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ABSTRACT 

Many river basins worldwide are adversely impacted by poor 

hydrological infrastructure or are poorly characterized due to limited or no 

hydrologic data. This condition challenges water-management authorities. 

Especially in semi-arid regions because of their specific natural climatic 

conditions, resultant water-stressed areas and local water management 

authorities can benefit in balancing regional disparities between areas with 

water surplus and those with water shortage.  

Water management can benefit from reliable prediction of the 

hydrological dynamics that can be made by means of distributed, physical-

based (process) models. Because of the lack of sufficient or reliable data, often 

such models are difficult to calibrate and to validate.  

This study addresses this data limitation by formulating and testing an 

independent validation tool for hydrological models that can be applied to 

downscale macro-scale soil moisture data derived from a remotely sensed 

scatterometer dataset. This proposed method uses the concept of hydrological 

response units (HRU) to analyze the spatial variability within one scatterometer 

footprint. The HRUs are treated as model entities in the process oriented 

hydrological model J2000 that was applied to the Great Letaba River catchment 

(ca. 4.700 km²) in South Africa. The soil water time series results were then 

compared to the remotely sensed dataset and the downscaling scheme derived.  
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First, the analysis conducted on footprint scale highlights the similarities 

in predicting the soil water generation over the long term and in seasonal terms. 

It also exhibits that the absolute values of both time series can not be used for 

further investigation, due to differences in the observed soil water volume.  

Second, the resulted simulated soil water time series were used to 

establish the downscaling method. Here, the study provides promising results 

that allow the downscaling of the macro-scale soil water calculated dataset, 

based upon the landscape related parameters of land cover, soil properties and 

precipitation. It will also highlight the dependence of the formulated 

downscaling method on the model calibration application. The study findings 

indicate that, by linking the two concepts, hydrological modeling and remote 

sensing, water management authorities should be able to reduce certain 

prediction uncertainties of the applied models. 
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KURZFASSUNG 

A. Einleitung und Motivation  

Die Mehrheit der weltweiten Einzugsgebiete besitzt keine oder nur eine 

unzureichende hydrometrische Infrastruktur (SIVAPALAN, TAKEUCHI ET AL., 

2003), die lokale Wasserbehörden vor besondere Herausforderungen stellt. Dies 

betrifft im Besonderen, die durch natürlichen Wasserstress charakterisierten 

semiariden Gebiete. Diese Gebiete zeichnen sich durch geringe mittlere 

Jahresniederschläge aus, wobei diese darüber hinaus räumlich und zeitlich sehr 

heterogen verteilt sind. Die regionalen Wasserbehörden werden vor die 

Aufgabe gestellt, die räumlichen Disparitäten von Gebieten mit 

Wasserüberschuss und Gebieten mit Wasserknappheit auszugleichen und die 

Wasserversorgung für die niederschlagsarmen Perioden sicher zu stellen. 

Da hydrologische Modelle in der Lage sind komplexe Zusammenhänge 

darzustellen und Landschaftsveränderungen hinsichtlich ihres Einflusses auf 

das Ökosystem zu bewerten (SINGH, 1995), können diese als bedeutende 

Entscheidungshilfe im Wassermanagement eingesetzt werden. Voraussetzung 

für die hydrologische Modellierung ist jedoch eine ausreichende Datenlage 

(SINGH, 1995; BEVEN, 2001A). Die Modellierung ist daher in Gebieten mit einer 

limitierten Datenlage nur begrenzt einsetzbar. 

Ein wichtiger Parameter in der hydrologischen Modellierung ist die 

Bodenfeuchte, die als Steuerungsfaktor zwischen Hydrosphäre, Biosphäre, 
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Atmosphäre und Pedosphäre (YU, CARLSON ET AL., 2001) fungiert. Hier, könnte 

die Fernerkundung, die in der Lage ist, Bodenfeuchte in hoher zeitlicher 

Auflösung abzubilden, als ein wichtiges Instrument zur Validierung und 

Kalibrierung von hydrologischen Modellen eingesetzt werden.  

In den Studien von WAGNER, LEMOINE ET AL. (1999A; 1999B) und 

WAGNER, NOLL ET AL. (1999) wurde ein Algorithmus entwickelt, auf dessen 

Basis ein globaler Datensatz des Bodenwassergehaltes aus den Messungen des 

C-Band Scatterometers an Bord der European Remote Sensing (ERS)-Satelliten 1 

und 2 erstellt wurde. Die Daten beinhalten den aus den Messungen der oberen 

Bodenschicht abgeleiteten Indexes für den Bodenwassergehalt (Soil Water Index 

= SWIERS) mit einer räumlichen Auflösung von 50 km. Allerdings wird die 

Einsatzfähigkeit dieses Datensatzes in der hydrologischen Modellierung 

aufgrund der groben räumlichen Auflösung von Hydrologen angezweifelt.  

Daraus ableitend, ist das übergeordnete Ziel der vorliegenden Arbeit die 

Evaluierung des makroskaligen Indexes des Bodenwassergehaltes für eine 

Verwendbarkeit in der mesoskaligen hydrologischen Modellierung. Hierfür 

müssen die Daten des makroskaligen Indexes auf mesoskalige Ebenen verlagert 

werden. Für einen solchen Skalentransfer ist der Einsatz einer geeigneten 

Disaggregierungsmethode notwendig. Im Mittelpunkt der Arbeit steht daher 

die Entwicklung eines Disaggregierungskonzeptes zur skalenübergreifenden 

Verwendbarkeit des makroskaligen Indexes des Bodenwassergehaltes für die 

mesoskalige hydrologische Modellierung. 

Für die Entwicklung dieses Verfahrens werden Referenzdaten benötigt. 

Da die Erfassung der Bodenfeuchte mit punktuellen Feldmessungen auf der 

räumlichen Ebene der Fernerkundungsdaten (50 km) nicht möglich ist, müssen 

andere Informationsquellen genutzt werden. Hierfür bietet sich die 

Modellierung der Niederschlags-Abflussbeziehung, mit einer hohen 

räumlichen und zeitlichen Auflösung, an. Die Bodenfeuchte wird als 

Teilergebnis dieser Beziehung gewonnen, und mit den makroskaligen Daten 

des Bodenwasserindexes verglichen, um in der späteren Folge die Methode zur 

Disaggregation abzuleiten. Die vorliegende Arbeit liefert dabei in den 

folgenden Punkten einen wichtigen Beitrag in der Forschungslandschaft, um 

den Einsatz von Fernerkundungsprodukten in der Hydrologie zu erweitern:  
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• Die Entwicklung einer Disaggregierungsmethode, die es erlaubt 

makroskalige Informationen des Bodenwassergehaltes in eine 

kleinere räumliche Ebene zu transferieren,  

• Die Bestimmung von Schlüsselparametern, die die Bodenfeuchte-

verteilung in der jeweiligen Skalenebene (makroskalig = 50 km, 

mesoskalig = ø 0,7 km²) beeinflussen sowie deren Einbeziehung in 

die Disaggregierungsmethode,  

• Die Anwendung und Überprüfung der entwickelten 

Disaggregierungsmethode von Modellabhängigkeiten sowie 

• Die Beurteilung der Anwendbarkeit des makroskaligen 

Bodenwasserindexes in der mesoskaligen hydrologischen 

Modellierung.  

B. Stand der Forschung 

Obwohl nur etwa 0.001 % der weltweiten Wasserreserven im 

Bodenkompartiment als Bodenfeuchte gespeichert werden, stellt die 

Bodenfeuchte eine wichtige Größe im hydrologischen Kreislauf dar (DINGMAN, 

2002:P.55). Zur Abschätzung der Bodenfeuchte können die drei Methoden 

angewandet werden: 1) punktuelle Feldmessungen 2) Erfassung der 

Bodenfeuchte mittels des Mikrowellenfernerkundung und 3) 

Landschaftsmodellierung. Dabei sind nur die letzten zwei für eine flächige 

Abschätzung der Bodenfeuchte einsetzbar.  

Fernerkundungsmethoden, insbesondere die Instrumente der 

Mikrowellenfernerkundung, beinhalten ein großes Potenzial zur Erfassung des 

Bodenwassergehaltes. Hierfür können zwei Systeme eingesetzt werden. Zum 

einen die passiven Instrumente (Radiometer), welche die „Eigenstrahlung der 

Erde“ messen (HENDERSON AND LEWIS, 1998). Die sogenannte 

Helligkeitstemperatur steht in einer inversen Beziehung zum 

Feuchtigkeitsgehalt der obersten Bodenzentimeter. Zum anderen werden aktive 

Instrumente, das Radio Detection and Ranging (Radar) eingesetzt, die ihrerseits 

elektromagnetische Strahlung erzeugen und den zurück gestreuten Anteil 

dieser Strahlung messen. Beispiele für aktive Systeme sind Synthetic Aperture 

Radar (SAR), Altimeter und das Scatterometer.  
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Der Einsatz von Mikrowellen zur Abschätzung des Bodenwassergehaltes 

ist aufgrund der elektromagnetischen Eigenschaften von Mikrowellen möglich 

(ULABY, DUBOIS ET AL., 1996). Das Rückstreuungssignal wird von den folgenden 

Faktoren beeinflusst: 1) die Frequenz des gemessenen Mikrowellensignals 

bestimmt das Eindring- und Durchdringungsvermögen. Mikrowellen mit 

längerer Wellenlänge, zum Beispiel L- und C-Band, und somit geringerer 

Frequenz können tiefer in die Bodensäule eindringen. 2) Die jeweilige 

Eindringtiefe hängt des Weiteren auch von der aktuellen Bodensättigung ab. Je 

trockner der Boden desto tiefer können Mikrowellen in den Boden eindringen. 

3) Der Rückstreuungskoeffizient wird des Weiterem vom Einfallswinkel 

beeinflusst. Der Anteil des reflektierten Signals steigt, je stärker die beobachtete 

Fläche in Richtung Antenne geneigt ist. 4) Die Oberflächenrauhigkeit der 

untersuchten Fläche bestimmt die Stärke der Rückstreuung. Je rauer eine Fläche 

ist desto diffuser ist die Reflexion und desto höher der Anteil der 

rückgestreuten Strahlung. 5) Die Dielektrizitätskonstante beschreibt die 

Permittivität (dieelektrische Leitfähigkeit) von Materialien und ist ein Maß für 

die Ausbreitungsgeschwindigkeit des ausgesendeten Signals. Ein steigender 

Feuchtigkeitsgehalt im Boden wird durch einen Anstieg in der 

Dielektrizitätskonstante beschrieben und in dessen Folge durch Zunahme des 

rückgestreuten Signals.  

