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Abstract

Generic object recognition is an important function of the human visual system. Hu-
mans are able to categories different object classes in the surrounding environment in
an easy way. For an artificial vision system to be able to emulate the human perception
abilities, it should also be able to perform generic object recognition. However, for the
machine, it is really a hard, complex and challenging task.
In this thesis, we address the generic object recognition problem and present different
approaches and models which tackle different aspects of this difficult problem.
First, we present a model for generic 2D object recognition from complex 2D images.
The model exploits only appearance-based information, in the form of a combination
of texture and color cues, for binary classification of 2D object classes. Learning is ac-
complished in a weakly supervised manner using Boosting. The experimental results
of the model are comparable, or outperform other state-of-the-art approaches.
However, we live in a 3D world and the ability to recognize 3D objects is very impor-
tant for any vision system. Therefore, we present a model for generic recognition of
3D objects from range images. The problem of 3D object recognition is originally a
hard task, and it is getting to be harder when recognizing 3D object classes is aimed.
Our model makes use of a combination of simple local shape descriptors extracted
from range images for recognizing 3D object categories, as shape is an important in-
formation provided by range images. Moreover, we present a novel dataset for generic
object recognition that provides 2D and range images about different object classes.
This dataset is considered to be the first to provide range images for different object
categories. The range images of the dataset are acquired with a Time-of-Flight (TOF)
camera. The dataset is used to build and evaluate our recognition model and promising
classification results are obtained.
As the surrounding world contains thousands of different object categories, recogniz-
ing many different object classes is important as well. Therefore, we extend our generic
3D object recognition model to deal with the multi-class learning and recognition task.
The learning process is adapted to allow the recognition of different object categories
from range images. The model reveals good categorization performance despite the
difficulty of the problem.
Moreover, we extend the multi-class recognition model by investigating the use of
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different information cues extracted from different data types for improving the cate-
gorization performance. A novel model which uses a combination of appearance-based
information extracted from 2D images and range-based (shape) information extracted
from range images is introduced for multi-class generic 3D object recognition and
promising results are obtained. Generally, addressing the problem of generic 3D object
recognition from range images is one of the main contributions of the work presented
in this thesis.
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Übersicht

Generische Objekterkennung ist eine wichtige Funktion des menschlichen Sehsys-
tems. Für einen Menschen ist es ein Einfaches verschiedene Objekte in seiner Umge-
bung zu kategorisieren. Damit ein künstliches Sehsystem in der Lage ist, die men-
schlichen Sehfähigkeiten nachzuahmen, sollte es auch die generische Objekterkennung
beherrschen. Allerdings stellt dies für eine Maschine eine sehr schwierige, komplexe
und herausfordernde Aufgabe dar.
In dieser Arbeit wird das Problem der generischen Objekterkennung behandelt. Es wer-
den mehrere Ansätze und Modelle zur Lösung verschiedener Aspekte dieses schwieri-
gen Problems präsentiert. Zuerst wird ein Modell zur generischen 2-D-Objekterkennung
von komplexen 2-D-Bildern vorgestellt. Dieses Modell verwendet zur binären Klas-
sifizierung von 2-D-Objektklassen ausschließlich erscheinungsbasierte Information in
Form von kombinierten Textur- und Farbmerkmalen. Das Lernen dieser Merkmale
erfolgt unter geringer Beaufsichtigung (weakly semi supervised) mittels Boosting. In
verschiedenen Experimenten zeigt sich, dass dieses Modell anderen Verfahren überlegen
ist.
Da wir in einer dreidimensionalen Welt leben, ist die Erkennung von 3-D-Objekten
sehr wichtig für jedes Sehsystem. Aus diesem Grund wird ein Modell zur generischen
Erkennung von 3-D-Objekten unter Verwendung von Tiefenbildern vorgestellt. 3-D-
Objekterkennung ist ein schwieriges Problem. Noch schwieriger ist jedoch die Erken-
nung von 3-D-Objektklassen. Die Objektform ist eine wichtige Information, welche in
den Tiefenbildern enthalten ist. Um 3-D-Objektkategorien zu erkennen, verwendet das
hier vorgestellte Modell eine Kombination aus einfachen, lokalen Formdeskriptoren,
die aus den Tiefenbildern extrahiert werden.
Außerdem wird ein neuartiger Datensatz für generische Objekterkennung präsentiert,
welcher Tiefen- und 2-D-Bilder von verschiedenen Objektklassen enthält. Dieser Daten-
satz ist der erste, der Tiefenbilder für verschiedene Objektklassen bereitstellt. Die
Tiefenbilder werden mit einer Time-of-Flight-Kamera (TOF) aufgenommen. Der Daten-
satz wird zur Auswertung unseres Erkennungsmodells verwendet und es werden überzeu-
gende Ergebnisse erreicht.
Da die uns umgebende Welt aus tausenden verschiedenen Objektkategorien besteht,
ist das Erkennen vieler verschiedener Objektkategorien ein weiteres wichtiges Prob-
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lem. Aus diesem Grund wird eine Erweiterung des 3-D-Objekterkennungsmodells
vorgestellt, die für Mehrklassenobjekterkennung geeignet ist. Der Lernprozess wird
so angepasst, dass er die Erkennung von verschiedenen Objektkategorien auf Basis von
Tiefenbildern ermöglicht. Trotz der Schwierigkeit des Problem erreicht das vorgestellte
Verfahren sehr gute Erkennungsraten.
Des Weiteren wird unser Mehrklassenerkennungsmodell so erweitert, dass es in der
Lage ist, Merkmale verschiedener Datentypen zu verwenden, um die Klassifizierungsleis-
tung zu verbessern. Dazu wird ein neuartiges Modell zur 3-D-Objekterkennung
vorgestellt, welches eine Kombination aus erscheinungsbasierter Information aus 2-D-
Bildern und formbasierter Information aus Tiefenbildern verwendet. In den Experi-
menten erreicht dieses Modell vielversprechende Ergebnisse.
Die Behandlung des Problems der generischen 3-D-Objekterkennung auf Basis von
Tiefenbildern ist einer der Hauptbeiträge dieser Arbeit.
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Chapter 1

Introduction

This chapter provides a definition of the generic object recognition (GOR) problem
and shows why it is important for the computer vision community to find a solution to
this problem. Then , it sheds light on the difficulties of the problem and explains why
finding an appropriate solution for it is a hard and challenging task. Afterwards, the
contributions of the work presented and mentioned in this thesis are briefly stated. An
overview of the outline and organization of the thesis is finally given.

1.1 Motivation

Developing machine vision approaches that emulate some of the human visual system
(HVS) abilities is the goal of almost all computer vision researchers. The ability to rec-
ognize objects in the surrounding environment is one of the most important abilities of
HVS and, for long time, researchers are trying to develop machine vision models that
can get closer to this ability. Many models and system are built that are able to recog-
nize many different previously seen objects under different environmental conditions
such as size and illumination variations with high accuracy. This type of recognition is
called specific object recognition. The specific object recognition task is been solved
for almost all of the cases. However, for a recognition model to be able to emulate the
human recognition abilities in a right way, it should be able to recognize thousand of
different objects in the environment. It is hard and difficult to fulfill this goal using
specific object recognition because the recognition model should in this case learn all
these different objects, each separately, which is a time, resources and effort consum-
ing process.

1
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By observing the HVS, it can be noticed that humans are able to recognize objects
which are visually similar and classify them to the same object class. They are able to
recognize any previously unseen object which share some visual similarities with an-
other known (previously learned) object to belong to the same class. Therefore, we can
say that humans learn and recognize objects in generic groups rather than separately.
Figure 1.1 gives an example to both specific and generic object recognition. Instead of
learning all previously unseen specific objects separately, human put them in categories
to ease his life. For this reason, generic object recognition is essential to understand
images and scenes.
Unfortunately, machines do not have the algorithm to perform generic object recogni-
tion like humans or even to approach their ability in performing this task. Therefore,
this is one key problem in computer vision
Generic object recognition is important for many different human daily as well as in-
dustrial applications such as video, web, and databases search, security, robotics, navi-
gation and many other applications.
The outline of this chapter is as follows. Section 1.2 provides a precise definition of
the generic object recognition problem and explains its difficulties. It briefly discusses
the challenges faced by the researchers when they try to tackle the problem and find a
solution to it. Section 1.3 briefly shows the contributions of the work presented in this
thesis. Finally, an outline of the thesis’s organization is given in section 1.4.

1.2 Generic Object Recognition

We can define the generic object recognition task as the process of assigning a specific
object to a certain category [118]. Generic object recognition is also termed as ”visual
class recognition” or ”object categorization”. As we previously mentioned, generic
object recognition is different from specific object recognition, as the second considers
the recognition of specific, individual objects. Object categories are those exist in the
world around us like for example cars, bikes motorbikes, children or animals while
specific objects can be my child, my bike or the sky tower (see figure 1.1).
Comparing the recognition abilities and performance of the humans with artificial
recognition systems or models, it turns out that humans are much better in catego-
rization than machines, but specific object recognition can often be handled more effi-
ciently, reliably or simply faster by an artificial recognition model [118].
Although generic object recognition is important, there is no practical solution for it
yet. This is due to the challenges faced by the researchers when they handle the prob-
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Figure 1.1: Specific and generic object recognition. In the first raw, an example of
the specific object ”sky tower” is shown. The second raw gives an example of three
instances of the visual class ”cars”.

lem. Following, we mention these challenges and their effect on appropriately solving
the problem.

1.2.1 Challenges

The generic object recognition is still a challenging and unsolved task as we previously
mentioned. It inherits the difficulties of the specific object recognition problem in addi-
tion to its own difficulties. There are many research done in this area but most of them
did not focus on all the different aspects of the problem at once. They focused on some
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and simplified the others to suit their purpose. Here, we provide a short description of
the challenges that must be faced for solving the problem.

General Challenges

• Size and viewpoint variations: The size of objects as well as their viewpoints
can change from an image to another as shown in figure 1.2 (a). Therefore,
any recognition model should be able to cope with these size and viewpoint
variations.

• Illumination variations: The lighting in the images can change causing changes
in the values of images pixels. This change can be a shift or scaling in the pixel
values. An example for illumination variation is given in Figure 1.2(b). Robust
recognition despite illumination variations is required.

• Background clutter: Objects are rarely found alone in the world. They are
always exist with many different objects, which form then the background of the
images as shown in figure 1.2 (c). The existence of background clutter imposes
recognition difficulties of the required object.

• Occlusion and truncation: Objects in the images can be partially hidden or
obscured by another objects (occlusion) or by part of the object itself (partial
occlusion). Moreover, part of the object can be missed by the image boundaries
(truncation). See figure 1.2 (d) and (e) for examples. The ability of any recogni-
tion system to recognize objects despite occlusion and truncation is important.

Definition of Object Category

It is concerned with what do we mean by object categories and classes and on which
bases objects can be grouped into categories. Actually, there are two ways to group
objects into classes: visually and functionally. In the visual grouping, objects which
are related by some kind of visual consistency or share the outline of the appearance
are grouped together into categories. In contrast, a functional grouping is that objects
which are used for the same function are grouped together. In this case, the objects
might share the same visual appearance but they do not have to. Figure 1.3 gives an
example of both different grouping methods.
However, modeling functional categories of objects can not be done using only visual
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(a) (b)

(c) (d)

(e)

Figure 1.2: General challenges of generic object recognition. (a) Size and viewpoint
changes. (b) Illumination variations. (c) Background clutter. (d) Occlusion. (e) Trun-
cation.

appearance information. Therefore, most generic object recognition methods, includ-
ing those are described in this thesis, limit and concentrate the recognition to the objects
which are visually grouped.

Intra- and Inter-class Variabilities

The most challenging aspect of the generic object recognition problem is dealing with
the intra- and inter-class variabilities within and among the different object classes.
Within the same visual category, different degrees of appearance variations can exist
among the objects as shown in figure 1.4 (first raw). Among the different visual cat-
egories, some appearance similarities can occur as shown in the example given in the
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(a)

(b)

Figure 1.3: Functional and visual categories. (a) Example of functional grouping
of objects forming the functional class ”chairs”. As shown, the visual appearance
variations among the class instances is very wide. (b) Example of visual grouping of
objects forming the visual class ”motorbikes”.

second raw in figure 1.4.
Therefore, any approach or model proposed for solving the problem should, on one
hand, handle the appearance variations exist among objects that belong to the same vi-
sual class ( intra-class variabilities). On the other hand, it should not confuse between
objects of different object classes (inter-class variabilities).
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Figure 1.4: Intra- and inter-class variabilities. First raw gives examples to the intra-
class variabilities within the visual class ”bikes”. Second raw shows inter-class vari-
abilities examples among different visual classes and the class ”bikes”. Some of these
classes such as the class ”motorbikes” (left most image) have some visual similarities
to the class ”bikes”.

Amount of Supervision in Learning

The amount of supervision needed to train a model is an important and challenging
issue in the problem. It is clear that with increasing the amount of supervision while
training a recognition model, the recognition performance increases. Supervision in
the form of object segmentation or bounding objects with boxes in the images is effort
and time consuming. However, the weakly supervised learning, in which only labels
are given to the images indicating their class type, is considerably enough.

Recognizing Many Categories

For a recognition model to be comparable to the human recognition abilities, it should
be able to recognize many different object classes. However, generic object recogni-
tion is a difficult problem in general for only one class and it becomes more challenging
when recognizing many different classes is aimed.
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Figure 1.5: 3D object recognition. Left image: a certain view of a 3D object (tricycle)
that is easy to be recognized . Right image: the object is seen from an uncommon
viewpoint, which impose some difficulties on the recognition process [117].

3D Object Recognition

When generic 3D object recognition is aimed, more challenges are added to the prob-
lem. 3D objects have infinite number of different viewpoints depending on where the
viewer is standing and how the camera is oriented. Some of these viewpoints are un-
common and hard to be classified by even by humans such as the ”tricycle” example
given in figure 1.5. The ability to handle and cope with this large viewpoint variations
is then a mandatory requirement for a recognition model designed for accomplishing
this recognition task.

1.3 Contributions

This thesis addresses the problem of 2D and 3D generic object recognition and presents
four main contributions:

• A model for generic 2D object recognition using a combination of local appear-
ance information.

• A new generic object recognition dataset which provides different types of data
(2D and range images) of different object categories.
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• A model for generic 3D object recognition using range images and its extension
to the multi-class recognition case.

• A combinational model of appearance and range-based information for multi-
class generic 3D object recognition.

The object recognition models learn the different object categories from training sets
with weak supervision. The models differ in the type of data used for recognition. The
first model, for generic 2D object recognition, makes use of only appearance informa-
tion extracted from 2D images, while the second one, for generic 3D object recognition,
exploits local shape cues computed from range images. The third one uses a combi-
nation of the two different information types. Boosting is the underlaying learning
technique in all the different models. Additionally, we present a new object category
dataset which provides 2D as well as 3D (range) images of different object class. More-
over, the 3D recognition model is extended to multi-class recognition. A final model
which combines different feature types like color, grayscale, and shape, extracted from
different types of images, is presented for improving the recognition performance for
multi-class generic 3D object recognition model.

1.3.1 Generic 2D Object Recognition Model

Our first model is proposed for generic 2D object recognition. The model is an appearance-
based one which uses a combination of two different appearance cues, represented in
texture and color, for generic object recognition. No geometrical or spatial information
is used for recognition and labels of the training images are the only information giving
to the model during learning (weakly supervised learning). Performance evaluation of
the model using different generic object recognition benchmarks is performed which
revealed its good classification performance.

1.3.2 New 2D/3D Object Category Dataset

Up to our knowledge, there is no dataset for generic object recognition which provides
range images of different object categories. Therefore, we constructed and presented
a new 2D/3D generic object recognition dataset which provide two different image
types of its members: 2D as well as range images. Two versions of the dataset are
constructed, namely ”JenaRange01” and ”JenaRange02”. They differ in the number
of object classes, viewing and image acquisition procedures and degree of difficulty.



10 CHAPTER 1. INTRODUCTION

Moreover, an experimental evaluation of the dataset and performance comparison to a
popular benchmark reveals its difficult nature.

1.3.3 Generic 3D Object Recognition Model

With the aid of our new dataset, we developed an approach for generic 3D object
recognition. The model depends on information extracted from range images in the
form of simple local shape features. The framework of the proposed model is usually
applied for recognition form 2D images and never been applied for recognition from
range images.
Moreover, the model is extended for multi-class generic 3D object recognition, which
is more difficult problem. It is worth saying, that our model is the first one (up to our
knowledge) that address the difficult and challenging problem of generic 3D object
recognition from range images.

1.3.4 Combination of Appearance and Range-based Information for Generic
3D Object Recognition

A combination of different information cues such as color, texture and shape, extracted
from 2D and range images, is used to improve the performance of the multi-class 3D
object recognition model. This combination is one of our contributions and never been
presented before for generic 3D object recognition or even generic object recognition
from range images.

1.4 Thesis Outline

The organization of this thesis goes as follows. Chapter 2 sheds light on the differ-
ent and important aspects for generic object recognition such as objects representation,
classification and methods for models evaluations. It gives a brief explanation to each
aspect and mentions its importance for solving the problem. Moreover, it presents a
brief overview of the Boosting learning technique, which is used for learning in all the
recognition models presented in this thesis.
Chapter 3 gives an overview of the different models and approaches proposed and
developed for giving a solution to the object recognition problem in general and the
generic object recognition in specific. The overview covers the area of specific and
generic 2D object recognition, giving a brief description to the state-of-the art ap-
proaches. Moreover, approaches developed for 3D object recognition from both 2D
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and range images are also reported.
Afterwards, chapter 4 introduces our model for generic 2D object recognition. It gives
an overview of the model, followed by detailed explanations of its different phases and
ended by experimental evaluations of the model performance.
Chapter 5 describes our new object category dataset with its two different versions.
First, it provides an overview of the different range imaging methods including the
technique used in acquiring the images of our dataset. Then, it describes dataset with
its two versions as well as the acquisition procedures.
Then chapter 6 moves us to the more difficult problem of generic 3D object recognition
and presents our proposed model for solving such challenging problem using range im-
ages.
Chapter 7 shows how the model for generic 3D object recognition is extended to handle
the multi-class recognition case, which is more realistic than dealing only with binary
classification.
Chapter 8 shows how different information of objects such as color, texture and shape,
extracted from different data types (2D and range) can be combined to increase the
recognition performance.
Finally, chapter 9 summaries the contributions and outcomes presented in this thesis
and draws conclusions on the obtained results. Additionally, it provides ideas of the
possible further research directions.
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Chapter 2

Theoretical Preliminaries and
Important Issues

This chapter provides an overview of the main and important issues for generic object
recognition (GOR) such as how object categories are represented, learned and clas-
sified. Moreover, an overview of the current available GOR datasets as well as the
recognition evaluation methods is presented. Many different issues for GOR are dis-
cussed, showing how these issues should be put into consideration when designing a
model for GOR.

2.1 Representation of Objects

How objects and visual classes are represented for recognition is important for build-
ing a GOR model. Normally, data of different visual classes is given in the form of
a set of input events (e.g. images). In this case, objects or classes representation is
the representation of these events with extracting valuable information from them. The
representation of objects can cover many aspects of their properties such as color, tex-
ture and discontinuities (edges, corners and lines). Moreover, the representation can
cover more complete aspects of objects or visual classes such as shape and geometry.
Even simple spatial relations can be modeled from the given data (images coordinates).
The observed world is a three dimensional (3D) space and information is lost when a
scene is projected to 2D. Therefore, changing occurs to the captured features when
certain parameters of the image capturing process are changed, such as geometrical or
illumination variations. More examples of these variations are given in section 1.2.1.

13
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Finding a representation which provides invariance to such variations is, therefore, of
great importance in building GOR models and systems.
Following, we give an overview of the different image representation techniques. We
briefly discuss the global and local image representation with emphasizing the impor-
tant differences between them. Then, we concentrate on the local representation of
images 1 and explain the different methods used for 2D and range images.

2.1.1 Global Representation

Many Object recognition models, especially the early ones, used global representations
to describe images. Global representation (features) describe the image as a whole and
produces a very compact representation of it. Global features have the advantages that
the whole image is described using only a single vector, which is used in slandered
classification techniques in a straightforward way. However, they are sensitive to oc-
clusion and background clutter. Moreover, images which contain only a single object
are assumed to be used or a good segmentation of objects from the background is as-
sumed to be available.
Global features include shape descriptors such as shape index [76, 36], contour repre-
sentation such as Moment invariants [65], and texture features such as the local binary
patterns [110].

2.1.2 Local Representation

Instead of describing the whole image using only one feature vector as in the global
representation, components, regions or patches of the images are described separately.
These regions can be sampled on a regular grid, at random or at selected interest points
that detected by applying some interest operator to the images. Afterwards, the sam-
pled regions are extracted and described using a suitable descriptor. Images are then
described by multiple feature vectors.
Local representation (features) of images has the advantages that they are robust to oc-
clusion and clutter. However, specialized classification algorithms might be required
to handle cases in which a variable number of feature vectors per image exist. Despite
this disadvantage, local features have been used very successfully in the development
of current GOR systems.

1Since local representation is used in all the recognition approaches described in this thesis.
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Representation of 2D Images

Local Regions/Patches Sampling As we previously mentioned, the local regions or
patches in the images can be sampled in different ways. Either on a regular grid [26], at
random locations in the images [93] or at selected points detected by an interest point
detector.
Local descriptors computed from interest regions have proved to be very successful in
many applications such as object recognition [92, 114] and image retrieval [148]. They
are distinctive, robust to occlusion, background clutter and image transformation and
do not need segmentation. The idea is to detect and extract image regions covariant to
a class transformation, which are used as support regions to compute invariant descrip-
tors. Given these invariant regions, finding appropriate descriptor(s) to describe these
regions, and which is at the same time suitable for the application, is the remaining
task [101].
Interest point detectors use different image measurements and can be invariant to many
different transformations. Most of the traditional detectors follow the same following
procedure. First, a saliency map is computed, which is a local function of the image.
The saliency is a measure of local information content in the image or the local image
contrast. Patches with high contrast (corners or highly textured areas) are expected to
be detected and localized reliably between different images of the scene. Therefore,
the local maxima of the saliency map are selected as features. This process is repeated
after sub-sampling the image iteratively, to provide a multi-scale detector. Only local
maxima that exceeds a certain threshold is finally selected to provide some invariance
to noise [106].
Example of detectors are Forstner detector [48], Harris detector [56], Hessian detec-
tor [21], Difference-of-Gaussian (DoG) detector [33], Kadir-Brady detector [74] and
MSER detector [94]. Some detectors provide scale invariance such as Harris-Laplacian
detector [100] and Hessian-Laplacian [102]. Moreover, some detectors provide affine
invariant patches (regions) such as Harris and Hessian affine detectors [99, 102].
The performance of many detectors has been evaluated in many different contexts such
as [102, 101] in the context of viewpoint invariant matching, [98] in object class recog-
nition and [106] in 3D object recognition.

Local Descriptors After the interest points are detected in the given images, inter-
est regions (of scale dependent size) are cropped out. These regions are, afterwards,
characterized or described somehow using a local description method. There is a large
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number of possible descriptors which emphasize different properties of the image like
pixel intensities, texture, color, etc. Some of the local image description techniques are
distribution based, in which histograms are used to represent different characteristics
of appearance or shape. Example of these techniques are spin images [71], the popular
Scale Invariant Feature Transformation (SIFT) [92] and its extension GLOH (Gradient
Location Orientation Histogram) [101]. Also, geometric histograms [17] and shape
context descriptors [23] belong to this type of descriptors.
Some techniques are spatial-frequency based, in which the frequency content of the
images are described. Example of these descriptors are Fourier transform and Gabor
filters [150].
Some descriptors depend on image derivatives computed up to a given order to ap-
proximate a point neighborhood (differential descriptors). Example of these differen-
tial descriptors are the local jets [75] and steerable filters [49]. Other techniques are
developed such as moment invariants [149]
All previously mentioned descriptors are computed form intensity values of the images,
while the use of local color-based descriptors has received little attention by most of
the approaches. However, some local color descriptors are developed such as in [103]
where local descriptors based on color moments are introduced. Furthermore, in [95]
invariant signature based on the modes in the local color histogram is proposed.
Authors in [148] presented a set of local color descriptors with different criteria such
as photometric robustness, geometric robustness, photometric stability and generality.
Moreover, new different color descriptors such as rgb-SIFT and RGB-SIFT are recently
proposed and evaluated in [147].

