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1 Introduction 

1.1 Global change and carbon cycle 

It is widely accepted that global changes, e.g. climate change, occur worldwide. According 

to the IPCC report (IPCC, 2007), climate warming is projevted to drive major changes in 

ecosystem structure and function, species interactions and ecosystem goods and services . 

A further concern the assumption that an increase in average temperature of about 1.5 - 2.5 

°C, which is very likely in most scenarios, will increase the extinction risk of plant and 

animal species by 20 - 30 %. One essential driving force behind climate change is the 

increase of carbon dioxide concentration from pre-industrial times mainly due to burning 

of fossil fuels and changes in land use (IPCC, 2007). There is strong evidence that human 

activities are perturbing the carbon cycle to a significant extent and that negative 

consequences of the resulting climate change are likely. As carbon dioxide is one of the 

main determinants of climate change further understanding of the carbon cycle is of major 

importance.  

The terrestrial biosphere plays a central role in the global carbon cycle. The soil carbon 

pool is the biggest carbon pool; presumably 1500 gt or approximately two thirds of the 

terrestrial carbon is stored in the soil (Amundson, 2001). In grassland ecosystems the soil 

carbon pool is particularly important because up to 98 % of the total organic carbon 

storage can be found sequestered below ground (Hungate et al., 1996). Soils have an 

enormous potential to act as carbon sinks and to mitigate human induced increases of 

atmospheric carbon dioxide. In a meta-analysis Guo and Gifford (2007) found that carbon 

stocks increased after land use change from crop to pasture while the reversed land use 

change usually lead to a decline in carbon stocks.  

In general, carbon storage is suggested to be influenced by selective preservation of 

recalcitrant compounds, physical protection against decomposition and interactions with 

mineral surfaces (Torn et al., 1997; von Lützow et al., 2008). Further, the amount of soil 

carbon is related to soil texture (Schimel et al., 1994; Tan et al., 2004) and particularly the 

soil clay content drives the amount of soil organic carbon (Schimel et al., 1994; Telles et 

al., 2003). Furthermore, in addition to soil abiotic factors also biotic factors influence 

carbon storage. Atmospheric carbon will be retained in plant biomass increasing the carbon 

reservoir of the vegetation (Schulze, 2006). Aboveground biomass enters the soil labile 

carbon pool via roots, root exudates and litter input. The distribution and the amount of 
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input depend on the aboveground vegetation. In temperate grasslands three quater of the 

root biomass is found within the upper 0.3 m of the soil (Jackson et al., 1996; Jobbagy et 

al., 2000). According to the high root input in the top soil layer, the storage in the top 0.2 m 

of grasslands accounts for 40 % of total storage of the upper 1 m (Jobbagy et al., 2000). 

Although a high proportion of roots can be found in the top soil, the roots of many grasses 

and herbs grow to 1 m depth or even deeper (Craine et al., 2003). As a consequence, a 

large proportion of roots enters the soil to a considerable depth leading to high storage 

deeper in the soil. In grasslands at least 60 % of the whole carbon storage can be found 

between 0.2 m and 1 m depth (Jobbagy et al., 2000). However, decomposition of organic 

material is depth-dependent with higher rates in the upper soil layers than in deeper soil 

layers (Gill et al., 2002). Input of roots, litter and partly decomposed plant material, which 

is relatively labile, is decomposed by macro-, meso- and microorganisms and sequestered 

as soil organic matter associated to mineral soil particles in a more sustainable way. Both 

carbon pools, the labile and the more sustainable pool, can be separated by density 

fractionation (Six et al. 2002; Gregorich et al. 2006). Microorganisms are suggested to play 

a centrale role in the transformation of organic inputs (Ekschmitt et al., 2008). However, a 

better understanding of microbial-mediated soil organic matter transformation is needed 

(De Deyn et al., 2008). Similar to root input and decomposition, microbial biomass and 

diversity of soil microbial communities are lower in the sub soil than in the top soil 

(Ekschmitt et al., 2008). This depth distribution can be largely attributed to the decline in 

substrate availability (Fierer et al., 2003). Additional to organic carbon, nitrogen which 

often is a limiting nutrient for plant growth is also important for soil microorganisms 

(Spehn et al., 2000; Billings et al., 2008) and has an effect on decomposition of organic 

matter and carbon storage.  

Beyond soil abiotic factors controlling carbon storage the vegetation strongly impacts the 

amount, variety and transformation of organic inputs and therefore carbon storage. Apart 

from the impact of land use change on carbon storage it can be assumed that changes in the 

aboveground vegetation, e.g. changes in plant diversity and plant functional group 

composition, impact belowground diversity (Hooper et al., 2000; Wardle et al., 2004) and 

thereby carbon storage. Currently, the links between the above- and belowground 

compartments are not well understood. Particularly, it is still under debate how plant 

diversity influences belowground processes like carbon storage (Catovsky et al., 2002; 

Steinbeiss et al., 2008a), decomposition (Hector et al., 2000; Scherer-Lorenzen, 2008) and 
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soil macro-, meso- and microorganisms (Stephan et al., 2000; Zak et al., 2003; Laossi et 

al., 2008; van der Heijden et al., 2008). 

Diversity comprises a broad spectrum of biotic scales and can generally be described as the 

number of entities, the evenness of their distribution, the differences in functional traits and 

their interactions (Millenium Ecosystem Assessment, 2005; Diaz et al., 2006). Besides the 

number of species the number of functional groups is an important diversity measure. A 

functional group encompasses a set of species with similar morphological, physiological 

and phenological traits and it can be assumed that species within a functional group 

provide similar ecosystem services and react similar to environmental changes (Hooper et 

al., 2005). Functional group richness is of specific interest since human impacts on the 

environment not only cause a general decline in the number of species but also in the 

number of different functional groups. Furthermore, the dominance among different 

functional groups may be shifted (Loreau et al., 2001). Additionally, the presence or 

absence of distinct functional groups like grasses or legumes might be important for 

ecosystem functioning (Diaz & Cabido 2001). Ecosystem functioning comprises the flow 

of energy and materials through an ecosystem. Examples for ecosystem functioning are 

primary production or nutrient cycling (Diaz & Cabido 2001; Hooper et al., 2005; 

Millenium Ecosystem Assessment, 2005).  

Changes in plant diversity is suggested to have considerable impacts on most if not all of 

the biotically controlled parameters and processes driving carbon storage (Figure 1-1).  

 

Figure 1-1: Parameters and processes effecting soil organic matter storage and the impact of plant 
diversity on these parameters and processes 
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Increasing species richness often leads to enhanced aboveground biomass production 

(Hector et al., 1999; Tilman et al., 2001; Flombaum et al., 2008) which in turn is likely to 

result in higher input of above- and belowground organic matter resembling major 

parameters for carbon storage (Rasse et al., 2005). Furthermore, the microbial 

transformation of inputs is assumed to lead to sustainable storage and might be changed by 

aboveground diversity as well. In low diverse plant communities, phenological 

development of the stand is relatively synchronous, potentially leading to vegetation gaps 

during the growing season. These vegetation gaps are suggested to indirectly influence 

microbial transformations by affecting soil abiotic conditions and the microclimate through 

changes in evapotranspiration (Scherer-Lorenzen, 2008) and have direct impacts on the 

litter supply of the soil microbial community. Additionally, it is most likely that a more 

diverse plant community leads to more heterogeneous resources entering the soil, which in 

turn might influence microbial diversity, e.g. through promoting greater resource 

partitioning and niche complementarity among the soil organisms (Hooper et al., 2000). In 

addition, increased inputs at higher plant diversity is assumed to promote particularly those 

organisms that are primarily regulated by resource availability (Mikola et al., 1998). 

However, the question if more diverse input at higher plant diversity leads to changes in 

soil microbial biomass and community structure requires further investigation.  

As soil abiotic factors drive carbon and nitrogen transformation and their storage in soils, 

effects of plant diversity on storage might be hidden. Therefore, it is most promising to 

study the impact of plant diversity on carbon storage under experimental conditions where 

soil abiotic parameters are less variable and better defined like in the Jena Experiment; a 

grassland diversity experiment in the north of Jena. Overall, the Jena Experiment seeks to 

investigate the interactions between plant diversity and ecosystem functioning and focuses 

on trophic intreractions and element cycling. In 2002, randomly assembled plant 

communities of European grassland species ranging from 1 - 60 species and from 1 - 4 

functional groups were established on a former agricultural field.  

A previous study on the impact of plant diversity on soil organic carbon in experimental 

grasslands showed that an increase in sown species richness leads to higher organic carbon 

storage in the top soil (Steinbeiss et al., 2008a). Root biomass production tended to rise 

with increasing species richness and was an important determinant for storage in the top 

soil. However, additional mechanisms beyond a simple input driven one must be important 

because another study revealed that a higher input did not necessarily lead to higher carbon 
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storage (Steinbeiss et al. 2008b). Furthermore, these studies revealed that species richness 

was also an important determinant for soil organic carbon storage. Based on these results, 

this thesis aimed to investigate the impact of plant diversity on soil organic carbon and 

nitrogen storage in the top and sub soil and focusses on microbial transformation of 

organic inputs to soils. Improved understanding of the impact of plant diversity on storage 

mechanisms will provide valuable information concerning global change predictions and 

mitigation strategies. 

1.2 Outline of the thesis 

The thesis is composed of four studies and is intended to test the following hypotheses:  

• Plant diversity is assumed to increase the amount and depth distribution of root 

inputs. Furthermore, plant diversity might lead to changes in the substrate use 

efficiency of soil microbial communities. Since both parameters are important 

determinants for carbon and nitrogen storage we hypothesised that plant diversity 

positively influences the soil organic carbon and total nitrogen storage in the top 

and the sub soil profile and therefore might mitigate consequences of climate 

change. 

• Based on previous results on carbon and nitrogen storage in the top soil we further 

hypothesised that increased storage at higher diversity levels is mainly caused by 

increased transformation of organic inputs. This implies that increased plant 

diversity would lead to sustainable sequestration of organic carbon and nitrogen 

and consequently ensure ecosystem functioning. 

• Quality, quantity, variety and timing of carbon and nitrogen inputs, which are 

prerequisites for microbial nutrition, are different at varying plant diversity levels. 

Therefore, we hypothesised that plant diversity affects belowground microbial 

community biomass and composition.  

To test whether plant diversity increases soil organic carbon and nitrogen storage in the top 

and sub soil soil, samples up to 1 m depth were taken from plots with different plant 

diversity in 2007 (Chapter 2). In both soil segments increased root biomass at higher 

diversity might be an important driving factor for carbon and nitrogen storage. Besides 

organic matter input further determinants for storage are discussed. Density fractionation 

was performed to test if a higher proportion of the organic input is microbially transformed 
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and therefore sustainable stored at higher diversity levels (Chapter 3). For soil 

microorganisms and the microbial transformation the quality and quantity of organic 

matter inputs might be important. The effect of season and vegetation cover on soil 

microbial biomass and community structure was determined using microbial biomass 

measures (phospholipid fatty acids and chloroform fumigation extraction) (Chapter 4). 

Season and vegetation cover were assumed to have an impact on soil microogranisms 

because they strongly alter plant input and the microenvironmental conditions of the soil. 

Five years after the establishment of the Jena Experiment analyses of microbial 

phospholipid fatty acids were used to study the effect of plant diversity on soil microbial 

abundance and community structure (Chapter 5). In this study the whole diversity gradient 

and two adjacent meadows and arable plots were analysed and it was tested which plant 

diversity parameter (number of species, number of functional groups and the presence of 

functional groups) is most important for microbial biomass and community structure. 

Finally, the conclusions of the main results were drawn and the general impact of plant 

diversity on carbon and nitrogen storage and microbial transformation of organic inputs are 

discussed (Chapter 6).  
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2 Organic carbon and nitrogen storage in soil depth profiles 
of experimental grasslands with varying plant diversity 

Chapter source: Habekost et al., 2008. Organic carbon and nitrogen storage in soil depth 
profiles of experimental grasslands with varying plant diversity. 
Submitted to Biogeochemistry 

Abstract 
Land use change from arable land to grassland is known to increase carbon and nitrogen 

stocks in soil. However, the role of plant diversity for soil carbon and nitrogen storage is 

still unclear. Therefore, we investigated the effect of plant diversity on soil organic carbon 

and nitrogen storage in The Jena Experiment, a large grassland biodiversity experiment in 

Germany that was established in 2002 on an agricultural field. Three independent soil 

cores to 1 m depth were taken on 20 plots at the beginning of the experiment and in 2007. 

After five years, soil organic carbon and total nitrogen stocks had increased by 675 g m-2 

(sd = 114 g m-2) and 93 g m-2 (sd = 12 g m-2). The gain of soil organic carbon and nitrogen 

was concentrated in two depth segments. In 0 - 20 cm depth we found an addition of 

736 g m-2 (sd = 266 g m-2) of organic carbon and 72 g m-2 (sd = 25 g m-2) of nitrogen. The 

storage was positively affected by plant diversity and soil texture, but only the effect of soil 

texture was significant. Root biomass was neither significant for soil organic carbon nor 

for total nitrogen storage in this depth segment. In 60 - 90 cm depth, 162 g m-2 

(sd = 415 g m-2) organic carbon and 39 g m-2 (sd = 35 g m-2) total nitrogen were 

sequestered five years after land use change. In this depth segment, root growth and plant 

diversity were significant drivers for the observed storage. Our results indicate that plant 

diversity positively affects both, organic carbon and total nitrogen storage in soils. Low 

C/N ratios of stored soil organic matter suggested that the soil microbial community, that 

mainly mediates the transformation of organic matter, might drive this storage. 

Keywords: soil carbon and nitrogen sequestration, land use change, managed grassland, sown species 
richness, The Jena Experiment 
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2.1 Introduction  

The terrestrial biosphere is a key component in the global carbon cycle. More than 70 % of 

carbon from the terrestrial biosphere is stored in soils (Schimel et al. 2001). The 

understanding of patterns and driving factors of soil organic carbon and associated nitrogen 

storage is critical for our understanding of the biosphere and the feedback to climate 

change (Schaphoff et al. 2006; Woodwell et al. 1998). Land use change from arable land to 

grassland can particularly increase soil carbon stocks (Conant et al. 2001; Han et al. 2007). 

However, the role of plants and especially the role of plant diversity in this process is still 

not well understood.  

Plant biomass input is a major determinant of the formation of soil organic carbon and 

nitrogen and roots consequently leave distinct imprints on the relative distribution of 

carbon and nitrogen with depth (Jobbagy & Jackson 2000). Increasing niche 

complementarity in more diverse plant mixtures may lead to a deeper root distribution and 

therefore to a higher soil organic carbon and total nitrogen storage in the sub soil. Beside 

the amount and spatial distribution of organic matter inputs, the decomposition of these 

inputs, which is accompanied by decreasing C/N ratios, is a main prerequisite for storage. 

The decomposition and transformation of organic inputs is essentially mediated by soil 

microogranisms (Persiani et al. 2008; van der Heijden et al. 2008). The soil microbial 

community is impacted by both the amount and the quality of inputs. Low amounts of 

organic matter increased the substrate use efficiency (Wu et al. 1993) and a higher variety 

of inputs seemed to increase the microbial diversity (Spehn et al. 2000; Stephan et al. 

2000). A more diverse and better adapted microbial community, probably including a 

higher proportion of k-strategists, use organic matter inputs more completely and efficient 

(Eisenhauer et al. 2008) and in turn have effects on soil organic carbon and nitrogen 

storage. 

The positive effect of plant diversity, especially sown species richness, for soil organic 

carbon storage in top soils was recently established (Steinbeiss et al. 2008). However, so 

far it is neither investigated if plant diversity affects soil organic carbon storage in the sub 

soil nor if the total nitrogen storage in the entire profile is influenced by plant diversity. 

Therefore, we studied soil organic carbon and total nitrogen stock changes in an 

established grassland biodiversity experiment (The Jena Experiment) in up to 1m depth.  
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We hypothesize that plant diversity positively influences the soil organic carbon and total 

nitrogen storage in the soil profile because plant diversity is supposed to change (I.) the 

amount and distribution of root inputs and (II.) the substrate use efficiency and diversity of 

soil microbial communities, which are both important determinants for soil organic carbon 

and nitrogen storage. 

2.2 Materials and Methods 

2.2.1 Site description 

All samples were collected at the field site of The Jena Experiment, a field experiment 

investigating interactions between plant diversity and ecosystem processes focussing on 

element cycling and trophic interactions (Roscher et al. 2004). Before the start of the 

experiment, the site had been used and managed as an arable field for 40 years. The soil 

was classified as Eutric Fluvisol (FAO 1998) developed from loamy fluvial sediments. The 

texture ranged from sandy loam to silty clay with increasing distance to the river Saale 

flowing close to the experimental site. Due to the varying soil properties, the field site was 

divided into four blocks located parallel to the river. For soil depth analyses the most 

intensively investigated block 2 was chosen. The sand content increased in the upper 

20 cm of the soil profile from 11 % in the north to 36 % in the south of the block, while the 

silt content ranged from 67 to 47 %, respectively. The clay content showed almost no 

spatial trend and stayed in the range of 18 to 22 %. In 20 - 100 cm depth, soil texture was 

homogenous containing 16 % sand, 59 % silt and 25 % clay.  

In May 2002, different mixtures of grassland species belonging to the species pool of 

Central European meadows were sown on the plots (each 20 m x 20 m). The plant 

diversity gradient spanned 1, 2, 4, 8, 16 and 60 species and 1, 2, 3 and 4 functional groups 

(legumes, grasses, tall herbs and small herbs). The investigated block 2 contained 4 

replicates of monocultures, 2, 4 and 8 species mixtures, 3 replicates of 16 species mixtures 

and one plot with a 60 species mixture. The number of plots with the same number of 

functional groups was highly unbalanced between the functional group levels and was 

therefore not included in the analyses.  

In June and August each year, the plots were mown and the mown biomass was removed 

from the plots. The plant diversity gradient was maintained by weeding in April and June 

each year. 
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2.2.2 Soil sampling and analysis 

Soil samples were taken in April 2002 before sowing and in April 2007 on 20 plots of the 

intensively investigated block 2. Three independent soil cores per plot were collected to a 

depth of 1 m by using a machine driven soil corer (Cobra, Eijkelkamp Agrisearch 

Equipment, Giesbeek, Netherlands) with an inner diameter of 8.7 cm. Soil cores were 

segmented into 5 cm depth sections and soil samples were dried at 40 °C and sieved to 

1 mm particle size (Allard et al. 2005; Ostonen et al. 2005; Stevens & Jones 2006).  

Total nitrogen, total carbon and inorganic carbon concentrations of the ground samples 

were determined by elemental analysis at 1150 °C (Elementaranalysator vario Max CN, 

Elementar Analysensysteme GmbH, Hanau, Germany). The concentration of organic 

carbon was calculated by subtracting the total and inorganic carbon concentrations 

(Steinbeiss et al. 2008). Certified reference soil material was measured every 60 samples. 

The repeated measurements of the soil standard resulted in a relative standard deviation for 

soil organic carbon concentration of 1.6 % and for total nitrogen concentration of 2.2 %.  

Biodiversity effects on soil organic carbon and total nitrogen stocks were analyzed for 

0 - 20 cm, 20 - 30 cm, 30 - 60 cm, 60 - 90 cm and 90 - 100 cm depth segments. These 

segments corresponded to distinct zones of stock changes and could be compared with 

experimental data of total root biomass that was determined with this depth resolution.  

In 2002, soil bulk density was determined at 6 plots on block 2. The depth of the segments 

for density measurements ranged from 0 - 10 cm, 10 - 20 cm, 20 - 30 cm, 30 - 40 cm, 

40 - 60 cm, 60 - 80 cm and 80 - 100 cm. Samples were taken with a metal bulk density ring 

of 10 cm height, sieved to 2 mm and dried at 105 °C. The soil density was calculated by 

weight (Hartge & Horn 1992). The chosen plots represented a spatial gradient across the 

block and an average soil bulk density value per depth segment was calculated for the 

beginning of the experiment. In 2007, changes in the bulk density were measured for every 

plot in block 2 with 5 cm depth resolution using the inner diameter of the soil corer for 

volume calculation. In 0 - 30 cm depth a logarithmic and in 30 - 100 cm depth a linear 

regression was applied to adapt the depth resolution of both measurements, 2002 and 2007 

(0.8 ≤ R ≤ 1).  
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2.2.3 Root biomass 

Standing root biomass was determined in 2006 in 0 - 20 cm, 20 - 30 cm, 30 - 60 cm, 

60 - 90 cm and 90 - 120 cm depth. Total root standing biomass (in the following referred to 

as root biomass) was separated from 50 g sub-samples per depth segment. Soil was 

removed from the roots by rinsing over a sieve with 0.5 mm mesh size. The separated roots 

were dried at 70 °C and weighed.  

2.2.4 Statistics 

Statistical analyses were carried out with SPSS Version 15.0 (SPSS Inc., Chicago, USA). 

All soil data were normally distributed and showed homoscedasticity. Differences in soil 

organic carbon and total nitrogen stocks between 2002 and 2007 were compared by paired 

t-tests. Differences between plots with (12 plots) and without (8 plots) legumes were also 

tested by t-tests. 

In the analyses of variance (ANOVAs, Type I SS) the logarithm of sown species richness 

was included as a fixed factor. In 0 - 20 cm depth, where soil texture markedly varied 

between the plots, the sand content was fitted first as a covariate. The root biomass was 

tested as covariate before the sown species richness in order to distinguish between effects 

of the input amount and remaining plant diversity effects. The 60 species plot was 

excluded from the statistical analyses due to the lack of replicates on block 2.  

2.3 Results 

2.3.1 Soil organic carbon and total nitrogen stocks  

Soil bulk density, necessary to calculate soil organic carbon and total nitrogen stocks 

varied between 0.85 g cm-3 and 1.85 g cm-3 in dependence of both sand content and depth 

and remained the same between 2002 and 2007 (0.210 ≤ p ≤ 0.991) (data not shown). 