Verschiedene Studien wie beispielsweise NJOKU AND ENTEKHABI (1996), 

MORAN, MCELROY ET AL. (2006), KERR (2007), beschäftigten sich mit der 

Extraktion der Bodenfeuchte aus Fernerkundungsdaten. Der erste globale 

fernerkundlich erfasste Bodenwasser- Datensatz (SCIPAL, WAGNER ET AL., 2002) 

wurde aus den Scatterometer- Daten an Bord der European Remote Sensing 

Satelliten (ERS) 1 und 2 extrahiert (WAGNER, LEMOINE ET AL., 1999A; WAGNER, 

LEMOINE ET AL., 1999B; WAGNER, NOLL ET AL., 1999). Die Aufnahmefrequenz 

beträgt 5,3 GHz (C-Band) und der Satellit kann bis zu 5 cm (WAGNER, SCIPAL ET 

AL., 2003) in den Boden eindringen. Die daraus abgeleite Zeitreihe repräsentiert 

den oberflächennahen Wassergehalt, der „vom Sensor abgetasteten" 

Bodenschicht. Der aktuelle Messwert wird in Beziehung zum höchsten und 

niedrigsten Wassergehalt im Betrachtungszeitraum gesetzt. Die daraus 

resultierende Bodensättigung (ms) repräsentiert einen Durchschnittswert über 

einer vegetationslosen Oberfläche und / oder einer nur spärlich bedeckten 

Landoberfläche, wie beispielsweise Grasland oder agrarische Nutzflächen. 
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Dieser Wert wird anschließend zur Ableitung des Trendindikators, dem Soil 

Water Index (SWIERS) verwendet (WAGNER, LEMOINE ET AL., 1999A; WAGNER, 

LEMOINE ET AL., 1999B; WAGNER, NOLL ET AL., 1999). Dieser wird mittels eines 

einfachen Infiltrationsmodells ermittelt. Das Infiltrationsmodell besteht aus 

zwei Schichten: die obere stellt die vom Sensor erfasste Bodenschicht dar. 

Darunter befindet sich der Bodenwasserspeicher, welcher nur von der 

aufliegenden Schicht beeinflusst wird. Prozesse mit benachbarten Flächen wie 

zum Beispiel laterale Zu- und Abflüsse, Transpiration, Grundwasserzufluss, 

sowie aufwärtsgerichtete Prozesse werden hierbei vernachlässigt (WAGNER, 

1998). Im Ergebnis ergibt sich eine SWIERS- Zeitreihe mit einem Wertebereich 

zwischen 0 und 100 % für eine Fläche von 50 km (ERS-Footprint) (WAGNER, 

LEMOINE ET AL., 1999B; WAGNER, NOLL ET AL., 1999). 

Die zweite Möglichkeit der flächigen Abschätzung der Bodenfeuchte 

umfasst den Einsatz der Landschaftsmodellierung, in welcher die aktuelle 

Bodenfeuchte als Nebenprodukt der Niederschlags-Abfluss Modellierung 

berechnet wird. Der Nachteil dieser Methode ist, dass die Genauigkeit der 

berechneten Bodenfeuchte stark von den Eingangsdaten sowie von der 

Modellstruktur beeinflusst wird (SINGH, 1995). Der Vergleich der existierenden 

hydrologischen Modelle zeigte wesentliche Unterschiede in der zugrunde 

liegenden Modellkonzeption. Ein wichtiges Unterscheidungsmerkmal stellt die 

Repräsentation der landschaftlichen Heterogenität (Landbedeckung, Boden, 

Topographie und Geologie) dar. Hier können zwei wesentliche Modelltypen 

unterschieden werden (SINGH, 1995): 1) Blockmodell („lumped“) und 2) 

räumlich gegliederte („distributive“) Modelle. In den Blockmodellen erfolgt 

keine Unterscheidung der räumlichen Variabilität, während räumlich verteilte 

Modelle die Variabilität mittels räumlich verteilter homogener Modelleinheiten 

wiedergeben.  

Für die Entwicklung einer Disaggregierungsmethode ist die 

Berücksichtigung der räumlichen und zeitlichen Bodenfeuchtegeneration von 

entscheidendem Interesse. Dieser Forderung wird durch die Ableitung von 

distributiven prozessorientierten Modelleinheiten nachgekommen werden. 

Diese Einheiten werden anschließend in einem distributiven hydrologischen 

Modell als Modellentitäten verwendet.  

Die Untersuchung der verschieden distributiven Modelltypen offenbarte 

Unterschiede in der Konzeption des Bodenkompartimentes. In der 
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Niederschlags-Abfluss Modellierung werden die folgenden Konzepte zur 

Generation der Bodenfeuchte angewendet. 1) Betrachtung des 

Bodenkompartimentes als einen Einzelspeicher (MANABE, 1969; IRANNEJAD AND 

SHAO, 2002) 2) Erweiterung des Einzelspeicher- Konzeptes durch die 

Implementierung einer oberflächennahen Bodenschicht, die durch die 

grenzschichtnahen Prozesse gesteuert wird (IRANNEJAD AND SHAO, 2002) 3) 

vertikale Unterteilung der Bodensäule in zwei oder mehrere nacheinander 

folgende Bodenschichten (LEAVESLEY, LICHTY ET AL., 1983; IRANNEJAD AND SHAO, 

2002) und 4) Unterteilung in mehrere parallele Bodenkompartimente, die 

ihrerseits einzelne Speicher darstellen (SCHULLA AND JASPER, 1998; KRAUSE, 

2001).  

Der Vergleich der einzelnen Konzepte zeigte, dass das vierte Konzept, 

aufgrund der stärkeren Berücksichtigung bodenphysikalischer Parameter, der 

Realität am nächsten kommt. Aus diesem Grund wurde sich bei der 

Niederschlags-Abfluss Modellierung für das distributive, prozessorientierte 

Modellsystem J2000 entschieden. Dieses Modell bestimmt den 

Bodenwasserhaushalt basierend auf parallel geschalteten Bodenspeichern.  

Einen weiteren Schwerpunkt bildete die Herausarbeitung von 

Einflussfaktoren, welche die räumliche und zeitliche Variabilität der 

Bodenfeuchte beeinflussen. In Abhängigkeit der Skala lassen sich verschiedene 

Parameter bestimmen. Auf Mikroebene (<0,1 km²) wird die Verteilung der 

Bodenfeuchte vor allem durch Topographie, Vegetation und 

Bodeneigenschaften bestimmt (BEVEN AND KIRKBY, 1979; MOHANTY, SKAGGS ET 

AL., 2000; JACOBS, MOHANTY ET AL., 2004). Einige Studien geben Hinweise 

darauf, dass die Art der Bodenbearbeitung sowie die Vorfeuchte ebenfalls eine 

entscheidende Rolle spielen (FAMIGLIETTI, DEVEREAUX ET AL., 1999; WESTERN, 

GRAYSON ET AL., 1999). Auf der Mesoskala (<1000 km²) stellen Topographie 

(Exposition und Hangneigung), Vegetation und Bodeneigenschaften nach wie 

vor die bestimmenden Parameter dar (BEVEN AND KIRKBY, 1979; BARDOSSY AND 

LEHMANN, 1998; MARTINEZ, HANCOCK ET AL., 2007). In einigen Studien, wie 

beispielsweise in GRAYSON, WESTERN ET AL. (1997); WESTERN, GRAYSON ET AL. 

(1999) und WILSON, WESTERN ET AL. (2005) wurden jedoch Indikatoren 

gefunden, dass die Variabilität auf dieser Ebene bereits vom Klima beeinflusst 

wird. Auf der Makroskala (>1000 km²) ändern sich die Einflussfaktoren. In 

dieser räumlichen Ebene wird die Verteilung in erster Linie durch klimatische 



KURZFASSUNG 

 XXIII

Faktoren, vor allem durch Niederschlag und Evapotranspiration beeinflusst 

(BLÖSCHL, 1996; VINNIKOV, ROBOCK ET AL., 1996; GÓMEZ-PLAZA, ALVAREZ-ROGEL 

ET AL., 2000).  

Um Informationen von einer Skalenebene in eine höhere bzw. niedere 

Skalenebene zu transferieren, erfolgt die Anwendung von Aggregierungs- und 

Disaggregierungsmethoden. Die Aggregierung umfasst, den 

Informationstransfer von einer kleineren Skalenebene in eine höhere, während 

Disaggregierung den umgekehrten Prozess, die Informationsübertragung von 

der höheren Ebene in eine niedere Skalenebene, beschreibt (BECKER, 1992).  

In der Literatur werden Disaggregierungsansätze von grob aufgelöster 

Bodenfeuchte Datensätzen beschrieben. Zum Beispiel wurden makroskalige 

Bilder zum Bodenwassergehalt mittels Bodentextur und 

Vegetationswassergehalt von 10 km auf 1 km disaggregiert (KIM AND BARROS, 

2002A). Allerdings, zeigte diese Methode eine starke Abhängigkeit von lokalen 

Bedingungen, denn die Topographie wurde aufgrund der 

Einzugsgebietscharakteristik nicht berücksichtigt. Allerdings wird die 

Topographie als ein treibender Faktor für die Variabilität der oberflächennahen 

Bodenfeuchte beschrieben. Eine andere Methode verwendeten WAGNER, PATHE 

ET AL. (SUBMITTED) zur Disaggregierung des rückgestreuten Mikrowellensignals 

des Advanced Synthetic Aperture Radar (ASAR). Die Autoren beschrieben den 

Zusammenhang zwischen der regionalen und lokalen Ebene basierend auf 

einer linearen Beziehung.  

Aus den oben genannten Ausführungen lässt sich der Forschungsbedarf 

auf dem die vorliegende Arbeit aufbaut, ableiten. Im Mittelpunkt steht die 

Entwicklung eines dynamischen, nicht an lokale Bedingungen geknüpften 

Disaggregierungskonzeptes, in dem alle beeinflussenden Faktoren der 

räumlichen und zeitlichen Bodenfeuchteverteilung auf ihren Einfluss zur 

Beschreibung der Verteilung auf mesoskaliger Ebene bewertet werden und 

gegebenenfalls im Konzept berücksichtigt werden können. 