Representation of Range Images

Local Keypoints Local representation using local keypoints is an emerging tech-
nique for recognition from range images. How the local keypoints are selected is
different from approach to another. Some approaches such as [53, 70] used random
selection of points to compute the surface descriptors. Chen and Bhanu [30] selected
keypoints by considering points with high curvature. Another technique is developed
by Li and Guskov [87, 88], where they detected salient points by building a scale space
representation similar to [91] of the 3D surface.
Another different technique for detecting keypoints in range images is presented by
Roth [127]. He used feature points extracted from intensity images corresponding to
the range data. The 3D points associated with these feature points extracted from the
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Salient 
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Harris-Affine

Figure 2.1: Example of local representations of 2D images: SIFT descriptor [91]
Shape context descriptor [23], Superpixels [125], Maximally Stable Extremal Regions
(MSER) detector [94], Harris-Affine detector [99] and Salient regions [73]

intensity images are then used to find correspondence between two range images.

Local Descriptors There are different local descriptors for range images in the lit-
erature. The most famous one is the Spin Images presented in [70]. Spin Images are
extracted at each oriented point (a point along with its normal) of the object’s surface
and are a 2D histogram of the cylindrical coordinates of its surrounding points.
Another descriptor is the Point Signatures [32], which is a one dimensional signature
that describes the surface surrounding a point. Point Signatures is invariant to rotations
and translations and can, therefore, be used to establish correspondence between two
different views of an object [97].
Another descriptor is Surface Signatures presented in [159], which are images of the



18 CHAPTER 2. THEORETICAL PRELIMINARIES AND IMPORTANT ISSUES

surface curvature information seen from certain point. Other local shape descriptors
include PCA-based descriptors [141], [96], Regional Point Descriptors [53], Points
Fingerprints [139] and local feature histograms [63].

2.2 Learning Objects Representations

Learning is the next important step, after representation, in any GOR system. Visual
object categories are learned by the model from the representations of a number of
examples (training images or training sequences). Learning can be performed in a
supervised or an unsupervised manner. In the supervised learning, the labels of the
training images as well as bounding boxes denoting the object locations in the images
are given to the learning model. In the unsupervised learning, the learning model
does not have any information about the different object classes but the given training
images. No image labels or any other information concerning the object locations
within the images is given. For the supervised learning, a further division into different
levels is given by Opelt [111] as follows:

• Weakly supervised: is a level between supervised and unsupervised learning.
Only labels of the training images are given to the learning model. No further
information about objects, such as their locations within the images, is given.

• Highly supervised: is one level after the supervised learning. Beside the labels
of training images and the bounding boxes of object in them, more information is
given to the learning model by segmenting the objects from the training images.

• Completely supervised: is one level after the highly supervised learning and
include the information given to the model in the highly supervised learning,
in addition to another information by the user such as additional effort during
learning.

Many different learning techniques are used in the literature for GOR. For example,
Lowe used a nearest-neighbor algorithm [91] while Agarwal and Roth [13] used Win-
now. The Expectation-Maximization (EM) algorithm is been used successfully by
Dorko and Schmid [37] for learning a generative probabilistic objects model.
Support Vector Machines (SVM) has received the attention of many researchers and is
been used successfully in many models such as [52, 29, 105, 108]. Boosting is used
successfully in many recognition models such as [151, 113, 111, 162, 64, 15].
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Following, we give a brief explanation to Boosting and how it works 2. Afterwards, we
give an overview of the boosting algorithms used throughout this thesis.

2.2.1 Learning with Boosting

Boosting is the underlaying learning technique in the recognition approaches men-
tioned in this thesis. Boosting algorithms are currently among the most popular and
most successful algorithms for pattern recognition applications such as feature selec-
tion [140], face detection [151] and generic object recognition [114, 58]. The under-
laying idea of boosting algorithms is to construct a ”strong” classifier using only a
training set and a ”weak learning” algorithm. A ”weak hypothesis” produced by the
weak learning algorithm has a probability of misclassification that is slightly below
50% (performs better than random guess). A ”strong hypothesis” has a much smaller
probability or error on test data. Hence, boosting algorithms boost the weak learning
algorithm to achieve a strong hypothesis.
In order to exploit the advantage of the weak learning algorithm over random guessing,
the data is re-weighted before training the weak learning algorithm in each iteration.
The algorithm increases the weights of the examples that are wrongly classified by the
weak hypothesis. The end result is a final strong hypothesis given by a thresholded
linear combination of the weak hypotheses [128].
There are many boosting algorithm where the main variation among many of them is
the method of weighting training data points and hypotheses. AdaBoost is very popu-
lar and perhaps the most historically significant, as it was the first algorithm that could
adapt to the weak learners. However, there are many more recent algorithms such as
LPBoost [35], TotalBoost [155], SoftBoost [154], GentleBoost [51], joint Boosting
[144] and many others. Following, we will provide brief discussions to the boosting
algorithms used by our approaches. Discussions to different boosting algorithms could
be found in the given references. However, before presenting the boosting algorithms,
preliminaries of boosting are given.

Preliminaries of Boosting

In the boosting settings, a set of N labeled training examples (Ii, li) for i = 1 . . . N are
given, where the instances Ii are in some domain χ and the labels li ∈ ±1. Boosting

2Boosting the underlaying learning algorithm in all the recognition models presented in the thesis.
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algorithms maintain a distribution w on the examples N such that the hard to classify
examples receive more weight. The boosting algorithm is run for a certain number of
iterations T . In each iteration, the algorithm gives the current distribution to a weak
learning algorithm (weak learner), which returns a new weak hypothesis h : χ →
[−1, 1]N with a certain guarantee of performance.
One measure of the performance of a weak hypothesis h with respect to distribution w
is its edge, γh =

∑N
i=1 wilih (Ii). When the range of h is ±1 instead of the range of

[−1, 1], the edge is just an affine transformation of the weighted error εh of hypothesis
h: i.e. εh (w) = 1

2 −
1
2γh. A hypothesis that predicts perfectly has an edge γ = 1

while a hypothesis that always predicts incorrectly has an edge γ = −1. A random
hypothesis has an edge γ = 0. The higher the edge, the more useful is the hypothesis
for classifying the training examples. The edge of a set of hypotheses is defined as the
maximum edge of the set.
After a hypothesis is received, the algorithm must update its distribution w on the
examples. Boosting algorithms (for separable case) commonly update its distribution
w by placing an edge constraint on the most recent hypothesis. Such algorithms are
called corrective [124, 154]. In totally corrective algorithms, the distribution is updated
to have a small edge with respect to all of the previous hypotheses [155, 154]. The final
output of the boosting algorithm is always a convex combination of weak hypotheses
f (Ii) =

∑T
k=1 αkhk (Ii), where hk is the hypothesis added at iteration k and αk

is its coefficient [154]. The hard margin of a labeled examples (Ii, li) is defined as
ρi = lif (Ii). The margin of a set of examples is taken to be the minimum margin of
the set.
It is convenient to define a N-dimensional vector um that combines the weak hypothesis
hm with the label li of the N examples: um

i = lihm(Ii). With this notation, the edge
of the k-th weak hypothesis becomes w.um and the margin of the n-th example with
respect to a convex combination of the first k − 1 hypothesis is

∑k−1
m=1 um

n αk [154].
Now, the Boosting algorithms used throughout this thesis are briefly presented with
using the same notations used for describing the boosting preliminaries.

AdaBoost Algorithm

AdaBoost (Adaptive Boosting) algorithm introduced by Freund and Schapire [50] is
the most well known boosting algorithm. It is considered as the first step toward more
practical boosting algorithms . AdaBoost is adaptive, in that the linear coefficient of
the weak hypothesis depends on the weighted error of the weak hypothesis at the time
when the weak hypothesis is added to the linear combination. In iteration k, the weight
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wi is decreased if the prediction for Ii was correct (hk(Ii) = li), and increased if the
prediction was incorrect. Algorithm 1 gives an overview of the AdaBoost algorithm.
The AdaBoost algorithm presented by Freund and Schapire [50] produces a weak hy-
pothesis h in the form: h : χ → {−1, 1} e.g. a strict classifier that maps the input to
{−1, 1} without giving any prediction confidence. Therefore, the AdaBoost algorithm
of Freund and Schapire [50] is also called Discrete AdaBoost.
Schapire and Singer [133] extended the framework of the AdaBoost algorithm pre-
sented in [50] in which each weak hypothesis generates not only predicted classifica-
tions, but also self-rated confidence scores, which estimate the reliability of each of its
predictions. Schapire and Singer introduced in [133] the AdaBoost with confidence-
rated prediction algorithm (i.e. Real Adaboost). It differs from the AdaBoost [50], as
mentioned, in that the weak learner of the first computes a weak hypothesis h : χ → R.
The sign of h is interpreted as the predicted label (-1 or +1) to be assigned to the in-
stance Ii and the magnitude | h(Ii) | as the confidence of this prediction. Moreover,
the method of computing the coefficient of the weak hypothesis α is different [133].
Algorithm 2 displays the AdaBoost with confidence-rated prediction algorithm. Fur-
ther details of the algorithm could be found in [133].
The AdaBoost algorithm has two interesting properties [124]. First, in its (discrete)
version [50], the training error can be reduced exponentially as the number of weak
hypotheses increases. If the weighted training error of the k-th weak hypothesis is
εk = 1

2 −
1
2γk, then the upper bound on the training error of the signed linear com-

bination is reduced by factor 1 − 1
2γ2

k . Second, it has been experimentally observed
that AdaBoost continues to learn even after the training error of the signed linear com-
bination is zero [132]. This is because the margins of the training examples continue
to increase even after the training error is zero. However, the algorithm suffers from
some limitations. Following, a discussion of these limitations as well as a presentation
of boosting algorithms which try to overcome these limitations are given.

SoftBoost Algorithm

AdaBoost algorithm has the advantage of generating combined hypotheses with large
margins and works well on data with low noise [132]. However, studies showed that
the performance of AdaBoost is affected with the the presence of high noisy data [154].
Some studies showed that, in such case, a large margin on all training data can not be
achieved without affecting the generalization performance, as AdaBoost concentrates
too much on outliers and hard to classify examples [132, 154].
Due to this reason, many variants of AdaBoost appeared to cope with this problem and
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Input: S = 〈(I1, l1) , ..., (IN , lN )〉; Ii ∈ χ, li ∈ {−1,+1}.
Initialize: w1(i) to the uniform distribution.
for k = 1, ...T : do

(a) Train weak learner using distribution wk.
(b) Get weak hypothesis hk : χ → {−1,+1}.
(c) Calculate the classification error as:

εk =
∑N

i=1(hk(Ii) 6= li)wi∑N
i=1 wi

(d) Choose α = εk(1− εk).
(e) Update:

wk+1(i) =
wt(i)exp(−αklihk(Ii))

Zk

where Zk is a normalization factor (chosen so that wk+1 will be a
distribution).

end
Output: Final hypothesis: H(I) = sign(

∑T
k=1 αkhk(I)).

Algorithm 1: AdaBoost algorithm [50].

to trade off the number of margin errors and the size of the margin. This is achieved by
restricting the weighting maintained by the algorithm to not concentrate too much on
the most difficult (hard to classify) examples [154]. Examples of these algorithms are
AdaBoost with soft margin [123] and LPBoost [35].
On the other hand, and as previously mentioned, the hypotheses combination produced
by AdaBoost has a large margin on the data. This margin is not necessarily the max-
imum hard margin. Therefore, many new versions of AdaBoost, which try to provide
a maximum hard margin, have been developed such as AdaBoost∗ [124], TotalBoost
[155], and many other algorithms [154]. However, such algorithms are not suitable
for real-world applications with noisy data as over-fitting is more problematic for them
than the original AdaBoost algorithm [154].
SoftBoost is a newly presented boosting algorithm [154], which combines the previ-
ously mentioned two lines of research in a single algorithm, that it implements the soft
margin idea in a practical boosting algorithm.
SoftBoost is a totally corrective algorithm which optimizes the soft margin and tries to
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Input: S = 〈(I1, l1) , ..., (IN , lN )〉; Ii ∈ χ, li ∈ {−1,+1}.
Initialize: w1(i) to the uniform distribution.
for k = 1, ...T : do

(a) Train weak learner using distribution wk.
(b) Get weak hypothesis hk : χ → R.
(c) Choose α ∈ R.
(d) Update:

wk+1(i) =
wt(i)exp(−αklihk(Ii))

Zk
where Zk is a normalization factor (chosen so that wk+1 will be a
distribution).

end
Output: Final hypothesis: H(I) = sign(

∑T
k=1 αkhk(I)).

Algorithm 2: AdaBoost with confidence-rated predictions algorithm
[133].

produce a linear combination of hypotheses with the maximum one [154]. The term
”soft” here means that the algorithm does not concentrate too much on outliers and
hard to classify examples (e.g. as in AdaBoost). It allows them to lie below the margin
(i.e. to have wrong predictions) but penalizes them linearly via slack variables. Figure
2.2 gives an explanation to the difference between hard and soft margins.
Therefore, it seems that SoftBoost avoids the problem of over-fitting exist in AdaBoost
when using training data with high degree of noise. A brief description of the SoftBoost
algorithm is given below (see also Algorithm 3). Further details about the algorithm
could be found in [154].
SoftBoost takes as input, a sequence of examples S = 〈(I1, l1) , ..., (IN , lN )〉 in ad-
dition to an accuracy parameter δ and a capping parameter ν ( see algorithm 3). This
capping parameter specifies how many examples could be mistrusted or, in other words,
how many examples are allowed to lie below the margin. The algorithm has a weak
learner which provides a hypothesis with an edge with a known guarantee g. The
initial distribution w0 of the algorithm is uniform. In each iteration k, the algo-
rithm prompts the weak learner for a new weak hypothesis, adds it into the con-
straints set, and updates its distribution wk−1 to wk by minimizing the relative entropy

∆
(
w,w0

)
:=

∑
n

(
wn ln

wn

w0
n

)
subject to the constraints:
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wk+1 = argmin
w

∆
(
w, w0

)
(2.1)

s.t. w · um ≤ g − δ, for 1 ≤ m ≤ k,

∑
n

wn = 1, w ≤ 1
ν
1

This optimization function could be easily solved with vanilla sequential quadratic pro-
gramming methods (see [155] for details). The relative entropy in the objective assures
that the probabilities of the examples are always proportional to their exponentiated
negative soft margins (not shown). In other words, more weight is put on the examples
with low soft margin, which are the examples that are hard to classify [154].

AdaBoost and SoftBoost algorithms are used for binary classification of object
classes. For the multi-class learning and classification task, several boosting algorithms
exist such as AdaBoost.M1, AdaBoost.M2 [50] and JointBoosting [144] algorithms.
Following, we dicuss briefly the Joint Boosting algorithm, as it is used in our multi-
class recognition model presented in chapter 7.

Joint Boosting Algorithm

Joint Boosting algorithm is a multi-class boosting algorithm with feature sharing de-
veloped by Torralba et al. [144]. The idea of the Joint boosting algorithm is that at
each boosting iteration, the algorithm examines various subsets of classes Sn ⊆ C (a
total of 2C−1 possible subsets) that will share features, where C is the total number of
classes to be learned. The algorithm considers fitting a weak classifier (hypothesis) to
distinguish the subset from the background (set of other classes). The subset that max-
imally reduces the error on the weighted training set for all classes is chosen by the
algorithm. The best weak learner h(I, c) is then added to the strong learners H(I, c)
for all the classes c ∈ Sn and their weight distributions are updated. Joint Boosting
algorithm is based on the GentleBoost algorithm [51] which is modified to suit the
multi-classification case as well as the feature sharing property. Algorithm 4 gives a
summarization of the Joint Boosting algorithm. Further details of the algorithm could
be found in [144].



2.2. LEARNING OBJECTS REPRESENTATIONS 25

Input: S = 〈(I1, l1) , ..., (IN , lN )〉, desired accuracy δ, and capping
parameter ν ∈ [1, N ].

Initialize: w0
n to the uniform distribution.

for k = 1, ... do
(a) Send wk−1 and {u1, ...,uk−1} to the weak learner and obtain
hypothesis hk which has edge at least g w.r.t. wk−1.
Set uk

n = hk (In) ln.
(b) Update

wk = argmin
w

∆
(
w,w0

)
s.t. w · um ≤ g − δ, for 1 ≤ m ≤ k,

∑
n

wn = 1, w ≤ 1
ν

1

(c) If above infeasible or wk contains a zero then T = k − 1 and
break.

end
Output: fW (x) =

∑T
m=1 Wmhm (I),where the coefficients Wm

maximize the soft margin over the hypotheses set
{
h1, ..., hk

}
using the LP problem (1) in [154].

Algorithm 3: SoftBoost with accuracy parameter δ and capping parame-
ter ν [154].
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(a) (b)

(c) (d)

Figure 2.2: Hard vs. Soft margins. (a) Finding a maximum hard margin ”hyperplane”
on reliable data. (b) On data with outliers. (c) On data with mislabeled example.
The solid line shows the resulting decision boundary, whereas the dashed line marks
the margin area. In (b) and (c), the original decision boundary is plotted with dots.
The hard margin implies noise sensitivity, as only one example can spoil the whole
estimation of the decision boundary [123]. (d) Soft margin on data with outliers. Hard
to classify examples, e.g. outliers and mislabeled examples, are allowed to lie below
the margin (have wrong prediction) but are penalized linearly via slack variables.
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1) Initialize the weights wc
i = 1 and set H(vi, c) = 0, i = 1 . . . N ,

c = 1 . . . C.
2) Repeat for k = 1, 2, . . . T

a) Repeat for n = 1, 2, . . . 2C − 1

i) Fit shared stump:

hn
k(vi, c) =


as if vf

i > θ and c ∈ S (n)

bs if vf
i < θ and c ∈ S (n)

ks if c /∈ S (n)

ii) Evaluate the error

Jwse(n) =
C∑

c=1

N∑
i=1

wc
i (z

c
i − hn

k(vi, c))2

.

b) Find best subset: n∗ = argminnJwse(n).

c) Update the class estimates: H(vi, c) := H(vi, c) + hn∗
k (vi, c).

d) Update the weights: wc
i := wc

i e
−zc

i hn∗
k (vi,c).

Algorithm 4: Joint boosting algorithm [144]. vf
i is f ’th feature of the

i’th training example, zc
i ∈ {−1,+1} are labels of class c and wc

i are the
unnormalized example weights. N is the number of examples and T is
the number of boosting iterations.

2.3 Classification

After the object representations are learned by the learning algorithm, classification
or recognition of new instances of the objects or object classes is the next step to be
accomplished. The classification (recognition) can be formulated as follows [118]:
”Given a number of learned categories, a new images should be processed and pre-
sented and a decision should be derived, whether a known category appears in the data
or not.”
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Parametric techniques try to find a model (e.g. probabilistic model) which is estimated
from the training images. Some nonparametric techniques work directly on the feature
space. These methods are required when it is needed to deal with distributions in fea-
tures space that are hard to be modeled explicitly. They are also needed when dealing
with highly overlapping parametric models is required [118]. For more readings, the
following reference could be helpful [38].

2.4 GOR Datasets

For a recognition model to be tested, a suitable dataset is needed. In the last years,
many different datasets have appeared for evaluating and comparing different GOR
approaches and models. For a GOR dataset, several aspects should be considered.
These aspects can be summarized as follows:

• Number of images per category: they should provide many images per each
category.

• Intra-class variability: they should cover the high intra-class variabilities exist
among objects within the same visual class.

• Inter-class variabilities: also, they should have examples of low inter-class vari-
abilities among different classes (examples of different object classes which are
visually similar).

• Ground truth data: they should provide the images labels. Moreover, a contour
or a bounding box can also be provided for objects localization.

• Number of categories: they should provide images of many different object cat-
egories.

However, available datasets vary with respect to the previously mentioned different
aspects, in addition to the following:

• Viewpoint change: some datasets provide different arbitrary viewpoints of the
objects of the different classes while other datasets provide viewpoints at very
controlled angels. Some datasets provide only one certain aspect of an object
class.
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• Background clutter: the datasets vary from providing no background clutter at
all and notably seen objects to real world scenes where the object covers only a
small region in the image.

• Scale variation: the scale of objects are varied in the available datasets from
none, small or high change in scale.

The choice of a suitable dataset depends on the task. However, a good GOR model
should deliver good performance on all datasets. Actually, this is not achieved yet and
researchers are trying to make their approaches deal with complex cases in a progres-
sive way.
Now, we will mention some of the famous datasets used for object recognition ei-
ther using 2D (2D image dataset) or range images (range image datasets). For the 2D
datasets, we mention those which are used as a benchmark by almost all state-of-the-art
approaches for building and evaluating their GOR models. For the 3D datasets (range
datasets), we mention those used by the state-of-the-art approaches for specific object
recognition 3.

2.4.1 2D Images Datasets

ETH-80

A dataset of 8 different categories, each category contains images of 10 different object
instances [1] . The images of the dataset are acquired in controlled settings where the
objects are placed on a turntable in front of an uncluttered blue background and images
are taken from 42 equally spaced viewpoints around a a half view-sphere.
Figure 2.3 shows example images of the dataset. We do not report any results using
this dataset as it is too simple for our purpose. However, evaluation results using the
dataset are given in [82, 84].

Caltech

A popular and widely used dataset acquired and published by Caltech [2] and first used
by Fergus et al. [43]. The dataset contains 5 different object classes: cars-rear, motor-
bikes, airplanes, faces and leaves. Additionally, a background class is also presented.
The different objects are shown in almost the same position in the images, with little

3All available range image datasets are useful for the specific 3D object recognition task only and
there is no available range dataset suitable for GOR.
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Figure 2.3: Example images of the different object classes of ETH-80 dataset.

or no background and from very similar viewpoints. Figure 2.4 displays example im-
ages of the mostly used object classes of the dataset (Caltech 4). Because the dataset
is been used by many different approaches, many results are exist in the literature for
comparison. Therefore, we evaluate our model for 2D GOR using this dataset (Caltech
4).

UIUC

The (University of Illinois Urbana Campaign) UIUC dataset [3] has only one object
class, side views of cars (car-side) in addition to background images. The dataset is
acquired by Agarwal et al. [13] and example images are shown in figure 2.5. The com-
plexity of the dataset is average and suffers from the problems of the Caltech dataset
(little background clutter and pose variations) [119]. Therefore, we do not report any
recognition results using this dataset.

Graz



2.4. GOR DATASETS 31

Figure 2.4: Example images of the different object classes of Caltech 4 dataset.

Figure 2.5: Example images of the different object classes of UIUC dataset.
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Figure 2.6: Example images of the different object classes of Graz01 dataset.

Graz01 Contains 2 different object classes, namely bikes and persons [4], in addition
to a background class (no bikes-no persons). The images are highly complex with high
variability in scale, viewpoint and illumination (see Figure 2.6). Evaluations using the
dataset are given in [112, 114]

Graz02 Contains 3 different object classes: cars, bikes and persons [5]. Additionally,
a background class is constructed. Example images are shown in figure 2.7. The
images of the dataset is more complex than those of Graz01 dataset. Moreover, the
appearance of the background of the images are balanced, so that similar context is
shared by the different object classes, including the background class. Evaluations of
different recognition model is done using this dataset such as in [114, 104]. Also, we
evaluate our model for 2D GOR using this dataset.

2.4.2 A Dataset for 3D Object Categories

The dataset was presented by Savarese and Fei-Fei in [130]. It consists of 8 object
categories (bike, shoe, car, iron, mouse, cell phone, stapler, toaster) [6]. For each
object category, the dataset contains images of 10 individual object instances under 8
viewing angles, 3 heights and 3 scales for a total number of 7000 images. Images are
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Figure 2.7: Example images of the different object classes of Graz02 dataset.

roughly 400× 300 pixels in bmp format. Example images are displayed in Figure 2.8.
The dataset is been constructed to be used for generic 3D object recognition.