In 2002, soil organic carbon and total nitrogen stocks were high in the plough horizon and 

rapidly decreased in the horizons below (Table 2-1). The total organic carbon stock in the 

plough horizon (0 - 30 cm depth) was 7462 g m-2 (sd = 109 g m-2), while 11505 g m-2 

(sd = 192 g m-2) were found in 30 - 100 cm depth. The total nitrogen stock in the plough 

horizon was 798 g m-2 (sd = 12 g m-2) and 1358 g m-2 (sd = 21 g m-2) were found in 

30 - 100 cm. Similar to organic carbon and total nitrogen stocks, the mean C/N ratio was 

higher in the plough horizon (9.4 sd = 0.3) and decreased below (8.5 sd = 0.6).  
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Table 2-1: Soil organic carbon, total nitrogen stocks and stock changes between 2002 and 2007 
(sd = standard deviation). P-values evaluate differences between stocks in 2002 and 2007. Asterisks 
mark significance at the 0.05 (*), 0.01 (**) or 0.001 (***) level. Standard deviation in parentheses. 
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In total, 16244 g m-2 (sd = 337 g m-2) of organic carbon and 1837 g m-2 (sd = 34 g m-2) of 

total nitrogen were found in 0 - 100 cm depth. 

From 2002 to 2007, the soil organic carbon stocks increased significantly in 0 - 15 cm 

depth by 133 g m-2 to 333 g m-2 and in 65 - 80 cm depth by 29 g m-2 to 55 g m-2 

(0.001 ≤ p ≤ 0.043). A soil organic carbon loss of 38 g m-2 to 139 g m-2 was observed in 

30 - 45 cm depth (0.006 ≤ p ≤ 0.068) with the highest loss between 30 and 35 cm directly 

below the plough horizon (139 g m-2 sd = 210 g m-2).  

Integrated to the depth resolution used for statistical analyses (0 - 20 cm, 20 - 30 cm, 

30 - 60 cm, 60 - 90 cm, 90 - 100 cm), the change in soil organic carbon stocks between 

2002 and 2007 was still significant in 0 - 20 cm depth (p < 0.001) (Figure 2-1). Below this 

depth segment (20 - 30 cm depth) carbon stocks did not change (p = 0.869), while in 

30 - 60 cm depth the soil organic carbon stock decreased by 225 g m-2 (sd = 560 g m-2) 

(p = 0.054), whereas in 60 - 90 cm depth 162 g m-2 (sd = 458 g m-2) soil organic carbon 

were gained (p = 0.062). In 90 - 100 cm depth, no change in the carbon stock was observed 

(p = 0.715). Five years of grassland vegetation significantly increased carbon stocks 

summed over the whole profile from 16244 g m-2 (sd = 337 g m-2) to 16918 g m-2 

(sd = 378 g m-2) (p = 0.005).  

In the 5 cm segments, total nitrogen stocks significantly increased by 3 g m-2 to 28 g m-2 

within the five years in 0 - 20 cm depth (0.001 ≤ p ≤ 0.047), decreased by 9 g m-2 to 

16 g m-2 (0.001 ≤ p ≤ 0.017) in 30 - 40 cm depth and increased again in 55 - 95 cm depth 

(increase: 4 g m-2 to 9 g m-2, 0.001 ≤ p ≤ 0.006) (Table 2-1). Integrated to the depth 

resolution used for statistical analyses, the increase in total nitrogen between 2002 and  
   

  

Figure 2-1: Soil organic carbon and total nitrogen stock changes in various depths between 2002 and 
2007; error bars represent standard deviations. 
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2007 was significant in 0 - 20 cm, 60 - 90 cm and 90 - 100 cm depth, where 591 g m-2 

(sd = 65 g m-2, p < 0.001), 417 g m-2 (sd = 2 g m-2, p = 0.001) and 115 g m-2 (sd = 26 g m-2, 

p = 0.033) of the total nitrogen were gained, respectively (Figure 2-1). The total nitrogen 

loss was not significant in 30 - 60 cm depth (21 g m-2 sd = 57 g m-2, p = 0.102). Over the 

whole profile, total nitrogen stocks increased from 1837 g m -2 (sd = 34 g m -2) in 2002 to 

1931 g m -2 (sd = 35 g m -2) in 2007 (p = 0.001). 

The C/N ratio in 2007 had not changed compared to 2002. The C/N ratio of the stored 

organic matter was higher in the upper 20 cm of the depth profile compared to the 

60 - 90 cm depth (0 - 20 cm: 9.9 sd = 1.4; 60 - 90 cm: 6.7 sd = 3.7). 

2.3.2 Effects of plant diversity on soil organic carbon and total nitrogen stocks  

In 0 - 20 cm depth, soil organic carbon storage after five years was highest on 16 species 

plots and lowest in monocultures (Figure 2-3). While plots with monocultures stored 

444 g m-2 (sd = 121 g m-2), plots with 16 species stored 1003 g m-2 (sd = 145 g m-2). 

Carbon storage in this depth was significantly determined by the soil texture (Table 2-2), 

which explained 47 % of the variance in the sequential ANOVA. Sown species richness 

explained 20 % of the variance. Most interestingly, root biomass had no effect on carbon 

storage in the upper 20 cm. 

Table 2-2: Significance and explained proportion of the sum of squares (SS) for changes of soil 
organic carbon (Corg) and total nitrogen (N) stocks five years after establishment of the experimental 
design gained by sequential analyses of variance components (ANOVA). Asterisks mark significance at 
the 0.05 (*) or 0.01 (**) level. 

  depth parameter p-value  F-value % of SS 
Corg  0-20 cm sand content in % 0.002 (**) 15.8 46.8 
  root biomass in 2006 0.745  0.1 0.3 
  ln sown species richness 0.217  1.7 20.3 
 20 - 30 cm root biomass in 2006 0.123  2.8 13.9 
  ln sown species richness 0.242  1.6 31.7 
 30 - 60 cm root biomass in 2006 0.912  0.1 0.1 
  ln sown species richness 0.556  0.8 22.3 
 60 - 90 cm root biomass in 2006 0.024 (*) 6.6 21.6 
  ln sown species richness 0.078  2.7 35.5 
N 0-20 cm sand content in % 0.009 (**) 10.0 37.5 
  root biomass in 2006 0.492  0.5 1.9 
  ln sown species richness 0.335  1.3 19.3 
 20 - 30 cm root biomass in 2006 0.387  0.8 3.9 
  ln sown species richness 0.133  2.2 43 
 30 - 60 cm root biomass in 2006 0.969  <0.1 <0.1 
  ln sown species richness 0.402  1.1 28.7 
 60 - 90 cm root biomass in 2006 0.003 (**) 13.3 26.6 
    ln sown species richness 0.006 (**) 5.9 47.3 
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Figure 2-2: Relationship between sown species richness and changes in soil organic carbon stocks 
between 2002 and 2007 for soil depths 0 - 20 cm (left graph) and 60 - 90 cm (right graph); error bars 
represent standard deviations. 
 

  
Figure 2-3: Relationship between sown species richness and total nitrogen stock changes between 
2002 and 2007 for soil depths 0 - 20 cm (left graph) and 60 - 90 cm (right graph); error bars represent 
standard deviations. 

In the zones of carbon loss at 20 - 30 cm and 30 - 60 cm depth, changes in soil organic 

carbon stocks were neither dependent on sown species richness (20 - 30 cm: p = 0.242; 

30 - 60 cm: p = 0.556) nor on root biomass (20 - 30 cm: p = 0.123; 30 - 60 cm: p = 0.912) 

(Table 2-2). In contrast, in 60 - 90 cm depth, root biomass had a significant impact on soil 

organic carbon storage (p = 0.024) and explained 22 % of the variance between the plots. 

Sown species richness was statistically not significant (p = 0.078), but nevertheless 

explained 36 % of the variance. In 60 - 90 cm depth, plots with 4 and 8 species stored most 

of the carbon, i.e. 384 g m-2 (sd = 73 g m-2) and 397 g m-2 (sd = 248 g m-2), respectively, 

while plots with monocultures lost 270 g m-2 (sd = 554 g m-2) during the investigation 

period (Figure 2-2).  

In the 0 - 20 cm depth segment, the total nitrogen storage was positively correlated with  

the sown species richness (R = 0.44, p = 0.058). Plots with 16 species stored significantly 

more nitrogen (p = 0.018) than plots with monocultures (monocultures: 52 g m -2 
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sd = 6 g m -2; 16 species: 97 g m -2 sd = 30 g m-2) (Figure 2-3). However, sequential 

ANOVA showed that only the effect of the sand content was significant and explained 

38 % of the variance (Table 2-2). As observed for carbon, the sown species richness was 

not significantly determining the nitrogen storage (p = 0.335), but explained 19 % of the 

variance (Table 2-2). No effect of root biomass on nitrogen storage could be detected in 

this depth (p = 0.492). The same held true for 20 - 30 cm and 30 - 60 cm depths, where 

neither root biomass nor sown species richness were significant parameters for the total 

nitrogen storage (20 - 30 cm: p = 0.387, p = 0.133; 30 - 60 cm: p = 0.969, p = 0.402 for 

root biomass and sown species richness, respectively). Interestingly, in the sub soil, 

between 60 and 90 cm depth, the root biomass and sown species richness were significant 

drivers for the total nitrogen storage (root biomass: p = 0.003; sown species richness: 

p = 0.006). While root biomass explained 27 % of the variance, approximtaley half of the 

total variance was explained by sown species richness (47 %). Total nitrogen stock 

changes were negative on plots with monocultures (1 g m -2 sd = 60 g m-2), while total 

nitrogen stocks on plots with 2 to 16 species increased (Figure 2-3).  

The presence or absence of legumes had no effect on soil organic carbon and total nitrogen 

storage.  

2.4 Discussion 

Before the establishment of The Jena Experiment the organic carbon and total nitrogen 

distribution layed within the normal range of agricultural fields (Kirchmann et al. 2004) 

and confirmed lower total stocks compared to grasslands (Post & Kwon 2000; 

Vleeshouwers & Verhagen 2002). Our results showed that both soil organic carbon and 

total nitrogen stocks, increased during five years after conversion from cropland to 

grassland. We found that plant diversity, tested as sown species richness, and standing root 

biomass, as a proxy for root biomass input, were important drivers for the amount of soil 

organic carbon and total nitrogen stored in soils, whereas litter quality, tested as presence 

and absence of legumes, had no effect on organic carbon and total nitrogen storage. Stored 

soil organic carbon and total nitrogen were gained and lost in the depth profile at a C/N 

ratio of 9.7 (organic carbon = 9.74 * total nitrogen - 11.74, R = 0.87, p < 0.001). This 

suggests that not root biomass itself but transformed biomass, like microbial remains, were 

stored in the soil.  
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In the top soil (0 - 20 cm depth) root biomass did not explain much of the variance of soil 

organic carbon and total nitrogen storage. In this depth, mainly the soil texture controlled 

stock changes. This is in line with the general observation that the soil carbon content is 

positively correlated to silt and clay and negatively to the sand content (Schimel et al. 

1994). Obviously, here the physical attachment of transformed organic carbon and total 

nitrogen to mineral surfaces (Torn et al., 1997) is more important for storage than the total 

input (Sun et al. 2004). In addition, plant diversity can be assumed to be a second driver for 

organic carbon and total nitrogen storage, because it explained much of the variance in the 

sequential ANOVAs. This assumption is supported by a previous study of Steinbeiss et al. 

(2008), who found a significant effect of plant sown species richness on carbon storage 

using segmented soil samples from all blocks of The Jena Experiment. Based on these 

results, we suggested that plant sown species richness mediates other soil and ecosystem 

parameters, like the composition and activity of micro-, meso- and macro-decomposers 

(Habekost et al. 2008; Spehn et al. 2000; Stephan et al. 2000) to be responsible for the 

organic carbon and nitrogen storage in top soils. This is strongly supported by the 

calculated C/N ratios of stored organic matter in the 0 - 20 cm depth segment of 9.9 being 

near the Redfield ratio of microbial biomass. It can be assumed that higher and more 

diverse inputs that occur on plots with higher plant diversity would induce a shift of soil 

microbial communities towards more diverse communities comprising a higher proportion 

of k-strategists, which might have a higher carbon use efficiency than resource wasting 

r-strategists. Consequently different soil microbial communities would affect both 

decomposition and storage of organic carbon and nitrogen in not carbon limited top soils.  

However, the total carbon and nitrogen storage also increased in the sub soil (60 - 90 cm 

depth) within five years after conversion. In contrast to the top soil, the comparatively low 

root biomass input was in addition to sown species richness an important factor for soil 

organic carbon and total nitrogen storage. With decreasing organic matter input the 

substrate use efficiency of microbial communities increases (Witter & Kanal 1998), 

coinciding with lower respiratory losses and more efficient growth of microogranisms (Wu 

et al. 1993). Due to the relative small input compared to the top soil and the resulting 

relatively high storage rates, we assume that the substrate use efficiency in 60 - 90 cm 

depth is higher compared to the top soil. The low C/N ratios of stored organic matter 

suggest complete decomposition of root biomass and hence we assume that carbon and 

nitrogen storage in the sub soil is not decomposition but input limited. In addition to the 
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root input, plant diversity is an important factor for carbon and total nitrogen storage in this 

depth segment, because microbial diversity is mediated by plants similarly as in the top 

soil (Kramer & Gleixner 2008; Steenwerth et al. 2008). Also for the sub soil it can be 

assumed that the soil microbial community is more diverse in mixtures with higher sown 

species richness and tends to be depleted under monocultures. This might explain why 

monocultures, which have nearly the same root input like 4 and 8 species mixtures, lost 

soil organic carbon and total nitrogen, while plots with higher sown species richness stored 

carbon. On higher diverse mixtures, the resource utilization and concomitantly the 

transformation to soil organic matter points to more long lasting life strategies 

(k-strategies), whereas in monocultures more resource wasting r-strategists might occur. 

Our results suggest that the observed positive effect of plant diversity on carbon and total 

nitrogen storage in soils is mediated by direct links of above ground diversity to 

composition, activity and substrate use efficiency of below ground organisms. More 

detailed studies are necessary to establish and ascertain this link. 
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3 Partitioning of organic carbon and nitrogen in soil density 
fractions of an experimental grassland with varying plant 
diversity 

Chapter source: Habekost et al., 2008. Partitioning of organic carbon and nitrogen in soil 
density fractions of an experimental grassland with varying plant 
diversity. Submitted to Soil Biology & Biochemistry 

Abstract 
Both, conversion from arable land to grassland and plant diversity increase organic carbon 

and nitrogen storage in soils. The underlying mechanisms and processes are still not well 

understood. We investigated soil density fractions to asses the impact of land use change 

and plant species richness on the contribution of light and heavy fraction to soil organic 

carbon and nitrogen storage in order to explain if this storage appear only in the fast 

decomposed light fraction or in the more sustained mineral associated heavy fraction. The 

study was done at the field site of The Jena Experiment (Germany). Soil samples were 

taken in 2002 shortly before the establishment of the field site, 2004 and 2006 to 30 cm 

depth and segmented in 5 cm depth sections. The investigated plant diversity gradient 

spanned 4, 8 and 16 species and contained plots with and without distinct functional 

groups (small and tall herbs, legumes and grasses). In 2006, additional soil samples were 

taken from reference sites with arable land and meadows.  

We found that both density fractions were sensitive to land use change. The light fraction 

increased by 109 g m-2 (sd = 51 g m-2) of organic carbon and 5.4 g m-2 (sd = 2.8 g m-2) of 

nitrogen and the heavy fraction increased by 311 g m-2 (sd = 101 g m-2) of organic carbon 

by 38.4 g m-2 (sd = 8.2 g m-2) of nitrogen within four years. The heavy fraction contributed 

with 74 % for organic carbon and 88 % for nitrogen the main proportion to storage. 

Furthermore, organic carbon storage was like the bulk storage positively affected by plant 

diversity. An effect of sown species richness on bulk nitrogen stock changes and storage in 

density fractions was not found. ∆14C values of both density fractions increased with time 

and indicated that recent input was not exclusively stored in the light fraction but mainly 

directly microbially transformed and stored into the heavy fraction.  

Keywords: density fractionation, plant diversity, The Jena Experiment, soil organic matter, land use change, 
carbon sequestration, nitrogen, Δ14C 



3 Partitioning of organic carbon and nitrogen in density fractions 

25 

3.1 Introduction 

Understanding the drivers and mechanisms of soil carbon and associated nitrogen storage 

is essential against the background of global climate change (Lal, 2008). However, studies 

on soil organic carbon and nitrogen properties of the bulk soil are not sensitive enough to 

reveal carbon and nitrogen dynamics and storage mechanisms (Schlesinger et al., 2001). It 

is more promising to use physical fractionation techniques to separate soil fractions with 

distinct chemical and physical characteristics (Six et al. 2002; Gregorich et al. 2006). 

Density fractionation has been widely used to separate soil into a light and a heavy 

fraction, in which soil organic matter is stabilized to different degrees. The light fraction is 

build up by roots, litter and partly decomposed plant material (Carter et al., 1999; Poirier et 

al., 2005). It has been identified as a pool of active soil organic matter and as a readily 

decomposable substrate for soil microorganisms (Magid et al., 2001). Transformation of 

light fraction by soil microorganisms then leads to a more sustained storage in the heavy 

fraction, in which soil organic matter is more processed and stabilized (Golchin et al., 

1994). 

The amount and allocation of soil organic carbon and nitrogen in density fractions differ 

greatly between different land use types (Whalen et al., 2000). Accordingly, land use 

change can substantially shift the proportion of organic carbon and nitrogen stored in the 

respective density fractions through a change in input and decomposition (John et al., 

2005); e.g. conversion from arable land to grassland increases the amount of carbon stored 

in the light fraction (Conant et al., 2001).  

Beside the different contributions of density fractions to storage under certain land use 

types, plant diversity might also have an influence on the distribution of the amount and 

proportion of organic carbon and nitrogen between density fractions. In experimental 

grasslands (The Jena Experiment) a positive relationship between species richness and 

bulk organic carbon storage in the top soil was found (Steinbeiss et al., 2008). Underlying 

mechanisms and the question if the increased soil organic carbon storage is sustainable are 

currently subject of discussion. As plant diversity alters carbon and nitrogen inputs above- 

and belowground (Hector et al., 2000; Tilman et al., 2001; Wardle et al., 2004) this is 

hypothesized to result in increased root biomass at higher diversity and therefore higher 

amounts of light fraction. Further, aboveground diversity positively alters the belowground 

decomposer community, e.g. the soil microbial communities (Spehn et al., 2000; Wardle et 

al., 2006, Habekost et al., 2008). The soil microbial community mainly mediates the 
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transformation or organic carbon and nitrogen from the light fraction into the heavy 

fraction. Therefore, an impact of plant diversity on the proportion that both density 

fractions contribute to bulk storage might be possible. Plant functional groups, like 

legumes or grasses, are known to deliver inputs of different quantity and quality (Spehn et 

al., 2002). Thus, the presence and absence of functional groups might also have an 

influence on the characteristics and properties of density fractions.  

Effects of land use change and plant diversity on soil organic carbon storage in density 

fractions were studied in an established grassland biodiversity experiment (The Jena 

Experiment), which was used as arable land before, and on two adjacent meadows and 

agricultural sites. Using density fractionation of soil from different plant diversity levels 

we want to answer the following questions: (1.) Is higher bulk storage with increasing 

plant diversity an effect of increased amounts of light fraction? (2.) Do the quantity and 

quality of input have an effect on the storage proportions in different density fractions? (3.) 

Does plant diversity help to store organic carbon and nitrogen more sustainable?  

3.2 Materials and Methods 

3.2.1 Study site 

All samples were collected at the field site of The Jena Experiment, which is situated in the 

north of Jena, Germany, on the floodplains of the river Saale. The mean annual air 

temperature was 9.3 °C and the mean annual precipitation amounted to 587 mm (Kluge et 

al., 2000). The Jena Experiment was planned as a long-term experiment and was 

established in 2002. Before this time, the field site was used for agriculture and ploughed 

and fertilized regularly for the last 40 years. The soil was classified as Eutric Fluvisol 

(FAO, 1998) that developed from loamy fluvial sediments. The texture ranged from sandy 

loam to silty clay with increasing distance to the river. The field site was divided into four 

blocks according to the homogeneity of soil properties that run parallel to the river. Further 

information on soil characteristics and experimental design are given in Roscher et al. 

(2004). The sown grassland species typically grow in Central European mesophilic 

grasslands. The sowing density was 1000 seeds per m2 divided equally among the species 

of each mixture. According to their morphological and ecological traits all species were 

categorized into four functional groups (grasses, small herbs, tall herbs, legumes) (Roscher 

et al., 2004). Density fractionation involved the selection of 24 plots that covered a 

gradient in sown species richness of 4, 8 and 16 species and represented plots with and 
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without certain plant functional groups. In June and August, the plots were mown and the 

cut biomass was removed from the plots. The plant diversity gradient was maintained by 

weeding.  

Four reference sites i.e. two meadows and two arable land sites were additionally analyzed 

in 2006. The meadows were adjacent to the field site of The Jena Experiment and the 

arable land sites were directly on the field site of the Jena Experiment situated. The 

meadows were cut two times a year like the plots of The Jena Experiment. The arable sites 

were managed according to good agricultural practice but not fertilized.  