 C. Methodische Vorgehensweise  

Zur Entwicklung des Disaggregierungskonzeptes wurden die folgenden 

methodischen Schritte durchgeführt: Erstens, die Abschätzung der 

mesoskaligen Bodenfeuchteverteilung als Referenzdatensatz der 
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Disaggregierung erfolgte mittels des Einsatzes eines distributiven 

Modellsystems, welches auf dem Konzept der homogenen 

Modellierungseinheiten beruht (Hydrological Response Unit = HRUs) (FLÜGEL, 

1995; FLÜGEL, 1996). Voraussetzung für die Ableitung der HRUs ist die 

integrierte hydrologische Systemanalyse, die auf der Aufnahme und 

Bewertung hydrologisch relevanter Systemkomponenten wie Topographie, 

Boden, Geologie und Vegetation sowie der Analyse der hydro- 

meteorologischen Zeitreihen basiert (FLÜGEL, 2000). 

Die abgeleiteten HRUs dienten als Modellentitäten im Modellsystem 

J2000 (KRAUSE, 2001). Das Modell J2000 ist ein distributives, prozessorientiertes 

Modell, dass sich in einzelne Systemmodule (Interzeptionsmodul, 

Schneemodul, Bodenmodul, Grundwassermodul und das Reach-Routing 

Modul) untergliedert. Für jede Modelleinheit (HRU) werden die 

Abflusskomponenten im Bodenmodul (Oberflächenabfluss, Zwischenabfluss) 

und Grundwassermodul (Basisabfluss, unterteilt in schnellen und langsamen) 

ermittelt. Diese berechneten Werte der Abflusskomponenten werden 

anschließend in die nächste HRU weitergegeben und den dort ermittelten 

Abflussmengen der jeweiligen Komponenten zugeführt. Dies wiederholt sich 

bis ein Vorflutersegment erreicht wird. Innerhalb der Vorflutersegmente wird 

das Wasser dann zum Gebietsauslass geführt. Die Bodenfeuchte wird hierbei 

als Teilkomponente der Wasserbilanz berechnet, in dem der Niederschlag einer 

Modellfläche prozessorientiert auf die Prozesse der Evapotranspiration, der 

Bodenspeicherung und des Abfluss aufgeteilt wird.  

Das Modellsystem J2000 besitzt 30 direkte Modellparameter, deren 

Kalibrierung in zwei Schritten erfolgte. In einem ersten Schritt wurde der dem 

Einzugsgebiet entsprechende Parameterbereich mit den Effizienzmaßen Nash- 

Sutcliffe Effizienz (NASH AND SUTCLIFFE, 1970) (NaS), logarithmischer Nash- 

Sutcliffe Effizienz (log. NaS), Bestimmtheitsmaß (R²) sowie dem absoluten 

Volumenfehler (AVE) bestimmt. In einem zweiten Schritt wurde die 

Auswirkungen eventueller Parameter auf den Abfluss und den aktuellen 

Bodenwassergehalt mit Hilfe der Sensitivitätsanalyse untersucht. Des Weiteren 

wurde die erhaltene Simulation der Niederschlags-Abfluss Beziehung im Great 

Letaba auf ihre Plausibilität hin geprüft. Dies erfolgte mittels Überprüfung der 

Wasserbilanz sowie durch Vergleich der berechneten Evapotranspiration mit 

Literaturdaten.  
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Im Anschluss an die Modellierung erfolgte die Evaluierung der beiden 

Datensätze. Um die modellierten Zeitreihen der Bodenfeuchte mit den 

fernerkundlich erfassten Werten des Bodenwassergehaltes (SWIERS) vergleichen 

zu können, erfolgte die Berechnung des simulierten Bodenwasserindexes 

(SWIHRU) (SCHEFFLER, KRAUSE ET AL., 2007). Hierfür wurde der aktuelle 

Bodenwassergehalt berechnet, der sich aus der Aufsummierung aller drei 

Bodenspeicher, Mittelporen-, Grobporen- und des Feinporenspeichers, ergibt. 

Im anschließenden Schritt wird dieser berechnete aktuelle Bodenwassergehalt 

zum höchsten und niedrigsten gemessen Wert im jeweiligen 

Betrachtungszeitraum in Beziehung gesetzt. Der so erhaltende Index (SWIHRU) 

bildet die Grundlage für die weitere Analyse. Zudem wird das Testgebiet von 

mehreren ERS-Footprints abgedeckt. Daher müssen die im jeweiligen ERS-

Footprint liegenden HRUs bestimmt werden.  

Um einen Vergleich der Zeitreihen auf der räumlichen Ebene der 

fernerkundlichen Daten ermöglichen zu können, ist die Berechnung eines 

flächengewichteten Mittelwertes des simulierten Bodenwassergehaltes über alle 

im Gebiet des jeweiligen Footprints liegenden HRUs notwendig. Diese sich 

daraus ergebende Zeitreihe (
___________

HRUSWI ) wurde dem SWIERS gegenübergestellt. 

Mittels eines Dekompositionsverfahrens (CLEVELAND, 1979; CLEVELAND, 

CLEVELAND ET AL., 1990) erfolgte die Unterteilung der Zeitreihen, 
___________

HRUSWI  und 

SWIERS, in Trend- und saisonale Komponente. In dieser Analyse werden 

Übereinstimmungen sowie Abweichungen in den Tendenzen der jeweiligen 

Komponenten bestimmt.  

Aufbauend auf den Ergebnissen dieser Analyse erfolgte die Entwicklung 

der Disaggregierungsmethode. Das in WAGNER, PATHE ET. AL (SUBMITTED) 

vorgestellte Konzept beschreibt die Verteilung des „mesoskaligen“ 

Rückstreuungssignals als lineare Funktion des „makroskaligen“ 

Rückstreuungssignals. Es zeigte sich jedoch, dass der Niederschlag eine 

wichtige Größe darstellt und demzufolge im Model berücksichtigt werden 

muss. Hieraus ableitend kam ein multiples lineares Regressionsmodel mit 

dem SWIHRU der jeweiligen Modelleinheit als abhängige Variable und den 

SWIERS und Niederschlag als unabhängige Variablen zur Anwendung.  

Es wird davon ausgegangen, dass die naturräumlichen Eigenschaften 

der Modelleinheiten (HRUs) sich in einer landschaftscharakteristischen 

Kombination (Landbedeckung, Boden, Topographie und Geologie) der 
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Regressionskoeffizienten widerspiegeln. Zur Bestimmung dieser 

Charakteristika wurden die HRUs hinsichtlich ihrer Landschaftseigenschaften 

gruppiert. Die Verteilung der Regressionsparameter innerhalb der Gruppen 

wurde mit Hilfe von deskriptiven Statistikmerkmalen beschrieben. Zur 

Überprüfung der Disaggregierungsmethode wurden die gefundenen 

Skalierungsparameter in der Disaggregierung eines weiteren Zeitraumes 

eingesetzt und bewertet.  

D. Untersuchungsgebiet und Datenlage 

Das Untersuchungsgebiet des Great Letaba befindet sich im Nordosten 

Südafrikas und umfasst eine Fläche von ca. 4700 km². Es erstreckt sich von 

330 m Höhe über NN im Nordosten bis auf 2121 m NN in den Ausläufern der 

Drakensberge im Westen.  

Geologisch gesehen, gehört das Gebiet des Great Letaba zu sehr alten 

Formationen. Mit Ausnahme der Gebirgsregion im Westen des 

Einzugsgebietes, wurde das Gebiet in der präkambrischen Periode geologisch 

geformt (DU TOIT AND HAUGHTON, 1954; VEGTER, 1995). Die Ausläufer der 

Drakensberge sind geologisch jünger und wurden während der Hebung der 

Drakensberge im Proterzoikum gebildet (DU TOIT AND HAUGHTON, 1954; 

VEGTER, 1995). Diese Differenzierung ist auch im anstehenden Gestein sichtbar. 

Während die Ausläufer der Drakensberge durch Granit und Diorite 

gekennzeichnet sind, wird der Osten durch Gneis und Granitoid geprägt. Diese 

Zweiteilung spiegelt sich ebenfalls in den anstehenden Böden wieder. In den 

Hochlagen des Einzugsgebietes finden sich tiefgründig entwickelte Böden wie 

Acrisols, Nitisols und Lixisols, die in Gebieten mit großer Hangneigung von 

Leptosolen abgelöst werden (FAO, 2003). Der zentrale Teil sowie der Osten des 

Gebietes sind durch den Regosol beschrieben (FAO, 2003). Die Vegetation des 

Einzugsgebietes wird durch eine Savannenlandschaft charakterisiert, die im 

Oberlauf des Great Letaba von Wäldern abgelöst wird. Des Weiteren werden 

26 % der Fläche des Great Letaba Einzugsgebietes intensiv agrarisch genutzt, 

wobei auf 9 % dieser Fläche Bewässerungsfeldwirtschaft durchgeführt wird 

(CSIR AND ARC, 2005). 

Die Zweiteilung des Gebietes findet sich auch in der hohen räumlichen 

und zeitlichen Variabilität des Niederschlags wieder, welche zu einem 
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natürlichem Wasserstress führt. Die durchschnittliche jährliche 

Niederschlagssumme beträgt 760 mm (LYNCH, 2004), wobei in den in den 

Gebirgslagen bis zu 1751 mm und in den Tieflagen nur 419 mm (LYNCH, 2004) 

gemessen werden. Zur räumlichen Disparität, kommt eine hohe zeitliche 

Variabilität. Etwa 85 % des jährlichen Niederschlags fallen im Zeitraum von 

Oktober bis März. Aufgrund dieser hohen zeitlichen Variabilität des 

Niederschlags kann während der niederschlagsarmen Jahreszeit ein 

periodisches Trockenfallen der Flüsse beobachtet werden. Zum Ausgleich 

dieser jahreszeitlichen Schwankung befinden sich im Flusslauf große 

Stauanlagen und zahlreiche kleinere Speicherbecken, die zur Wassersicherung 

der Bedarfsgruppen (z.B. Landwirtschaft und Bevölkerung) dienen. 