2.4.3 Range Images Datasets

OSU/SAMPL Range Images Dataset

The dataset [7] contains images which are acquired by several real range sensors from
different sources, in addition to synthetic data (see figure 2.9). The images of the
dataset are available in one or both of the formates: grayscale GIF and a compressed
neutral format (’txt’ format) with fixed point measurements in X, Y and Z. The dataset
is useful for building and evaluating specific 3D object recognition. therefore, do not
report any evaluation results using the dataset.

Stuttgart Range Images Dataset

A popular range image dataset [8]. It is a collection of 9720 synthetic range images of
30 free form objects as shown in figure 2.10. The range images are taken from high
resolution polygonal models. The dataset is suitable for specific 3D object recognition
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Figure 2.8: Example images of the different object classes of the 3D Object Categories
dataset of Savarese and Fei-Fei in [130].

from range images and has been used for evaluating different recognition models such
as [63, 88].

2.5 Evaluation of Recognition

Evaluating the performance of the recognition model is an important issue in recog-
nition. Given a classifier and a set if images, there are four possible classification
outcomes, which are mentioned and defined as follows:

• True Positive (TP): an image with positive label is been classified as positive.

• True Negative (TN): an image with negative label is been classified as negative.

• False Positive (FB): an image with negative label is been classified as positive.
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Figure 2.9: Example images of OSU/SAMPL range dataset.

• False Negative (FB): an image with positive label is been classified as negative.

The performance of a classifier can then be measured with different methods. The
common method is the recognition rate (i.e. accuracy), which is simply the percentage
of the correctly classified images. With the help of the previously mentioned outcomes,
it can also be defined as follows:

Recognition rate =
#TP + #TN
#P + #N

(2.2)

where # denotes number of images. Moreover, the classification performance can
be also measured using the Receiver-Operating-Characteristics curve (ROC) [40] with:

True Positive Rate (TPR) =
#TP
#P

(2.3)
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Figure 2.10: Example images of Stuttgart range dataset.

and

False Positive Rate (TPR) =
#FP
#N

(2.4)

Figure 2.11(a) gives an example of ROC curves. Two values are extracted from
the curve and are important for the performance measure. The first value is the ROC-
equal-error rate and is defined as the point on the ROC curve where the true positive
rate = 1-false positive rate [118]. It gives a nice trade-off between the true positive and
false positive. The second value is the area under the ROC curve (ROC-AuC) which is
useful when comparing the performance of two classifiers is required. More detailed
information concerning the ROC curves could be found in [40].
While the ROC curves is a good measure for the discrimination ability in recognition



2.6. CONCLUSIONS 37

tasks, the Recall-Precision Curve (RPC) is more suitable for measuring the localiza-
tion, especially for object detection models that use local patches [118] (see figure
2.11(b)). The task is then not only classifying the images but to decide, whether a
certain local patch belongs to the object or not. Recall and precision can be defined as
follows:

recall =
#TP
#P

= TPR (2.5)

and

precision =
#TP

#TP + #FP
(2.6)

The RPC curves plots recall against (1-precision), which is defined as follows:

1-precision =
#FP

#TP + #FP
(2.7)

Another important measure for the classification performance in the multi-class
classification case is the confusion matrix. The confusion matrix represents in each
of its row how many examples of one class were classified to belong to other classes.
Recognition is perfect when there are only entries in the main diagonal of the matrix.
Numbers in entries other than the diagonal indicate that a certain category tends to be
confused with another.

2.6 Conclusions

This chapter has presented the main issues that should be put into consideration when
researchers build a model or system for GOR. These issues are the representation of ob-
ject categories, learning these representation and classification of new instances. How-
ever, these issues are considered the building blocks for any recognition model in gen-
eral. The choice of each issue is crucial for the finale performance of the recognition
model. Moreover, datasets are important for providing data for building and evaluating
any recognition model. This chapter has presented an overview of the current available
datasets used for GOR. The choice of a suitable dataset is very significant for building
the GOR model. The use of simple datasets in evaluating the recognition model could
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Figure 2.11: ROC and RPC curves. (a) Receiver-Operating-Characteristics curve
(ROC) with the performance measures, the ROC-equal-error rate and the ROC-AuC.
(b) Recall-Precision Curve (RPC) and the corresponding RPC-equal-error rate.
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yield good performance, but will not reflect the actual performance of the GOR model
or its suitability for solving the problem. The choice of the dataset and its effect on the
recognition will be further discussed in chapters 4 and 5. Finally, evaluating the recog-
nition model using adequate measurements is an essential step. Different important
performance measurements for GOR have been presented in this chapter.
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Chapter 3

Related Work

There has been fairly a large amount of work in the domain of object recognition. In
the 1960’s, began the first trails of object recognition. Consequently, a large and ex-
tensive body of literature on the problem has appeared . Over the years since the first
trails, progress in handling the problem has been achieved, which can be judged by the
amount of realistic data and conditions used in recognition experiments.
Range data was first used in recognition in 1970’s since it presents direct information
about the 3D environment. Afterwards, in 1980’s, intensity images were used directly.
However, the used images presented the objects with uniform background and without
occlusion in order to simplify the segmentation and recognition processes. The use of
natural images was then addressed by different methods which recognize only a single
object instance from different viewpoints.
In 1980’s, the first work on generic object recognition (GOR) appeared, dealing with
a limited set of classes such as faces and digits, usually in constrained environment .
Afterwards, from the late 1990’s, the work in GOR started to undertake a wider variety
of classes in more natural image environment.
This chapter presents an overview of the different approaches and models that are de-
veloped to tackle the object recognition problem in general and specifically the prob-
lem GOR. An overview of the approaches developed to deal with the specific object
recognition is presented in section 3.1. Then, section 3.2 sheds light on the models and
state-of-the-art approaches developed to tackle the difficult problem of GOR 1.

1It should be noted that some of the GOR approaches were not yet published when we started the work
in our approaches. Some are published at the same time or afterwards.

41
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3.1 Specific Object Recognition

Large amount of literature can be found on specific object recognition. Specific object
recognition sets up the general basis for generic object recognition. For this reason, we
start our literature review by providing an overview of the main models and approaches
developed for the task of specific object recognition. In our review, we divide the
approaches into approaches which are based on shape and geometric information of
objects and those which make use of objects appearance information.

3.1.1 Geometrical and Model-based Approaches

The early object recognition systems were model-based. One of the first general pur-
pose vision systems that performed object recognition was SRI vision module pre-
sented by Agin [14]. SRI vision system used binary images and it was based on con-
nectivity analysis, which is a procedure that breaks a binary image into its connected
components. The connectivity program extracts information about the blob that will
be used later on, such as the maximum of its extent, area, perimeter and coordinates of
the points on the perimeter, while extracting connected components. The SRI vision
system recognized objects with two ways: the nearest neighbor technique and the bi-
nary decision tree procedure.

Another early object recognition system was ACRONYM by Brooks [27]. It is the first
system designed to operate on noisy and incomplete image representations as it meant
to be a general vision system. Its limitations were weak segmentation and limited inter-
pretation [16]. Image prediction and matching were not sufficiently general for scenes
with many objects.

The Generalized Hough Transform [18] is analyzed as a method for recognizing ob-
jects from noisy data in complex cluttered environment in the work of Grimson and
Huttenlocher [39]. It was shown that the Hough transform should be adequate for the
recognition of objects with limited occlusion and moderate sensor uncertainty, using
isolated points such as vertices as the matching features. This method scales poorly
when applied to complex, cluttered schemes, or when using extended features, such as
edges, which are subject to partial occlusion [18]. In these cases however, the general-
ized Hough transform may still be useful for identifying matches that will be verified
further.

Huttenlocher and Ullman [68] researched the Alignment method and developed the
object recognition system ORA. They showed that the correspondence of three non-
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collinear points is sufficient to determine the position, 3D orientation, and scale of a
rigid solid objects with respect to a 2D image.

Moreover, Basri developed in [20] a method that combines alignment with indexing
and performs recognition by prototypes. The author used categorization as an indexing
tool. The objects are divided into classes, where a class contains objects that share a
fair number of similar features. Categorization is done by aligning the image to indi-
vidual models of its class.

Another approach for alignment was developed by Ullman and Basri [146] for recogni-
tion by linear combination of models. The modeling of objects is based on the fact that
for many continuous transformations of interest in recognition, such as rotation, trans-
lation, and scaling, all the possible views of the transforming objects can be expressed
as the linear combination of other views of the same object. They proved that in the
case of an object with sharp edges, two views are sufficient to determine the objects
structure within an affine transformation and three were required to recover the full 3D
structure of a rigidly moving object. For objects with smooth boundaries, three images
were required to represent rotations around a fixed axis and five images were required
for general rotations in 3D space.

Another method developed by Belongie et al. [22]. The method measures similarity
between shapes and exploits it for object recognition. The approach has three stages:
(1) solve the correspondence problem between two shapes using the Shape context de-
scriptor, (2) use the correspondences to estimate an align transform, and (3) compute
the distance between the two shapes as a sum of matching errors between correspond-
ing points, together with a term measuring the magnitude of the aligning transforma-
tion. Figure 3.1) gives an overview of the computation Shape context features. Recog-
nition is then treated in a nearest-neighbor classifier framework. The advantage of this
method is that it can be used for a variety of shapes, such as silhouettes, trademarks,
handwritten digits, and 3D objects.

Lowe developed in [90] an object recognition system, namely SCERPO, based on per-
ceptual organization [89]. The system recognizes known 3D objects in single gray-
scale images, where objects are modeled as polyhedral and grouping is made on the ba-
sis of proximity, parallelism and co-linearity of the edges. Figure 3.2 gives an overview
of the main processes of the vision system.

The system introduced by Havaldar and Medioni [57] dealt with noise and occlusion,
as well as be able to do generic recognition using a perceptual grouping hierarchy.
Groups were based on the proximity, parallelism, parallel and skewed symmetry and
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Figure 3.1: Shape context computation and matching [22]. (a,b) Sampled edge points
of two shapes. (c) Diagram of log-polar histogram bins used in computing the shape
context. (d-f) Example shape context for reference samples. (g) Correspondence found
using bipartite matching.

closure. Similar groups are grouped further into sets. The representation and matching
of these sets is done using graphs. The system is able to handle generic recognition
and occlusion.

3.1.2 Appearance-based Approaches

One approach to appearance-based object recognition was based on Principle Compo-
nent Analysis (PCA). One of the first systems from this category was developed by
Turk and Pentland [145] for face recognition. Mathematically, they were looking for
the principle components of the distribution of faces, or the eigenvectors of the covari-
ance matrix of the set of face images, treating an image as a point (or vector) in a very
high dimensional space. Each eigenvector accounts for the variation among the face
images.

The eigenface approach was generalized by Murase and Nayer [107] to handle com-
plete parameterized models of objects. They represent each as a parametric manifold
in two eigenspaces. The universal eigenspace [107] is computed using all objects of
interest to the recognition system and is used for discriminating between objects. The
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Figure 3.2: The SCERPO vision system

object eigenspace is computed using only images of an object and is used for pose es-
timation. Recognition requires images to be normalized for size and 2D orientation.

The method introduced by Murase and Nayer [107] was further generalized by Hung
et al. [161] into a system that is able to handle occlusion. Objects are decomposed into
parts, where parts are polynomial surfaces approximating closed, non-overlapping im-
age regions that optimally partition the image in a minimum description length sense.
An object is completely characterized for different sensors and light sources, using
the concept of appearance of a apart: two parts segmented from two images of the
same object obtained with similar sensors and illumination configurations, are said to
be appearance of the same parts if they are judged to have similar polynomial approxi-
mations in similar image locations.

An approach to solve the problems related to occlusion, cluttered background and out-



46 CHAPTER 3. RELATED WORK

liers that eigenimage approaches usually have was proposed by Leonardis and Bischof
[85]. The novelty of their approach lies in the way the coefficients of eigenimages are
determined. Instead of computing the coefficients by projecting the data onto the eigen-
images, they apply random sampling and robust estimation to generate hypotheses for
the model coefficient. Computing hypotheses is then done as a selection procedure
based on the Minimum Description Length principle.

Chen and Stockman [31] took an appearance-based approach to indexing. A 3D object
is modeled by a collection of 2 1/2D views called model aspects made from 5 images
taken by rotating the viewpoint up, down, left and right of a central viewpoint. The sil-
houette of the central edge map is extracted by mapping this map against the other four
edge maps and then segmented into codons, which are formed by segmenting curves
at minima of curvature. During recognition, the invariant features are extracted using a
part segmentation algorithm. These features are used for indexing into a hash table to
select hypotheses which are ordered using different voting schemes, such as majority
voting. The final result is obtained through a verification step.

An appearance-based alignment approach was presented by Huttenlocher and Lorigo
[67]. The method decides whether or not two planar point sets are views of the same
3D point set under orthographic projection, and constraints the 3D set up to an affine
transformation of space. The advantage of this method is that it does not require any
prior knowledge of the 3D structure of that object.

A method called probabilistic alignment was developed by Pope and Lowe [121]. In
their method, an image is represented by a graph with nodes denoting features (such
as edges, groups of edges, regions of uniform color etc.) and arcs denoting abstraction
and composition relations among them. An object is modeled by a series of model
views which is represented by a graph similar to an image graph. The model view is
different from an image graph that describes, for each model feature, a distribution of
where that feature may be expected to be found once the model and image have been
satisfactorily aligned by a transformation. A match is a consistent set of pairings be-
tween some model and image features, in addition to a transformation closely aligning
paired features.

Schmid and Mohr [134] developed an appearance-based system that can identify and
locate objects in the case of partial visibility, image transformations and complex
scenes. The approach is based on the combination of differential invariants computed
at key points with a robust voting algorithm and semi-local constraints.
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Abd-Al-Wahab et al. [12] presented a model for 3D object recognition from 2D views
using Hu moment invariants [65] with SVM. Moreover, they combined the Hu invari-
ants with Affine moment invariants [47] in [10]. In [11], they used simple color features
with SVM for recognition and achieved good performance.

3.2 Generic Object Recognition

Now, we move the discussion to the more difficult problem of GOR by reviewing the
body of literature in this problem. According to our interest, we divide the approaches
into four categories:

1. Appearance-based approaches.

2. Shape based approaches.

3. 3D recognition approaches.

4. Multi-class recognition approaches.

3.2.1 Appearance-Based Approaches

Agarwal and Roth [13] first came up with the idea of a ”codebook” as a collection
of class specific patches (see figure 3.3). The images in their approach are repre-
sented by binary feature vectors, which encode which image patches from the code-
book are found in an image. learning is performed using a Sparse-Network-of-Winnow
(SNoW). They used the UIUC dataset (see section 2.4) for evaluating their approach.

The idea of the ”codebook” representation was used by different approaches such as
Csurka et al. [34]. They presented the ”Bag of Keypoints” approach, which is a straight
forward but powerful one. The main steps of their approach are: 1) image patches are
detected within the images and then described using a suitable descriptor 2) patch de-
scriptors are then assigned to a set of predetermined clusters ( a vocabulary) with a
vector quantization algorithm, 3) then, a bag of keypoints is constructed. It counts the
number of patches assigned to each cluster, and 4) a SVM classifier if finally applied,
treating the bag of keypoints as a feature vector and thus determine which category(s)
to assign to the image. They evaluated their approach on the Caltech dataset (see sec-
tion 2.4) and achieved good performance.

Inspired by the ”codebook” idea presented by Agarwal and Roth [13], Leibe et al. [80]
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(a)

(b)

(c)

Figure 3.3: The codebook representation [13]. (a) Detection and extraction of interest
patches from images. (b) The vocabulary of parts extracted from images. (c) Example
of the clusters formed after grouping the parts (patches) together.

presented an approach for object recognition and detection. The scheme first finds
a set of regions for each training image, then clusters them in the manner in [13].
Additionally, for each cluster, the relative location of the object center and the aver-
age foreground/background mask is recorded. In recognition, interest points are again
found and then a probabilistic Hough scheme is used to vote for the position of the
object within the image, based on the match of the regions to each of the clusters. The
maximum in voting space is found and used to project back into the image the regions
which belong to the object. Then the foreground/background masks of each cluster
can be used to provide a segmentation of the object. A large degree of supervision is
required in training since each training example must be manually segmented.

Fritz et al. [52] added a discriminative second stage (SVM) to the model of Leibe et al.
[80], where the performance is improved with the combination of the generative and
discriminative techniques. Figure 3.4 shows the main stages of the model.

Moreover, Jurie and Triggs [72] showed how the clustering of codebook entries can be
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(a) (b) (c) (d)

Figure 3.4: Stages of the model of Fritz et al. [52]. (a) Original images. (b) Generative
part: hypotheses detected by the representative Implicit Shape Model (ISM) [80]. (c)
discriminative part: input to SVM stage. (d) Verified hypotheses.

done with respect to the non-uniform statistics of image patches.

Winn et al. [158] also used codebook representation in their recognition model, where
a dictionary of local patches of textures is generated. They created a compact dictio-
nary of words represented by Gaussian Mixture Models (GMMs).

Recently, Yang et al. [160] proposed a framework which unifies codebook generation
with classifier training. Moreover, they express the partial similarity between features
by constructing a category-specific visual words for each feature rather than quantizing
the features using a single codebook. Figure 3.5 displays a diagram which shows the
difference between their new approach and the standard approaches.

Another object recognition approach was introduced by Dorko and Schmid [37]. In
training their model, regions are extracted from training images and clustered using
EM. For each cluster, a score is computed, measuring its ability to discriminate be-
tween the foreground and the background classes. The top few clusters based on their
discrimination scores are then selected to form a final classifier. In recognition, regions
are extracted from the query image and assigned to the selected cluster or to the re-
maining background ones. A simple threshold on the number assigned to the selected
clusters is used to perform classification. Good results are achieved on the Caltech
datasets. The approach makes use of a hybrid generative/discriminative scheme in
learning: the clustering of commonly occurring features, followed by a discriminative
procedure to find the clusters that are distinctive of the class. The later stage is im-
portant since low level features like corners and edges occur very often but carry little
information about the class label.
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(a)

(b)

Figure 3.5: Differences between standard codebook approaches and the approach of
Yang et al. [160]. (a) Standard ”codebook” approach where the visual codebook gen-
eration and classifier training are separated. (b) Proposed approaches by Yang et al.
[160] where the two phases are interleaved into a single optimization framework and
the representation and classifications are iteratively refined [160]. Image is from [160].

A different approach to GOR is presented by Fergus et al. [43]. They used the con-
stellation model proposed by Leung et al. [86] and the EM type of weber et al. [157].
In their work, Fergus et al. presented a method to learn and recognize object class
models from unlabeled and unsegmented cluttered scenes in a scale invariant manner.
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Objects are modeled as flexible constellations of parts. A probabilistic representation
is used for all aspects of the object: shape, appearance, occlusion and relative scale.
An entropy based feature detector is used to select regions and their scale within the
image. In learning, the parameters of the scale-invariant object model are estimated
using expectation-maximization in a maximum-likelihood setting. In recognition, this
model is used in a Bayesian manner to classify images. Figure 3.6 gives an example to
the recognition model. The flexible nature of the model is demonstrated by excellent
results over a range of datasets including geometrically constrained classes (e.g. faces,
cars) and flexible objects (such as animals).

Fergus et al. extended the constellation model in [44] to include heterogeneous parts
consisting of curve segments and appearance patches.

In [45], Fergus et al. introduced a heterogeneous star model which reduces the learning
complexity of the constellation model

Caputo et al. [29] used SVM with local features via a new class of Mercer kernels in
their recognition model. By this class of kernels, they perform scalar products on fea-
ture vectors which consist of local descriptors around interest points. They evaluated
their model using the ETH80 and Caltech datasets.

Viola and Johns [151] used Boosting as the learning technique for their fast face de-
tector. The images are represented using the integral image representation. Boosting
selects afterwards a small number of visual features from a large computed set in a
”cascaded” manner, which allows the background regions of the images to be quickly
discarded while spending the computation time for the object-like regions (see figure
3.7). The weak hypothesis they used is a thresholded average brightness of collections
up to four rectangular.

In [153], Viola et al. extended their approach by incorporating motion information,
where the approach is trained on manually pre-segmented data.

Opelt et al. [113, 111] used Boosting as the underlaying learning technique for their
object recognition approach. They tried different combinations of point detectors and
descriptors based only on appearance information. They evaluated their model using
the Caltech dataset as well as their Graz01 and Graz02 datasets.

Zahng et al. [162] used also Boosting in their model. They presented an object class
recognition approach which combines local texture features (PCA-SIFT), global fea-
tures (shape context) and spatial features within a single multi-layer AdaBoost model
of object class recognition. A two-layer AdaBoost training network is used. Figure
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(a) (b)
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Figure 3.6: A face model (with 6 parts) developed by [43]. (a) Shows the shape model
where the ellipses represent the variance of the parts and numbers represent the proba-
bility of each part being present. (b) 10 patches closest to the mean of the appearance
density for each part and the background density. (c) Some sample images with a mix
of correct and incorrect classifications.

3.8 displays a semantic overview for the recognition model. The function of the first
layer is to choose the set of the local (PCA-SIFT) and global (shape context) features
that best describe the object class. These two set of features are then boosted into a
strong layer 1 classifier. Layer 2 boosting requires first to locate the good features from
each sample based on the distances between the most discriminative local features se-
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(a)

(b)

Figure 3.7: Recognition model of Viola and Johns [151]. (a) Example feature repre-
sentation. (b) Schematic illustration of the cascade detection model.

lected by layer 1. Pairwise spatial relationships (PSR) are then computed between
these features using the method described in [19]. These PSR features are then given
to the second layer of AdaBoost. An image is classified as containing an object class
if conditions set on both classifiers are satisfied. They used the Caltech and GRAZ01
databases in their experiments.
Another approach was introduced by Thuresons and Carlsson in [143], which is based

on histograms of qualitative shape indexes. These indexes are computed from com-
binations of triplets of locations and gradient directions in the images. The object
categories are then represented by a set of histogram representation of training images.
When a new image is presented, the inner products of the histograms of this image
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Figure 3.8: An overview of the recognition model of Zahng et al. [162].

with all training images histograms are calculated. The smallest of these products and
the thresholds are used to recognize this image. The objects are required to be man-
ually pre-segmented to reduce the representation and recognition complexity. Caltech
dataset is used in their evaluations.

Moosmann et al. [104] presented an approach for GOR using visual attention. They
proposed a classifier that combines saliency maps with an object part classifier. Prior
knowledge stored by the classifier is used to simultaneously build a map online as well
as to provide information about the object class. They evaluated their approach on sev-
eral datasets including Graz02 dataset.

In [105], Moosmann et al. recently introduced a new clustering scheme, called Ex-
tremely Randomized Clustering Forest (ERCF) and used it for vector quantization for
visual information. They combined the ERCF and the visual saliency maps as in [104]
for visual information representation. SVM is used afterwards for classification as
shown in figure 3.9.

Recently, Mutch and Lowe [108] presented a biologically-based model for GOR based
on the model of Serre et al. [135]. In their model, images are reduced to feature vec-
tors, which are classified afterwards using SVM. However, the features are computed
hierarchically in five layers: an initial image layer and four subsequent layers, each is
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Figure 3.9: The classification model of Moosmann et al. [105] using ERCF and
adaptive saliency map.

built from the previous using ”H-Max” model as shown in figure 3.10.
Thomas et al. [142] integrated the multi-view specific object recognition model pro-

posed by Ferrari et al. [46] and the Implicit Shape model of Leibe and Schiele [83]
in a new GOR model. The new model is able to recognize new object instances from
arbitrary viewpoints.

All previous approaches used different degrees of supervision (i.e. at least weak
supervision). The following approaches used almost no supervision in learning.

Sivic et al. [136] introduced an approach using probabilistic Latent Semantic Analysis
(pLSA) from text analysis and applied it to images as collections of visual words.

Hillel et al. [64] presented an approach that learns a generative appearance model in a
discriminative manner. Boosting is used to learn a decision boundary in feature space.

Kushal et al. [78] proposed a novel framework for GOR where object classes are
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(a)

(b)

Figure 3.10: The biologically-based GOR model of Mutch and Lowe [108]. (a) Overall
model where images are reduced to feature vectors classified by SVM. (b) Feature
computation in the model.

represented by assemblies of Partial Surface Models (PSMs). These PSMs are formed
in a dense locally rigid assemblies of image features.