3.2.2 Soil sampling and analysis 

Soil samples were taken in April 2002 (before the sowing), 2004 and 2006 as paired 

samples with a spatial distance of less than 30 cm to avoid additional spatial variability 

(Lal et al., 2000). A split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp 

Agrisearch Equipment, Giesbeck, Netherlands) was used to take soil cores up to 30 cm 

depth. While in 2002 five independent cores per plot were taken and separated in 5 cm 

depth segments, three cores per plot were taken in 2004 and 2006 and pooled per depth 

segment, respectively. After drying at 40 °C, the soil was sieved to 2 mm and remaining 

plant constituents were removed by hand. In 2004 and 2006, the soil was sieved to 1 mm 

according to common root removal techniques (Allard et al., 2005; Ostonen et al., 2005; 

Stevens et al., 2006). No additional mineral particles were removed by this process. Total 

nitrogen and organic carbon concentration of ground samples were determined by an 

elemental analyzer at 1150 °C (Elementaranalysator vario Max CN, Elementar 

Analysensysteme GmbH, Hanau, Germany). Bulk density was determined in 2002 in 

0 - 10 cm, 10 - 20 cm and 20 - 30 cm depth. Samples were taken with a metal bulk density 

ring of 10 cm height, sieved to 2 mm and dried at 105 °C. To adapt soil organic carbon and 

nitrogen stocks to a 5 cm depth resolution a logarithmic regression was applied to the 

measured bulk densities. In 2004 and 2006, soil samples were weighed to estimate bulk 

density.  

Soil samples originating from the reference sites (meadows, arable land) were taken in 

April 2006 and treated the same way as the samples from The Jena Experiment.  
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3.2.3 Standing root biomass 

Three cores (0 - 30 cm depth) per plot were taken using a stainless steel corer and standing 

root biomass was determined at the pooled sample per plot. Samples were carefully 

homogenized and standing root biomass was determined from 50 g sub-samples by rinsing 

with water over a sieve with 0.5 mm mesh size.  

3.2.4 Density fractionation 

Soil organic matter was separated into a light and a heavy fraction by suspending 15 g of 

soil in 70 ml sodium ploytungstate solution (Sometu, Berlin, Germany), which was 

adjusted to a density of 1.6 g cm-3 (Golchin et al., 1994). For density fractionation of soil 

samples from 2002, aliquots of the five independent cores were mixed. Ultrasonication 

with 450 J ml-1 was used to break down macroaggregates, remove the encrustation on plant 

remains and free the occluded light fraction (Schmidt et al., 1999; Kolbl et al., 2005). The 

beaker was placed in an ice bath and sonicated using a probe-type ultrasonic disintegrator 

(Heinemann, Schwäbisch Gmünd, Germany) with an immersion depth of 1.5 cm. To 

ensure a defined energy input, the tip was calibrated regularly. Particles that adhered to the 

sonication tip were washed into suspension with polytungstate solution. Then, the samples 

were centrifuged for 30 minutes at 3500 U min-1. The floating material was completely 

transferred to a millipore filter funnel fitted with a glass-fibre filter paper and filtered under 

vacuum. The light fraction was washed with millipore water to remove polytungstate 

remains, transferred into pre-weighted flasks and freeze-dried. The remaining sample was 

stirred with a glass stick and refilled with sodium ploytungstate solution. To ensure a 

complete removal of the light fraction the process was repeated three times. The remaining 

sample (heavy fraction) was washed five times with millipore water, transferred to a pre-

weighted flask and freeze-dried. Both fractions were ground and analyzed for total 

nitrogen and organic carbon concentration as the bulk samples.  

3.2.5 Radiocarbon measurements 

Radiocarbon concentrations (14C) were measured at light and heavy fractions. For 2002, 9 

plots from The Jena Experiment, representing all diversity levels and covering the block 

gradient were chosen for measurements. For 2006, all plots and the reference sites were 

analyzed. Radiocarbon concentrations of the density fractions were determined with 

accelerator mass spectroscopy, 3MV AMS (High Voltage Engineering Europa, 
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Amersfoort, Netherlands) after decalcification with HCl and freeze drying (Steinhof et al., 

2004). CO2 evolved during dry combustion of the sample was reduced to graphite by 

heating a mixture of H2 and CO2 with iron powder at 650°C. The graphite was pressed into 

targets and measured with the AMS facility. All values were corrected for fractionation 

using δ13C values. The radiocarbon data were expressed as Δ14C that is ‰ deviation from 

the 14C/12C ratio of oxalic acid standard. The value is corrected for the radioactive decay of 

this standard since 1950. Average precision for the Δ14C values was ± 4.2 ‰. To determine 

the proportion of recent inputs to the density fractions (DF) a Δ14C mass balance was 

calculated for light and heavy fraction, respectively.  
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Δ14C values of atmospheric carbon dioxide from Schauinsland (Germany), which were 

measured between 2002 and 2006, were used to calculate airCOC
2

14Δ . If the Δ14Ccalculated is 

the same as Δ14Cmeasured for the respective fraction, than the whole input between 2002 and 

2006 can assumed to be of recent origin.  

3.2.6 Statistical analyses 

Statistical analyses were carried out with SPSS Version 16.0 (SPSS Inc., Chicago, USA). 

Differences in soil organic carbon and total nitrogen in the light and heavy fraction 

between sampling dates were tested with paired t-tests. Differences between management 

forms were tested with unpaired t-tested. In order to account for differences in soil 

properties between the respective blocks, the block effect was included as a random factor 

fitted first in all analyses of variance (ANOVAs, type I SS). The log transformed sown 

species richness or the presence/absence of certain functional groups was included as fixed 

factors. The statistical significance was evaluated at the p ≤ 0.05 level.  

3.3 Results 

3.3.1 Density fractions of the experimental site in 2002, 2004 and 2006  

The mean mass recovery of the density fractionation was 95.2 % (sd = 2.3 %). The 

recovery of organic carbon was in the same order of magnitude as for nitrogen (organic 

carbon: 86.2 % sd = 9.2 %; nitrogen: 88.3 % sd = 9 %). The light fraction only accounted 

for 1 % on average of the fractionated soil mass. Organic carbon and nitrogen 
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concentration of the density fractions were contrariwise to the masses. Organic carbon and 

nitrogen concentration were 25 % (sd = 9 %) and 1.3 % (sd = 0.5 %) in the light fraction, 

respectively and 1.5 % (sd = 0.3 %) and 0.2 % (sd ≤ 0.1 %) in the heavy fraction, 

respectively. Although the light fraction contributed only to a small proportion to the soil 

mass, it contributed to11 % (sd = 4 %) of the bulk carbon and to 5 % (sd = 9 %) of the total 

nitrogen stocks. The main proportion of bulk carbon and nitrogen was found in the heavy 

fraction (organic carbon: 89 % sd = 4 %; nitrogen: 95 % sd = 9 %). 

Bulk soil: In 2002, before the establishment of The Jena Experiment, the amount of bulk 

organic carbon and nitrogen of the plots chosen for density fractionation showed a depth 

depending distribution and ranged between 796 g m-2 (sd = 111 g m-2) and 1196 g m-2 

(sd = 197 g m-2) for organic carbon and 86.0 g m-2 (sd = 11.8 g m-2) to 128.9 g m-2 

(sd = 19.8 g m-2) for nitrogen (Figure 3-1 a and b). Within four years of The Jena 

Experiment soil organic carbon stocks significantly increased in 0 - 15 cm depth 

(p ≤ 0.001) and significantly decreased in 20 - 30 cm depth (<0.001 ≤ p ≤ 0.010) 

(Table 3-1). The rate of organic carbon storage in the top 5 cm was higher in 2002 to 2004 

(273 g m-2 sd = 145 g m-2) than in 2004 to 2006 (147 g m-2 sd = 142 g m-2) (p = 0.007). 

Nitrogen stocks increased between 2002 and 2006 in 0 - 20 cm depth (<0.001 ≤ p ≤ 0.013) 

and decreased in 25 - 30 cm depth (p = 0.001) (Table 3-1).  

Light fraction: The main increase of organic carbon of the light fraction was measured in 

the upper 20 cm of the soil profile (p ≤ 0.001), while organic carbon of the light fraction 
 

Table 3-1: p-values of soil organic carbon and nitrogen stock changes in 2002 - 2004, 2004 - 2006 and 
2002 - 2006.  

 Changes of Light fraction Changes of Heavy fraction Changes of Bulk 

  

Depth 2002 
- 

2004 

2004 
- 

2006 

2002 
- 

2006 

2002 
- 

2004 

2004 
- 

2006 

2002 
- 

2006 

2002 
- 

2004 

2004 
- 

2006 

2002 
- 

2006 
Corg 2.5 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001
 7.5 0.002 0.053 <0.001 <0.001 n.s. <0.001 <0.001 n.s. <0.001
 12.5 0.029 n.s. <0.001 0.016 n.s. 0.001 0.001 0.031 <0.001
 17.5 n.s. 0.023 <0.001 n.s. n.s. n.s. n.s. n.s. n.s.
 22.5 n.s. n.s. n.s. n.s. 0.006 0.005 n.s. 0.020 0.010
 27.5 n.s. n.s. n.s. 0.009 0.002 0.000 0.010 0.002 <0.001
N 2.5 0.002 <0.001 <0.001 n.s. <0.001 <0.001 n.s. <0.001 <0.001
 7.5 n.s. 0.003 <0.001 n.s. <0.001 <0.001 n.s. <0.001 <0.001
 12.5 n.s. 0.003 0.004 0.002 <0.001 <0.001 0.011 <0.001 <0.001
 17.5 0.036 <0.001 0.003 <0.001 <0.001 0.021 <0.001 <0.001 0.013
 22.5 0.021 0.012 n.s. <0.001 <0.001 n.s. n.s. <0.001 n.s.
  27.5 0.046 n.s. n.s.  <0.001 n.s. 0.001  n.s. 0.198 0.001



3 Partitioning of organic carbon and nitrogen in density fractions 

31 

stayed constant below 20 cm depth throughout the four years of investigation (Figure 

3-1 c, Table 3-1). The increase of organic carbon of the light fraction over the whole time 

span was highest in 0 - 5 cm depth (109 g m-2 sd = 51 g m-2), where the amount of organic 

carbon of the light fraction was more than doubled within 4 years. The proportion that the 

organic carbon of the light fraction contributed to bulk values increased from 2002 (10.2 % 

sd = 2.3 %) to 2004 (12.8 % sd = 3.7 %, p < 0.001) and to 2006 (15.4 % sd = 4.0 %, 

p = 0.009).  
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Figure 3-1: Depth distribution of bulk organic carbon and nitrogen and organic carbon and nitrogen 
of the light and heavy fraction of the experimental site in 2002, 2004 and 2006 
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Between 2002 and 2006, nitrogen of the light fraction was stored in 0 - 20 cm depth and 

like for organic carbon nitrogen storage was highest in 0 - 5 cm depth (2002 to 2006: 

4.1 g m-2 sd = 3.3 g m-2) (Figure 3-1 d). In contrast to organic carbon of the light fraction, 

which was stored with constant rates over time, the storage rates for nitrogen increased 

with time. While the amount of nitrogen in 0 - 5 cm depth increased by 25 % during the 

first two years it increased by 70 % between 2004 and 2006. Also the contribution of 

nitrogen of the light fraction to bulk stocks significantly increased between 2002 (5.2 % 

sd = 1.2 %), 2004 (6.3 % sd = 1.7 %) and 2006 (7.6 % sd = 2.1 %) (2002 to 2004: 

p = 0.004; 2004 to 2006: p = 0.023).  

Heavy fraction: The organic carbon of the heavy fraction constituted the major proportion 

of the bulk stocks and increased between 2002 and 2006 in 0 - 15 cm depth and decreased 

below 20 cm depth like the bulk stocks (Figure 3-1 e) (Table 3-1). Similar to organic 

carbon of the heavy fraction nitrogen of the heavy fraction contributed the major 

proportion to bulk nitrogen stocks. It increased between 2002 and 2006 in 0 - 15 cm depth 

and decreased below 25 cm depth (Figure 3-1 f) (Table 3-1).  

3.3.2 Arable land and meadow sites 

Bulk soil: While organic carbon and nitrogen stocks of arable land plots were 

homogenously distributed with depth (mean organic carbon: 1894 g m-2 sd = 301 g m-2; 

mean nitrogen: 220.5 g m-2 sd = 35.6 g m-2) (Figure 3-2 a and b), stocks of the meadow 

sites were highest in the top 10 cm of the soil and decreased below.  

Light fraction: At the grassland sites, the organic carbon of the light fraction decreased 

with depth from 411 g m-2 (sd = 80 g m-2) in 0 - 5 cm (Figure 3-2 c) to 167 g m-2 

(sd = 13 g m-2) in 10 - 15 cm depth and stayed constant below 15 cm depth. The amount of 

light fraction that was found in 0 - 5 cm depth of the meadow was twice as much as was 

found on plots of The Jena Experiment. The amount of nitrogen of the light fraction 

showed the same pattern as organic carbon (Figure 3-2 d).  

Heavy fraction: The amount of organic carbon of the heavy fraction decreased more 

evenly within the whole soil profile from 3009 g m-2 (sd = 59 g m-2) in 0 - 5 cm depth to 

1363 g m-2 (sd = 191 g m-2) in 25 - 30 cm depth. Organic carbon and nitrogen of the heavy 

fraction of the arable land sites stayed constant with depth (Figure 3-2 e and f). 
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Figure 3-2: Depth distribution of bulk organic carbon and nitrogen and organic carbon and 
nitrogen of the light and heavy fraction of arable land and meadow sites in 2006 

3.3.3 Effects of plant diversity 

Bulk soil: From 2002 to 2006, bulk organic carbon stock changes in 0 - 5 cm depth were 

positively correlated to species richness (R = 0.45, p = 0.034) (Table 3-2). In the applied 

ANOVA 19 % of the variance was explained by species richness. Bulk nitrogen stock 

changes from 2002 to 2006 were not altered by species richness (p = 0.685). In 2004, 

standing root biomass was significantly positively correlated with species richness 

(R = 0.38, p = 0.049), number of functional groups (R = 0.49, p = 0.009) and number of 
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grass species (R = 0.58, p = 0.002). In 2006, only the correlation between standing root 

biomass and number of functional groups remained significant (R = 0.48, p = 0.025). In 

both years, standing root biomass was higher on plots containing grasses compared to plots 

without grasses (2004: p = 0.015; 2006: p = 0.036) and was reduced if small herbs were 

present (2004: p = 0.042; 2006: p = 0.001).  

Between 2002 and 2006 organic carbon stock changes were higher on plots containing 

small herbs (459 g m-2 sd = 86 g m-2) than on plots without this functional group (373 g m-2 

sd = 137 g m-2) (p = 0.086). Further, the presence of grasses tended to decrease stock 

changes of bulk nitrogen between 2002 and 2006 (with grasses: 42.2 g m-2 sd = 9.6 g m-2; 

without grasses 48.0 g m-2 sd = 7.0 g m-2; p = 0.108).  

Light fraction: Between 2002 and 2004 changes of the organic carbon stocks of the light 

fraction were not significantly altered by species richness (p = 0.674) (Table 3-2). The 

same was found for stock changes between 2002 and 2006 (p = 0.946). The light fraction 

contributed to bulk organic carbon storage from 2002 to 2004 with 20 % (sd = 12 %), 24 % 

(sd = 11 %) and 16 % (sd = 10 %) and from 2002 to 2006 with 29 % (sd = 5 %), 29 % 

(sd = 7 %) and 24 % (sd = 5 %) for 4, 8 and 16 species, respectively. The differences 
 

Table 3-2: Contribution of organic carbon storage in the light (LF) and heavy fraction (HF) to 
carbon and nitrogen storage determined in the bulk values in 0 - 5 cm. Different letters indicate 
significant differences (p < 0.05) between diversity levels for the same investigation period, 
respectively. Standard deviation in parentheses. 

Bulk soil Light fraction Heavy fraction Variable Year Diversity level (g m-2) (g m-2) (g m-2) 
Corg 2002 -2004 4 species mixtures  257 (146) a 57 (31) a 200 (135) a 
  8 species mixtures   243 (123) a 60 (28) a 183  (107) a 
  16 species mixtures 313 (190) a 55 (40) a 258 (177) a 
 2004 -2006 4 species mixtures  117 (110) a 38 (81) a 80 (106) a 
  8 species mixtures   160   (98) a 54 (43) a 106 (109) a 
  16 species mixtures 185 (196) a 62 (42) a 123 (176) a 
 2002 -2006 4 species mixtures   374 (124) a 95 (73) a 280   (75) a 
  8 species mixtures   403 (128) a 114 (38) a 289 (110) a 
  16 species mixtures 497   (47) b 117 (28) a 381   (24) b 
N 2002 -2004 4 species mixtures  9.2 (15.8) a 1.8 (2.2) a 7.5 (14.4) a 
  8 species mixtures   3.8 (16.5) a 1.3 (1.8) a 2.5 (11.4) a 
  16 species mixtures 5.5 (12.8) a 0.9 (1.8) a 4.6 (11.9) a 
 2004 -2006 4 species mixtures  32.0 (13.9) a 3.7 (4.7) a 28.3 (12.9) a 
  8 species mixtures   43.0 (13.1) a 4.3 (2.5) a 38.7 (14.2) a 
  16 species mixtures 39.4 (17.1) a 4.3 (2.6) a 35.0 (15.0) a 
 2002 -2006 4 species mixtures   43.5 (10.8) a 5.3 (3.8) a 38.1   (8.3) a 
  8 species mixtures   43.0 (10.7) a 5.6 (2.8) a 37.4 (10.7) a 
  16 species mixtures 44.9  (7.5) a 5.2 (1.8) a 39.7   (6.0) a 



3 Partitioning of organic carbon and nitrogen in density fractions 

35 

between the species richness levels were not significant (0.138 ≤ p ≤ 0.842). Organic 

carbon of the light fraction and standing root biomass were not correlated (2004: R = 0.26, 

p = 0.213; 2006: R = 0.17, p = 0.522). 

The stock changes of nitrogen of the light fraction were neither between 2002 and 2004 

nor between 2002 and 2006 significantly impacted by species richness (2002 - 2004: 

p = 0.666; 2002 - 2006: p = 0.816) or standing root biomass (2004: R = 0.17, p = 0.422; 

2006: R = 0.05, p = 0.844). Between 2002 and 2004 nitrogen of the light fraction increased 

by 1.8 g m-2 (sd = 2.2 g m-2), 1.3 g m-2 (sd = 1.8 g m-2) and 0.9 g m-2 (sd = 1.8 g m-2) for 4, 

8 and 16 species mixtures, respectively. This corresponded to a proportion to storage of 

14 % (sd = 14 %), 12 % (sd = 15 %) and 6 % (sd = 12 %). Between 2002 and 2006 the 

stock changes of nitrogen of the light fraction were 5.3 g m-2 (sd = 3.8 g m-2), 5.6 g m-2 

(sd = 2.8 g m-2) and 5.2 g m-2 (sd = 1.8 g m-2) for 4, 8 and 16 species mixtures respectively. 

Nitrogen of the light fraction contributed with 12 % (sd = 7 %) to bulk storage.  

In 2006, stocks of nitrogen of the light fraction were higher on plots containing legumes 

(10.8 g m-2 sd = 2.6 g m-2) compared to plots without legumes (8.2 g m-2 sd = 3.0 g m-2) 

(p = 0.046) and resulted in an increased stock changes of nitrogen of the light fraction 

between 2002 and 2006 (p = 0.050) (Figure 3-3). With 14 % (sd = 4 %), the light fraction 

of legume plots contributed more to the bulk nitrogen storage than the light fraction of no 

legume plots (8 % sd = 5 %) (p = 0.012). In contrast to legumes, the presence of grasses 

decreased the stock changes of nitrogen of the light fraction between 2002 and 2006 

(p = 0.054) (Figure 3-3). While tall herbs had no effect, small herbs were found to affect 

the stock changes of organic carbon and nitrogen of the light fraction. Between 2002 and 

2006 plots without small herbs stored less organic carbon and nitrogen in the light fraction 

than plots where small herbs were present (Figure 3-3). 
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Figure 3-3: Impact of presence and absence of plant functional groups on stock changes (2002 - 2006) 
of organic carbon and nitrogen of the light fraction in 0 - 5 cm depth  
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Heavy fraction: Similar to the bulk values, stock changes of organic carbon of the heavy 

fraction (2002 - 2004) were not impacted by species richness (p = 0.691). Over the whole 

investigation period (2002 - 2006) stock changes were positively altered by species 

richness (p = 0.032). While 4 species mixtures stored 280 g m-2 (sd = 75 g m-2) within four 

years, 16-species mixtures stored 381 g m-2 (sd = 24 g m-2) organic carbon in the heavy 

fraction. Over the whole investigation period (2002 - 2006) organic carbon of the heavy 

fraction contributed with 71 % (sd = 5 %), 71 % (sd = 7 %) and 84 % (sd = 5 %) for 4, 8 

and 16 species mixtures to bulk storage (Table 3-2).  

The contribution of nitrogen of the heavy fraction to storage was comparably high. 

Between 2002 and 2006, 4, 8, and 16 species mixtures contributed with 89 % (sd = 8 %), 

87 % (sd = 6 %) and 89 % (sd = 3 %) to bulk stock changes of nitrogen.  

Neither stock changes of organic carbon nor nitrogen of the heavy fraction were impacted 

by the presence or absence of particular functional groups.  

3.3.4 Radiocarbon measurements 

Radiocarbon measurements showed that the light fraction from the experimental site in 

2002 had significantly lower Δ14C values (-188 ‰ sd = 96 ‰) compared to the light 

fraction of the experimental site in 2006 (-90 ‰ sd = 34 ‰) (p = 0.006) (Figure 3-4). The 

Δ14C mass balance for the light fraction of The Jena Experiment revealed that the increase 

of Δ14C values was solely driven by the input of recent material (Δ14C ≈ 54 ‰). From 2002 

to 2006, the Δ14C values of the heavy fraction organic carbon also significantly shifted 

towards recent values (2002: -51 ‰ sd = 15 ‰; 2006: -29 ‰ sd = 11 ‰, p = 0.003). A 

Δ14C mass balance was applied to the heavy fraction and a comparison between the 

calculated Δ14C value (-15 ‰ sd = 9 ‰) and the measured Δ14C value (-28 ‰ sd = 11 ‰) 

showed that 94 % of the mass increase between 2002 and 2006 were from recent origin.  