Für die Niederschlags-Abfluss Modellierung des Einzugsgebietes des 

Great Letaba wurden die hydro-meteorologische Zeitreihen (Niederschlag, 

Temperatur, relative Feuchte, Sonnenscheindauer, Windgeschwindigkeit sowie 

Abflussdaten) als Eingangsdatensätze verwendet. Des Weiteren standen für die 

Ableitung der Modellentitäten, die folgenden GIS-Datensätze zur Verfügung. 

Zur Bestimmung der topographischen Information, wie Höhenlage, Exposition 

und Hangneigung wurden die Shuttle Radar Topography Mission (SRTM)-Daten 

(U.S. GEOLOGICAL SURVEY EROS DATA CENTER AND NASA, 2007) verwendet. 

Digitale hydrogeologische Karten dienten der Ableitung des geologischen 

Untergrunds im Untersuchungsgebiet. Die Bodeninformationen wurden aus 

den Soil and Terrain Database for Southern Africa (SOTERSAF) (FAO, 2003) 

entnommen. Die National Land Cover (NLC) South Africa 2000 (CSIR AND ARC, 

2005) diente als Datengrundlage zur Gewinnung der 

Landbedeckungsinformationen.  

E. Ergebnisse und Diskussion  

1) Hydrologische Systemanalyse und Ableitung von hydrologisch 

ähnlich reagierenden Flächen 

Um eine gute und realitätsnahe Niederschlags-Abfluss Modellierung 

durchführen zu können, müssen die Modelleingangsdaten, 

hydrometeorologische Zeitreihen sowie die GIS-Datensätze zur Ableitung der 

Modelleinheiten, auf Homogenität und Konsistenz (BEVEN, 2001B) untersucht 

werden. Die Auswertung der hydrometrischen Zeitreihen (Abfluss, 
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Niederschlag und Temperatur) sowie die einhergehende Systemanalyse im 

Untersuchungsgebiet des Great Letaba ergab, dass die 

Bewässerungsfeldwirtschaft und die in diesem Zusammenhang entstanden 

Stauanlagen einen entscheidenden Einfluss auf die Abflussdynamik im 

Einzugsgebiet haben. Dies musste bei der Niederschlag-Abfluss Modellierung 

berücksichtigt werden. So wurde in die Modellkalibrierung das Einzugsgebiet 

der großen Stauanlagen im Oberlauf des Great Letaba nicht miteinbezogen.  

Bei der Überprüfung der GIS-Daten zeigte sich, dass die Rohdaten des 

digitalen Geländemodells, die SRTM-Daten, Lücken aufwiesen, welche gefüllt 

wurden. Aus den korrigierten SRTM-Daten wurden die Topographieparameter 

Exposition und Hangneigung sowie das Gewässernetz abgeleitet, die in der 

weiteren Folge zur Ableitung der Modelleinheiten (HRU) verwendet wurden. 

Die Modelleinheiten wurden durch Reklassifizierung, Überlagerung und 

Verschneidung der GIS-Datensätze Landbedeckung, Boden, Hangneigung, 

Exposition und Geologie abgeleitet (FLÜGEL, 1995; FLÜGEL, 1996). Abschließend 

erfolgte die Eliminierung der Splitterpolygone. Die so erzeugten HRUs stellen 

verteilte, hinsichtlich ihres hydrologischen Prozessgefüges homogene Einheiten 

dar. Im Ergebnis wurden 8051 HRUs als Modellentitäten für das hydrologische 

Modellsystem J2000 abgeleitet.  

2) Niederschlags-Abfluss Modellierung im Einzugsgebiet des Great 

Letaba 

Die Modellierung der Niederschlags-Abfluss-Beziehung erfolgte für 

den Zeitraum 1993 bis 1999, wobei der Zeitraum von Februar 1993 bis 

September 1997 zur Kalibrierung und der Zeitraum von Oktober 1997 bis 

Dezember 1999 zur Validierung herangezogen wurde. 

Der visuelle Vergleich der simulierten Abflusskurve mit den 

beobachteten Abflusswerten zeigte, dass das Modellsystem in der Lage ist, die 

Abflussdynamik im Gebiet des Great Letaba abzubilden. Auch die 

Gütekriterien weisen (Kalibrierungszeitraum: NaS = 0,80; Validierungszeitraum 

NaS = 0,77), auf eine gute Modellsimulation hin.  

Allerdings wurden auch Defizite in der Modellierung deutlich. Infolge 

der starken landwirtschaftlichen Nutzung im Untersuchungsgebiet und der 

damit einhergehenden Bewässerungslandwirtschaft wurde die Abflussmenge 

entlang des Flussverlaufes reduziert. Mit der aktuellen Version des Modells 
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J2000 konnten Bewässerungs- und Stauanlagen sowie deren Management nicht 

in der Modellierung berücksichtigt werden und demzufolge kam zur 

Überschätzung einiger Abflussereignisse von seitens des Modells (SCHEFFLER, 

BÄSE ET AL., 2007).  

Darüber hinaus zeigte es sich, dass Abweichungen zwischen simuliertem 

und beobachtetem Abfluss unter anderem auf Ungenauigkeiten in den 

Eingangsdatensätzen zurückführen sind. So wies die Auswertung der 

Niederschlags- und Abflussdaten von Einzelereignissen darauf hin, dass die 

Dichte der vorhandenen Niederschlagsstationen nicht ausreicht, um die 

räumliche Niederschlagsverteilung detailliert wieder zu geben. Das führte 

dazu, dass lokale Einzelereignisse vom Modell nicht erfasst und somit 

unterschätzt wurden (SCHEFFLER, BÄSE ET AL., 2007).  

Um die Kalibrierungsparameter des Modellsystems zu bestimmen, 

welche das Modellierungsergebnis beeinflussen, erfolgte die Durchführung 

einer Sensitivitätsanalyse. Hierfür wurden alle Kalibrierungsparameter des 

Modells um jeweils 10 % ihres ursprünglichen Wertes erhöht und reduziert. Die 

Parameteränderungen wurden an den Volumenänderungen der Abflussmenge 

bzw. des Bodenwassergehaltes am Gebietsauslass bestimmt. Die größten 

Volumensänderungen in Bezug auf die simulierte Abfluss- und 

Bodenwassermenge ergaben sich bei einer Modifikation des 

Kalibrierungsparameters FCApadation. Dieser Parameter steuert das Volumen 

des im Boden gespeicherten Wassers. Die durch die Modifikation dieses 

Parameters entstandene Variation des Bodenwassergehaltes muss bei der 

Entwicklung des Disaggregierungskonzeptes berücksichtigt werden, um die 

Abhängigkeit der entwickelten Methode von den voreingestellten 

Modellparameter zu bestimmen und bewerten zu können.  

3) Evaluierung des makroskaligen Indexes des Bodenwassergehaltes 

und die Entwicklung des Disaggregierungskonzeptes 

Um die Evaluierung des makroskaligen Index des Bodenwassergehaltes 

(SWIERS) durchführen zu können, wurde zunächst der simulierte Index des 

Bodenwassergehaltes (SWIHRU) berechnet. Anschließend erfolgte die 

Anpassung der zeitlichen Auflösung, in dem der jeweils korrespondierte Tag 

zum SWIERS aus der SWIHRU- Zeitreihe extrahiert wurde. Des Weiteren wurden, 

die in den drei Footprints liegenden HRUs (1733 HRUs (ID394) bis 3711 HRUs 
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(ID376)) extrahiert, wobei Wasserflächen in der weiteren Analyse nicht 

berücksichtigt wurden.  

Im ersten Schritt der Evaluierung erfolgte die Analyse und Bewertung 

der simulierten und fernerkundlichen Zeitreihen des Bodenwassergehaltes 

auf Ebene der Footprints (50 km). Hierfür wurde der flächengewichteten 

Mittelwert der simulierten Bodenfeuchte (
___________

HRUSWI ) für den jeweiligen Footprint 

berechnet und dem SWIERS gegenübergestellt. Des Weiteren erfolgte die 

Trennung der Zeitreihen 
___________

HRUSWI  und SWIERS in ihre Zeitreihenkomponenten. 

Diese Trennung wurde mit dem Zweck durchgeführt, einen Vergleich über die 

bisherige Entwicklung vorzunehmen und daraus Informationen über die 

zukünftige Entwicklung ableiten zu können (STATISTISCHES BUNDESAMT 

DEUTSCHLAND, 2007). Hierfür werden die Zeitreihen in die saisonale oder 

wiederkehrende Komponente und in die bereinigte, die Trendkomponente, 

welche die längerfristige Entwicklung der Zeitreihen aufzeigt, getrennt 

(ASSENMACHER, 1998).  

Der visuelle Vergleich zeigte, dass beide Methoden, die hydrologische 

Modellierung sowie die Fernerkundung, sehr ähnliche Dynamiken in der 

Entwicklung der Bodenfeuchte aufzeigen. Dies konnte auch in der 

durchgeführten Regressionsanalyse zwischen den Zeitreihen der jeweiligen 

Komponente bestätigt werden. Für die Trendkomponente lagen die erreichten 

Bestimmtheitsmaße zwischen R² = 0,79 (ID376) bis R² = 0,94 (ID394). Die 

Saisonkomponente zeigte etwas geringere Werte mit Bestimmtheitsmaßen 

zwischen R² = 0,74 (ID376) und R² = 0,85 (ID393). Diese sehr große 

Gleichartigkeit der Zeitreihen 
___________

HRUSWI  und SWIERS, die auf so unterschiedlichen 

Konzepten aufbauen, wurde als sehr vielversprechend für die Entwicklung des 

Disaggregierungskonzeptes bewertet.  

Des Weiteren wurde in der Analyse der Trennung der Zeitreihen-

komponenten deutlich, dass starke Abweichungen in den absoluten Werten 

vorlagen, so dass auf weitergehende Vergleiche dieser verzichtet wurde. Diese 

Abweichungen sind auf Unterschiede in den beobachteten Volumina der 

Bodensäule der beiden Datensätze zurückzuführen. Die Grundlage für den 

SWIERS bilden die Messungen des Bodenwassergehaltes in der oberen 

Bodenschicht (<5 cm) (WAGNER, SCIPAL ET AL., 2003). Die Berechnung des sich 

daraus ergebenden Bodenwassergehaltes der Bodensäule erfolgt mittels eines 

Infiltrationsmodell, in dem angenommen wird, dass die im Oberboden 
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gemessene Feuchte über einen, für die jeweilige Landschaft, charakteristischen 

Zeitraum in den Boden infiltriert. Interaktionen mit umgebenden 

Bodenschichten, sowie lateraler Zu- und Abfluss und kapillarer Aufstieg 

werden hierbei vernachlässigt. Die simulierten Zeitreihen des 

Bodenwassergehaltes (SWIHRU) werden allerdings unter Berücksichtigung 

dieser Prozesse modelliert.  