3.2. GENERIC OBJECT RECOGNITION 57

3.2.2 Shape-Based Approaches

Opelt et al. [116] used shape features for GOR and detection. They introduced a
Boundary-Fragment Model (BFM) based on the work of Leibe et al. [80]. With their
BFM, they capture the global geometry of the object category by capturing information
about internal and external object boundaries. Boosting is used to select discriminative
combinations of boundary fragments (weak detectors) to form a strong BFM detector.

Berg et al. [24] presented a model that depends on deformable shape matching using
correspondence finding algorithm. Their algorithm is an integer quadratic program,
where the cost function is a combination of geometric blur descriptors and geometric
distortion between feature points. A nearest neighbot classifier is used for recognition.

Felzenszwalb and Huttenlocher [42] presented a ”Pictorial model”, with which features
in the image are matched to parts of the model using a parts and structure model. The
model is used to detect people in images (see figure 3.11)

Kumer et al. [77] extended the method of Felzenszwalb and Huttenlocher [42] into a
probabilistic way to complete graphs. They used parts of outlines in their application
of pictorial structure.

Leibe et al. [84] improved the method in [80] by including shape information to detect
pedestrians. They used a verification step that uses Chamfer matching of a representa-
tion of the whole contour of the image.

Fergus et al. [44] extended their constellation model by using boundary curves be-
tween bitangent points.

Amores et al. [15] proposed a recognition model where they learn contextual informa-
tion in the form of generalized correlograms as class representations using Boosting.
In their feature, they combine the local information (in the form of structure and color)
with spatial relations using correlograms that encode the edge locations around a point
in a log-polar quantization.

3.2.3 3D Recognition Approaches

A small number of research have investigated the problem of generic 3D object recog-
nition due to its difficulty. One of these approaches is presented by Savarese and Fei-
Fei [130]. In their approach, a model of an object category is captured by linking to-
gether diagnostic parts of objects from different viewing points. These parts are large
and discriminative regions of the objects and consists of many local invariant features.
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(a) (b)

(C) (d)

Figure 3.11: An example of input and matching results using the Pictorial structure
of Felzenszwalb and Huttenlocher [42].(a) Input image. (b) Binary image obtained by
background subtraction and used for finding a configuration that covers the object of
interest. (c)-(d) Match results superimposed on both images respectively.

To form a model of the object class, the parts are connected through their mutual ho-
mographic transformation. The resulting model is a summarization of both appearance
and geometry information of the object class. Figure 3.12 gives an overview of the
main ideas of the model. Additionally, the authors introduced a new object category
dataset for 3D object recognition tasks (see section 2.4).

Savarese and Fei-Fei [131] extended their recognition framework in [130] and im-
proved it to be able to recognize previously unseen poses based on the works in single
object view synthesis.

Recently, Sun et al. [138] proposed a generative probabilistic framework for learn-
ing visual 3D object categories. In their model, an object is represented as a coherent
ensemble of parts linked across different viewpoints where each part is represented by
a distribution of appearance elements. Then, a generative model is used for learning
the relative position of parts within each viewpoint and also the corresponding parts
locations across viewpoints.
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(a) (b) (c)

Figure 3.12: The main idea of the model of Savarese and Fei-Fei [130]. (a) Canonical
parts of a car. (b) Location of canonical parts. (c) Canonical parts are connected
together in a linkage structure.

Su et al. [137] extended recently the framework of Sun et al. [138] to be able to recog-
nize unseen views by pose estimation and synthesis using a dense, multiview represen-
tation of the viewing sphere parameterized by a triangle mesh of viewpoints. Moreover,
they proposed an incremental learning algorithm to train the generative model proposed
in [138].

A different approach is described by Ruiz-Correa et al. in [129]. The approach devel-
oped to recognize objects belonging to a particular shape class in range images. In their
approach, first, shape class components are learned and extracted from range images.
Then, the spatial relationships among the extracted components are encoded using a
shape representation called symbolic surface signature. This results in forming a shape
class model that consists of a three-level hierarchy of classifiers, where the first two
levels of the hierarchy extract the component and the third one verifies their geometric
relationships. Figure 3.13 displays a recognition example of the model. The dataset
used for the purpose of learning and classifying the model is a collection of range im-
ages of objects made of clay. The dataset is then enlarged by applying deformations to
the original clay objects to offer intra-class variabilities (see figure 3.13).
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(a)

(b)

Figure 3.13: Recognition model for shape classes from range images proposed by Ruiz-
Correa et al. in [129]. (a) The symbolic surface signature for a point P on a labled
surface mesh model of a human head [129]. (b) Recognition examples using the pro-
posed recognition model.

3.2.4 Multi-Class Recognition Approaches

In specific object recognition, the developed recognition models can handle many dif-
ferent number of objects. However, in GOR, the recognition of many classes is still
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restricted.

Torralba et al. [144] presented the Joint Boosting algorithm for multi-class learning
and recognition of object classes. The algorithm is based on the GentleBoost algorithm
and the authors build a strong classifier using regression stumps to be shared among the
different classes. Using their model, 21 different object categories are jointly learned.

Opelt et al. [115] extended their Boundary-Fragment model for multi-class learn-
ing. Based on the Joint Boosting algorithm, they presented a model where objects
are learned jointly. Prior knowledge is used to learn new object classes in an incremen-
tal manner.

Fei-Fei et al. [41] used also prior information on the spatial distribution to help learn-
ing new classes.

Also, the models mentioned in [130, 131, 138, 137] perform multi-class recognition as
well.

3.3 Conclusions

In this chapter, an overview of the body of literature in object recognition problem has
been presented. First, the approaches developed for specific object recognition have
been reviewed as specific object recognition is considered to be the basis for GOR.
Then, early, recent and state-of-the-art GOR approaches have been presented. We can
notice that the use of local appearance-based of information is the dominant among
the different presented GOR approaches. Most of the developed models make use of
local appearance information, such as texture, for recognition. Some approaches use
additional information in the form of spatial relations among local features to improve
the recognition performance. The use of completely shape or geometrical models with
the aid of appearance is not addressed frequently in GOR.
Moreover, few approaches tackled the problem of generic 3D object recognition due to
its difficulty. The approaches that addressed the problem used also appearance based
information, while the use of range and 3D information is been ignored or neglected.
One reason for this could be the lack of datasets which provide 3D information about
its members and at the same time suitable for the GOR task.
We can also notice that most of the approaches performed binary instead of multi-
class recognition. This could be argued to many reasons. One of these reasons is that
binary classification is more easier than the multi-class case although the second is
more realistic.
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Chapter 4

Generic Recognition of 2D Objects

This chapter introduces our model for generic 2D object recognition using a combi-
nation of different local appearance cues. An overview of the whole model as well as
an explanation of each of its different phases are presented. Experimental evaluation
of the recognition performance of the model using different famous benchmarks is ac-
complished. Furthermore, comparisons of different boosting algorithms in the context
of generic object recognition (GOR) are presented.

4.1 Motivation

In our approach, we perform local description of images without making use of any
spatial relationships among the detected local regions. Only appearance-based infor-
mation is used to describe these regions. We use the least amount of supervision we
can by using only the labels of the training images as the only information given to the
model about the different object classes during the process of learning (weakly super-
vised learning).
Generally, in generic object recognition, the performance of local descriptors (features)
varies from a class category to another. One descriptor might have a good performance
on one category and low performance on another. Combining more than one descriptor
in recognition can give a solution to this problem. However, the choice of descriptor’s
type and number of descriptors to be used is, in this case, an important issue.
The idea of combining different information cues for recognition is not new. Many dif-
ferent approaches applied this idea in their recognition models such as [162, 113, 111].
Most of these approaches exploited a combination of different features and descriptors
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without beforehand investigating the suitability of their combination for the task to be
accomplished. For example, Opelt et al. [114] proposed a GOR model using Boosting.
They combined different three interest point detectors together with four types of local
descriptors. They did not mention why they chose these features and why these fea-
tures could be suitable for their recognition task. Also, a careful choice of features is
supported by pattern recognition theorems such as Watanabe’s ugly duckling theorem
[156] since it is possible that two arbitrary patterns are made similar by encoding them
with a sufficiently large number of redundant features.
Moreover, most of the GOR approaches such as [13, 43, 113, 111, 162] did not make
use of any color information for recognition, although color could be a helpful aid in
accomplishing this task.
In our model [58, 59], a careful choice of the descriptors to be combined is performed.
Our idea is that, grayscale (texture) and color information are two important cues for
objects appearance. Texture and color provide many useful information to characterize
the objects and hence to differentiate among different objects classes. Therefore, we
decided to use a combination of only two different types of descriptors: grayscale and
color descriptors. This helps us to avoid the game of trail and error of combining many
features and investigating their performance on the used classes as done, for example,
in [114].
The major contributions presented in this chapter are as follows: 1) the presentation
of an approach for 2D generic object recognition from grayscale and color features
combination using weak supervision, 2) Comparing the performance of proposed dif-
ferent texture descriptors in the context of generic object recognition and 3) comparing
boosting algorithms in the context of GOR.
Section 4.2 presents the proposed recognition model with an explanation of its different
phases. Experimental evaluations of the recognition model using different recognition
datasets are given in section 4.3. Section 4.4 presents performance comparisons of
two texture descriptors in the context of GOR. Comparisons of different boosting al-
gorithms in the context of GOR are given and evaluated in section 4.5.

4.2 The Recognition Model

4.2.1 Overview

In our generic recognition model objects from a certain class in still images are to be
recognized. Objects are neither segmented before the learning process nor information



4.2. THE RECOGNITION MODEL 65

about their location or position within the images are given in the learning. Figure
4.1 gives an overview of the general framework of our recognition model. In the first
step, interest regions are detected in the training images. We exploit an affine invariant
interest point detector [99] for accomplishing this task. Afterwards, local descriptors
are extracted from the detected interest regions. A combination of two different types
of local descriptors is used: grayscale (texture) descriptor and local color descriptor. In
the next step of the model, local descriptors together with labels of the corresponding
training images are given to a boosting learning algorithm [50] which produces a final
classifier (strong hypotheses) as an output. The final classifier predicts if a relevant
object is presented in the new (previously unseen) test image (i.e. binary classifica-
tion). Figure 4.2 gives an example of the learning and recognition processes of our
recognition model.
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Figure 4.1: The general framework of our model for generic 2D object recognition.
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Figure 4.2: An example describing the different phases of our recognition model.

4.2.2 Interest Points Detection

There are different interest point detectors in the literature, each of which has some
different properties. An overview of different interest point detectors is presented in
section 2.1.2. Moreover, different evaluations of these detectors are also performed in
order to measure and compare their performance in a certain context, mainly in the con-
text of image matching and retrieval. Based on the evaluation of interest point detectors
given by [106], we decided to use the Hessian-affine invariant detector [99, 100]. As
this technique is state-of-the-art, we do not give details about it here. Interested readers
are encouraged to refer to the given references for more details. We used the same
parameter settings as the authors reported in their experiments.
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4.2.3 Regions Description

As we previously mentioned, we use in our model a combination of two different
descriptors which represent two different types of appearance information, namely
texture and color. As a texture (grayscale) descriptor, we use the Gradient location-
orientation Histogram (GLOH) [101], while we use the opponent color angle descrip-
tor [148] for representing the color information. The reasons behind using these two
descriptors are given next.

Gradient location-orientation Histogram (GLOH) descriptor [101] : is an ex-
tension to the SIFT descriptor [92], which is designed to increase its robustness and
distinctiveness. To compute the GLOH descriptor, the SIFT descriptor is computed
for a log-polar location grid with 3 bins in radial direction and 8 in angular direction,
which results in 17 location bins (see figure 4.3(e)). The gradient orientations are quan-
tized in 16 bins, which gives a histogram of 272 bins. The size of the descriptor is then
reduced to 128 bins with PCA.
The superior performance of the GLOH descriptor over many other descriptors, as re-
ported in [101], is the main reason of using it in our model. GLOH descriptors are
computed with the code provided by [101].

Figure 4.3: SIFT descriptors: (a) Detected regions. (b) Gradient image and location
grid. (c) Dimensions of the histogram. (d) 4 of 8 orientations plan. (e) Cartesian and
the log-polar grid. Image from [101]

Opponent color angle descriptors: Authors in [148] introduced a set of local color
descriptors with different criteria such as photometric robustness, geometric robust-
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ness, photometric stability and generality. Among those descriptors introduced in
[148], we chose to use the opponent angle color descriptor as it is robust with respect
to both geometrical variations caused by changes in viewpoint, zoom and object orien-
tations and photometric variations caused by shadows, shading and specularity. Brief
description of how to construct the opponent angle color descriptor is given (according
to [148]) as follows :

angO
x = arctan(

O1x

O2x
) (4.1)

where O1x and O2x are the derivatives of opponent colors and are given by:

O1x =
1√
2
(Rx −Gx), O2x =

1√
6
(Rx + Gx − 2Bx) (4.2)

and Rx, Gx and Bx are the derivatives of color channels.
The opponent colors and their derivatives are proved to be invariant with respect to
specular variations [148].
Before computing the previously mentioned invariant, color illumination normalization
should be first done as described in [148]. They introduced two methods for normal-
ization, zero-order and first-order normalization. We use the first-order color normal-
ization which is recommend by [148] to be used with the opponent angle descriptor,
and is given as:

Co∗(x) =
Co(x)
|Cox(x)|

(4.3)

where the bar indicates a spatial average: ā =
∫
S adx/

∫
S dx, S is the surface of the

patch, Co ∈ {R,G,B} and Cox is the derivative of the color channel.
To construct the opponent angle descriptor, the derived invariant is transformed into
a robust local histogram. This is done by adjusting the weight of a color value in the
histogram according to its certainty as in [148] (photometric stability). The resulting
opponent angle descriptor is of dimension 37.

4.2.4 Learning Model

Boosting is the underlaying learning technique in our learning model. In the literature,
there are many different boosting algorithms as mentioned in section 2.2.1. AdaBoost
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algorithm [132] is one of the most famous boosting algorithms. It generates a combined
hypotheses with large margin and works well on data with low degree of noise. Our
learning model is based on the AdaBoost algorithm. However, we use the AdaBoost
version modified by [112] for GOR task (shown in algorithm 5). More information
about the AdaBoost algorithm is given in section 2.2.1. Now, we will explain how
learning the descriptors combination using the AdaBoost algorithm is accomplished.
An important part of any boosting algorithm is the weak learner. To adapt for a specific
task, a suitable weak learner should be used. For the purpose of object recognition, we
use a modified version of the weak learner presented in [112].
Since we use more than one descriptor to describe the images, each training image is
represented by a set of features {Fi,f (ti,f , vi,f ), f = 1...ni}1 where ni is the number
of features in image Ii, ti,f indicates the type of the feature (g for grayscale and co
for color) and vi,f is the feature value. The AdaBoost algorithm (see algorithm 5) se-
lects in each iteration, with the aid of the weak learner (see algorithm 6), two weak
hypotheses: one for each different descriptor type. Each weak hypothesis consists of
two components (selected and computed by the weak learner): a feature vector vx

k and
a certain threshold θx

k (a distance threshold) where x = g for the grayscale descriptor
and x = co for color descriptor. The threshold θx

k measures if an image contains a
descriptor vi,j that is similar to vx

k . The similarity between vi,j ,which belongs to the
image Ii, and vx

k is measured using Euclidean distance for both descriptor types. Al-
gorithm 6 gives an overview of our weak learner which is a modified version of the
one described in [112]. The weak learner in [112] selects the best feature vector over
the different descriptor types while in our modified version, the best vector in each de-
scriptor type is selected.
In the recognition step, a test image Its is presented and a set affine interest points is
detected. Grayscale and color descriptors are then extracted. For each weak hypothesis
hg

k and hco
k and their associated feature values and thresholds, we find the grayscale and

color features in the test image with the minimum distance d(vg
k, Its) and d(vco

k , Its)
respectively. Then, we compare these minimum distances to the thresholds θg

k and θco
k

respectively. A classification output for one weak hypothesis is computed as follows:

fx
k =


+1 if d (vx

k , Its) < θx
k

−1 Otherwise.
(4.4)

1The same mathematical notations that are used in section 2.2.1 are used overall the thesis.
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This results in a classification output for each weak hypothesis fg
k , f co

k ∈ {−1,+1}.
Then, the combination output is computed as follows:

hk = max(fg
k , f c

k) (4.5)

After all hypotheses are processed, the output of the final (strong) classifier is compared
to the threshold Ω (see AdaBoost algorithm 5) and the test image is then accepted or
rejected depending on the output of the classifier. The final classifier threshold Ω is
varied to get various points for the ROC curve. The threshold could be varied from ∞
to−∞ and tracing a curve through ROC space could then be done. This method is used
in many researches (e.g. [152]), but computationally, this is a poor way of generating a
ROC curve as it is neither efficient nor practical [40]. In [40], an efficient algorithm for
generating an ROC curve, which we use here, is presented and explained. It depends
on exploiting the monotonicity of thresholded classification. Details about the method
are found in [40].

4.3 Experimental Evaluation

We evaluate our recognition model using two different datasets, namely the Caltech 4
[2] and Graz02 [5] datasets. Although Caltech 4 dataset suffers from some limitations
such as somewhat limited range of image variability [120], it played a key role, in
addition to UIUC and Caltech 101 datasets, in the recent research of GOR during
providing a common ground for algorithms development and evaluation. Caltech 4
has been used by many state-of-the-art GOR approaches for binary classification and
Caltech 101 has been usually used by the approaches which perform multi-class GOR
tasks (e.g [55]). We use Caltech 4 dataset in our evaluations to be able to compare the
performance of our approach to state-of-the-art approaches. At the same time, we use
Graz02 dataset, which is more recent and difficult one and avoids the problems exist in
Caltech 4 dataset.

4.3.1 Experiments using Caltech 4 dataset

To compare our results to the existing approaches, we first use the Caltech 4 dataset in
evaluating our recognition model. We use for training 100 images of the object class
as positive examples and 100 images of the counter-class as negative examples. For
testing, 50 positive examples and 50 negative examples are used. The features of each
image are clustered to 100 cluster centers using the k-means clustering algorithm to
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Input: Training images (I1, l1), . . . (IN , lN ).
Initialize: Set the weights distribution w1 = · · · = wN = 1.
for k = 1, ...T : do

(1) Train weak learner using distribution wk and get a weak
hypothesis hk.
(2) Calculate the classification error as:

εk =
∑N

i=1(hk(Ii) 6= li)wi∑N
i=1 wi

(3) Choose αk =
√

1− εk

εk

(4) Update the weights: wk+1 = wkα
−lihk(Ii) for i = 1 to N

end
Output: Final hypothesis:

Hx =

 +1 if
∑T

k=1(lnαk)hk(x) > Ω

−1 Otherwise
(4.6)

.
Algorithm 5: AdaBoost algorithm. A modified version for generic
object recognition task [112].

construct the images signature formed by the centers of its clusters and their relative
sizes [119] .

The counter-class: The counter-class is important for training a classifier of a cer-
tain object class as it provides images for objects different from the one needed to be
learned. We do not use the background class of the Caltech dataset as a counter-class
(negative class), which is used by almost all the recognition approaches (that used
the dataset) as the counter-class, because it does not contain colored images. Instead,
we evaluate our recognition model using two different counter-classes: the background
class of Graz01 dataset [4] and the leaves class of the Caltech dataset. Figure 4.4 shows
some example images of each counter-class. These two different counter classes are
more difficult than the background class of Caltech 4 as shown by the results in table
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Input: Labeled representations (R {Ii} , li), i = 1, . . . N ,
R {Ii} {(ti,f , vi,f ) |f = 1, . . . , ni)}.

(1)-Distance function: Let dt(., .) be the distance with respect
the description vectors of type t in the training images.
(2)-Minimal distance matrix: For all description vectors
(ti,f , vi,f ) and all images Ij calculate the Minimal distance
between vi,f and description vectors in Ij ,

di,f,j = min
1≤g≤Fj :ti,g=ti,f

dti,f (vi,f , vj,g)

.
(3)- Sorting: For each i, f let πi,f (1), . . . , πi,f (m) be a
permutation such that

di,f,πi,f (1) ≤ · · · ≤ di,f,πi,f (m)

.
(4)- Select best weak hypothesis (Scanline): For all description
vectors (ti,f , vi,f ) of type t, calculate over all images Ij

max
s

s∑
j=1

wπi,f (j)lπi,f (j)

and select the description vectors (ti,f , vi,f ) where the maximum
is achieved.
(5): Select threshold θ: With the position s where the scanline
reached a maximum sum for each selected descriptor type t the,
threshold θ is set to

θ =
di,f,πi,f (s) + di,f,πi,f (s+1)

2

.
Algorithm 6: Modified version of the weak learner of [112].

4.1. The results in table 4.1 are the output of recognition experiments we performed
using Caltech 4 dataset with the same previously mentioned experimental settings. In
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this experiment we use the GLOH descriptor (without combining it with the color fea-
tures) with Hessian-affine point detector. We performed these experiments to show
how difficult the counter-class (Graz01 background class and the leaves class) we use
than that is been used (Caltech 4 background class) by almost all the approaches that
used Caltech 4 dataset in their experiments. It is worth mentioning that each counter-
class is used separately in the experiments. In other words, each experiment is repeated
twice, each time using one counter-class.
The learning procedure are run for number of iterations T = 100 when using leaves as
a counter-class and T = 150 when using the Graz01 background as a counter-class 2.

Figure 4.4: Example images of the two classes used as counter-class in the Caltech 4
experiments. Leaves class (first row) and Graz01 background class (second row).

First, we evaluated our model using each descriptor separately to be able to no-
tice the recognition performance of each of them, and hence the benefits of combining
them later. Afterwards, a combination of the two different descriptors is used. Table
4.2 displays the classification rates (true positive rates) at the ROC-Equal-Error rates
of the recognition results using the Graz01 background class as a counter-class for the
used four object classes while table 4.3 displays the results using the leaves class as the
counter-class. Moreover, figure 4.5 displays the ROC curves of recognition results us-
ing GLOH-color (GC) combination with Graz01 counter-class (GC-G) and with leaves
counter-class (GC-L) respectively. The results in both tables show the improvements

2These numbers were experimentally evaluated.
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Table 4.1: Classification rates at ROC-eqq.-err. rates of our recognition results using
the Caltech 4 dataset with different counter-classes ( Caltech 4 background, Graz01
background and Leaves class).

Class Using Caltech 4 Using Graz01 Using leaves
background background class

Motor 100 % 92% 94%
Cars 100 % 80 % 82%

Airplanes 96 % 78% 78%
Faces 100% 92% 92%

we gain in performance from combining the two descriptors together. Each descriptor
achieves a high performance on some classes and relatively good performance on oth-
ers. Using a combination of the two descriptors improves the recognition performance
on almost all the classes.
Table 4.4 displays a comparison of the recognition performance of our model to the
results of state-of-the-art GOR approaches and models. The comparison reveals the
good performance of our model using the two different counter-classes (GC-G and
GC-L). Our model (GC-G) achieves the best results for the two classes ”motors” and
”cars” while our model (GC-L) yields the second best results for the class ”faces”. A
reasonably good performance for the class ” airplanes” is however achieved. We can
measure the overall performance of each approach as the average classification rate
over the used classes (see last column in table 4.4). This measurement encapsulates the
performance of each recognition model and reveals the good results achieved by ours
(GC-G).
Note that the amount of supervision varies over the approaches presented in the table
4.4. The approach in [143] uses class labels and bounding boxes around the classes
for training (high supervision) while the approaches in [15, 19, 29, 43, 114, 45] use
only class labels for training (weak supervision like in our approach). The approach in
[136] uses no supervision. Moreover, it should be noted that the counter-class used in
our model is more difficult than the one used by all other approaches as shown in table
4.1.
To give more insight on the recognition performance of our model, figure 4.6 gives ex-
amples of incorrectly classified images which are classified as false negatives (4.6 (a)
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or as false positives (4.6 (b))). However, the images in figure 4.6 are simple to be in-
correctly classified while the dataset contains more difficult images which are correctly
classified.

Table 4.2: Classification rates at ROC-eqq.-err. rates of our results using (GC) feature
combination on the Caltech 4 dataset with using the Graz01 background class as the
counter-class.