In 2006, species richness (light fraction p = 0.917; heavy fraction p = 0.232) had no impact 

on the Δ14C values of both density fractions. The presence of grasses seemed to decrease 

the Δ14C values of the heavy fraction compared plots without grasses (grasses: -31 ‰ 

sd = 10 ‰; no grasses: -18 ‰ sd = 7 ‰) (p = 0.058). 

The Δ14C value of the light and heavy fraction of the arable land were -210 ‰ (sd = 28 ‰) 

and -48 ‰ (sd = 26 ‰), respectively. The Δ14C value of organic carbon of the light and 

heavy fraction of the meadow site were 3 ‰ (sd = 4 ‰) and 26 ‰ (sd = 6 ‰), respectively  
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Figure 3-4: Δ14C values of the experimental site in 2002 and 2006 and arable land and grassland in 
2006 in 0 - 5 cm for light (LF) and heavy fraction (HF). 

and included the highest proportion of recent material. For the Δ14C mass balance it was 

assumed that the light fraction of the meadows contained a similar proportion of “old” 

(Δ14C ≈ -188 ‰) light fraction as The Jena Experiment in 2002 and that the remaining 

light fraction was of recent origin  (Δ14C ≈ 54 ‰). The calculated Δ14C value (6 ‰ 

sd = 9 ‰) of the meadows and the measured Δ14C value (3 ‰ sd = 4 ‰) were similar and 

indicated that the assumptions were right. 

3.4 Discussion 

The main changes to be expected by conversion from arable land to grassland take place in 

the upper centimetres of the soil (Conant et al., 2001). The sown perennial grassland 

species of The Jena Experiment originated an input of dead and living roots, plant litter and 

microbial debris (Magid et al., 2001; Poirier et al., 2005) to the light fraction. 

Consequently, the proportion of carbon of the light fraction within the bulk soil increased 

with time, indicating that the light fraction of arable land was depleted and is now built up 

again after conversion (Carter et al., 1998). Thus, the amount of the light fraction of The 

Jena Experiment shifted towards the amount of light fraction, which was found on the 

meadow sites.  

Interestingly, organic carbon and nitrogen did not simultaneously respond to conversion: 

organic carbon of the light fraction responded faster than nitrogen of the light fraction. 

While the storage rates of organic carbon of the light fraction were constant over the 

investigation period, the nitrogen storage rates increased with time. An increase of storage 

rates over time was also observed for nitrogen of the heavy fraction.  
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Within four years, 109 g m-2 (sd = 51 g m-2) of organic carbon and 5.4 g m-2 

(sd = 2.8 g m-2) of nitrogen were stored in the light fraction. But major parts of the light 

fraction were rapidly decomposed by macro-, meso- and microorganisms and consequently 

transferred to the heavy fraction. Organic carbon of the heavy fraction increased by 

311 g m-2 (sd = 101 g m-2) within four years and nitrogen of the heavy fraction increased 

by 38.4 g m-2 (sd = 8.2 g m-2). Therefore, we can conclude that not only the light fraction, 

as often described (Biederbeck et al., 1994; Bolinder et al., 1999; Conant et al., 2004), but 

also the heavy fraction was sensitive to land use change (Leifeld et al., 2005). The direct 

input of recent plant material in the light fraction and input of transformed plant material 

into the heavy fraction could be confirmed by increased Δ14C values on both fractions at 

the end of the investigation period. They indicate a rapid decomposition of recent plant 

inputs by microorganisms and a sequestration of microbial transformation products in the 

heavy fraction (Gleixner et al., 2002; Leifeld et al., 2005; Swanston et al., 2005; 

McLauchlan et al., 2006). The heavy fraction is build up more or less in parallel to the light 

fraction after conversion from arable land to grassland. The transfer of carbon and nitrogen 

into the heavy fraction within years was also confirmed by other studies (Trumbore et al., 

1989; Swanston et al., 2005; McLauchlan et al., 2006). McLauchlan et al. (2006) studied a 

chronosequence of former agricultural fields in the Midwestern United States that spanned 

40-years after conversion to grassland. They found that across all 31 studied sites carbon 

originating from the heavy fraction increased more rapidly than expected and that new 

organic carbon inputs appeared in the heavy fraction within years. 

 To explain the finding that the light fraction had decreased Δ14C values compared to the 

heavy fraction thermo gravimetric analyses were made (data not shown). The Δ14C values 

were not as first expected decreased by charcoal. Instead, the light fraction with the lowest 

Δ14C values contained more plant derived highly stable compounds compared to light 

fraction with higher Δ14C values like from the experimental site in 2006 or from the 

meadows. 

Studies of the bulk soil from all 82 plots of The Jena Experiment revealed a positive 

correlation between carbon storage, root input and plant diversity in the top soil in 2004 

and 2006 (Steinbeiss et al., 2008). A positive relationship between species richness and 

bulk organic carbon storage was also found for the plots used for density fractionation. The 

standard deviation of density fractions was relatively high compared to the small expected 

differences between the plant diversity levels and hampered the explanatory power of our 
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results. High variation of density fractions were also reported from Russel et al. (2004) and 

Leifeld et al. (2005). Beside methodical obstacles, a positive relationship between species 

richness and heavy fraction organic carbon was found. The storage within 4 years and 

transformation of organic carbon from the light fraction into the heavy fraction were higher 

at the 16 species level compared to the 4 and 8 species level. From this it can be deduced 

that the higher bulk organic carbon storage at increased diversity is not an effect of 

increased amounts of light fraction but an effect of increased storage in the heavy fraction. 

Since the transformation is mainly driven by soil microbial communities, the differences 

between the species richness levels might become more evident with time (Bartelt-Ryser et 

al., 2005; Habekost et al., 2008), when the microbial communities better adapted to the 

different conditions found at plots with different species richness levels. It can be assumed 

that over long-term the highest proportions of heavy fraction organic carbon and nitrogen 

will be found on plots with high diversity, because on these plots the microbial community 

might be most diverse and have the highest resource use efficiency (Eisenhauer et al., 

2008).  

Plant functional groups deliver input of different quantity and quality (Spehn et al., 2002). 

Thus, the presence and absence of distinct functional groups (small herbs, legumes and 

grasses) were found to have an impact on light fraction organic carbon and nitrogen 

storage. Mixtures containing small herbs had a higher standing root biomass, which 

resulted in an increased amount of organic carbon and nitrogen in the light fraction 

compared to mixtures without small herbs. Further, plots containing grasses were found to 

have lower stocks of nitrogen of the light fraction as a consequence of the wide C/N ratio 

of the input material, whereas the nitrogen of the light fraction of plots containing legumes 

was higher due to the ability of legumes to fix nitrogen. This corroborated the finding that 

the light fraction is influenced by recent vegetation but that the heavy fraction is controlled 

by soil microbial transformations of plant material input. 

3.5 Conclusion 

We found that conversion from arable land to grassland led to sensitive changes of organic 

carbon and nitrogen in the light and heavy soil fraction. Higher bulk organic carbon 

storage at higher plant diversity was not caused by increased storage in the light fraction 

but by increased transformation of plant derived input into the heavy fraction. For nitrogen 

no relationship between storage in different density fractions and plant diversity was 
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found. Distinct plant functional groups had an impact on the storage of nitrogen and 

organic carbon in the light but not in the heavy fraction. The integration of recent material 

in both density soil fractions within only four years after the establishment of The Jena 

Experiment indicated that only parts of the input were stored in the light fraction. The 

major part of the plant material input was directly microbially transformed and sustainable 

stored in the heavy fraction. 
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4 Seasonal changes in the soil microbial community in a 
grassland plant diversity gradient four years after 
establishment 

Chapter source: Habekost et al., 2008. Seasonal changes in the microbial community in a 
grassland plant diversity gradient four years after establishment. Soil 
Biology & Biochemistry 40: 2588-2595 

Abstract 
Aboveground plant diversity is known to influence belowground diversity and ecosystem 

processes. However, the knowledge on soil microbial succession from an agricultural field 

to grassland varying in plant diversity is scarce. Therefore, we investigated the effects of 

vegetation cover, varying plant biodiversity and season on soil microbial parameters in a 

temperate grassland ecosystem. In May and October 2006 mixed soil samples were taken 

from the field site from The Jena Experiment; a large biodiversity experiment in Germany 

which was established in 2002 on a former agricultural field. Sampled plots differed in 

plant species richness (0, 4, 8, 16), number of plant functional groups (0, 1, 2, 3, 4), and 

plant functional group composition. We measured basal respiration (BR) and microbial 

biomass (Cmic/CFE; chloroform fumigation extraction method), phospholipid fatty acids 

(PLFA), and substrate induced respiration (SIR). We found distinct seasonal variations in 

the microbial community structure; BR and amount of PLFAs were higher at the end of the 

vegetation period than in spring, which was primarily due to increased biomass of fungi 

and Gram-negative bacteria. Furthermore, BR and the amount of PLFAs were higher on 

vegetated plots than on bare ground plots. Although the number of plant functional groups 

had no effect on microbial parameters, plant species richness affected the amount of 

PLFAs at the end of the vegetation period with higher biomass in 4 than in 8 and 16 

species mixtures. Moreover, the proportion of Gram-negative bacteria was increased 

whereas the proportion of fungi was decreased in presence of legumes. The present study 

showed distinct seasonal changes in the soil microbial community composition, which is 

probably driven by the availability and quality of organic resources. Further, our results 

highlight the time-lag of belowground responses to aboveground vegetation manipulations 

with only few significant changes four years after the establishment of the experiment. 

Keywords: Biodiversity, Basal respiration (BR), Chloroform fumigation extraction method (CFE), 
Phospholipid fatty acids (PLFA), Substrate induced respiration (SIR), The Jena Experiment 
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4.1 Introduction  

Biodiversity is known to impact ecosystem processes such as net primary productivity due 

to complementarity and sampling effects (Hector et al., 1999; Tilman et al., 2001). It is 

increasingly recognized that changes in plant diversity also affect the belowground system 

(Wardle et al., 2004). Above- and belowground components of terrestrial ecosystems 

essentially depend on each other since plants provide carbon sources for the soil fauna and 

microflora. On the other hand, microorganisms and detritivore animals decompose organic 

matter, thereby increasing the availability of nutrients for plants and enhancing plant 

growth (Porazinska et al., 2003). The impact of aboveground biodiversity on soil biota may 

alter the functioning of microorganisms and therefore result in changes in the 

decomposition of organic matter (Orwin et al., 2006). Increasing plant species richness 

may beneficially affect the diversity of soil biota by including plants differing in root 

morphology, root chemical composition, and temporal variability of resource inputs. The 

increased morphological, chemical and temporal variability of belowground structures and 

resources is likely to result in increased diversity of niches supporting more diverse 

assemblages of soil biota (Lavelle et al., 1995; Hooper et al., 2000). We hypothesized that 

changes in plant diversity modify resource availability for heterotrophic microbial 

communities in soil, and thus modify their activity, biomass and composition.  

Studies investigating the effects of plant diversity on soil microbial communities are scarce 

and mostly restricted to gross parameters such as microbial biomass, culturable 

microogranisms or single functional groups of microorganisms (Spehn et al., 2000; 

Stephan et al., 2000; Porazinska et al., 2003; Zak et al., 2003). Additionally, there is the 

need to follow changes in microbial community composition and functioning with time 

after establishment of biodiversity experiments (Maly et al., 2000; Balser and Firestone, 

2005).  

Using The Jena Experiment field site (Roscher et al. 2004) we assessed changes in 

microbial community composition and functioning four years after establishment of a plant 

diversity gradient. We hypothesized that food supply over the season is more variable in 

communities with low plant species richness due to a decreased overlap of different 

phenologies in time. A reduction in plant species richness can therefore have considerable 

effects on soil microbial communities via differences in the chemical composition of plant 

residues or via the timing of residue availability.  
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In order to test the proposed hypotheses we asked whether (1) season and aboveground 

plant biodiversity influence the amount of soil microorganisms four years after the 

establishment of the experiment; (2) soil microbial communities are more diverse on 

vegetated plots than under bare ground conditions; and (3) soil microbial community 

composition differs in presence of plants from certain functional groups. 

4.2 Materials and Methods 

4.2.1 Site description, soil and biomass sampling 

Soil samples were collected from the field site of The Jena Experiment in the north of the 

city of Jena, Germany. This long-term experiment containing species, which are common 

to Central European Molinio-Arrhenatheretum grasslands, was established in 2002 to 

investigate the role of biodiversity for element cycling and trophic interactions (Roscher et 

al., 2004). Before experiment establishment, the site was used as an arable field for the last 

40 years and ploughed and fertilized regularly. The soil of the field site is classified as 

Eutric Fluvisol (FAO, 1998) developed from up to 2 m-thick loamy fluvial sediments 

(Roscher et al., 2004). The texture ranges from sandy loam to silty clay. Due to the varying 

soil texture the field site was subdivided into four blocks with homogenous soil properties. 

After sowing plots varying in plant diversity no fertilizer was applied. The chosen 

grassland species were classified into four functional groups (small herbs, tall herbs, 

grasses and legumes) according to their physiological, phenological and above- and 

belowground morphological traits. The plant diversity gradient established in The Jena 

Experiment ranges from 1 (2, 4, 8, 16) to 60 plant species and 1 (2, 3) to 4 plant functional 

groups, respectively. Species number and number of functional groups were varied as 

independently as possible when compiling the plot mixtures. Thus, the experimental design 

allows to test between sampling and complementarity effects and to attribute processes to 

species or functional group richness. In addition to the vegetated plots bare ground plots 

were kept free of vegetation. Further information on the experimental set-up including the 

plant species and soil characteristics is given in Roscher et al. (2004) and Steinbeiss et al. 

(2008), respectively. For analysis of microbial parameters, 27 plots were chosen 

representing a gradient in plant species diversity (from 0 to 16) and in the number of plant 

functional groups (from 0 to 4). Accounting for the block design of the experiment, two 

replicates with 4, 8 and 16 plant species were sampled from each of the four blocks. 

However, bare ground plots (no plant species sown) could only be sampled in three blocks.  
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In May and October 2006, eight soil samples per plot were taken with a core cutter (inner 

diameter: 5.6 cm) to a depth of 5 cm and pooled separately for the two sampling dates. 

Mixed samples were placed in cooling boxes immediately after sampling and stored at 

4°C. Soil samples were sieved (2 mm) within 48 h after sampling and shared for the 

different analyses. Sub-samples for PLFA analysis were frozen at -20°C until analyses. 

Sub-samples for the other analysis were analyzed within 4 weeks from the stored material. 

Soil samples for organic carbon and total nitrogen measurements were taken in April 2002 

and 2006 as a paired sampling using a split tube sampler (inner diameter 4.8 cm). Samples 

were dried at 40°C, sieved to 1 mm, ground and analyzed for soil organic carbon and 

nitrogen using an elemental analyzer at 1150°C (Elemetaranalysator vario Max CN, 

Elementar Analysensysteme GmbH, Hanau, Germany).  

Aboveground biomass was harvested in May and August 2006 on three randomized sites 

(20 x 50 cm) per plot by cutting standing biomass 3 cm above ground. The biomass of the 

sown species was dried at 70°C to constant weight. Plant material was chaffed and ground 

to fine powder. Carbon and nitrogen were analyzed at 20 mg sub-samples with an 

elemental analyzer (see above) and C/N ratio was determined.  

4.2.2 PLFA analysis  

PLFAs were extracted according to Bligh and Dyer (1959) and modified by Kramer and 

Gleixner (2006). Briefly, soil lipids were extracted by a mixture of chloroform, methanol 

and 0.05 M phosphate buffer (pH 7.4) and split up into phospholipids by eluting with 

chloroform, acetone and methanol from a silica-filled solid phase extraction column. 

Subsequently, the phospholipids were hydrolyzed and methylated by a methanolic KOH 

solution and the PLFA-methyl esters were identified and quantified by GC-AED (Agilent, 

Böblingen, Germany) and GC/MS (Thermo Electron, Dreieich, Germany). PLFA 19:0 was 

used as internal standard. PLFA concentration was calculated as mg PLFA per g soil dry 

weight. Among 27 recorded PLFAs the following represented bacterial biomass: 14:0, 

15:0, 15:0br iso, 15:0br anteiso, 16:0, 17:0, 18:0 and 20:0. PLFA 18:2ω6 was a marker for 

saprophytic fungal biomass according to Zelles (1997). Gram-negative bacteria were 

represented by 16:1, 17:1, 17:1(2), 18:1, 18:1(2), 18:1n9, 18:1n11, 19:1, 18:0 cyclo, and 

20:1 and Gram-positive bacteria were represented by 16:0br, 17:0br, 17:0br(2), 17:0br(3) 

and 17:0br(4). PLFA 14:0 could not be assigned to a bacterial group (Zelles, 1997). 



4 Seasonal changes in the soil microbial community 

48 

4.2.3 Microbial Biomass Carbon (Cmic/CFE) 

Microbial biomass carbon was determined using the Chloroform Fumigation Extraction 

(CFE) method as described by Vance et al. (1987) using 10 g fresh soil samples. 

Non-fumigated samples were extracted with 50 ml 0.5 M K2SO4 for 1 h at 130 rev min-1 

and filtered subsequently. Extracted samples were kept frozen until analysis. Samples for 

fumigation were placed in a vacuum desiccator and fumigated with ethanol-free 

chloroform for 24 h. Fumigated samples were extracted with 0.5 M K2SO4 under the same 

conditions as non-fumigated samples. The C content of the K2SO4 extracts was measured 

on a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). 

Microbial biomass carbon was calculated as Cmic/CFE = Ec/kec, with Ec the difference 

between organic C extracted from fumigated soils and organic C extracted from 

nonfumigated soils, and kec the efficiency constant 0.45 (Jörgensen, 1996). 

4.2.4 Basal respiration (BR) and substrate induced respiration (SIR) 

BR and SIR were measured using an O2 microcompensation apparatus (Scheu, 1992). The 

microbial respiratory response was measured at hourly intervals for 24 h at 22°C. BR 

(µl O2 g-1 soil dry weight h-1) was determined without addition of substrate and measured 

as mean of the O2 consumption rates of hours 12 to 22 after the start of the measurements. 

SIR was calculated from the respiratory response to D-glucose (Heal et al., 1997). Glucose 

was added in appropriate amounts (according to preliminary studies) to saturate the 

catabolic enzymes of the microorganisms (4 mg g-1 dry soil solved in 400 µl deionized 

water). The mean of the lowest three readings within the first 10 h was taken as maximum 

initial respiratory response (MIRR; µl O2 g-1 soil dw h-1). 

4.2.5 Statistical analysis 

Statistical analyses and model calculations were carried out with SPSS Version 15.0 (SPSS 

Inc., Chicago, USA). The relation between PLFAs, SIR, BR and Cmic/CFE was tested with 

correlation analyses. Accounting for differences in soil properties between the blocks, the 

block effect was included as random factor fitted first in all analyses of variance 

(ANOVAs, type I SS). Plant species diversity and number of plant functional groups, bare 

ground plots and vegetated plots or presence of legumes were included as fixed factors. 

Aboveground plant biomass and C/N ratio of plant biomass were set as covariates. 

Differences between spring and autumn were analysed with a repeated measures ANOVA 
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using sampling date as fixed factor. In addition, comparisons among PLFA profiles were 

analysed by Principal Components Analysis (PCA). Data used in the PCA were 

standardized to the maximum peak per plot. The results of the PCA along axis 1 and 2 

were compared by ANOVAs (type I SS). The Shannon diversity index, commonly used to 

characterise species diversity in a community, was used as measure of PLFA diversity as 

H`=-Σ[Pi*log Pi], with Pi representing the proportional abundance of a given PLFA. The 

Shannon index was compared by ANOVAs as described above. Additionally, bare ground 

plots and vegetated plots were compared by PCA including both sampling times. All 

references to statistical differences are based upon a significance level of 0.05. 

4.3 Results 

4.3.1 Soil and plant parameters 

Soil organic carbon increased significantly from 19.1 g kg-1 (sd = 2.6 g kg-1, sd = standard 

deviation) in 2002 to 22.3 g kg-1 (sd = 2.8 g kg-1) in 2006 (p < 0.001) in vegetation covered 

plots, while the concentration in the bare ground plots stayed constant within the first four 

years of the experiment. Moreover, the nitrogen concentration increased significantly from 

2002 (2.1 g kg-1 sd = 0.2 g kg-1) to 2006 (2.3 g kg-1 sd = 0.3 g kg-1) (p < 0.001). Soil 

organic carbon and nitrogen concentrations were not significantly affected by plant species 

richness, number of functional groups or the presence or absences of legumes. 

The C/N ratio of plant shoot biomass decreased significantly from 26.2 sd = 8.3 in May to 

18.3 sd = 3.6 in August (p < 0.001) (Table 4-1). At both sampling dates, differences 

between plots varying in species richness were not significant. In May, C/N ratio of plant 

shoot biomass from plots containing legumes was half the amount of plants from plots 

without legumes (p = 0.001). In August, the lower C/N ratio on plots with legumes was 

caused by higher nitrogen concentrations. Furthermore, in May and August aboveground 

plant biomass in legume plots exceeded that of non-legume plots (May: 653 g dw m-2 

sd = 340 g dw m-2 and 150 g dw m-2 sd = 50 g dw m-2, for legumes and non-legumes plots 

respectively; October: 202 g dw m-2 sd = 70 g dw m-2 and 92 g dw m-2 sd = 34 g dw m-2, 

for legumes and non-legumes plots respectively).  
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Table 4-1: Aboveground plant biomass and C/N ratio of plant biomass in presence and absence of 
legumes and at different sown species richness in May and August 2006. Standard deviation in 
parentheses. 

