methods (Dobson et
al., 1995a; Ferrazzoli & Guerriero, 1995; Harrel et al., 1997; Kasischke et al.,
1997; Castel et al.,, 2002; Treuhaft & Siqueira, 2004; Santoro et al., 2007,
Saatchi et al., 2007; Askne & Santoro, 2007b). Hence, the structural properties
of the Northeast Chinese and Central Siberian forests had to be taken into
account.




3) Topographic effects:

Topography is known to affect interferometric coherence measurements. While
for intensity various studies have addressed the issue of topographic distortions
in the measurements (e.g. Teillet et al., 1985; Ulaby et al., 1986; Holecz, 1993;
Van Zyl et al.,, 1993; Ulander, 1996; Luckman, 1998; Castel et al., 2001a;
Leclerc et al., 2001; Sun et al., 2002; Loew & Mauser, 2006), only few studies
have considered the limitations in the use of coherence for forest mapping
because of topographic effects, interfering the desired forest biophysical
information (Stebler et al., 1996; Castel et al., 2000; Lee & Liu, 2001; Santoro et
al., 2007c). In case of the only yet existing large-area forest map derived from
ERS-1/2 tandem coherence, i.e. the forest stem volume map produced in the
SIBERIA project (Wagner et al. 2003), a rather coarse masking procedure,
mostly based on information about local topography from a global DEM with 1
km pixel size, was applied to ‘roughly’ exclude areas where coherence was
affected by topography. Meanwhile, global DEMs (<60° N) with a pixel size of
90 m have become available, which should allow a more precise identification of
topographic effects in coherence.

1.4 Outline of the thesis

In Chapter 2, the theory of SAR- and InSAR remote sensing will be outlined. The
chapter focuses on aspects relevant for the understanding of the measurements over
forested terrain. Chapter 3 introduces the ground reference and satellite database that
was available for the work presented in this thesis. This comprises a description of the
SAR data, including SAR data processing, VCF, the meteorological data as well as the
forest inventory data. Chapter 4 focuses on the exploratory analysis of the factors
influencing the measurements respectively the relationship between ERS-1/2 tandem
coherence and forest stem volume (accuracy of reference data, weather, forest structure,
topography) at the Siberian and Northeast Chinese test sites. Chapter 5 describes the
development of a new procedure for the training of empirical or semi-empirical models,
relating coherence to stem volume, with the aid of VCF. Chapter 6 focuses on
topographic effects in coherence and intensity imagery. The automated model training
approaches are then tested in Chapter 7 for the ERS-1/2 tandem data covering the test
sites. In Chapter 8, a scheme for large-area mapping of forest stem volume will be
outlined and applied for the showcase scenario of Northeast China.




Chapter 2 - SAR and InSAR Remote Sensing

In this chapter, a brief description of radar remote sensing theory will be given. This
comprises the data acquisition as well as the main mechanisms determining the
interaction of radar waves with the Earth’s surface. In Chapter 2.2, the theoretical
background of radar interferometry will be outlined. The descriptions in this chapter are
focused on aspects, necessary for the understanding of radar and interferometric radar
measurements over forested terrain, and refer mostly to C-band measurements with 5
cm wavelength as this was the wavelength of the SAR data considered in this study.

2.1 Basics of radar remote sensing
2.1.1 The radar signal

Imaging radar antennas are mounted on moving platforms like airplanes or satellites. In
case of a monostatic setup, i.e. the same antenna transmits and receives a signal of a
certain frequency f respectively wavelength /4, linked through the speed of light ¢ with
c=f (c ~2.998 x 10® m/s). These frequencies have been grouped into so-called bands.
The common bands are the P- (0.3-1.0 GHz), L- (1.0-2.0 GHz), S- (2.0-4.0 GHz), C-
(4.0-8.0 GHz) and X- bands (8.0-12.5 GHz). Sensors in operation transmit signals in
either horizontal (H) or vertical (V) linear polarization. The same is true for the
reception of the signal, leading to four possible combinations of transmission and
reception: horizontally transmitted and horizontally (HH) or vertically (HV) received
respectively vertically transmitted and vertically (VV) or horizontally received (VH).

Electromagnetic waves comprise an electric and a magnetic field moving mutually
along the same path and oscillating perpendicular to each other. The polarization of an
electromagnetic wave, propagating in direction z, can be described with the electric field
vectors Ey, Eyand E7 (e.g. Rees, 2001):

E,=E,, cos(wt—kz—¢,) (2.1)
E, =E,, cos(wt —kz—¢,)
E,=0

where ¢ x and ¢ y determine the oscillation of the electric field vector with amplitudes
Eox and Eyy in the perpendicular X- and Y-directions. The coefficient @ denotes the
angular frequency, defined as 2xf, and k the wave number, defined as 2n/A. The phase
difference in X- and Y-direction, ¢ x- ¢ y, determines the polarization state of the wave.
For a phase difference of 0, m and —r, the wave is linearly polarized, i.e. the electric
field vector does not oscillate around the propagation axis of the wave. For a difference
of +/- n/2 and constant amplitudes Egx=Eyy, the wave is circularly polarized. In case of
different amplitudes of Ey and Ey and phase differences of +/- m/2, the wave is
elliptically polarized. In case of the radar measurements analyzed in this thesis, only the
linear polarized fraction of the electric field amplitudes will be of interest since the
sensors considered transmitted and received signals in only one polarization (VV).

A radar antenna mounted on a satellite, space- or aircraft sends out the signal to its side
and perpendicular to the flight direction with a certain pulse repetition frequency (PRF)
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and pulse length 7. With a pulse length of 37 ps, the antennas mounted on the ERS
satellites produce a pulse of ~11 km length. The terrain illuminated by one pulse is
called the footprint; the width of this footprint in the direction perpendicular to the
platform motion is referred to as swath. The flight direction of the platform is known as
the ‘azimuth’ and the direction perpendicular to the flight path is referred to as ‘range’.
The forward motion of the platform causes a continuous illumination of the ground in
azimuth direction.

Table 2.1. Characteristics of the ERS-1 and ERS-2 SAR missions (cf. Kramer, 2002)

ERS-1 & ERS-2
Duration ERS-1: July 1991 — March 2000, ERS-2: April 1995 -
Wavelength 0.0567 m
Polarization \AY
Incidence angle 23° (image center)
Bandwidth 15.5 MHz
Pulse length 37.1 ps
PRF 1680 Hz
Antenna Size 10 x 1 m (azimuth x elevation)
Swath width 100 km
Altitude 785 km

A single pulse can be described as a function of time ¢ with carrier frequency fy and the
complex envelope g(z) (Bamler & Hartl, 1998):

p, () =g(t)- "™ (2.2)

In order to achieve a high transmitting power, the signal is linearly frequency modulated
using a ‘chirp’ function g(#). The pulse comprises frequencies between fy-W/2 and
JfotW/2 with W denoting the bandwidth. After travelling to the ground, interacting with
the surface and being scattered back to the sensor, the pulse is received after a time
delay of 2R/c, with R representing the distance to the backscattering object:

P2 fy (-2
c

pr(t—z—R) =gt —2—R) 4 (2.3)
C C

For spaceborne radar sensors flying at high altitude, the received pulse does not
correspond to the last pulse send. In case of the ERS sensors, nine consecutive pulses
are transmitted in the meantime before a pulse is received. Every pulse is then
coherently demodulated by removing the carrier frequency from the transmitted signal,
leaving the phase component dependent on R:

4.7
#R) =R (24)
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Figure 2.1. Amplitude, wavelength and phase of a radar signal (Courtesy of Balzter,
2001).

The resolution of radar measurements has to be considered separately in the two
dimensions of the imaging geometry, which is called the Range-Doppler geometry with
geometric characteristics to be discussed later in this section. The resolution in the
propagation direction of the transmitted signal, the so-called slant-range, is related to the
bandwidth W; the wider the bandwidth, the higher the resolution. Again exemplified for
ERS, the resolution, 7.,is 9.7 m as the relation to W is:

C
r, =
2. W

2.5)

The resolution in slant-range does not equal the resolution on the ground. In case of flat
terrain, the slant-range resolution is related to the ground-range resolution, g, through:

-
L 2.6
" sin(@) (2-6)

The ground-range resolution depends on the incidence angle, 6, which increases from
near to far range, i.e. the areas closest respectively furthest from the sensor. Thus, the
resolution improves from near to far range.
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Figure 2.2. Radar imaging geometry.
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In case of a so-called Real Aperture Radar, the azimuth resolution, i.e. in the direction
of the platform motion, depends on the wavelength and the size of the antenna used.
The pulse spreads out from the antenna with an angle y, of:

v [radians] = Li 2.7)

A

with L, being the antenna size in azimuth direction. For a distance R of ~850 km, i.e.
the approximate slant-range distance of sensor and ground for ERS, the beam reaches a
width of ~5 km in azimuth direction before reaching the ground. Thus, a received pulse
contains the returned echoes from each object in a strip of this length. As the possibility
to elongate the antenna is limited, Real Aperture Radar data from spaceborne platforms
are useless. However, each target on the ground is illuminated repeatedly. The ERS
footprint moves only 4 m between two consecutive pulses. Each time a new pulse
reaches a target on the ground, the relative position of the sensor with respect to the
target has changed, which is why the echo of a target in each pulse experiences a
different Doppler frequency shift. The Doppler history of a target in the pulses provides
an additional coordinate for target discrimination (Curlander & McDonough, 1991).
When considering the Doppler history of a target, it is possible to synthesize an aperture
with an effective beamwidth ., of:

LA

We_l?’ =

The azimuth resolution of a SAR is independent of range distance and wavelength as:
wer R = Ly / 2. SAR data is generally delivered in a complex format of the form u =
Re(u) + i Im(u), with the quadrature Re(u) and in-phase Im(u#) component containing
amplitude, 4, and intensity, /, information:

A = \[Re(u)* + Im(u)’ [=A (2.9)

as well as the phase, ¢, information:

¢ = arctan{;n;—g:ﬂ] (2.10)

This brief discussion does by far not reflect the complexity of SAR image formation but
is considered sufficient for the understanding of the work presented in this thesis. For
further details, the reader is referred to Elachi et al. (1988), Curlander & McDonough
(1991), Olmstedt (1993), Bamler & Schittler (1993), Oliver & Quegan (1998),
Henderson & Lewis (1998).

2.1.2 Radar cross section

The power P, a radar antenna receives from an illuminated target on the ground is
described by the radar equation:
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P, depends on the transmitted power P, the distance between antenna and scatterer R,
the gain G, and effective area A, of the antenna and the target radar cross section o,
RCS. Besides o, all parameters are defined by the sensor and the imaging geometry. The
radar cross section depends on the geometric and dielectric properties of the target. In
practice, a resolution cell much larger than the wavelength of the signal will contain a
large number of scattering objects, all contributing to the signal received by the antenna.
Therefore, the backscatter coefficient ¢” [m*/m?], defined as radar cross section per unit
area (Ulaby et al., 1986), has to be used. ¢ is often reported in logarithmic scale in
order to emphasize the lower range of the ¢” spectrum, which comprises most of the
land surface related information:

o*[dB]=10-log,,(c") (2.12)

The side-looking imaging principle of SAR measurements introduces radiometric
distortions in the imagery as the ground area, contributing to the backscatter from a
resolution cell, changes from near to far range (see Equation (2.6)) and depends on the
topography. In order to determine ¢” from the radar brightness £’, i.e. the backscatter
received at the antenna from a resolution cell, information about the local relief is
required (Ulander, 1996; Luckman, 1998; Castel et al., 2001a; Laur et al., 2004; Loew
& Mauser, 2007). The radiometric distortions are accompanied by geometric distortions
in the radar images. These effects are related to the fact that in SAR images the pixels
are arranged according to the pulse delay time, i.e. the slant-range distance between
sensor and target, and the Doppler history. These two parameters specify the SAR
image plane. Altitudinal differences on the ground alter the sensor to target distance and
the Doppler history so that the arrangement of the pixels in the SAR image does not
reflect their ‘true’ arrangement on the ground in a two-dimensional map projection.
DEMs are required to reconstruct the location of a pixel on the ground. When visually
interpreting SAR images, they present rather irritating geometric effects over
mountainous terrain, known as ‘layover’, ‘foreshortening’ and ‘shadowing’. In case of
layover, when the slope exceeds the radar look angle, the echo from the mountain top is
received before the echo from the mountain base, which is why mountains appear to
lean towards the sensor in the radar images. For less steep slopes, still facing the sensor,
the slopes appear as narrow and bright stripes as the slant-range distances are shortened.
This effect is referred to as foreshortening. In case of slopes tilted away from the sensor,
the images show widened and darker areas. When slopes are steeper than 90°-0 and
tilted away from the sensor, the so-called shadowing occurs as no signal is received at
the antenna then.

2.1.3 Speckle

The radar imaging process is coherent which means that amplitude and phase are
measured. For each resolution cell, the phase measured at the antenna comprises a
systematic contribution related to the slant-range distance plus, in case of distributed
scatterers that are much smaller than the resolution cell, a contribution attributed to the
elementary scatterers in the resolution cell. Therefore, Equation (2.4) has to be extended
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that is related to the total phase for the set of
distributed scatterers within the resolution cell:

for an additional phase term¢

scatter

H(R) = —“'T”me 2.13)

When coherently summing up amplitude and phase of each elementary scatterer in a
resolution cell, interference occurs. An arbitrary number of realizations of interference
between the echoes from the elementary scatterers is the reason why homogenous areas
show a kind of ‘salt and pepper effect’ in an intensity image. This effect is called
speckle. It appears as completely random noise in a phase image.

The probability density function (abbr. pdf) of intensity / over a uniformly distributed
target follows a negative exponential distribution (Bamler & Hartl, 1998; Oliver &
Quegan, 1998):

pdf(I)= %exp{— %} (2.14)

with expected mean I:

I

== le °'dl = &° (2.15)
o 0

~I

In contrast, the phase is distributed uniformly between —n and . Even though speckle
appears as noise in an intensity image, it is not random. It is a consequence of local
surface characteristics and shows, under certain premises, a comparable form of
appearance for repeated measurements (cf. SAR Interferometry section).

The easiest way to reduce speckle is averaging or ‘multilooking’ over neighboring
intensity pixels. When averaging over N pixels, the resulting image is called N-look
intensity and the resolution is reduced by factor N. A more effective way of
multilooking can be applied before image formation when dividing the azimuthal
spectral band into N bands, i.e. N images are produced, and incoherently summing up
the power of the N images (Bruniquel & Lopes, 1997; Moreira, 1991). As long as no
strong single scatterer dominates the backscatter from a resolution cell, the distribution
of multilook intensity over homogenous terrain can be described with the Gamma pdf
(Holecz, 1993; Bruniquel & Lopes, 1997):

pdf(l)zﬁ(%j [leo” (2.16)

with gamma function /7(.) and the order parameter in form of the number of independent
looks L. The maximum likelihood estimate of ¢’ is simply the average over all pixels in
a sample window. If spatial autocorrelation is present, the spatial average is no longer
the Maximum Likelihood estimate of ¢’ but still represents an unbiased estimator
(Oliver & Quegan, 1998). Special filters have been developed which aim at the
reduction of speckle without eliminating spatial context information in the intensity
images, e.g. edges or strong single scatterers (e.g. Lee et al., 1981; Frost et al., 1982;
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Lopes et al., 1993). These filters always cause a loss of spatial resolution. The loss of
resolution can be reduced when a multi-channel SAR dataset is available, i.e. a set of
images acquired at different times or even images from different SAR sensors
(Bruniquel & Lopes, 1997; Quegan & Yu, 2001). The performance of speckle filtering
is generally quantified by means of the Equivalent Number of Looks (ENL), which can
be estimated with the ratio of the squared average intensity to the variance of intensity
in a homogeneous area without texture. Filtering results in a higher ENL. In general, the
ENL is lower than the nominal number of looks, i.e. the number of pixels used to
reconstruct o”.

2.1.4 Radar scattering from forested terrain

When electromagnetic waves have propagated through the atmosphere and interact with
the Earth’s surface, three main processes need to be distinguished: absorption,
reflection/scattering and transmission. The relevance of each mechanism depends on the
dielectric properties, size, shape and orientation of the objects the signal interacts with
as well as the frequency, polarization and incidence angle of the signal. A fundamental
property of the material, the wave is interacting with, is the relative dielectric
permittivity or constant, &, (e.g. Rees, 2001):

£, :g—ngr'—jgr” (2.17)
)

with ¢, being the dielectric permittivity of the material and ¢ of free space. The relative
dielectric permittivity determines the ratio of transmitted and reflected power when
media boundaries in the travel path of the wave occur as well as the amount of absorbed
power within a medium (mainly determined by ¢,”’). It depends on the frequency of the
electromagnetic wave with the real part ¢,” being larger than 1 and the imaginary part
g, larger than O for all media but free space. In theory, also the magnetic permeability
would have to be considered. For most materials, making up the Earth’s surface, the
magnetic permeability can be assumed equal which is why in general only dielectric
effects need to be considered.

One of the most important elements on the Earth’s surface is water. The dipole
character of water allows a high degree of polarization when an electric field with a
frequency in the microwave range is present. The response of water molecules to
alternating electric fields is, however, much reduced when water freezes. As the
dielectric constant for other relevant materials, e.g. organic matter in vegetation or the
mineral components of soils, is much lower, the free water content and aggregation state
drive the dielectric properties of these materials (Ulaby et al., 1986). In case of trees, the
sapwood beneath the bark represents the area with the highest dielectric constant within
a tree (Salas et al., 1994). The moisture content of the sapwood is influenced by the
water availability in the soil. For instance, a reduced water availability because of
draught is followed by a reduced moisture content of the water conducting sapwood, or
as reported in Moghaddam & Saatchi (1999), an increased water availability because of
snowmelt in spring results in an increased canopy moisture content that can last
throughout most of the growing season. Significant alterations of dielectric properties of
trees can arise because of variations in sap chemistry (McDonald et al., 2002). The
dielectric properties are also related to the diurnal cycles of tree activity. Photosynthetic
activity and transpiration during the day lower the water content and the water uptake
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from the soil at night increases it. Variations of the dielectric properties in a range of
hours are possible (Way et al., 1991; McDonald et al., 1991; Pulliainen et al., 1994;
Salas et al., 1994). Freezing of the sapwood, which occurs at temperatures below -5 to -
7° C (Lin, 1967 as quoted in Koskinen et al., 2001), causes a much reduced dielectric
constant.

In radar remote sensing of forests, three types of scattering have to be distinguished:

1 Surface scattering
2 Volume scattering
3 Double bounce (trunk-ground or canopy-ground interaction)

All three mechanisms together contribute to the radar backscatter from forested terrain,
from now on referred to as O'Ofor:

0 0 0 0
O for = O surface + O " double—bounce + O volume (218)

a b o d

Figure 2.3. Scattering mechanisms: a — smooth surface reflection, b — rough surface
scattering, ¢ — volume scattering, d — double bounce.

Surface scattering takes place at the boundary of two media with different dielectric
properties. In case of plane boundaries, reflection can be described with the Fresnel
Law. The Fresnel Law determines the fraction of radiation, i.e. fraction of electric field
amplitude, that is reflected at the surface or transmitted into the medium. Reflection and
transmission depend on incidence angle and polarization of the wave as well as the
dielectric properties of the two media forming the boundary. For plain surfaces, only
reflection into the direction away from the sensor occurs, i.e. a side-looking monostatic
sensor configuration would not receive any returning power. In most cases, the media
boundaries, like the air-soil or air-water interface, are not flat which is why roughness
effects need to be considered. With increasing roughness, the specular reflection
amplitude, often referred to as the ‘coherent’ component, decreases and a diffuse
scattering component, accordingly referred to as the ‘incoherent’ component, increases
which means that the signals are increasingly scattered in all directions, approaching the
ideal case of Lambertian scattering (Ulaby et al., 1986). The angular (i.e. incidence
angle) dependence of backscatter meanwhile decreases with increasing roughness. In
case of smooth surfaces, a sensor would only receive a backscattered signal in case of
close to normal incidence angles whereas with increasing roughness, the dependence of
the power scattered back to the sensor on the incidence angle decreases. The roughness
of the surface needs to be considered with respect to the wavelength of the signal. A
surface might appear rough at a certain wavelength but still smooth at a longer
wavelength. This finding has motivated the definition of roughness criteria, which
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indicate if a surface can be considered smooth with respect to a certain wavelength. A
simple measure is the so-called Fraunhofer criterion (cf. Ulaby et al., 1986; Rees, 2001):

A
h, < ——— (2.19)
3. cos(@)
The criterion states that a surface can be considered smooth when the standard deviation
of surface height variation, /4,4, does not exceed 4/32 for steep incidence angles. For less
steep incidence angles, higher standard deviations of surface height variations can still
be considered smooth.

The dielectric properties of soils, which are mainly determined by its volumetric
moisture content, control the magnitude of the Fresnel reflection at the surface and the
penetration of the signal into the soil. The penetration depth of C-band signals is
generally in the range of millimeters (wet soil) to few centimeters (frozen soil)
(Wegmiiller, 1990), unless the soil is extremely dry like in loose sandy desert soils
(Schaber et al., 1986). The mostly low penetration of radar signals makes roughness and
moisture the main parameters determining soil backscatter with only minor effects of
so-called volume scattering.

Volume scattering is of particular importance in case of radar backscatter from
vegetation, snow or ice. It represents the effect of multiple scattering within an
inhomogeneous medium characterized by dielectric discontinuities. The strength of the
backscatter from a volume is determined by the magnitude and density of the dielectric
discontinuities within the volume (Ulaby et al., 1986). Multiple scattering in a volume
of ‘arbitrarily’ oriented elementary scatterers takes place in a wide range of directions,
which is why the angular dependence of the measurement is reduced compared to the
surface scattering case. A tree crown represents such an inhomogeneous medium,
consisting mainly of air and the tree constituents in form of leaves, needles, twigs,
branches and the stem. Size and orientation with respect to wavelength and polarization
of the radar signal as well as the dielectric properties are the fundamental properties of
the tree constituents that have an influence on volume scattering. Volume scattering can
only be observed when the surface of the volume allows the signal to penetrate into the
medium. In case of forests, surface scattering effects at the boundary of the atmosphere
and the tree canopy can be considered negligible (Ulaby et al., 1986).

Different approaches for the modeling of volume scattering from forest canopies have
been developed. One common type of model treats the canopy as a layered volume with
simple shapes like discs or cylinders representing needles, leaves, branches or the stem.
Size, distribution and orientation of these scattering elements are approximated based
on observations made for a particular tree species (e.g. Bosisio & Dechambre, 2004;
Castel et al., 2001b). Volume scattering is then modeled by coherently summing the
scattered fields from the elementary scatterers following electromagnetic wave theory
(e.g. Chauhan et al., 1991; Saatchi & McDonald, 1997) or by incoherently summing the
scattered energies according to radiative transfer theory (e.g. Ulaby et al., 1990; Karam
et al.,, 1992). As these models require a high number of input parameters, they have
mostly been used for backscatter simulation purposes. Another type of model, suited for
inversion and thus for forest parameter retrieval, is the so-called Water-Cloud-Model
(abbr. WCM) (Attema & Ulaby, 1978). The WCM treats a forest canopy as infinite
horizontal layer of homogeneously distributed water droplets and considers the flow of
energy through the volume. The particles, i.e. water droplets held in place by the
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organic framework of the trees, are characterized by a radar cross section ¢ and an
attenuation cross section x,. The attenuation cross section accounts for the loss of energy
of the signal when propagating through the volume because of absorption or scattering
into a direction away from the sensor. The energy of the radar signal is assumed to
decay exponentially with the distance the signal has covered within the volume.
Attenuation is accounted for in both directions, i.e. for the signal travelling into the
medium as well as for the fraction of the signal scattered back within the medium.
When incoherently summing up the scattering and attenuation cross section of each
infinitesimal thin layer along the propagation direction z, the total backscatter
coefficient aov for a volume of thickness 4 is obtained:

h h
O'Ov _ J‘No_ef2NK€(hfz)/cos edZ _ J.Gv . efa-(h—z)dz _ O'Oveg (1 _ 7';26) (220)

0 0

where o, denotes the volumetric backscattering coefficient defined as radar cross section
per unit volume and N the number of scattering particles per unit volume. aoveg is the
idealized backscatter coefficient of a layer with zero two-way transmissivity, i,
which specifies the fraction of energy penetrating the volume:

T — e—ZNK()h /cos 0 — e—ah (221)

tree

The coefficient a [Np/m] expresses the two-way attenuation per meter. The penetration
depth, 0, of the signal is defined as the depth where the signal power is reduced to ~37
% (i.e. 100/e) (Ulaby et al., 1986), and can be calculated with o respectively:

afdB]\ !
52(2-ln10 10 ] (2.22)

when a is given in dB/m. In case of a simple structured one-layered forest canopy
(typical for boreal and temperate forests), it is convenient to consider the tree height as
the depth of the volume. The radar cross sections of the scatterers in the canopy depend
on the size and orientation of the scatterers as well as their dielectric properties. The
main backscattering elements of the canopy are those with a size comparable or larger
than the wavelength of the signal and an orientation similar to the polarization of the
signal. Elements smaller than the wavelength of the signal mainly contribute to signal
attenuation and less to backscatter. For short wavelengths like the X-band (A ~ 3 cm),
the needles, leaves and twigs at the upper margin of the canopy cause the main
backscatter. At C-band, the twigs and branches cause the main backscatter with still
significant contributions from needles and leaves. For further increasing wavelengths,
the large components of a tree become important scattering agents, i.e. primary
branches and the stem (Ulaby et al., 1990; Chauhan et al., 1991; Le Toan et al., 1992;
Fung, 1994; Wang et al., 1995a). As the relevance of leaves decreases with increasing
wavelength, the differences in forest backscatter between leaf-on and leaf-off periods
reduce with increasing wavelength (Fleischmann et al., 1996; Bosisio & Dechambre,
2004; Guglielmetti et al., 2007). Meanwhile, the penetration depth of the signal
increases with increasing wavelength. In case of C-band, measurements and model
simulations indicated typical penetration depths of only few meters (cf. Leckie &
Ranson, 1998).
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A non-zero tree canopy transmissivity gives rise to a scattering effect known as double
bounce. This effect is of particular importance when observing urban areas but is also
relevant in forests when the signal penetrates the canopy and reaches stem and ground.
In order to obtain double bounce, two surfaces larger than the wavelength of the signal
need to be arranged perpendicular to each other. In this case, the incoming wave is
reflected at both surfaces and directed back to the sensor so that a strong signal is
received at the sensor. This precondition is fulfilled for the angle between stems and the
ground as long as tree stems grow approximately vertical and on flat ground (Van Zyl,
1993; Israelsson & Askne, 1994). Minor double bounce may also arise from canopy-
ground interactions.

Table 2.2. Important forest and radar sensor characteristics influencing radar
backscatter from forested terrain (as summarized in Askne et al., 1997).

Geometrical Properties | Temporal Properties | Dielectric Properties | Radar Properties
Shape
Size Water content of trees
) . ¢, of branches, stems, Frequency
Density and soil . N
. : soil etc Polarization
Orientation Freeze / thaw . .
Attenuation Incidence angle
Roughness Snow cover
Areal coverage

Table 2.2 summarizes the most important target, environmental and sensor properties
that need to be considered when interpreting radar intensity data acquired over forested
terrain. In order to understand the variability of backscatter with varying environmental
conditions, the contributions of the three scattering mechanisms to the backscatter
measured need to be distinguished.

C-band backscatter over forested terrain is predominantly volume scattering (Chauhan
et al.,, 1991; Pulliainen et al., 1994; Karam et al., 1995; Wang et al., 1995b). It is
influenced by canopy moisture variations and the phenological state of the trees and
reveals diurnal and seasonal patterns. In addition, short-term responses to
meteorological events like rainfall are possible. McDonald et al. (1991) observed
diurnal variations of backscatter up to 3 dB in C-band for young walnut trees growing in
a semi-arid environment. Lower diurnal variations of less than 1 dB have been reported
in Dobson et al. (1991a) for loblolly pine forest growing in a more humid environment
and in Rignot et al. (1994) for Alaskan boreal forest. Model simulations and
measurements reported in Pulliainen et al. (1994) indicated a maximum diurnal
variability of C-VV backscatter of about 1.8 dB under typical summer conditions in
Finland. The largest diurnal variations in volume backscatter can be expected in times
of “high transpirative demands” (Dobson et al., 1995b), for instance during dry seasons
when large diurnal variations in plant water potential arise. The interpretation of forest
backscatter variations is complicated by variations in tree water chemistry (McDonald
et al., 2002), tree species specific differences in the variability of tree water content
(Pulliainen et al., 1994) or the general water conductance ability of trees which has been
found to decrease with tree age (Pothier et al., 1989). Differences between the leaf-off
and leaf-on periods of deciduous forest should occur as well as in C-band leaves act
mostly as attenuators, lowering the backscatter. However, the differences related to the
foliage dynamics have been observed to be rather weak (in a sub-dB range) compared to
other environmental effects (Ahern et al., 1993; Proisy et al., 2000; Kasischke et al.,
2007; Lang et al., 2008). Besides diurnal variations, responses of C-band backscatter
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from forest to short-term events like rainfall have been observed. Increases in C-band
backscatter from wet forest canopies shortly after rainfall of up to 3 dB have been
reported in Dobson et al. (1991b) or Bergen et al. (1997). The seasonal variations in
canopy backscatter are generally most pronounced for forests in the boreal zone (Ahern
et al., 1993; Rignot & Way, 1994; Rignot et al., 1994; Askne et al., 2003). Here, a very
low backscatter from forest is reached under frozen conditions due to the much lower
dielectric constant of the tree water when the trees are frozen. Differences in backscatter
between the frozen and unfrozen state of the canopies in the range of 2 to 6 dB have
been reported for C-band (Rignot & Way, 1994; Pulliainen et al., 1999; Ranson & Sun,
2000; Kasischke et al., 2007). The largest changes can be observed during the thawing
periods in spring when the scatterers in the canopy defrost and snowmelt causes a high
water availability in the soils. The frequency of freeze/thaw events can be very different
in different parts of a tree canopy (Mayr et al., 2006). The branches at the upper margin
of the canopy, which are most relevant for C-band backscatter, can be exposed to more
frequent freeze/thaw cycles than the larger branches below. Backscatter variations over
forest because of frequent freeze/thaw transitions have been reported in Rignot et al.
(1994). Rignot et al. observed differences in ERS-1 backscatter over Alaskan boreal
forest between day- and nighttime passes of 2 dB in late fall because of diurnal
freeze/thaw transitions of the relevant scatterers in the canopy. Compared to boreal
forests, C-band backscatter from temperate forests in Europe has been observed to
undergo a considerably lower variability throughout the seasons (Fellah et al., 1997;
Quegan et al., 2000; Proisy et al., 2000).

The crown architecture differs between the tree species and forest types and thus has an
effect on SAR intensity measurements. Several studies have discussed the use of SAR
for tree species and forest type discrimination. Tree species and forest type
classification have been found to be hardly possible with sufficient accuracy when
having acquisitions in only one frequency and polarization. For ERS intensity, Proisy et
al. (2000) and Quegan et al. (2000) reported differences of only 1 to 1.5 dB throughout
all seasons between deciduous and coniferous species in temperate broadleaf and mixed
forests in France and Great Britain. Rignot et al. (1994) found ERS-1 backscatter to
vary less than 2 dB between different boreal forest tree species in Alaska. The highest
potential for tree species discrimination can be assigned to multi-frequency and multi-
polarization data (Ranson & Sun, 1994a, 2000; Ranson et al., 2001a). In Ranson et al.
(2001a), for instance, six principle components of several band ratios of SIR-C C- and
L-band multi-polarization data were used to classify forests in the Sayani mountains in
Siberia with a minimum accuracy of 73 % for the class ‘young deciduous forest’ and at
least 82 % for the classes ‘old deciduous forest’, ‘young conifers’ and ‘old conifers’. In
Dobson et al. (1995b), a discrimination of pine, spruce and broadleaf forests in
Michigan was found not to reach sufficient accuracy when using either ERS C-VV or
JERS L-HH intensity images. A Maximum Likelihood classification achieved
accuracies of 63.5 and 65.9 %, respectively. Combined, however, an accuracy of 93.7 %
was achieved. A classification accuracy of 75 % for ERS and 98 % for JERS was
achieved when not differentiating between tree species but between biophysical
properties (short and tall trees), indicating that the biophysical forest parameters (like
stem volume, biomass, height, etc.) are an important, if not the dominant, information in
SAR imagery. However, accounting for forest structural differences in terms of species
or forest types when aiming at forest biophysical parameter retrieval may improve the
retrieval accuracy (Dobson et al., 1995a; Castel et al., 2002).
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If the signal attenuation in the forest canopy is low enough to allow the signal to
penetrate the canopy or if there are gaps in the canopy, scattering from the forest floor
contributes to the backscatter measured. Modeling results in Wang et al. (1995) for HH,
VV and HV-polarized C-band backscatter from sparse pine forest and incidence angles
between 20 and 60° indicated that forest floor roughness and moisture, litter depth and
litter moisture content are almost equally important in explaining the variability of C-
band backscatter from forest floor. In VV and HH polarization, the sensitivity was
highest for steep incidence angles with a maximum simulated variability of about 5 dB
at 20° and 3 dB at 30° incidence angle. HV was mostly insensitive to changes in forest
floor conditions at all incidence angles. In Pulliainen et al. (1994) model simulations
predicted a variation of ERS C-VV forest floor backscatter up to 5 dB due to soil
moisture variations typical for moraine lands in Finland. Large changes of forest floor
backscatter can be observed when freezing occurs. Pulliainen et al. (1996) and
Borgeaud & Wegmiiller (1996), for instance, reported a drop of 2 to 4 dB in ERS C-
band backscatter when soils froze. SIR-C C-HH, C-HV and C-VV measurements
acquired over recent clear cuts were found to exhibit an even larger difference of up to
~9, 13 and 6 dB, respectively, between frozen and unfrozen conditions in Ranson & Sun
(2000).

A very variable composition of backscatter contributions can be observed for snow
covered soil with surface and volume effects occurring dependent on snow
metamorphism. Snow represents a volume of densely distributed dielectric
discontinuities as it is mainly composed of ice crystals, air and liquid water in case of
wet snow. Snow properties like grain size, snow density, liquid water content, surface
roughness, stratification and snow depth can vary considerably and they all have an
effect on the radar backscatter. In the frequency domain of C-band, dry snow, i.e. no
liquid water is present, can be considered almost transparent and the penetration depth is
in the range of tens of meters (Métzler et al., 1995). The dielectric constant, which is
directly related to snow density and wetness (Nagler et al., 2004), remains low as long
as there is no liquid water incorporated in the snow layer. In case of recently fallen dry
snow, backscatter is mainly governed by the snow-soil interface. For older snow layers,
significant backscatter may arise from ice lenses, pipes and grain clusters (Métzler et al.,
1997; Shi et al., 1997). Volume scattering in ERS C-band backscatter has been found to
arise when dry snow ages and vertical temperature gradients between the cold air and a
relatively warm snow/ground interface promote the development of coarse skeletal ice
crystals. Rignot et al. (1994) observed that volume scattering from coarse skeletal ice
crystals increased C-band backscatter for about 1 to 2 dB. Further snow related effects
in C-band backscatter are the refraction at the air-snow boundary because of different
dielectric permittivities of snow and air (Guneriussen et al., 2001) and the shift in
wavenumber (Shi & Dozier, 2000a, 2000b), causing a steeper incidence angle and a
reduced wavelength of the wave incident upon the snow-soil boundary, respectively.
This means that the backscatter from the snow/soil interface should be increased
because the soil surface appears rougher to the radar. On the other side, the reduced
dielectric contrast between snow and soil causes a lower backscatter. In spite of these
effects of dry snow on backscatter, the discrimination of dry snow and bare soil has
been found to be hardly possible (e.g. Shi & Dozier, 1997; Koskinen et al., 1997) in C-
band. In case of wet snow, i.e. when melting has caused the accumulation of liquid
water in the snowpack, the penetration depth decreases and the backscatter contributions
from the snow volume and the snow surface gain importance (Guneriussen, 1997). C-
band backscatter was observed to decrease with increasing liquid water content due to
signal attenuation in the snow layer. This change in backscatter could be used to map
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snow parameters like wet snow areal extent and liquid water content (Shi & Dozier,
1995; Koskinen et al.,, 1997, 1999). Different weights of surface and volume
contributions, which depend on the snow surface roughness, incidence angle, snow
stratification and metamorphism, significantly affect the performance of retrieval
algorithms (Magagi & Bernier, 2003). Problems in C-band arise in particular for steep
incidence angles when considerable backscatter may arise from rough snow surfaces
imposed on the volume contributions (Strozzi et al., 1999).

A consequence of the diurnal, seasonal and short-term changes in backscatter is a
varying contrast between forest floor and canopy backscatter. The intensity contrast is
known to hardly exceed 2 to 3 dB in case of co-polarized C-band intensity with a
maximum being reached under frozen conditions when the signal penetrates deeper into
the canopy and the backscatter from the forest floor becomes very low. In case of
unfrozen and in particular under wet soil conditions, the contrast between forest floor
and canopy backscatter is often low; for very wet conditions forest floor backscatter can
even be higher than backscatter from dense forest canopies (Ahern et al.,, 1993;
Pulliainen et al., 1994; Rignot et al., 1994; Rignot & Way, 1994; Harrell et al., 1995;
Pulliainen et al., 1996; Proisy et al., 2000; Ranson & Sun, 2000).

2.1.5 Stem volume and biomass mapping with C-band SAR intensity

Many studies have shown the potential of SAR intensity data for mapping forest
biophysical properties like stem volume, aboveground biomass, crown biomass, tree
height or age (Le Toan et al., 1992; Kasischke et al., 1994; Dobson et al., 1995b;
Imhoff, 1995; Kasischke et al., 1995; Harrel et al., 1995; Pulliainen et al., 1994, 1996,
1999; Ranson & Sun, 1997; Ranson et al., 1997; Fransson & Israelsson, 1999;
Kurvonen et al., 1999; Quegan et al., 2000; Ranson et al., 2001b; Balzter et al., 2002;
Santoro et al., 2006; Saatchi et al. 2007). The link between SAR backscatter
measurements and forest biophysical properties is a consequence of an increasing
number of tree constituents causing backscatter and signal attenuation when forests
grow and a meanwhile decreasing backscatter contribution from the forest floor. The
size, orientation and dielectric properties of the tree constituents with respect to a certain
radar wavelength and polarization determine if they function as attenuator or scatterer,
which is why differences in the sensitivity of radar intensity to biophysical forest
parameters arise dependent on the radar sensor specifications. As several biophysical
properties like tree height, diameter, density, stem volume, biomass or crown cover are
correlated (cf. Chapter 3.3), correlation between these properties and radar intensity
measurements can be observed. The highest correlations between backscatter and forest
biophysical properties can usually be observed for simple structured homogeneous
forests, which is to a certain degree a consequence of higher correlations between
different biophysical properties, in particular between stem volume/biomass and the
crown dimensions (Zeide, 1985; Ranson et al., 1997; Mougin et al., 1999; Castel et al.,
2001b; Van Laar & Akca, 2007). The main properties of a radar, determining the
suitability of a certain radar system for the mapping of forest biophysical properties are
the dynamic range, i.e. the intensity contrast between forest and underlying floor, and
the saturation level for which further growth of a forest does not result in any change in
backscatter. Both, dynamic range and saturation level have been found to be a function
of radar wavelength and polarization. The dynamic range generally increases with
wavelength, which means from X-, C- and L- to P-band, and with polarization in the
order VV, HH and HV (Le Toan et al., 1992). As volume scattering in the canopy is less

22




sensitive to incidence angle variations compared to soil backscatter, larger incidence
angles result in a higher dynamic range as well. Still, environmental effects, as
described in the last section, can alter the dynamic range significantly.