Basierend auf den Ergebnissen der zuvor durchgeführten Untersuchung, 

erfolgte im zweiten Schritt die Beschreibung der Beziehung zwischen dem 

makroskaligen Fernerkundungsprodukts und den mesoskaligen simulierten 

Bodenwasserzeitreihen und damit einhergehend die Entwicklung des 

Disaggregierungskonzeptes. Hierfür wurde ein multiples Regressionsmodell 

angewendet, in dem der Bodenwasserindex der einzelnen HRUs (SWIHRU) als 

Funktion von Niederschlag und des makroskaligen Bodenwasserindex  

(SWIERS) beschrieben wird.  

Die im Disaggregierungsmodell integrierten Regressionskoeffizienten 

(Skalierungsparameter) lassen sich Funktion der Landschaftsparameter 

(Landbedeckung, Bodengruppe, Hangneigungs- und Expositions- sowie 

Geologiegruppe) darstellen, wobei deren Erklärungspotential für die 

entwickelte Disaggregierungsmethode untersucht wurde. Dies wurde unter 

Anwendung einer schrittweisen Verfahrensweise durchgeführt. Die 

Regressionsparameter wurden zunächst in Hinblick auf Landbedeckungs- und 

Bodenkombinationen gruppiert und anschließend die Disaggregierung unter 

Verwendung dieser Parameter durchgeführt. Das so erhaltene Ergebnis wurde 

mittels des Bestimmtheitsmaßes bewertet. Anschließend wurde jeweils ein 

weiterer Landschaftsparameter in der folgenden Reihenfolge zur Gruppierung 

der Regressionsparameter hinzugenommen: Hangneigung, Exposition und 

Geologie.  

Im Ergebnis dieser Untersuchung zeigte sich, dass für nahezu alle 

möglichen Kombinationen von Landschaftsparametern (Landbedeckung, 

Bodengruppe, Hangneigungs- und Expositions- sowie Geologiegruppe)  im 

Untersuchungsgebiet, eine Kombination von Landbedeckungs- und 

Bodengruppe ausreicht, die Skalierungsparameter so zu trennen, dass diese 

eine Disaggregierung der makroskaligen Bodenwasserindexes möglich machen. 

Die Ausnahme bilden landwirtschaftlich genutzte Flächen. Hier führt die 
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Hinzunahme von den topographischen Parametern Hangneigung und 

Exposition zu einer Verbesserung der Disaggregierung.  

Die daraus resultierenden Skalierungsparameter wurden auf den 

Modellierungszeitraum von Oktober 1997 bis September 1999 angewendet. Die 

disaggregierten Zeitreihen des Bodenwassergehaltes wurden mit den 

simulierten Zeitreihen verglichen. Das Ergebnis zeigt gute bis sehr gute 

Übereinstimmungen zwischen diesen Zeitreihen für die 

Landbedeckungsklassen Baumsavanne oder offenes Waldland (woodland), 

Buschsavanne (bushland), Grasland sowie für vegetationslose und spärlich 

bewachsene Flächen. Dies wird vor allem in den ermittelten 

Bestimmtheitsmaßen von R² = 0,57 bis R² = 0,65 (Mittelwert der Klassen) 

deutlich. Für städtische Flächen, Wälder sowie in Feuchtgebiete zeigten die 

disaggregierten Zeitreihen nur geringe Übereinstimmungen mit den 

simulierten Bodenwasserzeitreihen. Dies spiegelt sich in den geringen 

Bestimmtheitsmaßen von R² = 0,27 bis R² = 0,5 (Mittelwert der Klassen) wider. 

Diese Differenzen sind durch Einschränkungen der Mikrowellenfernerkundung 

erklärbar. Dicht bewachsene Vegetationsflächen, wie beispielsweise Wälder, 

können die vom Satelliten ausgesendete Strahlung nicht durchdringen. Dies 

bedeutet, dass der integrale Messwert des rückgestreuten Signals zu diesen 

Flächen keine Information über den Bodenwassergehalt liefert. Ähnliches gilt 

auch für Feuchtgebiete sowie städtische Flächen. Pflanzengesellschaften mit 

Bestandslücken, wie beispielsweise Baumsavanne, Buschsavanne, Grasland 

sowie vegetationslose und spärliche bewachsene Flächen erlauben hingegen, 

dass die von Satelliten ausgesandte Strahlung in den Boden eindringen kann. 

Das reflektierte Signal enthält somit Informationen zum Bodenwassergehalt 

unter diesen Vegetationstypen, was sich auch in den guten bis sehr guten 

Bestimmtheitsmaßen widerspiegelt.  

Ein Grund für die eher befriedigenden Ergebnisse der angewandeten 

Methode im Fall der landwirtschaftlichen Flächen ist teilweise auf Defizite in 

der Modellstruktur des verwendeten hydrologischen Modells rückführbar. Es 

wird davon ausgegangen, dass infolge der Nichtberücksichtigung von 

stattfindenden Bewässerungsprozessen, der Bodenwassergehalt dieser Flächen 

von Modell unterschätzt wird. Hier zeigt es sich, dass der makroskalige 

Bodenwasserindex einen Zugewinn an Informationen liefert, denn Flächen 

unter Bewässerung werden im rückgestreuten Satellitensignal berücksichtigt.  
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Im Anschluss an diese Untersuchung musste die Frage geklärt werden, 

inwieweit die Skalierungsparameter von den Kalibrierungsparametern des 

Modells beeinflusst werden. Um hierüber Aussagen treffen zu können, wurden 

die erhalten simulierten Zeitreihen bei einer +/- 10-prozentigen Änderung des 

Kalibrierungsparameters FCAdaptation analysiert. Dieser wurde in der 

Sensitivitätsanalyse als sensitivster Parameter in Bezug auf das modellierte 

Bodenfeuchte- und Abflussvolumen bestimmt. Es zeigte sich, dass die 

Skalierungsparameter eine Abhängigkeit zu diesem Kalibrierungsparameter 

zeigen. Eine Erhöhung bzw. Reduzierung dieses Parameters führte zu einer 

maximalen Änderung der Skalierungsparameter von bis zu +/- 8.6 %. 

Ausnahmen bilden hierbei die landwirtschaftlichen Flächen bei denen 

Änderungen der Skalierungsparametern von fast +/- 50 % beobachtet wurden, 

sowie Kombinationen von Landschaftsparametern die eine Klassenstärke von 

unter 50 HRUs aufwiesen. Hier wird davon ausgegangen, dass aufgrund der 

geringen Klassendichte keine stabilen statistischen Verteilungen berechnet 

werden konnten.  

Dieses Ergebnis ist unter Berücksichtigung der vorgenommen 

Annahmen sehr vielversprechend und es wird davon ausgegangen, dass die 

entwickelte Disaggregierungsmethode eine Anwendung des makroskaligen 

Bodenfeuchteproduktes auf einer kleineren räumlichen Ebene ermöglicht. 

F. Schlussfolgerung und Ausblick  

Das Ziel der vorliegenden Arbeit war die Entwicklung eines 

Disaggregierungskonzeptes zur skalenübergreifenden Verwendbarkeit des 

makroskaligen Indexes des Bodenwassergehaltes (SWIERS) für die mesoskalige 

hydrologische Modellierung. Für die Entwicklung dieser Methode wurden 

mittels hydrologischer Modellierung gewonnene Bodenfeuchtedaten eingesetzt. 

Hierfür kam das distributive, prozessorientierte Modellsystem J2000 zur 

Anwendung, welches als Teilergebnis der Niederschlags-Abfluss Modellierung 

die Bodenfeuchte liefert. Es zeigte sich, dass das Modellsystem in der Lage war, 

die hydrologischen Prozesse im Einzugsgebiet des Great Letaba 

wiederzugeben. Aufgetretene Unsicherheiten sind zum einen auf die räumlich 

lückenhaften Niederschlagsdaten und zum anderen auf die nicht 

quantifizierbare Wasserentnahme entlang des Flusslaufes zurückzuführen. Eine 
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Gegenüberstellung der simulierten und beobachteten Abflussdaten sowie der 

Vergleich der simulierten Evapotranspirationswerte mit Literaturwerten zeigte, 

dass die hydrologische Dynamik im Gebiet gut wiedergegeben wurde.  

Die so erhaltenen mesoskaligen Zeitreihen des Bodenwassergehaltes 

wurden dem makroskaligen Bodenwasserindex gegenübergestellt und darauf 

aufbauend die Disaggregierungsmethode entwickelt. Die Ergebnisse der 

Anwendung der Disaggregierungsmethode zeigte für Gebiete der 

Baumsavanne, Buschsavanne, Grasland sowie für spärlich bewachsene und 

vegetationslose Flächen gute bis sehr gute Übereinstimmungen. Für 

Feuchtgebiete, städtische Regionen und Waldgebiete lieferte die 

Disaggregierungsmethode jedoch keine guten Ergebnisse. Dies ist vor allem auf 

Einschränkungen der Mikrowellenfernkundung in dicht bewachsenen Gebieten 

sowie auf versiegelten und Wasserflächen zurückzuführen. Unsicherheiten sind 

zudem auf die Definition des makroskaligen Bodenwasserindexes 

zurückführbar. Der Bodenwasserindex wird als Trendindikator der 

Bodenfeuchte zwischen dem höchsten je gemessenen (Feldkapazität) und dem 

geringsten je gemessenen (Welkepunkt) Wert definiert (WAGNER, SCIPAL ET AL., 

2003). Studien zeigen jedoch, dass es vor allem in semiariden Gebieten zu einer 

Überschreitung der Feldkapazität (KAMARA AND HAQUE, 1987; GABRIELLE AND 

BORIES, 1999) sowie eine Unterschreitung des Welkepunkts (KINCAID, GARDNER 

ET AL., 1964; ARCHER, HESS ET AL., 2002) kommen kann. 