Aboveground 
plant biomass 

(g dw m-2) 

Aboveground 
plant biomass 

(g dw m-2) 

C/N ratio 
biomass 

C/N ratio 
biomass Diversity level 

May 2006 August 2006 May 2006 August 2006 
all plots 464 (365) 160   (80) 26.2 (8.3) 18.3 (3.6) 
plots containing legumes (n = 15) 653 (340) 202   (70) 21.9 (5.9) 16.6 (2.6) 
plots without legumes (n = 12) 150   (50) 92   (34) 33.3 (6.7) 21.1 (3.3) 
4 species mixtures (n = 8) 310 (210) 144   (60) 26.5 (9.0) 17.2 (3.3) 
8 species mixtures (n = 8) 547 (517) 152   (74) 25.7 (7.3) 19.3 (4.7) 
16 species mixtures (n = 8) 535 (291) 185 (104) 26.3 (9.5) 18.3 (2.8) 

4.3.2 Microbial biomass 

The amount of PLFAs, SIR and BR were lower in spring (PLFA: 4.4 μg g-1 dw 

sd = 1.1 μg g-1 dw; SIR: 7.5 O2 h-1 g-1 dw sd = 1.2 O2 h-1 g-1 dw; BR: 2.2 O2 h-1 g-1 dw 

sd = 0.4 O2 h-1 g-1 dw) than at the end of the growing season (PLFA: 7.2 μg g-1 dw 

sd = 1.4 μg g-1 dw, p < 0.001; SIR: 32.5 O2 h-1 g-1 dw sd = 6.6 O2 h-1 g-1 dw, p < 0.001; 

BR: 3.7 O2 h-1 g-1 dw sd = 0.7 O2 h-1 g-1 dw, p < 0.001). Further, the amount of PLFAs, 

SIR and BR were positively correlated with each other in October (SIR and BR: R = 0.79, 

p < 0.001; SIR and PLFA: R = 0.58, p = 0.002). Cmic/CFE was positively correlated with the 

amount of PLFAs (R = 0.48, p = 0.012).  

Soil microbial biomass differed considerably between bare ground plots and vegetated 

plots (Table 4-2). In May, bare ground plots had slightly higher amounts of PLFAs 

compared to plots with vegetation cover. During the vegetation period microbial biomass 

increased on the vegetated plots in contrast to bare ground plots. Consequently, the amount  
 

Table 4-2: Means of the amount of phospholipid fatty acids (PLFA), microbial carbon measured 
using the Chloroform Fumigation Extraction method (Cmic/CFE), substrate induced respiration (SIR) 
and basal respiration at bare ground plots (n = 3) and vegetated plots (n = 24) in May and October. 
Different letters indicate significant differences (p < 0.05) between plots with and without vegetation in 
May and October, respectively.  

ND = not determined; standard deviation in parentheses. 

PLFA Cmic/CFE SIR Basal 
respiration Season Vegetation 

(μg g-1 dw) (mg g-1 dw) (O2 h-1 g-1 dw) (O2 h-1 g-1 dw) 
May mean of vegetated plots 4.4 (1.2) a 0.22 (0.04) a 7.5 (1.3) a 2.3 (0.3) a 
 bare ground plots 4.8 (0.4) a 0.19 (0.02) a 7.6 (0.7) a 1.6 (0.4) b 
October mean of vegetated plots 7.3 (1.4) a ND  33.7 (6.0) a 3.9 (0.7) a 
 bare ground plots 6.3 (1.7) a ND  23.1 (2.1) b 2.5 (0.1) b 
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Table 4-3: Means of the amount of phospholipid fatty acids (PLFA), microbial carbon measured as 
chloroform fumigation extraction (Cmic/CFE), substrate induced respiration (SIR) and basal respiration 
at different sown plant species diversity. Different letters indicate significant differences (p < 0.05) 
between the 4 to 16 species mixtures in May and October, respectively.  

ND = not determined; standard deviation in parentheses. 

PLFA Cmic/CFE SIR Basal 
respiration Season Diversity level 

(μg g-1 dw) (mg g-1 dw) (O2 h-1 g-1 dw) (O2 h-1 g-1 dw) 
May 4 species mixtures   (n = 8) 4.7 (1.6) a 0.24 (0.04) 7.7 (0.8) a 2.2 (0.3) a 
 8 species mixtures   (n = 8) 4.1 (0.8) a 0.22 (0.05) 7.1 (1.2) a 2.3 (0.3) a 
 16 species mixtures (n = 8) 4.4 (1.2) a 0.21 (0.02) 7.8 (1.8) a 2.3 (0.4) a 
October 4 species mixtures   (n = 8) 8.1 (1.4) a ND 34.2 (5.8) a 3.6 (0.1) a 
 8 species mixtures   (n = 8) 6.7 (1.5) b ND 31.6 (6.0) a 3.9 (0.7) a 
 16 species mixtures (n = 8) 7.1 (1.0) b ND 35.2 (6.4) a 4.1 (1.7) a 

of PLFAs, SIR and BR were higher on vegetated plots than on bare ground plots in 

October (PLFA: p = 0.138; SIR: p = 0.001; BR: p < 0.001). However, Cmic/CFE was not 

affected by vegetation cover or diversity (vegetation cover: p = 0.178; diversity: 

p = 0.263).  

Beside the differences between bare ground plots and those with vegetation cover, the 

amount of PLFAs was also affected by sown plant species diversity (Table 4-3). Although 

the amount of PLFAs was not affected in May (p = 0.681), it was higher in the 4 species 

than in the 8 and 16 species mixtures in October (4 vs. 8 species: p = 0.036; 4 vs. 16 

species: p = 0.035). SIR and BR were not affected by sown plant species or plant 

functional group diversity. However, when including bare ground plots in the analysis, SIR 

was significantly affected in October (p = 0.016) and the gradient between bare ground 

plots and 16 species plots was significantly steeper (p = 0.020). Further, the presence of 

specific plant functional groups had no significant effect on microbial parameters. 

4.3.3 Microbial community composition 

In May, principal component 1 explained 30.7 % of the variation in PLFA composition, 

and principal component 2 explained further 12.7 % (Table 4-4). Bare ground plots were 

clearly separated from vegetation covered plots (p < 0.001). The PCA loading of 

component 1 did not significantly differ between the different diversity levels when bare 

ground plots were excluded (p = 0.097). However, plots containing legumes significantly 

differed from plots without legumes (p = 0.001). PLFAs 19:1, 15:0 branch, 16:1, 17:0 

branch, 18:1n9 were the main drivers of principal component 1. 
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Table 4-4: Summary of the PCA for different plant diversity levels (4, 8 and 16 species plots) and 
bare ground plots for May and October. Eigenvalues, proportional variance (PrVar) and cumulative 
variance (Cum Var) for principal component 1 and 2 (PC1 and PC2) including eigenvectors that each 
plant diversity level contributes to that PC. 

 Eigenvalues Eigenvectors 

 PC Value PrVar Cum Var bare ground 
plots 

4 
species 

8 
species  

16 
species  

May 1 8.00 30.77 30.77 2.01 -0.55 0.00 -0.14 
 2 3.31 12.72 43.49 0.27 0.38 -0.16 -0.37 
October 1 11.26 43.33 43.33 1.47 -0.26 -0.31 0.05 
 2 3.41 13.12 56.45 1.38 0.15 -0.05 -0.64 

In October, principal component 1 and principal component 2 accounted for 43.3 % and 

13.1 % of the variation, respectively (Table 4-4). The results were generally similar to 

those in May except that the presence of legumes had no significant effect along principal 

component 1 (p = 0.193) but along principal component 2 (p = 0.012). Further, bare 

ground plots and covered plots differed significantly (p = 0.004) but analysing only 

covered plots showed no effect on plant species diversity and the number of plant 

functional groups on PLFA patterns. PLFAs 17:0 branch, 15:0 branch, 17:1, 17:0, 19:1, 

16:1, 16:0, 15:0, 18:1 and 16:0 branch were the main drivers of principal component 1.  

By comparing both sampling dates principal component 1 explained 34.0 % and principal 

component 2 explained 10.9 % of the variation in the microbial community (Figure 4-1, 

Table 4-5). In May and October, bare ground plots were not significantly different along 

principal component 1 (p = 0.334). The same was true for vegetated plots (p = 0.291). Bare  

 

Figure 4-1: Principal components analysis (PCA) of the PLFA patterns of plots with and without 
vegetation (rhomboids: bare ground = no plant species present; circles: vegetation covered plots 
containing 4, 8, or 16 plant species) in May (unfilled symbols) and October (filled symbols) 2006. 
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Table 4-5: Summary of the PCA for different plots (bare ground = no plant species present; 
vegetated plots containing 4, 8, or 16 plant species) combined for May and October 2006. Eigenvalues, 
proportional variance (PrVar) and cumulative variance (Cum Var) for principal component 1 and 2 
(PC1 and PC2) including eigenvectors that each plant diversity level contributes to that PC. 

 Eigenvalues Eigenvectors 
bare ground 

plots 
bare ground 

plots 
vegetated 

plots 
vegetated 

plots  PC Value PrVar Cum Var 
May October May October 

May and 
October 1 8.85 34.0 34.0 1.30 2.28 -0.34 -0.11 

 2 2.82 10.9 44.9 0.15 1.14 -0.33   0.17 
 

ground and vegetated plots significantly differed in May (p = 0.011) and October 

(p < 0.001). However, bare ground plots and plots with vegetation cover were more similar 

in May than in October. 

Averaged over all plots, PLFAs of Gram-negative bacteria dominated the microbial 

communities (Table 4-6). Their relative abundance (as percentages of total) increased from 

May (54.7 %) to October (55.2 %) (p = 0.016). PLFAs of Gram-positive bacteria decreased 

significantly from 16.4 % to 14.9 % during the vegetation period (p < 0.001) while PLFAs 

of fungi comprised 4.8 % of the total PLFAs and did not change. None of the tested 

microbial functional groups was affected by plant species diversity (Table 4-7). However, 

at both sampling dates, the proportion of Gram-negative bacteria was significantly higher 

in presence of legumes (May: p = 0.012; October: p = 0.014). In contrast to this, the 

proportion of fungi was decreased in the presence of legumes (May: p = 0.015; October: 

p = 0.003). The other plant functional groups (grasses, small herbs and tall herbs) had no 

effect on the composition of the microbial community. C/N ratio of plant biomass 

significantly affected the proportion of bacterial groups and fungi in October. While Gram 

positive bacteria (R = 0.49, p = 0.015) and fungi (R = 0.49, p = 0.016) increased with 

increasing C/N ratios the proportion of Gram-negative bacteria (R = -0.37, p = 0.074) 

seemed to decrease. The Shannon index was significantly lower in May than in October 

(p < 0.001) but was not affected by plant species diversity, number of plant functional 

groups and the presence of single plant functional groups.  
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4.4 Discussion 

4.4.1 Land use change and soil microbial community 

Converting arable systems into grasslands result in shifts in microbial biomass and 

community composition (Potthoff et al., 2006). The permanent vegetation cover alters 

abiotic and biotic soil properties and belowground ecosystem functions such as 

decomposition and nutrient cycling (Orwin et al., 2006). In the present study, bare ground 

plots and plots with vegetation cover differed significantly in several microbial parameters. 

While bare ground plots had slightly increased microbial biomass in October, the increase 

was more pronounced on vegetated plots. Beside biotic factors, the vegetation drives 

microclimatic conditions like soil moisture and temperature, which are prominent factors 

in determining soil microbial community composition (Zogg et al., 1997; Fierer et al., 

2003). The amount of PLFAs, SIR and BR were higher in October than in May. While the 

whole bacterial community can be investigated by measuring PLFAs, SIR represents the 

active part of the microflora (e.g. r-strategists like zymogenous species) that prefers easily 

degradable organic compounds (Dilly and Munch, 1998). Consequently, PLFA and SIR 

are not necessarily correlated (Merila et al., 2002). Higher PLFA, SIR and BR in October 

than in May indicate that the active biomass as well as the total biomass has changed 

during the vegetation period. After “starving” in winter the microogranisms can re-

establish during the vegetation period parallel to plant growth. The establishment is 

accompanied by changing C/N ratios of the input material during the vegetation period and 

might be correlated with an increased growth of fine roots during spring and summer. This 

might explain our observation of higher amounts of Gram-negative bacteria in October 

compared to spring. Generally, we found that the importance of the input source of carbon 

substrates on the proportion of microbial groups is more distinct in autumn than in spring.  

Apart from the differences in total microbial biomass on vegetated plots, differences 

among the sown plant diversity levels were also examined. In the present study, Cmic/CFE 

was highest in the 4 species mixtures. Only a few studies have examined the relationship 

between aboveground plant diversity and the soil microbial community and inconsistent 

results are common (Porazinska et al., 2003; Zak et al., 2003; Carney and Matson, 2005). 

For instance, an increase in plant diversity from one to two species had a positive effect on 

soil microbial biomass, microbial respiration and the decomposition rate (Wardle and 

Nicholson, 1996) but this may not always be the case (Wardle and Barker, 1997). Spehn et 
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al. (2000) found that soil microbial biomass but not respiration or decomposition rate 

decreased as plant richness decreased from 32 to 1 species, while Zak et al. (2003) found 

that microbial biomass as well as microbial respiration increased with increasing plant 

species richness. In the present study Cmic/CFE was only affected by plant species diversity 

in autumn supporting observations by Spehn et al. (2000) who also found no relationship 

between these two factors in June but in October. Presumably, differences between 

diversity levels are becoming more distinct during the vegetation period because of the 

different quality and quantity of inputs entering the belowground system under varying 

plant species diversity. During winter these differences might abate.  

The microbial community composition strongly depended on the presence of vegetation as 

indicated by PCA. Reasons for the differences between the microbial communities on 

vegetated plots compared to bare ground plots are likely the same as discussed for the 

microbial biomass. The presence of plants probably changed environmental conditions and 

concomitantly soil conditions as indicated by increased organic carbon and nitrogen 

concentrations on plots with vegetation cover (Steinbeiss et al., 2008). Soil bacteria likely 

responded to these changes. Other studies did not find significant changes in microbial 

community or biomass two years after vegetation change (Maly et al., 2000; Balser et al., 

2005). The results of pot experiments on carry-over effects of previous cultivation systems 

on microbial community development suggest that “soil memory” is an important factor in 

ecosystem development leading to time-lags before effects of the new land use can be 

detected (Bartelt-Ryser et al., 2005). The present study showed that four years after 

establishing experimental grassland systems first effects of the aboveground plant 

community on Cmic/CFE and microbial community composition are detectable and 

presumably these differences will increase within the next years.  

4.4.2 Plant species diversity and soil microbial community composition 

The effect of key plant species on microbial communities is important to consider because 

the abundance, activity, and composition of decomposer communities have been shown to 

vary considerably with different plant species (Eom et al., 2000; Stephan et al., 2000). 

Effects of the plant community composition on soil microbial communities are due to plant 

species-specific variations in the quality and quantity of plant material that enters the soil 

modifying microbial community structure and activity. Soil fungi showed the most 

pronounced responses to plant presence and C/N ratio of plant biomass. Fungi are known 
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to be the first colonizers of litter with wide C/N ratios (Bowen and Harper, 1990). 

However, they are sensitive to dry conditions (Frey et al., 1999) which are often occurring 

on arable fields and similarly on the bare ground plots of The Jena Experiment. In 

vegetable cropping systems Schutter et al. (2001) found higher fungal biomass in spring 

compared to later in the year. On the contrary, we could not support these findings on soil 

fungi but for other groups of microorganisms like Gram-negative bacteria. Zymogenous 

microorganisms (i.e. Gram-negative bacteria) that strongly depend on the input of fresh 

organic material create hot spots of decomposition (Griffiths et al., 1999). Presumably, in 

October most of the “old” litter is already decomposed and new input like root exudates 

can be used by Gram-negative bacteria becoming more important at the end of the 

vegetation period. In October, Gram-negative bacteria are negatively and Gram-positive 

bacteria are positively correlated with increasing C/N ratios of plant biomass probably 

indicating the use of different food sources. While Gram-positive bacteria are found to use 

more soil organic matter derived carbon sources, Gram-negative bacteria prefer plant-

derived carbon as carbon source (Kramer and Gleixner, 2008).  

Beside the number of species, the presence of single plant functional groups can have a 

distinct impact on ecosystem processes (Bezemer et al., 2006; Lanta and Leps, 2007). 

Especially legumes are often reported to influence above- and belowground processes by 

providing nitrogen rich organic matter (Mulder et al., 2002; Spehn et al., 2002). Fresh 

organic matter inputs control microbial activity and SOM mineralization. In line with these 

findings, the present study underlines the observation that legumes support larger amounts 

of bacterial PLFAs, in particular Gram-negative bacteria, as indicated previously 

(Hedlund, 2002). This suggests that improved resource quality, indicated by lower C/N 

ratios (higher nitrogen concentrations), on plots containing legumes likely enhanced 

bacterial growth in the rhizosphere at the expense of fungi.  

Diversity indices provide more information on community composition than simple 

species richness; they also take the relative abundances of different species into account 

(evenness). The increase in the Shannon index from May to October probably indicates a 

shift in the microbial PLFA abundance from a small number of PLFAs with high 

abundances in spring to a more balanced microbial community at the end of the vegetation 

period.  
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4.5 Conclusion 

Our results showed that four years after conversion of arable land to experimental 

grassland of The Jena Experiment first effects of plant community composition on soil 

microbial community composition became detectable. The present study showed distinct 

seasonal changes in the soil microbial community structure, which were probably driven 

by the availability and quality of organic resources. Further, our results highlighted the 

time-lag of belowground responses to aboveground vegetation manipulations with only 

few significant effects four years after the establishment of the experiment. We 

hypothesise that these effects will increase with time. 
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4.8 Appendix 

Species mixtures of the investigated plots 
 
4 species mixtures: 

• Arrenatherum elatius, Campanula patula, Luzula campestris, Prunus vulgaris 
• Achillea millefolium, Crepis biennis, Festuca pratensis, Luzula campestris 
• Lathyrus pratensis, Medicago lupulina, Plantago lanceolata, Taraxacum officinale 
• Knautia arvensis, Leontodon autumnalis, Plantago media, Vicia cracca 
• Phleum pratense, Plantago media, Trifolium hybridum, Vicia cracca 
• Bromus erectus, Plantago lanceolata, Poa trivialis, Prunella vulgaris 
• Cardamine pratensis, Crepis biennis, Medicago lupulina, Trifolium repens 
• Heracleum sphondylium, Medicago x varia, Tragopogon pratensis, Trisetum 

flavescens 
 
8 species mixtures: 

• Cynosurus cristatus, Glechoma hederacea, Lotus corniculatus, Medicago lupulina, 
Phleum pratense, Primula veris, Trifolium flavescens, Veronica chamaedrys 

• Lathyrus pratensis, Medicago lupulina, Medicago x varia, Onobrychis viciifolia, 
Trifolium campestre, Trifolium dubium, Trifolium hybridum, Trifolium pratense 

• Anthriscus sylvestris, Galium mollugo, Geranium pratense, Heracleum 
sphondylium, Knautia arvensis, Leucanthemum vulgare, Ranunculus acris, 
Sanguisorba officinalis 

• Crepis biennis, Galium mollugo, Leontodon hispidus, Lotus corniculatus, 
Medicago lupulina, Onobrychis viciifolia, Plantago media, Sanguisorba officinalis 

• Alopecurus pratensis, Arrhenatherum elatius, Cynosurus cristatus, Dactylis 
glomerata, Festuca rubra, Holcus lanatus, Poa trivialis, Trisetum flavescens 

• Anthoxanthum odoratum, Anthriscus sylvestris, Bromus erectus, Leucanthemum 
vulgare, Lotus corniculatus, Onobrychis viciifolia, Poa trivialis, Trifolium 
hybridum 

•  Ajuga reptans, Bellis perennis, Glechoma hederacea, Leontodon autumnalis, 
Primula veris, Prunella vulgaris, Taraxacum officinale, Veronica chamaedrys 

• Achillea millefolium, Ajuga reptans, Bromus erectus, Cardamine pratensis, Festuca 
pratensis, Pimpinella major, Plantago media, Primula veris 

 
16 species mixtures: 

• Anthoxanthum odoratum, Anthriscus sylvestris, Ajuga repens, Avenula pubescens, 
Bromus erectus, Carum carvi, Geranium pratense, Lathyrus pratensis, Lotus 
corniculatus, Plantago lanceolata, Poa pratensis, Ranunculus repens, Taraxacum 
officinale, Tragopogon pratensis, Trifolium campetsre, Vicia cracca 

• Achillea millefolium, Alopecurus pratensis, Anthoxanthum odoratum, Anthricus 
sylvestris, Avenula pubescens, Bromus hordeaceus, Campanula patula, Centaurea 
jacea, Geranium pratense, Heracleum sphondylium, Holcus lanatus, 
Leucanthemum vulgare, Pimpinella major, Poa pratense, Poa trivialis, Trisetum 
flavescens  

• Alopecurus pratensis, Anthoxanthum odoratum, Arrhenatherum elatius, Bellis 
perennis, Bromus erectus, Festuca pratensis, Holcus lanatus, Leontodon 
autumnalis, Leontodon hispidus, Phleum pratense, Plantago lanceolata, Poa 
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pratensis, Primula veris, Prunella vulgaris, Ranunculus repens, Veronica 
chamaedrys 

• Ajuga reptans, Alopecurus pratensis, Anthriscus sylvestris, Bromus hordeaceus, 
Campanula patula, Cardamine pratensis, Cynusurus cristatus, Geranium pratense, 
Medicago lupulina, Plantago media, Poa pratensis, Primula veris, Ranunculus 
repens, Trifolium campestre, Trifolium dubium, Trifolium repens 

• Ajuga reptans, Glechoma hederacea, Lathyrus pratensis, Leontodon hispidus, 
Medicago lupulina, Onobrychis viciifolia, Plantago media, Prunella vulgaris, 
Ranunculus reptans, Taraxacum officinale, Trifolium campestre, Trifolium 
fragiferum, Trifolium hybridum, Trifolium repens, Veronica chamaedrys, Vicia 
cracca 

• Ajuga reptans, Anthoxanthum odoratum, Bellis perennis, Bromus erectus, Crepis 
biennis, Festuca rubra, Galium mollugo, Geranium pratense, Phleum pratense, 
Onobrychis viciifolia, Ranunculus repens, Rumex acetosa, Trifolium dubium, 
Trifolium fragiferum, Veronica chamaedrys, Vicia cracca 

• Alopecurus pratensis, Bromus hordeaceus, Carum carvi, Crepis biennis, Cynusurus 
cristatus, Heracleum sphondylium, Lathyrus pratensis, Leontodon autumnalis, 
Luzula campestris, Onobrychis viciifolia, Pimpinella major, Plantago media, 
Taraxacum officinale, Trifolium campestre, Trifolium hybridum, Veronica 
chamaedrys 

• Anthriscus sylvestris, Campanula patula, Cardamine pratensis, Centaurea jacea, 
Cirsium oleraceum, Geranium pratense, Medicago x varia, Rumex acetosa, 
Tragopogon pratensis, Trifolium campestre, Trifolium hybridum, Trifolium 
dubium, Trifolium pratense, Trifolium repens, Trifolium fragiferum, Vicia cracca 
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5 Linking plant diversity and soil microbial community 
characteristics in an experimental grassland approach 

Chapter source: Maike Habekost et al. 2008. Linking plant diversity and soil microbial 
community characteristics in an experimental grassland approach. 
Submitted to Journal of Ecology  

Abstract 
The link between soil microbial communities and plant diversity (with special reference to 

the number of plant species and their functional groups) is not well understood. Therefore, 

we investigated the impact of plant diversity on soil microbial biomass and soil microbial 

community composition in experimental grassland ecosystems. The Jena Experiment, 

established in 2002 on a former arable land site, included different mixtures of 60 species 

each typically occurring in the Central European mesophilic grasslands. The diversity 

gradient covers 1, 2, 4, 8, 16 and 60 species and 1, 2, 3 and 4 functional groups (grasses, 

legumes, small herbs and tall herbs), which were sown in a factorial design to exclude 

interfering effects between sown species and functional group richness. In May 2007, soil 

samples were taken from all 82 plots of The Jena Experiment and from two adjacent arable 

land sites and meadows. Composition and amount of the microbial biomass were 

determined by the phospholipid fatty acids (PLFA) analyses and the chloroform 

fumigation extraction (CFE). 