Saturation of intensity with respect to forest biophysical properties occurs when the
transmissivity of the crown layer becomes negligible. Saturation has been reported to be
a function of the wavelength; the longer the wavelength the later saturation occurs. As
most studies focused on the retrieval of forest stem volume and biomass by means SAR
measurements, saturation levels were usually reported in terms of a stem volume
[m’/ha] or biomass [t/ha] level up to which changes in intensity could be observed. In
Proisy et al. (2000), a biomass saturation level of 50 t/ha for deciduous and 80 t/ha for
coniferous forest in Central France was reported for ERS C-band measurements.
Kasischke et al. (1994) and Harrel et al. (1995) found ERS-1 C-band to be sensitive to
biomass changes up to 60 t/ha for Alaskan boreal forests. Imhoff (1995) reported
saturation levels of 20 t/ha in case of C-band measurements over Hawaiian evergreen
broadleaf forest and loblolly pine forests. Concerning forest stem volume, Fransson &
Israclsson (1999) observed ERS-1 C-band to saturate at 60 m’/ha for Swedish boreal
forests. In contrast, Santoro et al. (2007b) were able to map Siberian boreal forest stem
volume with no sign of saturation up to stem volumes of 400 m’/ha using a
multitemporal retrieval approach based on multitemporal stacks of ENVISAT ASAR
Wide Swath C-VV intensity data. Similar results were obtained in Pulliainen et al.
(1996) and Kurvonen et al. (1999) with multitemporal stacks of ERS data acquired over
Finnish boreal forest sites. These studies indicated that C-band measurements might
contain more information about boreal forest stem volume than has been reported in the
studies mentioned before. However, when having only one or very few acquisitions,
spatial variations in forest floor conditions - in terms of soil moisture, snow cover, litter
depth - generally cause responses in backscatter in the range of or even larger than the
intensity contrast between forest canopy and forest floor, strongly interfering the forest
biophysical information (Rignot et al., 1994; Pulliainen et al., 1994, 1996, 1999; Wang
et al., 1995; Hallikainen et al., 1998; Drezet & Quegan, 2006). A multitemporal
consistency analysis, i.e. when correlating the standwise intensity measurements for
different images, revealed a rather inconsistent behavior of ERS intensity measured over
boreal forest with a mostly low correlation between standwise intensity measurements
for even short repeat intervals (Askne et al., 2003). This observation stressed that effects
like soil moisture variations have a large impact on C-band measurements over forest,
interfering the forest biophysical information. In general, those environmental
conditions can be considered the optimal acquisition conditions where soil moisture
variations are minimized, for instance when the soils are frozen or very dry (Harrel et
al., 1995, 1997; Pulliainen et al., 1996; Kurvonen et al., 1999). The advantage of
multitemporal retrieval algorithms is that they are able to average out the variability in
intensity related to the forest floor conditions.

2.2 SAR Interferometry

In Section 2.1.3, it was mentioned that the phase information in a single SAR
acquisition is of no practical use because of ‘random’ phase effects in a resolution cell.
This situation changes for an interferometric SAR constellation, when two radar
antennas observe a target from slightly different positions in space. In an interferometric
constellation the spatial distance between the two SAR antennas when acquiring over
the same area is called interferometric baseline. The baseline can be split in two
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components, a component in the line of sight B, and perpendicular to the line of sight B,
(Figure 2.4). They are referred to as parallel and perpendicular baseline. If the two
images forming an interferometric pair are acquired at the same time, we speak of
‘single-pass’ interferometry. An example for single-pass interferometry is the so-called
Shuttle Radar Topography Mission SRTM (Rabus et al., 2003). Contrary, we speak of
‘repeat-pass’ interferometry when the images are acquired with a certain time lag. This
time lag is often referred to as the temporal baseline. Since in this thesis, solely ERS-1/2
tandem data with 1-day time lag between the acquisitions are considered, only repeat-
pass interferometry will be addressed in the following sections.

Artenna 1

Look angk

Figure 2.4. Geometry of interferometric SAR measurements.

2.2.1 Interferogram and interferometric phase

Two SAR images are needed to compute the so-called interferogram, which is obtained
with the product of the first complex SAR image and the complex conjugate of the
second SAR image. For the amplitude components of the SAR images this means
simply a multiplication of both amplitudes. For the phase components, the product of
one complex image with the complex conjugate of the other image results in the phase
difference @, i.e. the interferometric phase:
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which is related to the difference in the slant-range distances, B,, as well as to the
differences in the target phase contributions. The interferometric phase difference
between two pixels can be decomposed into following contributions:
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The first term is related to the variation of the slant range difference, 4R, within the
interferogram. It is a systematic effect, which can be removed when accurate data about
the orbital acquisition geometry is available. In an interferogram over completely flat
terrain, the resulting interferometric phase variations appear as iso-phase lines, called
‘fringes’, in along-track direction, i.e. parallel to the flight direction. The removal of this
systematic effect is called ‘flat-earth-removal’. The second term is related to the height
difference, 4z, between two pixels and can be used to calculate Digital Elevation
Models. In a ‘flattened’ interferogram (see example in Figure 2.5), i.e. flat earth-
removal has been carried out, a complete phase cycle [0-27] corresponds to an altitude
difference 4, of:
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This altitude is called the ambiguity height. Larger altitude differences cause phase
ambiguities because it is measured between 0 and 2. If the altitudinal variation in the
area covered by the interferogram exceeds the ambiguity height, ‘phase unwrapping’,
i.e. adding the correct integer multiple » of 27 to the flattened interferogram, needs to be
done to resolve the ambiguity of phase and to calculate absolute height differences (last
term in Equation 2.24). The third term in Equation (2.24) only applies if coherent
movements, Az, of all scatterers in a resolution cell along the line of sight occur
between the acquisitions. This can be caused by earthquakes, subsidence, volcanic
activity or other mass movement events. The fourth term accounts for differences in the
atmospheric path delay between both acquisitions. Temporal and spatial variations in
the electron density of the ionosphere as well as variations of the water vapor
concentration in the troposphere can cause atmospheric artifacts in interferograms (e.g.
Goldstein, 1995; Hanssen et al, 1999). The noise contribution is related to changes in
speckle. It becomes relevant when changes at the Earth’s surface between the
acquisitions occur that alter the scattering geometry. In addition, some other effects
have to be addressed in this context (see Chapter 2.2.2).

Figure 2.5. Flattened interferogram showing an area in Inner Mongolia, China, with
several small volcanoes. The ERS-1/2 tandem pair was acquired with a perpendicular
baseline of 236 m. One color cycle represents altitudinal differences of ~40 m.
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2.2.2 Coherence

The interferometric phase measurement is governed by several factors, which have
systematic character - imaging geometry and topography - or appear in form of noise or
offsets superimposed on the systematic flat-earth and topography-induced fringes. A
measure for the noise in an interferogram is the interferometric coherence; or in other
words, the visibility of fringes in an interferogram is a function of coherence. The
complex interferometric coherence is defined as (Born & Wolf, 1980):

Eluyu) (2.26)
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where u; denotes the first complex SAR image, u,* the complex conjugate of the
second SAR image and E{} the expectation value operator. The argument of y
represents the expectation value of interferometric phase and the magnitude the
normalized correlation of both acquisitions. In practice, the magnitude of complex
coherence as well as the interferometric phase have to be estimated using a sampled
average over N pixels; usually a rectangular window centered on the particular pixel, i.
The Maximum Likelihood estimate of the magnitude of complex coherence can be
obtained with (Dammert, 1996):
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It is common to refer to the magnitude of the complex coherence simply as the
‘coherence’. Coherence takes values between 0 and 1, i.e. complete decorrelation with
fully developed noise and perfect correlation, respectively. If possible, the estimator
should account for topography-induced phase variations, ¢,, in the interferogram as

these fringes are not noise but would lower coherence as well when not compensating
for in the coherence estimation window. If no information about topography, e.g. in
form of a digital elevation model, is available, assumptions about topography induced
phase variations within the coherence estimation window have to be made (Dammert,
1996), e.g. with linear, quadratic or other functions of phase variation. Alternatively,
phase slope estimates can be derived from the interferogram itself, which, however, are
prone to errors over steep mountainous terrain as phase noise over steep terrain will be
significant. Residual phase variations because of uncompensated topographic phase in

the coherence estimation window cause a loss of coherence according to (Dammert,
1996, Askne et al., 1997):

_ e;(ﬂ?%”] (2.28)
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when assuming Gaussian distributed root mean square height variations, a;,. This effect
gains importance with increasing perpendicular baseline.

The Maximum Likelihood estimate of coherence is biased. The lower the true
coherence |y|, the more the estimated coherence represents an overestimate. The
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standard error of coherence estimation, o,, can be approximated with (Hagberg et al.,
1995; Touzi et al., 1999):

2
o i (2.29)

2L

where L represents the number of independent samples used for the estimation. The
number of independent samples can be estimated roughly with the number, N, of pixels
actually used for the estimation (Dammert, 1999 as quoted in Santoro, 2003):

L= 1+NT_1 (2.30)

If surface types in a coherence image are present that are known to cause complete
decorrelation (e.g. non-frozen water surfaces), L can alternatively be estimated based on
the average observed coherence over these surfaces (Oliver & Quegan, 1998). The
lower the coherence, the more pixels need to be included in the coherence estimation to
achieve a desired accuracy. As coherence needs to be estimated over a window of a
certain size, it is clear that the spatial resolution of coherence will be lower than the
resolution of the SAR images.

Likewise, the standard error of the interferometric phase estimate, o, can be expressed
as function of coherence (Rodriguez & Martin, 1992):
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This approximation is reasonable for L > 4 (Rosen et al., 2000). According to this
expression, the uncertainty in the phase estimate decreases with increasing coherence.

The degree of noise in an interferogram traces back to a number of factors (Zebker &
Villasenor, 1992):

|7/ | = ‘7/ proces sin g v noise

Y azimuth VY spatial [\ temporal (2.32)

Implying that modern SAR processors are able to preserve coherence, |Yprocessing] can be
neglected, i.e. it can be set to unity. |yu.ise| 15 only relevant for land surfaces generating
very low backscatter, e.g. deserts or smooth water surfaces. As for the ERS sensor
configuration with steep incidence angle backscatter from most land surfaces is high,
this decorrelation source can usually be neglected. |y..imun| accounts for decorrelation
because of non-perfectly parallel flight tracks respectively azimuth orientations of the
two antennas, causing a shift in the azimuth spectra of the SAR images. In case of the
ERS-1/2 tandem configuration, this shift was generally small so that band-pass filtering

techniques could compensate for this effect (Schwibisch & Geudtner, 1995).
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Blind angles:
Bn=100m -208-252°

Bn=400m -139-32.1°
B,=1000m-1.2- 44.8°

AflH

Figure 2.6. Relative spectral shift as function of local slope for perpendicular baselines
up to 400 m, exemplified for the ERS-1/2 configuration. Positive slope values indicate
surfaces tilted towards the sensor. The dashed horizontal lines denote the bandwidth W.

Spatial decorrelation summarizes two decorrelation effects, which are related to the
length of the baseline, one denoted as [Ysjant-range| and the other as [Yyoumel:

(2.33)

yspatial yslant—range yvolume
When distributed multiple elementary scatterers within the resolution cell are confined
to a plane (i.e. the surface scattering case), the difference in incidence angle between
both acquisitions causes a relative shift in frequency, Af, between both backscattered

signals (Gatelli et al., 1994):

Af =— ng cot(0—a, ) (2.34)

This relative frequency shift depends on the length of the perpendicular baseline and the
local slope, a;. The resulting non-common fractions of the range signal spectra cause a
decrease of coherence, reaching zero coherence when the spectral shift exceeds the
bandwidth W of the signal. Hence, coherence over flat terrain will be completely lost
when the baseline exceeds a certain length, called the critical baseline. In case of ERS,
the critical baseline is ~1100 m. Local slope alters the relative frequency shift between
both signals and therefore the slant-range decorrelation (see Figure 2.6). The strongest
decorrelation occurs for slopes facing the radar. With increasing baseline, the blind
angles, i.e. slopes where total decorrelation occurs, expand. The effect of the
wavenumbershift can be reduced with common band filtering (Gatelli et al., 1994).

When elementary scatterers in a resolution cell are not confined to a plane but
distributed in vertical direction and total backscatter is a superimposition of backscatter
contributions from different heights, z, which correspond to the interferometric phase of
2nz/h, (Krieger et al., 2007), another baseline dependent decorrelation factor arises,
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referred to as volume decorrelation. Volume decorrelation can be formulated as the
Fourier transform of the height distribution, z’, of the temporally stable backscatter with
ove being the effective backscatter coefficient for temporally stable scatterers (Askne et
al., 1997):

h af( B, z']
J-O'W (zV)e (@) g
Y votume = (2.35)

The vertical backscatter distribution must be known respectively approximated in order
to describe volume decorrelation effects (Askne et al., 1997; Gaveau, 2002; Hajnsek et
al., 2008). It has to be noted that the division of spatial decorrelation into separate slant-
range and volume decorrelation terms is only valid under the assumption that the stable
part of volume backscatter is solely a function of the height above the surface plane.

Temporal decorrelation traces back to changes at the Earth’s surface between both
acquisitions. This includes movements of the scatterers as well as changes in the
dielectric properties. When assuming Gaussian motion statistics, coherence decays
exponentially with increasing rms movements of the elementary scatterers in a
resolution cell in horizontal, o,, and vertical, ., direction (Zebker & Villasenor, 1992):

2
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According to Equation (2.36), temporal decorrelation gains importance with decreasing
wavelength. In case of C-band repeat-pass coherence, total decorrelation should occur
with ~ 3 cm rms motions (Zebker & Villasenor, 1992; Floury et al., 1997). The

sensitivity to either horizontal or vertical movements changes with the incidence angle.

2.2.3 Coherence over land surfaces

The time scales of temporal decorrelation as well as the magnitude of volume
decorrelation effects depend on the land cover type, which is why repeat-pass coherence
has been found suited for the mapping of different types of land cover including forest
land (Wegmiiller & Werner, 1995; Dammert et al., 1999; Strozzi et al., 2000; Weydahl,
2000; Engdahl & Hyyppd, 2003; Srivastava et al., 2001, 2006; Santoro et al., 2007a).
SAR intensity measurements over forest can be considered a sum of a forest floor and a
vegetation contribution. This also applies in case of decorrelation, which is why the
different decorrelation mechanisms relevant for the forest canopy and the ground
surface have to be considered.

Over bare surfaces, high coherence is usually observed for long temporal baselines.
Rocks or dry soils do not change for long periods and coherence remains high (Zebker
& Villasenor, 1992; Weydahl, 2001). If no soil moisture is involved, sand erosion and
accumulation can lower coherence, as reported in Liu et al. (2001) for ERS repeat-pass
measurements with 35 days repeat cycle over an Algerian desert area. Outside of the
arid zones, Luo et al. (2001) identified heterogeneous soil moisture variations in
resolution cells characterized by rough soil as source of temporal decorrelation in C-
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band. Homogeneous soil moisture changes between the acquisitions do not result in
significant decorrelation even if the differences in intensity are large (Hagberg et al.,
1995; Borgeaud & Wegmiiller, 1996; Sarabandi & Wilson, 2000; Luo et al., 2001;
Srivastava & Jayaraman, 2001). As observed in Smith et al. (1996), coherence loss in
C-band because of heterogeneous soil moisture variations tends to be a monotonic
function of the temporal baseline. Smith et al. observed that coherence over open fields
decreased from 0.8 to 0.5 for temporal baselines between 3 and 15 days. Similar
observations were reported in Srivastava & Jayaraman (2001). Freezing of the soil in
the period between the acquisitions was as well found not to affect C-band repeat-pass
coherence as strong as intensity. In Borgeaud & Wegmiiller (1996) and Wegmiiller &
Werner (1995), high coherence for ERS-1 measurements with a three-day repeat
interval (acquired during the so-called ERS-1 ICE-Phase) was observed when soil
freeze occurred between the acquisitions and intensity dropped for more than 4 dB. In
contrast, changes in roughness, e.g. because of tillage, between the observations cause
strong decorrelation (Moeremans & Dautrebande, 2000; Blaes & Defourny, 2003).
Strong decorrelation can as well be assigned to rain events in the period of the
acquisitions. In Drezet & Quegan (2006) a Pearson correlation of -0.79 between ERS-
1/2 tandem coherence of forest floor and the maximum daily rain rate in 10 days prior to
the satellite measurements was reported. In Askne & Santoro (2005), a Pearson
correlation of forest floor coherence (ERS-1/2 tandem) and the mean rain rate in six
days prior to the acquisitions of -0.81 was found. Rain between the acquisitions results
in ground coherence to drop even below 0.2 as shown in Koskinen et al. (2001), Santoro
et al. (2002) and Pulliainen et al. (2003) for ERS-1/2 tandem coherence over
Scandinavian boreal forest sites.

Water surfaces are generally prone to complete decorrelation in even the shortest time
scales because of constant surface movements. Exceptions arise for frozen water
surfaces for which Weydahl (2001) reported an ERS-1/2 tandem coherence of 0.31 to
0.39. Built-up areas represent the type of land cover that usually exhibits the highest
coherence for very long repeat intervals in the range of months or even years (Usai &
Klees, 1999; Strozzi et al., 1999; Weydahl, 2001). Built-up areas, however, introduce a
sub-pixel topography that cannot be compensated for when estimating coherence, which
is why coherence decreases dependent on baseline length and causes built-up areas not
to exhibit values as high as for stable open fields in case of short repeat intervals
(Wegmiiller & Werner, 1995).

High coherence over open ground is usually observed in case of frozen or stable dry
conditions when the fluctuations of free soil water are minimized. When a snow cover is
present, decorrelation can occur because of wind induced erosion and accumulation of
snow or snowfall (Guneriussen et al., 2001; Rott et al., 2003; Li & Sturm, 2002).
Interferometric phase shifts, @y,,,, because of a dry snow layer of depth d; with
permittivity &’ (which depends on snow density) can be calculated according to
Guneriussen et al. (2001):

o, = —47”ds (cos@ —~&'-sin &’ ) (2.37)

when accounting for refraction and the different propagation constants in snow and air.
Volume scattering effects in C-band can usually be neglected unless the snow cover
reaches a depth of tens of meters and/or ice lenses, pipes or grain clusters develop
within the snowpack (Rignot et al., 1994; Mitzler et al., 1997; Hoen & Zebker., 2000).
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When wind induced erosion or accumulation - snowfall can have the same effect -
between the acquisitions occur, the interferometric phase shift due to the snow pack can
be significantly altered at the sub-pixel scale and decorrelation occurs. Simulations,
carried out by Rott et al. (2003), indicated relevant temporal decorrelation in C-band for
snowfall events typical for the Alps. Finally, the melt of snow has been found to cause
strong decorrelation in ERS-1/2 tandem coherence (Strozzi et al., 1999; Guneriussen et
al., 2001, Pulliainen et al., 2003; Engdahl et al., 2004), as it is accompanied by large
scattering geometry and permittivity changes.

Forests are subject to temporal and volume decorrelation. ERS-1/2 tandem coherence
measured over dense forest typically varies between 0.1 and 0.5. The relevance of
volume decorrelation in C-band has been reported to be of minor importance compared
to temporal decorrelation for baselines up to ~300 m (Askne & Smith, 1996; Gaveau,
2002; Drezet & Quegan, 2006). Model simulations in Askne & Santoro (2005), carried
out for a Scandinavian boreal forest with a maximum stem volume of ~550 m>/ha,
predicted volume decorrelation factors of 0.48 in case of perpendicular baselines up to
220 m, showing that even when temporal decorrelation dominates, volume effects can
have a significant impact on ERS-1/2 tandem coherence.

Temporal decorrelation over forest is mainly caused by movements of the scatterers.
Wind speed can be considered the most critical parameter, determining temporal
decorrelation over forest. Observations, confirming this expectation, have been reported
in Proisy et al. (1999), Askne et al. (2003) and Drezet & Quegan (2006) where a
decrease of dense forest coherence up to a wind speed of ~4 m/s was found for ERS-1/2
tandem data acquired over Swedish boreal and French and British temperate forest,
respectively. The time scales of decorrelation because of wind are very short
(Narayanan et al., 1992, 1994). Significant temporal decorrelation has been observed for
temporal baselines as short as 28 minutes in Santoro et al. (2007a) for ERS-ENVISAT
coherence. As wind represents a spatially heterogeneous force, unfavorable effects (at
least with respect to forest mapping applications) are possible. Castel et al. (2000)
observed wind directional effects in ERS-1/2 tandem coherence over mature pine forest
in France. The coherence of forest was observed to be a function of the wind exposition
of forests located on hilly terrain.

The highest coherence over forest has been reported for winter frozen conditions
(Koskinen et al., 2001; Pulliainen et al., 2003; Santoro et al., 2007) when an increased
transmissivity of the frozen canopy causes the main backscatter to come from the larger
and stiffer branches. As soon as rain, freeze/thaw or snow melt is involved, coherence
drops to a low level (Drezet & Quegan, 2006; Koskinen et al., 2001, Pulliainen et al.,
2003; Santoro et al., 2007; Askne et al., 2003, Engdahl et al., 2004). Drezet & Quegan
(2006) observed that ERS-1/2 tandem coherence over dense temperate forest never
exceeded 0.2 when rain at one of the acquisition days exceeded 3 mm. An example for
the impact of freeze/thaw has been illustrated in Santoro et al. (2007) for Siberian boreal
forest. Forest stands located on slopes exposed to the East showed lower coherence than
those located on slopes tilted towards the West in an ERS-1/2 tandem coherence image
acquired in late October when day and night temperatures oscillated around 0° C. The
observation was considered a result of unequal sun illumination in the morning hours,
when the tandem pair was acquired. Stands on east-facing slopes were likely to be
thawed whereas the stands located on the west-facing slopes were probably still frozen
because of the sub-zero temperatures in the night before.
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The coherence contrast between open areas and dense forest varies with the
meteorological and environmental imaging conditions and with the length of the
perpendicular baseline. The best contrast can be expected for very stable ground
conditions, i.e. when no heterogeneous soil moisture or snow related variations occur,
and windy conditions lowering coherence over dense forests. With respect to forest
mapping applications, these conditions are often referred to as the ‘optimal’ conditions
(Koskinen et al., 2001; Santoro et al., 2002, 2007; Pulliainen et al., 2003; Engdahl et al.,
2004). Perpendicular baselines of at least 100 m (in case of C-band) further increase the
contrast because of additional volume decorrelation in the forest canopy (Askne &
Santoro, 2005, 2007; Santoro et al., 2007). Short repeat intervals are suited best for
forest mapping applications as the risk of strong decorrelation at the forest floor due to
rain, freeze/thaw, snowmelt, soil moisture variations, etc. is lower. Although this
assumption is generally reasonable, exceptions may arise when, for instance, temporally
oscillating meteorological conditions (e.g. diurnal freeze/thaw cycles under hibernal
conditions) cause more or less equal conditions in repeated intervals.

Coherence over forest can be expected to depend on tree species as the differing crown
architectures of the species should cause differences in the sensitivity to wind induced
movements of the scatterers. Tormé (1999), for instance, classified pine and spruce with
reasonable accuracy using ERS-1/2 tandem coherence. Koskinen et al. (2001) observed
higher coherence over deciduous forest than over coniferous forest in ERS-1/2 tandem
coherence from winter. Castel et al. (2000) reported higher ERS-1/2 tandem coherence
over coniferous forest than over deciduous forest stands in Southern France for two
acquisitions from summer. In winter, the opposite observation was made. These
observations suggested that in the leaf-off period in winter, deciduous species exhibit
lower sensitivity to wind-induced motions than coniferous species whereas in summer
the leaves are likely to introduce a higher sensitivity to wind induced motions than the
needles of conifers. All these studies, however, did not consider the possibility that the
forest types distinguished may have represented different stem volume ranges.

2.2.4 Stem volume and biomass retrieval by means of C-band repeat-pass
coherence

C-band repeat-pass coherence measurements, mainly those of the ERS-1/2 tandem
mission, have been reported to be strongly correlated to boreal and temperate forest
stem volume (Hyyppd et al., 2000; Manninen et al., 2000; Koskinen et al., 2001;
Fransson et al., 2001; Santoro et al., 2002, 2007; Askne et al., 2003; Pulliainen et al.,
2003; Wagner et al., 2003; Engdahl et al., 2004; Askne & Santoro, 2005) and biomass
(Luckman et al., 2000; Castel et al., 2000). Coherence has been found to decrease
exponentially with increasing forest stem volume; in some cases the relationship can
appear rather linear though (Fransson et al., 2001). Comparable to C-band intensity
measurements, the relationship is driven by the coherence contrast between the
temporally stable forest floor and the unstable forest canopy backscatter contributions in
the measurements. With increasing forest cover, the contribution from the highly
coherent forest floor decreases and the contribution from the less coherent forest canopy
increases. In addition, the tree height and baseline dependent volume decorrelation and
InSAR geometry affect the relationship. Thus, coherence is sensitive to canopy closure,
which is correlated to the diameter and density of the trees (Zeide et al., 1985; Van Laar
& Akca, 2007; Hirata et al., 2009), and through volume decorrelation and InSAR
geometry to the tree height. This explains the high correlation to stem volume as
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coherence reflects the horizontal (diameter, density) and vertical dimension (tree height)
of forest growth.

The multitemporal consistency of ERS-1/2 tandem coherence measurements over boreal
forest has been observed to be superior to that of ERS intensity measurements (Askne et
al., 2003; Santoro et al., 2004; Askne & Santoro, 2005) as long as no strong
decorrelation of the ground contribution in the signals because of rain or snowmelt
occurred. Multitemporal consistency analysis, i.e. when correlating the coherence in one
image to the coherence in another image, helps to evaluate if measurements are
consistent with respect to the forest biophysical information or noisy due to, for
instance, soil moisture or other environmental effects. These results indicated that
coherence is less prone to stem volume independent variations than intensity.

It has been shown that boreal forest stem volume retrieval by means of ERS-1/2 tandem
coherence can reach accuracies in the range of ground surveys (Santoro et al., 2002), i.e.
~ 15 % relative error. The contrast of forest floor and dense forest coherence has been
reported to be an indicator for the suitability of an ERS-1/2 tandem coherence image for
stem volume retrieval (Engdahl et al., 2004). As described in the last section, a
maximum contrast can be observed in case of stable frozen ground and windy
conditions, lowering coherence over forest — these conditions are from now on referred
to as the ‘optimal‘ conditions - and perpendicular baselines in the range of 100 to 250
m, further increasing the contrast due to the baseline dependent volume decorrelation.
For a test site in Finland, ERS-1/2 tandem coherence, acquired under stable frozen
conditions, was found to be sensitive to stem volume changes up to the maximum stem
volume in the test region of 540 m>/ha (Pulliainen et al., 2003). Consistent stem volume
estimates, however, were reported feasible for stem volumes up to only 200 m’/ha in
Santoro et al. (2002) when comparing pixel-wise stem volume estimates from ERS-1/2
tandem coherence, acquired under optimal conditions, and stem volume measurements
from Swedish National Forest Inventory plots. This was considered a consequence of
the increasing uncertainty in the coherence estimation, the lower the coherence gets (see
Equation (2.29)), and a reduced sensitivity of coherence to stem volume changes at
higher stem volumes. The saturation level of coherence can drop to low stem volume
levels, often around 100 m’/ha, in case of unstable imaging conditions, for instance
because of rainfall before the acquisitions respectively the emerging heterogeneous soil
moisture variations afterwards. Still, such conditions have been found to allow
consistent mapping of at least a few low stem volume classes (Wagner et al., 2003;
Gaveau et al., 2003; Tansey et al., 2004). Rainfall or snowmelt between the
acquisitions, however, cause strong decorrelation, diminishing most of the forest related
information in the coherence images (Santoro et al., 2002; Pulliainen et al., 2003). In the
tropical regions, where such adverse imaging conditions occur frequently, the stem
volume or biomass mapping capabilities of ERS-1/2 tandem coherence are much
reduced (Rignot, 1996). Still, some forest related information could be derived from
ERS-1/2 tandem coherence acquired over tropical forest (Ribbes et al., 1997; Tansey et
al., 2004).

The effect of forest structural diversity on the accuracy of forest stem volume retrieval
by means of ERS-1/2 tandem coherence has been discussed in Santoro et al. (2007) with
respect to the forest structural parameter relative stocking. Siberian boreal forests with
high relative stocking were found to allow higher stem volume retrieval accuracy than
stands with low relative stocking. It was argued that forest stands with higher relative
stocking represented a more homogeneous and managed type of forest. The definition
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and a more detailed discussion of this parameter will follow in Chapter 3.3. Yet, the
highest accuracy of stem volume retrieval by means of ERS-1/2 tandem coherence was
achieved for tandem pairs that were acquired under stable weather conditions with high
ground coherence over a very homogeneous and managed type of boreal forest in
Sweden (Santoro et al., 2002; Askne et al., 2003). The results achieved at other test sites
in Sweden and Finland were generally worse (Pulliainen et al., 2003; Askne & Santoro
et al., 2005, 2007a, 2007b), even when having ERS-1/2 tandem pairs that were acquired
in winter. The lower accuracy could, at least partially, be assigned to a higher forest
structural diversity at these test sites. In Askne & Santoro (2007a), it was shown that
stem volume retrieval at one of those test sites in Finland improved when only
considering large homogeneous stands with high stem volume proportions of pine and
spruce.
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Chapter 3 - Study area, ground and satellite data

In this chapter, the study area and the available ground reference and earth observation
data are presented. In Chapters 3.1 and 3.2, the main properties of test sites in Northeast
China and Central Siberia are summarized, followed by a discussion of structural
differences between the forests in the two regions in Chapter 3.3. In Chapter 3.4, the
available satellite and weather data are described.

3.1 Chinese test sites
3.1.1 Northeast China

Northeast China comprises the provinces of Heilongjiang, Jilin, Liaoning and the
eastern part of the autonomous Inner Mongolian provinces. Dongbei, that is how the
Northeast is called in China, covers an area of ~ 1.5 million km? and is located between
the North Korean border in the Southeast, the Russian border in the North and the
Mongolian border in the West. In geographic coordinates, Northeast China ranges from
38 to 53° North and from 115 to 135° East. Three major mountain ranges, surrounding
the Northeast China Plain, a large synclinorium filled with Quaternary sediments and
altitudes between 200 and 300 m, characterize the landscape: namely the Greater
Hinggan (chin. Daxinganling), Lesser Hinggan (chin. Xiaoxinganling) and Changbai
(chin. Changbaishan) Mountains (Figure 3.1), which reach maximum elevations of 1400
m, 1160 m and 2691 m, respectively (Kostak et al., 2003).

The three mountain ranges represent the main wood supply for China and the large
fertile Northeast China Plain is referred to as the grain base of China. Soybean and
sugar beet are the main crop types grown. The arid grasslands of Inner Mongolia west
of the plain and the Sanjiang Plain in the Northeast represent the border area to
Mongolia and Russia respectively. According to Burger & Zhao (1988 as quoted in
Qian et al., 2003) 38.4 % of Northeast China is covered with forest but changes have
occurred since 1988. In most of the forest areas, deep dark brown forest soils can be
found which developed on basaltic and granitic bedrock and which show an Ah horizon
containing a high percentage of organic matter. In the Daxinganling area brown
coniferous forest soils with eluvial Ae and iron-enriched B-horizons can be found.
Large fractions of the Northeast China Plain are characterized by black chernozem and
chestnut soils (Qian et al., 2003). In the Southwest of the Plain, close to the sandy Inner
Mongolian grasslands, large areas of sand can be found.

The monsoon climate of Northeast China exhibits steep latitudinal and longitudinal
gradients and changes latitudinally from warm to cool temperate and longitudinally
from humid to semiarid (Wang et al., 2006). The mean annual temperatures are below
zero in the northernmost regions along the Amur River and around 10° in the southern
regions close to the Yellow Sea (Box & Choi, 2003). Annual precipitation decreases
longitudinally from 900 mm in the East to 200 mm in Inner Mongolia (Chao, 1994).
The topography has a strong influence on the rain distribution. The highest rain rates are
measured at the high altitudes of the Changbai Mountains. In winter, the climate is
strongly continental with dry cold northwesterly winds coming from Mongolia and the
continental Russian Far East. In summer, the wind comes from the Yellow Sea, causing
most of the annual precipitation to fall in this season.
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Figure 3.1. Location of the test sites in Northeast China. The map shows the latest
global land cover product, the MERIS GLOBCOVER map, with 300 m pixel size
(Bicheron et al., 2008).

3.1.2 Test sites in Northeast China

The Chinese Academy of Forestry, Beijing, has made available forest inventory data for
three test sites located in the most important forest ranges in Northeast China: the
Tuqiang forest compartment in the Daxinganling area, the Dailing forest compartment
in the Xiaoxinganling area and the Lushuihe forest compartment in the Changbai
Mountains. For all three test sites, forest maps have been selected and digitized. The
data were collected in the framework of the Local Forest Management Planning
Inventory (Pang et al., 2003, 2005), which is completed every 10 years for each Forest
Enterprise.

The smallest unit in the forest maps is the forest stand sub-compartment, which is also
the smallest operational unit in China’s forest management. In a sub-compartment soil,
relief and tree conditions are uniform and each forest stand sub-compartment
experiences uniform management. The boundaries are mostly inferred from air photos
and topographic maps. The attributes of each sub-compartment are obtained by field
measurements taken at sample plots in each sub-compartment. For all three test sites,
stem volume of all standing trees in m*/ha without open grown trees (old trees in young
stands) and average tree height in meters were provided. The accuracy of these
measurements is unknown as well as the date of the latest update. The polygon based
maps were rasterized and edge-eroded within a 50 m wide buffer zone along the stand
edges in order to minimize the effect of mis-registrations between inventory and
satellite data and to account for the spatial estimation principle of coherence which
results in uncertainties when estimating over boundaries. The average size of the
rasterized polygons has been reported in Table 3.1.
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3.1.2.1 Daxinganling

The Changqing forest farm in the Tuqiang forest compartment is located at the southern
banks of the Heilongjiang River in Heilongjiang province (53°8° N, 123°4’ E). The area
is located in the northern Daxinganling and is characterized by gentle hills and
relatively smooth topography. Slopes are on average below 5° (the standard deviation is
3°). Elevations range from 338 m to 768 m. The soils are mainly brown coniferous
forest soils (Chao, 1994; Qian et al., 2003). The climate is extremely continental with
long dry winters without much snow. The region represents the coldest area of China.
The mean annual temperature is below 0° C and the mean temperature in January is
below -30° C (Qian et al., 2004). Summers are short with about 100 frost-free days. The
annual precipitation is about 360 to 500 mm and occurs almost completely in the warm
months. Forests are dominated by larch (Larix Gmelii) and represent the southern
extension of the boreal zone. The major broad-leaved species is birch (Betula
Platyphylla and Betula Dahurica). Also pine (Pinus Sylvestris var. Mongolia), oak
(Quercus Mongolica) and poplar (Populus Davidiana) can be found in the test site. An
altitudinal zonation is not present since the topography is mostly gentle. The area has
been widely affected by a catastrophic forest fire in May 1987 (Wang et al., 2006). 2.31
x 10° ha and 70% of the forests in the area of the Tugiang Forest compartment were
destroyed. In order to avoid forest diseases, all burnt trees were removed shortly after
the fire. Figure 3.2 shows the area in the year 2005. Young regrowing stands of birch
and larch dominate the scenery. Because of the fire, the maximum stem volume in the
test site is low (125 m’/ha).

For a second test site, located close to the Changqing forest farm in the Tuqiang forest
compartment, the Chinese Academy of Forestry provided tables of diameter at breast
height (dbh), height and stem volume without any georeference information which is
why a comparison of coherence with the forest parameters given in the inventory data
was not possible but the inventory data extended for the diameter information could be
used to reconstruct forest structural properties (see Chapter 3.3). The forest at this test
site was similar to the forest at the Changqing forest farm and was strongly affected by
the fire in 1987. The maximum stem volume here was 200 m*/ha.

Figure 3.2. Young regrowing birch and larch at Daxinganling (left) and Mixed-
Broadleaf-Korean-Pine forests at Xiaoxinganling (right).
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3.1.2.2 Xiaoxinganling

The second test site is located in the Xiaoxinganling mountain range in the Liangshui
Natural Reserve, Heilongjiang (47°10° N, 128°53” E). The altitude in the area ranges
from 200 to 1200 m and the average slope is 10° (standard deviation is 5°). Annual
precipitation is in the range of 600 to 800 mm, which mostly falls in July and August.
The mean annual air temperature is 2.8 °C (-31° in January and 32.8° in July) (Wang,
2006; Chao, 1994). The frost-free period is one month longer than at Daxinganling. The
reserve comprises primary forests of mixed-broadleaf-Korean-pine (Pinus Korianensis)
accompanied by more than a dozen hardwood species like maple (Acer Manchuricum)
or oak (Quercus Mongolica) as well as secondary forest in all development stages of
larch (Larix Dahurica), fir (Picea Abies) or spruce (Picea Korianensis) or plantations of
pine, larch and spruce (Qian et al., 2003). The area belongs to the northern extension of
the temperate mixed forest region. An altitudinal zonation of forest types can be found
for the mountain peaks in Xiaoxinganling. Above 800 m, the proportion of fir and
spruce increases and that of pine and broadleaf species decreases. The stem volume is
mostly below 200 m*/ha, indicating a low productivity of the stands in the area. The test
site has been the base for forest research since the 1950s and is a reserve since 1997.

3.1.2.3 Changbai

The third test site is located in the Changbai mountain range near the Chinese-North-
Korean border (42°60° N, 128°10° E) in Jilin province. The study site belongs to the
Changbai Mountain Natural Reserve. It was established in 1960 and therefore has a
longer history of protection than the other two test sites. The climate is warmer than at
Xiaoxinganling with annual average temperatures of 5° C. Precipitation at the montane
forest belt below 1100 m is the same as for Xiaoxinganling. With increasing altitude,
the annual average temperature decreases and the precipitation increases up to 1300 mm
for the highest peaks of the Changbai Mountain (which are not located in the test site).
In the Changbai Mountain range, forests show a distinct altitudinal zonation (Qian et al.,
2003). Below ~ 1100 m, Korean pine is the major tree species accompanied by a large
number of hardwood species. Compared to the Xiaoxinganling mountain range, the
composition of the hardwood species is more diverse with, for instance, 13 different
maple types occurring (Qian et al., 2003). Above ~ 1100 m altitude spruce and fir are
the dominant species with a declining occurrence of pine. Only few broadleaf species
like birch (Betula Costata) grow in this altitude. Above this altitudinal zone a sub-alpine
dwarf-belt can be found with almost exclusively birch (Betula Ermanii) growing here.
This belt is not represented in the test site. Stem volume reaches 500 m’/ha but the
majority of stands has less than 400 m’/ha. The average slope in the area is 10°
(standard deviation is 7.5°).

Table 3.1. Forest properties at the test sites in Northeast China.
Daxinganling Xiaoxinganling  Changbai

Area [km?] 606 221 311
Number of stands 1339 2170 2523
Mean & Max. stand size [ha] (after edge-erosion) 10/ 68 7.1/62 3.5/34
Stem volume [m’/ha] (mean / min-max) 20/ 1-125 126/ 1-548 190/ 1-502
Tree height [m] (mean / min-max) 7/0-21 13/0-46 17/0-30
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3.2 Central Siberian test sites

As for the large area of Northeast China only three test sites were available that were
furthermore covered by only three ERS-1/2 tandem pairs (cf. Chapter 3.4), in situ
measurements for several test sites located in the Siberian forest territories of Chunsky
(57° 45’ N, 96° 43’ E), Bolshe-Murtinsky (57° 5’ N, 92° 55° E) and Primorsky (55°46°
N, 102°30’) were considered as well. Each of the forest territories comprised four to
five forest compartments with a size between 200 and 400 km”. These compartments are
named according to their location within the forest territory, e.g. Chunsky North or
Bolshe-Murtinsky Northeast. Out of the 13 forest compartments at Primorsky, Bolshe-
Murtinsky and Chunsky, five have been selected because of the quality of the inventory
data for these compartments. These compartments are Bolshe-Murtinsky Northeast,
Bolshe-Murtinsky Northwest, Chunsky East, Chunsky North and Primorsky East
according to their location within the forest territories (see Figure 3.3). From now on,
they are referred to as Bolshe NE, Bolshe NW, Chunsky N, Chunsky E and Primorsky
E. Much experience with these sites has been gathered in several studies preceding this
one (Schmullius et al., 2000; Wagner et al., 2003; Eriksson et al., 2003; Santoro et al.,
2007), witnessing the quality of the inventory data for these test sites. The test sites are
located in the southern taiga within the administrational territories of Irkutsk and
Krasnoyarsk. The climate is extremely continental with annual snow cover periods of
eight months and growing periods in the short and moist summers as short as ~90 days.
The temperatures during the cold and dry winters reach -50° C. Forest cover is
generally in the range of 60-70% and reaches an all Russian maximum in the Irkutsk
territory with 81% (Shvidenko et al., 2007). Mature and over-mature forests in this
region are mainly composed of coniferous species like pine (Pinus Sylvestris), larch
(Larix Dahurica), fir (Abies Sibirica), spruce (Picea Sibirica) and cedar (Pinus
Sibirica). Younger forests are dominated by birch (Betula Pendula) and aspen (Populus
Tremula), which grow first after disturbance. In natural forest succession, these pioneer
birch and aspen forests are replaced by coniferous species after 60 to 100 years.