Class GLOH Opponent angle Combination (GC-G)
Motors 92% 94% 96%

Cars 80% 100% 100%
Airplanes 78% 80% 84%

Faces 92% 86% 94%

Table 4.3: Classification rates at ROC-eqq.-err. rates of our results using (GC) feature
combination on the Caltech 4 dataset with using the leaves class as the counter-class.

Class GLOH Opponent angle Combination (GC-L)
Motors 94% 82% 96%

Cars 82% 86% 94%
Airplanes 72% 80% 82%

Faces 92% 94% 98%
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(a) (b)

(c) (d)

Figure 4.5: Performance comparison of the performance of recognition model using
GLOH-color combination (GC) on the Caltech 4 dataset. Two different counter-classes
are used separately: the Graz01 background and (GC-G) the Caltech-leaves datasets
(GC-L).
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(a)

(b)

Figure 4.6: Example of incorrectly classified images on the Caltech dataset using the
GLOH-color combination (GC-G). (a) Example of false negative images classified as
background from the classes motors (first row), airplanes (second row) and faces (third
row). (b) Example of false positive images classified as motors (first row), airplanes
(second row) and faces (third row).
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4.3.2 Experiments using Graz02 Dataset

Further evaluation experiments of our recognition approach are carried out using Graz02
dataset. Graz02 dataset is more difficult than Caltech 4. Objects are shown on com-
plex cluttered background, at different scales and with different object positions. The
images include high amount of occlusion up to 50% [114]. It is also balanced with
respect to background so it is not possible to detect an object on its context e.g. cars by
traffic sign [104].
For the experiments using this dataset, we use 150 positive and 150 negative images
for training (total of 300 images) and 75 positive and 75 negative previously unseen
images for testing (total of 150 images) as in [114]. The features of each image are
clustered to 100 cluster centers using the k-means clustering algorithm and the learn-
ing procedure is run using T = 150 to give more possibility to generalize over the
complex data [114].
The counter class provided by the Graz02 dataset is of colored images. Therefore,
there is no need here to find another counter-class than the one provided by the dataset.
Table 4.5 displays the results of the recognition using each descriptor separately as well
as combined while figure 4.7 displays the ROC curves of the three used classes using
the GLOH-color combination (GC). The results in table 4.5 reveal the difficulty of the
Graz02 dataset (as previously mentioned ) when compared to the results achieved on
the Caltech 4 dataset (tables 4.2 and 4.3). The GLOH-color combination (GC) yields
performance gain for the classes ”cars” and ”persons”, while does not add any gain
for recognition performance of the class ”bikes” when compared to the results using
each GLOH descriptor separately. One reason for this could be that the use of the color
features with the GLOH does not add any significant information for improving the
recognition performance over that is achieved by GLOH alone. However, the use of
color could have added some redundancy which has affected in turn the performance
of their combination.
Table 4.6 provides a comparison of the recognition performance of our approach to
the performance of other approaches that used the same dataset for evaluation. The
comparison reveals that our model achieves the best performance on the class ”cars”
while achieves the second best on the class ”persons”. The last column of Table 4.6
displays the overall average performance of each approach (computed as proposed in
section 4.3.2). We can then notice the robust performance of our model.
It should be noted that the amount of supervision used by the approaches in table 4.6 is
not the same. Approaches in [114, 105, 104] as well as ours used only class labels for
training (weakly supervision) while [108] used class labels and localization ground-
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Table 4.5: Classification rates at ROC-eqq.-err. rates of our recognition model on the
Graz02 dataset using GLOH, color and GLOH-color combination (GC) respectively.

Class GLOH Opponent angle Combination
Bikes 78.67 73.33 74.67
Cars 81.33 74.67 81.33

Persons 77.33 78.67 81.33

truth for training. Moreover, the number of training examples used by each approach
varies. Our approach and the one in [114] use the same number of training images
per class (150 images) while the approaches mentioned in [105, 104] use 300 training
images per class which is double the number we use. The approach in [108] uses only
50 training images per class.
Figure 4.8 displays example of incorrectly classified images which are classified either
as false negatives (figure 4.8 (a)) or as false positives (figure 4.8 (b)). As we can notice
from the figure that the failure in classification in the false negatives case is either due
to high degree of occlusion ((figure 4.8 (a)) second row, left image) or small size of
objects within images. For the false positives, some incorrect classification could be
due some plausible reasons such as figure 4.8 (b), first row, left image where the image
is classified as containing an object of class bikes or figure 4.8 (b) last row, right im-
age where a person photo in the wall made the image to be classified as containing an
object of class persons.
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Figure 4.7: ROC curves of the performance of the recognition model using the GLOH
and color combination (GC) on the Graz02 dataset.
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Table 4.6: Classification rates at ROC-eqq.-err. rates of our recognition model on the
Graz02 dataset using the GC combination compared to the state-of-the-art approaches.

Class GC Opelt[114](Comb.) [108] [105] [104]
Bikes 74.67 77.80 80.50 84.40 79.9
Cars 81.33 70.5 70.10 79.90 71.7

Persons 81.33 81.2 81.7 - -
Avg. over classes 79.11 76.5 77.43 82.15 75.8

(a) (b)

Figure 4.8: Example of incorrectly classified images on the Caltech dataset using the
GLOH-color combination (GC-G). (a) Example of false negative images classified as
background from the classes bikes (first row), cars (second row) and persons (third
row). (b) Example of false positive images classified as bikes (first row), cars (second
row) and persons (third row).

4.4 GLOH vs. SIFT: Performance Evaluation

As mentioned in section 4.2.3, GLOH descriptor is the extension of the publicly used
SIFT descriptor and has shown better performance than SIFT in many evaluations in
the context of image matching and retrieval (e.g. [101]). We aim by the following ex-
periments to provide a performance comparison of the two descriptors on a different
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context, namely the context of generic object recognition.
To establish a comparison between the performance of both GLOH and SIFT descrip-
tors, we will repeat all the previous experiments replacing the GLOH descriptors with
the SIFT.

4.4.1 Using Caltech 4 Dataset

The recognition results using the SIFT, color and SIFT-color combination (SC) respec-
tively on the Caltech 4 dataset are displayed in tables 4.7 and 4.8 for the two different
counter-classes mentioned in section 4.3.1. The recognition performance of the model
using SIFT-color ((SC-G) and (SC-L)) is robust. The use of SIFT improves the recog-
nition performance of almost all the classes when compared to the recognition results
using GLOH (tables 4.2 and 4.3). Figure 4.9 displays a comparison of the ROC curves
of the recognition results using GLOH-color (GC-G) and SIFT-color (SC-G) combina-
tions. Although GLOH showed better performance than SIFT in the context of image
matching and retrieval (as shown in [101]), our results reveal that SIFT exceeds GLOH
in performance in the context of GOR.
Table 4.9 compares the performance of the our recognition results using the SIFT-color
combination (SC-G) to the state-of-the-art approaches. It is clear from the table that
the use of SIFT improved the recognition performance of our model (when compared
to table 4.4. Our model (SC-G) achieves superior performance on the classes motors,
cars and faces.

4.4.2 Using Graz02 Dataset

The same conclusion can be drawn when Graz02 dataset is used. Table 4.10 displays
the results of the recognition model when the SIFT descriptors are used. Their combi-
nation with color (SC) increased the recognition performance on both the motors and
persons datasets while the performance on the cars dataset is decreased (with respect to
the performance of the GC combination). When compared to the model using GLOH
(GC) (see Table 4.11 and Figure 4.10), the results using (SC) reveal a better perfor-
mance.
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Table 4.7: Classification rates at ROC-eqq.-err. rates of our recognition model using
SIFT-color combination (SC-G) on the Caltech 4 dataset with the Graz01 background
class as a counter-class.

Class SIFT Opponent angle Combination (SC-G)
Motors 90% 94% 96%

Cars 86% 100% 100%
Airplanes 78% 80% 88%

Faces 92% 86% 96%

Table 4.8: Classification rates at ROC-eqq.-err. rates of our recognition model using
SIFT-color combination (SC-L) on the Caltech 4 dataset with the leaves class as a
counter class.

Class SIFT Opponent angle Combination (SC-L)
Motors 86% 82% 93%

Cars 90% 86% 94%
Airplanes 78% 80% 84%

Faces 96% 94% 100%
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(a) (b)

(c)

Figure 4.9: Comparison between the performance of the recognition model using GC
combination and the SC combination on the Caltech4 dataset using the Graz01 back-
ground class as a counter-class.
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Table 4.10: Classification rates at ROC-eqq.-err. rates of our recognition model on the
Graz02 dataset using SIFT, color and SIFT-color combination (SC) respectively.

Class SIFT Opponent angle Combination
Bikes 78.67 73.33 80.00
Cars 74.67 74.67 77.33

Persons 78.67 78.67 82.67

Table 4.11: Classification rats at ROC-eqq.-err. rates of our recognition model on the
Graz02 dataset using the SC combination compared to the state-of-the-art approaches.

Class GC SC Opelt[114](Comb.) [108] [105] [104]
Bikes 74.67 80.00 77.80 80.50 84.40 79.90
Cars 81.33 77.33 70.5 70.10 79.90 71.70

Persons 81.33 82.67 81.2 81.7 - -
Avg. over classes 79.11 80.00 76.5 77.43 82.15 75.8
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(a) (b)

(c)

Figure 4.10: Comparison between the performance of the recognition model using GC
combination and the SC combination on the Graz02 dataset.
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4.5 Evaluation of Boosting Algorithms on GOR

AdaBoost algorithm is used in the learning procedure of our model in all previous ex-
periments. The advantages of the AdaBoost algorithm as mentioned in section 2.2.1
include that it is the most popular boosting algorithm, generates combined hypotheses
with large margins and works well on data with low noise. However, AdaBoost is re-
ported by different studies low generalization performance with the presence of data
with high degree of noise.
SoftBoost algorithm is a newly presented boosting algorithm [154], which implements
the idea of soft margins exists in the SVM in practical boosting algorithm. Details of
the algorithm are given in section 2.2.1
The main objective of this section is to investigate the recognition performance of the
SoftBoost algorithm on GOR as, to the best of our knowledge up to now, no evaluation
of this new algorithm exist on a real world object recognition problem. An additional
objective is to evaluate the performance of SoftBoost algorithm by comparing it to the
performance of AdaBoost algorithm using label noisy training data 3.
Discrete AdaBoost [50] (see algorithm 1) and AdaBoost with confidence-rated predic-
tion [133] (Real Adaboost) (see algorithm 2) are used in the evaluations performed in
here.
For the Discrete AdaBoost, the weak learner presented in section 4.2.4 is used. For
the AdaBoost with confidence-rated prediction, a weak learner which delivers a weak
hypothesis h : χ → R (in our case h : χ → [−1,+1] ) is required.

4.5.1 Used Weak Learner

The used weak learner is the same as the one described in section 4.2.4 . However, we
applied some modification to make it similar to the idea of the weak learner used by the
authors of SoftBoost algorithm [154]. This modification is that, in algorithm 5, step 4,
the description vectors (ti,f , vi,f ) which delivers the minimum classification errors on
the training data are selected. The classification outpout of selected weak hypothesis
from each type is computed as follows:

3The work presented in this section is adapted from our paper [60]
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(4.7)

where M is a distance maximum bound used to compute the scores of the hypotheses
output and to make fx

k ∈ [−1, 1]. M is selected as the maximum distance computed
from step 2 of algorithm 5. This results in a classification output for each weak hypoth-
esis fg, fc ∈ [−1, 1]. Then the combination output of the two chosen different weak
hypotheses is computed as follows:

hk =


max(fg, fc) if fg or fc > 0

min(fg, fc) Otherwise.
(4.8)

4.5.2 Experiments and Results

To investigate the recognition performance of the SoftBoost algorithm, a set of exper-
iments is performed using it as the base learning algorithm in the recognition model.
Moreover, some experiments using Discrete AdaBoost and Real AdaBoost algorithms
are performed in order to establish a performance comparison and evaluation of the
three algorithms.

Experimental settings

The experimental settings are divided as follows:

- The used dataset: Graz02 dataset [5] is used in all evaluation experiments.
- Training and Test images: For training, 300 examples (images) are used: 150 im-
ages of object class and 150 images of counter-class (negative). For testing, 150 pre-
viously unseen examples are used: 75 images of object class and 75 images of the
counter-class.
- SoftBoost algorithm: The value of guarantee g (see section 2.2.1) is set equal to γ∗

in all experiments, where γ∗ is the value of linear programming problem P2 presented
in [154]. The value of accuracy parameter δ used in all experiments is 0.0001. This
value is used based on performing experiments on the bikes class, with values of



4.5. EVALUATION OF BOOSTING ALGORITHMS ON GOR 91

δ ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}. The best generalization performance is achieved
at δ = 0.0001.
- AdaBoost algorithms: The AdaBoost algorithms are run for a number of iterations
T= 150.
Based on the results provided in the previous section, all experiments are performed
using our recognition model with the SIFT-color combination (SC).

Experiments Using Noise Free Data

Using SoftBoost Algorithm: an important parameter of the SoftBoost algorithm is the
capping parameter ν. It represents the number of training examples that are allowed
to have wrong predictions in order to obtain high generalization performance. There-
fore, the optimal value of ν should be selected. This is accomplished by using a 5-fold
cross-validation for each object class. This results in estimating three optimal values of
ν, one for each object class. Training is performed afterwards using the selected values
of ν and the generalization rates are given in table 4.12.

Using AdaBoost Algorithms: Training the three object classes using the two Ad-
aBoost algorithms is performed using T iterations specified in section 4.5.2 and the
resultant generalization rates are shown in table 4.12. When comparing SoftBoost,
Discrete AdaBoost (D. AdaBoost) and Real AdaBoost (R. AdaBoost) algorithms, it is
clear that Real AdaBoost outperforms the other algorithms in two of the three object
classes (cars and persons) while SoftBoost and D. AdaBoost algorithms achieve higher
generalization rates on the bikes class. Moreover, the average performance over the
classes of the recognition model using the three different boosting algorithms is almost
the same (see table 4.12, last column). Few performance gain is achieved by using the
SoftBoost algorithm.

Experiments Using Noisy Data

Actually, noise could be observed at various levels of abstraction in learning and recog-
nition process, including high intra-class variability, partial occlusion, background clut-
ter, varying illumination and added Gaussian noise to the test images. In fact, Graz02
database is already quite noisy in this respect. Additionally, more difficulties could
be added to the training data by the presence of outliers or miss-labeled (label noisy)
patterns. Label noise means that a pattern is clearly a member of one class and its
label corresponds to the alternate class. The label noisy patters or examples cause the
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Table 4.12: Generalization performance of Discrete AdaBoost, Real AdaBoost and
SoftBoost algorithms represented by classification rates ROC-eqq.-err. rates.

Class D. AdaBoost R. AdaBoost SoftBoost optimal ν (SoftBoost)
Bikes 80.00 76.00 80.00 40%
Cars 77.33 80.00 78.67 70%

Persons 82.67 84.00 82.67 30%
Avg. over classes 80.00 80.00 80.45

boosting algorithm to concentrate on them during training, which in turn, deteriorates
the final hypothesis and thus the generalization performance of the algorithm.
In this set of experiments, label noise is added by assigning wrong labels to a percent-
age n of the training examples, where n = 10, 30 and 50% respectively. This means
that three different degrees of label noise are given. The test examples are left un-
changed. For training using SoftBoost algorithm, a 5-fold cross-validation is used to
select the optimal value of ν at each level of noise for each class. This results to the
estimations of nine values of ν.
Table 4.13 presents the generalization rates of AdaBoost and SoftBoost algorithms on
this set of experiments. Generally, the performance of SoftBoost exceeds the perfor-
mance of AdaBoost algorithms when the training data contains high degree of label
noise (i.e. 50%). At small degrees of label noise ( i.e.10% and 30%), AdaBoost algo-
rithms, especially R. AdaBoost, achieve better performance.
However, the use of SoftBoost did not significantly improve the recognition perfor-
mance. The performance gain we could get from using the algorithm could be in the
cases when its known in advance that the data has high degree of noise (e.g. more than
50%). In this case, the use of SoftBoost could be profitable. Otherwise, its time and ef-
fort consuming task to use the algorithm as a proper value for the capping parameter ν
should be then investigated. For achieving this, many different trails (cross-validations)
should be performed.
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Table 4.13: Generalization rates (classification rates at ROC-eqq.-err. rates) of Discrete
AdaBoost, Real AdaBoost and SoftBoost algorithms using training data with different
degrees of label noise.

Class noise D. AdaBoost R. AdaBoost SoftBoost optimal ν
degree (SoftBoost)
10% 78.67 78.67 74.67 70%

Bikes
30% 68.67 74.67 74.67 70%
50% 57.33 60.00 58.67 30%
10% 77.33 77.33 70.67 30%

Cars
30% 69.33 76.00 73.33 30%
50% 60.00 60.00 68.00 50%
10% 78.76 82.67 82.67 40%

Persons
30% 68.00 80.00 77.33 30%
50% 48.00 52.00 66.67 50%

4.6 Conclusions

In this chapter, we have presented our model for generic 2D object recognition. The
model exploits a combination of appearance-based information (descriptors) for binary
learning and classification of generic object classes. Two different types of descriptors
are used, texture and color descriptors, as they are important information for describ-
ing the appearance of objects. Boosting, namely the AdaBoost algorithm, is used for
learning the different descriptions of objects in a weakly supervised manner. Images
that show the objects at varying scale and viewpoint in highly cluttered background
are used in the learning step as well as for evaluating the model. Using such difficult
data, we have experimentally illustrated the robustness, with respect to classification,
of our model which does not make use of any geometrical or spatial information for
learning and recognition. Additionally, comparisons with other approaches, including
state-of-the-art approaches, have been presented and they have revealed the strength of
our recognition model.
In our experiments, we have evaluated small but important aspect for recognition. It
is the choice of the counter-class used for binary classification. Some datasets (e.g.



94 CHAPTER 4. GENERIC RECOGNITION OF 2D OBJECTS

Caltech) provide a counter-class that is considered to be an easy one. The contexts
of its images are totally different from those of the object classes which makes the
recognition in this case an easy task. Moreover, it does not reveal the drawbacks of the
recognition model as all the images could be classified correctly because the images
of counter-class has completely different context from the images of the object class.
In our experiments, we have (fortunately) use different counter-classes in the experi-
ments using the Caltech dataset. This helped us to investigate the importance of the
counter-class and reveal its importance for building and correctly evaluating a recogni-
tion model.
Moreover, in our experiments we compared the performance of two famous texture de-
scriptors, namely SIFT and GLOH descriptors, in the context of GOR. SIFT revealed
shown better performance in this context than GLOH, although GLOH is reported to
yield better performance, but in the context of image matching and retrieval. Therefore,
careful selection of the description methods and tools is required, as the performance
of descriptors vary from context to another. For the GOR, it is more complicated as the
performance of one descriptor varies form an object category to another.
Finally, we have presented a performance evaluation of a new Boosting algorithm, the
SoftBoost algorithm. Theoretically, the algorithm has some good advantages which
seem to overcome some of the drawbacks exist in popular and famous boosting algo-
rithms such as the AdaBoost. Practically, however, the algorithm did not reveal the
expected performance. It is designed to deal with data which contains high degree of
noise. However, this information should be known before hand to be sure that the Soft
Boost algorithm is the only suitable algorithm for the problem. Otherwise, using the
algorithm would be a time and effort consuming process.



Chapter 5

A 2D/3D Object Category Dataset

This chapter introduces a new generic object recognition (GOR) dataset which has the
advantage over all existing datasets of providing range data in addition to 2D data about
different object classes. A brief description of the 3D range image acquisition meth-
ods, including the method used to construct the dataset, is first given. A description of
the dataset and its different member classes is then presented. Afterwards, the acquisi-
tion procedures of the dataset are explained. Moreover, an experimental evaluation of
the dataset as well as comparison to other benchmark (Graz02) using our recognition
model is established.

5.1 Motivation

Several datasets have been emerged as standards for the GOR community such as
UIUC [3, 13] Caltech-4 [2, 43], Caltech 101 [9, 41] and Graz [4, 5, 113] and other
datasets presented in section 2.4. However, all these datasets provide only 2D data
(images) of their object classes and none of them provide range images bout their
members. Up to our knowledge, there is no available GOR dataset which provides
range data of different object classes and, hence is suitable for GOR . The lack of such
dataset is one reason that most of the current state-of-the-art GOR approaches depend
on only information provided by 2D images in recognition (e.g. [43, 114, 13]) and
ignored or neglected the use range data.
Range images are very useful for GOR because they have the advantage of providing
direct information about the shape of objects. This shape information is suitable for
recognition of generic object class from their shapes as well as for generic 3D object

95
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recognition. Moreover, range information depends only on geometry and is indepen-
dent of illumination and reflectivity and intensity-image problems with shadow and
surface markings do not occur. Therefore, the process of recognizing objects by their
shape should be less difficult in range images than intensity images [25]. The cur-
rent range images datasets such as Stuttgart Range Image Database [8, 63] (see section
2.4.3) are suitable only for specific 3D object recognition and are used normally for
this task.
With the upcoming technique of Time-of-Flight cameras (TOF), for example the PMD-
cameras , range images can be acquired in real-time and thus, recorded range data can
be used for building a GOR dataset.
This chapter presents a new object category dataset which provides two different image
types of different object classes: 2D and range images. Actually two versions of the
dataset has been constructed. The first version (JenaRange01) provides 2D (intensity
images) and 3D range images. It contains small number of classes and small amount
of background clutter and occlusion. The second version (JenaRange02) provides 2D
(color images) in addition to the range images. It contains more object classes, provides
more real images full of background clutter, occlusion, size and view point variations
and large amount of intra and inter-class variabilities. Therefore, our dataset facilitates
the recognition of generic 2D as well as 3D objects from range images or from inten-
sity and color images as well. Furthermore, a combination of all three different image
types could be exploited for more robust GOR. The dataset is the main contribution in
this chapter and is available for public use 1 as we believe that the dissemination and
use of this dataset will allow realistic comparative studies as well as a source to test
data for development for new techniques of GOR from range images.
In section 5.2, we briefly discuss the different range imaging techniques with present-
ing a brief overview of the technique used for constructing our dataset (TOF). Section
5.3 presents the JenaRange01 dataset. It provides a description to the dataset, its mem-
ber classes and its properties as well as mentioning its construction procedures. In
section 5.4, the JenaRange02 is presented. Experimental evaluations of our dataset are
accomplished in section 5.6 to investigate its suitability for the GOR problem.

5.2 3D Image Acquisition Methods

There exist three main methods for 3D images acquisition [28]:

1JenaRange01 is available at: http://www.inf-cv.uni-jena.de/index.php?id=dataset.
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1) Triangulation: the acquisition of 3D images without scanning components is done
by stereoscopy (stereo vision), meaning the combination of two 2D images from differ-
ent viewpoints. The geometrical relations between the object, the sensor and a known
basis line are used for the calculation of the distance. The processing of the distance
maps (images) is based on correlation calculations that are very time-consuming [28]

2) Interferometry: constructive and superpositions superpositions of at least two light
beams are exploited for measuring very small differences of distances in the sub-
micrometer range. Accordingly, the accuracies are very high and depend mainly on
the coherence length of the light source. Real-time 3D image acquisition is possible
using CMOS photo sensors. Thereby, the imaging process is reduced from three scan-
ning directions to just one direction. However, interferometry is not suitable for ranges
starting from centimeters up to several meters as the method is based on the evaluation
of the very short optical wavelength [28] .

3) Time-of-Flight: is based on the measurement of the time the light needs to travel
from the lighting source to the object and returns back to the sensor (see figure 5.1).
This method is suitable for ranges starting from few centimeters to several hundreds of
meters.

Stereo vision is the most common and well-known principle for 3D imaging principle,
which is known and used for long time for 3D image acquisition in computer vision
community [66]. The advantages of the stereo vision over other 3D imaging techniques
(devices) such as laser scanners or radar sensors is that it achieves high resolution and
simultaneous acquisitions of the entire range images without energy emission or mov-
ing parts [66]. However, stereo vision suffers from some disadvantages such as the
limited field of view and the correspondence problems.
In the past years, modality of Time-of-Flight (TOF) imaging became more and more
attractive to the research community due its advantages which overcome some of the
limitations and disadvantages exist in stereo vision and other 3D image acquisition
techniques. Example of the TOF advantages is providing direct depth data acquisition
instead of requiring long time of computation to produce the same 3D images using
other techniques (e.g. stereo vision). Authors of [66] provide a deep comparison be-
tween the stereo vision and the TOF (PMD) techniques. Figure 5.2 is been borrowed
from [66] and summarizes the disadvantages of each technique. Further details could
be found in [66]. Following, we give a brief description of the Time-of-Flight (TOF)
PMD camera used for acquiring the range images of our GOR dataset.
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TOF
Camera

Figure 5.1: Illustration of the principle of the Time-of-Flight rangers.