Zusammenfassend liefert die Studie trotz der obengenannten Probleme 

und Unsicherheiten wichtige Erkenntnisse für die Methodik von 

Disaggregationsverfahren und kann in dessen Folge zu einem verbesserten 

Verständnis der hydrologischen Prozesse und dessen Kontrollfaktoren führen. 

Die Arbeit liefert in den folgenden Punkten wichtige Beiträge zur 

Disaggregierung von makroskaligen Bodenfeuchteprodukten:  

 

Welche Güte besitzt der makroskalige Index des Bodenwassergehaltes in Bezug 

auf die Verwendung in der mesoskaligen hydrologischen Modellierung?  

Die Ergebnisse der vorliegenden Arbeit zeigen, dass beide Konzepte, die 

Abschätzung des Bodenwassergehaltes aus der hydrologischen Modellierung 

sowie die fernerkundlichen Daten, eine sehr große Übereinstimmung 

aufweisen. Aufgetretene Abweichungen in den absoluten Werten sind teilweise 

durch Differenzen in den beobachten Bodenvolumina erklärbar, da der 
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makroskalige Bodenwasserindex auf den Messungen der oberen Bodenschicht 

basiert. Daher lässt sich schlussfolgern, dass der makroskalige 

Bodenwasserindex vor allem in Bezug auf die Dynamik des 

Bodenwasserhaushaltes eine potentielle Informationsquelle für die 

hydrologische Modellierung darstellt.  

 

Welche Disaggregierungsmethode kann zur Beschreibung der Beziehung 

zwischen der makroskaligen und der mesoskaligen Verteilung des Bodenwassergehaltes 

angewandet werden?  

Die vorliegende Arbeit bestätigt die Ergebnisse von WAGNER, PATHE ET 

AL. (SUBMITTED), in der der Zusammenhang der Bodenfeuchte zwischen zwei 

Skalenebenen über eine lineare Beziehung beschrieben wird. Allerdings muss 

der Niederschlag als treibende Größe der räumlichen Bodenfeuchteverteilung 

in das Disaggregierungsmodell integriert werden. Unter Anwendung eines 

multiplen linearen Regressionsmodells ist es möglich die Verteilung des  

Bodenwasserindexes auf mesoskaliger Ebene als Funktion von Niederschlag 

und makroskaligen Bodenwasserindex zu beschreiben.  

 

Welche Landschaftsparameter stellen die Kontrollfaktoren des makroskaligen 

Index des Bodenwassergehaltes dar und wie können diese zur Beschreibung der 

mesoskaligen Bodenwasserverteilung eingesetzt werden?  

Die Ergebnisse dieser Studie zeigen, dass eine Gruppierung der 

Skalierungsparameter nach der vorherrschenden Landbedeckung- und 

Bodengruppe ausreicht, um Parameter zu finden, die in weiten Teilen eine sehr 

gute Disaggregierung ermöglichen. Eine Hinzunahme der 

Topographieparameter Exposition und Hangneigung zeigte nur für die 

landwirtschaftlichen Nutzflächen deutliche Verbesserungen.  

 

Welcher Erfolg kann mit der entwickelten Disaggregierungsmethode erzielt 

werden?  

Die entwickelte Disaggregierungsmethode wurde auf den 

Modellierungszeitraum 1997 bis 1999 am Beispiel des Einzugsgebietes des 

Great Letaba getestet. Die Ergebnisse zeigen, dass die Methode in der Lage ist, 

für bestimmte Landbedeckungsklassen gute bis sehr gute 

Disaggregierungsergebnisse zu erzielen. Zu diesen Landbedeckungsklassen 
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zählen Baumsavanne, Buschsavanne, Grasland und spärliche bzw. 

vegetationslose Flächen. Unbefriedigende Ergebnisse wurden für die 

Landbedeckungsklassen städtische Flächen, Feuchtgebiete sowie Wälder 

erreicht. Diese Ergebnisse sind vor allem auf Einschränkungen in der 

Mikrowellenfernerkundung zurückzuführen. Landwirtschaftliche Flächen 

wurden nur durchschnittlich disaggregiert. Dies ist vor allem durch Defizite 

des in der Studie verwendeten hydrologischen Modells erklärbar.  

 

Ausgehend von den obengenannten Ergebnissen sind die folgenden 

Punkte für zukünftige Forschungen zu formulieren.  

Erstens sollte eine Überprüfung der Disaggregierungsmethode am 

gleichen Untersuchungsgebiet für anderen Zeitraum und unter Verwendung 

anderer Datensätze durchgeführt werden. Hierbei sind zwei 

Forschungsrichtungen zu empfehlen: 1) die Abschätzung der Referenzdaten 

basierend auf anderen Eingangsdaten (z.B. Niederschlagsdaten) und 2) die 

Verwendung anderer Fernerkundungsdaten. Mögliche Satellitensysteme 

hierfür wären das Advanced Scatterometer (ASCAT) an Bord des MetOp- 

Satelliten, welcher 2006 gestartet wurde sowie der Soil Moisture and Ocean 

Salinity (SMOS), welche voraussichtlich 2008 gestartet wird (EUROPEAN SPACE 

AGENCY, 2007).  

Zweitens ist die Überprüfung der Disaggregierungsmethode an einem 

anderen Untersuchungsgebiet notwendig. Hiermit könnte die Frage geklärt 

werden, ob die ermittelten primären Kontrollfaktoren, Landbedeckung und 

Bodengruppe, auch in anderen Gebieten das gefundene Erklärungspotential 

besitzen.  

Drittens wird die Anwendung eines mesoskaligen hydrologischen 

Modells, in welchem die Bodensäule in horizontal aufeinanderfolgende 

Bodenschichten untergliedert wird, empfohlen. Hierbei sollte eine obere 

Bodenschicht von 5 cm implementiert werden. Dies ist korrespondierend zur 

gemessenen Bodenschicht des Satellitensensors. Die Abschätzung des 

Bodenwassergehaltes mittels hydrologischer Modellierung dieser Schicht 

ermöglicht den direkten Vergleich der real erfassten Bodenschicht mit 

Referenzdaten. Eine solche Untersuchung könnte des Weiteren zu einer 

Optimierung des abgeleiteten SWIERS führen.  
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Der vierte Forschungsbereich umfasst die Integration der disaggregierten 

Bodenwasserzeitreihen in die mesoskaligen hydrologische Modellierung. Die 

Studie zeigt, dass die fernerkundlichen Daten einen entscheidenden 

Informationsgewinn für die hydrologische Modellierung darstellen können. 

Speziell in Gebieten mit keiner oder unzureichender Infrastruktur können diese 

als Validierungsinstrument dienen, mit denen Modellergebnisse einer besseren 

Qualitätsanalyse unterzogen werden können. Mit der Entwicklung von 

geeigneten Methoden können die Information zum Bodenwasserhaushalt aus 

Satellitendaten einen wichtigen Beitrag in der Modellparametrisierung und 

Modellkalibrierung als auch deren Bewertung liefern und somit zu einer 

Verbesserung der simulierten Niederschlags-Abfluss Beziehung führen. Die 

Daten können damit, als hochwertiges Instrument zu einem verbesserten 

regionalen Wassermanagement führen.  
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CHAPTER 1 

INTRODUCTION 

Water management authorities observe, manage and regulate surface 

water and groundwater resources. In semi-arid areas, this task is particularly 

aggravated by imbalances between parts of regions with water surplus versus 

parts of regions with water deficiency, as well as by the highly temporal 

variability of year to year and seasonal rainfall. Due to these natural conditions, 

water authorities benefit from applying hydrological models to predict rainfall 

runoff relationships in any given region with some confidence. Unfortunately, 

most semi-arid catchments lack hydrologic data, a basic underlying 

requirement for hydrological model applications, so their use to gain 

understanding of hydrologic conditions is severely impacted. In addition, due 

to difficulties in obtaining sufficient and accurate data, the model calibration 

and -validation procedures are often technically unsatisfactory.  

Researchers have examined the possibility of transferring knowledge 

from more robust models to other catchments having similar characteristics as 

the observed one. However, due to the individual characteristics of every 

catchment, the transfer of model results from one catchment to another often is 

difficult. In order to overcome this problem, other sources of information have 

to be used, and other validation tools have to be developed. Remote sensing 

techniques are a potentially useful tool because they operate over wide areas 
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with temporal resolution of several days, thereby overcoming the problem of 

having sparse in-situ measurements. 

The key underlying basis of this study is the fact that coarsely resolved 

data contain valuable information to bridge this scale related gap between local 

in-situ measurements and the spatial data demands for hydrological model 

validation and parameterization. 

An area of focus in current remote sensing research involves the 

quantification of soil water conditions from space.  Researchers have focused on 

the derivation of the surface soil water content from microwave data, because 

the microwave signals are independent of cloud cover and can penetrate 

depending upon the wavelength into the soil column up to a few centimeters. 

One class of microwave instruments offering the possibility to derive soil water 

information involves the use of scatterometers. A global remotely sensed soil 

water dataset based on microwaves was derived from the European Remote 

Sensing Satellite (ERS) scatterometer. However, because the satellite 

wavelength can only penetrate the upper few centimeters of the soil column, 

the root zone soil water content has to be estimated. The dataset used in this 

study estimates the root zone soil water, based on the surface soil moisture 

information by applying a simple infiltration model. The comparison of this 

dataset with field measurements in the semi-arid Duero catchment in Spain 

revealed quite good agreement between the two different estimation methods. 

The drawback, however, of the remotely sensed dataset is its spatial resolution 

of 50 km. This is problematic for hydrological characterization purposes, 

because models generally require more highly resolved data.  

Therefore, the overall goal of this study is the assessment and evaluation 

of the macro-scale root zone soil water estimates for purposes of regional 

hydrological modeling applications. The study will focus on the following: 1) 

evaluation of the influence of landscape parameters (soil, land cover, 

topography, and geology) between local and regional scales, and 2) the use of 

this information to develop a method to disaggregate the macro-scale root zone 

soil water estimate over a range of various scales. Due to the lack of sufficient 

field data available in this study, regional hydrological modeling is applied. 