The forest inventory data available was collected in the framework of the Russian
Forest Inventory and Planning (FIP), which is completed every 10 to 20 years for each
forest enterprise. The ground data consisted of digital forest stand boundary maps in
which each polygon represented the primary inventory unit of the Russian inventory.
The borders of these polygons were derived from aerial photographs and reflected forest
stands of comparable relative stocking, site index, species composition, age, etc. The
forest attributes were measured on the ground by an ocular field inventory at sample
plots. These attributes comprised information about stem volume per hectare of all
living trees with a diameter at breast height > 6 cm including bark (for young stands
also stems with diameter at breast height <6 cm are included), age of the dominant
species in the stand, quadratic mean diameter at breast height (dbh) and average height
for all dominant species, species composition and relative stocking. Quadratic mean
diameter is calculated from stem density per hectare and basal area B,, i.e. the product
of the average crossectional area at breast height and stem density per hectare, with

dbh=,/4B, /7N (West, 2004). Species composition is given in steps of 10 % of total

stem volume. In case of dbh and height, the measurements for the dominant species
were converted to the mean stand height and dbh using a weighted average of the single
species. Age is not given for the dominant species in a stand but the one with the
highest economic value. Cedar has the highest value, followed by pine. The lowest
value is assigned to deciduous species (Schmullius et al., 2001). Relative stocking
relates the basal area of a stand to an ‘optimal’ basal area. The definition of the
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optimum depends on the development stage of the forest, the site quality and the forest
type. It is given in steps of 10 % from 0 to 100 %. The parameter relative stocking will
further be discussed in Chapter 3.3.

The accuracy of the forest inventory data is not known. Legally the accuracy of the stem
volume estimates should be between 12 and 20 % (confidential probability 0.95). A
confidence interval as wide as + 20 m’/ha has been considered possible though (Balzter
et al., 2002), in particular for stands that are difficult to access. In order to minimize the
influence of mis-registrations between satellite data and FI data, the FI data was
rasterized to the pixel size of the ERS data (50x50 m?) and all pixels at the edge of a
forest stand were removed. The buffer zone was 50 m wide.
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Figure 3.3. Location of the Siberian forest compartments considered for this study. The
map shows the latest global land cover product, the MERIS GLOBCOVER map, with
300 m pixel size (Bicheron et al., 2008).

3.2.1 Bolshe-Murtinsky

The Bolshe-Murtinsky forest territory (57° 5’ N, 92° 55” E) is located along the banks
of the Yenisei River. The two forest compartments considered, Bolshe NE and Bolshe
NW, comprise 1251 and 1604 stands with an average size of 25 and 17 ha, respectively.
Bolshe NE is located east of the Yenisei River and is characterized by hilly terrain.
Steep slopes can be found along the eastern banks of the Yenisei River. Altitudes on
this side of the river increase to more than 300 m above sea level and fall again to a
level of 200 m in the easternmost parts of the test site Bolshe NE. The forests, which are
growing on peaty forest floor, are dominated by naturally growing uneven-aged stands,
hardly influenced from harvest or other anthropogenic disturbance and thus show a
heterogeneous structure. Recent clear-cuts can be found in the compartment though.
The main tree species are fir, spruce, birch and aspen with only small percentages of
pine, larch and cedar at Bolshe NE. Bolshe NW is located west of the Yenisei River in
the Central Siberian flood plain. Topography is mostly gentle with heights varying
between 220 and 260 m. Forests in these compartments have been intensively harvested
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for several decades and are dominated by even-aged and more homogeneous forest
stands regrowing after clear-cutting. Compared to Bolshe NE, the northwestern forest
compartment has a higher percentage of cedar and a lower percentage of aspen.
Amongst the five forest compartments selected for this study, Bolshe NE and NW have
the highest average stem volume of 162 and 214 m’/ha, respectively.

3.2.2 Chunsky

The Chunsky forest territory (57° 45> N, 96° 43’ E) is located south of the Angara
River. The two forest compartments considered for this study, Chunsky N and E,
comprise 1284 and 1113 stands with average sizes of about 30 ha, which is larger than
the average stand size at the other compartments. The topography is mostly flat in the
northern part of Chunsky N with altitudes ranging from 300 to 400 m. In the southern
part of Chunsky N, steeper slopes can be found along stream valleys crossing the area
mainly from North to South. Topography at Chunsky E is mostly gentle with altitudes
ranging from 200 to 250 m. Only few peaks reach altitudes up to 350 m. Chunsky N and
E are characterized by a similar tree species composition. In contrast to the Bolshe-
Murtinsky compartments, the percentage of larch and pine is much higher whereas fir
and cedar are almost not present. The existence of forestry infrastructure in form of
roads and railroads close to the forest compartments indicates active exploitation of the
forests at the forest compartments.

3.2.3 Primorsky

The Primorsky forest territory (55° 46° N, 102° 14’ E) is located at the southern banks
of the Bratskove Reservoir. The easternmost forest compartment, Primorsky E,
comprises 1490 stands with an average stand size of 20 ha. The topography at
Primorsky E is rather gentle with a few steep slopes along two riverbeds crossing the
area mainly from North to South. Altitude ranges from 440 m above sea level in the
stream valleys to 600 m at the peaks between the stream valleys and at hills in the
westernmost part of the test site. The compartment is located close to the city of Bratsk
and is characterized by a grid of roads indicating an extensive logging of the forests.
The tree species composition is very similar to that at the Chunsky test sites.
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Figure 3.4. Tree species composition (in percent of total stem volume) at the Siberian
test sites.
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Table 3.2. Forest attributes at the selected Siberian test sites for all stands in the
inventory data respectively for all stands that were used for the analysis, i.e. with a
stand size of >2 ha, stem volume >0 m’/ha and an average slope per stand of <10° (for
an explanation see Chapter 4.1).

Chunsky East (last FI update 1998) Chunsky North (last FI update 1998)
All Used All Used
(1113 stands) (470 stands) (1284 stands) (591 stands)
Mean | Max. SD | Mean | Max. SD | Mean | Max. SD | Mean | Max. SD
Volume |56 | 420 | 118 | 130 | 420 | 115 | 136 | 430 | 110 | 142 | 390 | 104
[m’/ha]
Hfrlf]ht 3 27 10 ] 15 28] 9 | 14| 28|10 16| 281 9
Stand
size 34 550 50 27 452 39 30 450 38 24 378 32
[ha]
RS [%] 52 100 26 58 100 18 51 100 23 58 100 14

Bolshe Northeast (last FT update 1998) Bolshe Northwest (last FI update 1998)
All Used All Used
(1604 stands) (499 stands) (1251 stands) (450 stands)
Mean | Max. SD | Mean | Max. SD | Mean | Max. SD | Mean | Max. SD
Volume | 6> | 450 | 109 | 161 | 380 | 101 | 214 | 470 | 120 | 231 | 470 | 106
[m’/ha]
Hfrf]ht 17 | 32 9 19 | 32 8 18 | 28 8 19 | 28 8
Stand
size 17 250 21 12 200 15 24 220 25 18 135 19
[ha]
RS [%] 55 100 23 60 100 15 61 100 23 65 100 15

Primorsky East (last FI update 1996)

All (1490 stands) Used (381 stands)
Mean | Max. | SD | Mean | Max. | SD
Volume
(miha) | 148 | 500 | 109 159 | 500 | 108
Height 145 | 59 | o | 14 | 29 | 8
[m]
Standsize | o | 5er | o4 | 30 | 240 | 21
[ha]
RS [%] 61 | 100 | 25 | 68 | 100 | 16

3.3 Forest structural considerations

As described in Chapter 1.1, the condition of the forests in Northeast China is far from
optimal. Large forest areas are characterized by low stem volume, a lack of mature and
over-mature forests and growth rates of planted forests far below the predicted rates
(Bull & Nilsson, 2004; Li et al., 2004). In contrast, the largest fraction of the forests in
Central Siberia is in the mature and overmature stages of forest development
(Shvidenko et al., 2007). It can be expected that forest structure in both areas differs and
that the differences should have had an influence on the ERS measurements and the
possible stem volume retrieval accuracy when considering results of previous studies
(Santoro et al., 2007; Askne & Santoro, 2007a). In general, forest biophysical parameter
retrieval can be expected to perform best for the more homogeneous and managed types
of forests.
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In Santoro et al. (2007), it was shown that stem volume retrieval by means of ERS-1/2
tandem coherence at the Chunsky and Bolshe test sites improved significantly when
only considering stands with high relative stocking. As relative stocking was found to
have a major effect on the accuracy of stem volume retrieval by means of satellite
measurements, it was of interest if the structural deficits of the forests in Northeast
China reflected in an overall lower relative stocking. Information about relative stocking
was only given for the Siberian but not the Chinese test sites. Stem volume and height
were the only forest parameters that were available for all test sites. Santoro et al.
(2007) showed that different relations between tree height and stem volume existed for
Central Siberian boreal forest stands with low and high relative stocking, respectively.
The results indicated that it should be possible to distinguish forests with different
relative stocking by means of the stem volume to height relation regardless of the
species composition and site quality. Thus, the scope of the analysis presented in this
section was to reconstruct the relation between tree height, stem volume and relative
stocking in order to:

e provide more insight into the structural differences between the Siberian and
Northeast Chinese forests.

e evaluate if an identification of stands with low and high relative stocking is
possible for the Northeast Chinese forests based on the relations between height
and stem volume (the two forest parameters available for all test sites) in order
to be able to discuss the effect of forest structural diversity on the satellite
measurements.

Furthermore, the relationship between stem volume and height was of particular interest
for the modeling part of this study (see Chapter 5).

The investigation presented in this section considered so-called allometric relations
between plant growth dimensions, e.g. stem volume and height. Allometry, in a very
simple definition, relates easy to measure plant parameters like diameter of a tree stem
to the other dimensions of the plant and is therefore of high importance in forestry as
measurements of parameters like biomass or stem volume are laborious. Biomass
estimation, for instance, requires destructive methods, which means that the trees have
to be felled. Other parameters like dbh are very easy to measure and a link between dbh
and biomass facilitates the estimation of biomass tremendously. The ecophysiological
interpretation of allometric relations is very complex and beyond the scope of this
thesis. Size relations of plants are basically a function of the available growth energy
and the plants strategy in allocating this energy to different plant components in a
competing situation for energy in form of sunlight, water or nutrients. For a
fundamental description of allometry, the reader is referred to Niklas (1994) or Enquist
& Niklas (2001).

As a first step, the allometric interrelations between density, dbh, height and stem
volume at the Siberian test sites were analyzed with respect to tree species and relative
stocking. Stem density, D [ha'], i.e. one of the main growth dimensions of forest, was
not given in the inventory data but could be estimated with the following equation
(Pretzsch, 2002; West, 2004):

p.__ 47V 3.1)

x-dbh -h-f.
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where ¥ denotes stem volume [m’/ha], / the tree height [m] and f. the dimensionless
shape factor. The only parameter in Equation (3.1) that was not given was the shape
factor, £.. The shape factor converts a cylinder of volume dbh**h/4 to the volume of a
real stem. In actual fact, f; changes with the growth of a stem. Still, Baker & Luckman
(1999) found for Scots Pine and Norway Spruce that a factor of 0.5 represented a good
approximation unless the trees were very young. In Israelsson et al. (1994), a shape
factor of 0.45 was found to be a good approximation for temperate forests in the
Netherlands dominated by poplar, ash, oak, maple, willow and beech. According to
Franz et al. (1973 as quoted in Pretzsch, 2002), the shape factor can be estimated based
on tree height and dbh. This has been tested for a number of tree species using the dbh
and height measurements at the Chunsky North test site. Only stands where a single
species exceeded 80 % in the species composition were considered. The obtained shape
factors have been illustrated in Figure 3.5 for larch, pine, spruce and a generalized
expression for deciduous softwood species. The shape factors increased with increasing
diameter and height of the trees. For heights below ~ 15 m and a dbh below 10 cm, the
shape factors were almost identical for all species. For larger heights, respectively
diameters, the shape factors varied between 0.4 and 0.5. It has to be noted that, when
inferring from single trees on stand relations, the standwise distribution of dbh and tree
height needs to be known. However, this information was not given in the inventory
data. That is why, it was decided to use the relation obtained for pine (ignoring possible
effects of dbh/height frequency distributions) for the following analysis as it should
represent a good compromise for most species.
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Figure 3.5. Shape factor as function of dbh (left) and tree height (right) according to
Franz et al. (1973 as quoted in Pretzsch, 2002).

Figure 3.6 illustrates the relations between different forest properties at the Siberian test
sites. Plot (a) shows that the stem volume reached much higher levels in case of fully
stocked stands. Low relative stocking stands hardly exceeded a stem volume of 200
m’/ha. It has to be kept in mind that the age information in the inventory only referred
to the economically most valuable tree species in a stand so that age relations should be
interpreted with caution. As has already been shown in Santoro et al. (2007), the tree
heights for low relative stocking stands (e) were higher for a given stem volume than for
fully stocked stands (b). The allometric relation was expressed as a simple exponential
function (cf. Askne et al., 1997; Mette et al., 2004). For stands with high relative
stocking the observed relation was very close to the relation reported for fully stocked
Scandinavian boreal forests (Askne et al., 1997). The allometric relationship between
tree height and dbh, however, did not differ for low (f) or high (c) relative stocking.
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Figure 3.6. Relationship between stand age and stem volume (a), stem volume and
height (b & e), dbh and height (¢ & f) and dbh and density (d) for low (<40%) and high
(>80%) relative stocking, RS, at Chunsky, Bolshe and Primorsky.

Tree species-specific alterations of the relations were not significant, neither in the dbh-
height nor the stem volume-height relation; note that the specified species is the
dominant species in a stand (>50 % of total stem volume). This observation was
somewhat surprising as the dbh-height relation is commonly known to depend on
species, site quality and climatic conditions (Pretzsch, 2002; Wang et al., 2006). The
observations suggested that it was mainly the density that drove the volume differences
between low and high relative stocking stands for a given tree height (respectively dbh)
and that species and site quality specific alterations were of minor importance. When
comparing dbh and estimated density in the logarithmic scale in plot (d), this
assumption was confirmed. For both, high and low relative stocking, the logarithm of
density decreased linearly with increasing logarithm of dbh. The density of low relative
stocking stands was consistently lower than for fully stocked stands even though for
both an increased spread around the linear trend could be observed for the higher dbh
classes. This increased spread may have been related to what has been reported in Zeide
(1985). Zeide observed a deviation from the linear trend between the logarithm of
density and dbh for mature and over-mature stands due to a reduced ability of old
forests to close gaps in the canopy that occurred because of fallen trees.

The linear decrease of density with increasing dbh in log-log scale for close to fully
stocked stands was in good agreement with the so-called Reineke rule (Reineke, 1933).
According to the Reineke rule, the stand density, D, of fully stocked naturally growing
forests decreases with increasing stand average quadratic diameter at breast height and
both can be related to each other with the stand density index SDI (Pretzsch, 2002):

1.605
SDI = D( 25 j (3.2)
dbh

The SDI relates the observed stand density to the density that can be expected for a
stand with a mean quadratic dbh of 25 cm. The exponent -1.605 was considered a
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universal constant for all plant communities growing under maximum crowding
conditions, i.e. when growth is limited by the availability of resources. Although
Pretzsch (2006) showed that the exponent depends on tree species and Zeide (1985)
found the exponent to vary with forest age, the SDI still represents a widely applied tool
in forestry.

Based on Equation (3.2), the SDI has been estimated for the Siberian and the
Daxinganling (the one for which also dbh was given) test sites. The calculated SDI was
on average ~715 with a standard deviation of ~140 for high relative stocking (>80%)
forest stands at the Siberian test sites; when considering single species, the average SDI
varied between 697 (Cedar) and 852 (Pine). Lower SDIs were found for low relative
stocking stands (RS<=40%) with an average of ~240 and a standard deviation of 60. In
the histograms in Figure 3.7, it can be seen that the SDI tended towards lower values at
Daxinganling. This can be considered a sign of a stocking deficit. The maximum
observed SDI was approximately the same for both, the Siberian test sites as well as the
Daxinganling site (~1000), and in good agreement with values reported for fully
stocked stands in Europe (Sterba, 1991 as quoted in Pretzsch, 2002).
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Figure 3.7. Histograms of SDI (left column) and stem volume measurements versus
corresponding tree height for all stands (grey), SDI<250 (green) and SDI>650 (red).

When considering the stem volume-height relationship for stands with low respectively
high SDI (Figure 3.7, right), the same relations as for stands with high and low relative
stocking were found. The stands with high SDI showed almost the same trend for the
tree height as function of stem volume at both sites, i.e. Siberia and Daxinganling.
Stands with high SDI reflected the lower bound of the total range of tree heights for a
given stem volume. This was confirmed when plotting the fitted curves for the stem
volume and tree height relationship at the Daxinganling test site together with the
measured stem volumes and heights at the other Chinese test sites (Figure 3.8). The
high relative stocking curves described the lower bound of the trend of height as
function of stem volume. Significant deviations were only noticed for the
Xiaoxinganling test site where a number of stands under-ran the anticipated height of
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high relative stocking stands. This would correspond to extremely dense but low forest.
The reason for this observation was not clear. As at Xiaoxinganling several
experimental plantations were established, these stands may have represented sample
areas for testing different planting densities so that they may not have represented
natural growth conditions.

Height-stem volume relation for SDI>650 Changbai Xaoxinganling
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Figure 3.8. Left — relation between stem volume and height for fully-stocked stands
(SDI>650) at the Siberian and the Daxinganling test sites. Also a relation obtained for
Scandinavian boreal forest has been included (Askne et al., 1997). Middle and Right -
Stem volume and height measurements at the Chinese test sites and the allometric
relation observed for stands with high SDI at Daxinganling.

Shortcomings in the estimation of density and SDI were related to stand heterogeneity
and the underlying frequency distributions of height and dbh within a stand. Diameter
and height were calculated as a weighted average over the dominant species in a stand.
In order to better account for stand heterogeneity, the SDI was calculated in an
alternative way. In Stage (1968 as quoted in Woodall et al., 2003), the summation
method was found better suited for SDI estimation in heterogeneous uneven-aged
stands. In the summation method, the SDI is calculated for each dbh group in a stand
separately and then all single SDIs are summed up. This approach could be tested as in
the Siberian inventory data the species composition was given in percent of the total
volume and dbh and height were given for each species (assuming that at least each
species represented a single dbh class). When calculating the SDI according to the
summation method, differences between the summation method and the calculation for
the stand-wise averaged parameters were found to be low with an average difference of
8 % (Pearson correlation was 0.83). Part of the difference could be assigned to the
coarse species composition variable in the inventory data, which was only given in steps
of 10% and affected the density estimation. The highest differences of up to 30 % were
observed for heterogeneous stands with species representing very different dbh classes.
Still, when using the new SDI estimates to identify the height-stem volume relation for
fully stocked stands (SDI>650), the same allometric trend was indicated as for the
initial SDI estimates (in Figure 3.8).

The ‘Reineke’ line in Figure 3.6 (d) describes the temporal development of forest in
case of fully stocked stands. In case of under-stocked stands, the stand density does not
follow the line indicated for low relative stocking stands in Figure 3.6 (d). An approach
that transfers the self-thinning theory to under-stocked stands has been developed in
Tang et al. (1994, 1995). The model developed based on Equation (3.2) but was
enhanced for stands with stocking deficits. The model, from now on referred to as the
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Tang model, is not further explained here as it only serves illustrational purposes. In
Tang et al. (1995), the model was trained for larch forests in the Changbai Mountains.
The outcome of this model training is shown in Figure 3.9 (left) together with the dbh
and density measurements for Daxinganling. In case of fully stocked stands, the
modeled dbh-density relationship well described the upper bound of the observed range
of densities at a given dbh. In case of an initial stocking deficit, the Tang model
predicted a constant density with increasing dbh until the maximum possible stocking
was approached. According to the model, a stand always develops towards 100 %
relative stocking. Based on the dbh-density relationship obtained by Tang et al., an
allometric relation between stem volume and height has been calculated. For this,
Equation (3.1) was used, integrating the density-dbh relation from the Tang model for
different ‘typical’ initial stocking deficits and replacing dbh with an allometric
expression for dbh and height that was reported in Wang et al. (2006) for larch forests in
Daxinganling. In Figure 3.9 (right), it can be seen that for fully-stocked stands the
curve, describing the height as function of stem volume, well described the lower bound
of observed heights for a given stem volume. The heights in case of an initial stocking
deficit were higher but approached the ‘full-stocking line’ with increasing stem volume.
The stocking deficits used did not explain the full range of height deviation from the
full-stocking case so that even larger stocking deficits at the Daxinganling test site were
likely, maybe because of the fire in 1987 or ongoing illegal logging.

In conclusion, it can be stated that the identification of fully stocked stands according to
their height at a certain stem volume should be feasible for the Northeast Chinese
forests. The Reineke rule allowed a reasonable description of the density development
of fully stocked Siberian as well as Northeast Chinese boreal forests. A very similar
allometric relation between stem volume and height was found for stands with an SDI
above 650 at the Siberian and the Daxinganling test sites. Species-specific effects, site
quality and climatic differences seemed to be of minor relevance in this context. The
estimated SDI values as well as the simulations with the Tang model furthermore
confirmed for the Daxinganling test site the expectation that larger fractions of the
forests were under-stocked.
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Figure 3.9. Left - Stand density as function of dbh (model and measurements). The solid
line refers to fully stocked stands and the thick dashed and dash-dotted lines to stands
with different initial stocking deficits. Right — Modeled and observed stem volume-
height relation for different initial stocking deficits.
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3.4 Satellite data
3.4.1 ERS-1/2 tandem data

The SAR data used for this study was acquired during the ERS-1/2 tandem mission
when the ERS-1 and ERS-2 C-Band SAR systems flew with one day time lag over the
same area. For Northeast China, a dataset of 223 image pairs was available. This dataset
was collected in the frame of two ERS-1/2 mission periods. 2/3™ of the tandem pairs
were acquired during the first ERS-1/2 global coverage campaign in 1995-1996. The
1997-1998 dataset was acquired in the frame of the SIBERIA project, i.e. between
September and October 1997 and in June 1998. Only tandem pairs with a perpendicular
baseline below 400 m were selected (see Appendix A). Because of the restriction to
baselines below 400 m, the coverage over Northeast China was not complete with some
gaps occurring mainly in non-forested areas. All images were acquired along
descending orbits. The ERS tandem dataset covering the Siberian test sites consisted of
eight tandem pairs. Three tandem pairs were acquired during winter 1995/96, four
during fall 1997 and one in May 1998. The perpendicular baselines were between 65
and 313 m. Table 3.3 lists which image covered which test sites.

Interferometric processing started with the co-registration of the tandem pairs in Single
Look Complex (SLC) format by cross-correlating a high number of image chips in the
images and estimating the offset fields (Curlander & McDonough, 1991; Wegmiiller et
al., 2001) to reproject one of both into the geometry of the other image. The standard
deviation of co-registration offsets was always below 0.2 pixels which means that the
coherence loss due to co-registration errors was < 5%; note that coherence decreases
with sinc (m* Apx) (Ferretti et al., 2007) where 4px denotes the offset in terms of the
fraction of the pixel size. Further processing steps were multilooking (1x5 for the
Siberian data and 2x10 for the Chinese data), range (Gatelli et al., 1994) and azimuth
(Schwibisch & Geudtner, 1995) common band filtering and computation of coherence
using an adaptive window size between 3x3 and 9x9 pixels for high and low coherent
areas, respectively. The adaptivity of coherence estimation was achieved by first
calculating coherence with a fixed window size. Then a second computation was carried
out, adapting the window sizes to the initial coherence estimates (Wegmiiller et al.,
1998). In addition, the image texture, calculated from ERS intensity, was integrated in
the coherence estimation. Texture was used to keep the estimation window small over
areas with high texture. Phase slope information from the ERS-1/2 tandem
interferogram, which was filtered before, was included in the computation of coherence
in order to account for topography-induced phase variations. The intensity images were
calibrated to ¢”, including a compensation for the variation of the pixel area from near to
far range assuming flat terrain.

The coherence and the intensity images were terrain corrected and geocoded to 50 x 50
m’ pixel size in case of the Chinese and to 25 x 25 m” in case of the Siberian dataset
utilizing the ‘Shuttle Radar Topography Mission’ SRTM-3 DEM with 90 m pixel size.
The SRTM-3 DEM has a vertical accuracy of + 16 m at the 90 % confidence interval
(Rabus et al., 2003). Geocoding started with the generation of an initial look-up table.
The look-up table indicated for a pixel in the DEM in map coordinates the
corresponding position in the SAR image in range-Doppler geometry based on the
available information about the satellite orbit, the SAR imaging geometry and the local
terrain height. Uncertainties in the orbit data, the SAR imaging geometry or the
geolocation of the DEM may result in geocoding errors. Hence, the initial look-up table
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was refined by means of an automated procedure, crosscorrelating a high number of
image chips in the intensity image and a simulated SAR image (Wegmiiller, 1999). The
simulated SAR image was derived from the DEM and basically simulated the
radiometric effects of topography in intensity images (see Chapter 6.1). For the
crosscorrelation with the SAR intensity image, the simulated image was reprojected into
the SAR geometry using the initial transformation look-up table. With the refined
transfer function from the crosscorrelation, the look-up table was updated and used for
reprojecting the ERS image products in SAR geometry into the map geometry. The
required resampling of the images was done using the nearest-neighbor technique. The
selected projection of the geocoded products was the Albers Conical Equal Area
projection. As the geocoding procedure with a simulated SAR intensity image requires
topographic features, the accuracy of the geocoding was lowest for mostly flat areas;
e.g. Inner Mongolia and the Northeast China Plain. Offsets of 1-2 pixels were observed
between overlapping tracks in these areas. In the mountainous areas, the geolocational
accuracy was at the sub-pixel level. As a by-product of the geocoding, local incidence
and aspect angle maps, pixel area normalization maps (see Chapter 6.1) and
layover/shadow masks were produced.

Actually, the Chinese and Siberian ERS-1/2 tandem datasets were processed for
different studies, which explains the different multilooking and pixel sizes of the
geocoded products. In order to work with a more uniform and comparable dataset, the
geocoded Siberian images were further 2 x 2 multilooked to a pixel size of 50 x 50 m?.
The ENL of all geocoded intensity images was now in the range of 9 to 10. The average
coherence over unfrozen water surfaces was consistently around 0.05 for the images
covering Northeast China, indicating a low bias in coherence. The coherence images
covering the Siberian test sites revealed a higher average coherence over water surfaces
and appeared in general noisier which is why they were median filtered using a moving
window of 5 by 5 pixels. Visual inspection of the filtered coherence images revealed a
much reduced noise at a slight loss of spatial resolution.

To illustrate the characteristics of Northeast China, Figure 3.10 shows the RGB color
composite of ERS-1/2 tandem coherence, ERS-1 intensity and ERS-1/2 intensity
difference for all 223 image frames mosaiced together (Santoro et al., 2005a). The red
channel corresponds to ERS-1/2 tandem coherence, the green channel to ERS-1
intensity and the blue channel to the ERS-1/2 intensity ratio. The forested areas appear
in green, the Inner Mongolian grasslands in red and the agricultural areas of the
Northeast China Plain in yellow. This means high backscatter and low coherence over
forested terrain, high coherence and low backscatter over the arid grassland areas in
Inner Mongolia and high backscatter as well as high coherence over the agricultural
areas. Water surfaces appear blue or green because of low coherence and either high or
low backscatter. High intensities above -5 dB were observed for frozen rivers or lakes
where backscatter occurred at the rough ice-water interface. One of the biggest issues
concerning the use of SAR/InNSAR methods for land mapping applications is clearly
visible in the mosaic. As the tracks were acquired in different seasons and under varying
environmental and meteorological conditions, coherence and intensity varied
considerably between the different tracks, causing abrupt color variations between
neighboring data strips in the mosaic.
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Figure 3.10. RGB color composite of ERS-1/2 tandem coherence, ERS-1 intensity and
ERS-1/2 intensity difference for Northeast China. Red corresponds to ERS-1/2 tandem
coherence, green to ERS-I1 intensity and blue to ERS-1/2 intensity difference. 223
tandem image pairs were used for the creation of the mosaic (Santoro et al., 2005b).

3.4.2 Additional Earth Observation data

The work presented in this thesis aimed at the synergistic use of interferometric SAR
data and optical remote sensing products in form of the Vegetation Continuous Fields
VCF product of the Moderate Resolution Imaging Spectroradiometer MODIS (Hansen
et al., 2002a, 2002b, 2003, 2005). The MODIS VCF product, which is available since
2003, provides global sub-pixel estimates of tree canopy cover at 500 m pixel size. Tree
canopy cover refers to the fraction of skylight obstructed by canopies of trees that are at
least 5 m high (Hansen et al., 2003); note that canopy cover differs from crown cover
which is often used for forest inventory purposes and which is usually inferred from
aerial photography. Crown cover represents the percentage of ground that is covered by
the canopy not considering gaps within individual crowns and overlaps. Hansen et al.
(2003) indicated that a canopy cover of approximately 80 % in VCF, the actual
percentage depends on the forest type, should correspond to 100 % crown cover.

The utilized MOD44 version was produced with 2001 MODIS data by calculating 68
metrics like maximum annual NDVI or channel-based measures for annual minimum,
maximum and mean of the spectral information including all seven MODIS land
reflectance bands. AVHRR band 4 brightness temperature data from 1995/96 was used
for global climate stratification and served the calculation of the multi-temporal spectral
metrics only for the warmest months of the year (Hansen et al., 2002a). MODIS
brightness temperature products were not operational by the time of the production of
the first MODIS VCF version. The metrics were used as input to a regression tree
classifier. Landsat optical remote sensing images for more than 250 globally distributed
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sites were used as reference data (to train the regression tree classifier) by assigning
each pixel herein to four coarse tree cover classes (0%, 25%, 50% and 80%) and
aggregating those pixels to the 500 m pixel size of MODIS.

Yet, the VCF product is only partially validated. The accuracy has been assessed in
Hansen et al. (2003) by means of finer resolution optical remote sensing products
(IKONOS, Landsat) for forest sites located in Colorado, USA, and in Hansen et al.
(2005) for Zambian forest sites. The assessment showed that the accuracy increased
when aggregating the tree cover map to coarser pixel sizes as for Colorado the
coefficient of determination, R?, improved from 0.81 at 500 m pixel size to 0.89 at 1 km
pixel size and to 0.94 at 2 km pixel size. Similar improvements were observed for
Zambia. In White et al. (2005), the VCF accuracy was assessed using inventory plot
data for a test site in Arizona, USA. VCF was found to systematically underestimate
tree cover (White et al., 2005).

The ERS coherence mosaic in Figure 3.10 was resampled to the 500 m pixel size of the
VCF product to check for co-registration offsets. Visual inspection revealed a good
agreement and no further adjustment was considered necessary. Finally, water body
masks were produced by rasterizing the SRTM Water Body Mask in GIS vector format
(Anonymous, 2003). The SRTM Water Body Mask depicts all water surfaces exceeding
the width of 90 m. The mask was used to exclude water surfaces for all following
investigations. A classification of water surfaces by means of ERS coherence and
intensity was not possible as signatures varied in a wide range between the acquisitions.

3.5 Meteorological data

One or more daily measurements of temperature, wind speed, precipitation and snow
depth were available for several weather stations of the World Meteorological
Organization (WMO); four stations were located near the Bolshe, two stations near the
Chunsky and two near the Primorsky test sites. Although the distances between the test
sites and the stations were large (up to 150 km), no relevant differences between the
measurements at the different stations were noticed (cf. Eriksson, 2004; Santoro et al.
2007). Wind speeds and temperatures measured at 6:00 UTC (Universal Time
Coordinated), i.e. ~1.5 hours after image acquisition, are given in Table 3.3 in form of
the mean values for several weather stations.

For Northeast China, measurements from 43 WMO stations (Figure 3.11), provided by
Deutscher Wetterdienst (DWD), included four daily measurements of temperature, wind
speed and precipitation for the complete period of the ERS-1/2 tandem acquisitions. The
ERS measurements were acquired at ~3:00 UTC, i.e. in the middle of a 6-hour interval
of meteorological measurements, which is why the temperature measurements from
0:00 and 6:00 UTC were averaged (local time was UTC+8h). In case of the wind speed
measurements, this did not necessarily make sense as wind can be spatially and
temporally highly variable. The wind speeds reported in Table 3.3 correspond to the
maximum and minimum wind speeds measured in the period of the acquisitions, i.e. the
measurements before and after the ERS-1 and ERS-2 overpasses were considered. For
the test site at Xiaoxinganling the station with id 50774 at Yichun (47’43 N, 128’54 E,
230m altitude) and for Changbai the station with id 54186 at Dunhua (43’22 N, 128’12
E, 520m altitude) were located closest (< 50 km) to the test sites. In addition, the second
closest weather stations were considered (id 54273 for Changbai and id 50756 for
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Xiaoxinganling). All stations reported comparable temperatures. The reported wind
speeds, however, differed considerably, indicating that the wind speeds given in Table
3.3 should be interpreted with caution as wind appeared to be highly variable, especially
in the mountainous terrain of the test sites. For the Daxinganling test site, no weather
station in the DWD dataset was located nearby. The Chinese Academy of Forestry,
however, provided daily measurements for the two weeks prior to the ERS acquisitions
from the WMO station 50136 at Mohe (7-21 December 1995) which is located
approximately 35 km away from the test site (not included in Figure 3.11).

The weather data for Northeast China was examined for the main weather
characteristics in the period of the ERS acquisitions. Figure 3.12 illustrates temperatures
and precipitation measured at six representative weather stations located all over
Northeast China and in different altitudes. Temperatures were generally very low in
winter. In the Daxinganling region, -40° C were approached in January (station 50434).
Winter temperatures revealed a clear latitudinal but no longitudinal gradient. This
gradient is exemplified in Figure 3.13 in form of the daily maximum temperature
(averaged per month and weather station) plotted against the latitude of the particular
weather station. The duration of stable frozen conditions varied with latitude as well,
lasting longest in the Daxinganling area and shortest in the areas close to the Yellow
Sea coast (e.g. station 54337) where in all months freeze/thaw events were possible.
Besides areas close to the coast, thawing events did not occur for a rather long period
from December to beginning of March. In addition, precipitation (in form of snow) was
hardly registered throughout the overall dry winter. With the beginning of thaw in
March and April, the number and intensity of rain events increased. According to long
year statistics (Chao, 1994), longitudinal gradients of precipitation exist in Northeast
China. However, no significant longitudinal gradients were observed in the precipitation
data from winter 1995/96 nor from fall 1997. However, the lowest amount of rain in the
period of the satellite observations was registered at a weather station in Inner Mongolia
(station 50603). The weather data from fall 1997 indicated mostly unstable conditions
with frequent rain events and a constant decrease in temperature with daily oscillations
around 0° C, i.e. frequent freeze/thaw events, in September in the northern latitudes
(e.g. station 50434) and end of October in the areas close to the Yellow Sea (station
54337).

Information about snow cover was not given in the WMO data. Coarse information
about snow cover extent could be obtained from the archives of the National Snow and
Ice Data Center (NSIDC). The “Northern Hemisphere EASE-Grid Weekly Snow Cover
and Sea Ice Extent” product (Armstrong & Brodzik, 2005) provides weekly estimates of
snow cover extent at 25 km pixel size based on manual interpretation of the Advanced
Very High Resolution Radiometer (AVHRR) visible bands. The maps reported the
presence of snow for most of Northeast China until the beginning of February when
snow started to melt in the areas close to the coast. In the following weeks, the southern
border of the snow covered area moved northward until in May the complete area of
Northeast China was snow-free. Snow cover maps showing the snow cover for eight
dates between December 1995 and May 1996 have been illustrated in Figure 3.14.
However, these maps did not provide information about the snow wetness, which, with
respect to C-band measurements, would have been more important to know than the
pure snow cover extent.
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Table 3.3. Meteorological conditions at the acquisition of the ERS-1/2 tandem data
available for the Siberian and Chinese test sites (for the Siberian test sites see also
Eriksson (2004) or Santoro et al. (2007)). T;, T,, WS; and WS, denote the temperatures
and wind speeds measured at the time of the ERS-1 and ERS-2 overpasses, respectively.
SD stands for snow depth.

Acquisition date  Area B, Weather conditions
29.12.1995 T=-10° C, Ty=-23° C, WS;=6 m/s, WS,~ 0 m/s,SD:
30.12.1995 ChunskyN* 171m ¢ Refreezing
1.1.1996 T=-20 °C, WS= 5-6 m/s, WS,= 1-3 m/s,
2.1.1996 Bolshe NE 144 m SD: 16 cm, Snowfall, Refreezing
14.1.1996 Chunsky N & 65m T=-18° C, T,=-23°C,
15.0.1996 E WS <2 m/s, SD: 27 cm
22.9.1997 T=16 °C, T,=19°C,
23.9.1997 Bolshe NE  260m w5 " Rainfall on 21°
25.9.1997 Bolshe NE & 233 m T,=20 °C, T,=13°C,
26.9.1997 NW WS <2 m/s, Rainfall on 21*
27.10.1997 T=2 °C (£ 0 °C between passes),
28.10.1997 Bolshe NE 158 m WS < 1 m/s, Rainfall one week before
28.05.1998 Bolshe NE & 313 m T,=26 °C, T,=19°C,
29.05.1998 NW WS < 3 m/s, Rainfall one week before
9.10.1997 . T,= 10°C, T,=10°C,
19.10.1997 Primorsky B 183m  ws ot available
20.12.1995 . . T,=-21 °C, T,=-15°C,
21.12.1995 Daxinganling  191m g~ 5
9.1.1996 . . T,=-16 °C, T,=-10°C,
10.1.1996 Xiaoxinganling 75 m WS~0-3 ms
9.1.1996 . T,=-16 °C, Ty=-15°C,
10.1.1996 Changbai 89m W ~0-3ms

Figure 3.11. WMO weather stations in Northeast China for which measurements were
available. The image shows the ERS-1/2 tandem mosaic of Northeast China.
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Figure 3.12. Temperature (red lines) and precipitation (blue dots) measured at six
weather stations located in different areas of Northeast China. Left: winter 1995/96,
right: fall 1997.
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Figure 3.13. Average daily maximum temperature per month versus latitude of the
weather station.

(a) (b) (d)

(2) (b

Figure 3.14. NSIDC snow cover maps for eight weeks in the time frame of the ERS
acquisitions over Northeast China: a) 21 Dec. 1995 b) 18 Jan. 1996 c) 08 Feb. 1996 d)
28 Feb. 1996 e) 21 Mar. 1996 f) 28 Mar. 1996 g) 18 Apr. 1996 h) 09 May 1996. The
grey areas show the snow covered ground.
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Chapter 4 - SAR & InSAR measurements at the test
sites

In this chapter, the results of the exploratory analysis of the relationship between the
standwise ERS-1/2 tandem coherence/intensity measurements and the in situ stem
volume measurements at the Siberian and Chinese test sites will be described. The
discussion addresses the variability of the ERS measurements with the prevailing
meteorological and environmental imaging conditions, the relationship between stem
volume and coherence as well as the effects of forest structural diversity. First, the
observations at the Siberian test sites will be described. A detailed analysis has already
been carried out in Santoro et al. (2004, 2007) and Eriksson (2004) which explains why
Chapter 4.1 is mainly a recapitulation of their observations. In Chapter 4.2, the
observations at the Chinese test sites will be discussed.