We found that microbial biomass significantly increased with increasing plant diversity. 

This was probably due to a higher and more diverse food supply leading to a higher niche 

complementarity and facilitation at higher diversity levels. In addition, the microbial 

community composition was altered by plant diversity, whereas the eveness remained 

unaffected. While the number of plant functional groups was most important for microbial 

biomass, the composition of the soil microbial community changed in response to both, 

sown species richness and number of functional groups. The presence of certain functional 

groups (grasses and legumes) changed the proportion of fungi and Gram-negative bacteria 

in the whole microbial community. Five years after the establishment of The Jena 

Experiment, we found clear evidence that plant diversity had a major effect on the soil 

microbial community.  

Keywords: chloroform fumigation extraction (CFE), phospholipid fatty acids (PLFA), plant functional 
groups, species number, The Jena Experiment 
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5.1 Introduction  

Life above and below ground is linked by complex interactions (Hooper et al., 2000). 

Apart from the impact of season and specific soil properties like temperature, texture and 

moisture (Papatheodorou et al., 2004; Marhan et al., 2007; Steenwerth et al., 2008), mainly 

vegetation cover influences soil microbial communities (Hedlund, 2002; Potthoff et al., 

2006; Habekost et al., 2008). It affects the soil microbial community by virtue of the 

biomass production, the litter quality, seasonal variations of litter production, plant carbon 

allocation and root exudates (Angers et al., 1998; Bais et al., 2006; Bezemer et al., 2006). 

In turn, soil microbial communities decompose organic matter, thereby increasing the 

availability of nutrients for plants and enhancing plant growth (Porazinska et al., 2003; van 

der Heijden et al., 2008) and consequently the transfer of organic matter from above 

ground to belowground systems. The productivity of aboveground can easily be 

determined and is well-established. In contrast to this, the quantification of belowground 

biomass and their inputs is very critical because direct root sampling has its limitations 

partly due to soil disturbance and the inability to account for coincidental growth and death 

between the sampling dates (Hendrick et al., 1993). Aboveground biomass has been found 

to be a useful and reliable measure for estimating the belowground biomass and is 

therefore widely used as a proxy for root input (Gill et al., 2002).  

Plant diversity changes a wide range of ecosystem processes (Hooper et al., 2000; Loreau 

et al., 2001) but the mechanisms of their impact are not well understood. The link between 

plant diversity and belowground processes for example remains still open. With increasing 

plant diversity ressource availability for microbial communities in soil is modified (Zak et 

al., 2003) and might lead to higher niche complementarity including niche differentiation 

and facilitation of the soil microbial community. Beside species richness, the number of 

plant functional groups, containing species with similar morphological, phenological and 

physiological traits, might have an impact on soil microogranisms. Plant functional groups 

like legumes or grasses clearly differ in their litter quality and carbon and nitrogen release 

to soil and were found to strongly influence microbial decomposition (Scherer-Lorenzen, 

2008). Plant species and functional groups not only provide  microorganisms with a wide 

range of nutrition, microorganisms also preferentially use different food sources (Schutter 

et al., 2001; Paterson et al., 2008). Fungi colonize litter with wide C/N ratios (Bowen et al., 

1990), Gram-negative bacteria are mostly root associated and thus decompose small 

organic molecules (Griffiths et al., 1999) whereas Gram-positive bacteria are also able to 
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decompose more complex material like soil organic matter or litter (Kramer et al., 2006). 

The presence of distinct plant functional groups promotes distinct microbial groups. 

Therefore higher plant diversity, as number of species or number of functional groups, 

might increase the diversity of the soil microbial community, which can be estimated with 

proxies like the Shannon index (Hill et al., 2003). In addition to the Shannon diversity 

index the Smith and Wilson’s index of evenness (Smith et al., 1996) was used to further 

characterise the microbial community. 

So far, studies investigating the impact of plant diversity on soil microbial biomass and the 

community structure under field conditions are scarce and mostly restricted to culturable 

bacteria or very specific ecosystems (Spehn et al., 2000; Stephan et al., 2000; Zak et al., 

2003; Gruter et al., 2006). Further, most studies investigating the effect of plant diversity 

on soil microbial communities studied either the effect of plant species richness or plant 

functional richness. These studies have a limited explanatory value because both parameter 

may interact and play a role for soil microbial community. We studied the effect of plant 

diversity on the soil microbial community. The soil microorganisms were determined by 

chloroform fumigation extraction and phospolipid fatty acid analysis, at the field site of 

The Jena Experiment, which is a grassland diversity experiment that was establishment in 

2002 on a former arable land. In The Jena Experiment, the sown species richness (1 - 60) 

and the number functional groups (1 - 4) were varied as independent as possible to reach a 

factorial design (Roscher et al., 2004). Additionally, long-term meadows, ongoing arable 

plots and fallows were included in the analyses and the microbial communities found at 

these sites were used as reference microbial communities.  

We hypothesize that plant diversity affects belowground microbial community biomass 

and composition because quality, quantity, variety and timing of carbon and nitrogen 

release, which are prerequisites for microbial nutrition, are different at different 

biodiversity levels. Since plant species differ in their carbon and nutrient release into the 

soil these differences might be even larger among plant species with different functional 

characteristics. We assume sown species richness (1) as well as the number of plant 

functional groups (2) and the presence species belonging to particular functional groups (3) 

to have an impact on soil microbial biomass and their community composition.  
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5.2 Materials and Methods 

5.2.1 Site description and experimental design 

The field site of The Jena Experiment is located close to the city of Jena (Germany) in the 

floodplains of the river Saale. The soil (Eutric Fluvisol) has developed from up to 

2-m-thick fluvial sediments presenting a systematic variation of soil texture. The sand 

content decreased with distance from the river from 40 % to 7 %, while the silt content 

increased from 44 % to 69 %. The clay content showed almost no spatial pattern and 

varied between 16 % and 24 % (Steinbeiss et al., 2008). Consequently, the experimental 

plots were arranged in four blocks parallel to the river to account for these differences in 

soil characteristics. Before the establishment of The Jena Experiment in 2002, the site was 

used as arable land since the early 1960s and ploughed and fertilized regularly. The Jena 

Experiment comprises 82 plots (each 20 m by 20 m) which were sown in May 2002. The 

species mixtures were chosen from a species pool of 60 being typical for Central European 

mesophilic grasslands, by the random replacement method. Species were grouped into four 

functional groups according to their morphological, phenological and physiological traits 

(Roscher et al., 2004). The diversity gradient ranged from 1 to 60 species (1, 2, 4, 8, 16 and 

60) and from 1 to 4 functional groups (1, 2, 3 and 4). Each level of sown species richness 

was represented with four replicates per block resulting in 16 replicates per species 

richness level in total except for 16 species mixtures which were represented by 14 

replicates. Bare ground plots with no vegetation cover and 60-species mixtures were 

represented four times with one plot per block. The levels of numbers of functional groups 

were represented with 34, 20, 12 and 16 plots for 1, 2, 3 and 4 functional groups, 

respectively. The diversity gradient was maintained by weeding twice a year. All plots 

were mown every June and September in accordance to the management of extensive 

meadows used for hay production. Additionally to the main experiment, two types of 

fallows with two respective replicates were established. The aim was to allow succession 

on a mowed replicate and on one without any disturbance. Further, soil microbial 

characteristics were determined on two adjacent meadows and two arable plots on the 

experimental site. The arable plots were continuously managed according to conventional 

agricultural procedures and the meadows were mown twice a year similar to the plots from 

The Jena Experiment.  
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5.2.2 Soil and biomass sampling 

In early May 2007, 6 soil samples per plot were taken with a core cutter (inner diameter: 

5.6 cm, Eijkelkamp Agrisearch Equipment, Giesbeek, Netherlands) to a depth of 5 cm, 

pooled and placed immediately in cooling boxes. During the first 48 hours after sampling 

the soil was kept at 4°C and sieved to 2 mm mineral size fraction. The sieved samples for 

phospholipid fatty acid analyses and chloroform fumigation extraction analyses were 

stored at -20°C. Sub-samples from the sieved soil cores were dried to constant weight at 

40°C, ground and analyzed for organic carbon and nitrogen (Elemental Analyser vario 

Max C/N, Elementar Analysensysteme GmbH, Hanau, Germany). The relative standard 

deviation of repeated mesurements of an certified reference soil was < 2 %. To calculate 

soil organic carbon and nitrogen stock changes between 2002 and 2007 stock data from 

2002 were used from the literature (Steinbeiss et al., 2008). 

In late May 2007 shortly before mowing, the aboveground biomass was harvested on three 

randomized quadrates (20 cm x 50 cm) per plot by cutting standing biomass 3 cm above 

ground. The biomass was dried at 70°C to constant weight, chaffed and ground to fine 

powder. Carbon and nitrogen were measured from 20 mg sub-samples with an elemental 

analyzer (Elemental Analyser vario EL II, Elementar Analysensysteme GmbH, Hanau, 

Germany) and C/N ratios were calculated. The repeated measurements of certified 

reference plant biomass resulted in an excellent relative standard deviation for organic 

carbon and nitrogen concentrations of < 1 %. 

5.2.3 Phospholipid fatty acids (PLFA) analysis  

For PLFA analysis soil samples were shaken with a mixture of chloroform, methanol and 

0.05 M phosphate buffer (pH 7.4) to extract soil lipids (Bligh et al., 1959; Kramer et al., 

2006). Soil lipids were split up into neutral lipids, glycollipids and phospholipids by 

eluting with chloroform, acetone and methanol from a silica-filled solid phase extraction 

column. Subsequently, the phospholipids were hydrolyzed and methylated by a methanolic 

KOH solution and the PLFA-methyl esters were identified and quantified by GC-AED 

(Agilent, Böblingen, Germany) and GC/MS (Thermo Electron, Dreieich, Germany). Peak 

areas and the resulting PLFA amount per mg dry weight were calculated relative to the 

internal standard PLFA 19:0. The following PLFA were used as a marker for bacterial 

biomass 14:0, 15:0, 15:0br iso, 15:0br anteiso, 16:0, 17:0, 18:0 and 20:0. PLFA 18:2ω6 

was used as a fungal biomarker (Zelles, 1997). Gram-negative bacteria were represented 
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by 16:1, 16:1(2), 17:1, 17:1(2), 18:1, 18:1n9, 18:1n11, 18:0 cyclo, 20:1 and 20:1(2) and 

Gram-positive bacteria were represented by 16:0br, 16:0br(2), 17:0br, 17:0br(2), 17:0br(3), 

18:0br and 18:0br(2). PLFA 14:0br could not be assigned to a bacterial group (Zelles, 

1997). 

5.2.4 Microbial Biomass Carbon (Cmic/CFE) 

We applied the chloroform fumigation extraction (CFE) method to determine the amount 

of microbial biomass carbon (Cmic/CFE) (Vance et al., 1987). For the non-fumigated samples 

10 g of fresh soil were extracted with 50 ml 0.5 M K2SO4 for 1 h at 130 rev min-1, filtered 

subsequently and kept frozen until the analysis. The fumigated samples were fumigated 

with ethanol-free chloroform for 24 h in a vacuum desiccator and extracted afterwards in 

the same way as the non-fumigated samples. The difference of carbon contents of 

fumigated and non-fumigated samples were measured on a high TOC elemental analyzer 

(Elementar Analysensysteme GmbH, Hanau, Germany; rel standard deviation of reference 

material ≤ 5 %). The efficiency constant kec = 0.45 (Jörgensen, 1996) was used to calculate 

the microbial biomass. 

5.2.5 Statistical analysis 

Statistical analyses were carried out with SPSS Version 16.0 (SPSS Inc., Chicago, USA). 

Correlation analysis was used to test the relation between PLFAs, Cmic/CFE, soil and plant 

variables and diversity. The Jena Experiment is based on a factorial design with different 

combinations of the sown species richness and the number of functional groups. As the 

two diversity parameter are positively correlated and result in a not completely balanced 

design an analyses of variance (ANOVA) with sequential sum of squares (type I SS) was 

applied (Shaw et al., 1993). The block effect, describing systematic differences in soil 

properties between the blocks, was included as a random factor and fitted first. 

Aboveground biomass, C/N ratio of the aboveground biomass and the soil organic carbon 

stock changes between 2002 and 2007 were set as covariates and tested before sown 

species richness and the number of functional groups, which were included as fixed 

factors. The order of the experimental factor sown species richness and number of 

functional groups were changed to assess their relative importance. As a last factor the 

presence and absence of small herbs, tall herbs, grasses and legumes was respectively 

tested in the model. To reach equidistance between the diversity levels the sown species 
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richness term was log-transformed. To include bare ground plots 1 was added to the sown 

species richness before taking the logarithm (Steinbeiss et al., 2008). The presence and 

absence of functional groups were tested with ANOVAs including the block effect. The 

Shannon diversity index was used as a measure of PLFA diversity (Eq. 1). 

[ ]∑−= ii PPH log*,  (Eq. 1) 

Pi = proportional abundance of a given PLFA 

For calculation of the evenness of PLFAs the Smith and Wilson`s index of evenness (Evar) 

(Eq. 2) (Smith et al., 1996) was used.  
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 (Eq. 2) 

ni = number of individuals PLFA i in the sample 

nj = number of individuals of PLFA j in the sample 

s = number of species in the entire sample 

This evenness index, which is based on the abundance of PLFAs, is independent of number 

of PLFAs and sensitive towards rare and common PLFAs. Principal Components Analysis 

(PCA) was used to compare patterns of PLFA profiles. The data used in the PCA was 

normalized to the peak area of the highest peak per plot being 100 %. All references to 

statistical differences are based upon a significance level of 0.05. 

5.3 Results 

5.3.1 Soil and plant parameters 

The soil moisture at the sampling date was in the mean 11.6 % with a small standard 

deviation (sd) of 3.2 %. It was significantly correlated to the soil texture as it decreased 

with increasing sand content (R = -0.33, p = 0.002) and increased with increasing silt 

(R = 0.33, p = 0.002) and clay content (R = 0.30, p = 0.005). Soil organic carbon stocks 

increased from 1093 g m-2 (sd = 116 g m-2) in 2002 to 1426 g m-2 (sd = 167 g m-2) in 2007. 

The changes in soil organic carbon stocks between 2002 and 2007 were positively 
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correlated to plant diversity (sown species richness R = 0.31, p = 0.003; number of 

functional groups: R = 0.27, p = 0.013). 

The amount of biomass, harvested in May 2007, ranged between 188 g m-2 

(sd = 162 g m-2) for monocultures and 941 g m-2 (sd = 110 g m-2) for 60 species mixtures 

and from 296 g m-2 (sd = 303 g m-2) to 637 g m-2 (sd = 324 g m-2) for plant communities 

containing 1 to 4 functional groups, respectively (Appendix). Aboveground biomass was 

positively correlated to sown species richness and the number of functional groups (species 

richness: R = 0.48, p < 0.001; number of functional groups: R = 0.42, p < 0.001). Plots 

containing legumes produced more than twice the amount of biomass compared to plots 

without legumes. The C/N ratio of aboveground biomass was not correlated to the sown 

species richness (R = 0.01, p = 0.902) but decreased with increasing number of functional 

groups (R = -0.21, p = 0.056). Further, the C/N ratio was affected by the absence and 

presence of legumes and grasses. Plots containing grasses had a C/N ratio of 30.0 

(sd = 8.9) which was significantly higher than that of plots without grasses (C/N ratio: 22.0 

sd = 6.5 p < 0.001). On plots containing legumes the C/N ratio was significantly lower 

(20.4 sd = 4.4) compared to plots without this functional group (32.8 sd = 7.8 p < 0.001).  

5.3.2 Microbial biomass 

Higher plant diversity led to higher amounts of PLFAs and Cmic/CFE (Figure 5-1). The 

amount of PLFAs ranged from 3.8 μg g-1 dw (sd = 1.3 μg g-1 dw) on plots with 

monocultures up to 4.7 μg g-1 dw (sd = 0.5 μg g-1 dw) on plots with 60 species mixtures, 

while the Cmic/CFE ranged from 0.33 mg g-1 dw (sd = 0.12 mg g-1 dw) to 0.48 mg g-1 dw 

(sd = 0.05 mg g-1 dw). The amount of PLFA and Cmic/CFE increased with increasing number 

of functional groups and was highest at plots with 3 functional groups. The presence of 
 

0

2

4

6

8

10

12

14

0 1 2 3 4 with
mowing

free arable
land

meadow

PL
FA

 in
 μ

g 
g-1

 d
w

a.)

functional group richness fallow reference 
sites

*

*

*

*

*

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 with
mowing

free arable
land

meadow

C
m

ic
/C

FE
 in

 m
g 

g-1
 d

w

functional group richness fallow reference 
sites

b.)

*

*

*

 
Figure 5-1: Amount of phospholipid fatty acids (PLFA) a.) and microbial carbon (Cmic/CFE) b.) 
Asterisks mark significant (p < 0.05) differences between different numbers of functional groups, 
fallows and reference sites analysed by t-tests. The asterisks below the headline of the functional group 
richness refers to results from an ANOVA and indicates significance at the 0.05 level (see Table 5-2). 
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grasses significantly increased the amount of PLFAs from 4.1 μg g-1 dw 

(sd = 0.9 μg g-1 dw) to 4.6 μg g-1 dw (sd = 1.0 μg g-1 dw) (p = 0.020). In contrast to grasses 

all other functional groups did not alter the amount of PLFAs significantly 

(0.087 ≤ p ≤ 0.485). The amount of Cmic/CFE was not significantly influenced by any of the 

tested functional groups. Bare ground plots contained significantly less PLFAs 

(2.4 μg g-1 dw sd = 0.3 μg g-1 dw, p = 0.001) and Cmic/CFE (0.22 mg g-1 dw 

sd = 0.05 mg g-1 dw, p = 0.009) than vegetation covered plots from the diversity 

experiment.  

At the sites used as regular ploughed arable land, 1.6 μg g-1 dw (sd = 0.8 μg g-1 dw) of 

PLFA and of 0.22 mg g-1 dw (sd < 0.01 mg g-1 dw) of Cmic/CFE were found, which was 

significantly lower compared to the vegetation covered plots from the main experiment 

(p < 0.001 for PLFA and Cmic/CFE) (Figure 5-1). Established seminatural meadows had 

approximately twice the amount of PLFAs and Cmic/CFE (PLFA: 0.22 mg g-1 dw 

sd = 0.05 mg g-1 dw; Cmic/CFE: 0.87 mg g-1 dw sd = 0.16 mg g-1 dw) compared to plots of 

the main experiment (p < 0.001 for PLFA and Cmic/CFE). The amount of PLFAs and Cmic/CFE 

of two types of fallows (free succession and succession with mowing), which were 

additionally analyzed, ranged between the amounts measured for 4 to 16 species mixtures 

and 2 to 3 functional groups (Figure 5-1). 

Both variables to assess microbial biomass, Cmic/CFE and the amount of PLFAs, were 

significantly correlated (p < 0.001) (Table 5-1). While soil texture highly influenced the 

amount of PLFAs, it had no impact on Cmic/CFE. The relationship between variables 

characterising microbial biomass, soil as well as aboveground vegetation were tested with 

a correlation analyses. The amount of PLFAs was negatively correlated to sand content 

(p = 0.002) and positively correlated to the silt (p = 0.004) and clay (p = 0.002) content. 

The amount of PLFAs and Cmic/CFE were significantly positively correlated to soil moisture 

(PLFA: p < 0.001; Cmic/CFE: p < 0.001). Further, the amount of PLFAs and Cmic/CFE and the 

soil organic carbon stock changes were significantly correlated (PLFA: p < 0.001; 

Cmic/CFE: p < 0.001). While the amount of PLFAs and the C/N ratio of aboveground 

biomass were not significantly correlated (p = 0.385), the amount of PLFAs was 

significantly positively correlated to aboveground biomass (p = 0.024). Additionally, we 

found that microbial biomass was positively correlated to plant diversity (PLFA: sown 

species richness: p = 0.021; number of functional groups: p = 0.002; Cmic/CFE: sown species 

richness: p < 0.001; number of functional groups: p = 0.004).  