This thereby provides the meso-scale soil water areal distribution. Because the 

spatial soil moisture distribution depends on landscape characteristics such as 

land cover, soil type, topography and geology, the distributed physically based 
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modeling system J2000 has been applied. The application of this model ensures 

a more process oriented representation of soil water distribution.  

The meso-scale soil water time series were then used to disaggregate the 

macro-scale soil water estimates. A downscaling scheme based on a statistical 

method thereby was developed. The present work has the following 

contributions for the scientific community:  

• The development of a downscaling method that translates large 

scale remote sensed data into meso-scale distributed soil moisture 

data. 

• The determination of key landscape parameters that affect soil 

moisture distribution at the respective scale (macro-scale = 50 km, 

meso-scale = ø 0.7 km²) and their incorporation into the 

downscaling method. 

• The application and verification of the developed method on 

model dependencies.  

• The evaluation of the applicability of the macro-scale remotely 

sensed data for regional hydrological modeling  

The evaluation and use of low spatial resolution scatterometer data gives 

a better understanding of the weaknesses and strengths of both the 

hydrological model and the remotely sensed dataset results. This study makes 

an important contribution to the application of future remote sensing 

applications for hydrological purposes. For example, these techniques could be 

used with the data from the Advanced Scatterometer (ASCAT). This is a similar 

technical instrument to the ERS-scatterometer and is onboard the 

Meteorological Operational satellite (MetOp)-satellite, launched in October 

2006. 

The present study is divided in the following chapters: Chapter 2 gives 

an overview on the current state of the art in both remote sensing of soil 

moisture and in hydrological modeling. It outlines the technical challenges for 

the derivation of the soil water content from space and the different approaches 

to model soil moisture. Chapter 3 introduces the study area, the Great Letaba 

catchment in South Africa. It also gives an overview of the data used. Chapter 4 

explains the methodological approach used in this study. Chapter 5 presents 

the results of the applied rainfall runoff modeling approach. This chapter 

describes the downscaling method that was derived and the results from 
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applying it to this case. In the last chapter, Chapter 6, the study is summarized 

and recommendations made for future research. 
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CHAPTER 2 

RESEARCH REVIEW 

For developing a downscaling method, reference data at a smaller scale 

are required. So far, soil moisture information can be obtained from three 

sources. First, ground based measurements provide soil moisture information 

as a point measurement but at spatial distributions that are limited. Second, 

remote sensing techniques offer the possibility to obtain soil moisture 

information over various space and time scales. However, only macro-scale 

remote sensing techniques succeed in derivation of soil moisture information 

for routine application. Third, rainfall runoff models estimate soil moisture as 

an element of their hydrological cycle whereas the accuracy of soil moisture 

generation depends on model structure and model input data. As a result of the 

locally restricted availability of ground based measurements and the inability of 

remote sensing to achieve meso-scale soil moisture, hydrological modeling 

offers the only possibility to obtain soil moisture information at a smaller scale 

over an area of 50 km. 

To set the context for the study, the current state of the art in a few areas 

has to be reviewed. Given the importance of soil moisture in hydrological 

modeling, a discussion of soil moisture versus soil water will follow, which will 

be important for the study in order to derive the corresponding variables for 

downscaling. Secondly, the current state of the art in remotely sensed soil 

moisture retrieval will be presented. An important part is dedicated to the 
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fundamentals on microwave remote sensing to delineate limitations of this 

technique. Also the reference macro-scale soil water index will be discussed for 

understanding the methods for its retrieval and the evaluation of its 

boundaries. Thirdly, an introduction to hydrological models will be given. 

Here, different model types with a particular view on the soil water 

representation will be presented and an argument will be presented for using a 

particular model type in the study. The fourth point in this section deals with 

the existing downscaling and up scaling procedures. Based on this literature 

review, the appropriate downscaling method will be determined.  

2.1  Soil Moisture in the Hydrological Cycle 

The Earth’s water is always in movement as pictured in the global water 

cycle shown in Figure 2-1. Only 0.001 % of the world total water reserves which 

accounts for 0.05 % of the fresh water reserves (DINGMAN, 2002:P.55) are stored 

as soil moisture. Yet, soil moisture still plays an important role in distributing 

the water. 

Figure 2-1: The Global Water Cycle (Source: ENTIN, HOUSER ET AL.(2007:P.9)) 

Especially, in the following fields and for the mentioned processes, soil 

moisture is an important factor:  
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1) in atmospheric circulation (WALKER AND HOUSER, 2004), as well as 

near-surface atmospheric dynamics, soil moisture influences energy and mass 

transfer across the landscape boundary (MOHANTY, SKAGGS ET AL., 2000; ARORA 

AND BOER, 2003; FINDELL AND ELTAHIR, 2003);  

2) in water resources management, for instance in flood protection and 

drought monitoring (DE MICHELE AND SALVADORI, 2002; VERDIN AND KLAVER, 

2002; WU, GELLER ET AL., 2002);  

3) in agricultural management, by defining appropriate irrigation 

amounts and intervals (HANSON, ORLOFF ET AL., 2000);  

4) in soil science it is a key parameter in determining potential land slides 

and erosion (E.G. FERNÁNDEZ, VEGA ET AL., 2004); and  

5) in plant biology, soil moisture is the key factor for plant water stress 

(VEIHMEYER AND HENDRICKSON, 1950).  

2.1.1 Definition of Soil Moisture  

In the literature, “soil moisture” is also referred to as “soil water”. Also 

different science communities use the same word but with different meaning. 

For instance, soil science refers to soil moisture as the water content between 

field capacity and wilting point, whereas in remote sensing it is often the entire 

water in the soil column that is defined by the term soil moisture. In the 

following section the soil moisture term is evaluated according to soil science to 

obtain a better distinction between remotely sensed soil moisture and soil 

moisture as defined by soil science. 

The soil medium can be described as a “three- phase system” (HILLEL, 

1980:P.6) consisting of liquid, gaseous and solid phases. The solid phase is 

represented by the soil matter (the sum of the mineral matter and the organic 

matter) and amounts about to 50 % of the entire soil column (HILLEL, 1980:P.6). 

The other 50 %, the pore space, is subdivided into the gaseous- (the soil 

atmosphere) and the liquid phase (the soil water)-with variable proportions. 

The term soil water defines the total amount of water within the soil column 

(SCHEFFER AND SCHACHTSCHABEL, 2002). The soil water can be divided in its 

components shown in Figure 2-2. 
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Figure 2-2: Soil Water and its Components (modified after Donahue, Miller et al (1983:p.171)) 

As shown in the figure above the soil water can be held due to different 

forces (FOTH, 1990:P.55FF).  

The plant available water is held between a pressure range of pF = 1.8 

and pF = 4.2 (SCHEFFER AND SCHACHTSCHABEL, 2002). This water runs in the 

capillary of the soil and is held due to the forces of cohesion. However, the 

forces of tension increase with decreasing pore diameter (SCHEFFER AND 

SCHACHTSCHABEL, 2002:P.210), so that at permanent wilting point this water 

moves so little that plants are not able to absorb that water. This wilting point 

marks the “largest water content of a soil at which indicator plants, growing in 

this soil, wilt and fail to recover when placed in a humid chamber” (TOLK, 

2003:P.927). The wilting point corresponds to a water potential at pF = 4.2 

(SCHEFFER AND SCHACHTSCHABEL, 2002). The soil water below wilting point, is 

retained by the strongest force, the molecular force of elements, is called the 

hydroscopic water and is immobile and therefore unavailable to plants. This 

water can only be removed through heating (FOTH, 1990:P.55). 

The upper boundary of the capillary water reservoir is described by the 

field capacity. The water at field capacity is held against pF = 1.8 and this point 

describes the “greatest amount of water that a soil can hold, or store under 

conditions of complete wetting followed by free drainage” (DONAHUE, MILLER 

ET AL., 1983:P.170). Water held at pressure potential higher then pF=1.8 drains 

only by the forces of gravity. It is therefore free within the soil pores. This water 
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is called the gravitational water and stays up to one or two days in the soil. 

According to SCHEFFER AND SCHACHTSCHABEL (2002:P.209) soil moisture defines 

the water kept against the forces of gravity, which corresponds to the sum of 

hydroscopic and capillary water.  

Based on the argumentation above, in the following section the term soil 

water content will refer to remotely sensed data and the term soil moisture to 

the soil science based method. 

2.1.2 Calculation of Soil Moisture  

Soil moisture can be expressed as the ratio of water to soil by mass or 

volume (HILLEL, 1980:P.58) and is calculated using the following equations: 

1. Gravimetric water content  

  
w

s

M
w

M
=  Equation 2-1 

  

The gravimetric soil moisture content (w) is calculated using the mass of 

a soil package under wet conditions (Mw) in relation to the dry soil mass (Ms). 

  

2. Volumetric soil moisture content  

  

t

w

V

V
=θ  Equation 2-2 

  

The volumetric soil moisture content (θ) defines the depth of water per 

unit depth of soil. It is calculated using the water volume (Vw) in relation to the 

total soil volume (Vt).  

These two equations are related to each other through the bulk density ρ. 

The bulk density defines the ratio of the dried soil mass to the total soil volume. 

The following equation allows the transformation from gravimetric water (w) to 

volumetric water content (θ) (HILLEL, 1980:P.59). 

  

*
ρ

θ
ρ

= soil

water

w  Equation 2-3 
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2.2 Estimation of the Soil Water Content and its Monitoring  

The water content of the soil column can be determined using three 

different approaches: 1) in-situ measurements 2) remote sensing techniques and 

3) application of a land surface model. In-situ measurements, such as 

gravimetric (HILLEL, 1980), nuclear (OBHODJAS, SUDAC ET AL., 2004), 

electromagnetic (SCHEFFER AND SCHACHTSCHABEL, 2002) or the tensiometer 

(DONAHUE, MILLER ET AL., 1983:P.180) techniques estimate the soil moisture 

content at a point scale. Instrumentation of large areas using in-situ 

measurements, however, is not possible due to high instrumentation costs and 

the need for good infrastructure. The determination of soil water content over 

large areas can only be achieved using remote sensing technique and/or land 

surface modeling. In the following sections both concepts will be explained and 

advantages and disadvantages will be specified. 