4.1 Siberian test sites

The relationship between stem volume and coherence has been illustrated in Figure 4.1
for six ERS-1/2 tandem coherence images. In all cases, the standwise averaged
coherence decreased with increasing stem volume; nonetheless considerable differences
between the acquisitions were observed. All images acquired in winter as well as the
image from 9-10 October 1997 showed no saturation of coherence with respect to stem
volume up to at least ~200 m*/ha. The least tendency to saturate could be observed in
case of the image from 14-15 January 1996 that was acquired with a short baseline of
65 m over Chunsky N & E. For all other images, acquired in fall or spring over the test
sites Bolshe NE and NW, saturation was reached at about 100 m3/ha, regardless of the
baseline length. For stem volumes above the saturation level coherence ‘clumped’ at
low values. The tendency of ERS-1/2 tandem coherence to clump at low values at even
intermediate stem volumes in the range of 100 to 200 m’/ha was observed in several
publications and can be considered a typical sign of unstable imaging conditions (e.g.
Koskinen et al., 2001; Santoro et al., 2002; Pulliainen et al., 2003; Santoro et al., 2007).
An explanation for this saturation behavior has not been found yet.

Even though the decrease of coherence with increasing stem volume was apparent in all
coherence images and at all test sites, the plots revealed a considerable spread of
coherence along the main trend almost independent of stem volume. These variations
could have been due to:

Topographic distortions

Errors in the inventory data

Forest structural diversity

Spatial variability of environmental and meteorological conditions

A detailed discussion of topographic effects in the intensity and coherence images will
follow in Chapter 6. For the following analysis, stands with an average slope of more
than 10° were not considered. A maximum slope threshold of 10° was found to reliably
exclude affected stands (Santoro et al., 2007). As the topography at the Siberian test
sites was mostly gentle, only few stands were affected.
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Figure 4.1. ERS-1/2 tandem coherence versus stem volume for three tandem pairs
acquired in winter and three tandem pairs acquired in fall at the Central Siberian test
sites.

Errors in the inventory data, either in the location of the polygons or the measured forest
attributes, would affect the inventory data-based training of models as well as the
inventory data-based accuracy assessment (see Chapter 8.2). Hence, errors in the
inventory data should be identified and removed from the dataset as far as possible. In
order to minimize the effect of mis-registrations between the ERS imagery and the in
situ data as well as the effect of noise in the coherence measurements, very small stands
should be excluded (Fransson et al., 2001; Hyyppad & Hyypp4a, 2001; Santoro et al.,
2007; Askne & Santoro, 2005). Santoro et al. (2007) showed for the same dataset that
was used for this study that the exclusion of small stands resulted in an increase (in
absolute values) in Pearson correlation between stem volume and coherence. The largest
increase in correlation was observed when excluding stands smaller than 2 ha. When
further excluding stands with sizes larger than 2 ha, improvements could still be noticed
but were mostly less pronounced. For the following investigations, a threshold of 2 ha
for the minimum stand size was used. Furthermore, some stands were excluded after
visual inspection of the data when the borders of the inventory polygons clearly
mismatched with visible stand borders in the coherence imagery. High uncertainty was
associated with stands with 0 m*/ha stem volume - a volume of 0 m*/ha contradicts the
requirements of the Russian forest inventory manuals (cf. Santoro et al., 2007) - or
stands that were not labeled as forest in the inventory data (e.g. clear-cuts, burnt areas,
unproductive land) which is why they were not considered in the analysis. When
screening the forest parameters in the inventory data for erroneous measurements,
obvious discrepancies with the satellite data were found. For some stands, the inventory
data indicated high stem volume although the coherence was very high. This was most
likely the consequence of a failed update of the inventory data after logging has been
done. Extreme outliers in the stem volume-coherence relationship were discarded by
identifying all stands with a coherence more than two standard deviations of all

58




standwise coherence measurements above or below the main trend, which was
identified by means of a simple regression model that was fitted to the data:

T=a-e +b-(1-¢*) (4.1)

The parameters a, b and c represent regression parameters and V' the stem volume. In
Askne et al. (2003) it has been reported that for boreal forest stands of 2 to 14 ha size,
the standard error of coherence in a homogeneous forest should be in a range of 0.03 to
0.07. A much larger standard error indicates very heterogeneous forest cover (e.g.
partial clear-cut) for which the inventory data was probably erroneous. That is why,
stands with a standard error of more than 0.1 were excluded as well.

C-band measurements over forested terrain are the sum of contributions from the forest
floor and the canopy. In order to identify the coherence properties of the forest floor and
dense forest canopies and to relate them to the meteorological imaging conditions, the
simple exponential model in Equation (4.1) was fitted to the standwise coherence
measurements. The regression parameter a gave an estimate for the ground coherence
and the modeled coherence I'(V,u,) at the maximum stem volume in the inventory data
was interpreted as the dense forest coherence. The same was done for the intensity
measurements. The results have been illustrated in Figure 4.2.

In case of frozen conditions, the coherence over open ground was in the range of 0.7 to
0.8. Both measurements at the Chunsky test sites (29-30 December 1995 and 14-15
January 1996) revealed a ground coherence of 0.8 whereas the image acquired under
subzero temperatures over Bolshe NE (1-2 January 1996) showed a ground coherence
of 0.7. This reduced ground coherence was most likely caused by snow cover changes
as the image was acquired under refreezing conditions with snowfall occurring,
probably accompanied by changes in the snow depth and maybe the snow
metamorphism. High ground coherence above 0.8 was also observed for the coherence
image from 9-10 October 1997 at Primorsky E. This tandem pair was acquired during a
period of rain-free and unfrozen conditions so that heterogeneous soil moisture
variations as possible decorrelation source were obviously minimized. For all images
acquired in fall or spring over the Bolshe NE and NW test sites, the ground coherence
was considerably lower and did not exceed a level of 0.7; in case of the Bolshe NE test
site, even 0.5 was hardly exceeded. This was most likely a consequence of rain few days
prior to the sensor overpasses respectively the emerging heterogeneous variations of soil
moisture after the rain events. In case of the image from 27-28 October 1997, also
freeze/thaw effects were involved in addition to rainfall that occurred one week before.
In case of the images from 25-26 September 1997 and 28-29 May 1998 there was a
clear difference between the ground coherence that was observed at the test sites Bolshe
NE and Bolshe NW. In both images, the ground coherence was about 0.15 to 0.2 higher
at Bolshe NW. In Santoro et al. (2007), this difference was assumed to be a
consequence of differences in heterogeneous soil moisture variations after rainfall as the
test sites were characterized by different soil types. Bolshe NE is located east of the
Yenisei where peat soils dominate whereas Bolshe NW is located west of the Yenisei
where soils are mostly sandy. For the tandem pair from 25-26 September, rain was
registered 3 days before the ERS-1 overpass. The sandy soils were probably more dried
up at the time of the sensor overpasses than the peat soils, which may still have been in
the drying process, accompanied by heterogeneous soil moisture variations lowering
coherence. In case of the May acquisition, there was rain one week prior to the sensor
overpasses. In addition, the image was acquired after a period of snowmelt resulting in
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high soil moisture so that differences in the response of sandy and peaty soils to rain or
snow melt induced wetting may as well explain the differences in forest floor coherence
between Bolshe NE and Bolshe NW.

Over dense forests, the coherence in the images from fall and spring was mostly in the
range of 0.15 to 0.25 and showed no dependence upon the wind speed or the baseline
length. This range of coherence values can be considered a typical sign of unstable
imaging conditions due to rain or freeze/thaw transitions in the timeframe of or closely
before the sensor overpasses (Pulliainen et al., 2003; Drezet & Quegan, 2006). The only
exception amongst the acquisitions from fall was observed for the coherence image
acquired under more stable conditions and with a baseline of 183 m over Primorsky E;
note that for this image no information about wind speed was available. In this case,
coherence over dense forest was almost 0.4 which was in the range observed for the
winter acquisitions when coherence was between 0.3 and 0.45. In case of the coherence
image from 14-15 January 1996 covering Chunsky N and E, the coherence over dense
forest was about 0.4 to 0.45 as the canopy was frozen, the baseline was short (65 m), i.e.
volume decorrelation was negligible, and the wind speed was moderate (< 2 m/s). In
case of the coherence images from 1-2 January 1996 and 29-30 December 1995,
stronger winds coincided with baselines above 100 m, both lowering the coherence
measured over dense forest to about 0.3.
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Figure 4.2. Coherence and ERS-1 (thick lines) and ERS-2 (thin lines) intensity over
open ground (solid line) and dense forest (dashed line).

Forest floor as well as dense forest intensity were lowest under frozen conditions. When
the forest floor was frozen and covered with snow, the intensity was in the range of -9.5
to -11.5 dB. Backscatter from dense forest varied between -8 and -10 dB. In case of the
ERS-1 and ERS-2 intensity images from 14-15 January 1996, differences in dense
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forest and forest floor intensity of about 1 dB between the test sites Chunsky E and N
could be observed, indicating spatial variations of the imaging conditions within the
images. The variations of intensity in winter may have been caused by different
properties of the snow cover on the ground or on the branches (in Siberia the mostly dry
snow is usually blown off the branches quickly) or incomplete freezing of the canopy;
the images from 1-2 January 1996, for instance, were acquired under refreezing
conditions. In case of unfrozen conditions, forest floor intensity varied between -7.5 and
-10 dB. Dense forest backscatter was rather stable between -7 and -8 dB. For the ERS-
1/2 tandem intensity images from 27-28 October 1997, acquired in a period with diurnal
oscillations of temperatures around 0° C, the backscatter from forest floor and dense
forest was comparable to that observed when the conditions were constantly frozen. In
case of the ERS-1 and ERS-2 intensity images from 25-26 September 1995, lower
backscatter from the forest floor was observed at the test site Bolshe NW which seemed
to confirm the assumption (in context of the interpretation of coherence) that the sandy
soils at this test site were more dried up after rainfall that occurred 3 days before. The
ground backscatter in the acquisitions from 9-10 October 1997 over Primorsky E was -8
dB and as high as the backscatter from dense forest, indicating wet soil. The highest
intensity over dense forest (-7 dB) was observed for the images that were acquired in
May. This should have been due to an increased tree activity in spring with high water
availability resulting from snowmelt (Moghaddam & Saatchi, 1999; Kasischke et al.,
2007). The ground backscatter was as well high with about -8 to -7.5 dB due to the wet
soil after snowmelt. Furthermore, it has been noticed that the consistency of the
standwise intensity measurements in terms of Pearson correlation between the tandem
ERS-1 and ERS-2 intensity images was lowest for the May acquisition over Bolshe NE
and NW. The Pearson correlation coefficient was about 0.6 in this case whereas it was
above 0.8 for all other tandem intensity images, indicating that the tandem pair from
May was affected by changing imaging conditions.

Despite the considerable effects of meteorological (frozen/unfrozen temperatures, wind
speed, rain) and environmental (soil moisture variations, snow properties) imaging
conditions on the overall level of coherence measured over forest floor, the
multitemporal consistency of coherence was high. When correlating the standwise
coherence measurements for different pairs of coherence images, the Pearson
correlation coefficient was, with only one exception, above 0.8 (Figure 4.3), witnessing
the robustness of the forest biophysical information in coherence. In general, the lowest
correlations were observed when one of the coherence images was the one from 27-28
May 1998. In contrast, when correlating the standwise ERS-1 intensity measurements
for different acquisition dates, the correlations varied in a much wider range. While for
the winter intensity measurements over Chunsky N, the correlation was high with about
0.8, much lower correlations between 0 and 0.7 were observed when at least one of the
two intensity images was acquired in fall or spring.

A higher Pearson correlation between stem volume and ERS-1/2 tandem coherence was
observed in Santoro et al. (2007) for large stands with high relative stocking. Figure 4.4
(left) illustrates this for the coherence image from 29-30 December 1995 and the test
site Chunsky N. In Chapter 3.3, it was shown that stands with high relative stocking are
characterized by a higher density of trees for a given stem volume and probably show a
more regular canopy structure. The increase in correlation was observed up to relative
stocking thresholds of ~ 80%. When applying higher thresholds, correlation often
decreased again as then the stem volume distribution was considerably altered. In case
of Chunsky N, for instance, mainly stands with low stem volume <100 m’/ha were then
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left in the dataset. Most images in the Siberian dataset showed a higher correlation when
considering only large stands with high relative stocking. However, for some of the
images, in particular those acquired under unstable imaging conditions over Bolshe NE,
the correlation between stem volume and coherence as function of relative stocking
revealed an irregular behavior with no consistent improvements in correlation (Figure
4.4, right).
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Figure 4.3. Multitemporal consistency of the standwise ERS-1/2 tandem coherence and
ERS-1 intensity measurements.

Concerning the overall trend of coherence as function of stem volume, no significant
differences between the tree species could be observed. However, a slightly higher
correlation between stem volume and coherence could be observed for stands
dominated by coniferous species compared to stands dominated by broadleaf species.
One example has been illustrated in Figure 4.5 where both, stands with low and high
proportions of conifers, covered a comparable range of stem volumes. All acquisitions
from winter covering the test sites Chunsky N, Chunsky E and Bolshe NE showed a
slightly better correlation when going from stands with less than 20 % to stands with
more than 80 % stem volume fractions of conifers. This increase could be observed
independent of the relative stocking range considered. For the acquisitions from spring
and fall, no increase in correlation was noticed.

In case of the ERS-1 and ERS-2 intensity measurements, the correlation hardly
improved with increasing relative stocking because of the low sensitivity of intensity to
stem volume. The spread around the mostly ‘flat’ trend, however, was found to decrease
with increasing relative stocking. The standard deviation of all standwise intensity
measurements, for instance, decreased for about 10 to 25% when excluding all stands
with a relative stocking lower than 50 %. No tree species related effects were noticed.
The main trend of the standwise intensity measurements with respect to stem volume as
well as the spread around the trend were similar for stands dominated by coniferous and
broadleaf species, respectively.
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Figure 4.4. Pearson correlation r of coherence and stem volume for different thresholds
of minimum stand size and relative stocking.
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Figure 4.5. Coherence versus stem volume (Bolshe NE 01-02 January 1996) for stands
of at least 50 % relative stocking and either less than 20 or more than 80 % conifers (in
terms of stem volume fractions).

4.2 Chinese test sites

In contrast to the Siberian data, a decrease of coherence with increasing stem volume
was hardly noticeable for the coherence images covering the Chinese test sites. A large
spread of the standwise averaged coherence measurements independent of stem volume
had to be noticed. This spread was much more pronounced than for the Siberian test
sites and the Pearson correlation coefficients of coherence and stem volume were in the
range of -0.1 to -0.2. The possibilities to analyze the causes for the spread were limited
as the dataset comprised only tables of standwise stem volume, height, size of the edge-
eroded stands (in number of pixels), average slope and the corresponding average
coherence and intensity. A systematic screening of the inventory data for stand
locational errors or a failed inventory update, as it was done for the Siberian test sites,
was not possible. Solely stands with a stem volume of 0 m*/ha and a standard deviation
of coherence >0.1 were removed from the dataset for the same reasons as in case of the
Siberian test sites. The exclusion of these stands, however, had almost no effect on the
correlation between stem volume and coherence.

The test sites in the Xiaoxinganling and Changbai Mountains were characterized by
steep topography with average slopes of about 10° and altitudes ranging from 500 to
1200 m in the Xiaoxinganling test area and from 750 to 1350 in the Changbai test area.
At the Daxinganling test site the topography was mostly gentle with altitudes ranging
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from 500 to 750 m. For the analysis of the impact of topographic effects on coherence,
only the average slope for each stand was available. The effect of topography-induced
decorrelation was first addressed by calculating the Pearson correlation between stem
volume and coherence repeatedly, applying different thresholds for the maximum slope.
There was no positive effect in terms of a higher correlation in case of two of the test
sites when successively excluding the stands located on the steepest slopes. Only in case
of the coherence image covering the Changbai test site, the correlation improved to -0.4
when excluding all stands located on slopes steeper than 10°. In case of the
Daxinganling test site, it was noticed that the coherence measurements at stands located
on slopes steeper than 10° represented the lower margin of the coherence trend as
function of stem volume. The exclusion of these stands had, however, almost no effect
on the correlation between stem volume and coherence as only few stands were located
on slopes steeper than 10°. In case of the coherence images acquired with short
baselines < 100 m over the mountainous Xiaoxinganling and Changbai test sites, only
some of the stands with an average slope of more than 10° represented the lower margin
of the trend with respect to stem volume; some stands revealed a coherence in line or
even at the upper margin of the main trend although they were located on slopes steeper
than 10°. The reason for this was related to the differences in wavenumbershift for
slopes tilted towards or away from the sensor (Gatelli et al., 1994); a detailed
explanation of this effect will follow in Chapter 6 where the topography-induced
coherence loss will be analyzed with the aid of the SRTM-3 DEM. For the analysis
presented in this section, all stands with an average slope of more than 10° were
excluded, regardless of their orientation with respect to the sensor as for the test sites no
information about the exposition of the slopes was available. At all three test sites, a
further exclusion of stands located on even less steep slopes would have affected a large
number of stands which showed no clear sign of topography-induced decorrelation.
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Figure 4.6. Pearson correlation r of coherence and stem volume for different thresholds
of minimum stand size in pixels (4 pixels = 1 ha).

The influence of stand size on the correlation of stem volume and coherence has been
analyzed for all three test sites. For the Daxinganling test site, the correlation constantly
improved from -0.2 to -0.4 when raising the threshold for the minimum stand size to 45
pixels (~11 ha). For the other two test sites, the correlation improved slightly when
excluding the smallest stands but did not show a consistent improvement in case of
thresholds >12 pixels (3 ha). It was noticed that the selection of a threshold had a great
impact on the number of stands and the distribution of stem volumes. The average stand
size at the Chinese test sites was much smaller than at the Siberian test sites. When
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Coherence

excluding all stands smaller than 2 ha, the number of stands reduced to 334
(Daxinganling), 308 (Xiaoxinganling) and 532 (Changbai) and the range and
distribution of stem volumes was kept. Higher thresholds would have caused a massive
regluction of stands in the low (<100 m’/ha) and the high stem volume ranges (>250
m~/ha).

When fitting the model in Equation (4.1) to the coherence measurements at stands larger
than 2 ha and with an average slope of less than 10° (see Figure 4.7), the estimated
ground coherence for the tandem pairs from 9-10 January 1996 covering
Xiaoxinganling and Changbai was ~0.6 and the coherence of dense forests was 0.4. A
dense forest coherence of 0.4 indicates stable frozen imaging conditions with moderate
wind speeds and minor volume decorrelation effects; note that the baselines were < 100
m. The very low temperatures measured at the nearest weather stations as well as the
low ERS-1 intensity measured over dense forest (-10 dB) and open ground (-11 to -12
dB) confirmed this expectation. Considering the constantly frozen temperatures, the
ground coherence of 0.6 appeared to be low though. The reason for this was not clear.
At Daxinganling, the maximum stem volume was only 120 m’/ha so that no statement
was possible concerning the dense forest coherence in the coherence image from 20-21
December 1995. The ground coherence was also 0.6 but the massive spread of
coherence between 0.4 and 0.8 for even the lowest stem volumes (Figure 4.7) caused
the estimation of the ground coherence to be very uncertain.
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Figure 4.7. Coherence versus stem volume for all stands at the Chinese test sites with
slope < 10°, stem volume > 0 m’/ha and stand size > 2 ha.

Based on the considerations in Chapter 3.3, stands assumed to be fully or close to fully
stocked were isolated by means of their stem volume to height relation. The correlation
of stem volume and coherence was calculated including only those stands for which the
tree height was in a defined range above or below the tree height defined by the
allometric stem volume-height relationship valid for the forests at Daxinganling with
high SDI > 650. When narrowing this height range, an improvement of the correlation
between stem volume and coherence was noticed (Figure 4.8). The most pronounced
improvement was observed for Daxinganling whereas for the other test sites the
improvement was moderate. The highest correlation was achieved when allowing for a
maximum deviation of +/- 1 m from the reference allometric stem volume-height
relation but then the number of stands was massively reduced, e.g. only three stands at
Daxinganling.
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On the one side, the observations seemed to confirm the higher suitability of fully
stocked stands for stem volume retrieval. On the other side, it had to be noticed that the
correlation between coherence and stem volume was still much lower than for the ERS-
1/2 tandem coherence images covering the Siberian test sites (see Figure 4.4).
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Figure 4.8. Pearson correlation r of stem volume and coherence when isolating stands
for which tree height deviates less than +/- 1 to 8 m from the allometric relation,
obtained in Chapter 3.3 for stands with high SDI.

Table 4.1. ERS-1/2 tandem coherence and ERS-1 intensity of open ground and dense
forest for the ERS -1/2 tandem pairs covering the Chinese test sites.

Test site Acq. Dates Yo | YVdense o% [dB] 0 dense [dB]
Daxinganling | 20-21 Dec. 95 | 0.59 - -12.0 -
Xiaoxinganling | 9-10Jan. 96 | 0.61 | 0.40 -11.8 -10.1
Changbai 9-10 Jan. 96 | 0.60 | 0.41 -11.3 -10.3

4.3 Summary

In this chapter, the relationship between stem volume and coherence was analyzed and
the factors were discussed that influenced the relationship between stem volume and
coherence. The investigation considered the effect of the weather conditions,
topography, properties of the reference data and forest structure.

While the coherence decrease with increasing forest stem volume was apparent and
temporally consistent in the coherence images covering the Siberian test sites, the
variability of the overall coherence, as well as intensity, level with meteorological and
environmental acquisition conditions was large. Even within-frame variations of
coherence and intensity properties were noticed when comparing the signatures for
different test sites covered by one image. Although there were some seasonal patterns in
both, the coherence and intensity signatures measured over open ground and dense
forest (e.g. higher forest floor coherence in winter than in the other seasons), the use of
any kind of generalized statistics for forest stem volume retrieval can clearly be ruled
out. Rainfall, freeze/thaw transitions or differing wind speeds have a considerable short-
term influence on the measurements. A prediction of the coherence properties with the
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aid of meteorological measurements cannot be considered feasible (cf. Drezet &
Quegan, 2006) as coherence not only depends on the weather conditions, i.e.
temperature or wind speed, but also on environmental effects related to soil moisture or
the snow properties.

The saturation of coherence with increasing stem volume depended on the imaging
conditions. In case of stable frozen imaging conditions and perpendicular baselines
between 65 and 171 m, no saturation could be observed for stem volumes up to at least
200 m’/ha wheras saturation was reached at about 100 m’/ha for all tandem pairs that
were acquired in fall or spring over the Bolshe test sites regardless of baseline length;
note that the shortest baseline was 158 m. Still, in case of the image from 9-10 October
1997, no saturation up to 200 m>/ha stem volume was found, showing that also under
unfrozen conditions ERS-1/2 tandem coherence can be sensitive to differences in forest
stem volume above 100 m*/ha.

Forest structural differences in terms of relative stocking and tree species composition
had an effect on the relationship between coherence and stem volume. The highest
correlation between stem volume and coherence was found for coniferous forest stands
with high relative stocking. The higher correlation for fully-stocked stands was most
likely caused by a more regular and homogeneous forest canopy structure.

The subsumption of the observations at the Chinese test sites was difficult. At first
sight, the results suggested that coherence was less suited for stem volume retrieval in
case of the Northeast Chinese forests. A limiting factor may have been that a higher
structural diversity of the forests caused a lower correlation between stem volume and
coherence. In Chapter 3.3, it was shown for the Daxinganling test site that, compared to
the Siberian test sites, a higher proportion of forest stands grew in an understocked state
(lower average SDI) which could explain the lower correlation between stem volume
and coherence. But even when considering only those stands with a high SDI, i.e. those
stands that should exhibit a more regular canopy structure, the correlation between
coherence and stem volume was much lower than for the coherence images acquired
over the Siberian test sites under comparable weather conditions. The unknown quality
and/or timeliness of the ground data is considered a crucial issue though. As the
inventory data was not available in form of digital stand boundary maps, no screening
for locational errors or a failed inventory update was possible. In addition, the average
stand size was rather small so that the possibility to focus the analysis on large stands,
for which the effects of stand locational errors and noise in coherence should have been
reduced, was limited.
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Chapter S - Coherence modeling and model training

This chapter addresses the modeling of coherence as function of stem volume and
explores different approaches to train the models, 1.e. to determine the unknown model
coefficients.

The chapter starts with a description of the two models used for this study, both relating
coherence to stem volume. Yet, there exists only one approach that aims at the
automated training of an empirical model without further need for forest inventory
measurements. This so-called SIBERIA training algorithm will be described in Chapter
5.2. In the following sections, the possibility to capture the spatial and temporal
variability of ERS-1/2 tandem coherence over forested terrain and to determine the
unknown parameters of a semiempirical model with the aid of the MODIS Vegetation
Continuous Field tree cover product will be discussed.

5.1 Modeling of ERS-1/2 tandem coherence as function of stem volume

The modeling of coherence as function of forest biophysical parameters, in particular
stem volume, was yet done with simple empirical linear or exponential models (e.g.
Hyyppa et al., 2000; Manninen et al., 2000; Fransson et al., 2001; Wagner et al., 2003)
or semi-empirical models where model parameters have physical relevance and can be
related to forest structural properties as well as the environmental and meteorological
imaging conditions (Treuhaft et al., 1996; Askne et al., 1997; Koskinen et al., 2001;
Papathanassiou & Cloude, 2001).

For the production of the first large-area forest stem volume map of Central Siberia with
ERS-1/2 tandem coherence, a simple exponential model was utilized (Wagner et al.,
2003):

)=y, +(ro-r.)e”” (5.1)

The model in Equation (5.1) describes the relationship between coherence and stem
volume as an exponential decrease of coherence with increasing stem volume. yy
represents the coherence for a stem volume of 0 m*/ha and ., the saturated coherence of
dense forest. V, gives the rate of coherence decrease with increasing stem volume.

The most widely tested and mature semi-empirical model is the Interferometric Water
Cloud Model ‘ITWCM’ (Askne et al, 1997, 2003; Santoro et al, 2002). In contrast to the
empirical model in Equation (5.1), the IWCM accounts for volume decorrelation and
InSAR geometry effects as well as differences in the backscatter contributions coming
from the forest floor and the canopy. It was successfully tested for ERS-1/2 tandem
coherence measurements at various boreal forest sites in Scandinavia and Siberia
(Santoro et al., 2002, 2007; Askne et al., 2003; Askne & Santoro, 2005, 2007). As the
objective of this study was not (at least primarily) to improve or refine the
understanding of the existing models but to integrate the existing knowledge into a
fully-automated model training procedure, the extensive experience that has been
gathered with the IWCM in previous studies was the reason why it was chosen as
modeling basis.
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The concept of the IWCM bases on a Water-Cloud-type-of model for intensity
measurements that was introduced in Askne et al. (1995). Herein, intensity is related to
stem volume based on observations in Pulliainen et al. (1994). Pulliainen et al. found an
exponential relationship between the two-way forest transmissivity, 7y,, and the stem
volume, V, for profiling X- and C-band scatterometer measurements over a boreal forest
site in southern Finland:

=e” (5.2)

with f being an empirical coefficient that was considered to be a function of the canopy
moisture content. The backscatter measured over forest, O'Ofor, could thus be expressed as
an incoherent sum of a canopy and a forest floor contribution, both weighted by the
forest transmissivity:

o =c"T, +5°(1-T,) (5.3)

for veg

where aog,, and aoveg represent the forest floor and canopy backscatter. Several authors
reported a significant impact of gaps in the canopy on the penetration of C- and X-band
signals into a forest canopy (Hagberg et al., 1995; Askne et al., 1997; Martinez et al.,
2000; Izzawati et al., 2006). It was observed that backscatter occurred in depths lower
than could have been expected for a homogeneous canopy layer with typical signal
attenuation characteristics. Martinez et al. (2000) and Izzawati et al. (2006) interpreted
this to be a consequence of decreasing canopy diameters with tree height, which means
that at the margin of a tree a (vertical) signal would reach the lower branches without
being attenuated before. Askne et al. (1995) concluded that the forest transmissivity is
determined by two separate terms, the two-way transmissivity of trees and the gaps in
the canopy. The effect of gaps was described with the area-fill factor, n, which
represents the fraction of ground covered by the forest canopy in the perspective of the
sensor. Thus, forest backscatter can be understood as the sum of three contributions (see
Figure 5.1):

1 Volume scattering in the crown
2 Ground backscatter attenuated by the canopy
3 Direct backscatter from the ground

The incoherent sum of these three contributions then becomes:
o, =nlot (A-T, )+ T, J+ A-mo?, (5.4)

with the two-way tree transmissivity, Tj.., expressed according to Equation (2.21).
Equation (5.4) can be re-arranged so that it corresponds to the model in Equation (5.3)
when formulating the forest transmissivity as follows:

Tfor :(1_77)—‘{_777—;}’66 :e_ﬁV (55)

This forest transmissivity concept accounts for vertical discontinuities in the canopy in
form of a temporally variable signal attenuation and horizontal discontinuities in form
of gaps. Because of the strong signal attenuation in the canopy in case of C-band, the
forest transmissivity should mainly be determined by the gaps in the canopy. When
considering the tree transmissivity negligible, Equation (5.5) can be simplified to:
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Figure 5.1. The main scattering mechanisms over forest in case of C-band: 1) volume
scattering in the crown, 2) ground backscatter attenuated by the canopy, 3) ground
backscatter not attenuated by the canopy.

T, =(-n) (5.6)

Evidence for a correlation between area-fill factor and forest transmissivity, at least for
a homogeneous managed type of boreal forest, has been provided in Askne et al. (1999).
Askne et al. compared area-fill estimates from digital photographs with transmissivity
estimates by means of scatterometer measurements. Though quite noisy, the
measurements confirmed the assumed linear trend. Modeling results with ERS-1/2
tandem coherence acquired over managed Scandinavian forest (accompanied by ground
measurements of area-fill) in Santoro et al. (2002) and Siberian boreal forest in Santoro
et al. (2007) indicated that in case of C-band, f should vary in a rather narrow range
between 0.003 and 0.007 ha/m® with the lowest value possible under frozen conditions
when signal attenuation in the canopy is weak(er). Comparable values were reported in
Pulliainen et al. (1994) for C-band scatterometer and in Kurvonen et al. (1999) for ERS
intensity measurements over Finnish boreal forest sites. The relationship between stem
volume and forest transmissivity, 7%, according to Equation (5.2) has been illustrated in
Figure 5.2. The figure shows that for a lower f, the decay of transmissivity with
increasing stem volume is less steep.

Accordingly, the IWCM in Equation (5.7) describes the complex forest coherence, -,
as the sum of a ground and a canopy contribution weighted by the forest transmissivity:

o " i —joh __—ah
Vior =V 0'37 N (l—e /W{(Ol —aja)) <e(1 —ejh) ) -7

. (5.8)

In the model, the backscatter from the forest floor, oog,, and canopy, aoveg, with respect to
the total forest backscatter, O'Ofor, are weighted by the temporal coherence of the forest
floor, y,r, and the canopy, yvee, respectively. y,., represents the temporal coherence of an
ideally opaque canopy and is assumed to be the same at all heights within the canopy.
aoﬁ,r 1s modeled as function of stem volume according to Equation (5.3).
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Figure 5.2. Forest transmissivity as function of stem volume according to Equation
(5.2) for B of 0.003 and 0.007 ha/m’.

oog, and aoveg are assumed to be equal for both acquisitions that are used for the

calculation of coherence; the sensitivity of the model to changes in backscatter between
the ERS-1 and ERS-2 acquisitions has been shown to be weak (Santoro, 2003). The
term in square brackets in Equation (5.3) accounts for the volume decorrelation and
InSAR geometry effects, with the coefficient w denoting the InNSAR geometry (Equation
(5.8)). The volume decorrelation expression in the square brackets can be derived from
Equation (2.35) when assuming that the strength of volume backscatter decreases
exponentially with the distance the signal has covered within the canopy. Volume
decorrelation depends on the length of the perpendicular baseline, the depth of the
canopy layer (assumed to equal tree height) and the two-way signal attenuation, .
IWCM modeling results for ERS-1/2 tandem coherence acquired over boreal forest
revealed a low sensitivity of the model to the exact value of a (Santoro et al., 2002;
Santoro, 2003). This was considered a consequence of the strong attenuation of the C-
band signal in the tree canopy. Thus, most studies that utilized the IWCM for the
modeling of ERS-1/2 tandem coherence used a constant value for a of 2 dB/m (Santoro
et al., 2002, 2005; Askne et al., 2003; Askne & Santoro, 2005). A sensitivity analysis in
Santoro et al. (2007), based on the same data that was used for this study, indicated
somewhat more realistic modeling results when setting a to 1 dB/m in case of frozen
conditions.

In order to reduce the number of unknowns in the model, the tree height is usually
expressed as function of stem volume (Askne et al., 1997; Santoro et al., 2002, 2007). In
Chapter 3.3, it was shown that a simple equation of the form 4=(a*¥)" can be used to
describe the allometric relationship between stem volume and height. According to the
allometric relations obtained for several Scandinavian boreal forest test sites (Askne et
al., 1997; Santoro et al., 1999), which were very similar to the allometric relation
obtained in Chapter 3.3 for high relative stocking stands at the Siberian test sites, it can
be presumed that these Scandinavian test sites were dominated by close-to-fully stocked
stands (Figure 3.8). The impact of the different allometric relations for fully stocked
stands on the modeling of coherence with the IWCM has been analyzed in Santoro et al.
(2007). It was concluded that the differences in the allometric expressions were of
minor importance. For stands with low relative stocking, no analysis has been carried
out yet.
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The modeled coherence in Equation (5.7) is a complex number. The amplitude
represents the forest coherence. The phase of y;,, represents the interferometric phase as
seen by the radar over forest. The phase, related to height through w, lies between the
ground level and the canopy scattering level and depends on the signal attenuation and
the canopy gap structure. With increasing canopy closure, the effective height of the
interferometric phase approaches the interferometric tree height level, which is the real
tree height minus the penetration depth (Floury et al., 1997). In case of ERS-1/2 tandem
data, the phase noise due to the temporal instability of backscatter from the tree
canopies as well as atmospheric effects strongly limit the use of the interferometric
phase for tree height estimation (Santoro et al., 2005).

Basically, the IWCM predicts an exponential decrease of coherence with increasing
stem volume until the forest transmissivity becomes negligible. The volume
decorrelation and InSAR geometry effects, however, cause additional decorrelation and
introduce an oscillation of coherence, i.e. an increase with increasing stem volume,
when the tree height exceeds half the ambiguity height. The stem volume, V,;,, for
which coherence reaches a minimum, can be approximated with following expression
(Santoro, 2003):

voo- lb ARsin @ (5.9)
a\ 4B,

where a and b are the coefficients of the allometric tree height to stem volume relation.
When setting a and b to 2.44 and 0.46 (see Chapter 3.3), Equation (5.9) predicts an
oscillation in the range of stem volumes that can be found in the boreal zone, i.e. up to ~
500 m*/ha, only when the baseline exceeds ~180 m. In case of a baseline of 300 m, the
minimum coherence is reached for a stem volume of ~165 m>/ha.

Finally, it has to be mentioned that the IWCM in Equation (5.7) reduces to the simple
model in (5.1) when aog,,zaovegzaofor and B,=0 m. In all other cases, y., and ¥, have to be

considered as mere regression parameters with very limited physical meaning.

5.2 Model training

When setting the signal attenuation o to 1 dB/m in case of frozen and 2 dB/m in case of
unfrozen conditions and replacing the unknown tree height with an allometric equation,
formulating height as function of stem volume, five parameters in Equation (5.7) remain
unknown: g, Preg, aog,, aoveg and f. In the empirical model in Equation (5.1), there are
three unknowns: yy, y. and V,. The determination of the unknown model parameters
requires up-to-date ground reference data for a dense set of test sites in order to capture
the temporal and spatial variability of coherence. The following sections in this chapter
will consider the possibility to determine the unknown model parameters without using
inventory data. Still, the inventory data driven training of the models in Equation (5.1)
and (5.7) will serve as reference for the following analysis.

5.2.1 Inventory data-based model training

The regression procedure that has been suggested for the inventory data-based training
of the IWCM (Santoro et al., 2002) is carried out iteratively and aims at a minimization
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of the sum of the squared residuals between measured, ymeqsured, and modeled, ||moder,
coherence as function of stem volume (the index i denotes the stand):

N
Z [}/meamred,[_ | 7/ |model,[ (7gr’ yveg’ﬂ’ Gogr7 O-O"eg) = min (5 10)
i=1

In a first step, aog,zaovegzaoﬁ,, is assumed. The three unknowns ye., 7., and B are
determined by fitting the IWCM in Equation (5.7) to the coherence measurements
(averaged for each stand) at the test sites. With the value obtained for S, aog,, and aoveg are
estimated by fitting the model in Equation (5.3) to the intensity measurements at the test
sites:

0 0 0 0 o
Z[O-measured,i - Umodel,i((y g0 veg,ﬂ) =min (51 1)

i=1

These values for aog, and vaeg are then used for a refinement of yg,, .., and f by fitting
the IWCM to the coherence measurements at the test sites again. The last two steps are
repeated until the parameters converge (generally two to three iterations).

In case of the simple empirical model in Equation (5.1) with three unknowns, least-
squares regression was done in a single step:

N
Z [}/measured,i ~ Vinodel,i (70 2 Voo Vy) = min (5.12)

i=1

5.2.2 The SIBERIA model training approach

In the SIBERIA project a method was developed that allowed the fully-automated
training of the empirical model in Equation (5.1) for an ERS-1/2 tandem dataset
covering a 1 Million km® large area in Central Siberia on a frame-by-frame basis
(Wagner et al. 2003), i.e. training was done for each coherence image covering an area
of 100 x 100 km® separately. It was found that y, could be calculated from the
coherence histogram as there was a high correlation between y.,, obtained when fitting
the model in Equation (5.1) to the measurements at several Central Siberian test sites
(including those used for this study), and the coherence value where the typical ‘forest
peak’ in the coherence histograms at low coherence values reached 75 % of its
maximum ‘height’ on the left flank (see Figure 5.3). This histogram parameter is from
now on referred to as y;s. With v, being adaptive, the parameter for forest floor
coherence 7, could be derived as y, was, at least to some extent, linearly related to y., (R?
= 0.54). The parameter V, varied in a wide range when fitting the model to the
measurements at the test sites. Still, it was decided to use a fixed value for V, for the
automated model training; the mean of all obtained values for V, (0.0082 ha/m?). As the
sum of squared residuals between modeled and measured coherence differed only for a
few percent when fitting the model in Equation (5.1) to the measurements at the test
sites using this fixed value for V, and when including ¥, as unknown parameter in the
regression, respectively, the decision for a fixed V), was considered reasonable.

Once being trained on an ERS frame, Equation (5.13) could be used for the
discrimination of stem volume classes:
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(V) =1, +(0.33+0.581 -y, )- e ""%7 (5.13)

As the only unknown in Equation (5.13), y5, could be calculated from the coherence
histogram, the approach was fully-automated. However, the feasibility of the approach
can be expected to experience narrow constraints. It has been developed for ERS-1/2
tandem coherence data that was acquired solely in fall and with a narrow range of
baselines around 200 m. A first test of the model training approach with ERS-1/2
tandem pairs acquired under stable frozen winter conditions showed that the forest peak
sin the histograms reached higher values than for any of the ERS-1/2 tandem pairs from
fall that were used for SIBERIA-1 (Eriksson et al., 2002). Further constraints of the
approach are that volume decorrelation effects are not considered in the empirical model
and that the training procedure relied upon the dominance of dense forest in each image.
Otherwise the characteristic ‘forest peak’ at low coherence values in the histogram
would not appear.