5.2.1 Time-of-Flight PMD Camera

A new and promising approach developed in recent years estimates the distance by
Time-of-Flight (TOF) measurements for modulated, incoherent light based on the new
Photo Mixing Device (PMD) technology [79]. This new camera technology realizes
3D imaging without complex electronics and without scanning with a solid state im-
ages similar to a CMOS device [126]. As previously mentioned, other techniques for
providing 3D depth maps of the scene need high computer power to find correlation
in the gray value map like stereo cameras. Some techniques require the existence of
mechanical components like scanning systems. Both, stereo cameras and scanning
systems, are cost-intensive, have a low realtime capability and have no homogeneous
depth map (in the case of stereo cameras) [126].
The principle of the range measurement in a TOF PMD camera is based on the TOF
principle mentioned previously. However, rather than using a single laser beam, the
whole scene is illuminated with modulated light. The camera sends out modulated
light and measures its reflections on the scene. Within each pixel, this reflected signal
is mixed with the sent out signal to obtain the phase shift, as shown in figure 5.3. This
phase shift can then be easily translated to the distance between the pixels and the dif-
ferent points in the scene [109].
The TOF (PMD) technique has many advantages:
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Figure 5.2: Functional block diagram of the image processing chain of (a) Stereo vision
systems and (b) TOF vision systems [66].

1. Capable of delivering complete images at once where no scanning is needed.

2. Acquiring realtime images is possible.

3. Does not have moving components.

However, it suffers from some drawbacks such as the degradation of accuracy propor-
tionate to the background light and the limited distance range due to the periodicity of
the modulation signal [109].
A PMD 19k 3D camera is used in acquiring the different views of our 3D object cate-
gory dataset. The PMD 19k camera provides images of 160 × 120 pixels. Each pixel



100 CHAPTER 5. A 2D/3D OBJECT CATEGORY DATASET

Figure 5.3: Phase measurements by averaging mixed reflected and sent-out waveforms
[109].

delivers distance information, distance resolution and grayscale information of the ac-
quired scene. However, the delivered intensity image is of low resolution, which affects
the direct application of some image processing algorithms on them.

5.3 JenaRange01 2D/3D Dataset

An object category dataset of 936 2D/3D images (2D grayscale as well as range data)
of 26 objects (36 images per object) is built using a 3D Time-of-Flight PMD camera.
The objects are instances of three main visual categories (classes): cars, motors and
animals (see figure 5.4). A fourth class is constructed to be used as a background or
a negative class during training and testing. This background class consists of objects
that are visually different from the object instances of the three main classes.
Due to the difficulty to record different outdoor views of real objects using the PMD
camera 2, human made objects (artificial objects) are used to build the dataset. The
instances of each object class are chosen with different size and appearance to achieve
large intra-class variability as much as possible as shown in figure 5.4.

2Settings required to use a PMD camera make it difficult to acquire outdoors views of real objects.
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5.3.1 Dataset Acquisition Process

A sketch diagram of the acquisition procedure is displayed in figure 5.5. A 3D PMD
camera was fixed to a rigid stand about 1.1 meters from its base. A motorized turntable
was placed about 2 meters from the base of the stand. It is noticed by experiments that,
by placing the turntable closer than 2 meters from the camera, the resultant images con-
tain inaccurate distance measurements. For this reason, the size of the objects within
the images is relatively small. The camera was set in a way that the objects appear in
the center of the image when placed at the center of the turntable. White background
was provided by placing the turntable in front of a white wall. The normal lighting
condition of the room was used.
Each object was placed in a stable configuration at approximately the center of the turn
table. The turntable was then rotated through 360 degrees about the vertical axis and
36 2D/3D images were acquired per object; one at every 10 degrees of rotation. Figure
5.6 shows different example 2D images of the three classes.
Figure 5.7 displays the distribution of the mean of range data of each image in the
dataset for the three classes. It reveals that the dataset is not a trivial one despite the
relative small size of the object within the images.
The range data acquired by the TOF PMD camera are stored in binary files with the ex-
tension ”pfm”. Each pixel in the range image is represented by three values: the range
distance, the precision of the range distance and the intensity value of the pixel. The
images acquired by the PMD camera are of resolution 160 × 120 pixels. An example
of image filename of the category car is ”car100090020.pfm” (range data binary file);

• ”car” indicates the category.

• ”1” indicates the object instance number.

• The last two digits ”20” indicates the angle of rotation about the vertical axes.
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(a) (b)

(c) (d)

Figure 5.4: The three visual classes of the new 3D object category database Je-
naRange01. (a) Cars, (b) motors, (c) animals and (d) background (counter-class).
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Figure 5.5: The acquisition procedure of the dataset images.
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(a) (b)

(c)

Figure 5.6: Example 2D images of the dataset for the three visual classes.(a) Cars, (b)
motors and (c) animals.
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Figure 5.7: Distribution of range means of the dataset images for the three object
classes.

5.4 JenaRange02 2D/3D Dataset

A new version of the dataset is constructed and described here. This new dataset is of
4220 2D/3D images (2D colored and range images) of 35 objects and was constructed
using a 3D Time-of-Flight (TOF) PMD camera [79] and a CCD camera. The objects
are instances of five visual classes (categories): cars, toys, cups, fruits and animals (see
Figure 5.8). For each object category, seven individual instances were used. Due to
the difficulty to record different outdoor views of natural objects using the PMD cam-
era, indoor views in an office environment were captured. Artificial objects were used
in replacement of real instances of some visual classes (namely cars and animals) in
building the dataset. The instances of each object class were chosen again with dif-
ferent size and appearance to achieve large intra-class variabilities as much as possible
(see Figure 5.8). Many images of the dataset contain multiple instances of the same
class or from different classes. Moreover, the images contain large viewpoint and ori-
entation variations, partial occlusion (e.g. by other objects) and truncation (e.g. by the
image boundaries) as well as background clutter (see Figures 5.9 and 5.10) .
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5.4.1 Dataset Acquisition Process

The images of the dataset were acquired using two different cameras, a PMD camera
and a CCD color camera which had nearly the same field of view (see Figure 5.9).
This results in two different types of images (color and range) for the same scene as
shown in figure 5.11. The images of each individual object instance were acquired
under eight different viewing angles and four different heights as shown in figure 5.9.
This is accomplished as follows: at each height, each object instance was placed on
a turn table which was rotated through 360 degrees about the vertical axis and eight
colored and range images were acquired; one at every 45 degree of rotation. The total
number of images acquired using each camera is 32 images for each object instance (4
heights × 8 angles). The PMD camera delivers also an intensity image corresponding
to each range image.
The range data are stored in binary files with the extension ”pfm”. The value of each
pixel in the range image is represented by three values: the range distance, the precision
of the range distance and the intensity value of the pixel. The images acquired by the
PMD camera are of resolution 160×120 pixels. For the colored images, they are stored
in ”jpg” formate and are of the size 640×480 pixels.
An example of image filename of the category car is ”c1125.jpg” (colored image) or
”c1125.pfm” (range data binary file);

• ”c” indicates the category.

• ”1” indicates the object instance number.

• ”1” indicates the viewing distance (scale).

• ”2” indicates the viewing height.

• ”5” indicates the viewing angle.
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Figure 5.8: Example images of the five object classes of the new object category dataset
JenaRange02.
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h1-v1 h1-v2 h1-v3 h1-v4

h1-v5 h1-v6 h1-v7 h1-v7

h1-v5 h2-v5 h3-v5 h4-v5

Figure 5.9: Example images of the JenaRange02 dataset at eight different viewpoints
as well as the four different heights.
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Figure 5.10: Example images of the JenaRange02 dataset with occlusion and trunca-
tion.

Figure 5.11: Example range images (using TOF PMD camera) and their correspond-
ing color images (using CCD camera) of the JenaRange02 dataset. TOF PMD cameras
produce reflected images with respect to images produced by CCD cameras.
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5.5 Experimental Evaluation

We establish in this section some experiments in order to evaluate the recognition per-
formance using the new dataset and measure how adequate the dataset is for the GOR.
To fulfill this goal, we evaluate the JenaRange02 dataset using our generic 2D object
recognition model mentioned in chapter 4 using the SIFT-color features combination
(SC). Furthermore, we compare the recognition performance using the dataset to the
performance of the model using the difficult Graz02 dataset.
For the JenaRange02 dataset, a total number of 300 training images is used, 150 images
of the object class and 150 images of the counter-class. A total number of 150 images
are used for testing the model. As the dataset does not contain a separate counter-class,
a combination of images of other object classes are used as counter-class in training
and testing a classifier for an object class. Figure 5.12 shows the instances of each
object class used for training and testing the model. Figure 5.13 (second row) displays
example images used as counter-class to train and test the class animals.
The recognition results of these experiments are shown in table 5.1 compared to the
results of the model using the Graz02 dataset (results displayed in table 4.11 ). Be-
cause each dataset contains different classes with different context, we define an overall
recognition performance for each dataset as the average performance over the object
classes contained in the dataset. The shown in both tables results reveal the difficult
nature of the JenaRange02 dataset compared to a difficult benchmark like Graz02. The
high amount of background clutter, viewpoint and size variations as well as occlusions
make the recognition using the dataset a difficult task. Moreover, the used counter-class
plays an important role here. When a counter-class, which has a completely different
context from the context of the images of object classes (positive examples), is used,
recognition is then more easier. In contrast, when the context of the counter-class im-
ages is almost the same as the images context of the object class, which is the case here,
recognition is getting harder as the background of all images (positive and negative) is
almost the same. For the recognition model to be able to deliver correct classifica-
tion results, it must be able to find and account for small differences exist between
the images. This explains why Caltech 4 is more easier than Graz02, for example.
The following experimental results emphasize this conclusions. We repeated the same
previous experiments, but with using different counter-class for each dataset. For, ex-
periments using JenaRange02 dataset, we used the counter-class of the Graz02 dataset
(see figure 5.13 last row) and for Graz02, we used the counter-class of JenaRange02
(see figure 5.13 second row). The experimental settings are the same as in the previous
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Training Test

Figure 5.12: Object class instances used to train and test the recognition model.

experiment. The recognition results of these experiments are displayed in table 5.2 and
show how easier the recognition is compared to previous experiments. Therefore, the
choice of the counter-class is important for investigating the recognition performance
of models. The use of a counter-class that has images of the same context as the images
of the object class is more realistic and test the robustness of any recognition model.

Table 5.1: Classification rates at ROC-eqq.-err. rates of recognition using JenaRange02
compared to the results using Graz02.

JenaRange02 Graz02
Class Cars Fruits Animals Toys Cups Bikes Cars Persons
Recog.: 70.80 83.30 70.00 56.90 70.80 80.00 77.33 82.67
Average 70.36 80.00
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Training examples (P)

Training examples (N): our dataset

Training examples (N): Graz02 dataset

Figure 5.13: Object class instances used to train and test the recognition model.

Table 5.2: Classification rates at ROC-eqq.-err. rates of recognition using JenaRange02
compared to the results using Graz02. Different counter-classes are used.

JenaRange02 Graz02
Class Cars Fruits Animals Toys Cups Bikes Cars Persons
Recog.: 98.00 98.00 100.00 94.00 98.00 96.00 87.00 90.00
Average 97.60 91.00
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5.6 Conclusions

This chapter has presented our new object category dataset. The dataset has the ad-
vantages over all existing datasets of providing range images of its member classes. In
addition to the range image, it provides 2D images: grayscale or colored. A Time-of-
Flight PMD camera is used in acquiring the range images of the dataset. The dataset
has actually two versions. The first one, JenaRange01, provides 2D intensity images as
well as range images of instances of three different object classes. The dataset contains
inter- and intra-class variabilities as well as large viewpoint variations. However, it
provides images with a single object and without background clutter or occlusion (like
almost all the available range image dataset. Some are mentioned in section 2.4.3).
The second version of the dataset, JenaRange02, overcomes the limitations exist in
JenaRange01 dataset. It provides 2D colored and intensity images, beside the range
images. It contains images of five different visual classes with large intra-class variabil-
ities among the classes. Its images contain large degree of size and viewpoint changes
as well as background clutter and occlusion. Moreover, the dataset provides context
independent images. It is hard to recognize objects from context using this dataset as
almost all the images of the different object classes have the same context. Therefore,
the use of this dataset offers real performance measure of recognition models. How-
ever, JeanRange02 dataset could be used not only for GOR from range images but also
form 2D images. Additionally, it could be used for 2D and 3D object recognition tasks
as well.
The construction and existence of this dataset would encourage the researchers to ex-
ploit range images for GOR. We were the first to tackle this difficult problem by our
model, which will be presented in the next chapter.



Chapter 6

A Model for Generic 3D Object
Recognition

With the aid or our new dataset which provides range images of different object classes,
dealing with GOR from range images is now possible. This chapter addresses the
more difficult problem of generic 3D object recognition and presents our model for
recognition of generic 3D object classes from range images, which exploits simple
local shape features extracted from range images for recognition. As in the previous
2D framework, Boosting is the main learning technique. Experimental evaluations are
established showing the reasonable performance of the new recognition model.

6.1 Motivation

One goal of computer vision research is to give computers human-like visual abilities
so that machines can sense the environment in their field of view, understand what is
being sensed and take an appropriate action as programmed. The existence of a work-
ing vision system, the human visual system (HVS), has encouraged the researchers to
try to develop an artificial vision system that performs somehow like it. For the ma-
chine, the ability to recognize objects in the surrounding environment is very important
and since we live in a 3D world, recognizing 3D objects is the most important and dif-
ficult part of the object recognition problem in general. This difficulty arises from the
infinite viewpoint variations possible for objects in the 3D real-life.
Many approaches addressed the recognition of specific 3D object either from appearance-
based information extracted from 2D images such as [12, 107] or from range images

113
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with the aid of shape information such as [88, 53]. An overview of some of the ap-
proaches is given in chapter 3.
However, the generic recognition of 3D objects is a more challenging extension to the
original problem of GOR. Most of the recent researches and approaches in GOR have
focused on modeling the appearance and shape variability of objects with limited num-
ber of changes in viewing point (e.g. [43, 81, 151]). One main reason is that the most
current object category datasets contain images with small variations in viewing point
(e.g. Caltech 4 and UIUC cars).
A small number of research has investigated the problem of generic 3D object recogni-
tion. One of these approaches is presented by Savarese and Fei-Fei [130] and described
in section 3.2.3. Savarese and Fei-Fei [130] also introduced a new 3D object dataset [6]
which provide only 2D images of different 3D object classes (refer to section 2.4.1 for
more details about the dataset). However, our approach for generic 3D object recog-
nition [62] is totally different from the approach of [130]. The main difference is that
range images are used in our proposed approach, which is not the case in [130] as they
use 2D images. Furthermore, only surface shape features are used here to represent the
instances of the object classes while no appearance information is used as in [130].
Another approaches are presented by Sun et al. [138] and Su et al. [137] which
used also information extracted from 2D images for recognition and made use of the
dataset of Savarese and Fei-Fei [130]. Section 3.2.3 present more details about these
approaches.
Another approach, which is closer to our work, is described in [129]. The approach
developed to recognize objects belonging to a particular shape class in range images as
mentioned in section 3.2.3. Although our approach agrees with this one in that surface
shape descriptors are used to represent the object classes in real range images, there
exist main important differences between the two approaches. First, a combination of
three different simple local surface features is used in our approach as a representation
of the instance of the different object categories. Second, learning is performed here
using boosting which is different from the learning technique, namely Support Vector
Machines (SVM), used in [129] . Moreover, a dataset of real range images and of real
different object categories is used in our approach (our dataset JenaRange01), while
in [129], a dataset of range images of objects made of clay is used. Their dataset is
then enlarged by applying deformations to the original clay objects to offer intra-class
variabilities . In contrast to [129], our dataset contains large intra-class as well as inter-
class variabilities, so it is not necessary to apply any deformation to enlarge it (see
figure 6.1).
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Figure 6.1: Example images of the dataset used in [129] and our dataset JenaRange01.
The first column(left) shows instances of shape classes mad of clay used in [129].
The second column (right) shows example images of instances of object classes in
JenaRange01 dataset.

Addressing the problem of generic 3D object recognition form range images is the
main contribution presented in this chapter. Up to our knowledge, no other recognition
approaches developed to tackle this difficult problem. However, this chapter presents,
additionally, more contributions. The way range images are handled in our recognition
model is usually used for 2D images and is different from the way accomplished by
all other approaches which used range images for recognition. The recognition frame-
work in general is suited for recognition from 2D images and never been applied for
recognition from range images (as far as we know).
Section 6.2 provides an overview of the main steps of the proposed recognition model.
Experimental evaluations of the recognition model are presented in section 6.3 with
investigating the performance of the model concerning different important aspects of
3D object recognition.

6.2 The Recognition Model

6.2.1 Overview

In this section, the main idea of the proposed generic 3D object recognition model is
explained. Figure 6.2 provides a semantic view of the main components of the pro-
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posed model. This model consists of three main steps. First, an affine interest point
detector is applied to the intensity images to detect a set of interest regions. The de-
tected interest regions are extracted together with their corresponding 3D depth data.
Second, simple local surface shape features are computed from the extracted 3D re-
gions. Finally, boosting, namely the RealAdaBoost algorithm [133], is used to learn
these simple shape features for each object class. The choice of the RealAdaboost al-
gorithm here is based on the evaluations results presented in section 4.5.
The idea of the proposed model, which is combining and boosting interest point detec-
tor together with local descriptors for recognition, is normally used for generic recog-
nition tasks using 2D images and has never been applied to range images. Actually,
we adapted our model for generic 2D object recognition proposed in chapter 4 to make
it suitable for the new recognition task. This is accomplished by adapting the interest
point detection step to make it suitable for the new image type (range images). More-
over, a representation, which meets the characteristics of the range images, is used
(shape representation in the form of simple local shape descriptors).

6.2.2 Preprocessing and Interest Regions Detection

Preprocessing: The range data of a TOF chip (in our model PMD) has statistical
noise. In order to filter this noise and smooth the range data, a preprocessing step by
applying median filter is first performed as in [54]. Furthermore, an initial histogram
normalization is applied to the PMD intensity images to enhance their low contrast and
improve the interest points detection process.

Interest Regions: An implementation of the Hessian affine-invariant region detector
developed by [99] is used to detect and extract interest regions from the 2D intensity
images corresponding to range images delivered by the TOF camera. Afterwards, the
3D regions corresponding to the detected points are extracted. Figure 6.3 gives an
overview of the point detection procedure.

6.2.3 Local Features Computation

Range images have the advantage of providing direct information about the shape of
objects. Therefore, it is wise to make use of this advantage and give preference to
features that capture different aspects of this shape. Local shape descriptors (LSD) are
preferable as they provide some robustness to clutter and occlusion. There are differ-
ent LSD features in the literarture (some of them are described in section 2.1.2). The
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Figure 6.2: The proposed generic 3D object recognition model.

most famous one is the Spin Images presented in [70]. Spin Images are, as mentioned
in section 2.1.2, a 2D histogram of of the cylindrical coordinates of its surrounding
points. Spin Images have shown robustness to occlusion and noise in the experiments
reported in [70, 97]. However, long and extensive computation time is required to to
obtain accuracy when computing the images. Moreover, the complexity of the images
increases with the increase of the size of the dataset. The Point Signatures [32] is an-
other LSD, which is a one dimensional signature that describes the surface surrounding
a point. However, Point Signatures descriptor lacks accuracy, is sensitive to the trans-
lation of the views and requires high computational complexity. More LSD descriptors
are mentioned in section 2.1.2.
Hetzel et al. [63] introduced and used three shape-specific local feature histograms
for the task of free-form specific 3D object recognition. The features are namely:
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Figure 6.3: The process of interest points detection in the used range images.

pixel depth, surface normals and curvature. The main advantages of these features are
that they are easy to calculate, robust to viewpoint changes and contain discriminative
information [63]. The mentioned advantages of the features together with the good
performance they revealed in [63] for specific 3D object recognition are the reasons to
use them and investigate their suitability and robustness for the more difficult problem
of generic 3D object recognition. Following, a brief description to these features is
given.

Pixel Depth

The distance to the object provided by the PMD camera is the simplest available fea-
ture. Computing a histogram of pixel distances provides a simple feature which is
invariant against translations and image plane rotations and at the same time gives
valuable cues about the shape of the object. However, if there are large and abrupt
changes of the depth range, e.g. due to occlusion effects, the whole histogram will
be shifted and the recognition might no longer be guaranteed. For this reason, pixel
distances histogram can be relied on for the recognition of objects with sufficient depth
range [63]. In this work, a histogram of 64 bins of pixel distances is calculated and
used.
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Figure 6.4: Representation of normals in sphere coordinates [63]

Surface Normals

Surface normals can be easily calculated from the first derivative of the image. A
representation of surface normals as a pair of two angles (φ, θ) in sphere coordinates
is presented in [63] (see figure 6.4). This representation is shown to spread over as
possible of the available histogram range without having a bias for certain regions
[63]. The angles can be calculated as follows:

φ = arctan(
nz

ny
), θ = arctan

√
(n2

y + n2
z)

nx
(6.1)

A two dimensional histogram of size 8 x 8 bins of the of two angles is computed and
used.

Curvature

Surface curvatures can be calculated either from the first and second derivatives or as
the rate of change of normal orientations in a certain local context region. The pair
of Gaussian curvature K and mean curvature H provide only a very poor representa-
tion, since the values are strongly related [63]. Instead, the shape index representation
introduced in [76] and modified in [36] can be used. The representation is given as
follows:

SI =
1
2
− 1

π
∗ arctan

kmax(p) + kmin(p)
kmax(p)− kmin(p)

(6.2)
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where kmax(p) and kmin(p) denoting the principle curvatures around the point p. The
shape index SI has the range of [0, 1], and every distinct surface shape corresponds to a
unique value SI (except for planar surfaces, which is mapped to the value 0.5, together
with saddle shapes) [63]. The shape index is invariant to translations, but due to limited
resolution, it varies with image plane rotations and scale changes [63]. A histogram of
shape index of 64 bins is used.

6.2.4 Learning Model

RealAdaBoost algorithm (algorithm 2) is used for learning in our model. The weak
learner used here is the same used in section 4.2. However, some modifications are
applied to make it cope with combining three descriptors. Moreover, weak hypothe-
ses are selected from positive examples only, while in the weak learner presented in
section 4.2 as well as in [113], weak hypotheses are selected from positive and nega-
tive examples. Selecting hypotheses from only positive examples has the same (if not
better) performance as selecting them from both positive and negative examples 1, and
requires less computation time.

6.3 Experimental Evaluations and Results

The JenaRange01 dataset is used in all experiments accomplished to investigate the
recognition performance of the model. Four sets of experiments are performed to
evaluate the performance of the proposed recognition approach with respect to four
recognition aspects:

1. The generic recognition ability of the approach.

2. Evaluate the recognition performance with respect to view point change of ob-
jects (specific recognition of objects).

3. Test the performance of the generic recognition with viewpoint change.

4. Test the performance of generic recognition in scenes with multiple objects (with
the presence of background clutter and occlusion).

RealAdaBoost algorithm is run for T = 150 iterations. The model’s performance
is evaluated using the Receiver-Operating-Characteristic curve (ROC). Moreover, The
ROC-Equal-Error rate is computed for each curve.

1This is experimentally tested.
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Figure 6.5: Instances of the object classes of the JenaRange01 dataset used for training
and testing the recognition model. Yellow rectangles indicate the instances of object
classes used for training while blue rectangles indicate instances used for testing for
each classes.

6.3.1 Experiment 1: Generic Recognition Performance

In this set of experiments, the generic recognition ability of the recognition model is
investigated. The object instances used to train the model are different from those used
for testing. Figure 6.5 displays the instances used for training and testing for each ob-
ject class. A total number of 200 images is used for training the model: 100 training
images of instances of the object class (positive examples) in addition to 100 training
images of the background class (negative examples). A test set of 100 images is used:
50 images of a novel instances of each object class and 50 images of the background
class.
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Table 6.1: ROC-eqq.-err. rates of the generic performance of the used three object
classes (Experiment 1).