5 Linking plant diversity and soil microbial community characteristics  

73 

Table 5-1: Correlation between plant- or soil-related parameters and the amount of PLFAs and 
microbial biomass Cmic/CFE 

variable parameter significance pearson correlation 
PLFA sand content 0.002 -0.33 
 silt content 0.004 0.32 
 clay content 0.002 0.31 
 soil moisture < 0.001 0.61 
 soil Corg stock change 2002-2007 < 0.001 0.54 
 aboveground biomass 0.024 0.25 
 C/N ratio of aboveground biomass 0.385 0.10 
 ln sown species richness 0.021 0.25 
 number of functional groups 0.002 0.34 
Cmic/CFE sand content 0.796 -0.03 
 silt content 0.947 0.01 
 clay content 0.428 0.09 
 soil moisture < 0.001 0.49 
 soil Corg stock change 2002-2007 < 0.001 0.38 
 aboveground biomass 0.386 0.10 
 C/N ratio of aboveground biomass 0.957 0.01 
 ln sown species richness < 0.001 0.38 
 number of functional groups 0.004 0.31 

The variables, which were correlated to microbial biomass, were included in the ANOVA 

and fitted before the experimental factors to assess whether diversity has significant effects 

on soil microbial biomass after correcting for abiotic and plant related effects. Systematic 

differences between blocks, i.e. soil texture, were included as a block factor. In the 

ANOVA a high proportion of the variance was explained by soil organic carbon stock 

changes (12 %) and plant diversity as a sum of sown species richness and number of 

functional groups (12 %) (Table 5-2). The number of functional groups explained 

5 % to 9 % of the variance (0.010 ≤ p ≤ 0.031) and was more important for the amount of 

PLFAs, than sown species richness, which was not significant irrespective of whether it 

was tested before or after the number of functional groups (0.146 ≤ p ≤ 0.401). The 

importance of functional groups was not related to the presence of a distinct plant 

functional group (0.293 ≤ p ≤ 0.880). The ANOVA for the Cmic/CFE showed that soil 

organic carbon stock change had significant effects (p = 0.001) and explained most of the 

variance (Table 5-2). Sown species richness and the number of functional groups were not 

significant (sown species richness: 0.211 ≤ p ≤ 0.421; number of functional groups: 

0.245 ≤ p ≤ 0.537) but still explained 9 % of the variance. To test whether the microbial 

biomass was influenced by the presence of particular functional groups, the microbial 

biomass on plots with and without single functional groups was compared.  
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Table 5-2: Summary of sequential analysis of variance (ANOVA with type I sum of squares) of the 
amount of phospholipid fatty acids (PLFA) and microbial carbon (Cmic/CFE). The final column (% of 
SS) contains the proportion of the sum of squares explained by a particular parameter. Different order 
of fitting of biodiversity parameters is shown and a bold line within PLFA and Cmic/CFE denotes a 
reversed fitting of diversity parameters. Asterisks mark significance at the 0.05 (*), 0.01 (**) or 0.001 
(***) level. 

variable parameter significance F-value % of SS 

PLFA block (***) < 0.001 10.55 23.7
 aboveground biomass (*)    0.018 5.90 4.4
 C/N ratio of aboveground biomass 0.210 1.60 1.2
 soil Corg stock change 2002-2007 (***) < 0.001 16.12 12.0
 ln sown species richness 0.146 1.77 5.3
 number of functional groups (*)    0.031 3.16 7.1
 number of functional groups (**)    0.010 4.15 9.3
 ln sown species richness 0.401 1.03 3.1
Cmic/CFE block (*)    0.019 3.55 11.1
 aboveground biomass 0.466 0.54 0.5
 C/N ratio of aboveground biomass 0.527 0.40 0.4
 soil Corg stock change 2002-2007 (***)    0.001 12.83 13.4
 ln sown species richness 0.211 1.51 6.3
 number of functional groups 0.537 0.73 2.3
 number of functional groups 0.245 1.42 4.5
 ln sown species richness 0.421 0.99 4.1

 

5.3.3 Microbial community composition 

Principal component 1 (PC1) explained 29.2 % of the variance and PLFAs of Gram-

positive bacteria (17:0br(2), 18:0br(1) and (3)) Gram-negative bacteria (18:1, 20:1(1) and 

(2)) and unspecified bacteria (15:0, 17:0 and 20:0) had the highest loadings on this axis.  
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Figure 5-2: Summary of the PCA for bare ground plots and different plant diversity levels: a.) 1 to 60 
sown species and b.) 1 to 4 functional groups. Along PC1 loadings were correlated to the experimental 
block and concomitantly to soil texture variables and to soil organic carbon stock changes between 
2002 and 2007. The loadings of PC2 were mainly driven by plant parameters (abobeground biomass, 
sown species richness and number of functional groups).  
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The PCA loadings of component 1 per plot did not differ significantly between the 

different diversity levels (sown species richness: p = 0.717; number of functional groups: 

p = 0.744) (Figure 5-2). But the loadings of PC1 were significantly negatively correlated to 

soil variables (block: R = -0.82, p < 0.001; organic carbon stock change: R = -0.22, 

p = 0.042). Principal component 2 (PC2) explained 24.1 % of the variance and the main 

drivers of the principal component were PLFAs from Gram-positive bacteria (17:0br(3)), 

Gram-negative (16:1) and unspecific bacteria (15:0br iso and 18:0). The loadings of PC2 

were correlated to aboveground biomass and plant diversity (aboveground biomass: 

R = -0.23, p = 0.043; sown species richness: R = -0.37, p = 0.001; number of functional 

groups: R = -0.33, p = 0.002). Along PC2 the loadings of plots with different sown species 

richness levels and functional groups differed significantly, respectively (sown species 

richness: p = 0.001; number of functional groups: p = 0.001). Nevertheless, sown species 

richness had a higher explanatory power (86 %) compared to number of functional groups 

(77 %). The amount of the PLFAs explaining variance along principal component 2 

increased significantly with increasing biodiversity (p = 0.008). 

Table 5-3: Proportions of different microbial groups at different levels of sown species richness, 
functional group richness, fallows and reference sites. Standard deviation in parentheses. 

Gram - Gram + fungi bacteria unidentified 
diversity level 

% % % % % 

mean all plots 54.4 (2.6) 13.3 (4.3) 4.2 (1.1) 26.0 (2.5) 2.0 (0.4)
bare ground plots 55.5 (1.0) 11.6 (4.0) 2.8 (0.4) 28.4 (3.1) 1.8 (0.2)
1 specie mixtures 54.7 (3.0) 13.8 (5.2) 3.7 (1.0) 25.8 (7.0) 2.0 (0.6)
2 species mixtures 53.8 (2.6) 13.6 (4.4) 4.3 (1.0) 26.4 (3.2) 1.9 (2.1)
4 species mixtures 54.3 (2.3) 13.3 (4.2) 4.4 (1.2) 25.8 (2.2) 2.1 (0.5)
8 species mixtures 53.4 (2.8) 14.3 (4.7) 5.0 (1.0) 25.3 (2.2) 2.0 (0.7)
16 species mixtures 54.7 (2.5) 13.0 (4.2) 4.4 (1.2) 25.8 (1.9) 2.1 (0.3)
60 species mixtures 55.2 (1.5) 12.4 (4.2) 3.9 (0.5) 26.1 (2.5) 2.3 (0.3)
1 functional group 54.5 (2.4) 13.9 (4.1) 4.0 (1.1) 25.7 (2.5) 2.0 (0.3)
2 functional groups 54.4 (2.4) 12.9 (4.2) 4.4 (1.0) 26.4 (3.0) 1.9 (0.6)
3 functional groups 53.0 (3.8) 14.8 (5.3) 4.7 (1.2) 25.5 (2.1) 2.1 (0.4)
4 functional groups 54.7 (1.8) 12.7 (3.8) 4.6 (1.2) 25.8 (1.9) 2.2 (0.4)
fallow with mowing 57.1 (4.9) 11.4 (6.7) 4.4 (1.1) 25.0 (1.2) 2.1 (0.5)
free fallow 57.0 (1.3) 8.5 (0.8) 4.1 (0.3) 28.8 (0.7) 1.7 (0.1)
arable land 52.6 (0.2) 14.8 (1.6) 3.3 (0.3) 27.1 (1.1) 2.2 (0.4)
meadow 52.3 (0.8) 18.8 (3.1) 3.8 (1.2) 21.9 (0.9) 3.9 (0.3)
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Averaged over all plots, Gram-negative bacteria dominated the microbial community with 

54.4 %, while Gram-positive bacteria and fungi comprised 13.3 % and 4.2 % of total 

PLFA (Table 5-3). The amount of PLFA related to unspecific bacteria was 26.0 %. The 

proportion of Gram-negative bacteria of the arable land and meadow plots was 52.6 % 

(sd = 0.2 %) and 52.3 % (sd = 0.8 %). Arable land and meadow sites differed in the 

proportion of general bacteria, which was significantly lower at the meadows (p = 0.025). 

The finding that meadows had a higher proportion of Gram-positive bacteria was not 

significant (p = 0.245).  

Similar to analyses of microbial biomass, the explanatory power of soil and aboveground 

plant variables as well as plant diversity for variation in the proportion of microbial groups 

was estimated by an ANOVA (Table 5-4). Plant diversity, tested as sown species richness 

and number of functional groups, had no statistical significant effect on the proportion of 

Gram-positive, Gram-negative and unspecific bacteria (0.093 ≤ p ≤ 0.662). Instead of plant 

diversity, C/N ratio of aboveground biomass and soil organic carbon stock changes were 

more important for the contribution of these microbial groups to total microbial biomass. 

The proportion of Gram-negative bacteria and unspecific bacteria were significantly driven 

by the quality of input materials, measured as C/N ratio of aboveground biomass (Gram-

negative bacteria: p = 0.036; unspecific bacteria: p = 0.002). The proportion of Gram-

positive bacteria was significantly altered by the C/N ratio of aboveground biomass and the 

soil organic carbon stock changes (C/N ratio of aboveground biomass: p = 0.026; soil 

organic carbon stock changes: p = 0.026). In contrast to the other microbial groups, the 

proportion of fungi was significantly affected by sown species richness (p < 0.001) and the 

number of functional groups (p = 0.010). The presence of grasses were only significant 

when fitted before diversity (p < 0.001). While, except for fungi, the number of functional 

groups was of minor importance for the proportion of microbial groups, the impact of 

presence and absences of plant functional groups was strong for all microbial groups. 
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Table 5-4: Summary of sequential analysis of variance (ANOVA with type I sum of squares) of the 
proportions of different microbial groups. The proportion of the sum of squares explained by a 
particular parameter is given in the final column (% of SS). Different order of fitting of biodiversity 
parameters is shown and a bold line within microbial groups denotes a reversed fitting of diversity 
parameters. Asterisks mark significance at the 0.05 (*). 0.01 (**) or 0.001 (***) level. 

variable parameter significance F-value % of SS 

Gram - block (***) < 0.001 10.89 28.1
 aboveground biomass 0.521 0.42 0.4
 C/N ratio of aboveground biomass (*)    0.036 4.61 4.0
 soil Corg stock change 2002-2007 0.313 1.04 0.9
 ln sown species richness 0.327 1.18 5.1
 number of functional groups 0.098 2.19 5.7
 number of functional groups 0.093 2.23 5.7
 ln sown species richness 0.337 1.16 5.0
Gram + block (***) < 0.001 55.28 66.0
 aboveground biomass 0.689 0.16 0.1
 C/N ratio of aboveground biomass (*)    0.026 5.16 2.1
 soil Corg stock change 2002-2007 (*)    0.026 5.22 2.1
 ln sown species richness 0.388 1.06 2.1
 number of functional groups 0.216 1.53 1.8
 number of functional groups 0.110 2.09 2.5
 ln sown species richness 0.606 0.727 1.4
fungi block (***) < 0.001 6.73 13.9
 aboveground biomass (*)    0.029 4.98 3.4
 C/N ratio of aboveground biomass (***) < 0.001 18.03 12.4
 soil Corg stock change 2002-2007 0.159 2.04 1.4
 ln sown species richness (***)    0.001 4.67 16.0
 number of functional groups (*)    0.011 4.03 8.3
 number of functional groups (***) < 0.001 7.20 14.8
 ln sown species richness (*)    0.025 2.77 9.5
bacteria block (***) < 0.001 45.62 62.0
 aboveground biomass 0.576 0.32 0.1
 C/N ratio of aboveground biomass (**)    0.002 10.67 4.8
 soil Corg stock change 2002-2007 0.402 0.71 0.3
 ln sown species richness 0.447 0.96 2.2
 number of functional groups 0.504 0.79 1.1
 number of functional groups 0.279 1.31 1.8
  ln sown species richness 0.662 0.65 1.5
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Furthermore, it was tested whether the presence or absence of particular functional groups 

had an impact on the proportion of microbial groups. Plots containing grasses had 

significantly more fungal biomass (p < 0.001), whereas the proportion of Gram-negative 

bacteria was significantly reduced (p = 0.018) (Table 5-5). On plots containing legumes the 

proportion of fungi was significantly reduced (p = 0.009) and the proportion of Gram-

negative bacteria tended to be higher (p = 0.070) compared to plots without legumes. The 

proportion of fungi was significantly higher on plots with mixtures containing small herbs 

(p = 0.009), while it was reduced on plots containing tall herbs (p = 0.035). Gram-positive 

bacteria had a lower proportion of the microbial community on plots containing small 

herbs compared to plots without this functional group (p = 0.045).  

Table 5-5: Proportions of different microbial groups in mixtures in which distinct functional groups 
(grasses. legumes. small herbs and tall herbs) were absent or present. Standard deviation in 
parentheses; Asterisks mark significance between plots with and without the distinct functional group 
at the 0.05 (*). 0.01 (**) or 0.001 (***) level. 

 Gram -  Gram +  fungi bacteria not 
identified Functional 

group 
Presence/ 
Absence  %  %  % % % 

grasses absent 54.9 (2.5) 13.2 (4.3) 3.8 (1.0) 26.1 (2.9) 1.9 (0.5)
  present 

***
53.7 (2.5) 14.1 (4.6)

*
4.7 (1.0) 25.8 (2.0) 2.1 (0.4)

legumes absent  53.9 (2.0) 14.1 (4.4) 4.6 (1.0) 25.8 (2.3) 2.1 (0.4)
  present  54.6 (3.0) 13.3 (4.5)

**
4.0 (1.1) 26.1 (2.6) 2.0 (0.5)

small herbs absent  54.3 (3.0) 14.3 (4.7) 4.0 (1.0) 25.8 (2.4) 2.0 (0.3)
  present  54.2 (2.2)

*
13.1 (4.2)

**
4.6 (1.1) 26.0 (2.5) 2.1 (0.5)

tall herbs absent  54.2 (2.4) 14.0 (4.7) 4.1 (1.1) 26.1 (2.8) 2.0 (0.5)
  present  54.3 (2.7) 13.4 (4.3)

*
4.5 (1.1) 25.7 (2.2) 2.1 (0.4)

The Shannon index was used to characterise the soil microbial diversity. The Shannon 

index was not significantly different between the arable land and the experimental site 

(p = 0.702) but it was significantly higher on meadow sites than on the experimental field 

site (p = 0.013) (Table 5-6). The Shannon index was not affected by sown species richness, 

the number of plant functional groups or the presence of single plant functional groups. 

The Smith and Wilson index of evenness (Evar) of the experimental plots was similar to 

that of the arable land plots (p = 0.837) and is significantly higher than the Evar of the 

meadows (main experiment: Evar = 0.473 sd = 0.063; meadow: Evar = 0.379 sd = 0.008; 

p = 0.041). Sown species richness, number of functional groups and presence or absences 

of functional groups had no impact on Evar. 
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Table 5-6: Shannon index and Smith and Wilson`s indexof eveness (Evar) for different levels sown 
species richness, functional group richness, fallows and reference sites. Standard deviation in 
parentheses. 

diversity level  Shannon index Evar 

mean of all plots  2.79   (0.07) 0.480   (0.070)
bare ground plots  2.77   (0.12) 0.575   (0.106)
1 species mixtures  2.80   (0.07) 0.494   (0.070)
2 species mixtures  2.81   (0.08) 0.466   (0.073)
4 species mixtures  2.80   (0.06) 0.464   (0.057)
8 species mixtures  2.80   (0.06) 0.462   (0.061)
16 species mixtures  2.79   (0.06) 0465   (0.043)
60 species mixtures  2.78   (0.05) 0.468   (0.043)
1 functional group  2.81   (0.06) 0.478   (0.061)
2 functional groups  2.79   (0.07) 0.481   (0.077)
3 functional groups  2.80   (0.06) 0.452   (0.062)
4 functional groups  2.79   (0.06) 0.468   (0.054)
fallow with mowing  2.72   (0.16) 0.493   (0.118)
free fallow 2.72   (0.04) 0.568   (0.013)
arable land 2.78   (0.04) 0.463   (0.008)
meadow 

*
2.83   (0.01) 0.379   (0.084)

5.4 Discussion 

5.4.1 Impact of plant diversity on soil microbial biomass 

Soil microbial biomass can be reliably estimated by extracting PLFAs and using the 

chloroform fumigation extraction method (Cmic/CFE) (Beck et al., 1997; Zelles, 1999). 

While PLFA are found in cell membranes of living cells and are rapidly decomposed after 

cell death (White et al., 1979), Cmic/CFE comprises the whole soil microbial biomass 

(Jenkinson, 1976). Nevertheless both estimates of microbial biomass were well correlated 

(Dilly et al., 1998; Bailey et al., 2002; Leckie et al., 2004).  

We found that microbial biomass was correlated with soil texture, soil moisture and also 

interestingly with soil organic carbon stock changes. Microbial biomass increased with 

decreasing particle size and increasing soil moisture and soil organic carbon stock changes. 

Higher microbial biomass might be found in smaller size fractions since finer particles 

provide a bigger surface area on which the microorganisms can be attached, a protective 

habitat through the exclusion of predators and a higher degree of nutrients (Sessitsch et al., 

2001; Marhan et al., 2007).  
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The importance of environmental variables, like soil type and aboveground biomass, can 

be that strong as to hide the effect of plant diversity (Bossio et al., 1998; Patra et al., 2008). 

To disentangle the impact of plant diversity, soil and vegetation characteristics we applied 

a sequential ANOVA, in which the effects of soil texture and aboveground plant biomass 

and quality were tested first. Despite the impact of soil variables on microbial biomass, a 

significant effect of plant diversity on the soil microbial community was found. Microbial 

biomass significantly increased with an increasing number of up to three functional groups. 

Although plant productivity, measured as aboveground biomass, significantly increased 

microbial biomass, plant diversity was also important and explained most of the variation. 

Therefore, additional processes to productivity driven relationships as proposed by Zak et 

al. (2003) have to be considered. Not only the amount of input material was important for 

soil microbial biomass but also the diversity of inputs. On plots with higher sown species 

richness and a higher number of functional groups both was found: a higher input amount 

and a wider spectrum of inputs material. The food supply for microorganisms was 

presumably more evenly distributed over the season by virtue of an overlap of life cycles. 

This in turn may contribute towards constant environmental conditions, regarding soil 

moisture. Furthermore, more diverse mixtures were shown to store more organic carbon 

and therefore deliver an additional food source.  

Generally, higher plant diversity is assumed to increase the number of available niches for 

soil microorganisms. The increasing niche complementarity with increasing diversity is 

supposed to be the reason for higher microbial biomass at higher plant diversity levels.  

Five years after conversion from arable land to managed grassland, increased soil 

microbial biomass clearly indicated that the microbial community had developed compared 

to the arable land reference site. The amount of soil microbial biomass of arable land plots 

was lower than the amount measured on bare ground plots and monocultures. Reduced 

microbial biomass on arable land is probably due to a soil disturbance by tillage and the 

tillage-induced changes of soil properties (Cookson et al., 2008). In addition to the general 

negative impact of disturbance on the soil microbial community, which was observed in a 

wide range of soils and under different types of disturbances (Ravit et al., 2006), a higher 

cropping intensity negatively affects soil microbial biomass (Hamel et al., 2006). The soil 

microbial community was also modified by vegetation cover. Monocultures, which were 

not disturbed and were covered with perennial plant species, were found to have higher 
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microbial biomass than bare ground plots, which were undisturbed but had no vegetation 

cover.  

The result that plots with 60 species and 4 functional groups had lower microbial biomass 

than the adjacent meadows indicated that our field site is still developing towards the 

meadow sites but needs more time to reach this stage. Nevertheless, five years after 

establishment, we already found an impact of plant diversity on soil microbial biomass, 

which affirmed the trends seen four years after establishment (Habekost et al., 2008). 

In addition to the established diversity gradient, the soil microbial biomass on fallow plots 

was measured. On the fallow plots, between 3 and 4 functional groups including shrubs 

(only on the free fallows) were observed in May 2007. The soil microbial biomass 

corresponded well with the diversity gradient. 

In The Jena Experiment, the number of functional groups was found to influence microbial 

biomass more than sown species richness. The explanatory power was higher in all tested 

cases. Even though the number of functional groups played a major role for the amount of 

microbial biomass the presence or absence of certain functional groups was less important. 

Only plant mixtures including grasses were found to have a higher microbial biomass than 

mixtures without grasses which was accompanied by a larger proportion of fungal 

biomass. 