Chunsky 29-30 Dec. 95 Chunsky 14-15 Jan. 96

Frequency
Frequency

0 02 04 06 08 1 0 02 04 06 08 1
Coherence Coherence

Figure 5.3. Histograms of ERS-1/2 tandem coherence acquired over the Chunsky test
sites. The vertical lines represent the coefficient y;5s in Equation (5.13). Coherence
histograms generally show two peaks over forested areas. The peak at lower coherence
values corresponds to forest, the peak at higher coherence values to open areas.

It has to be mentioned that the SIBERIA algorithm also used L-band intensity
measurements of the Japanese Earth Resource Satellite JERS-1. The L-band intensity
data mainly served the identification of water surfaces and less the discrimination of
forest stem volume classes. As JERS data was not available for Northeast China, the
JERS intensity related part of the algorithm has not been considered in this study.

5.2.3 VCF-based model training

In the following sections, it is investigated if the VCF tree cover product can be
exploited for the determination of the unknown coefficients in the IWCM.
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5.2.3.1 Relationship between ERS-1/2 tandem coherence and VCF tree cover

To compare the VCF tree cover map with the ERS imagery, VCF was resampled to the
pixel size and projection of the geocoded ERS-1/2 images utilizing the nearest neighbor
resampling method. The upscaling of the original VCF data to the pixel size of the ERS
imagery was done by creating the corresponding number of equal valued 50x50 m’
pixels out of one 500x500 m* VCF pixel. In this way, it was possible to carry out a
pixel-by-pixel comparison of the ERS and VCF data without tampering the VCF tree
cover information by any kind of interpolation. To avoid the inclusion of coherence
measurements that were affected by topography, all pixels located on slopes steeper
than 10° were masked. In addition, the surrounding pixels up to 200 m away from the
pixels located on steep slopes were masked; for an explanation see Chapter 6. Water
surfaces were masked with the SRTM water body map.

VCF tree cover [%]

Figure 5.4. ERS-1/2 tandem coherence (left) and VCF tree cover (middle) for a forested
area in the Xiaoxinganling. The coherence image was acquired 3-4 October 1997 with
a perpendicular baseline of 291 m. The right plot shows the decrease of the average
coherence with increasing VCF tree cover + one standard deviation of coherence.

When visually comparing the ERS-1/2 tandem coherence images and the MODIS VCF
product, it was obvious that they contained a very similar type of information. One
example has been illustrated in Figure 5.4. The similarity between the ERS coherence
image and the VCF map became even more evident when calculating the average
coherence for each VCF tree cover level. In the example shown in Figure 5.4 (right),
coherence decreased almost linearly with increasing VCF tree cover up to the highest
tree cover of ~ 80 %; a tree cover level that is hardly exceeded in the boreal zone. The
coherence decrease was accompanied by a considerable spread, shown in Figure 5.4
with the errorbars denoting the standard deviation of coherence.

To clarify the link between coherence and VCF tree cover, coherence histograms were
computed for different VCF tree cover classes. First, following classes were considered:
0 —100%, 0 — 10%, 11 —40%, 41 -75% and >75%. Figure 5.5 shows the histograms for
two ERS-1/2 tandem coherence images that were acquired with comparable baselines
and under similar weather conditions, i.e. frozen temperatures and snow cover on the
ground. The examples were chosen as they represented extremes in the relationship
between VCF tree cover and ERS-1/2 tandem coherence and provided a good insight
into the relationship. For the following discussion, they are referred to as:
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e Scenario 1 — which represents a largely exploited forest area in the northwestern
Xiaoxinganling region with a mostly open canopy structure and only few mature
forests left. The northwestern Xiaoxinganling region was reported to be an area
of extensive selective logging in Achard et al. (2006).

e Scenario 2 — which represents an area in the Chunsky forest territory where
mature and over-mature forests dominate and where logging is usually carried
out in form of large clear cuts.

Scenario 1 Scenario 2
— 0-100% — 0-100%
—0-10% —0-10%
—11-40% — 11-40%
—41-75% —41-75%
>75% >75%

Frequency
Frequency

0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
Coherence Coherence

Figure 5.5. Coherence histograms for four VCF tree cover classes. Both coherence
images were acquired under frozen conditions. Scenario 1: coherence from 30-31
December 1995, Xiaoxinganling (B, = 202 m); Scenario 2: coherence from 29-30
December 1995, Chunsky (B, = 171 m). The histograms for the four VCF classes have
been rescaled to a common peak height for better interpretability.

In both examples (and all other images tested), the coherence histograms for the highest
and the lowest VCF tree cover classes represented the margins of the total coherence
range in the images, suggesting that the areas delineated corresponded to sparse forest
and dense forest cover, respectively. However, in case of the red coherence histogram in
the scenario 2 example a clear second peak at low coherence values could be seen.
These low coherence values were either caused by strong decorrelation over some of the
open areas (e.g. roughness or moisture changes between the tandem acquisitions) or by
dense forests that were erroneously classified as areas with low tree cover in the VCF
map. As the temperatures during acquisition were deeply frozen, the latter was the more
likely explanation. In the red coherence histogram for scenario 1 there was no second
peak at low coherence values but the histogram was clearly tailed towards lower
coherence values. Similar observations were made for a large number of coherence
images in the Siberian and Northeast Chinese ERS-1/2 tandem dataset. When
considering that the ERS and MODIS images were acquired with about five years time
lag, logging or fire disturbance in these five years were most likely responsible for the
discrepancies between VCF and the ERS imagery. For the high tree cover areas, no
comparable observations were made. They generally showed a Gaussian type of
coherence distribution.

The coherence histograms for the intermediate 11-40 % and 41-75 % tree cover classes
revealed very different relations in both examples. In the scenario 1 case, the coherence
measurements appeared as unimodal distributions whereas the coherence distributions
in scenario 2 were clearly bimodal, i.e. one part of the corresponding coherence pixels
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showed high coherence, indicating no or sparse forest cover, and the other part showed
low coherence, indicating dense forest. In the scenario 1 case, the coherence histogram
successively shifted towards lower coherence values with increasing VCF tree cover
when computing the coherence histograms for different intermediate VCF tree cover
ranges. In scenario 2, the location of the two coherence peaks did not change when
considering different intermediate VCF tree cover levels. With increasing tree cover,
however, the number of pixels at the high coherence peak decreased, i.e. the height of
the peak decreased, and the number of pixels at the low coherence peak increased, i.e.
the height of the peak increased.

To explain the differences between both scenarios, let us start with what is shown in
Figure 5.6. The figure shows the area of two 500x500 m> VCF pixels. The grey lines
show the extent of the pixels in the ERS-1/2 tandem coherence images. The circles
represent tree crowns. For both 500m pixels, the tree cover should be in an intermediate
range; for the sake of simplicity let us assume it was 50 % for both VCF pixels. The two
examples show that a VCF tree cover of 50 % at 500 m can mean a different tree cover
in the scale of the ERS imagery:

1) In case of a homogeneous distribution of trees, tree cover will be comparable in
both scales, i.e. the 50 m pixel size of coherence as well as the 500 m pixel size
of VCF. Coherence will thus be in an intermediate range as it reflects
intermediate tree cover as well. The image in Figure 5.6 (right) illustrates this
scenario.

2) 50 % tree cover in the scale of VCF can mean that 50 % of the pixel area is
covered with dense and 50 % with sparse or no forest. Coherence pixels located
within the VCF pixel show either high coherence over open areas or low
coherence over dense forest. Figure 5.6 (left) illustrates this a case.

500 m

Figure 5.6. Schematic representation of two 500x500 m’ VCF pixels. The extent of the
corresponding 50x50 m” ERS pixels is shown with the grey lines. The green circles
denote tree crowns. Both 500x500 m’ pixels represent intermediate tree cover. At the
scale of the 50x50 m® pixels this can mean 1) dense forest or open ground (left) or 2)
intermediate tree cover as well (right).
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The scale, i.e. pixel size, dependence of tree cover could clearly be identified when
computing the mean and the mode values of coherence as function of VCF tree cover
(Figure 5.7). Mode and mean of coherence were calculated for VCF tree cover ranges of
5 % width. Concerning the mode of coherence, the two scenarios revealed different
relations between coherence and VCF tree cover whereas the average coherence showed
a very similar behavior in both cases. In the scenario 1 case, the mode and the mean
value of coherence decreased with increasing VCF tree cover (Figure 5.7, left). The
standard deviation of coherence was the same for all VCF tree cover levels with about
0.08. A constant standard deviation of 0.08 indicates rather homogeneous forest cover at
all VCF tree cover levels (cf. Askne et al., 2003).

¥ Mean
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VCF tree cover [%] VCF tree cover [%)]

Figure 5.7. Mean, mode and standard deviation (SD) of coherence as function of VCF
tree cover(5 % tree cover intervals) for scenario 1 (left) and 2 (right).

In the second scenario, only the average coherence decreased constantly whereas the
mode did not show any response to increasing VCF tree cover up to about 45 % and
then switched to a low coherence level, remaining constant up to the highest tree cover
levels again. This was a consequence of the bimodal distribution of coherence for the
intermediate VCF tree cover classes. In case of a tree cover up to ~45 %, the peak at
higher coherence values was ‘higher’, which means that it comprised more pixels than
the peak at low coherence values. For a tree cover of more than 45 %, the opposite case
commenced, i.e. there were more dense forests with low coherence than unforested
areas with high coherence in the area of the VCF pixels. Furthermore, the standard
deviation of coherence at the intermediate tree cover levels was clearly higher in the
scenario 2 case (maximum of 0.2), being as well a consequence of the bimodal
distribution of coherence in scenario 2. For the highest tree cover levels, the standard
deviation of coherence in the scenario 1 and scenario 2 images equaled, which most
likely meant that a closed forest cover was reached in both scenarios. Thus, the pixel
size dependent effects in tree cover were no longer relevant in case of the highest tree
cover levels. The ERS-1 intensity images have been explored for comparable relations
with VCF tree cover but the typical low intensity contrast between open areas and dense
forests did not allow any equivalent conclusions.

5.2.3.2 Exploiting VCF for model training

The close relationship between coherence and VCF suggested that it should be possible
to identify areas with no and dense forest cover in the coherence images with the aid of
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VCEF, respectively. A determination of the unknown IWCM parameters yy, Pveg, aogr and

aoveg with the aid of VCF should be possible when following preconditions are fulfilled:

1) It is possible to infer from the coherence and intensity in areas with low VCF tree
cover on the forest floor coherence and intensity:

Forest floor beneath a canopy is characterized by a more or less variable soil surface
roughness, soil moisture and litter/understorey cover. Strictly speaking, areas with low
tree cover according to VCF are not forest floor. Low tree cover can mean many land
cover types like barren ground, grassland, cropland, wetland or any type of artificial
surface. The main question is thus if or when it is possible to infer from the coherence
and intensity observed over these land cover types on the coherence and intensity that
would be measured over forest floor (if there were no trees covering the forest floor).

2) It is possible to infer from the coherence and intensity measured over forest with high
VCEF tree cover on the parameters j,., and aoveg:

The IWCM parameters 7., and aoveg refer to the temporal coherence and intensity of
ideally opaque forest canopies, i.e. forest with infinite stem volume. In contrast, the
coherence and intensity measured over forest with high VCF tree cover reflect a finite
stem volume range. In order to infer from the coherence and intensity that is measured
over forest with high VCF tree cover on the IWCM parameters, the residual ground
contributions and volume decorrelation effects (in case of coherence) have to be
compensated for. For the compensation, it had to be clarified 1) which range of stem
volume corresponds to a high tree cover in the VCF maps and 2) how much the ground
and volume decorrelation contributions differ within this range of stem volumes.

In the next two sections, following questions are addressed first before discussing these
fundamental issues (in the last section in this chapter and in chapter 7):

1. How to estimate the IWCM parameters from the coherence and intensity images
with the aid of VCF?

2. How to determine the forest transmissivity parameter f, which cannot be
estimated with the aid of VCF?

5.2.3.3 Parameter estimation with VCF

The VCF-based model training aims at estimating the unknown IWCM model
parameters from the coherence and intensity measurements in areas where VCF
indicates high and low tree cover, respectively. One of the open questions was which
statistical measure of central tendency of the coherence and intensity measurements
should be used for the estimation of the model parameters. The mean of the coherence
and intensity pixels in areas with low or high VCF tree cover would have been the most
plausible choice as the mean represents the statistically correct way to estimate
coherence as well as ¢” (in linear scale) over a number of pixels covering the same land
cover type (Oliver & Quegan, 1998). However, the mean was observed to be rather
sensitive to the timeliness of VCF. In the last section, it was shown that the coherence
distributions in areas with low VCF tree cover were often strongly tailed towards lower
coherence values or even showed a second peak at a low coherence, probably because
of logging or forest fires in the years between the acquisition of the ERS and the
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MODIS imagery. Hence, when estimating the ground coherence level with the mean of
all pixels located in areas with low VCF tree cover, the estimate should be too low. In
order to become less sensitive to these kinds of distortions, the mode (the peak in the
histograms) of the distributions was considered for the IWCM parameter estimation.
Basically, the mode would only represent a good estimator if the underlying pdf of the
measurements over uniform terrain was normal. However, neither coherence nor
intensity are normally distributed (Oliver & Quegan, 1998; Smith et al., 2001). Figure
5.8 illustrates this for intensity. The two distributions shown refer to Gamma distributed
speckle according to Equation (2.16) for an ENL of 9, i.e. the ENL of the intensity data
that was used for this study, and ¢” values of -10.2 and -7.1 dB. The figure shows that
the mode values were 0.5 dB lower than ¢”.

-10.7 dB

Figure 5.8. Gamma distributed speckle for an expected mean intensity of -10.2 and -7.1
dB. The vertical lines denote the peaks of the distributions.

In order to check for systematic differences, the mean and the mode values of the
coherence and intensity measurements over dense forest areas with a stem volume of at
least 300 m’/ha in the inventory data were computed for all images covering the
Siberian test sites. The comparison of the mean and the mode values showed that the
differences were negligible (<0.02 in coherence and < 0.3 dB in intensity). Thus, the
mode of the coherence and intensity measurements should represent an adequate
statistical measure to estimate the model parameters.

From now on, the peaks of the coherence and intensity distributions in areas with low
VCF tree cover will be referred to as y,, and crog, as they are assumed to have the same
meaning as the IWCM parameters. The IWCM model parameters p,., and aoveg refer to
ideally opaque forest canopies whereas the coherence and intensity measured over areas
with high VCF tree cover reflect a finite stem volume range. That is why, the mode of
the coherence and intensity measurements in areas with high tree cover will from now
on be referred to as yycr and aOVCF.

When estimating the mode of the coherence and intensity measurements in areas with
low and high VCF tree cover, it was observed that a certain number of coherence and
intensity measurements was needed for the estimation of yg,., aogr, yycr and O'OVCF. When
including too few measurements, the coherence and intensity histograms became very
noisy, not allowing a reasonable determination of the mode. Figure 5.9 illustrates such a
case. Non-noisy coherence and intensity histograms with a clear peak were generally
achieved when at least one to two percent of the VCF pixels in the area of an ERS frame
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were considered for the generation of the histograms. This means that, when defining an
ERS frame as the basic unit for which model training is carried out, reliable estimates of
the peaks of the coherence and intensity distributions should be possible when at least
two percent of the area covered by an ERS-1/2 tandem pair have low and high tree
cover in the VCF map, respectively. In other words, the 2" percentile of VCF tree cover
needs to be at a low and the 98" percentile at a high tree cover value to identify open
and dense forest areas in the ERS imagery.

9-10 October 1997
20 : T : T

VCF <=2%

Frequency
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o o
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Figure 5.9. Histogram of coherence measurements in areas with low VCF tree cover
when using too few pixels for the determination of yq,.

5.2.3.4 Forest transmissivity

The forest transmissivity parameter £ could not be determined by means of VCF. In
order to fully parameterize the IWCM, S was first determined by fitting the IWCM to
the ERS-1/2 tandem coherence and intensity measurements at the Siberian test sites
following the procedure described in section 5.2.1. The two-way signal attenuation was
set to 1 dB/m for images acquired under frozen conditions and 2 dB for the rest. Tree
height was expressed as function of stem volume with #=(2.44* 1)*46 .. the expression
valid for stands with high relative stocking (see Chapter 3.3). The goal was to evaluate
if, with respect to the automated model training by means of VCF, it was possible to use
either a fixed value for f or if f could be related to one of the other model parameters.
According to the forest transmissivity concept in Askne et al. (1995), temporally stable
gaps should mainly drive the forest transmissivity with only minor effects due to a
variable two-way tree transmissivity, i.e. the use of a fixed value for g, at least for a
given type of forest, may be reasonable. If there were significant temporal alterations in
forest transmissivity because of variations in the signal attenuation in the canopy, it may
be possible to relate the transmissivity coefficient f to aoveg as the two-way signal
attenuation and volume backscatter from forest are closely related to the dielectric
properties of the forest canopy, i.e. the moisture content and the aggregation state. Such
a relationship between forest transmissivity and aoveg has, for instance, been presumed in
the Water-Cloud-based model that was introduced in Pulliainen et al. (1994).

The estimation of £ by means of regression was reported to be rather sensitive to the
selection of stands used for model training (Askne & Santoro, 2005). That is why, in an
additional step, the stands selected for model training were varied by randomly selecting
50 % of the stands in stem volume intervals of 50 m’/ha. The model training was
repeated 50 times, each time with a new selection of stands. The 5" and 95"-
percentiles of the estimated values for f have been included in Table 5.1. For
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comparison, also the corresponding parameter V, in the model in Equation (5.1) was
estimated by fitting the model to the measurements at the test sites.

The estimates for S covered a wide span, exceeding in some cases by far the range of
values with any physical meaning in the forest transmissivity sense (see Table 5.1); note
that a realistic range for boreal forest should be somewhere in the range of 0.003 and
0.007 ha/m’ (Pulliainen et al., 1994; Kurvonen et al., 1999; Santoro et al., 2002, 2005,
2007). A rather narrow range of values for 8 between 0.0055 and 0.0073 ha/m’ was
obtained for all images for which saturation of coherence did not occur up to at least
200 m’/ha stem volume, i.e. all winter images but also the image from 9-10 October
1997 acquired over Primorsky E. These values were in good agreement with those
reported in Santoro et al. (2002, 2005, 2007), Pulliainen et al. (1994) and Kurvonen et
al. (1999). The narrow range of S estimates for the repeated model training with quasi
random stand selection showed that the sensitivity to the selection of stands was low.
Except in one case, the estimates for 7, were higher than § and varied in a larger range
for the images acquired under stable conditions (0.0058-0.0111 ha/m®). This should
have been a consequence of the disregard of volume decorrelation effects and the
assumption of equal forest canopy and forest floor intensity in the empirical model.

Table 5.1. Inventory data-based estimates of the IWCM forest transmissivity coefficient
pB and the corresponding parameter in the model in Equation (5.1), V, The 95 %
confidence intervals (abbr. CI) are provided as well.

IWCM SIBERIA
Date Test site B and 95% confidence 3 - 95% perpe_ntiles of - V.- CI95%
bounds random traml.ng sample Y[h a/m’]
selection
29-30 Dec. 95 Chunsky N 0.0057 +/-0.0010 0.0036-0.0064 0.0086 +/-0.0020
14-15 Jan. 96 Chunsky N 0.0055 +/-0.0012 0.0046-0.0066 0.0082 +/-0.0017
14-15 Jan. 96 Chunsky E 0.0060 +/-0.0020 0.0053-0.0067 0.0058 +/-0.0019
1-2 Jan. 96 Bolshe NE 0.0073 +/-0.0013 0.0062-0.0079 0.0111 +/-0.0021
22-23 Sep. 97 Bolshe NE 0.0076 +/-0.0012 0.0054-0.0088 0.0149 +/-0.0025
25-26 Sep. 97 Bolshe NE 0.0221 +/-0.0078 0.0083-0.0240 0.0239 +/-0.0087
27-28 Oct. 97 Bolshe NE 0.0087 +/-0.0013 0.0078-0.010 0.0118 +/-0.0022
9-10 Oct. 97 Primorsky E 0.0067 +/-0.0016 0.0052-0.0078 0.0106 +/-0.0037
28-29 May 98 Bolshe NE 0.0029 +/-0.0010 0.0021-0.0032 0.0195 +/-0.0071
25-26 Sep. 97 Bolshe NW 0.0151 +/-0.0032 0.0024-0.0169 0.0140 +/-0.0032
28-29 May 98 Bolshe NW 0.0279 +/-0.0054 0.0211-0.0292 0.0396 +/-0.0065

In case of the images that were acquired under unstable imaging conditions, i.e. when
saturation of coherence occurred at about 100 m>/ha, the regression resulted in a wide
span of values for f. Also the repeated model training with quasi random training
sample selection revealed in some cases very wide intervals between the 5" and 95™-
percentiles of the S estimates; note that the estimation of the other four IWCM
parameters was hardly affected by the random training sample selection. This wide
spread of the estimates for f in case of the images that were acquired under unstable
imaging conditions, exceeding by far the range of values with a physical meaning, may
have been a consequence of :
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e the spread of the measurements because of strong standwise variations in the
imaging conditions.

e the overall lower coherence level with an increased noise respectively
uncertainty in the coherence estimation (see Equation (2.29)).

both interfering the forest transmissivity-stem volume relationship and the volume
decorrelation effects. Even in those cases, when the estimates for f were in a range
comparable to those obtained for the coherence images that were acquired under stable
conditions, e.g. the estimates for the images acquired 22-23 September 1997 (S
=0.0076) and 28-29 May 1998 (5 =0.0029) over Bolshe NE, the results could not be
considered physically meaningful. A 8 of 0.0029 ha/m’ should only be realistic in case
of frozen conditions, i.e. when the signal attenuation in the canopy drops to a very low
level. Furthermore, the estimate for £ for the same image at the test site Bolshe NW was
0.0279 ha/m’, which is far beyond any physical relevance in the forest transmissivity
sense as this would mean that canopy closure was reached at extremely low stem
volumes. Also the model fit for the acquisition from 22-23 September could not be
considered realistic as the model predicted an oscillation of coherence at about 170
m’/ha. This oscillation was not visible in the measurements (see Figure 4.1) and should
not have occurred for stem volumes below ~220 m*/ha (according to Equation (5.9) for
a baseline of 260 m).

The predictability of f was low when correlating it to the other IWCM parameters,
obtained when fitting the IWCM to the measurements at the test sites. When, for
instance, relating S to aoveg, no statistical relationship could be found (Pearson
correlation was 0.28), even when considering the parameter estimates for images
acquired under frozen and unfrozen conditions separately. What could be observed was
that § was fairly stable when y,., and vy, exceeded 0.25 and 0.7, respectively. A wide
spread of the estimates for f arised for lower yg-and y,., values (Figure 5.10).
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Figure 5.10. Forest transmissivity coefficient  as function of ., and aoveg (determined
by means of least-squares regression).

In the case of stable imaging conditions, the narrow range of f estimates indicated a
rather similar relation between area-fill factor and stem volume at all test sites
(presuming that the forest transmissivity is mainly a function of the gap fraction in the
canopy). Still, when considering the observations in Chapter 3.3 concerning the forest
structural parameter relative stocking, the canopy gap structure could be expected to
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differ for stands with low and high relative stocking as they represented different
densities at equal stem volume levels. Hence, it was investigated if differences in forest
transmissivity between stands with low and high relative stocking could be found. First,
the IWCM was fitted to the measurements at the test sites repeatedly applying different
thresholds of minimum relative stocking to the standwise measurements, i.e. stands with
a relative stocking below the threshold were not considered for model training. The
analysis focused on the ERS-1/2 tandem pairs that were acquired under stable
conditions for which the estimates for § in Table 5.1 were in good agreement with the
physical meaning of the parameter. In Figure 5.11, the dependence of f on the threshold
of minimum relative stocking has been illustrated for the ERS-1/2 tandem pair acquired
29-30 December 1995. It can be seen that f did not change when increasing the
threshold of minimum relative stocking to 60 %; the four other model parameters did
not show significant changes either. When further increasing the threshold to 70 %, the
estimate changed considerably. This was clearly related to the changing stem volume
distribution when setting the threshold for minimum relative stocking to more than 60
% (Figure 5.11, right). For the other ERS-1/2 tandem coherence images from winter, S
hardly changed as well when increasing the threshold of minimum relative stocking.
Minor changes were only observed for the coherence image from 1-2 January 1996 over
Bolshe NE. In this case, 8 constantly decreased from 0.0073 to 0.005 ha/m’ when
increasing the threshold of minimum relative stocking up to 70 %. In summary, it can
be stated that the model fit, obtained when training the model with the measurements at
all stands, represented also a reasonable description of the trend of coherence as
function of stem volume for stands with high relative stocking.

Chunsky N 29-30 Dec. 95
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Figure 5.11. Left - Estimated forest transmissivity coefficient p for increasing thresholds
of minimum relative stocking including the 95 % confidence bounds (dashed lines).
Right - proportion of stem volume classes (50 m’/ha wide intervals) in percent for
increasing thresholds of minimum relative stockings.

When only considering stands with low relative stocking <= 40 %, the model training
was prone to high uncertainty as the stem volume range was reduced to a maximum
volume of ~200 m*/ha and the spread of coherence measurements along the main trend
was large. When fitting the IWCM to the measurements at stands with low relative
stocking, the obtained parameters were in some cases even unphysical, e.g. negative
Yvee- Hence, the model training was carried out in a different way. Assuming that the
IWCM parameters g, Preg aog, and aoveg did not differ for stands with high or low
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relative stocking, the IWCM was calculated using the parameters obtained when
training the model with the measurements at all stands (as listed in Table 7.1 in Chapter
7). For the allometric relation between stem volume and tree height now the expression
valid for forests with low relative stocking was used, i.e. h=(1.272*%1)"%°! " Different
values for /8 between 0.001 and 0.008 ha/m’ were tested. As can be seen in Figure 5.12,
the IWCM still allowed a reasonable description of the coherence trend as function of
stem volume when comparing the modeled relationship with the measurements at stands
with a maximum relative stocking of 40 %.
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Figure 5.12. Coherence measurements and modeled coherence as function of stem
volume for stands with low relative stocking <=40 %.

The rms residuals between the model fit and the measurements at stands with low
relative stocking <=40% were minimized for 8 values between 0.003 and 0.0035 ha/m’
for all images that were acquired under stable conditions whereas for a f of 0.0055
ha/m’, i.e. a ‘typical’ value for high relative stocking stands, the model rather followed
the lower margin of the coherence trend as function of stem volume (Figure 5.12).
When relating the stem volume to the area-fill factor according to Equation (5.5), it
could be seen that for a # of 0.0035 ha/m’ and the allometric height-stem volume
relation valid for stands with low relative stocking, the area-fill factor at a given stem
volume was clearly lower than for a £ of 0.005 or 0.007 ha/m’ and the allometric stem
volume-height relation valid for stands with high relative stocking (Figure 5.13). This
indicated that stands with low relative stocking were characterized by a more open
canopy structure at a given stem volume. When considering that the density at a given
stem volume should be lower for stands with low relative stocking (see Chapter 3.3),
this interpretation seemed reasonable. However, for a confirmation of this assumption,
further investigations accompanied by ground measurements would be required.

The differences in the relationship between forest transmissivity and stem volume for
stands with different fractions of conifers respectively broadleaved species were
analyzed as well. Contrary to the observations made for stands with different relative
stocking, no consistent differences were observed. The trend of coherence with
increasing stem volume was generally very similar for stands with low and high stem
volume fractions of conifers, respectively.

The observations indicated that an ‘optimal’ training of the IWCM would also have to
account for forest structural differences. As it was not possible to distinguish forests
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with different relative stocking in the coherence images, a training adaptive to forest
structural differences was not feasible. It was decided to use a fixed value for f of 0.006
ha/m’ and the allometric stem volume-height relation valid for stands with high relative
stocking for the VCF-based training of the IWCM in case of images that were acquired
under stable conditions. In this way, the overall trend of coherence as function of stem
volume, regardless of relative stocking, appeared to be represented best.
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Figure 5.13. Area-fill factor as function stem volume for a) f of 0.005 and 0.007 ha/m’
and the allometric relation between stem volume and height for stands with high
relative stocking and b) B of 0.0035 ha/m’ and the allometric relation valid for stands

with low relative stocking (see Chapter 3.3).
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Figure 5.14. Error in the IWCM and the SIBERIA model fit to the coherence
measurements at the test sites. The image numbers correspond to the order in Table 5.1.

Considering the inconsistent and unpredictable estimates for f in case of unstable
imaging conditions with an overall lower coherence level, the advantage of using the
IWCM instead of the simple empirical model was put into question. When computing
the rms error of the model fit to the measurements for both, the empirical model and the
IWCM, an even better model fit of the empirical model had to be stated for the images
that were acquired under unstable imaging conditions (Figure 5.14). As there appeared
to be no advantage in using the IWCM, it was analyzed if the VCF-based training of the
empirical model, using a fixed value for V), allowed a reasonable description of the
trend of coherence as function of stem volume when the imaging conditions were not
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stable. In order to find the best compromise, the empirical model in Equation (5.1) was
fitted repeatedly to the measurements at the test sites using different values for V,, i.e.
only vy and vy, were regressed. Each time the rms residuals of the model fit were
calculated. Then the optimal value for V, was determined by selecting the one for which
the sum of rms residuals at all test sites and for all acquisitions was minimized. This
optlmal value for V, was 0.015 ha/m’ (the optimal value for A would have been 0. 012
ha/m®). Next, the percental difference in rms error of the two (fixed V, of 0.015 ha/m?)
and the ‘optimal’ three parameter model fit was compared for all coherence images. The
average difference was only 3.3 % and the maximum difference was 8.6 % (in case of
the coherence image from 28-29 May 1998 at Bolshe NW). This suggested that a
reasonable description of the trend of coherence as function of stem volume should be
possible when using a fixed value for V,

5.2.3.5 Derivation of yyeg, 7. and coveg

The IWCM model parameters y,., and d’ veg refer to the temporal coherence and
backscatter of ideally opaque canopies whereas yycr and o’ vcr reflect a finite stem
volume range. Thus, yycr and o ycr have to be compensated for residual ground
contributions and volume decorrelatlon effects to derive y,., and o’ veg- aoveg can be
derived from JOVCF when interpreting o’ ycr as intensity that was measured over forest
with a yet unknown equivalent stem volume, V,,, with:

o _ Ol —oge (5.14)

Because of the complex volume decorrelation term in the IWCM, an iterative procedure
had to be used for the estimation of y,.g, so that:

‘7(Veq’7/veg]_7VCF:O (5.15)

|Y(Veq. Vveq)| denotes the modeled coherence at Ve, as function of y,.,. In order to derive
Preg> the IWCM was calculated using the VCF-based estimates for the model parameters
Vers crogr and o’ veg and different values for y,.g, starting with y,.e= yrcr. The value for pyeq
was selected for which the modeled coherence at V,, and yycr matched. When using the
empirical model in Equation (5.1) instead of the IWCM, vy,, could be derived from yycr
with:

_Yrer —70€ I (516)

Ve -
|—o 7

Thus, it had to be investigated which stem volume range corresponds to forest with high
tree cover according to VCF. A comparison of the VCF tree cover map with the stem
volume information in the inventory data was carried out but did not provide useful
information when computing the average tree cover per polygon; basically because of
the coarse pixel size of the MODIS product compared to the size of the polygons in the
inventory data. That is why, the VCF map was compared to the rasterized stem volume
maps from the inventory data as illustrated in Figure 5.15 (left). All pixels in the
inventory stem volume maps with 50 m pixel size were averaged in the area of the
corresponding VCF pixel with 500 m pixel size.
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Figure 5.15 (right) shows the relationship between stem volume and VCF tree cover at
the Chunsky test sites. In case of the test sites at Bolshe and Primorsky, only few VCF
pixels indicated low tree cover, which is why the overall trend was less clear. Figure
5.15 (right) shows a relationship that closely resembles the relationship between the
area-fill factor and stem volume used for the modeling of coherence as function of stem
volume. The curves in Figure 5.15 (right) show the modeled relationship between stem
volume and area-fill factor (in percent) according to Equation (5.5) for two different
values of f. VCF tree cover and area-fill factor obviously denote a similar type of
information. Figure 5.15 (right) also shows that forests with a VCF tree cover close to
the maximum of ~80 % should mostly have a stem volume above 200 m*/ha.
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Figure 5.15. Left — Scheme for the averaging of 50 m pixels (thin lines) in the rasterized
inventory data stem volume maps in the area of a VCF pixel with 500 m pixel size (thick
lines). Right — Scatterplot of VCF tree cover versus stem volume at Chunsky N & E. The
curves show the modeled relationship between stem volume and area-fill factor
according to Equation (5.5).

A model sensitivity analysis was carried out to assess the expected relationship between
yyer | 6" yer and the model parameters and to evaluate the sensitivity of the estimation of
Pveg> Voo and aoveg on Ve,. For this, the VCF-based training of the models was tested for
the images in the Siberian ERS-1/2 tandem dataset. The 2" and 98™ percentiles of VCF
tree cover in the corresponding subsets of the VCF map for all these tandem pairs were
at very low (< 5 %) and very high (> 78 %) tree cover levels, respectively. Thus, the
VCF-based estimation of y,. and oog, could be done by estimating the mode of the
coherence and intensity measurements in areas with VCF tree cover < 5 % and yycr and
O'OVCF could be estimated with the mode of the coherence and intensity measurements in
areas with a tree cover > 78 %, i.e. a tree cover very close to the maximum tree cover in
VCF.

In case of the coherence images that were acquired under unstable conditions, i.e. when
the empirical model in Equation (5.1) was used with V,set to 0.015 ha/m’, as well as the
intensity images, for which the model in Equation (5.3) was trained using a £ of 0.006
ha/m’, the decision for an equivalent stem volume was uncritical as the differences in
the estimates for y., and ooveg were generally very low. This low sensitivity was related to
the fact that the models predicted a mostly saturated coherence and intensity for the
range of stem volumes between 200 and 500 m>/ha.
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In case of the ERS-1/2 tandem coherence images acquired under stable conditions, i.e.
when the IWCM was used for modeling, the dependence of y,., on V., could be
expected to be related to the length of the baseline. Since in the Siberian ERS-1/2
tandem dataset there was no tandem pair that was acquired under stable conditions with
a baseline longer than 200 m, the sensitivity analysis was extended to three tandem pairs
in the Northeast Chinese tandem dataset that were acquired under stable frozen
conditions with baselines of ~300 m. For all three tandem pairs the VCF-based
determination of the IWCM parameters could be considered successful insofar as the 2nd
percentile of VCF tree cover was at a very low tree cover (<3 %) and the 98" percentile
was close to 80 %. As all three coherence images revealed a very similar behavior, only
one of them will be discussed in the following.
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Figure 5.16. Upper row - Derivation of the IWCM parameter yyeq from yycr as function
of the stem volume V., assumed to represent the forest with high tree cover in VCF.
Middle row - Ground coherence contribution [, at the equivalent stem volume V..
Bottom row - Influence of volume decorrelation at the stem volume V,, obtained by
calculating the difference between the modeled forest coherence at V,, when setting the
baseline to 0 m and when using the real baseline, respectively.

Figure 5.16 (upper row) shows the dependence of the estimates for y,., on V., for three
coherence images that were acquired under stable frozen winter conditions with
baselines of 65, 171 and 304 m. The short baseline images both covered the Chunsky
forest territory where stem volumes reach 400 to 450 m’/ha. The long baseline image
from 16-17 January 1996 covered the Changbai Mountain area where stem volumes
reach 500 m’/ha. The middle row in Figure 5.16 shows the ground coherence
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contributions at the equivalent stem volume, /¢(V,,) (calculated with the first term in
the IWCM in Equation (5.7)). The bottom row shows the expected effect of volume
decorrelation, estimated by subtracting the modeled coherence at V., from the modeled
coherence when setting the baseline artificially to 0 m.

The estimation of y,., hardly depended on V., in case of the images from 14-15 January
1996 and 29-30 December 1996 when V., exceeded ~250 m°>/ha. This was due to the
fact that the model predicted only minor ground coherence contributions (Figure 5.16,
middle row) as well as minor differences in volume decorrelation for this range of stem
volumes (Figure 5.16, bottom row). In case of the image from 16-17 January 1996, the
Pveg €stimation showed a higher sensitivity to V., This was a consequence of the
stronger predicted volume decorrelation and InSAR geometry effects due to the long
baseline of 304 m (Figure 5.16, lower right). When considering the values for y,., that
have been reported in previous studies (Santoro et al., 2002; Askne & Santoro, 2005), it
can be stated that a y,., much higher than 0.6, which would have been obtained in this
example when setting V,, to a value below 300 m’/ha, was rather unlikely. In case of the
other two coherence images that were acquired with long baselines in the range of 300
m, the estimates for y,., were even slightly higher.

For baselines up to 200 m, ypcr should, according to the model simulations,
approximate what can be considered the saturation level of coherence which is why it is
not important to identify exactly if yycr reflects the coherence that would be measured
over a forest with a stem volume of, for instance, 300 or 400 m>/ha. On the other side,
when volume decorrelation introduces considerable responses in coherence to
increasing stem volume in the range of stem volumes corresponding to high VCF tree
cover, yycr may strongly depend on the stem volume distribution in areas with
maximum tree cover as the coherence in this range of stem volumes would not be
constant. This would mean that for a definition of V,,, the stem volume distribution in
areas with maximum VCF tree cover needs to be known. No tandem pair was available
that was acquired under stable conditions and with a long baseline over one of the test
sites so that the VCF-based parameter estimates could not be checked for long baseline
tandem pairs. At this point, it can only be stated that, in order to achieve realistic
estimates for y,., in case of the long baseline coherence images acquired over the
Changbai Mountain area, an equivalent stem volume closer to the maximum stem
volume occurring in Northeast China would be required.

5.3 Summary

In this chapter, two existing models, a simple empirical model and the semiempirical
IWCM, have been introduced as basis for the modeling of ERS-1/2 tandem coherence
as function of stem volume. Next, two automated model training procedures have been
described, both aiming at capturing the variability of coherence as function of the
imaging conditions on a frame-by-frame basis.

The first model training approach, which was developed for the classification of
Siberian boreal forest stem volume by means of ERS-1/2 tandem coherence data from
fall (Schmullius et al., 2000; Wagner et al., 2003), relies solely on the histogram
statistics and comprises a number of assumptions for which the validity in case of a
multi-seasonal and multi-baseline ERS-1/2 tandem dataset has to be checked.
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A new model training procedure has been introduced based on the MODIS Vegetation
Continuous Field tree cover product. The analysis of the relationship between ERS-1/2
tandem coherence and VCF tree cover showed that the coherence in areas with the
lowest and the highest VCF tree cover represented the margins of the total coherence
range, reflecting the coherence of unforested open areas and dense forest, respectively.
The underlying assumptions of the VCF-based model training are that 1) it is possible to
infer from the coherence and intensity measurements in areas with low VCF tree cover
on the IWCM model parameters y,, and aog, that describe the coherence and intensity of
the forest floor, and 2) it is possible to infer from the coherence and intensity measured
over forest with maximum VCF tree cover on the IWCM parameters y,., and aoveg,
which refer to ideally opaque canopies.

Concerning the latter issue, the comparison of the VCF tree cover map with the stem
volume measurements in the Russian inventory data indicated that the majority of
forests with a tree cover close to the maximum of about 80 % in the VCF maps should
have a stem volume of 200 m’/ha and higher. A model sensitivity analysis with the
IWCM showed that in case of baselines < 200 m, the coherence in areas with maximum
VCF tree cover should be close to what can be considered the saturation level of
coherence as the predicted differences in the ground contributions in the coherence
measurements as well as the differences in volume decorrelation for stem volumes
above 200 m’/ha were low. In this case, it should be possible to infer from the
coherence in areas with maximum tree cover on the IWCM parameter },., without prior
knowledge about the stem volume distribution in the area that is to be mapped. In case
of longer baselines, this may no longer be the case. The estimation of croveg was
generally uncritical as the model predicted a mostly saturated signal for stem volumes
above 200 m*/ha.