Object class Depth Normals Curvature Combination
Cars 80.00 96.00 80.00 98.00

Motors 94.00 92.00 88.00 98.00
Animals 94.00 92.00 88.00 100.00

Figure 6.6 displays the ROC curves of the recognition results the object classes, while
the ROC-Equal-Error rates are presented in table 6.1. The performance of each de-
scriptor used independently for recognition is also displayed in table 6.1 to show the
performance gain of combining them together for recognition. The model achieves a
high recognition performance on the three used object class. Although the used range
images do not contain complex scenes, some difficulties are imposed on the recogni-
tion task due to the small size of objects in the images. Detailed variations between
different object classes are not clear which makes recognition and classification hard
tasks, even for humans (see figure 5.6).

6.3.2 Experiment 2: Recognition Performance with Respect to Viewpoint
Change

For a recognition model for 3D objects, recognition of objects from different view-
points should be robustly achieved. This set of experiments are aimed to test the recog-
nition performance when the viewpoints of objects are different in training and testing.
No generic recognition performance is measured in these experiments. This means
that, instances of each object class used for training and testing the model are the same.
However, the viewpoints of instances used for training are different from those used for
testing. Figure 6.7 displays example images used for training and testing the model.
The number of training and testing examples is the same as that is used in the previous
experiments. The model is able to recognize all test examples of each object class with
ROC-Equal-Error rates equals to zero despite the viewpoint change. This means that
the proposed model is able to recognize objects independent of the given viewpoint.
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Figure 6.6: The ROC curves of the three classes on the generic recognition task (ex-
periment 1).

6.3.3 Experiment 3: Generic Recognition Performance with Respect to
Viewpoint Change

In this experiments, we investigate the generic recognition of the model with respect to
viewpoint change. This means that, the instances of each object class used for training
are different from those used for testing (as done is experiment 1). Moreover, the
viewpoints of training instances are different from the viewpoints of the test instances
for each object class. A total number of 100 training examples is used: 50 images of
instances of each object class in addition to 50 images of the background class. A total
number of 50 test examples are used to test the model. Figure 6.8 displays example
of test images used in this set of experiments, while examples of training images are
displayed in figure 6.7 (a). The results, which are displayed in table 6.2 shows that the
generic recognition performance of the model is robust with respect to the viewpoint
change of the objects.



124 CHAPTER 6. A MODEL FOR GENERIC 3D OBJECT RECOGNITION

(a)

(b)

Figure 6.7: Example training and test images for experiments 2. (a) Example training
images of the class cars. (b) Example test images of the class cars. The object instance
is the same while the viewpoints are different from those used for training.

6.3.4 Experiment 4: Generic Recognition in Scenes with Multiple Ob-
jects

Almost all the approaches that depended on range images for recognition used images
with only a single object and without any background and occlusion (e.g. [88, 53, 63,
129]) . This is due to the reason that all range image datasets provide images with only
a single objects in the scene. However, in this set of experiments we aim to evaluate
the effect of background clutter and occlusion on the recognition from range images.
Of course, degradation in recognition performance is expected. However, the degree
of this degradation is to be measured.
For accomplishing this task, a new set of test images for each object class is recorded
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Figure 6.8: Example test images used in experiment 3.

Table 6.2: ROC-eqq.-err. rates of the generic recognition performance of the used three
object classes with respect to viewpoint change (experiment 3.

Object class ROC-equal-error
Cars 98.00

Motors 96.00
Animals 100.00

(see figure 6.9) . These new test images contain occlusion and background clutter by
placing instances of each object class (different from the instances used in training)
together with instances of new previously unused object classes. A total number of
36 range images from different view points are then recorded for each object class.
No new training is performed in this set of experiments. The trained model of section
6.2.3, where the used images are with only single object, is tested using the new test
images. A total number of 100 test images is used: 50 positive images and 50 negative
images. The ROC curves of the recognition results are shown in figure 6.10 and the
ROC-Equal-Error rates are displayed in table 6.3.
Obviously, the recognition performance in these experiments degrades, compared to
the previous experiments due to the presence of occlusion and clutter. However, high
deterioration in performance did not occur. Beside that, the low resolution of the inten-
sity images of the PMD camera affects the detection performance of the point detector,
which influences in turn the categorization performance. Figure 6.11 displays exam-
ples of incorrectly classified images (false negatives). We can notice from the figure
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Figure 6.9: Example of the images recorded for the task of recognition in scenes with
multiple objects.

Table 6.3: ROC-eqq.-err. rates of recognition using complex scenes for the used three
object classes.

Object class ROC-equal-error
Cars 82.00

Motors 84.00
Animals 80.00

that it is difficult to identify the different objects in the images, which gives more in-
sight on how difficult the problem is, even for humans.
Another important aspect concerning the recognition model is the computational time
needed for the training the testing processes. The average training time of the model is
approximately 26 minutes for each object class while the test time for a whole test set
is approximately one minute for each class.
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Figure 6.10: The ROC curves of the three classes on the categorization with the pres-
ence of clutter and occlusion task.

Figure 6.11: Examples of incorrectly classified images (false negatives) of experiment
4. Images form the class cars (first row), motors (second row) and animals (third row)
which are classified as to belong to the background class.
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6.4 Conclusions

In this chapter, we have presented a novel model for generic recognition of 3D objects
from range images. This model is considered to be the first one to tackle this diffi-
cult problem. The main framework of the model consist of three main steps: interest
point detection in range images, features extraction and learning. A combination of
three simple local shape descriptors has been used for recognition and has shown to
be profitable. Boosting was the underlaying learning technique for binary learning and
classification. Our dataset, JenaRange01, has been used for the learning and evaluation
processes in the model.
The general recognition performance of the model was promising. The model has
shown robust performance for the generic recognition of the different objects instances
with different viewpoints. Moreover, the recognition using images with multiple ob-
jects was satisfactory. However, the small size of the objects within the used images
imposed difficulties in recognition . Moreover, the low resolution of the intensity im-
ages of the TOF PMD cameras had some effect on the correct detection of interest
points, especially in the experiments with multiple objects in the images. One solution
to this problem is to use a high resolution intensity images by combining the PMD
camera with a 2D camera of high resolution images (e.g. [122] ). Another solution is
to combine different information cues, such as appearance information, with the range-
based information for improving the recognition performance.
The model has shown good performance for the binary classification task. However,
multi-learning and classification of 3D objects is more difficult, but realistic mission
which should be investigated.



Chapter 7

Multi-Class Recognition

In this chapter, we extend our generic 3D recognition model presented in chapter 6 to
cope with the task of recognizing many different object categories. An overview of the
model is given, with focusing on the multi-class learning step which is accomplished
with boosting. Experimental evaluations of the multi-class recognition model are per-
formed and improvement suggestions are presented, experimented and discussed.

7.1 Motivation

The previous chapter has presented a model for generic 3D object recognition from
range images. The model has revealed good performance for the binary learning and
classification task. However, an important goal for the machine vision in general is to
build a system which is able to recognize many different object categories in a cluttered
world. Although the main problem of generic object recognition remains unsolved,
some progress has been made on restricted versions of this goal (multi-class learning
and classification) 1

There are different GOR models developed for multi-class learning and recognition
such as [144, 115, 130]. Some of these approaches are mentioned in section 3.2.4.
Our model [61] differs from the models presented in [144, 115] in that, these models
address the problem of generic 2D object recognition, where our model addresses the
problem of generic 3D object recognition. Moreover, information extracted from 2D

1This is for the case of generic 2D object recognition. For generic 3D object recognition problem from
range images, this is the first model (up to our knowledge).

129
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images, either appearance-based [144] or shape-based [115], is used by these mod-
els. The multi-class recognition approaches presented in [130, 131, 138, 137] perform
generic 3D object recognition like in our model. However, they do not use any range-
based information in their recognition.
The main contribution presented in this chapter is introducing a model for multi-class
learning and recognition of 3D objects from range images. Section 7.2 presents the
main steps of the proposed multi-class recognition model. Experimental evaluations
are performed in section 7.3 to asses the recognition (categorization) performance of
the model. Improvements to the model are suggested and explained in section 7.4 by
using grid samplingfor range images.

7.2 Multi-Class Recognition Model

7.2.1 Model Overview

The main framework of the model is almost the same as the one presented in 6.2. How-
ever, since the model presented here aims to perform multi-class learning and recog-
nition of generic classes of 3D objects instead of just performing binary classification,
the learning step is different from the one presented in 6.2. A Boosting algorithm for
multi-classification task is used. All other main steps of the model remain the same as
in the recognition model described in section 6.2 (see figure 6.2).

7.2.2 Learning Model

As previously mentioned, the recognition model performs multi-class learning and
classification of object categories. In this case, a set of N labeled training examples
(Ii, li) for i = 1 . . . N of C object classes are given, where the instances Ii are in
some domain χ and the labels li ∈ 1, .., C. The task is to decide the class category
c ∈ {1, .., C} of an object presented in a new test image. This recognition task is also
called categorization
Boosting is the underlaying learning technique. Authors in [144] presented a boost-
ing algorithm, namely the Joint Boosting algorithm, for multiple objects classification
which depends on training multiple binary classifiers at the same time and sharing fea-
tures among them. The algorithm has the advantage that less training data is needed
since many classes can share similar features. Learning in our model is based on the
Joint boosting algorithm. In contrast to [144], in our model, combined features are
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shared among the classes instead of sharing a single feature. This is done through the
weak learner used by our learning model, which is different from the one used in [144].

Joint Boosting algorithm

The idea of the Joint boosting algorithm is presented in section 2.2.1. We adapted the
JointBoosting algorithm to cope with our different features and with learning shared
features instead of learning single feature. Algorithm 7 gives a summarization to the
modified version of algorithm. The weak learner used in our learning model is the one
mentioned and used in 6.2.4. However, some modifications are applied to it to make it
support feature sharing among classes.
Instead of exploring all 2C − 1 possible subsets Sn of the jointly trained classes C,
we employ the maximal greedy strategy described in [144] where authors have shown
that this approximation does not reduce performance dramatically. This starts with the
first class that achieves alone the best error reduction. Then we select the second class
which has the best error reduction jointly with the first class. We keep adding classes
till all classes have been added. At the end, the set from the considered C with the
largest error reduction is chosen.
In the recognition step, for each classes subset Sn, we sum the output of the weak
learners associated with this subset to get a strong learner for Sn dented GSn(It) =∑Tn

m=1 hn
m ( It is test example). Afterward, for each class c, we find all subsets Sn that

contain c and sum their strong learners to compute the final strong classifier H(It, c).

Shared Weak Hypothesis

For the classes c ∈ Sn, a weak hypothesis for each class is computed. Then, the weak
hypothesis which classifies the set of classes Sn against other classes ( i.e. c /∈ Sn ) with
the lowest error is chosen to be shared among this set of classes Sn. For computing the
weak hypotheses, the weak learner mentioned in section 6.2.4 is used.

7.3 Experimental Evaluation

7.3.1 Experimental setup

The presented recognition model is evaluated experimentally to analyze its benefits and
limitations. The performance is measured in three cases:
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1) Initialize the weights wc
i = 1 and set

H(Ii, c) = 0, i = 1 . . . N, c = 1 . . . C.

2) Repeat for k = 1, 2, . . . T

a) Repeat for n = 1, 2, . . . 2C − 1

i) Train weak learner using distribution wn and returns
a weak hypothesis hn

k(c).

ii) Evaluate the error

Jwse(n) =
C∑

c=1

N∑
i=1

wc
i (z

c
i − hn

k(Ii, c))2

.

b) Find best subset: n∗ = argminnJwse(n).

c) Update the class estimates:
H(Ii, c) := H(Ii, c) + hn∗

k (Ii, c).

d) Update the weights: wc
i := wc

i e
−zc

i hn∗
k (Ii,c).

Output: a strong hypotheses H(It, c) =
∑O

o=1 G
S(n)
o (It)

where O is number of subsets n : c ∈ S and
GS(n)(It) =

∑Tn
m=1 hn

m.
Algorithm 7: Modified Joint boosting algorithm [144]. Ii is
the ith training example,It is test example zc

i ∈ {−1,+1}
are labels of class c and wc

i are the unnormalized example
weights. N is the number of examples and T is the number of
boosting iterations.

1. Classes are independently learned. A binary classifier of each class against other
classes is run independently.

2. Classes are learned jointly without feature sharing. This means that, in algorithm
7 the given classes C are investigated instead of investigating subsets of the
classes. Accordingly, step (a) in algorithm 7 is changed to n = 1, 2, . . . C. In
this case, a weak hypothesis to distinguish this class only from other classes is to
be found. The class, in which weak hypothesis achieves the best error reduction,



7.3. EXPERIMENTAL EVALUATION 133

is then chosen and the weights distribution of this class is updated.

3. Classes are learned jointly with feature sharing as shown algorithm 7.

In all experiments, the number of training iterations (number of weak hypotheses) is
fixed to T = 150 and is independent of the number of classes. In contrast to the learn-
ing model in [144], we are not searching and comparing the learning effort for a certain
error rate, but we report the ROC-Equal-Error rate for a certain learning effort, namely
T weak hypotheses. All experiments are performed using our new object category
dataset JenaRange02, which is a difficult one as shown in 5.6. However, recognizing
the object classes of this dataset using only range information is expected be more dif-
ficult than the recognition using the appearance information. We use the five classes:
cars, fruits, animals, toys and cups. Figure 7.1 shows the instances of each class used
for training and testing the model. The number of training examples for each class
is 100 examples, which results in a total of 500 training examples. For testing, 60
examples per class (images of new instances) are used (a total of 300 test examples).

7.3.2 Results

Table 7.1 displays the categorization performance of the model over the used object
classes. As expected, categorization of the dataset using only range information is a
hard task, and the task is getting harder when multi-class recognition is aimed. The
difficulty of multi-class recognition from range images is due to different reasons:

1. The dataset is in general a difficult one, with high percentage of background
clutter and occlusion. The context of images of the different object classes is
almost the same, which make categorization more harder 2.

2. Another reason is the low resolution of the intensity images of the TOF cam-
era, which are used for point detection in range images. This low resolution of
the images (which are, additionally, full of background clutter) affects the detec-
tion performance of the point detector and influences, in turn, the classification
performance.

3. Moreover, the noisy nature of the TOF range images affects the construction of a
clear shape representation for each class, which has an effect on the recognition
performance.

2Results provided in 5.6 emphasize this.
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Training Test

Figure 7.1: Instances of the different object classes used to train and test the recognition
model.

Figure 7.2 shows examples of incorrectly classified images from each object class,
where columns represent true classes and rows represent predicted classes. We can no-
tice from the figure that the failure in classify some images is due to the existence of an
instance (or instances) of the predicted object class in the images such as the image of
animals (figure 7.2, second row). It is classified as containing fruits which is not wrong
as it actually contains an instance of the class fruits. Another examples are the animals
image (figure 7.2, fourth row) and the cars image (figure 7.2, last row)). However, the
previously mentioned reasons 2 and 3 are behind the classification failure in the other
images.
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Table 7.1: Classification performance at the ROC-Equal-Error rates of the multi-class
recognition using range-based information. The model is either trained jointly with
feature sharing (Joint (Sharing)), jointly without feature sharing between the classes
(Joint (No sharing)) or independently (Independent). The last column represent the
average classification rates over the five classes.

Descriptors Cars Fruits Animals Toys Cups Avg. recog.
over classes

Joint (Sharing) 60.00 45.00 56.00 74.00 65.00 60.00
Joint (No Sharing) 58.30 50.00 68.30 81.70 63.70 64.40
Independent 66.00 57.00 75.00 76.00 68.40 68.50

Joint vs. Independent Learning: Results is table 7.1 show that sharing features
among the different object class does not significantly improve the categorization per-
formance of all the object classes as expected. Joint learning without feature shar-
ing achieves in contrast better performance while independent learning of the class
achieves the best performance over almost all classes. This is also clear from table
7.2, where the confusion matrices of the categorization with each different learning
procedure is presented. In the case of joint learning with feature sharing, there is high
amount of confusions between the classes. This confusion is reduced when learning is
performed jointly but without sharing features. However, independent learning yields
less amount of confusion than the other two learning procedures.
The use of point detection in the TOF intensity images is not done in a proper way
as we mentioned, and this affects in turn the categorization performance. Therefore,
another region sampling method for range images is required for improving the cate-
gorization performance. Next section presents a method for sampling range images on
a dense regular grid, which will achieve some performance improvement.
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Cars Fruits Animals Toys Cups

Figure 7.2: Examples of incorrectly classified images from JenaRange02 dataset using
range-based information. Columns represent true (actual) classes while rows represent
predicted classes: cars (first row), fruits (second row), animals (third row), toys (fourth
row) and cups (last row).
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7.4 Dense Grid Sampling of Range Images

As we mentioned before, intensity images delivered by TOF camera are of low reso-
lution, which affects the direct application of some images processing techniques such
as interest point detection, and which affects in turn the recognition processing. Al-
though our model of recognition from range images, which depends on point detection
for range image representation as mentioned in section 7.2.1, achieves reasonably good
performance (taking into consideration the difficulty of the original problem) perfor-
mance improvement is needed. Finding another way to sample local regions for range
images can improve the performance. One option is the use of a suitable 3D point
detection algorithm, where a set of 3D salient points are to be detected in the range
images and the corresponding 3D regions are extracted and described using a suitable
description method. This sampling method (3D point detection) used by different ap-
proaches for specific 3D object recognition such as [88]. However, the noisy nature of
the TOF range images is expected to prohibit the 3D point detection algorithm from
working in the prober way and hence delivering the expected performance.
Some approaches for object and scene recognition such as [104] do not depend on point
detection methods for locally sampling the images. This is for two reasons: 1) keypoint
detectors are considered sometimes to be not repeatable enough in case of object cate-
gories which have large intra-class variabilities [104] and 2) they do not always detect
all important regions and information in images which can help for delivering better
performance. These approaches used different methods for local region sampling such
as on dense grid. In sampling local regions form images on a regular dense grid, the
2D images are divided into dense grid of uniformly spaced cells (patches) on which the
local descriptors are afterwards computed as in [26]. We follow the approach of [26]
and use the dense grid representation for locally sampling the images. However, we
differ from the approach in [26] in that they apply this sampling method on 2D images,
while we use it for sampling range images.
Now, range images in our recognition model are divided into square patches of size
N × N . The patches are spaced by M size on a regular grid. The patches do not
overlap when N = M and do overlap when N > M . Figure 7.3 shows an example of
the grid sampling of range images, while figure 7.4 gives an example of a range image
with grid sampling at different values of the parameters N and M .
After the process of grid computation, the three different local shape descriptors are
computed from the resultant 3D grid patches and the learning process goes further in
the same manner as the procedure described previously in 7.2.1.
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...

Range 
Images

Grid Computation Grid 3D Patches 
Description

Figure 7.3: Example of range images description using dense grid.

7.4.1 Experiments and Results

Now, we evaluate the performance of our recognition model for generic 3D object
recognition with the dense grid sampling of range images. The experimental setup of
the following experiments are the same as described in 7.3.1.
The parameters N and M are important for the dense grid sampling as mentioned
in [26]. Therefore, the first set of experiments is aimed to asses the effect of the
values of both parameters on recognition performance of the model. Learning the
different object classes in this set of experiments is performed independently. Fig-
ure 7.5 (a) displays the model’s performance at different values of the patch size
N = {5, 7, 9, 11, 13, 15, 20}. The value of the spacing size M is set in these ex-
periments equal to N , which means that there is no overlap between the grid patches.
The performance is measured as the average classification rates at ROC-Equal-Error
rate of the used object classes. We can notice from the figure that the performance
increases progressively with the increasing of the value of N until N = 15 and then
slightly drops off. To asses the effect of the parameter M , which controls the spacing
between grid patches and hence controls if there is overlapping or not among them, we
repeated the experiments at two different values of N = {15, 20}, namely the values
where the best recognition performance is archived in figure 7.5 (a). The values of
M are varied to asses the performance at two cases: overlapping (M < N ) and non-
overlapping (M = N ) among the grid patches. Figure 7.5 (b) displays the results of
these experiments. At N = 15, allowing overlapping among the grid patches achieves
almost the same results as without overlapping, while allowing overlapping among the
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Range Image

 
N = M = 5 N = M = 9

N = M = 13

Grid Computation

N = 13, M = 8

Figure 7.4: Dense grid sampling for range images: show grid computed with different
values of patch size N and spacing size between patches M . No overlap between
patches when N = M . When N > M e.g. N = 13 and M = 8, patches are
overlapped.

patches achieves better over all performance (75.6%) at N = 20 .
All previous experiments are performed with independent learning of the object classes.
We repeated the experiments with learning the classes jointly with feature sharing and
jointly without feature sharing respectively. The value of N is set to 20× 20 and with

overlapping among the grid patches (M =
N

2
) in all experiments.

The recognition results in the form of classification rates at the ROC-Equal-Error rate
using the test set are displayed in table 7.4 while table 7.3 displays the confusion tables
of recognition using the test data. Again, independent learning of the object classes
achieves better performance than the joint learning in general.
Figure 7.6 displays a comparison of the model performance using the range image sam-
pling with the two different methods: point detection and dense grid. It can be noticed
from the figure that the use of grid sampling improves the recognition performance
over almost all classes for all different learning procedures. However, for the classes
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(a) (b)

Figure 7.5: Effect of the parameters N and M on the recognition performance of the
model: (a) Effect of patch size N with no patches overlap (N = M ). (b) Effect of
patch spacing size M with M set to values allowing overlapping and non-overlapping
between the grid patches. The values of N are chosen from results displayed in (a)
where the best two recognition rates are achieved.

animals and cups, the use of point detection for range images sampling achieves better
performance than using dense grid.
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Table 7.4: Classification performance at the ROC-Equal-Error rates of the multi-class
recognition using grid representation of range images. The dense grid patches are

of size N = 20 × 20 with patches overlap (M =
N

2
). The model is either trained

jointly with feature sharing (Joint (Sharing)), jointly without feature sharing between
the classes (Joint (No sharing)) or independently (Independent). The last column rep-
resent the average classification rates over the five classes.

Descriptors Cars Fruits Animals Toys Cups Avg. recog.
over classes

Joint (Sharing) 58.33 75.00 57.00 93.00 56.70 68.00
Joint (No Sharing) 73.30 73.30 61.70 93.30 66.30 73.52
Independent 73.00 90.67 55.00 91.67 66.70 75.41

7.5 Conclusions

This chapter has presented an idea for extending our model for generic 3D object recog-
nition from range images introduced in chapter 6 to the the multi-class learning and
recognition case. Based of the idea of the Joint Boosting algorithm of [144], we ex-
plored how range-based information can be shared among different object classes. The
experimental evaluations of the recognition model have revealed promising categoriza-
tion performance. However, feature sharing among different classes seems to be not
suitable for learning in our case, as it does not show significant performance gain. This
could be due to different reasons. Either the features used for recognition do not sup-
port feature sharing in a proper way or the inter-class variabilities among the different
object classes is high in that sharing features among them is not useful.
Suggestion for performance improvement by using dense regular grid sampling for
range images has also been proposed, experimented and evaluated. However, this way
of locally describing range images is never been applied before. The use of this sam-
pling method has resulted in notable categorization performance gain.
In general, we think that the performance of the proposed generic 3D recognition from
range images model is good. However, there are different drawbacks of the model
which need to be improved. These drawback appear more in the multi-class recogni-
tion case. One of these drawbacks is that the used descriptors are simple and do not
help to form a good shape representation for each object class. This is clear from the
amount of confusion among the different object classes. Of course, part of this confu-
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sion is also due the noisy nature of the used range images in general. However, the use
of more robust shape descriptors would improve the performance.
Since our model is considered to be the first one in its area, there is no room of compar-
isons available to to be able to further asses its performance. However, the existence
of our new datasets as well as our models will encourage the researchers to tackle
this problem. In this time, assessing the recognition performance through comparisons
would be possible.
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Figure 7.6: Comparison of multi-classification results between the range images sam-
pled using points detection (Point) and dense grid (Grid) respectively. Learning is per-
formed either jointly with feature sharing (JS), jointly without feature sharing (JNS))
and independently (Indp) respectively.
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Chapter 8

Fusion of Appearance and Range
Information

In this chapter, we investigate how different information cues could be combined
for generic 3D object recognition. We present a model which exploits a fusion of
appearance-based information extracted from 2D images and range-based information
extracted from range images for multi-class generic 3D object recognition. First, we
show how these different information cues are combined. Then, we investigate and
evaluate the categorization performance achieved by this information fusion.