5.4.2 Impact of plant diversity on the soil microbial composition 

We found that five years with different plant diversity were sufficient to change the soil 

microbial community composition significantly as shown by the results of the PCA. Soil 

texture and soil organic carbon stock changes, which were important drivers along PC1, 

had a general effect on the soil microbial community whereas the changes in these 

parameters did not change the community composition. The driving PLFAs of PC1 

encompassed all important microbial groups (Gram-negative bacteria, Gram-positive 

bacteria and bacteria in general) except for fungi indicating that soil characteristics, if they 

were at least in the range reported for our study site, have a general effect on microbial 

composition. Apart from soil characteristics, plant communities were also important for 

soil microbial community composition. Different plant communities lead to different 

organic matter input thus modifying quantity, quality and timing of the input (Angers et al., 

1998; Hooper et al., 2000). These differences in input caused the changes of microbial 

diversity as shown in the PC2. Further, root exudates were often reported to strongly 
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influence microbial populations (Baudoin et al., 2003; Bais et al., 2006; Weisskopf et al., 

2008). In more diverse plant mixtures the food supply for microorganisms was assumed to 

be higher and more diverse, while food supply in monocultures is more one-sided and 

temporally limited. The microbial community probably adapted to these different food 

conditions and amounts (Schutter et al., 2001; Orwin et al., 2006). There is evidence that a 

higher number and amount of substrates may lead to higher niche diversity for soil 

microogranisms and that in turn soil microbial communities at higher diversity levels were 

capable to degrade a wider range and higher amount of substrates compared to microbial 

communities in monocultures. We assume that shifts in microbial diversity were caused by 

changes in the abundance of dominant PLFAs because the Shannon index, which is known 

to be more sensitive to changes of abundance of rare microbial PLAFs (Hill et al., 2003), 

did not reflect the changes caused by plant diversity. A comparison between the 

experimental site, the arable land and meadow sites reveals differences in the structure of 

microbial communities. While arable plots are colonized by rather unspecialized and 

homogenously distributed microbial communities, the more uneven distribution of PLFAs 

on meadow sites reflect the higher degree of adaptation towards more heterogeneous 

inputs. The microbial community of the experimental site is still in transition towards 

meadows but still needs more time for development.   

The adaptation of different micoroorganisms to different food sources was corroborated 

from the interactions between microbial and plant functional groups. The proportion of 

Gram-negative bacteria, which are more root associated and promoted by N additions 

(Sessitsch et al., 2001; Treonis et al., 2004; Billings et al., 2008), were higher on plots 

containing legumes. Further, C/N ratio of input material was found to be important for 

Gram-negative bacteria. Soil organic carbon was the major predictor for the proportion of 

Gram-positive bacteria, which occur more widly spread in the soil and can also degrade 

soil organic matter (Kramer et al., 2006). The proportion of fungi was explained by the 

C/N ratios and amount of input material. Furthermore, we found an increasing proportion 

of fungi with increasing plant diversity, measured as number of functional groups and 

sown species richness.  
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5.5 Conclusion 

Five years after establishment of The Jena Experiment, we found that plant diversity 

clearly impacted the soil microbial community. Furthermore, biotic factors, i.e. plant 

diversity (sown species richness, number of functional groups as well as the presence and 

absence of functional groups), was found to be more important for soil microbial 

community than abiotic controls. The amount of soil microbial biomass increased with an 

increasing number of functional groups. Sown species richness was of minor importance 

for microbial biomass. On the contrary the microbial composition was influenced by both 

diversity measures: sown species number and number of functional groups. Additionally, 

the amount and quality of input material altered microbial composition. This highlights the 

importance and utilisation of different food sources for microogranisms. Overall, 

increasing plant diversity is of crucial importance for ecosystem functioning since changes 

of microbial community encompassed the amount and composition resulting in larger and 

probably more stable microbial communities at higher plant diversity levels. 
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6 Synthesis 

We found strong links between plant diversity and belowground ecosystem functioning 

such as carbon and nitrogen storage and transformation of inputs. An improved 

understanding of belowground dynamics as a function of plant diversity can facilitate the 

assessment of consequences of the predicted global changes and the resultant species loss. 

Our results showed that soil properties are important for storage, but furthermore revealed 

the huge impact of plant diversity on the microbial transformation of inputs resulting in a 

sustainable sequestration of soil organic carbon and nitrogen in the top and sub soil.  

Processes like interactions with mineral surfaces had an impact on storage in the top soil. 

Apart from these processes plant diversity positively increased the storage within the top 

and sub soil. The process was less driven as first expected by a high biomass production 

and concomitantly increased inputs at higher plant diversity levels but rather by microbial 

transformation of inputs. Microbial activity is most essential for storage, as long as the 

system is not input limited. Thus input availability is also an important precondition for 

storage. Through microbial transformation, input will result in sustainable sequestration, 

since around 80 % of the storage occurred in the heavy fraction, representing a more stable 

soil organic matter pool. Consequently increased plant diversity might mitigate climate 

warming through enhanced sequestration of anthropogenic produced carbon dioxide 

emissions in soil. Increased storage due to increased plant diversity will help to sustain or 

even improve ecosystem functioning since a higher organic matter content of soils is 

widely known to have positive influences on soil fertility, soil structure and soil stability 

and therefore also contributes towards a higher resistance against erosion processes. 

However, diversity and its subsequent carbon storage can help to diminish climate 

warming. In regards to climate warming the question evolves whether the impact of 

diversity on storage stays constant with time. General research on the time dependency of 

storage rates of grasslands indicated that storage increased linearly after conversion but the 

impact of biodiversity on carbon storage over a longer period remains uncertain and gives 

way to further investigations.  

Similar to the mechanisms of storage, abiotic conditions were found to be a prerequisite 

but not a main driver for soil microbial diversity. From the investigated abiotic parameters 

only soil organic carbon stocks were related to microbial abundance. This reveals the key 

role of microorganisms, which are dependent on organic carbon as a food source and in 

addition enhance the sustainable storage through transformation of plant input. Plant 
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diversity is of major importance for microbial abundance and composition by virtue of 

increasing niche complementarity. In contrary to the redundancy hypothesis, which 

predicts that beyond a critical and most probably low diversity level most species are 

functional redundant, we found that the microbial community shifted along the entire plant 

diversity gradient as well as that aboveground diversity is the main driver for these shifts. 

Within the studied diversity gradient of up to 60 species and 4 functional groups no 

threshold was found above that species would be redundant. Instead, higher plant diversity 

promotes a higher stability and effective resource consumption within microbial 

communities and supports the strong link between above- and belowground communities. 

All measured values of diversity (sown species richness, number of functional groups and 

presence of distinct functional groups) were found to be of different importance, when 

special processes or parameters were separately considered. Nonetheless, the overall 

process of sustainable storage requires an interaction of sown species richness, a certain 

number of plant functional groups within plants and the presence of distinct functional 

groups. For the investigated ecosystem functions and properties neither a special plant 

species nor a special plant functional group was found to be of extraordinary importance 

compared to others. Instead, a high diversity encompassing all investigated diversity 

measures is essential. The fact that the vulnerability of e.g. carbon storage would be much 

higher if only one functional group or plant species would be the driver for storage should 

not be an argument to reduce conservation efforts because high diversity might be 

important for maintaining ecosystem functioning under changing conditions. Furthermore, 

the amplitude of ecosystem functioning is regulated by diversity and therefore high plant 

diversity can function as an insurance against future global changes.   

As the work was carried out under specific experimental conditions, care has to be taken 

when results are transferred to the “real” world. In The Jena Experiment species 

composition was randomised from a definite species pool. Furthermore, it should be 

emphasised that The Jena Experiment was not intended to reproduce a particular sequence 

of species loss. Species identity was not a criterion for arrangement of mixtures. Instead, 

the number of species and the belonging to functional groups were most important. In the 

“real” word, plant diversity changes would not be randomised as it was carried out in the 

experimental design, but driven by other constraints e.g. fertiliser input. Nevertheless in 

order to study plant diversity per se, manipulation experiments on diversity are 

indispensable. An additional advantage of diversity experiments like The Jena Experiment 
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is that the experimental design account for gradual changes in soil properties like texture.  

Thereby, even slight changes between diversity levels became detectable.  

Changes in ecosystem functioning caused by changed diversity can only be predicted at 

larger scales, if not only unidirectional causality approaches, in which diversity is either 

cause or effect, are applied. Feedbacks among diversity changes, ecosystem functioning 

and environmental factors must be addressed. Impact of aboveground diversity on 

belowground ecosystem functioning can only be the first step towards a greater 

understanding between diversity and ecosystem functioning. In the second step the 

feedback from belowground to aboveground should be investigated. Soil microbial 

communities, for example, were shown to be changed by aboveground diversity. As soil 

microbial communities represent a mechanistic link between plant diversity and ecosystem 

function, changes of soil microbial communities in turn might have an impact on 

aboveground productivity, diversity and composition, which should also be taken into 

account. The feedback of soil microogranisms an aboveground can be of special 

importance in nutrient poor ecosystems and should be investigated in the future.  

The link between aboveground diversity and belowground diversity was corroborated and 

the outstanding importance of all three diversity measures (species richness, the number of 

functional groups as well as the presence of certain key functional groups) for ecosystem 

functioning was underlined. In order to mitigate climate change and ensure proper 

ecosystem functioning, efforts should be taken to reduce species extinction.  
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7 Summary 

Soils are the most important terrestrial carbon sinks and have an enormous storage 

potential. Increased storage can be achieved by land use change e.g. from arable land to 

grassland. In addition to this, increasing plant diversity is known to be important for 

ecosystem functioning and an increase in soil organic carbon storage. The link between 

aboveground plant diversity and below ground diversity and the link to belowground 

processes are currently under discussion. Furthermore, the mechanisms by which 

aboveground diversity impacts storage as well as the sustainability of storage are still not 

well understood. Additional effort was taken to reveal the impact of plant diversity on the 

abundance and structure of soil microbial communities because soil organic carbon and 

nitrogen storage is assumed to be mainly mediated by soil microogranisms. Addressing 

these issues the thesis contributes to a better understanding of the impact of plant diversity 

on belowground ecosystem functioning.  

For investigations the field site of The Jena Experiment was used. The Jena Experiment is 

a grassland diversity experiment, which was established in 2002 on former agricultural 

land, and aimed to reveal the impact of plant diversity on ecosystem functioning. The 

species pool comprises 60 species common to the Central European 

Molinio-Arrhenatheretum grasslands. The species were grouped into the following four 

functional groups: small herbs, tall herbs, grasses and legumes. The diversity gradient 

spanned from 1 (2, 4, 8, 16) to 60 species and from 1 (2, 3) to 4 functional groups. In 

addition, two arable land and meadow plots were integrated into the sampling design and 

used as a reference sites.  

The relationship between plant diversity and soil organic carbon and nitrogen storage in 

soil profiles up to 100 cm depth was investigated. Between 2002 and 2007 organic carbon 

and nitrogen were stored in the top (0 - 20 cm depth) and sub (60 - 90 cm depth) soil. In 

the top soil the main drivers for storage were soil texture and plant diversity. Plant 

diversity probably changed soil microbial communities and concomitantly increased 

organic matter transformation and storage at higher diversity levels. While the root input 

was not important for storage in the top soil, it was found to significantly affect storage in 

the sub soil, where the system seemed to be input-limited. Due to the increased substrate 

use efficiency of microorganisms in the sub soil, the major part of the input was 

transformed and stored. Furthermore, the increased storage at higher plant diversity levels 

indicated that the soil microbial community was shifted towards one which was more 
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efficient in the use of ressources. It can be concluded that the amount of storage is depth 

dependent but that plant diversity increases storage independent from soil depth. 

Furthermore, abiotic factors were important for soil organic carbon and nitrogen storage 

but biotic factors controlled storage beyond these. 

Density fractionation was used to separate soil into a light and a heavy fraction, 

representing different soil organic carbon and nitrogen pools. Generally, it is assumed that 

input is first stored in the labile light fraction and than decomposed and stored associated 

with minerals for long-term in the heavy fraction. At The Jena Experiment, both density 

fractions were sensitive to land use change and increased within two and four years after 

conversion. Furthermore, main organic carbon and nitrogen storage was found in the heavy 

fraction and there organic carbon storage was positively affected by plant diversity. 

Therefore, it can be concluded that increasing diversity increased sustainable sequestration 

of organic carbon. In addition, ∆14C values of both density fractions increased with time 

and indicated that recent input was not exclusivly stored in the light fraction and from there 

transferred into the heavy fraction but mainly directly microbially transformed and stored 

into the heavy fraction.  

In order to directly measure and characterise the soil microbial community of The Jena 

Experiment phospholipid fatty acids (PLFA), chloroform fumigation and physiological 

measures (substrate induced and basal respiration; only for samples of 2006) were used. In 

2006, a sub-set of experimental sites was sampled to investigate the general impact of 

vegetation (bare ground plots vs. vegetation covered plots) and season (May vs. October). 

Vegetation as well as increasing duration of the vegetation period had a positive impact on 

the amount and physiological activity of soil microorganisms. The fact that the vegetation 

had a stronger impact on the soil microbial community composition than seasonal changes 

was probably due to the availability and quality of organic resources. Based on the result 

that vegetation had a strong impact on soil microbial community the effect of plant 

diversity (as number of species, number of functional groups and the presence of distinct 

plant functional groups) on the microbial community was analysed in 2007. Although the 

soil texture and moisture were found to have an impact on microbial abundance, increased 

plant diversity, namely the number of functional groups, lead to increased amounts of soil 

microbial biomass. For soil microbial biomass not only the amount of plant biomass input 

but also the quality and heterogeneity of input was important. The same result was found 

for the microbial composition and indicates that increasing diversity increases niche 
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complementarity of soil microorganisms. The soil microbial community composition was 

not altered by abiotic factors but it was found to be driven by biotic paramaters. Microbial 

community composition changed along the plant diversity gradient.  

The results newly establish the strong impact of plant diversity on the soil organic carbon 

and nitrogen storage beyond abiotic controls. Soil microorganisms were found to play the 

central role for transformation of organic input and were the main drivers for a sustainable 

storage at higher diversity levels. As specific interactions between the aboveground and 

belowground compartments are vital for the ecosystem functioning, this should strengthen 

our efforts to reduce species extinction.  
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8 Zusammenfassung 

Böden gehören zu den bedeutendsten terrestrischen Kohlenstoffsenken und verfügen über 

ein sehr großes Speicherpotential. Erhöhte Kohlenstoffspeicherung im Boden kann unter 

anderem durch einen Landnutzungswechsel von Acker- zu Grünland erreicht werden. 

Außerdem wird angenommen, dass höhere pflanzliche Diversität die Speicherung von 

Kohlenstoff im Boden erhöht und positiv auf das Funktionieren von Ökosystemen wirkt. 

Über die Verbindung zwischen oberirdischer und unterirdischer Diversität und den im 

Boden ablaufenden Prozesse wird derzeit in der Wissenschaft diskutiert. Auch die genauen 

Mechanismen, aufgrund derer erhöhte Diversität zu erhöhter Speicherung führt und die 

Frage der Nachhaltigkeit der Speicherung sind noch unklar. Es wird vermutet, dass vor 

allem Bodenmikroorganismen sehr wichtig für eine nachhaltige Speicherung des Eintrages 

im Boden sind. Deshalb wurde zusätzlich zur Kohlenstoff- und Stickstoffspeicherung im 

Boden der Einfluss von pflanzlicher Diversität auf die Menge von Bodenmikroorganismen 

und die Struktur der Mikroorganismengemeinschaften untersucht. Die vorliegende Arbeit 

soll dazu beitragen, den übergeordneten Einfluss von pflanzlicher Diversität auf Prozesse 

im Boden besser zu verstehen. 

Als Untersuchungsraum wurde die Fläche des Jena Experimentes genutzt. Das Jena 

Experiment ist ein Grünlanddiversitätsexperiment, das 2002 auf einer ehemals 

ackerbaulich genutzten Fläche angelegt wurde und als Ziel hat, den Einfluss von 

pflanzlicher Diversität auf das Funktionieren von Ökosystemen zu untersuchen. Der 

Pflanzenartenpool beinhaltet 60 Arten des zentral europäischen Molinio-Arrhenatheretums. 

Die Pflanzenarten wurden in vier funktionelle Gruppen (kleine Kräuter, große Kräuter, 

Gräser und Leguminosen) unterteilt. Der Diversitätsgradient umfasst 1 (2, 4, 8, 16) bis 60 

Arten und 1 (2, 3) bis 4 funktionelle Gruppen. Zusätzlich zum Jena Experiment wurden je 

zwei Äcker und Grünlandflächen beprobt und als Referenzflächen genutzt. 

Der Einfluss der Artenzahl auf die Speicherung von Kohlenstoff und Stickstoff in 

Bodenprofilen bis zu 1 m Tiefe wurde untersucht. Von 2002 bis 2007 wurden Kohlenstoff 

und Stickstoff sowohl im Oberboden (0 - 20 cm) als auch im Unterboden (60 - 90 cm) 

gespeichert. Die wichtigsten Parameter für die Speicherung im Oberboden waren die 

Bodentextur und die pflanzliche Diversität. Dabei wird angenommen, dass die oberirdische 

Diversität die bodenbürtige Mikroorganismengemeinschaft beeinflusst und somit 

Auswirkungen auf die Umsetzung von organischem Material hat. Während Wurzeleintrag 

im Oberboden die Speicherung nicht wesentlich beeinflusst, waren Wurzeln im 
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eintraglimitierten Unterboden ein wichtiger Parameter. Aufgrund der im Unterboden 

erhöhten mikrobiellen Effizienz des Umsatzes, wurde der größte Teil des Eintrags 

gespeichert. Die tiefenunabhängig ansteigende Speicherung bei steigender Diversität lässt 

sich durch eine Verschiebung der Mikroorganismengemeinschaft hin zu 

Mikroorganismengemeinschaften mit höherer Effizienz erklären. 

Dichtefraktionierungen wurden genutzt, um den Boden physikalisch in zwei Fraktionen 

(leichte Fraktion < 1.6 g cm-3 und schwere Fraktion > 1.6 g cm-3) aufzutrennen, die 

Kohlenstoff- und Stickstoffpools mit unterschiedlichen Eigenschaften repräsentieren. 

Allgemein wird angenommen, dass der Eintrag zunächst als leichte Fraktion gespeichert 

wird und anschließend mikrobiell umgesetzt, langfristig in der schweren Fraktion 

gespeichert wird. Dort liegen Kohlenstoff und Stickstoff mineral-assoziiert vor. Beim Jena 

Experiment reagierten beide Dichtefraktionen empfindlich auf die Umstellung von 

Acker- zu Grünland und die Kohlenstoff und Stickstoffgehalte nahmen jeweils innerhalb 

von zwei und vier Jahren nach Landnutzungswechsel zu. Den größten Anteil an der 

Speicherung hat die schwere Fraktion. Dort wurde auch ein positiver Zusammenhang 

zwischen pflanzlicher Diversität und Kohlenstoffspeicherung gefunden. Es kann daher 

davon ausgegangen werden, dass die erhöhte Speicherung bei höherer Diversität langfristig 

ist. Die in beiden Fraktionen ansteigenden ∆14C Werte deuten darauf hin, dass nicht nur in 

die leichte Fraktion rezentes Material eingetragen wurde, sondern dass ein großer Anteil 

des rezenten Eintrages direkt mikrobiell umgesetzt und in der schweren Fraktion 

gespeichert wurde.  

Die Bodenmikroorganismen wurden mittels Phospholipidfettsäuren (PLFA) und 

Chloroformfumigation (CFE) sowie über physiologische Untersuchungen 

(Substratinduzierte- und Basalrespiration; nur in 2006) näher charakterisiert. In 2006 

wurde auf einem Teil der Versuchsflächen der Einfluss von Vegetation 

(Vegetationsbedeckung vorhanden vs. nicht vorhanden) und Jahreszeit (Mai vs. Oktober) 

auf die Bodenmikroorganismen untersucht. Vegetationsbedeckung und zunehmende Länge 

der Vegetationsperiode wirken positiv auf die Menge an Mikroorganismen und auf deren 

physiologische Aktivität. Ausgehend von dem Ergebnis, dass die Vegetationsbedeckung 

aufgrund der erhöhten und verbesserten Futterversorgung einen größeren Einfluss auf die 

Bodenmikroorganismen hat als die Jahreszeit, wurden in 2007 sämtliche Flächen beprobt 

um den Einfluss von pflanzlicher Diversität (Artenzahl, Anzahl funktioneller Gruppen und 

An- bzw. Abwesenheit von bestimmten funktionellen Gruppen) zu untersuchen. Obwohl 
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Bodenart und -feuchte bestimmende Parameter für die Menge an Mikroorganismen waren, 

wurde darüber hinaus ein positiver Zusammenhang zwischen pflanzlichen Diversität, vor 

allem der Anzahl funktioneller Gruppen, und der Menge an Bodenmikroorganismen 

gefunden. Für die Menge und Zusammensetzung der Bodenmikroorganismengemeinschaft  

waren nicht nur der erhöhte pflanzliche Eintrag bei höherer Diversität, sondern vor allem 

auch die bessere Qualität und größere Heterogenität des Eintrages wichtig. Diese 

Ergebnisse deuten auf eine erhöhte Nischenkomplementarität bei höherer pflanzlicher 

Diversität hin. Abiotische Parameter hatten im Gegensatz zu biotischen Parametern keinen 

Einfluss auf die Zusammensetzung der Mikroorganismengemeinschaft.  

Die Ergebnisse der Arbeit zeigen deutlich den großen Einfluss von pflanzlicher Diversität 

auf die Kohlenstoff und Stickstoffspeicherung im Boden, wobei der biotische Einfluss 

deutlich über den abiotischen hinaus reicht. Bodenmikroorganismen haben eine zentrale 

Rolle bei der Umsetzung und bei der nachhaltigen Speicherung von pflanzlichem Eintrag; 

vor allem bei erhöhter Diversität. Da die Interaktionen zwischen oberirdischer und 

unterirdischer Diversität essentiell sind für das Funktionieren von Ökosystem, sollte 

pflanzliche Diversität so weit es geht erhalten oder erhöht werden.  
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