The forest transmissivity coefficient £ in the IWCM could not be determined with the
aid of VCF. When determining the parameter by fitting the IWCM to the measurements
at the test sites, the results indicated only minor differences in forest transmissivity as
function of stem volume between the test sites as long as the imaging conditions were
stable. In this case, the use of a fixed £ value for a VCF-based training of the IWCM
could be considered reasonable. Although differences in forest transmissivity between
stands with different relative stocking were found, the forest transmissivity coefficient
p, as determined when orienting the model training at the high relative stocking stands
(i.e. when using the allometric relation between tree height and stem volume valid for
stands with high relative stocking) allowed a reasonable characterization of the overall
trend of coherence as function of stem volume for stands in all relative stocking ranges.
In case of unstable imaging conditions, when coherence saturated at a stem volume of
~100 m?/ha, the obtained estimates for the transmissivity coefficient § were physically
meaningless. It was found that the simple empirical model could be fitted to the
coherence measurements at the test sites even better which is why, with respect to the
VCF-based training, the use of the empirical model with a fixed value for the
corresponding parameter V,, appeared to be preferable in case of unstable imaging
conditions. For the discrimination of stable conditions, when the use of the IWCM was
justified, and unstable conditions, the IWCM parameters related to temporal ground and
canopy coherence, yg- and y,.,, were found to be a good indicator as for yg > 0.7 and p,.¢
> (.25, the obtained estimates for f were reasonable.
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Chapter 6 - Topographic effects in SAR and InSAR
imagery

In this chapter, topographic effects in the ERS intensity and coherence imagery are
addressed. For the identification of topographic effects, the SRTM-3 DEM with 90 m
pixel size is used as topographic reference.

6.1 Topographic effects in ERS intensity

The standard procedure for the derivation of ¢” presumes flat terrain (Laur et al., 2004).
However, the intensity measured over sloped terrain is affected by the varying pixel
area contributing to the backscatter measured. In case of ERS, topography was observed
to alter the measured intensities for up to +/- 5 dB (Beaudoin et al, 1995). The effect of
topography can be compensated for when having a DEM. An approach that aims at a
correction of this effect has been presented in Ulander (1996). Here the cosine of the
projection angle was found suited to describe the changes in ground scattering area over
sloped terrain. Other approaches were described in Curlander & McDonough (1991) or
Van Zyl et al. (1993) but these approaches only represented approximations for the
projection angle-based approach (Ulander, 1996). The projection angle v is defined as
the angle between the local surface normal and the image plane normal. An illustration
of the imaging geometry over sloped terrain, including v, is given in Figure 6.1.

The compensation for varying ground scattering area could be done with a pixel area
normalization map, C4, derived from the SRTM-3 DEM (Wegmiiller, 1999). C, was
calculated with the ratio: cos(y)/sin(f); note that the sine of the incidence angle
accounts for the fact that the compensation for the variation of the pixel area over flat
terrain from near to far range was already done during calibration. According to Loew
& Mauser (2006), a good normalization performance can be expected when using the
SRTM-3 DEM with 90 m pixel size for pixel area normalization. Loew & Mauser
observed only minor changes in the estimated pixel area (they also used y to estimate
the pixel area) when using either the SRTM-1 DEM with 30 m pixel size, 1.e. a pixel
size of the order of the SAR image resolution, or a degraded version of the same DEM,
resampled to 100 m pixel size, for the topographic normalization of ENVISAT ASAR
C-band intensity (6 = 23°).

The layover/shadow masks, produced with the GAMMA software from the SRTM-3
DEM, were found to underestimate the area affected by layover (shadow is hardly
observed in ERS intensity images due to the steep incidence angle) as the masked areas
were surrounded by bright pixels in the intensity images. This effect has as well been
reported in Loew & Mauser (2006). In Loew & Mauser, the produced layover masks
were found to increasingly underestimate the area affected by layover and shadow, the
lower the resolution of the DEM. To improve the layover masks, it was decided to
widen the areas that were indicated as layover for three pixels in all directions. In this
way, the pixels with high backscatter surrounding the identified layover areas could be
excluded.
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Ground surface patch

Figure 6.1. Radar imaging geometry over sloped terrain with R denoting the radar look
vector, x the azimuth and y the range direction, 0; the local incidence angle and v the
projection angle (Courtesy of Ulander, 1996).

Topography is known to alter the backscatter dependent on the scattering mechanisms
respectively land cover type. A dependence of backscatter on the local incidence angle,
6;, can be observed for most land cover types (Ulaby et al., 1986). The local incidence
angle is defined as the angle between the propagation direction vector and the local
surface normal. The variation of surface and volume scattering with local incidence
angle can be compensated for with a simple cosine correction of the form (Teillet et al.,
1985; Ulaby et al., 1986; Holecz, 1993; Castel et al., 2001a; Leclerc et al., 2001; Sun et
al., 2002):

0 0 COS(H) '
c'r = °(6, )C{COS(@)] (6.1)
The compensation for the pixel area variation with C,4 has been included in Equation
(6.1). The exponent n can take values between 0 and 2, approaching 2 for Lambertian
scattering. For most land surface types, lower values for n have to be used to describe
the dependence of backscatter on local incidence angle adequately (Ulaby et al., 1986;
Abdel-Messeh & Quegan, 2000). In case of volume scattering, the exponent n in
Equation (6.1) can be adjusted for each forest stand when having information about
canopy height and signal attenuation. Castel et al. (2001a) developed a normalization
procedure, based on the Water-Cloud-Model, that accounted for the variation of the path
length, 4;, the signal has to cover within the canopy dependent on local slope and local
incidence angle:

h.=h-cos(a,)-sec(b)) (6.2)

The signal attenuation, x,, and the volumetric backscattering coefficient, a,, (cf.
Equation (2.20)) were assumed to be independent of the incidence angle. The value for
n depended on the optical depth of the canopy, defined as the product of signal
attenuation and crown depth, and could take values between 0 and 1, approaching 1 for
opaque canopies. At a given canopy height, a lower signal attenuation in the canopy,
e.g. in case of frozen winter conditions, would require the use of a lower value for n.
The n values were estimated for Austrian Pine stands in southeastern France. In case of
ERS intensity data, high values for n close to 1 (on average 0.93) with only little
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dispersion between young and old stands were obtained, indicating that a good
topographic normalization should be possible when using a fixed value for n regardless
of stand age (or height, stem volume, biomass, etc.).

When applying the normalization in Equation (6.1) with an exponent n of 1 to the ERS
intensity images available for this study (after masking areas affected by layover), a
good performance of the normalization procedure could be observed. Figure 6.2 shows
for one example that, when averaging all intensity measurements that corresponded to a
certain local incidence angle, the dependence of intensity on topography was mostly
compensated for in case of open surfaces (VCF < 10 %) as well as forested terrain
(VCF > 60 %). Concerning open areas, it was expected that different values for n would
be required for an adequate normalization as the decrease of surface backscatter with
increasing incidence angle is a function of the surface roughness (Ulaby et al., 1986).
When, however, considering the average intensity over a wide range of non-forest land
cover and surface roughness types (i.e. all areas with VCF < 10 %), the use of a fixed n
of 1 apparently resulted in a good normalization of topographic effects (Figure 6.2,
right). For dense forest areas, it was also tested if the use of an n < 1 for images that
were acquired under frozen conditions, i.e. when the penetration depth increased,
improved the topographic normalization. No improvements were noticed though.

The good performance of the topographic normalization was further confirmed when
applying the topographic normalization to all intensity images in the Chinese ERS-1
dataset for which all VCF tree cover levels up to 80 % were represented in the area
covered. The coefficient of variation CV, which is the ratio of the standard deviation of
intensity to the mean, was calculated for each intensity image in areas with low (< 10
%) and high (> 60 %) VCF tree cover before and after topographic normalization. A
lower CV indicates low texture, which is why it should also show if the topographic
normalization reduces the variability of intensity due to topographic effects to a level
comparable to that over flat terrain. Figure 6.3 shows for both, open areas and dense
forest, that after topographic normalization, the CVs of the intensity measurements in
steep areas were in a similar range as those over flat terrain; note that in case of the open
areas, the flat areas show a relatively wide range of CVs as in these areas considerable
texture arised from croplands or settlements.
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Figure 6.2. Dependence of ERS backscatter on local incidence angle 1) before
topographic normalization (solid line) 2) after compensating for varying pixel area
(dash-dotted line) and 3) after compensating for varying pixel area and scattering
(dashed line) in areas with VCF>60 % (left) and VCF<I0 % (right). The intensity
image was acquired 22 January 1996 over the Changbai Mountains.
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Figure 6.3. The boxplots show the quartiles of the CVs in areas with low (left plot) and
high (right plot) VCF tree cover for 87 ERS-1 intensity images of Northeast China. The
CVs refer to flat areas with slope < 10° (left), slopes > 10° when not normalizing
(middle) and when normalizing (right) the intensity images according to Equation (6.1).

6.2 Topographic effects in ERS-1/2 tandem coherence

The reduced coherence over mountainous terrain is a consequence of spatial
decorrelation. According to Askne et al. (1997), spatial decorrelation can be split into
two components (under the assumption that the stable part of volume backscatter is
solely a function of the height above the surface plane), the slant-range (or surface)
decorrelation in case of surface scattering and volume decorrelation when the scatterers
are distributed in height (see Chapter 2.2.2).

To illustrate the effect of surface decorrelation, some rather simplified but, for
illustrational purposes, appropriate simulations have been carried out. Coherence is
known to decrease with increasing fractions of non-common bandwidth, Af, reaching
total coherence loss when Af equals the bandwidth W. Even though not entirely correct,
a linear decrease of coherence with increasing fraction of non-common bandwidth can
be presumed for the modeling of surface decorrelation (Bamler & Hartl, 1998; Lee &
Liu, 2001). For a thorough description of surface decorrelation, the reader is referred to
Hagberg et al. (1995). Range common-band filtering aims at removing the non-common
fractions of the range spectra. Without information about the local topography, the filter
has to assume a relative frequency shift corresponding to flat terrain, here denoted with
Afp (calculated from Equation (2.34) with a,=0°), so that the fractions of non-common
bandwidth |4f) — 4f] are not removed and the bandwidth is reduced to W - Af, (Ferretti et
al., 2007).

Figure 6.4 shows the fraction of non-common bandwidth for baselines of 100, 200 and
400 m before and after range common-band filtering. It can be seen that the filter
completely recovers the coherence over flat areas as the fraction of non-common
bandwidth is reduced to zero. It also increases the coherence for slopes facing the radar
but decreases it for steep slopes tilted away from the sensor (negative slopes). With
increasing length of the baseline, coherence decreases at each slope.
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Figure 6.4. Fraction of non-common bandwidth before and after range common band

filtering for slopes (in the line of sight) between -40 and 23° and perpendicular
baselines of 100, 200 and 400 m.

In order to identify the effect of topography-induced decorrelation in the coherence
images, two mostly unforested areas in Northeast China were considered for which two
or more tandem pairs, acquired with different perpendicular baselines, were available.
One area was located in Jilin province at the margins of the Changbai Mountain range
(43.6° N, 124.7° E). The second area was located in Liaoning province (40.1° N, 122.3°
E). In both regions, the flat areas were predominantly under agricultural use and a large
fraction of the mountains was unforested. The area considered in Liaoning was
characterized by an average slope of 6.4° (SD 5.8°). The average slope at the Jilin site
was 3.37° (SD 3.8°). The Liaoning site was covered three times in winter 1996 by ERS-
1 and ERS-2: 1) 18-19 January 1996 (B, = 148 m), 2) 22-23 February 1996 (B,= 40 m),
3) 28-29 March 1996 (B, = 101 m). The Jilin site was covered by two tandem pairs: 1)
15-16 January 1996 (B, = 395 m), 2) 19-20 February 1996 (B, = 84 m). Figure 6.5
shows small subsets of the coherence images. In both areas, a decrease of coherence
with increasing length of the perpendicular baseline could be noticed over sloped
terrain. While layover areas were completely decorrelated in all images (right-hand side
of the mountains in Figure 6.5), differences in the decorrelation strength were clearly
visible for the slopes tilted away from the radar (left-hand side of the mountains).

Figure 6.5. Subsets of five ERS-1/2 tandem coherence images acquired in winter over
mountainous terrain in the Jilin (a & b) and Liaoning provinces (c - e). The
perpendicular baselines were: (a) 84 m, (b) 395 m, (c) 40 m, (d) 101 m, (e) 146 m.
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To get a more detailed view on topography-induced decorrelation, the pixel-wise
coherence measurements were averaged for slope ranges of: 0-1°, 5-6°, 10-11°, 15-16°
and >20°. In addition, the measurements were differentiated with respect to the aspect
angle. Aspect angles range from 0 to 360° with 0° denoting slopes facing North and
~100° denoting slopes facing the radar (in case of descending ERS orbits). First, only
areas where VCF indicated less than 2 % tree cover were considered in order to isolate
the surface scattering case. Figure 6.6 shows that an increasing slope at the
mountainsides facing the sensor was accompanied by a decrease in coherence. The
decorrelation was strongest for those slopes directly facing the sensor, i.e. those with an
aspect angle of ~100°. It has to be mentioned that only in case of aspect angles of ~100°
and ~280°, total slope (in the SRTM slope map) and the slope in range direction, i.e. the
slope that determines the wavenumber shift, are identical. For all other aspect angles,
the slope in range direction is lower than the slope given in the SRTM slope map. In
case of a baseline of 40 m, topography-induced decorrelation could be noticed first for
slopes steeper than 15°. With increasing baseline, topographic decorrelation
successively affected less steep slopes and for the steeper slopes the decorrelation
became stronger. For a baseline of 150 m even slopes of 5° showed considerable
decorrelation. In case of slopes tilted away from the sensor, decorrelation was less
severe compared to the mountain fronts, which was in good agreement with what could
be seen in Figure 6.4. As long as the baseline was shorter than ~100 m, decorrelation
remained moderate. For slopes steeper than 10°, a slightly lower coherence could be
noticed. Like for the mountain fronts, topographic decorrelation successively affected
less steep slopes with increasing baseline. For a baseline of 395 m even slopes of 5°
showed a somewhat lower coherence than flat terrain.
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Figure 6.6. Average ERS-1/2 tandem coherence as function of aspect angle for slopes of
0,5, 10, 15 and >20° in areas with low tree cover.
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Figure 6.7. Measured (o) and modeled (line) coherence versus local slope in range for
the images acquired over Liaoning province with baselines between 40 and 148 m.

Coherence was modeled as function of local slope and baseline according to the
approximations for surface decorrelation after range common-band filtering outlined
earlier in this section. Temporal decorrelation was accounted for by multiplying the
spatial decorrelation term with the average coherence measured over flat and unforested
terrain (VCF<2%).

|7/ | = yslantfrange e temporal

= (1 —M] -y(a, =0°%VCF < 2%) (6.3)
W - Af, ‘

Modeled and measured coherence as function of local slope have been illustrated for the
coherence images covering the site in Liaoning province in Figure 6.7. For the sake of a
better interpretability, only slopes in the radar look direction have been illustrated.
When comparing model and measurements, an increasing difference between modeled
and measured coherence had to be stated, the steeper the terrain was. The differences
between model and observations could have been due to:

e uncompensated topography in the coherence estimation window
e co-registration offsets
e the simplifications in the model

A variation of interferometric phase within the coherence estimation window because of
uncompensated topographic phase in the interferogram reduces coherence (cf. Equation
(2.28)). For the compensation of the topographic phase before computing coherence
with the Siberian and Chinese ERS-1/2 tandem datasets, the local phase slope was
estimated from the interferogram itself. This phase slope estimate, however, suffered
from uncertain phase estimates on steep slopes because of surface decorrelation so that
an additional decorrelation term added up to the wavenumber shift effects over sloped
terrain. In order to assess the impact of uncompensated topography on coherence, the
slope estimates from the SRTM DEM were used to calculate the local standard
deviation of slope for each pixel in a window of 9x9 pixels centered at the particular
pixel. The average coherence for pixels has been plotted as function of slope for those 5
% of the pixels with the highest and lowest standard deviation of slope, respectively. As
can be seen in Figure 6.8, the coherence pixels with the lowest standard deviation of
slope resembled the modeled relationship much better, in particular in case of the slopes
facing the sensor. The observation indicated that the accuracy of the phase slope
estimates from the interferogram, used to eliminate the topographic phase in the
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coherence estimation window, decreased the more rugged the terrain was. As also the
90 m pixel size of the SRTM DEM could be expected to resemble only a part of the
‘true’ topographic variation that affected the ERS-1/2 interferometric measurements, it
can be assumed that the non-perfectly compensated topographic phase was the most
important reason why the modeled and the observed relationship differed in Figure 6.7.
Still, co-registration errors over rugged terrain, in particular when the baseline was long,
may have further increased the difference between model and measurements. In
addition, the rather simplified model for surface decorrelation may not have fully
reflected the true topographic effect in the coherence measurements.

Figure 6.8 shows that the effect of residual topographic phase in coherence varies within
the images and cannot solely be modeled as function of slope. The spatial estimation
principle of coherence may even cause a coherence loss for pixels on flat ground when
they are located close to steep slopes, i.e. up to 4 pixels distance when the coherence
estimation window reaches the defined maximum size of 9x9 pixels.
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Figure 6.8. Modeled (line) and measured coherence versus local slope for pixels with

the lowest (o) and the highest (+) standard deviation of slope in a window of 9x9 pixels.

The coherence measurements over mountainous densely forested terrain revealed a
similar behavior as unforested terrain (Figure 6.9), i.e. stronger decorrelation on slopes
tilted towards the sensor and increasing decorrelation with increasing baseline for a
given slope on both mountainsides. This observation suggested that topography mainly
affected dense forest coherence through varying fractions of non-common range spectra
after common band filtering. However, further topography related effects may alter the
stem volume-coherence relation: 1) different weights of ground and canopy backscatter
contributions dependent on the local incidence angle, 2) alterations in volume
decorrelation as the signal path length through the canopy increases from slopes facing
the sensor to those tilted away from the sensor, 3) dependence of the area-fill factor, and
thus the forest transmissivity, on topography as the fraction of gaps in the canopy
should decrease with increasing local incidence angle (Nilson, 1999). No studies are
known to the author that addressed these issues yet.
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Figure 6.9. Average ERS-1/2 tandem coherence for aspect angles between 0 and 360°
and different slopes of 0, 5, 10, 15 and >20° (legend as in Figure 6.6) in areas with
high tree cover.

6.3 Implications with respect to a VCF-based model training

Concerning the identification of pixels that were affected by topography-induced
decorrelation, it had to be stated that there were a number of uncertainties. The
investigations showed that the topography-induced decorrelation depended on slope,
aspect angle, perpendicular baseline as well as the spatial context, i.e. the relief in the
coherence estimation window. In addition, co-registration offsets between the tandem
images may have caused additional decorrelation over rugged terrain. In case of
coherence over forest, several other effects could, in addition, have affected the
relationship between coherence and stem volume. The modeling of these effects would
require a thorough investigation, accompanied by ground measurements (e.g. the area-
fill factor at different incidence angles), which was beyond the scope of this thesis.

Because of the uncertainties in the identification of topographic effects in coherence, a
rather coarse topographic masking procedure had to be applied for the automated VCF-
and histogram-based model training approaches in order to guarantee that no coherence
pixels that were affected by topography-induced decorrelation were considered for
model training. All pixels located on slopes steeper than 10° were masked as well as the
surrounding four pixels in order to account for the effects of the spatial coherence
estimation principle. With this approach, even in case of the longest baselines, no
residual low coherence pixels in the histograms for dense forest and open areas
(according to VCF) were noticed. As this masking procedure was rather coarse and the
likelihood of excluding pixels that would have allowed reasonable stem volume
estimates was high, a different topographic masking procedure was applied for the
creation of the forest stem volume map of Northeast China (see Chapter 8.3).

With respect to the topographic distortions in the intensity images, only layover areas
had to be masked. It was observed that, when further masking steep slopes (besides
layover affected areas), the VCF-based estimates for the IWCM parameters oog, and
aoveg did not change.
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Chapter 7 - Model training results

In this chapter, the automated model training approaches that were described in Chapter
5 are tested. First, the validity of the underlying assumptions of the histogram-based
model training approach are checked. Then the VCF-based model training is applied.
The reasonability of the training results is assessed by comparing the obtained model
parameters with those obtained when fitting the models to the measurements at the test
sites by means of regression. Due to the lack of reliable ground data for Northeast
China, the VCF-based training results could only be crosschecked with the weather data
in order to evaluate the general reasonability of the determined model parameters with
respect to the prevailing weather conditions.

7.1 SIBERIA model training approach

The coherence histogram-based model training approach comprised several assumptions
that needed to be checked in order to evaluate if the approach is applicable for stem
volume retrieval with multi-seasonal ERS-1/2 tandem coherence data. The main
assumptions were:

e C(Close relationship between the coherence histogram parameter, y;s, in Equation
(5.13) and the ‘saturated’ forest coherence, y., in Equation (5.1).

e Linear relationship between forest floor coherence, yy, and the coherence
histogram parameter y7s.

In order to verify these assumptions, the model in Equation (5.1) was fitted to the
measurements at the Siberian test sites. The parameter estimates were compared to
those obtained with the histogram-based training of the model in Equation (5.13). In
Equation (5.13), the parameter for forest floor coherence does not appear per se as the
forest floor coherence is expressed as function of y;s. That is why, the modeled
coherence at 0 m*/ha stem volume was computed and denoted YO(SIB)-

The correlation between y;5 and ., was high (Pearson correlation of 0.92) when
computing y,, by means of non-linear regression and y;s from the coherence histograms
for all images acquired over the Siberian test sites. The estimates closely followed the
1:1 line in Figure 7.1 (left). Thus, a good characterization of the saturation level of
coherence seemed to be given with y;5, even for the winter images acquired with
different baselines between 65 and 171 m, respectively. This indicated that, when
further compensating y75 for residual volume decorrelation effects as described in
Section 5.2.3.5, it might as well be used to derive the IWCM parameter 7y.e,.

The correlation between y, and y;5 was about the same as reported in Wagner et al.
(2003). Even though an increase of forest floor coherence with increasing coherence of
dense canopies could be observed (Figure 7.1, right), this increase showed considerable
spread along the assumed linear relationship. In case of the acquisition from 14-15
January 1996 covering Chunsky N & E, the inventory data-based model training
resulted in a forest floor coherence of ~0.8 whereas the histogram training predicted a
forest floor coherence of 1.05, i.e. an unphysical value. Considering the different
mechanisms of decorrelation (see Chapter 2.2.3), the coherence at the forest floor and
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the canopy should be considered as independent variables. Wind, for instance, can be
considered the main agent of temporal decorrelation over dense forest canopies but not
over bare soil. In addition, the baseline dependent volume decorrelation affects
coherence measured over dense forest but not the coherence over open ground.
Consequently, an automated training of the model in Equation (5.1), relying upon a
linear relationship between forest floor and canopy coherence properties, cannot be
considered a physically justified approach.

r=0.921
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75 75

Figure 7.1. Left — Histogram coefficient y;s versus dense forest coherence y«. Right — y;s
versus yy from inventory data-based training of the model in Equation 5.1 and the
predicted forest floor coherence from the histogram-based training of the model in
Equation (5.13), yossip)

Furthermore, the histogram-based model training approach relies upon the dominance
of dense forest in the area covered by the coherence image as only then the typical
dense forest peak appears in the coherence histogram. This was given for the test areas
in Central Siberia but not for Northeast China where for many of the available ERS-1/2
tandem coherence images only a small part of the area covered was forest.

In addition, large forest areas in Northeast China are structurally degraded with only a
small fraction of forests being in the mature or over-mature development stages. The
test of the histogram-based model training approach for the three ERS-1/2 tandem
coherence images covering the Northeast Chinese test sites resulted in values for y;s
clearly too high, in particular in case of the images that covered the Daxinganling and
Xiaoxinganling test sites (Figure 7.2). This showed that, although the largest fraction of
the areas covered by the tandem pairs was forest, the histogram-based training approach
could not be considered feasible when the forests are not predominantly in the mature
and overmature forest development stages.
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7.2. Histograms for the three ERS-1/2 tandem coherence images covering the

Chinese test sites (top row). The vertical lines denote the model parameter y;s. The

bottom

row shows the model lines (Equation (5.13)) that were obtained with the

histogram-based model training, and the measurements at the test sites.

7.2 VCF-based model training for the ERS-1/2 tandem data of Siberia

7.2.1 VCF-based model training on a frame-by-frame-basis

The VCF-based model training was carried out for each ERS-1/2 tandem coherence
image covering the Siberian test sites as follows:

The peaks of the coherence and intensity histograms for areas with low VCF tree
cover (<= 2nd percentile of tree cover in the corresponding subset of the VCF
map) were interpreted as y,, and aogr, respectively (see Figure 7.3).

The peaks of the coherence and intensity histograms for areas with maximum
VCF tree cover (>= 98" percentile of tree cover in the corresponding subset of
the VCF map - always close to 80 % tree cover for the area covered by the
Siberian ERS-1/2 tandem data) were interpreted as coherence and intensity of
dense forest, yycr and O'OVCF (see Figure 7.3).

Pveg and aoveg were determined by compensating ypcr and O'OVCF for residual
ground contributions - and volume decorrelation in case of yycr (see Chapter
5.2.3.5). A stem volume of 400 m>/ha was assumed to represent the stem volume
of forests with high tree cover according to VCF.

The IWCM was fully parameterized with a fixed value for £ of 0.006 ha/m’ and
a two-way signal attenuation o of 1 dB/m in case of frozen and 2 dB/m in case
of unfrozen conditions.
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e In case of the images that were acquired under unstable imaging conditions (see
Chapter 5.2.3.4), the simple empirical model in Equation (5.1) was calculated
instead of the IWCM using a fixed value for ¥, of 0.015 ha/m’.

The model curves that were obtained with the aid of VCF for each coherence image and
the standwise measurements at the Siberian test sites have been illustrated in Figures 7.4
and 7.5. The figures also show the models obtained when fitting the models to the
measurements at the particular test site by means of least-squares regression (see
Chapter 5.2.1). Figure 7.4 shows the measurements and models for the images acquired
under unstable conditions in fall and spring. For these images, the empirical model was
used. For the sake of completeness, also the model training results for the ERS-1
intensity images have been included although they were not considered in the empirical
model (Equation 5.1). The model curves represent the results of the inventory data- and
VCF-based training (£ set to 0.012 ha/m®) of the model in Equation (5.3). Figure 7.5
shows the IWCM model training results for the images that were acquired under stable
conditions. The obtained model parameters have been summarized in Table 7.1. It has
to be stressed that the VCF-based model training was carried out on a frame-by-frame
basis. That is why, the model curves in Figures 7.4 and 7.5, obtained with the VCF-
based training, are identical for different test sites when the test sites were covered by
the same ERS-1/2 tandem pair. This was the case for the tandem pairs from 25-26
September 1997 and 28-29 May 1998, which both covered Bolshe NE and Bolshe NW,
and from 14-15 January 1996, which covered Chunsky N and Chunsky E.

At first sight, the results of the VCF-based model training drew a heterogeneous picture.
The model curves, obtained with the aid of VCF, closely followed the trend of the
coherence measurements as function of stem volume at the test sites in case of the ERS-
1/2 tandem coherence images from 29-30 December 1996 at Chunsky N, 14-15 January
1996 at Chunsky E and 25-26 September 1997 at Bolshe NW. In case of the ERS-1
intensity images, a good agreement of the model curves, derived with the aid of VCF,
and the trend of the measurements at the test sites could be observed for the images
from 25 September 1997 at Bolshe NE and NW, 29 December 1996 at Chunsky N and
1 January 1996 at Bolshe NE. In all other cases, more or less significant deviations from
the trend, as indicated by the standwise measurements at the test sites, had to be stated.

\
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Figure 7.3. Example for the VCF-based model parameter estimation with the coherence
and intensity histograms for areas with high (dashed lines) and low (solid lines) VCF
tree cover. The vertical lines denote the peaks of the histograms.
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Figure 7.4. Measured and modeled coherence/intensity (models in Equation (5.1) for
coherence and (5.3) for intensity) as function of stem volume. The solid lines show the
VCF training results and the dashed lines refer to the regression-based model fits.
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Figure 7.5. Measured and modeled coherence/intensity (IWCM) as function of stem
volume. The solid lines show the VCF training results and the dashed lines refer to the
model fits to the measurements at the test sites.
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Table 7.1. Model parameters of the IWCM, respectively the empirical model in
Equation (5.1), determined with the VCF- and inventory data-based model training
(FID). For the latter, the 95% confidence bounds, CI, are provided.

. .. C . Baseline Ygr YVeg Gogr Goveg
Test site Training  Acquisition date
[m] +-Cl +/-C1  +/-CI1[dB] +/-CI[dB]
Chunsk 0.780 0.540 -10.07 -8.80
unsky N FID 29.30 Dec. 95 171 _+-0.016 +/-0.026  +/-0.17 __ +/-0.15
Chunsky N VCF 0.824 0.472 -9.80 -8.93
0.824 0.423 -10.59 8.21
Chunsky N FID +-0.013  +/-0.030  +/-0.19 +/-0.14
14-15 Jan. 96 65 0.799 0.470 -10.92 -9.62
Chunsky E FID +-0.015  +/-0.030  +/-0.14 +/-0.13
Chunsky N & E VCF 0.836 0.514 -10.40 -8.97
- 0.763 0.529 -7.98 -7.67
Primorsky E FID 9-10 Oct. 97 183 _+-0.044  +-0.044  +-033  +-0.27
Primorsky E VCF 0.872 0.315 -9.20 -1.47

i 0.704 0.336 -10.58 -7.99
Bolshe NE FID 123 Jan. 96 144 _+-0.027  +/-0.013  +-026  +-0.11
Bolshe NE VCF 0.820 0.345 -10.40 -8.39

For the following acquisitions the empirical model in Equation
(5.1) was used. For the sake of completeness, also cogr and coveg cog, csovcg
have been estimated.by ﬁt’Fing the model in Equation (5.3) to Yo Yoo [dB] [dB]
the intensity measurements.

i 0.466 0.134 9.17 771
Bolshe NE FID 2223 Sep. 97 260 _+-0.021 +-0.001  +-021  +-0.09
Bolshe NE VCF 0.716 0.139 -7.00 -7.49

0.534 0.216 -8.64 -8.18

Bolshe NE FID +-0.054 _ +/-0.020  +/-0.64 _ +/-0.28
25-26 Sep. 97 233 0.633 0.228 -9.48 -7.98

Bolshe NW FID P +-0.062  +-0.018  +-027  +/-0.055
Bolshe NE&NW  VCF 0.732 0.229 -8.80 -7.94

< 0.483 0.138 -10.45 -8.84
Bolshe NE FID 728 Oct. 97 158 _H-0.021  +-001  +-024  +-0.10
Bolshe NE VCF 0.764 0.189 -9.00 -8.72

i 0.452 0.161 -7.45 -6.84
Bolshe NE FID +/-0.049  +/-0.034  +/-0.71 +/-0.45

28-29 May 98 313 0.549 0.177 -7.61 -7.07
Bolshe NW FID +-0.063  +/-0.006  +/-0.47 +/-0.05
Bolshe NE& NW  VCF 0.696 0.179 -10.40 -7.69

When considering the four parameters separately, a mostly good agreement could be
stated for the model parameters y,,, y- and aoveg. The Pearson correlation between the
inventory data- and VCF-based estimates was 0.84 (Figure 7.6) when not differentiating
between y,.; and y... The largest difference of 0.2 occurred for the image from 9-10
October 1997 at the test site Primorsky E. Here the VCF-based estimate for y,., was
lower than the inventory data-based estimate. In contrast, VCF predicted a higher value
for y,.e in case of the ERS-1/2 tandem coherence image from 14-15 January 1996 at
both test sites covered. Even when the model, that was trained with the aid of VCF,
closely followed the trend of the standwise coherence measurements as function of stem
volume, there were differences between the inventory data and VCF-based estimates for
Yveg, fOr Instance in case of the coherence image from 29-30 December 1995 at the test
site Chunsky N. Here the difference in the estimates was 0.07.

107




In case of ooveg, the correlation was 0.8. Differences between the inventory data- and
VCF-based estimates of more than 0.5 dB were only observed in case of the intensity
images from 14 January 1996 and 28 May 1998. In case of the image from 14 January
1996, the VCF-based estimate for the whole frame was lower than the inventory data-
based estimate at Chunsky N whereas at Chunsky E the inventory data-based estimate
was lower, clearly indicating within-frame variations of dense forest intensity. For the
ERS-1 intensity image from 28 May 1998, the VCF-based estimate for aoveg was lower
than the inventory data-based estimates at both test sites covered.

For y4- — denoted y, when the empirical model was used - the correlation between the
inventory data and VCF-based estimates was 0.76. A clear deviation from the 1:1 line
could be observed for the coherence images that were acquired over Bolshe NE under
unstable conditions in fall and spring. The VCF-based estimates were up to 0.3 higher
than the estimates derived with the aid of the inventory data. In case of the images that
covered Bolshe NE and NW (25-26 September 1997 and 28-29 May 1998), the VCF-
based estimates (for the whole frame) agreed better with the inventory data-based
estimates at the test site Bolshe NW. For two of the tandem pairs that were acquired
under stable conditions over Bolshe NE (1-2 January 1996) and Primorsky E (9-10
October 1997), the VCF-based estimate for y,, was about 0.1 higher than the inventory
data-based estimate.

A very low correlation of ~0.1 between the inventory data- and VCF-based estimates
had to be stated in case of o*ogr. The largest deviations occurred, as in case of y,,., for the
images that were acquired under unfrozen conditions. When only considering aog, for
the three images acquired under stable frozen conditions, the Pearson correlation was
very high (0.96) and the differences between the inventory data- and VCF-based
estimates were less than 0.5 dB. The largest difference was observed for the intensity
image from 28 May 1998. Here, the VCF-based estimate was 3 dB lower than the
values obtained when fitting the model in Equation (5.3) to the measurements at the test
sites Bolshe NE and NW, indicating much drier soil conditions outside of the forest
areas. In contrast, the VCF-based estimate for aogr was 2.2 dB higher than the inventory
data-based estimate for the intensity image from 22 September 1997 at the test site
Bolshe NE.
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Figure 7.6. IWCM and SIBERIA model parameter estimates from the VCF and
inventory data-based model training; note that y,., and y. as well as yq. and yy are not

differentiated.
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7.2.2 Regionalized VCF-based model training

In Chapter 5.2.3.2, two preconditions for a successful model training with VCF were
formulated. Accordingly, the observed differences between the inventory data- and
frame-by-frame VCF-based parameter estimates, exceeding clearly the confidence
bounds of the regressed parameters in several cases (see Table 7.1), could mean that:

1. Coherence and intensity in areas with low VCF tree cover did not reflect the
conditions at the forest floor.

2. The coherence and intensity measurements in areas with high VCF tree cover
did not allow to infer reliably on the properties of ideally opaque canopies.

Before, however, discussing these fundamental questions, it had to be considered that
the environmental and meteorological imaging conditions might have varied within the
area covered by an ERS-1/2 tandem pair. Variations in coherence and intensity because
of differing environmental and meteorological imaging conditions can occur in very
different spatial scales. For instance, variations related to soil moisture can occur at the
stand level but there may also be variations related to larger scale drainage patterns or
soil type specific effects (e.g. Pulliainen et al., 1994, 1996; Fellah et al., 1997;
Hallikainen et al., 1998). The model training with the inventory data was restricted to
the area of the particular test site (200 — 400 km?) so that the training was only affected
by any kind of variations in the imaging conditions that occurred within the area of the
test site. The VCF-based training, instead, was carried out on an ERS frame (~10000
km?) so that it may have reflected variations in the environmental or meteorological
imaging conditions that did not occur in the area of the test sites. In order to minimize
the effect of spatial variations, before addressing the fundamental questions raised under
bullet points 1 and 2, the model training was carried out again but this time only the
VCF map and the ERS-1/2 coherence and intensity measurements in the area of the test
sites were considered so that inventory data- and VCF-based model training referred to
the same area. When restricting the model training to the area of the test sites, the
problem arised that the number of pixels with low or high VCF tree cover was much
reduced as the area of the test sites was much smaller than an ERS frame. Still, non-
noisy coherence and intensity histograms were achieved at the test sites Chunsky N,
Chunsky E, Bolshe NW and Primorsky E when delineating open areas with an upper
VCEF tree cover threshold of 15 % and dense forests with a lower tree cover threshold of
75 %. In case of the test site Bolshe NE, however, very few VCF pixels indicated low
tree cover. The coherence and intensity histograms for areas with low tree cover were
very noisy and a derivation of y,. and aog, was not possible.

In case of the ERS-1/2 tandem pairs that were acquired under unfrozen conditions over
the Bolshe test sites, it was observed that the forest floor coherence differed
considerably between the test sites Bolshe NE and Bolshe NW (see Chapter 4.1). It was
assumed that the differences were related to the differing soil types in the area, i.e. the
peatland at Bolshe NE and the sandy soils at Bolshe NW. To make clear how this may
have affected the VCF-based parameter estimates, the VCF tree cover map in the
Bolshe-Murtinsky area is shown in Figure 7.7 (left). The map shows the area covered
by the ERS-1/2 tandem pairs from 1-2 January 1996, 22-23 September 1997 and 27-28
October 1997. The pixels with low and high tree cover have been marked in red
(VCF<=10%) and green (VCF>=78%). The VCF tree cover map shows a strip with
mostly dense forest in the center of the image. This strip corresponds to the peatland
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area in which also the test site Bolshe NE can be found. Most of the areas with low tree
cover are located west and east of the peatland where soil types are different (mostly
sandy). It is obvious that, if there were differences in coherence or intensity measured
over the sand and the peat soils, the VCF-based estimates for 4 and aog, would only
have reflected the conditions in the sandy areas. For comparison, the VCF pixels that
were used for the model parameter estimation in case of the tandem pairs that covered
the test sites at Chunsky (Figure 7.7, right) and Primorsky were distributed all over the
area of the corresponding ERS frames so that the VCF-based parameter estimates would
most likely have represented some sort of average conditions if the environmental or
weather conditions had varied within the area covered.

VCF >=78 %

Figure 7.7. Subsets of the VCF tree cover map showing the area of two ERS frames
(100 x 100 km’). The red areas highlight VCF pixels with a tree cover <=10 %. The
green areas highlight those pixels with a tree cover >= 78 %. In the left image, the
yellow polygons show the forest stands at Bolshe NE. In the right image, the polygons
show the stands at Chunsky N & E.

As a VCF-based model training was not possible when restricting it to the area of the
test site Bolshe NE, the area considered for the estimation of y, and aogr had to be
extended. The most plausible larger area for training was the area of the peatland. The
peatland could be delineated by means of a soil map that was available at a scale of
1:2.5 Million  (Stolbovoi &  McCallum, 2002; downloaded from
‘http://www.iiasa.ac.at/Research/FOR/russia_cd/download.htm’). In this way, non-
noisy histograms and reasonable parameter estimates could be achieved for the
acquisitions from 1-2 January 1996, 22-23 September 1997 and 27-28 October 1997;
the acquisitions from 25-26 September 1997 and 28-29 May 1997 covered only a small
fraction of the peatland area east of the Yenissei which is why no model training was
possible.

The agreement of the inventory data- and VCF-based model parameter estimates
improved when carrying out the VCF-based training for the area of the particular test
site, respectively the peatland in case of the Bolshe NE test site. The Pearson correlation
coefficients between the VCF- and inventory data-based parameter estimates increased
for all parameters (see Figure 7.8).
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Figure 7.8. IWCM and SIBERIA model parameter estimates from the VCF and
inventory data-based model training. The VCF-based parameter estimation was
restricted to the area of the test sites.