8.1 Motivations

In chapters 6 and 7, we have presented our novel model for generic 3D object recogni-
tion from range images which has revealed promising performance in both binary and
multi-class recognition cases. However, performance improvements are still required
and needed. The model is solely dependent on simple representations of objects shape
extracted from range images. However, as already shown in [162, 111, 153], the use of
complementary features lead to performance gain. Hence, we combine different com-
plementary features which represent appearance and shape information of the different
object classes for recognition and categorization.
Many different approaches used a combination of different information cues for GOR.
Opelt [111] presented a hybrid recognition model that combines region based appear-
ance information with shape information based on their boundary fragments model
(BFM). The used different information are extracted from 2D images. They also used
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boosting, namely the AdaBoost algorithm, for learning a binary classifier for each
class. Zhange et al. [162] combined local texture features, (PCA-SIFT), global fea-
tures (shape context) and spatial features extracted from 2D images within a single
multi-layer AdaBoost model for object class recognition. Moreover, Viola et al. [153]
combined appearance and motion information extracted from videos for pedestrian
recognition.
Our recognition model [61] differs from all other approaches in that, a combination of
range-based information and appearance based 2D information is used for generic 3D
object recognition, while most of the approaches make use of a combination of com-
plementary information extracted from only one information source ( e.g. 2D images
as in [111] or videos as in [153] ). The combination of these different information cues
extracted from different information sources (2D and range images) is the first contri-
bution presented by our model. Such a combination has never been used before (up
to our knowledge) for GOR. Exploiting this combination for multi-class generic 3D
object recognition is the second contribution of our model.
The general aim of this chapter is to investigate how much such a combination can be
done and what gain it achieves in categorization performance. Section 8.2 provides a
description of the general framework of the recognition model and presents how the
different information cues are combined. Experimental evaluations are performed and
presented in section 8.3, which reveal the benefits and drawbacks of the proposed in-
formation fusion.

8.2 Model Overview

Figure 8.1 displays the framework of the general idea of the fusion of appearance and
range information. Actually, the model merges our appearance based model described
in chapter 4 and our range-based model described in chapters 6 and 7 into one model
for multi-class generic 2D as well as 3D object recognition.
In the model, two different image types are presented: 2D images and correspond-
ing 3D range images. A set of different local descriptors are extracted from the images
based on the image type. These local descriptors are computed from interest regions de-
tected and extracted form the images (also according to the type of the image). Then, a
combination of the different local descriptors is given to a boosting learning algorithm,
namely the JointBoosting, for multi-class learning. Recognition of new test images
(2D and range) is done using the strong weak learner that results form the learning
step.
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Figure 8.1: The general framework of the proposed GOR model based on different
information fusion.

8.2.1 Local Description

Based on the type of the image (2D or range), a suitable point detector is used for local
patches sampling. Then, suitable local descriptors are computed from the extracted
regions. A set of different local descriptors is used for both image types including
grayscale, color and shape descriptors.

2D Data

For the 2D images, an Hessian-Affine point detector [99, 100] is used as described in
section 4.2.2. However, our implementation allows the use of any other point detector.
A combination of two different types of local descriptors is then used: the SIFT de-
scriptors [92] and the opponent color angle descriptors [148] (the same as described in
section 4.2.3).

Range Data

A combination of the shape-specific local features presented in section 6.2.4 are used
for describing range images. These descriptors are computed form local regions sam-
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pled in two different (separate) ways:

1. Using interest point detection as the procedure described in section 6.2.2.

2. Using the grid representation described in section 7.4.

However, our implementation allows the use of different local sampling and description
methods.

8.2.2 Learning

The learning model described in section 7.2.2 for multi-class learning is used here.
However, five different descriptors are combined instead of three as done in chapter 7.
The advantage of our implementation of the learning model is that, it is flexible in the
manner that it allows different number of descriptors to be combined. The same weak
learner presented in section 7.2.2 is used here.

8.3 Performance Evaluations

The presented GOR model is evaluated experimentally to analyze its benefits and lim-
itations. The performance is measured in three cases:

1. Using only appearance-based information for recognition.

2. Using only 3D range-based information.

3. Using a fusion of both different information types.

The model, for each previously mentioned case, is trained in three ways:

• Jointly with feature sharing among classes (JS).

• Jointly with no feature sharing among classes (JNS).

• Independently (Indp.) (see section 7.3.1).

8.3.1 Settings

Our dataset, JenaRange02, is used in all experimental evaluations. The settings of
all experiments (i.e. number of iterations, training and test examples) is the same as
mentioned in section 7.3.1.
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8.3.2 Using Point Detection for Sampling Range Images

Recognition using range information only: see results in section 7.3.2, tables 7.1
and 7.2.

Recognition using appearance information only: The aim of this set of experi-
ments is to measure the categorization performance of the model using only appearance-
based information. A combination of the SIFT and color descriptors (SC) is used for
learning and recognition. The recognition performance (classification rates at ROC-
Equal-Error rates) using the test images is displayed in table 8.1 while table 8.3 presents
the recognition confusion matrices. The use of appearance-based information yields
better performance than using range-based information as shown in tables 8.1 and 7.1.
However, it is still not able to solve the confusions between the different object classes
as shown in table 8.3.

Recognition using a combination of appearance and range based information:
To assess the performance of the model when different types of information (appear-
ance and range) is used, a combination of the appearance and range based information
(Shape-SIFT-color) is used for training and testing the recognition model. The recogni-
tion performance is shown in table 8.2, while table 8.4 displays the confusion matrices
of recognition. The confusion using only range information is high in comparison
to the case of using appearance information, while the confusion among the different
object classes is notably reduced by using appearance-range (Shape-SIFT-color) com-
bination. Again, the independent learning of the different classes reveals more robust
performance than the other learning procedures.
Figure 8.2 displays comparisons of the recognition performance achieved by using
appearance-based information only (SIFT-color combination), range-based informa-
tion only (Shape) and appearance-range combination (Shape-SIFT-color) respectively.
The figure displays the performance when the three different learning procedures are
used. First, we can notice from the figure that each different type of information, either
appearance-based (SIFT-color) or range-based (Shape) does not have robust perfor-
mance over all different object classes. Range-based (Shape) information shows good
performance over some classes such as class ” Toys” while reveals bad performance
over others such as ” Fruits”. For the appearance-range (SIFT-color) information, al-
though it yields more robust performance than range-based (Shape), its performance
varies from class to another. The use of appearance-range (Shape-SIFT-color) infor-
mation combination improves the recognition performance over the use of range-based
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Table 8.1: Classification performance at the ROC-eqq.-err. rates of the multi-class
recognition using SIFT-color features (SC) combination. The model is trained jointly
with feature sharing (Joint (Sharing)), jointly without feature sharing between the
classes (Joint (No sharing)) and independently (Independent). The last column rep-
resent the average classification rates over the five classes.

Descriptors Cars Fruits Animals Toys Cups Avg. recog.
over classes

Joint (Sharing) 73.30 75.00 78.00 65.00 68.30 71.90
Joint (No Sharing) 70.00 80.00 75.00 71.70 76.70 74.68
Independent 73.30 80.00 78.30 73.00 76.70 76.26

Table 8.2: Classification performance at the ROC-eqq.-err. rates of the multi-class
recognition using Shape-SIFT-color features combination. The model is trained jointly
with feature sharing (Joint (Sharing)), jointly without feature sharing between the
classes (Joint (No sharing)) and independently (Independent). The last column rep-
resent the average classification rates over the five classes.

Descriptors Cars Fruits Animals Toys Cups Avg. recog.
over classes

Joint (Sharing) 61.70 70.00 72.00 78.30 75.00 71.40
Joint (No Sharing) 63.00 83.30 680.000 81.70 81.70 75.60
Independent 72.00 81.70 77.00 78.00 72.00 76.14

(Shape) information for almost all the classes. However, when compared to the use of
appearance-based (SIFT-color) information, improvements for some classes as well as
for the overall recognition occur.
The results in Figure 8.2 reveal that the use of the different information combination in
our model guarantees at least a robust recognition performance over all classes, if will
not improve the recognition of some classes.
However, our fusion model suffers form the problem of curse of dimensionality, which
affects the categorization performance of the information fusion and causes it to de-
grade when compared to the performance of each individual information type. More
details of the curse of dimensionality problem will be discussed in the following sec-
tion.
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(a) (b)

(c)

Figure 8.2: Performance comparisons of categorization performance using range-
based (Shape), appearance-based (SIFT-color) and appearance-range based (Shape-
SIFT-color) combination respectively. (a) Joint learning with feature sharing (JS). (b)
Joint learning without feature sharing (JNS) and (c) Independent learning (Indp.). Lo-
cal regions in range images are sampled using interest point detectors.
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8.3.3 Using Regular Grid for Sampling Range Images

Now, the experiments using the appearance-range based combination is repeated with
applying the grid sampling to range data instead of interest point detection according
the procedure described in section 7.4. Grid sampling with patch size N = 20×20 and

with patches overlap (M =
N

2
) is used. Note that the grid sampling is only applied

to the used range images and is not applied to the 2D images. The experiments are
performed with the same settings mentioned in section 8.3.1.

Recognition using range information only: The categorization results using the
range-based (Shape) information with grid sampling of range images were presented
in section 7.4 in tables 7.4 and 7.3.

Recognition using appearance information only: The recognition results of the
appearance-range based (SIFT-color) information combination are those presented in
tables 8.1 and 8.3.

Recognition using a combination of appearance and range based information:
The grid sampling of range images improved the performance of range-based (Shape)
information and, hence, improved the recognition performance of the appearance-range
information combination. The use of appearance-range combination revealed high per-
formance gain for some classed as for the average recognition over the classes as shown
in table 8.5. The confusion among the different classes is further reduced using the
combination. This confusion reduction is not only for learning the different classes
independently, but also with learning using the other learning procedures as well. This
can also be noticed from Figure 8.4. We can notice the performance gain using the
range-based information with grid sampling of range images. The performance using
the range-based information exceeds the performance using appearance-based for some
classes such as classes ”toys ” and ”Fruits” (with independent learning). However, the
use of appearance-range based information fusion still reveals robust performance for
all the classes.
Figure 8.3 displays examples of incorrectly classified images of each object class. The
images are simple to be miss-classified while the model is able to correctly classify
more complex images. However, still some plausible reasons exist for the classifica-
tion failure of some images such as the existence of an instance of the predicted class
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in the images.

Curse of Dimensionality Phenomena [69] The performance of a classifier depends
of the interrelationship between three factors: sample size, number of features and
classifier complexity. It is well known that the probability of missclassification does
not increase as the number of features increases. However, it has often been observed
in practice that, the added features may lead to actual performance degradation of the
classifier if the number of used training samples is small relative to the feature size.
All commonly used classifiers can suffer from the curse of dimensionality. However,
some guidelines have been suggested regarding the ration of the sample size and the
number of features to avoid the curse of dimensionality. Using at least ten times as
many training examples per class as the number of features in designing a classifier
can avoid this problem. However, the more complex the classifier is, the larger should
the ration of sample size and feature size be.
Therefore, the performance degradation occurred when more features are combined in
our classifier is due the curse of dimensionality problem. Although the sample size to
features number ration per class in is higher than ten in our model, still our classifier
suffers from the problem, since it is not a simple one. One solution to avoid this
problem is to increase the number of training samples per class. However, further
investigations should be done to estimate the appropriate sample size for our problem
which will help to overcome this problem.
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Table 8.5: Classification performance at the ROC-eqq.-err. rates of the multi-class
recognition using Shape-SIFT-color features combination. Grid representation of
range images is used. The dense grid patches are of size N = 20 × 20 with patches

overlap (M =
N

2
). The model is either trained jointly with feature sharing (Joint

(Sharing)), jointly without feature sharing between the classes (Joint (No sharing)) or
independently (Independent). The last column presents the average classification rates
over the five classes.

Descriptors Cars Fruits Animals Toys Cups Avg. recog.
over classes

Joint (Sharing) 76.00 82.00 72.00 85.00 75.00 78.00
Joint (No Sharing) 77.00 81.67 73.00 91.67 72.00 79.13
Independent 86.70 86.70 75.00 90.00 82.00 84.08

Cars Fruits Animals Toys Cups

Figure 8.3: Examples of incorrectly classified images from JenaRange02 dataset us-
ing appearance and range-based information fusion. Columns represent true (actual)
classes while rows represent predicted classes: cars (first row), fruits (second row),
animals (third row), toys (fourth row) and cups (last row).
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(a) (b)

(c)

Figure 8.4: Performance comparisons of categorization performance using range-
based (Shape), appearance-based (SIFT-color) and appearance-range based (Shape-
SIFT-color) combination respectively. (a) Joint learning with feature sharing (JS). (b)
Joint learning without feature sharing (JNS) and (c) Independent learning (Indp.). Lo-
cal regions in range images are sampled using dense regular grid.
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8.4 Conclusions

In this chapter we have presented a first step toward fusing different information cues
extracted from different image types for generic 3D object recognition. We have com-
bined our appearance-based model for recognition from 2D images presented in chap-
ter 4 and our range-based model presented in chapters 6 and 7 in one model for multi-
class recognition of generic classes of 3D objects. Robust categorization performance
has been revealed by the new model. The experiments have shown how range-based in-
formation benefits from the additional information given by the appearance based and
vis versa. The experiments have also shown how robust the categorization is for all the
object classes when the combination is used. However, this combination increases also
the computation time.
This is a quite rough combination among the different information cues and there is a
room for improvements is possible.
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Chapter 9

Summary, Conclusions and Future
work

This chapter summarizes the work presented throughout this thesis with resuming its
main contributions and outcomes. Then, conclusions on the obtained results are drawn.
Finally, a discussion to possible improvements and future work is given.

9.1 Work Summary

In this thesis, we have addressed different GOR problems (2D and 3D GOR) using
different information cues from still images. We have presented three main models.
First, a model based on a combination of local appearance information for generic
recognition of 2D images is introduced. The model exploits a combination of local
texture and color information for binary classification of generic object classes. The
framework of the model learns a classifier for each object class in a weakly supervised
manner. The performance of the model has been investigated using two famous GOR
benchmarks and robust recognition results have been obtained.
The second model addresses the more difficult problem of generic 3D object recog-
nition. The model is based on local description of range images using simple shape
features for recognition. First, interest regions are detected and extracted from range
images and then are described using a combination of three simple local shape de-
scriptors. Afterwards, learning is achieved using a boosting algorithm. The general
framework of the model using range images is new and never been applied before.
However, promising performance has been revealed by the model.
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The third model is one for multi-class recognition of generic 3D objects from range
images. It is an extension to our generic 3D recognition model which tackles a more
difficult task. Range images are still used for recognition. The Joint Boosting algorithm
is modified to cope with our different image type (range images) and weak learner.
Finally, we have presented a model which makes use of different information cues for
multi-class recognition of generic 3D objects. The models exploits a combination of
appearance-based information extracted from 2D images and shape-based information
extracted from range images for recognition. Actually, the model combines our model
for 2D object recognition together with our model for generic 3D object recognition in
one model suitable for both tasks.
Moreover, to be able to address the problem of generic 3D object recognition from
range images, we have constructed a new object category dataset which provides dif-
ferent data (image) types (2D color and range images) about its member classes. The
dataset is considered to be the first one to provide range images for different object
classes. Moreover, it contains images of complex scenes, which makes it a challenging
dataset.

9.2 Contributions and Outcomes

This thesis has presented different contributions:

1. A generic 2D object recognition model based on appearance information by
combining different appearance cues, namely texture and color, for recognition.

2. A novel GOR dataset which provides different image types, 2D (color) and range
images, of complex nature of different object classes.

3. A novel model for generic 3D object recognition from range images and its ex-
tension to the more difficult task of multi-class recognition.

4. A novel model for multi-class generic 3D object recognition using a combi-
nation of different information cues (appearance and shape-based information)
extracted from different image types (2D and range images).

However, there are specific outcomes have been achieved in this thesis:

• We achieved very good and robust recognition performance of 2D objects on the
most complex image set (at this time) using only local appearance information
with weak supervision.
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• Investigated the role of the counter-class used for the binary classification task
for affecting the final recognition performance of the model. The use of counter-
classes with simple images, that have different context from the images of the
object classes, do not reveal the actual recognition performance of the model.

• Compared the performance of two famous texture descriptors in the context of
generic 2D object recognition.

• Evaluated the performance of the new Boosting algorithm, SoftBoost algorithm,
in real world application (the generic 2D object recognition problem) for the
first time 1 using noise free as well as noisy data. Moreover, we assessed its
performance in solving the problem by establishing comparisons to the famous
AdaBoost algorithm.

• We have presented a novel GOR dataset which provide 2D and 3D (range) im-
ages bout different object classes. Moreover, a performance evaluation of the
dataset and comparisons to a famous GOR benchmark reveals the challenging
nature of our new dataset.

• Used the regular grid sampling method for sampling local patches from range
images, which is a new sampling method for range images. This sampling
method has revealed good performance for recognition using range-based in-
formation.

9.2.1 Summarization of Best Results

This section aims to provide a summarization of the best classification and recognition
results achieved throughout this thesis. The best results achieved by each recognition
model mentioned in the thesis will be summarized on the basis of:

• Actually recognition rates (see section 2.5 for definition).

• Time needed for training and testing each recognition model. Training time is
divided into: time to compute distances between images and time needed for
training by the boosting algorithm. The training and test time represent the time
needed for a whole set of training and test example, not for an individual image.

1We were the first to evaluate the performance of SoftBoost algorithm in the time we carried out our
experiments.
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Generic 2D Object Recognition Model The performance of the generic 2D object
recognition model presented in chapter 4 has been evaluated on two datasets: Cal-
tech 4 and Graz02. On the Caltech dataset, the SIFT-color combination (SC-G) has
achieved the best classification rates which are summarized in table 9.1 together with
the required training and test time.

Table 9.1: Best results achieved on Caltech 4 dataset.

Class Recognition rate No. of test images
Motor 96.00 % 100
Cars 100.00 % 100

Airplanes 88.00 % 100
Faces 96.00% 100

Time required for distances computation 1.84 hours
for each class

Training time for each class 100 seconds (1 sec. /iteration)
Test time for each class 0.9 minute

For the Graz02 dataset, the best results have been achieved using the SIFT-color
combination (SC). Table 9.2 summarizes the best results as well as the need compation
time.

Table 9.2: Best results achieved on Graz02 dataset.

Class Recognition rate No. of test images
Bikes 82.00 % 150
Cars 77.33 % 150

Persons 82.67 % 150
Time required for distances computation 3.35 hours

for each class
Training time for each class 300 seconds (2 sec. /iteration)

Test time for each class 1.2 minute
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Generic 3D Object Recognition Model Our dataset JenaRange01 has been used to
evaluate the performance of the model for generic 3D object recognition from range
images mentioned in chapter 6. The best results have been achieved in the categoriza-
tion experiments (experiment 1). Table 9.3 summarizes the recognition rates achieved
for each object class, in addition to the required training and test time.

Table 9.3: Best results achieved on JenaRange01 dataset dataset.

Class Recognition rate No. of test images
Cars 96.00 % 100

Motors 98.00 % 100
Animals 100.00 % 100

Time required for distances computation 30 minutes
for each class

Training time for each class 26 minutes (15.6 sec. /iteration)
Test time for each class 0.7 seconds

Multi-Class Generic 3D Object Recognition Model For the multi-class recognition
from range images model presented in chapter 7, all performance evaluation experi-
ments are accomplished using our JaneRange02 dataset. The best categorization re-
sults have been achieved with using dense grid as a sampling method for range images
(with independent learning). The recognition rates as well as the needed computation
time are summarized in table 9.4. It should be noted that the required computation time
is for the whole model.

Fusion model for Multi-Class Generic 3D Object Recognition JenaRange02 dataset
is also used in all evaluations performed to investigate the performance of the fusion
model presented in chapter 8. The best results have been achieved using the appearance
and range-based information fusion with grid sampling of range images (with indepen-
dent learning). The achieved recognition rates and the needed computation time are
summarized in table 9.5.
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Table 9.4: Best results achieved on JenaRange02 dataset dataset for multi-class recog-
nition using range-based information.

Class Recognition rate No. of test images
Cars 48.00% 60

Fruits 92.00 % 60
Animals 59.00 % 60

Toys 70.00 % 60
Cups 45.00 % 60
Total 62.80 % 300

Time required for distances computation 24 hours
Training time 3.6750 hours (88.2 sec./iteration)

Test time 8 minutes

Table 9.5: Best results achieved on JenaRange02 dataset dataset for multi-class recog-
nition using appearance and range-based information fusion.

Class Recognition rate No. of test images
Cars 73.00% 60

Fruits 87.00 % 60
Animals 67.00 % 60

Toys 90.00 % 60
Cups 75.00 % 60
Total 78.40 % 300

Time required for distances computation 24 hours
Training time 6.1250 hours (147 sec./iteration)

Test time 15 minutes

9.3 Conclusions

It is not a long way for any artificial GOR system to be comparable to the human vi-
sual system. The work presented in this thesis show different possibilities where the
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task of GOR can be successfully solved. However, this is still unfortunately with some
restrictions.
The previous section has listed the contributions and outcomes achieved throughout
this thesis. However, to be realistic, we should also shed light on the limitations and
drawbacks exist in the presented methods.
Our model for generic recognition of 2D objects from 2D images revealed very robust
performance in classification while it does not perform any detection or localization.
The missing ability to localize objects in images is a limitation of our model. More-
over, the learning step in the model is slow which, affects the real time performance of
the model.

The generic 3D object recognition model from range images is a novel model that ad-
dress this difficult problem from range images. Although the general framework of the
model is simple, good recognition performance is achieved. However, the used shape
descriptors are very simple and do not comprise enough information about the shape
of the different object classes. More robust shape description method should be used.
Moreover, more robust local sampling methods of range images should also be inves-
tigated in order to improve the performance. These two problems are more clear when
the recognition model is extended to the multi-class recognition case, where differen-
tiating among different shape classes is required. However, two aspects should be put
into considerations when assessing the model’s performance: the difficult nature of the
original problem and the noisy nature of the used range images.
The multi-class generic 3D object recognition model has another additional limitation
that is learning is getting more slower and complex when the number of classes in-
creases. As we live in a world full of thousands of different object categories, learning
these categories in a simple and fast way is a mandatory requirement for a robust real
time GOR system.
The fusion of appearance and range-based information for multi-class GOR has been
investigated where promising results have been obtained. There are much room for
improvements to be done here such as investigating different ways of combining the
different information cues for achieving better performance.
Finally, these thesis has presented several possible steps towards solving the difficult
problem of generic 2D object recognition. Moreover, it has presented first steps in ad-
dressing and, hence solving the more difficult problem of generic 3D object recognition
from range images. However, the limitations exist in the different models presented in
this thesis could be used as steps for more improvements and, hence providing more
robust solutions to the problem.
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9.4 Future work

There are several ways where the research could go further. Following, we discuss
them briefly 2:

Extending the 2D recognition model : To extend the model to be able to perform
localization as well by adding some spatial information among the used descriptors.

Improving the 3D recognition model : One field for possible future work is con-
tinue addressing the generic 3D object recognition from range images by finding and
investigating suitable method to locally describe the range images. Moreover, adding
the possibility of pose estimation to the 3D model is an important step. Finding a more
proper and robust way to combine different information cues is another important mod-
ification suggestion. Also, enhancing the TOF images for the task of robust recognition
is another important task to be accomplished.

Online Learning Adding the ability to the recognition model to learn new object
categories online would be a good and valuable extension to our 3D recognition model.

Real-time Model We could also improve the performance of the model to make it
suitable for robust real time recognition. Although we have already built a real-time
model, it is still a slow and not totally robust one.

2Actually, there is a wide room for future work in the area of GOR. However, we present her some of
those related to our models.
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