A better agreement of the inventory data- and VCF-based estimates for y, was achieved
for the images from fall that covered the test sites Bolshe NE and Primorsky E; the
corresponding coherence histograms have been illustrated for two of these images in
Figure 7.9. In case of the images from fall 1997 that covered the test site Bolshe NE, the
improved parameter estimates seemed to confirm the assumption that the differences in
ground coherence within the images were related to the different soil types respectively
their response to rain or snow melt induced wetting in terms of heterogeneous (at the
sub-pixel scale) soil moisture variations. The standwise coherence and intensity
measurements as well as the model lines are shown in Figure 7.10 for one of the tandem
pairs from fall 1997. It can be seen that with the VCF-based training, restricted to the
area of the peatland, the empirical model well followed the trend of the measurements at
the test site. The largest differences between the inventory data and VCF-based
estimates for y,, of 0.07 and 0.08 had to be stated for the images from 1-2 January 1996
and 28-29 May 1998 at the test sites Bolshe NE and Bolshe NW, respectively. In case
of the image from 1-2 January 1996, the training, when restricted to the area of the
peatland, hardly changed the estimate. This suggested that the differences between the
estimates for y, from VCF and inventory data were not related to the soil types in the
Bolshe area. As the ground was covered with snow, the differences in the estimates
were most likely related to spatial variations in the snow properties.

9-10 October 1997 27-28 October 1997

Frequency
Frequency

0 0.5 1
Coherence

Figure 7.9. Coherence histograms for VCF < 15 % (red line) and VCF >75 % (green
line) in the area of the test site Primorsky E (left plot, dashed lines) and the peatland
area (right plot, dashed lines). The solid lines show the histograms for low and high
VCF tree cover when considering the whole ERS frames. For a better comparability,
the histograms have been rescaled to a common height.
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Bolshe NE 22-23 September 97
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Figure 7.10. Measured and modeled ERS-1/2 tandem coherence and ERS-I intensity
(IWCM) as function of stem volume. The solid lines denote the results of the VCF-based
model training, restricted to the area of the particular test site, and the dashed lines
show the inventory data-based model fits.

In Figure 7.8 (right) it can be seen that in four cases (all correspond to the intensity
images from fall that covered the Bolshe NE and NW test sites) the estimates for aogr
with VCF were 1 to 2 dB higher than the estimates with the inventory data whereas for
the images acquired under frozen conditions, the VCF-based JOg, estimates were always
close to the values obtained with the aid of the inventory data. The inventory data and
VCF-based estimates were also similar for the images from 9 October 1997 and 28 May
1998 at the test sites Primorsky E and Bolshe NW. Figure 7.10 shows the standwise
intensity measurements at the test site Bolshe NE and the model line that was obtained
with the VCF-based training, restricted to the area of the peatland, for the intensity
image from 22 September 1997, i.e. one of those for which the VCF-based estimate for
aog, was clearly too high.

This brings us back to the fundamental question if it is possible to infer from the ERS
measurements over open ground (i.e. VCF < 10 %) on the forest floor conditions. As
has been mentioned before, areas with low tree cover comprise a wide range of land
cover types like barren ground, wetland, grassland, shrubland, burnt areas or cropland
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which do not necessarily - or only temporally - exhibit the backscatter properties of
forest floor (e.g. Dobson et al., 1995b; Kasischke et al., 1997; 2007; Brisco & Brown,
1998; Proisy et al., 2000; Quegan et al., 2000; Moran et al., 2000; Henderson & Lewis,
2008). Concerning soil moisture, the soil moisture levels at the forest floor and open
unforested ground can differ because of the effects of evapotranspiration and rainfall
interception over forest (Geiger et al., 2003). This could explain why the VCF-based
model training tended to overestimate aogr in case of unfrozen and rainy weather
conditions. Accordingly, the observation that the VCF-based estimates for UOgr were
consistently better for the winter images may be explained with the frozen snow
covered ground that diminishes a lot of the potential differences between forest floor
and areas without tree cover. As in case of intensity, one may expect that it could be
critical to infer from the coherence observed over non-forest land on the coherence at
the forest floor. However, the comparison of the inventory data- and VCF-based
estimates for yg (when restricting the VCF-based training to the area of the particular
test site) revealed less pronounced differences than in case of ¢” o A reason for this
could have been that coherence, in contrast to intensity, is not sensitive to soil moisture
differences that may arise between forest and open land because of, for instance,
evapotranspiration or rainfall interception. Only heterogeneous variations of soil
moisture between the tandem acquisitions lower the coherence (Luo et al., 2001). Not
much knowledge has been gathered yet concerning the question when soil moisture
fluctuations are heterogeneous or homogeneous at the sub-pixel scale though. This may
be related to the root concentration, soil type/porosity or ground water depth. In
addition, the impact of understorey vegetation on coherence has not been analyzed yet.
It is thus difficult to appraise under which conditions it may be critical to infer from the
coherence that was measured in areas without tree cover on the forest floor coherence.
As in case of intensity, it can be assumed that potential differences should be minimized
in case of frozen ground surfaces. Nevertheless, the ERS-1/2 tandem pairs that were
acquired over Bolshe-Murtinsky showed that, in particular under unfrozen and wet
conditions, the ground coherence level can vary considerably within the area of an ERS
frame but the variations were obviously a consequence of soil type specific effects and
did not reflect systematic differences in coherence between forest floor and unforested
terrain.

A better agreement of the inventory data- and VCF-based estimates for p,., was
achieved for the image from 9-10 October 1997 when restricting the VCF-based model
training to the area of the test site Primorsky E. The new estimate was only 0.06 lower
than the estimate from the inventory data. In Figure 7.9, it can be seen that the
coherence histogram for areas with high VCF tree cover showed a wide, almost
bimodal, distribution when computing it for the whole coherence frame, indicating
different levels of dense forest coherence within the image. The reasons for these
variations were not clear. For all other images, the VCF-based y,., (0r y.) estimates
hardly changed when restricting the training to the area of the test sites. Similar
observations could be made in case of aoveg. Slightly improved estimates for ooveg were
only observed in case of the intensity image from 14 January 1996 at the test sites
Chunsky N and Chunsky E. With the VCF-based parameter estimation, restricted to the
area of the test sites, the different intensities measured over dense forest at both test sites
were now well captured (compare with the VCF-based model fits shown in Figure 7.5).
The maximum difference between the VCF and inventory data-based estimates for y,.q
was 0.06 and the differences in case of ¢” veg Were always in a sub-dB range (<0.7 dB).
In Chapter 5.2.3.5, it was described that the derivation of yveg from yycr required the
VCF-based estimates for the model parameters y,,, 6’y and ¢’ and the predefined
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value for f. Thus, differences between the inventory data- and VCF-based estimates for
Vars aog, and aoveg (as well as p) result in different estimates for y,., even when yycr and
the modeled coherence at V., (according to the model fit to the measurements at the test
sites) were identical. That is why, the comparison of the y,., estimates from VCF and
inventory data was somewhat misleading when trying to answer the question how
reliable yycr and O'OVCF could be related to y,., and aoveg, respectively. More meaningful
was the relationship between yycr and the modeled coherence (i.e. the model curve
fitted to the measurements at the test sites). In most cases, yycr well agreed with the
modeled coherence at stem volumes above ~ 250 m*/ha. Only in case of the coherence
image from 14-15 January 1996 and the test site Chunsky N, the IWCM trained with the
aild of VCF rather represented the upper margin of the trend of the coherence
measurements at the test site (see Figure 7.10). Here, yycr was similar to the coherence
modeled with the IWCM (trained with the aid of the inventory data at Chunsky N) at a
stem volume of 170 m’/ha (see Figure 7.11). An equivalent stem volume of 170 m>/ha
appeared to be too low when considering that, according to Figure 5.15, forests with
maximum VCF tree cover should mostly exceed a stem volume of 200 m’/ha. The
reason for the ‘overestimation’ of dense forest coherence in this case remained unclear.
All in all, however, it can be stated that, when presuming that the coherence
measurements over forest with maximum VCF tree cover reflect a stem volume of 250
to 400 m*/ha, reasonable estimates for Pveg can be achieved with the aid of VCF.

Chunsky N
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Figure 7.11. IWCM model lines as obtained when fitting the model to the ERS-1/2
tandem coherence and intensity measurements from 14-15 January 1996 and 29-30
December 1995 at Chunsky N. The horizontal lines show the estimate for yycr when
restricting the VCF-based parameter estimation to the area of Chunsky N.

7.3 VCF-based model training for the ERS-1/2 tandem data of Northeast China

The correlation between ERS-1/2 tandem coherence and the in situ stem volumes at the
test sites in Northeast China was low (see Chapter 4.2). It was assumed that the low
correlation was a consequence of a low quality/timeliness of the inventory data. Still, a
larger forest structural diversity of the forests in Northeast China may have contributed
to the low correlation. When fitting the IWCM to the standwise ERS-1/2 tandem
coherence and intensity measurements at the test sites by means of least-squares
regression, the large spread of the coherence and intensity measurements along the
hardly noticeable main trend resulted in highly uncertain model parameter estimates. A
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comparison of these model parameters with the VCF-based parameter estimates could
not be considered meaningful.

Hence, the VCF-based training was applied to all ERS-1/2 tandem pairs available for
Northeast China and the estimates for the IWCM parameters were compared to the
measurements of temperature, precipitation and wind speed available from 43 weather
stations (see Chapter 3.5). The analysis aimed at identifying the general properties of
the coherence measurements with respect to the weather conditions. In Chapter 4.1, it
was observed that the weather conditions had a major impact on the overall level of
coherence observed over dense forest canopies and the forest floor as well as on the
saturation behavior of coherence. Coherence showed no saturation up to stem volumes
of at least 200 m>/ha in case of the tandem pairs acquired with baselines between 65 and
183 m when the ground coherence was above 0.7 and when the coherence over dense
forest did not fall below 0.25. Thus, it was of interest if the VCF-based parameter
estimates for the Chinese ERS-1/2 tandem dataset revealed similar patterns. This would
allow an, at least rough, appraisal of the reasonability of the VCF-based parameter
estimates.

For the VCF-based training of the IWCM, the two-way signal attenuation coefficient o
was set to 1 and 2 dB/m when the temperatures, measured at the nearest weather
stations, indicated frozen or unfrozen conditions, respectively. The forest transmissivity
parameter § was set to 0.006 ha/m’ and Veq to 400 m’/ha for all images. In the last
chapter, only ERS-1/2 tandem pairs were considered for the VCF-based model training
for which the corresponding subsets of the VCF tree cover map comprised a sufficient
number of pixels with very low or high tree cover close to the maximum of 80 %,
respectively. In the ERS-1/2 tandem dataset for Northeast China, however, there were
many images for which the 9g'h percentile of VCF tree cover was much lower than 80
%. The model sensitivity analysis indicated that the estimates for yy¢r and " ver should
hardly be affected by differing ground contributions in the range of stem volumes
characterized by maximum tree cover in the VCF map. This, however, may change
when including lower tree cover levels in the estimation of yycr and aOVCF. In Figures
5.4 and 5.7, it could be seen that the average coherence almost linearly decreased with
increasing VCF tree cover up to the maximum tree cover levels, indicating that when
integrating VCF tree cover levels much lower than 80 % into the estimation of yycr and
o’ver, the relevance of ground contributions in the measurements may increase (in
particular in case of Scenario 1-kind of VCF-stem volume relations, see Chapter 5.2.3).
Thus, tandem pairs for which the g™ percentile of VCF was lower than 70 % were not
considered in order to avoid that coherence pixels with strong ground contributions in
the measurements affected the determination of yycrand O'OVCF. With this constraint, the
VCF-based training of the IWCM could be considered successful for 87 out of 223
tandem pairs; note that there was always a sufficient number of VCF pixels that
indicated low tree cover. For 30 out of these 87 images, weather stations were located
close to, i.e. less than 50 km away, or within the area covered by the particular ERS-1/2
tandem pair. These 30 tandem pairs were distributed all over the major forest areas in
Northeast China and were acquired in all seasons (except the summer months between
June and August).

Figure 7.12 illustrates the relationship between the obtained model parameters and the
weather conditions in terms of temperature and the amount of rain in the 10 days prior
to the ERS-2 acquisition for each of the 30 ERS-1/2 tandem pairs. When relating the
IWCM parameter estimates to the temperature at the time of the ERS-1 overpass (note
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that the differences in temperature between the ERS-1 and ERS-2 acquisitions were
generally negligible), high Pearson correlation coefficients of at least +/- 0.78 were
obtained for all four IWCM parameters. yg- and 7, decreased and aog,, and aoveg
increased with increasing temperature (Figure 7.12, a-d). The high correlations were
somewhat surprising as the main temperature effects in coherence and intensity
measurements over forested terrain were expected to arise between the images acquired
under frozen and unfrozen conditions (for which the dielectric properties of the soil and
the canopy constituents differ strongly). Beyond the freeze-thaw transition, other factors
like the wind speed, rainfall, snow properties or moisture content in the trees, all not or
not directly related to temperature, should determine the coherence and intensity
measurements. When, however, computing the correlation of temperature and the model
parameters for the images acquired under frozen and unfrozen conditions separately, the
predictive power of temperature reduced considerably for all four parameters. This
showed that the high correlations between temperature and the model parameters mostly
reflected the good separability of the parameter estimates for images that were acquired
under frozen and unfrozen conditions, respectively, and that temperature itself, besides
the strong dielectric effects related to the differences between frozen and unfrozen
conditions, did not explain the variations in the estimated parameters. In the following,
the parameters will thus be regarded for frozen and unfrozen conditions separately.

Yo Was between 0.5 and 0.75 when the temperatures were above 0° C. This range was
similar to that observed for the ERS-1/2 tandem pairs from spring and fall that covered
the Siberian test sites (see Table 7.1). In contrast to the observations in Drezet &
Quegan (2006) or Askne & Santoro (2005), ., revealed no dependence on the amount
of rain, the maximum daily rain rate or the mean rain rate in different periods prior to
the ERS tandem acquisitions. In Figure 7.10 (e), yo- has been plotted as function of the
amount of rain in the 10 days prior to the ERS-2 overpasses. The plot shows that y,,. was
mostly between 0.5 and 0.6, regardless of the amount of rain that fell in the days before
the acquisitions. Even when the weather stations reported rainfall between the tandem
acquisitions, which was the case for two tandem pairs from 3-4 October 1997 (the
nearest as well as several other weather stations in the area reported about 5 mm rain
between the acquisitions), y,, did not fall below 0.5. In literature, examples can be found
where ERS-1/2 tandem coherence dropped to 0.2 to 0.3 when rainfall between the
acquisitions occurred (Koskinen et al., 2001; Santoro et al., 2002; Pulliainen et al.,
2003). In case of the images from 3-4 October 1997, the decorrelating effect of rain was
obviously not as strong. Only in case of one tandem pair from 3-4 October 1997 (the
same orbit as the images for which rain occurred between the acquisitions), y,- was
above 0.7 although the nearest weather station (20 km west of the imaged area) reported
4 mm of rain the day before the ERS-1 overpass. Thus, the occurrence or the amount of
rain did not explain the differences in the estimates for y,,.

The estimates for aog, for the intensity images that were acquired under unfrozen
conditions were between -9 and -6.5 dB. The highest values for aogr of -7 to -6.5 dB
were observed for an ERS-1 intensity image from 24 September 1997 and two images
from 3 October 1997, all acquired over the Changbai Mountain range. For the two
acquisitions from 3 October 1997, the nearest weather stations registered about 6 mm of
rain at the last four measurements before the ERS-1 overpass (between 12 and 24
o’clock UTC). Hence, this high backscatter from open ground may be interpreted as
short-term response to rain induced wetting of the soils. For the image from 24
September 1997, however, the last rain event occurred on 21%, i.e. 3 days prior to the
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tandem acquisitions, which means that the high value for aogr was not a short-term
response to rain.

In case of constant subzero temperatures, the estimates for y,, varied between 0.7 and
0.85. This range of values was similar to that observed for the coherence images in the
Siberian ERS-1/2 tandem dataset that were acquired under frozen conditions and with
snow cover on the ground (Table 7.1). The corresponding estimates for aog, confirmed
the expectation of stable frozen ground conditions as they were very low with -14 to -11
dB. For all images, except one, the NSIDC maps (see Chapter 3.5) indicated that snow
covered the ground. Hence, the differences in the estimates for y,. and aogr were most
likely related to differences in the snow properties. As detailed information about the
snow cover was not available, these differences could not be further explored.
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Figure 7.12. IWCM parameters obtained with the aid of VCF versus the temperature at
the ERS-1 overpass (plots a-d) and the amount of rain [mm] in the ten days preceding
the ERS-2 acquisition (plots e-h). In plots (e-h)’+’ denotes the parameters obtained for
images that were acquired at temperatures below 0° C and ‘o’ denotes those acquired
at temperatures above the freezing point.
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Figure 7.13. Yyeq versus baseline (left) and maximum wind speed (right). Tandem pairs
that were acquired under frozen and unfrozen conditions are distinguished.

Only in case of one ERS-1/2 tandem pair from 18-19 October 1997, acquired over the
northern Daxinganling, some sort of transitional conditions were observed. Here, yg,
was lower than 0.7 although the temperatures at the ERS-1 and ERS-2 overpasses were
below 0° C. This tandem pair was acquired during a period with diurnal oscillations of
temperature around the freezing point. In addition, the nearest weather station registered
17 mm precipitation (or snowfall) in the ten days prior to the ERS-2 overpass. The
temperatures oscillating around the freezing point and the rainfalls indicated overall
unstable conditions with a non- or only partially frozen soil surface. This assumption
was confirmed when looking at the estimate for aogr, which was between those observed
for the intensity images that were acquired under constantly frozen and unfrozen
conditions, respectively.

Pveg Was always below 0.3 in case of temperatures above or oscillating around the
freezing point, regardless of the baseline length (Figure 7.13, left), the amount of rain in
between or prior to the tandem acquisitions (Figure 7.12f) or the wind speeds (Figure
7.13, right). This again resembled the observations that were made for the coherence
images from fall and spring that covered the Siberian test sites. Compared to oog,, the
estimates for UOWg varied only in a narrow range between -8 and -9 dB, indicating
constantly moist tree canopies throughout the observation period (May 1996, September
- October 1997); note that rain was registered for all images in the days prior to the
acquisitions. Even in case of 3 images that were acquired in early May over
Daxinganling and Xiaoxinganling, croveg did not exceed a level of -8 dB although,
according to the NSIDC snow cover maps, the snow finally melted only one or two
weeks before. This may have been a consequence of a mostly low snow cover in the
overall dry winter so that the melt of the snow cover did not increase the water
availability in the soils as strong as in Central Siberia where backscatter from forest
reached a maximum of -7 dB in the period after snowmelt (see Chapter 4.1).

In case of the tandem pairs that were acquired during the winter period between
December and March 1996, when temperatures were constantly below the freezing
point, the estimates for y,., varied between 0.3 and 0.65. The corresponding estimates
for aoveg were low (-10 to -13 dB), indicating frozen forest canopies. The wind speed
should have been one of the main factors, determining the coherence over dense forest
canopies (Zebker & Villasenor, 1992; Askne et al., 2003). When comparing the
maximum wind speeds in the period of the sensor overpasses (see Chapter 3.5) with the
values for y,., obtained for the winter images, only a weak relationship was found. The
correlation was -0.33 and lower than that reported in Askne et al. (2003) who found that
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Pveg decreased with increasing wind speed up to ~4 m/s for ERS-1/2 tandem coherence
images acquired over Swedish boreal forest at temperatures between -5 and 20° C, i.e.
with mostly unfrozen tree canopies. As in case of the Chinese dataset the wind speed
measurements at the weather stations were made approximately 3 hours before and after
the sensor overpasses, it was likely that, due to the high spatial and temporal variability
of wind, the wind speeds measured at the weather stations did not represent the wind
conditions at the time of the sensor overpasses. Another reason for the low correlation
could have been related to the frozen state of the canopies. Frozen canopies allow a
deeper penetration of the signals into the canopy so that the backscatter arises from
larger and stiffer branches. Furthermore, snow cover on the branches may have
dampened the response of the branches to wind induced motions. However, no
information about the existence of a snow cover on the branches was available.

No correlation was observed between the length of the perpendicular baseline and y,.,,
neither in case of the winter images (Pearson correlation of 0.08) nor in case of the
images from spring and fall (Pearson correlation of 0.22). At first sight, this finding
gave some confidence in the estimates for y,.,, Which is supposed to describe solely the
temporal coherence of ideally opaque canopies. A correlation with the baseline length
would have indicated problems in the derivation of the parameter, i.e. the compensation
of yycr for volume decorrelation effects. For the Siberian tandem coherence images
from winter, acquired with baselines < 200 m, the IWCM predicted only minor
differences in volume decorrelation in the range of stem volumes between 200 and 500
m’/ha (see Chapter 5.2.3.5). For longer baselines, the IWCM predicted a higher
relevance of volume decorrelation related coherence differences in this range of stem
volumes. Figure 7.14 illustrates the VCF-based training results (histograms and
obtained model line) for one of the long baseline tandem pairs acquired in winter over
Northeast China. The model predicts an oscillation of coherence at a stem volume of
~200 m’/ha and an increase for higher stem volumes of ~0.2 up to the maximum stem
volumes of 400 to 500 m*/ha that can be found in Northeast China. It is not clear what
yycr means when volume decorrelation introduces considerable responses in coherence
to increasing stem volume (strictly speaking to increasing tree height). yycr may
strongly depend on the stem volume distribution of the forests that show high tree cover
in the VCF maps so that the compensation of yycr for the effect of volume decorrelation
may require detailed information about the stem volume distribution in the area
covered. In fact, in literature there is no example where this oscillation of C-band
coherence could clearly be identified. The coherence histogram for high VCF tree cover
in Figure 7.14 (middle) appeared to be similar to those histograms obtained for short
baseline tandem pairs, e.g. in terms of standard deviation, which indicated no increased
variability of coherence for forest with mostly closed canopies. It was, however, striking
that the VCF-based estimates for y,., were always high with about 0.6 for the tandem
pairs that were acquired in winter with baselines in the range of 300 to 330 m (Figure
7.13, left), regardless of the wind speeds measured at the nearest weather stations.
Hence, without any long baseline tandem pair available that was acquired under stable
conditions over one of the test sites, a systematic bias in the VCF-based estimates for
Tveg could not be ruled out.

In summary, it can be established that the Northeast Chinese ERS-1/2 tandem dataset
can be divided into two main parts:

1) In case of constantly frozen conditions in the period between December 1995 and
March 1996, y,, was always above 0.7 and y,., above 0.3. For the Siberian ERS-1/2
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tandem dataset it was observed that under comparable conditions, the modeling of
coherence as function of stem volume with the IWCM produced reasonable results and
coherence did not saturate up to a stem volume of at least 200 m’/ha. It has, however, to
be reminded that high uncertainty is connected to the VCF-based estimates for the
IWCM parameter y,., in case of baselines > 200 m.

2) In case of the tandem pairs from spring and fall, acquired at temperatures above or
oscillating around the freezing point, y,- was mostly below 0.7 and y,¢, below 0.3. The
weather conditions were constantly rather wet with rainfall occurring prior to most of
the tandem acquisitions. Due to the overall wet conditions, the backscatter from ground
and dense forest was constantly high. The rain amount hardly explained the differences
in coherence, which as well pointed to overall rather wet and unstable conditions
independent of singularly rain events. Considering the observations that were made for
the Siberian test sites, it could be expected that coherence from fall and spring saturated
early and clumped at low levels for stem volumes above ~100 m’/ha. No tandem pair,
however, showed a complete loss of ground coherence which means that it should be
possible to map at least a few low stem volume classes, e.g. the four stem volume
classes (0-20, 20-50, 50-80 and > 80 m’/ha) that were mapped with the first ERS-1/2
tandem data-based forest map of Central Siberia. This map was produced with tandem
data that was acquired exclusively in fall 1997 (Schmullius et al., 2001; Balzter et al.,
2002; Wagner et al., 2003); some of the tandem pairs that were used in this study
belonged to this dataset.
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Figure 7.14. Intensity (left) and coherence histograms (middle) for areas with high and
low VCF tree cover. Right - IWCM model line with the parameters derived from the
histograms.
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7.4 Summary

In this chapter, the histogram- and VCF-based model training approaches have been
applied to the multi-seasonal ERS-1/2 tandem dataset available for Central Siberia. The
automated model parameter estimates were compared to the parameters obtained when
fitting the models to the measurements at the test sites for which in sifu stem volume
measurements were available.

The histogram-based approach was not found suited for large-area stem volume
mapping with a multi-seasonal ERS-1/2 tandem dataset. First of all, the identification of
dense forest coherence properties relied upon the dominance of dense forest in the area
covered by the ERS-1/2 tandem images. This was given for Central Siberia, where the
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histogram-based estimation of dense forest coherence performed well, but not for
Northeast China. Secondly, the approach relied upon a linear relationship between
dense forest and forest floor coherence. This assumption cannot be considered
physically meaningful as different mechanisms determine the coherence over open
ground and forest.

With the aid of VCF, both constraints in the histogram-based model training were
obviated as 1) the ground contributions in the coherence and intensity measurements
were determined independently and 2) the model parameters related to the dense forest
coherence and backscatter properties were only determined if dense forest existed in the
area covered by the particular ERS-1/2 tandem pairs. The model training was first tested
for the ERS-1/2 tandem pairs that covered the Siberian test sites. The IWCM was only
used for coherence modeling in case of the tandem pairs that were acquired under stable
conditions with high(er) ground and dense forest coherence (see Chapter 5.2.3.4). In all
other cases, the empirical model in Equation (5.1) was used. Although not required for
the empirical model, the model in Equation (5.3), relating intensity to stem volume, was
trained for the intensity images that were acquired under unstable imaging conditions.

When testing the VCF-based model training for each ERS-1/2 tandem pair that covered
the Siberian test sites, the results drew a heterogeneous picture. The overall agreement
between the inventory data- and VCF-based parameter estimates was generally better
for the tandem pairs that were acquired in winter under frozen conditions. Still,
differences between the inventory data- and VCF-based parameter estimates could be
observed for coherence and intensity images from all seasons. As the VCF-based model
training was done on an ERS frame basis, it was assumed that spatial variations of the
environmental and meteorological imaging conditions within the area covered by an
ERS-1/2 tandem pair were responsible for, or at least contributed to, the differences
between the inventory data- and VCF-based parameter estimates as the former reflected
only the much smaller areas of the test sites. When accounting for the possibility of
variations in the environmental and meteorological imaging conditions by carrying out
the VCF-based training restricted to the area of the test sites, the agreement between the
VCF- and inventory data-based model parameter estimates improved. After having
minimized the effect of spatial variations in the imaging conditions, a mostly good
estimation of the parameters jye,, 7. and JOVGg could be stated. An overall good
agreement between the models trained with the inventory data and VCF was achieved
when assuming that the forests with maximum tree cover in the VCF maps represented
a stem volume of > 250 m’/ha. When considering the results of the model sensitivity
analysis in Chapter 5.2.3.5, the overall low sensitivity to V., should have been due to the
fact that the coherence measurements over forests with maximum VCF tree cover were
mostly saturated (i.e. low ground contributions and minor differences in volume
decorrelation in the corresponding range of stem volumes).

The estimates for y, from inventory data and VCF did not show any systematic
differences when restricting the VCF-based model training to the area of the particular
test site. The estimation of aogr appeared to be more critical. With VCF, the forest floor
backscatter level was overestimated for about 1 to 2 dB in case of several images that
were acquired under unfrozen and wet conditions over the Bolshe NE and Bolshe NW
test sites. As C-band intensity strongly depends on soil moisture, an explanation could
have been that systematic differences in soil moisture between forest floor and open
areas (i.e. all areas with VCF < 10 %), e.g. due to evapotranspiration and rainfall
interception, were responsible for the failed parameter estimation with VCF. Also
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differing surface roughness and herbaceous or shrub cover may have contributed to the
different ¢’ estimates from inventory data and VCF as areas with low tree cover
comprise a wide range of land cover types. In case of the ERS-1 intensity images that
were acquired under frozen conditions in winter, the VCF-based estimates for aog, were
better, probably because the frozen snow covered ground diminished a lot of the
potential differences in backscatter that may arise between typical forest floor (which is
not necessarily uniform as well) and all areas with low tree cover cover like grassland,
cropland, wetland, etc. Anyway, in Chapter 5.2.3.4 it was shown that there was no
advantage in using the IWCM instead of the simple empirical model in Equation (5.1)
in case of the tandem pairs that were acquired under unfrozen wet conditions. Thus,
estimates for the backscatter contributions from forest floor and canopy were not
required for the ‘rough’ modeling of the trend of coherence as function of stem volume.

The effect of spatial variations of the environmental and meteorological imaging
conditions on the model parameter estimates showed that a model training should be
carried out as local as possible, e.g. with a moving window running over the image.
This, however, is limited by the requirement for a sufficient number of VCF pixels
indicating low and maximum tree cover, i.e. the parameters always have to be estimated
over somewhat larger ‘landscape-scale’ areas. Furthermore, when the spatial variations
are tied to landscape features (as for instance the peatland in case of the ERS-1/2
tandem pairs from fall that covered the Bolshe NE test site) detailed knowledge about
the local landscape would be required, contradicting the intended full automation of the
model training. The adapitivity of the VCF-based model training approach to sub-frame
variations of the imaging conditions represents one of the points where the algorithm, as
outlined in this thesis, can be improved in the future.

Due to the lack of reliable ground data, the VCF-based IWCM parameter estimates for
the ERS-1/2 tandem dataset of Northeast China could only be interpreted with respect to
the prevailing weather conditions. Although the comparison of the VCF-based IWCM
parameter estimates with the temperature, precipitation and wind speed measurements
at the weather stations was itself no proof for the accuracy of the estimates, it could be
stated that the main patterns with respect to the prevailing weather conditions agreed
with those observed for the Siberian ERS-1/2 tandem dataset. None of the coherence
images showed a complete loss of ground coherence due to rainfall or snow melt
between the tandem acquisitions, indicating that for all tandem pairs the classification of
at least a few low stem volume classes, like those mapped in the SIBERIA project
(Schmullius et al., 2001; Balzter et al., 2002; Wagner et al., 2003), should be possible
with reasonable accuracy.
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Chapter 8 - Large-area forest stem volume mapping

In the last chapters, a VCF-based model training procedure was developed and tested. In
this chapter, it is discussed how the trained models can be used to map forest stem
volume over large areas. At the end of this chapter, a scheme for large-area mapping of
forest stem volume with ERS-1/2 tandem coherence is set up, merging the outcomes of
the investigations in this thesis, and applied to the ERS-1/2 tandem data available for
Northeast China.

8.1 Stem volume retrieval

Once the unknown coefficients of the IWCM, respectively the empirical model, have
been determined, the models can be inverted to estimate stem volume from coherence.
A widely applied measure for the retrieval accuracy is the root mean square error
RMSE, which can be calculated as follows:

RMSE:\/LNZ( v ) (8.1)

test i=1

with N, being the number of stands in the in situ test dataset, V; the estimated stem
volume at stand i and V¥ the corresponding stem volume in the inventory data. The
RMSE depends on the forest properties, i.e. the total stem volume range and
distribution, and is only of limited use when comparing the retrieval results for different
forest sites. That is why, the relative RMSE is often given as well. The relative RMSE is
defined as the ratio of the RMSE to the average stem volume in the test dataset
(multiplied with 100 to get percent values).

Santoro et al. (2007) already discussed the retrieval accuracy possible with the Siberian
ERS-1/2 tandem coherence images that were used in this study. They reported relative
RMSE:s in the 20 to 25 % range for large homogenous forest stands with high relative
stocking for the images that were acquired under stable frozen conditions. The tandem
pairs that were acquired with baselines > 100 m and under windy conditions generally
allowed the most accurate retrieval but also the image from 14-15 January 1996,
acquired with short baseline and low wind speeds, reached a retrieval accuracy in the 25
% range at the test site Chunsky N. When considering all stands regardless of their
relative stocking or size, the relative RMSEs were lower for all images (> 30 %). The
retrieval accuracies achieved with the images that were acquired under unstable
conditions in spring and fall at Bolshe-Murtinsky and Chunsky were low (Santoro et al.,
2004; Eriksson, 2004) and in a range no longer of interest for forestry applications. A
weighted multitemporal combination of the single image retrieval results, after fitting
the simple empirical model in Equation (5.1) to the measurements at the test sites
Bolshe NE (six ERS-1/2 tandem coherence images including one from winter) and
Bolshe NW (4 coherence images, no winter image), resulted in relative RMSEs of 43 %
and 36 % for stands larger 2 ha (Santoro et al., 2004).

Similar to what has been observed at the Siberian test sites, several publications
reported a limited potential of single ERS-1/2 tandem coherence images for stem
volume retrieval. For instance, in Pulliainen et al. (2003) a relative RMSE better than 50
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% was only achieved for stands >1.5 ha with a multitemporal retrieval approach using
two winter coherence images for the test site Tuusula in southern Finland. A relative
RMSE of 26 % was achieved for the 37 largest out of 210 stands when the retrieval
results, based on the inversion of the IWCM, for eight coherence images were combined
in a weighted manner (Askne & Santoro, 2005). In Askne & Santoro (2007b), the
retrieval accuracy for Tuusula was found to further improve to 20 % when a higher
number of optimal winter images was available. The improvement of the retrieval
accuracy with a multitemporal combination generally depended on the number of
coherence images acquired under optimal conditions. The integration of images that
were acquired under non-optimal conditions would not improve the retrieval accuracy.
The best results were yet reported for a highly managed boreal forest site in Sweden
(Fransson et al., 2001; Santoro et al., 2002; Askne et al., 2003) where for 21 forest
stands (2-14 ha large) with a maximum stem volume of 335 m’/ha (average of 135
m’/ha) a RMSE of 10 m*/ha was achieved when combining the retrieval results from
four optimal ERS-1/2 tandem coherence images in a weighted manner (Santoro et al.,
2002). The best retrieval result for a single ERS-1/2 tandem coherence image was
achieved with a coherence image that was acquired under stable frozen conditions with
a baseline of 218 m and wind speeds of ~5 m/s. For this image the RMSE was 21 m’/ha.

The mentioned studies showed that stem volume retrieval with an accuracy of interest
for forestry applications (relative RMSE < 20 %) requires a multitemporal stack of
ERS-1/2 tandem pairs acquired under optimal weather conditions; preferably with
baselines in the 100 to 250 m range. As with the ERS-1/2 tandem dataset available for
Northeast China most areas were only covered once and about one third of the tandem
pairs were acquired under unstable imaging conditions in spring and fall, large-area
stem volume retrieval could not be expected to reach acceptable accuracies.

8.2 Forest stem volume mapping

With the requirements for a successful large-area stem volume retrieval lacking, it was
tested if the discrimination of the stem volume classes that were used for the SIBERIA-
1 map (Schmullius et al., 2001; Wagner et al., 2003) was possible with sufficient
accuracy. These classes would at least allow the identification of the succession stages
of young regrowing stands, i.e. forests growing after stand-replacing fires or clear-
cutting. For this, the models that were trained with the aid of VCF on a frame-by-frame
basis were inverted for stem volume. In case the empirical model in Equation (5.1) was
used, the calculation of stem volume for each coherence pixel was straightforward:

V:_LIH[MJ (8.2)
V }/oo - 70

7
As the volume decorrelation term in the IWCM is a complex number, the inversion of
the IWCM requires numerical methods. An iterative procedure was utilized. The stem
volume was estimated from the coherence images by modeling coherence for stem
volumes between 0 m’/ha and a defined maximum stem volume and selecting for each
pixel the stem volume for which the difference between modeled and measured
coherence was minimized. In case of coherence measurements higher than y,, the
model could not be used to estimate the stem volume. As a coherence higher than y,,
indicates unforested terrain, a stem volume of 0 m’/ha was assigned to these
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measurements (see Figure 8.1). Likewise, no direct estimation of stem volume was
possible for coherence measurements lower than the lowest modeled coherence in the
range of stem volumes considered. In this case, a fixed stem volume has to be assigned;
typically the maximum stem volume that can be found in the area. As only stem volume
classes up to 80 m’/ha were considered, any stem volume above 80 m’/ha could be
assigned without any effect on the classification accuracy. The IWCM may predict an
oscillation of coherence for longer baselines (see example in Figure 8.1). An oscillation
in the range of existing stem volumes means that the inversion becomes ambiguous. In
this case the lower possible stem volume was selected; note that this could be critical in
case of the longest baselines when the IWCM predicts an oscillation of coherence at
stem volumes of about 200 m*/ha (see Figure 7.14). After inversion, the retrieved stem
V()}lumes were grouped into the four stem volume classes 0-20, 20-50, 50-80 and > 80
m’/ha.
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ygr =0.82
Y oq = 047
<s°r =-10dB
o 0.6 o0 =89dB
8 veg
S B = 0.006 ha/m®
E o =1dB/m
S
8 04}
0.2} . 3
estimated stem volume 500 m/ha
0 I L L L
0 100 200 300 400 500

Stem volume [m3/ha]

Figure 8.1. Coherence modeled as function of stem volume with the IWCM (example).
The horizontal lines indicate the maximum and minimum modeled coherence.

Due to the lack of reliable ground data for Northeast China, no accuracy assessment
could be carried out here. Accuracy statistics could only be generated for the coherence
images covering the Central Siberian test sites. Following accuracy measures were
computed: the overall accuracy and the x coefficient, which also accounts for pure
chance agreement between the classified image and the reference map. Both accuracy
measures can be derived from the confusion matrix, i.e. the cross-tabulation of the
classes in the produced and the reference map (Foody et al., 2002). In a confusion
matrix, the main diagonal numbers denote the class agreement whereas the off-diagonal
elements contain the disagreeing class assignments. From the confusion matrix, the per-
class Producer and User accuracies can be derived. The Producer accuracy specifies
which fraction of a class, as given in the reference map, was assigned to the same class
by the classifier. The User accuracy denotes which fraction of a class in the
classification result actually falls into the corresponding class in the reference map. The
kappa coefficient x can be calculated from the confusion matrix with elements pj (k
denotes the column and j the row) as follows (Cohen et al., 1960 as quoted in Balzter et
al., 2002):

n n
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where p) denotes the overall accuracy, i.e. the fraction of correctly classified pixels
representing the main diagonal p;; in the confusion matrix, and p. the expected chance
agreement with p;. and p.; being the column and row sums in the confusion matrix. N is
the total number of pixels and » the number of classes. x can take values between 0 and
1 with O indicating pure chance and 1 perfect agreement. x does not account for the
seriousness of a misclassification. The seriousness of a misclassification can be
accounted for with the weighted kappa coefficient «,, (Cohen, 1968 as quoted in Balzter
et al., 2002):

Wik P ji —Zzwjkpj-z?-k . >
o = oLk J=1 k=1 W o=1— (- k) (8.4)
w non Jk 1 2 :
l_zzwjkpjopok (n )

j=1 k=1

where wy, represents the weight for each element in the confusion matrix. The weighting
factor accounts for the severeness of the misclassification. For instance, when a pixel
that represents a forest with 30 m*/ha stem volume has been classified into the classes
“50-80 m’/ha’ or “>80 m’/ha’, the error connected to the latter class assignment is given
more weight.

Table 8.1. Overall classification accuracy, Producer / User Accuracies [%] and kappa
statistics obtained with the VCF-based training for the ERS-1/2 tandem coherence

images covering the Siberian test sites.

Producer / User Accuracy [%] of
Test site & ERS-1/2 tandem pair | the stem volume classes [m*/ha]
0-20 | 20-50 | 50-80 | >80

76.19/ | 38.48/ | 18.25/ | 93.76/
CHN 29-30 Dec. 95 9320 | 2428 | 120 | 93.92 81.30 .69/.88

77.27/ | 17.29/ | 10.49/ | 90.43/
CHN 14-15 Jan. 96 8823 | 2213 | 129 | 8015 717.57 .61/.75

59.49/ | 42.44/ | 24.15/ | 89.26/
CHE 14-15 Jan. 96 8967 | 2007 | 430 | 8770 68.13 .52/.80

31.72/ | 29.59/ | 37.68/ | 96.42/
BM NE 01-02 Jan. 96 7263 | 3422 | 2369 | 8028 64.73 44/.70

18.76/ | 40.56/ | 61.75/ | 91.99/
PME 09-10 Oct. 97 8367 | 2072 | 3531 | 79.78 56.67 42/.65

1.69/ | 14.98/ | 34.88/ | 95.20/
BM NE 22-23 Sep. 97 9770 | 2538 | 11.52 | 75.57 55.50 .28/.46

0.62/ | 28.33/ | 34.02/ | 90.42/
BM NE 27-28 Oct. 97 5333 | 2880 | 12.72 | 7731 54.31 .29/.51

14.54/ | 22.76/ | 52.89/ | 81.58/
BM NE 25-26 Sep. 97 9784 | 1341 | 910 | 6912 39.73 .23/.53

79.85/ | 69.00/ | 37.21/ | 79.99/
BM NW 25-26 Sep. 97 0494 | 3244 | 1484 | 9679 79.80 .61/.86

17.87/ | 34.43/ | 50.00/ | 45.78/
BM NE 28-29 May 98 9972 | 1689 | 739 | 68.67 31.83 .21/.50

77.35/ | 46.48/ | 27.83/ | 57.19/
BM NW 28-29May 98 9191 | 2310 | 667 | 9287 71.08 .53/.84

Overall.

K& K
Accuracy v
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Table 8.2. Confusion matrix for the classification with the ERS-1/2 tandem acquisition
from 29-30 December 1995 at Chunsky N (number of pixels).

Classified . F3orest Inventory3data .
0-20 m’/ha | 20-50 m’/ha | 50-80 m’/ha | >80 m’/ha | Total
0-20 m*/ha 14654 996 10 63 15723
20-50 m’/ha 3012 1049 50 210 4321
50-80 m’/ha 777 434 25 847 2083
>80 m’/ha 791 247 52 16834 | 17924
Total 19234 2726 137 17954 | 40051

For the accuracy assessment of the produced forest stem volume maps, the rasterized
and edge-eroded inventory stem volume maps were used as reference. Slopes steeper
than 10° plus all pixels less than four pixels away from steep slopes were masked (cf.
Chapter 6.2). Erroneous polygons, either in terms of a clear misregistration between the
stand borders in the GIS data and the borders visible in the coherence images or in
terms of a failed inventory update (see Chapter 4.1), were excluded.

Table 8.1 lists the Producer, User and overall accuracies plus the x and «,, coefficients
for the produced stem volume maps. For the sake of clarity, the full confusion matrix
has only been attached for one example (Table 8.2). The overall accuracies varied
between 31 and 81 %, x between 0.21 and 0.69 and «,, between 0.46 and 0.88. x,, was
always higher than x. The Producer accuracies for the class ‘0-20 m’/ha’ varied in a
wide range between 0.6 and 80 %. The User accuracies were always higher and between
53 and 100 %. The Producer accuracies of the class >80 m’/ha’ were between 46 and
96 % and the User accuracies between 68 and 98 %. The Producer and User accuracies
of the intermediate classes ‘20-50 m’/ha’ and ‘50-80 m’/ha’ were mostly below 50 %.
The highest overall accuracies of ~80 % (x >0.6; k,, >0.85) were achieved for the
coherence images from 29-30 December 1995 at Chunsky N and 25-26 September 1997
at Bolshe NW. This showed that similar accuracies could be achieved with images that
were acquired under frozen and unfrozen conditions. With 77.6 % the overall accuracy
was slightly lower in case of the image from 14-15 January 1996 at Chunsky N (k 0.61,
Kw 0.75). The lowest accuracies were achieved for the images from fall and spring that
covered the test site Bolshe NE. The overall accuracy was between 31 and 56 %, «
between 0.2 and 0.3 and «,, between 0.46 and 0.53. Also for the tandem pair from 9-10
October 1997, an overall accuracy of only 57 % was achieved.

The accuracies in Table 8.1 could not be considered sufficient for practical applications.
In particular, the very low accuracies of the intermediate stem volume classes suggested
a very limited potential of ERS-1/2 tandem coherence for the mapping of the selected
stem volume classes. When considering that by far the most stands at the test sites fell
into the ‘0-20 m*/ha’ and ‘>80 m*/ha’ stem volume classes, the achieved classification
accuracies appeared to reflect mainly the good forest/non-forest contrast in the
coherence images. The misclassifications in case of the intermediate classes hardly
affected the overall accuracy simply because very few stands had stem volumes
between 20 and 80 m’/ha according to the inventory data (see Table 8.2). However, in
all cases «,, was clearly higher than x, which means that the main confusion occurred
between neighboring classes. Thus, the uncertainty in the inventory data may have
strongly affected the achieved accuracies.
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Following issues may have affected the accuracy (respectively the agreement of the
classified maps and the inventory data):

1) Non-optimal parameter estimates of the VCF-based model training
2) Errors in the inventory data
3) Forest structural diversity

In Chapter 7.2, it was shown that in several cases the models that were trained with the
aid of VCF on a frame basis did not optimally reflect the trend of the coherence
measurements as function of stem volume at the test sites, mostly because of spatial
variations of the environmental and meteorological imaging conditions within the area
covered by the ERS-1/2 tandem pairs. In order to assess the impact of a non-optimal
model fit, the models that were trained with the aid of the inventory data were inverted
and the estimated stem volumes were grouped into the four stem volume classes. Table
8.3 shows the agreement of these stem volume maps and the inventory data for a
number of images and test sites. Clear improvements of the overall accuracy were
observed in case of the images that covered the Bolshe NE test site. In particular, the
Producer accuracies of the lowest stem volume class improved and reached now at least
60 %. The accuracies of the other classes showed only minor changes; only in case of
the image from 28-29 May 1998 a clearly higher Producer accuracy was achieved for
the class “>80 m’/ha’. The improved accuracy of the lowest stem volume class was
related to the fact that with the VCF-based model training, y,, (respectively y) when the
empirical model was used) overestimated the forest floor coherence at the Bolshe NE
test site respectively reflected the ground coherence in other regions of the imaged area
(see Chapter 7.2). This showed that the classification of the lowest stem volume class
strongly depended on the uniformity of the ground conditions within the area covered
by an ERS-1/2 tandem pair. The modeled coherence difference between 0 and 20 m*/ha
stem volume was always between 0.05 and 0.15. Within-frame variations of the
coherence at the ground of the same order caused the Producer accuracy of this class to
drop to very low levels, at least in parts of the classified area; note that the User
accuracy was always higher as VCF tended to overestimate y,,/ yy.

Table 8.3. Overall classification accuracy, Producer / User Accuracies [%] and kappa
statistics obtained when inverting the models that were fitted to the measurements at the
Siberian test sites and summarizing the estimated stem volumes to the four stem volume
classes 0-20, 20-50, 50-80 and > 80 m’/ha.

Producer / User Accuracy [%] of
Test site & ERS-1/2 tandem pair | the stem volume classes [m*/ha]

0-20 | 20-50 | 50-80 | >80

80.9 26.6 12.1 96.3
CHN 29-30 Dec. 95 94 1 236 13 85.3 823 .68 /.84

75.2 28.1 29.9 88.2
BM NE 01-02 Jan. 96 87 6 36.6 183 715 71.5 55771

72.4 34.8 23.8 84.1
BM NE 22-23 Sep. 97 859 287 142 777 69.3 527.74

60.9 27.8 21.9 81.1
BM NE 25-26 Sep. 97 875 270 32 68.7 60.3 A437/.67

86.0 49.7 28.0 933
BM NW 25-26 Sep. 97 95 351 28.4 94 1 84.0 73792

89.8 32.0 14.8 | 74.6
Bolshe NW 28-29 May 98 373 198 75 93.1 72.8 .57/ .87

Overall.

K& K
Accuracy v
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Even when inverting the models that were ‘optimally’ fitted to the conditions at the test
sites, the accuracy of the intermediate stem volume classes was low. This observation
was in line with what has been reported in Balzter et al. (2002), Gaveau et al. (2003),
Eriksson (2004) and Tansey et al. (2004). They all tested the classification of the same
stem volume classes with ERS-1/2 tandem coherence for several of the SIBERIA
project test sites, i.e. they all used the same inventory database for the accuracy
assessment. In contrast, an independent ground survey, carried out for the SIBERIA
stem volume map, resulted in class accuracies above 80 %, even for the intermediate
stem volume classes, and a x and «,, of 0.88 and 0.94, respectively (Balzter et al., 2002).
These high accuracies pointed out the importance of using an up-to-date reference
dataset for a meaningful accuracy assessment. Motivated by the obvious discrepancies
between the accuracy statistics obtained with the inventory data and the ground survey,
Balzter et al. (2002) further explored the relevance of the uncertainty in the inventory
data. An uncertainty model was set up that described the stem volume in the inventory
data, V', as center of a fuzzy interval (Balzter et al., 2002). The true stem volume was
assumed to lie in a Gaussian distributed interval between V¥"-2SD and V*'+2SD with 95
% certainty. SD denoted the presumed standard error of the inventory stem volume
measurements. Based on this uncertainty model, a pixel was considered correctly
classified when the fuzzy interval overlapped with the stem volume interval of the class
the pixel was assigned to. When applying this uncertainty model to a pooled confusion
matrix, comprising the classification results for seven forest compartments (Bolshe,
Chunsky and Primorsky were not included), a non-linear increase of the overall
accuracy, x and x, was observed. For an uncertainty, SD, of 20 m3/ha, which was
considered a realistic description of the inventory data accuracy, a x of 0.72 and a «,, of
0.86 was obtained. When not accounting for the uncertainty in the inventory data, i.e.
SD was set to 0 m*/ha, « and «,, were 0.43 and 0.72, respectively.

When applying the uncertainty model to account for the uncertainty in the inventory
data to the stem volume maps obtained with the VCF-based approach, a non-linear
increase of the overall accuracy and x could be observed as well. «,, showed only minor
improvements, basically because it already accounted for the fuzziness in the inventory
data. For the ERS-1/2 tandem coherence images from winter, x improved for about 0.2
to 0.3 when allowing for an uncertainty of 20 m’/ha. For this level of uncertainty, all
three winter acquisitions reached a x of at least 0.7 (Figure 8.2, right). In case of the
ERS-1/2 tandem coherence images from fall and spring, comparable accuracies with a x
of at least 0.7 were only reached for the acquisitions from 25-26 September 1997 at
Bolshe NW and from 9-10 October 1997 at Primorsky E (Figure 8.2, left). In case of the
coherence images acquired over Bolshe NE, the accuracy was lower with a x of about
0.5. This was clearly a consequence of the overestimation of y./yg with the VCF-based
training approach (see Chapter 7.2). Thus, besides the images that were acquired in fall
over the Bolshe NE test site, the accuracies achieved with the VCF-based approach
were comparable to that observed for the accuracy assessment of the SIBERIA stem
volume map; note that no pooled confusion matrix was created as all test sites were
covered by more than one ERS-1/2 tandem pair so that any selection of images/test sites
for a pooled confusion matrix (e.g. those with the best results) would have tampered the
accuracy statistics.
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Figure 8.2. Kappa coefficient as function of the uncertainty SD in the inventory data for
the tandem pairs from fall 1997 covering Bolshe NE, Bolshe NW and Primorsky E (left)
and the tandem pairs from winter 1995/96 covering Bolshe NE, Chunsky N and
Chunsky E (right).

In Santoro et al. (2007), a higher stem volume retrieval accuracy has been reported for
stands with high relative stocking when inverting the IWCM, trained with the inventory
data at the test sites in Bolshe and Chunsky, for the coherence images from 29-30
December 1995, 14-15 January 1996 and 1-2 January 1996. Similarly, the accuracy of
the produced stem volume maps was found to depend on relative stocking. In Figure
8.3, it can be seen for the classified coherence images from 1-2 January 1996 (Bolshe
NE) and 29-30 December 1995 (Chunsky N) that x was about 0.2 when only
considering stands with less than 50 % relative stocking. Even when allowing for 20
m’/ha uncertainty in the inventory data, x only reached a level of 0.5 to 0.6.
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Figure 8.3. Kappa coefficient as function of the uncertainty SD in the inventory data for
stands with RS > 50 % and RS < 50 %.

The lower map accuracy for stands with low relative stocking may have been due to 1) a
less pronounced link between area-fill factor and stem volume as forests with low
relative stocking are assumed to have a more heterogeneous canopy structure and 2) a
higher impact of coherence variations at the forest floor as at a given stem volume,
stands with low relative stocking are less dense than stands with high relative stocking
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(see Chapter 3.3). The lower density may coincide with an overall more open canopy
structure, resulting in higher (spatially more variable) ground contributions in the
measurements. These assumptions, however, need to be confirmed with ground
measurements of the area-fill factor for forests with different relative stocking. As a
higher proportion of forests in Northeast China should grow in an understocked state
(see Chapter 3.3), it can be expected that the mapping of the four low stem volume
classes does not reach accuracies in the range of those achieved for Siberia.

8.3 Creation of a forest stem volume map for Northeast China

For the creation of a forest stem volume map of Northeast China, following scheme was
applied:

1) VCF-based model training:

The VCF-based model training was carried out on a frame-by-frame basis. Areas where
topography was likely to affect the training were excluded according to Chapter 6.2.
The estimation of y, and o’ ¢~ was done by calculating the mode of coherence and
intensity in areas with low VCF tree cover, i.e. for the lowest two percent of the VCF
pixels (always < 10 %). The parameters yycr and O'OVCF were calculated with the mode of
the coherence and intensity measurements in areas with high tree cover; only when the
98" percentile of VCF tree cover was at least 70 % (the case for 87 tandem pairs). If this
precondition was not fulfilled, a neighbor frame was integrated into the training. When
even in this case no estimation of yycr and O'OVCF was possible, the parameters obtained
for the closest frame in the same orbit, for which model training was possible, were
used. Five of the orbits almost exclusively covered unforested areas in Inner Mongolia
and the Northeast China Plain so that for none of the frames a determination yycr and
O'OVCF was possible. In these cases, some rough estimates for y,., and ok veg Were made
based on the relationship with temperature observed in Figure 7.12 (b) & (d). The
model parameters y,., and ok veg Were derived from ypcr and O'OVCF by compensating for
residual ground and, only in case of .., volume decorrelation contributions according
to Chapter 5.2.3.5. The forest transmissivity parameter S was set to 0.006 ha/m’. Veq
was set to 400 m’/ha. The decision for the usage of the IWCM respectively the
empirical model was straightforward (see Chapter 7.3). When the initial estimates for vy,
and 7y were lower than 0.7 and 0.3, respectively, the IWCM model training results
were rejected and the empirical model was trained instead, using a fixed value for the
coefficient 7, of 0.015 ha/m’.

2) Model inversion and class assignment:

The model inversion was done as described in Chapter 8.2. The retrieved stem volumes
were aggregated to the four stem volume classes: 0-20, 20-50, 50-80 and > 80 m’/ha.
Water surfaces could not be classified by means of coherence or intensity as the
signatures varied unpredictably between the tandem pairs. That is why the SRTM Water
Body product was used.

3) Masking of topography:

With the topographic masking procedure applied for the VCF-based model training (see
Chapter 6.3), large forest areas were not considered for model training as large fractions
of the forests in Northeast China grow on mountainous terrain. However, different
levels of uncertainty in the measurements due to topographic effects could be expected.
For instance, in case of tandem pairs that were acquired with baselines shorter than 200
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m it was observed for slopes tilted away from the sensor with >10° that there was forest
related information like visible clear-cuts. This observation motivated the application of
a different masking procedure for the production of the forest stem volume map. In the
map, only those pixels located in areas where the layover map indicated layover or
those on slopes steeper than 10° and facing the sensor were masked. The masked areas
were widened for four pixels to account for the spatial coherence estimation principle.
For all other areas in the produced stem volume map of Northeast China, a quality flag
map was produced, which indicated the risk for low class accuracy because of
topographic distortions in the coherence images. The quality flag map distinguished
three levels of map quality. Level 1 was assigned to all areas when the perpendicular
baseline was shorter than 100 m. Level 2 was assigned to all areas located on slopes
steeper than 10° and tilted away from the sensor, plus the 4 surrounding pixels, when
the baseline was between 100 and 200 m. For these areas, the forest/non-forest
information in the stem volume map could be useful but the observed influence of
spatial decorrelation (Chapter 6.2) questioned the stem volume classes. In case of
baselines above 200 m, Level 3 was assigned to each pixel located on a slope steeper
than 10°, or up to four pixels away from a slope steeper than 10°, as with these baselines
topography-induced decorrelation reaches magnitudes comparable to the forest/non-
forest contrast in coherence.

4) Mosaicking of the classified images:

For the production of the forest stem volume map, 223 coherence images were
classified and mosaicked. Some areas were covered by more than one tandem pair. In
such a case, a multitemporal combination of the stem volume estimates from each
image may have increased the accuracy of the class assignment. For the Siberian test
sites it was tested if the combination of the single image retrieval results according to
the procedure described in Santoro et al. (2002), before aggregating the volume
estimates into the four desired classes, improved the classification. However, no
improvements were achieved regardless of the combination of images, e.g. two winter
images or one from fall and one from winter. The accuracies were always between those
achieved for the better and the worse of the images combined. That is why, the stem
volume maps created with coherence images that were acquired under frozen conditions
and/or with a shorter baseline were selected when more than one coherence image was
available as in case of frozen conditions spatial variations of the imaging conditions and
in case of short baselines the effects of topography could be expected to be less severe.

Figure 8.4 shows the final forest stem volume map. The outstanding characteristic of the
map is that there are almost no border effects visible between adjacent orbits that were
acquired under different environmental and meteorological conditions, being a good
indicator for the spatial consistence of the stem volume classes. The accuracy of the
map will be assessed in the frame of the ESA-MOST (Ministry of Science and
Technology, China) DRAGON-II project. Right now, it represents an unvalidated
product.

In Table 8.4, the proportions of each assigned quality level in the stem volume map
have been listed. Almost 10 % of the area in the map had to be masked because of the
strong topographic effects on steep slopes >10° facing the sensor. Approximately 23 %
of the map were assigned to the quality levels 2 and 3 where the stem volume classes
could be expected to be distorted. This relatively high proportion of pixels that were
assigned to quality levels 2 and 3 points out the high importance of the orbit planning as
the fraction of pixels with a coherence affected by topography could be reduced when
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the baselines were kept short ( < 100 m); note that this contradicts the recommendations
for an optimal retrieval for which baselines in the 150 to 250 m range are preferable.

Table 8.4. Statistics of the Quality Flag Map for the forest stem volume map of
Northeast China.

Class Count  Area [km?] % of total map area
Quality Level 1 377413392 943533 66.85
Quality Level 2 10107306 25268 1.79
Quality Level 3 121036118 302590 21.44

Masked 56046161 140115 9.92
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Figure 8.4. Mosaic of the classified ERS-1/2 tandem dataset comprising 223 frames.
Projection: Albers Conical Equal Area, standard parallels at 25° & 47° latitude and
projection centre at 0° latitude and 115° longitude, Ellipsoid: Krassovsky, Pixel size:
50x50 m’.
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Chapter 9 - Conclusions

9.1 Summary and discussion

In this thesis, the feasibility of large area forest stem volume mapping with multi-
seasonal and multi-baseline ERS-1/2 tandem data was investigated. The primary goal
was to develop, for the showcase scenario of Northeast China, a method that allows the
exploitation of the existing archives of the ERS-1/2 tandem mission. Along with this
overall goal, the effects of forest structural diversity and topography on the ERS-1/2
tandem coherence measurements were addressed.

The analysis of the variability of coherence at the Siberian and Chinese test sites in
Chapter 4 traced the observations reported in many predecessor studies. A considerable
response of coherence to varying environmental and meteorological imaging conditions
could be observed. Although there were some seasonal patterns, e.g. high forest floor
coherence in winter, coherence revealed considerable responses to short-term effects
related to rain or changes in the snow properties. Hence, approaches aiming at the
exploitation of the ERS-1/2 tandem archive have to be adaptive to the local weather and
environmental conditions at the time of the sensor overpasses. Despite the strong effects
of the environmental and meteorological imaging conditions on the overall coherence
level, the forest stem volume information in coherence was found to be robust as the
multitemporal consistency of the measurements was high.

The only yet existing algorithm for a fully-automated training of a simple empirical
model, relating ERS-1/2 tandem coherence to boreal forest stem volume, has been
checked for its transferability to a multi-seasonal ERS-1/2 tandem dataset. This training
approach, which relied solely on the coherence histogram statistics to determine the
unknown model parameters, did not allow reliable model parameter estimates when
applied to the multi-seasonal ERS-1/2 tandem datasets available. A severe limitation of
the training approach, which was initially developed and tested for ERS-1/2 tandem
coherence data that was acquired solely in fall, was connected to the requirement for
dense forest being the dominant land cover type in the imaged area and the assumed
linear relationship between the coherence measured over dense forest canopies and the
forest floor.

A new approach was developed that aimed at the fully-automated determination of the
unknown parameters of the semi-empirical Interferometric Water Cloud Model with the
aid of the MODIS Vegetation Continuous Field tree cover product. The IWCM, models
the coherence over forest as the sum of a ground and a canopy contribution, both
weighted by the forest transmissivity, which can be expressed as function of stem
volume. The VCF-based model training based on two main assumptions: 1) the
coherence/intensity in areas with low VCF tree cover reflects the coherence/intensity at
the forest floor and 2) it is possible to infer from the coherence/intensity measured over
forest with maximum VCF tree cover on the IWCM parameters related to the coherence
and intensity that would be measured over ideally opaque canopies. A third prerequisite
for a VCF-based training of the IWCM was that the relationship between forest
transmissivity and stem volume could be predicted.

The IWCM forest transmissivity concept considers the forest transmissivity in C-band
to be mainly a function of the gap fraction in the canopy, i.e. the canopy cover. The
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transmissivity is assumed to be exponentially related to stem volume. The empirical
forest transmissivity parameter f in the IWCM, which is needed to relate the forest
transmissivity to forest stem volume, could not be estimated by means of VCF. The
comparison of VCF tree cover and the stem volume measurements in the Central
Siberian inventory data confirmed the forest transmissivity concept of the IWCM
though. When fitting the IWCM to the ERS-1/2 tandem coherence measurements at the
Central Siberian test sites, the estimates for the forest transmissivity parameter f varied
only in a narrow range in case of the images that were acquired under stable weather
conditions with high ground coherence, i.e. all tandem pairs from winter but also one
tandem pair from fall. This indicated a rather similar relationship between forest
transmissivity and stem volume for the different test sites and acquisition dates. For the
rest of the tandem pairs, all acquired in spring and fall, the pronounced spread of the
coherence measurements along the main trend with respect to stem volume caused the
estimates for £ to vary in a wide range, exceeding by far the range that could be
considered a realistic description of forest transmissivity-stem volume relation. It was
found that a simple exponential model could be fitted to the trend of the coherence
measurements as function of stem volume even better than the IWCM. The general
trend of coherence as function of stem volume in case of the images acquired under
unstable conditions could roughly be described when parametrizing the empirical model
with a fixed value for the parameter V,, which corresponds to the IWCM parameter S
(but without physical meaning). Thus, for the set up of a fully-automated VCF-based
model training, it was decided to use the IWCM with a fixed value for f in case of
tandem pairs that were acquired under stable conditions with high ground coherence
(and also high(er) dense forest coherence) whereas under unstable conditions, the
simple empirical model was preferred.

For the VCF-based model training, the mode values of the coherence and intensity
measurements in areas where VCF indicated minimum and maximum tree cover were
used to determine the unknown IWCM model parameters (besides f). The mode values
of coherence and intensity in areas with maximum VCF tree cover had to be
compensated for residual ground contributions and, in case of coherence, volume
decorrelation effects to derive the IWCM parameters describing the properties of ideally
opaque canopies. The comparison of VCF tree cover and the inventory stem volume
measurements showed that forests with maximum VCF tree cover should mostly exceed
a stem volume of 200 m*/ha. A model sensitivity analysis with the IWCM indicated for
stem volumes > 200 m’/ha only minor differences in the ground contributions and
volume decorrelation effects as long as the baselines did not exceed ~ 200 m. In this
case, the derivation of the model parameters appeared uncritical. For baselines of ~300
m length, however, the expected effect of volume decorrelation in the range of stem
volumes above 200 m*/ha caused a higher uncertainty in the parameter estimates.

When applying the VCF-based model training to the ERS-1/2 tandem coherence images
that covered the Siberian test sites on a frame-by-frame basis, the results drew a
heterogeneous picture. When comparing the parameter estimates with those obtained
when fitting the models to the measurements at the test sites with the aid of the
inventory data, clear differences in the parameter estimates were, in particular, observed
for the images acquired under unfrozen conditions in spring and fall but also in case of
the images that were acquired under winter frozen conditions there were some
differences. The differences between the inventory data- and VCF-based parameter
estimates could be reduced when restricting the VCF-based model training to the area of
the particular test site so that both training approaches reflected the same area. The
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better agreement of the parameter estimates showed that spatial variations in the
environmental and meteorological imaging conditions were one of the main reasons for
the differences in the parameter estimates. This clearly showed that the model training
should account for sub-frame variations in the imaging conditions. The adaptivity of the
model training algorithm represents one of the issues where the algorithm has potential
to be improved.

While the coherence in areas with low tree cover well reflected the coherence at the
forest floor, it was more critical to infer from the intensity measured over open ground
on the forest floor conditions. In particular under unfrozen rainy conditions, the VCF-
based estimates for the forest floor backscatter tended to be too high. As intensity, in
contrast to coherence, is highly sensitive to soil moisture, systematic differences in soil
moisture between open ground, i.e. with low tree cover, and forest floor (due to for
instance evapotranspiration and rainfall interception in forest) would not allow to infer
from the intensity measurements in areas with low VCF tree cover on the IWCM model
parameter related to forest floor intensity. Thus, the VCF-based estimates for the forest
floor intensity have to be interpreted with care, at least in case of wet conditions.

In case of the ERS-1/2 tandem coherence images that covered the Siberian test sites, it
was possible to infer from the coherence and intensity measured over forest with
maximum VCF tree cover on the IWCM model parameters related to dense forest
properties when assuming that the observed coherence/intensity over forest with
maximum VCF tree cover reflected a stem volume of at least 250 m’/ha. This was due
to the fact that for the range of stem volumes delineated by means of VCF both,
coherence and intensity, had mostly reached saturation with respect to increasing stem
volume. This finding actually represents a critical point in the concept of the VCF-based
model training. When solely considering the parameter estimation, it can be stated that
the IWCM parameters, related to the temporal coherence and backscatter properties of
ideally opaque forest, are best estimated when the coherence/intensity measured over
forest with maximum VCF tree cover represent what can be considered the saturation
level of the measurements, i.e. when there are no differences in the ground contributions
and in volume decorrelation in the range of stem volumes corresponding to maximum
VCEF tree cover. When the SAR or InSAR measurements show a pronounced sensitivity
above stem volumes of 200 - 250 m3/ha, as for instance observed in Santoro et al.
(2002) or Pulliainen et al. (2003), it could be more difficult to infer from the
coherence/intensity in areas with high VCF tree cover on the model parameters related
to ideally opaque canopies as then the model parameter estimation may require
information about the stem volume distribution in forests with maximum VCF tree
cover. A pronounced sensitivity in this case means that the response in the
measurements to increasing stem volume clearly exceeds the noise in the coherence
estimates.

When carrying out the VCF-based model training for the ERS-1/2 tandem dataset of
Northeast China, the estimates for the IWCM parameters showed similar patterns with
respect to the meteorological imaging conditions as in case of the ERS-1/2 tandem
coherence images covering the Siberian test sites. The estimates for y,.,, i.e. the IWCM
parameter describing the temporal coherence of opaque canopies, were suspicious in
case of very long baselines around 300 m. The IWCM predicted an oscillation, i.e. an
increase of coherence with increasing stem volume, at stem volumes around 200 m*/ha.
The expected sensitivity of coherence, i.e. the increase, to increasing stem volume for
stem volumes above 200 m’/ha may have affected the IWCM parameter estimates in
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that sense that it was not clear which stem volume level was represented by the estimate
of dense forest coherence from VCF.

The influence of topography-induced decorrelation was analyzed with the aid of the
SRTM-3 DEM. Topography was found to introduce decorrelation over sloped terrain
when the range common band filtering could not entirely compensate for uncommon
range band spectra. The topography-induced coherence loss after range common band
filtering increased with increasing length of the perpendicular baseline and from slopes
tilted away from the sensor to slopes facing the sensor. The filtering could recover the
coherence over flat terrain and for baselines < 100 m on slopes tilted away from the
sensor. The longer the baseline, the more the forest biophysical information in
coherence was distorted by topographic effects on both, slopes tilted towards as well as
away from the sensor. Uncompensated topographic phase in the coherence estimation
window and co-registration offsets further contributed to the loss of coherence over
mountainous terrain. The topography-induced decorrelation over dense forest resembled
the observations over open ground. In addition, the coherence to stem volume relation
may have been altered by differences in volume decorrelation, ground to canopy
backscatter weighting and canopy gap fractions dependent on the topographic position
of the forest. These effects were not analyzed in this thesis. For Northeast China, the
coherence in about one third of the area covered could be expected to be affected by
topography. For future missions, the recommendation with respect to the orbit planning
would be to keep the baselines as short as possible, i.e. < 100 m. This, however,
contradicts the requirements for an optimal stem volume retrieval for which somewhat
longer baselines in the range of 150 to 250 m are preferable. Recent advances in the
processing of InSAR data allow reducing the topographic effect in coherence over
mountainous areas (Santoro et al., 2007c). When doing slope adaptive common band
filtering using, for instance, the almost globally available SRTM-3 DEM for the
simulation of the topographic phase, the effect of spatial decorrelation can be somewhat
reduced.

Accurate stem volume retrieval with ERS-1/2 tandem coherence is known to require a
multitemporal stack of images that were acquired under optimal conditions. As this
precondition was not fulfilled with the ERS-1/2 tandem dataset available for Northeast
China, the accuracy of a classification of the four stem volume classes 0-20, 20-50, 50-
80 and >80 m’/ha was assessed. These classes were also mapped in the SIBERIA
project for Central Siberia. The classes were considered useful for Russian foresters for
the identification of the development stages of young stands growing after disturbance;
from the Chinese side there were no demurs against the use of the same classes for
Northeast China. Due to the lack of reliable ground data for Northeast China, the
agreement between the forest inventory data and the stem volume maps produced with
ERS-1/2 tandem coherence could only be checked for the ERS-1/2 tandem dataset that
covered the Central Siberian test sites.

When inverting the models, i.e. the IWCM or the simple empirical model, that were
trained with the aid of VCF on a frame-by-frame basis and aggregating the obtained
volume estimates into the four desired stem volume classes, a non-sufficient accuracy
(respectively agreement with the inventory data) had to be stated. Only the extreme
classes 0-20 and > 80 m’/ha reached accuracies of 80 % whereas the intermediate
classes hardly exceeded Producer and User accuracies of 50 %. As the VCF-based
model training was carried out on a frame-by-frame basis, within frame variations of
ground coherence conditions caused the classification accuracy of the lowest stem

137




volume class to drop to low levels, at least in certain parts of the image where the VCF-
based ground coherence estimate did not reflect the local conditions. Spatial variations
of the ground coherence mainly affected ERS-1/2 tandem pairs from spring and fall but
were also observed for a coherence image from winter. A low agreement of the
intermediate stem volume classes with the inventory data was also reported for the
SIBERIA stem volume map (Balzter et al., 2002). Instead, an independent ground
survey reported even for these classes accuracies above 80 %. Thus, the uncertainty in
the inventory data should have been a major reason for the low agreement of the
coherence-based stem volume maps and the inventory data, in particular in case of the
intermediate stem volume classes.

The real value of the produced stem volume map of Northeast China is yet unclear as no
accuracy assessment could be carried out. The map itself revealed a promising
characteristic in the sense that, with the VCF-based model training approach, the
differences in the imaging conditions appeared to be adequately accounted for in the
stem volume map as no border effects between adjacent tracks were visible. On the
other side, the structural deficits of the forests in Northeast China questioned the
reliability of the classified stem volume classes. At the Siberian test sites it was
observed that for stands with low relative stocking, the classification accuracy was
lower than for fully or close-to-fully stocked stands. Hence, at this point the map should
rather be interpreted as an indicator for sparse and dense forest.

9.2 Outlook

Although developed for a particular data type, the interferometric data of the ERS-1/2
tandem mission, the concept of the VCF-based model training approach goes beyond a
sensor-specific implementation. Principally, VCF may aid the identification of the
backscatter and coherence properties of open ground and dense forest canopies for
various radar data types.

Since the end of the ERS-1/2 tandem mission in the year 2000, when ERS-1 ceased
operation, C-band repeat-pass coherence could be obtained with the cross-
interferometric processing of the C-band SAR data from ERS-2 and ENVISAT ASAR.
ERS-2 and ENVISAT ASAR provide interferometric image pairs with a short temporal
baseline of 28 minutes. ERS-ENVISAT coherence was found to contain land cover and
forest related information (Santoro et al., 2007a) but the complications with respect to
the 31 MHz shift in carrier frequency between both sensors put narrow constraints to
the application of ERS-ENVISAT coherence as a long perpendicular baseline (~2 km)
is needed to compensate for the slight difference in carrier frequency between both
sensors so that the coherence over flat surfaces is optimally recovered (Santoro et al.,
2007a). In addition, ERS-2 works since 2001 in a so-called Zero-Gyro mode, which
does not provide a sufficient stability of the satellites attitude so that many image pairs
cannot be used for interferometry because of non-overlapping Doppler spectra.
Canada’s recent Radarsat-2 C-band mission provides interferometric capabilities as well
but the 24-days repeat-cycle represents a severe limitation concerning the exploitation
of Radarsat-2 repeat-pass coherence for forestry applications (Van Der Sanden, 2004).
The same constraint applies for the data of the Japanese ALOS PALSAR mission,
which provides interferometric image pairs in L-band with 46 days temporal baseline,
or to ENVISAT ASAR repeat-pass interferometry, which acquires in C-band with 35-
days temporal baseline. For such long temporal baselines, forestry applications of
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coherence are, if possible at all, limited to interferometric image pairs acquired during
constantly frozen conditions. Such conditions usually only occur during the long
winters in the boreal zone (Eriksson et al., 2003). Somewhat more promising is ESAs
upcoming SENTINEL-1 C-band mission, which will provide interferometric
capabilities and repeat cycles of 12 days when the first satellite will be in space and a 6-
day repeat cycle when SENTINEL-1b will be launched. A 6-day repeat cycle is still
much longer than the one-day repeat cycle of the ERS-1/2 tandem mission, increasing
the risk for strong decorrelation on the ground, but may still allow stem volume retrieval
for a larger number of image pairs. As one of the main mission objectives is to acquire
consistent multitemporal datasets (Attema et al., 2007), SENTINEL-1 may provide a
sufficient number of image pairs, acquired under optimal conditions, for the application
of multitemporal stem volume retrieval approaches, which have been shown to reach
high accuracies. A transfer of the VCF-based training of the IWCM to the SENTINEL-
1 case would be straightforward.

Another possible application of the VCF-based model training approach, which has
recently been tested for medium resolution ENVISAT ASAR data (Santoro et al.,
2007b), considers multitemporal stacks of C-band intensity measurements. A single C-
band intensity image is not suited for stem volume retrieval. When, however, combining
the retrieval results for a large number of images, high accuracies can be achieved, at
least when aiming at stem volume statistics at regional, provincial or national level
(Pulliainen et al., 1996; Kurvonen et al., 1999; Santoro et al., 2007b). This is
particularly interesting with respect to the upcoming SENTINEL-1 mission, which will
provide C-band measurements in two polarizations every three days (dependent on the
latitude). A crucial issue in a multitemporal retrieval, however, is the preselection of
suitable images. With respect to the VCF-based model training, for instance, we have
seen in Chapter 7.2 that the intensity measured over open ground, i.e. with low tree
cover according to VCF, did not necessarily reflect the forest floor conditions so that
care has to be taken to exclude such cases.

Multitemporal and multipolarimetric L-band intensity, which is now available from the
Japanese ALOS PALSAR mission (for which the follow-up mission has already been
approved), appears to be even more promising than C-band intensity as it suffers less
from saturation and shows a temporally more consistent relation to stem volume or
biomass (Le Toan et al., 1992; Imhoff, 1995; Harrel et al., 1995; Kurvonen et al., 1999;
Fransson & Israelsson, 1999; Mougin et al., 1999; Askne et al., 2003; Santoro et al.,
2006). Limitations concerning a transfer of the VCF-based model training approach to
the L-band case are related to the Water-Cloud-type-of model. The semiempirical model
that was utilized for the modeling of the relationship of intensity and stem volume in
this thesis was developed for short-wavelength radar data, i.e. X- and C-band, and does
not account for trunk-ground interactions. Existing studies about the contribution of
double bounce to L-band backscatter from forest give somewhat contradictory answers.
On the one side, Sun et al. (1991) or Saatchi & McDonald (1997) indicate a significant
double bounce contribution in L-band measurements over forest whereas in Israelsson
& Askne (1994), Ranson & Sun (1994b) or Pulliainen et al. (1999) the results indicated
negligible contributions; the different observations could be related to the forest floor
which dampens double bounce backscatter if rough. Several studies for Scandinavian
and Siberian boreal forest sites, however, indicated that it is possible to model L-band
intensity as function of stem volume with simple Water-Cloud-based models (Pulliainen
et al., 1999; Fransson & Israelsson, 1999; Kurvonen et al., 1999; Askne et al., 2003;
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Santoro et al. 2006) so that the transfer of the VCF-based model training and retrieval
approach should be possible.

The most promising spaceborne SAR mission with respect to biomass mapping in the
next years is supposed to be ESAs P-band Earth Explorer BIOMASS, which, however,
has not been approved yet (summer 2009). P-band is known to show high sensitivity to
biomass without suffering from saturation as early as X-, C- or L-band (Le Toan et al.,
1992; Lang et al., 1994; Rignot et al., 1995; Ranson et al. 1994, 1997; Mougin et al.,
1999; Saatchi et al., 2007). The Water-Cloud-based modeling of the relationship
between SAR intensity and stem volume, as used in this study, in combination with the
fully automated VCF-based model parameter estimation, cannot simply be transferred
to the P-band case as P-band measurements over forest contain considerable
contributions from trunk-ground interactions. Anyhow, the identification of the
backscatter intensity of open ground and dense forest (whatever ‘dense’ may mean in P-
band) could be of use as well.
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Appendix A

Perpendicular baselines of the ERS-1/2 tandem datatset used for the creation of the
forest stem volume map of Northeast China. The values for the northern- and
southernmost frames in an orbit are given.

ERS-1 ERS-2 perp. baseline of  perp. baseline No. of
Track Acquisition Acquisition northernmost  of southernmost ’
Frames
Date Date frame frame
0304 01 Jan. 96 02. Jan. 96 -179 -203 7
0046 02 May 98 03 May 98 -66 -70 4
0418 09 Jan. 96 10 Jan. 96 -67 -43 11
0447 11 Jan. 96 12 Jan. 96 -66 -99 12
0289 14 Apr. 96 15 Apr. 96 -94 -95 2
0218 14 May 96 15 May 96 -120 -130 7
0003 15 Jan. 96 16 Jan. 96 -315 -395 10
0017 16 Jan. 96 17 Jan. 96 -273 -304 5
0261 17 May 96 18 May 96 -90 -90 1
0046 18 Jan. 96 19 Jan. 96 -82 -155 12
0003 19 Feb. 96 20 Feb. 96 93 74.5 7
0132 20 Dec. 95 21 Dec. 95 -191 -267 16
0046 22 Feb. 96 23 Feb. 96 64 37 9
0103 22 Jan. 96 23 Jan. 96 154 138 8
0046 28 Mar. 96 29 Mar. 96 -98 -103 8
0261 29 Dec. 95 30 Dec. 95 211 -252 11
0275 30 Dec. 96 31 Dec. 95 -195 -254 13
0289 31 Dec. 95 01 Jan. 96 -209 -217 3
0447 02 Oct. 97 03 Oct. 97 311 325 4
0461 03 Oct. 97 04 Oct. 97 285 328 12
0490 05 Oct. 97 06 Oct. 97 288 323 10
0103 13 Oct. 97 14 Oct. 97 210 241 8
0175 18 Oct. 97 19 Sep. 97 248 301 15
0304 22 Sep. 97 23 Sep. 97 313 348 7
0318 23 Sep. 97 24 Sep. 97 337 361 6
0332 24 Sep. 97 25 Sep. 97 296 334 8
0361 26 Sep. 97 27 Sep. 97 295 308 4
0318 30 Jun. 98 01 Jul. 98 -376 -389 3
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