2.2.1 Estimation of the Soil Water Content using Remote Sensing 

Techniques 

In 1974, ULABY (1974: AS CITED IN DOBSON AND ULABY, 1998) published the 

results of his investigation on using microwave instruments for the retrieval of 

soil water. Since then the remote sensing community has been working on 

measuring soil water from space using different techniques (DOBSON AND 

ULABY, 1998:P. 407), with microwave applications yielding the most promising 

results. This is not only because the microwave signal is able to penetrate into 

the soil but also due to the fact that the signal does not suffer from cloud cover 

interference and is independent from solar illumination. It is therefore possible 

to take measurements at any time (LEWIS, 1998:P.616). The acquisition of soil 

water information using the microwave sensing technique is possible because 

the backscattering coefficient of the emitted radar signal depends, in addition to 

surface roughness and vegetation, on the moisture content (ULABY, DOBSON ET 

AL., 1981; WANG, QI ET AL., 2004) of the penetrated surface body. Based on these 

results, research has been carried out to identify how parameters such as the 

wavelength of the radar signal or incidence angle are affecting the 

measurement of the soil water content from space and to determine the most 

suitable sensor configuration for this task (DOBSON AND ULABY, 1998). The first 

part of this section introduces the possible microwave techniques to retrieve soil 
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water information and the second part will provide the fundamentals of active 

microwave remote sensing.  

2.2.1.1 Microwave Techniques for Soil Water Retrieval  

Microwave remote sensing encompasses both active and passive means 

to measure soil water information from space. Whereas passive microwave 

instruments measure the naturally emitted radiation of objects on earth, active 

microwave instruments send their own microwave radiation and measure a 

reflected signal. In the following section both techniques will be introduced and 

their advantages and disadvantages discussed.  

Passive Techniques 

Passive microwave instruments, such as the Special Sensor Microwave 

Imager (SSM/I), measure the emitted soil brightness temperature which 

depends on the soil water content (NJOKU AND ENTEKHABI, 1996:P.102). The 

emission of soil corresponds to a brightness variation of 90 Kelvin (NJOKU AND 

ENTEKHABI, 1996:P.102). However, the brightness temperature is also affected by 

soil surface roughness, vegetation cover, surface and surface heterogeneity, 

which are limiting factors for accurate soil water retrieval (HENDERSON AND 

LEWIS, 1998).  

JACKSON, LE VINE ET AL. (1999) examined the data from the passive L-

Band electronically scanned thinned array radiometer (ESTAR) over the area of 

the Southern Great Plain Experiment (SGP97) for one month. With their applied 

retrieval algorithm they have been able to measure soil moisture values with an 

error level of 3 %. BURKE AND SIMMONDS (2001) coupled a physically based soil 

water and energy balance model with a microwave emission model and 

retrieved soil moisture with an error of 3-4 %.  

In comparison to active instruments, passive microwaves are less 

affected by soil roughness and vegetation COVER (ENGMAN AND CHAUHAN, 

1995:P.194; NJOKU AND ENTEKHABI, 1996). On the other hand, measurements of 

passive instruments were not available operationally until 2003 with the launch 

of the Advance Microwave Scanning Radiometer (AMSR-E) (MORAN, MCELROY 

ET AL., 2006), which is limited the coverage and temporal resolution. Therefore, 

in recent years, more effort has been taken to retrieve soil water information 

from measurements taken by active microwave instruments.  
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Active Techniques 

The most important active microwave instruments in the remote sensing 

domain are the Synthetic Aperture Radar (SAR), altimeter and the 

scatterometer (CRACKNELL AND HAYES, 2007:P.129). Whereas the altimeter is 

used for measuring and surveying the shape of the Earth, SAR as well the 

scatterometer are promising techniques in order to retrieve soil water content 

from space. The application of SAR-satellite systems offers the possibility to 

achieve soil moisture in a high spatial resolution of 10 m to 100 m (MORAN, 

MCELROY ET AL., 2006:P.92), which was intensively researched in various studies 

such as ZRIBI AND DECHAMBRE (2002) , MORAN, HYMER ET AL. (2002) and LE 

HEGARAT-MASCLE, ZRIBI ET AL (2002). 

MORAN, HYMER ET AL. (2002), for instance, examined the possibility of 

ERS-SAR data for agricultural purposes at a test site in Arizona, USA. The 

authors found that the backscatter coefficient was sensitive to tillage, vegetation 

density as well as surface soil moisture. Using additional optical Landsat-

Thematic Mapper (TM) data they were able to discriminate between vegetation 

and soil information in the backscattered signal.  

Despite the promising results, the SAR-techniques for soil water retrieval 

still face unsolved problems, which is why, as of today no operational 

algorithm exists (MORAN, MCELROY ET AL., 2006). An evaluation of the 

capability of SAR-instruments for such purposes has been conducted by 

SATALINO, MATTIA ET AL. (2002) who examined SAR-data over bare soil fields. 

One major source of error in the soil water retrieval was found to lie in the SAR-

configuration, which was also confirmed by (KERR, 2007). The SAR-design leads 

to speckle effects which make it difficult to determine soil water content. Also, 

SATALINO, MATTIA ET AL. (2002) found that variations in surface roughness are 

influencing the backscatter coefficient and therefore the soil water detection. 

They suggest retrieving not more than two soil moisture classes (dry and wet) 

by an application of ERS-SAR. LE HEGARAT- MASCLE, ZRIBI ET AL. (2002) tested 

their method over three different test sites for the development of an 

operational method to use SAR-data. They found changes in surface roughness 

due to agricultural activity, which resulted in a high soil water bias. Therefore, 

they suggest using retrieved soil water values as relative but not as absolute 

values. Another drawback of SAR-data is because of the trade off between high 

spatial resolution and high temporal resolution. Due to the high spatial 
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resolution, SAR-systems lag high temporal resolution (KERR, 2007) of 

approximately 30 days. This is a major disadvantage of soil water datasets 

based on SAR-data for water management purposes.  

An instrument, which has a different technical design but is able to 

retrieve soil water, is the scatterometer (WAGNER, 1998; BLUMBERG, FREILIKHER 

ET AL., 2000). This instrument was originally built to measure wind speed and 

wind direction over oceans. However, its feasibility for soil water retrieval is 

questioned due to a number of influences on the signal, which will be 

introduced in the following section.  

2.2.1.2 Fundamentals of Active Microwave Remote Sensing 

The received microwave signal is influenced by various parameters, such 

as the dielectric constant of the reflecting material, vegetation structure and 

moisture content of the illuminated area. This section will give an overview of 

factors influencing the backscattered signal and the difficulty of retrieving soil 

water information from that signal.  

The Dielectric Constant Dependence on Soil Water Content 

A major factor influencing the backscatter signal is the dielectric constant 

(ULABY, DOBSON ET AL., 1981:P.92). The dielectric constant describes the 

electrical characteristics of different materials (KRAUS AND SCHNEIDER, 

1988:P.174). Therefore it is necessary to understand the dielectric behaviors of 

soil materials.  

This dielectric behavior of soils is very complex (DOBSON, ULABY ET AL., 

1985:P.35) because soil consists of the three components mentioned before: soil 

particles, water and air (SCHEFFER AND SCHACHTSCHABEL, 2002). The dielectric 

constant therefore is influenced by “soil bulk density (compaction), soil 

composition (particle size distribution and mineralogy), the volume fraction of 

soil water components, the salinity of the soil solution, and temperature” 

(DOBSON, ULABY ET AL., 1985:P.35). ULABY, DUBOIS ET AL. (1996) found that the 

dependency of the dielectric constant on moisture actually increases with 

increasing moisture content. They found that for dry soils it is predominately 

the soil type, especially the bulk density that determines the dielectric constant. 

When the moisture content increases, the response to soil type becomes weaker 

than the response to moisture content. The observed differences of the dielectric 
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constant between dry and wet soil conditions correspond to a backscattering 

range of about six to eight decibel (dB) (DOBSON AND ULABY, 1998:P.416). 

Additionally, it was shown that the dielectric constant is influenced by 

temperature (DOBSON AND ULABY, 1998:P.412). In the narrow temperature range 

between 0° C and the soil starting to freeze, the dielectric constant shows a 

stronger relationship to temperature than to soil moisture.  

Penetration Depth 

Microwave signals are able to penetrate through vegetation and the 

upper soil layer (CAMPBELL, 2007:P.213). The penetration depth describes “the 

thickness of the top surface layer of the soil medium governing the backscatter 

observed by a radar system” (ULABY, DUBOIS ET AL., 1996:P.71). This depth, 

however, depends on surface roughness, incidence angle, moisture content as 

well as wavelength (ULABY, DUBOIS ET AL., 1996; CAMPBELL, 2007). An increasing 

moisture content decreases the penetration depth tremendously (ULABY, DUBOIS 

ET AL., 1996). An example is given in ULABY, DUBOIS ET AL. (1996:P.69), who 

investigated the L-Band penetration depth. With an increase of soil moisture 

content from 1 to 40 % the signal depth dampens from 1 m down to 0.06 m.  

The penetration depth increases additionally with a decrease in 

frequency, as stated in WEGMÜLLER, MÄTZLER ET AL. (1989). For C-Band, the 

estimated penetration depth ranges between 0.5-2 cm (SCHMUGGE, 1983: AS 

CITED IN WAGNER, LEMOINE ET AL., 1999B), whereas in WAGNER, SCIPAL ET AL. 

(2003) a penetration depth for the C-Band scatterometer of 5 cm is found. The L-

Band signal can penetrate about 4 to 5 cm (KERR, 2007) into the soil.  

The Backscatter Coefficient from Bare Soil Surfaces  

The intensity of the backscattering signal is influenced by surface 

roughness, vegetation structure and density as well as technical parameters 

such as incidence angle and frequency (DOBSON AND ULABY, 1998). The most 

important parameter for describing the backscattering from bare soil surfaces is 

the surface roughness. The surface roughness determines the direction in which 

the transmitted radar signal will be reflected. In the case of a slight roughness, 

one part of the signal will be reflected back to the antenna and the other part 

will be reflected away from it (WAGNER, 1998:P.23). With an increasing surface 
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roughness the diffuse scattered portion of the signal increases which also 

increases the portion scattered back to the sensor (WAGNER, 1998:P.23).  

Several models have been developed in order to describe the surface 

roughness. Every model is based on various assumptions and, therefore can 

only be applied under certain conditions. For instance, the small perturbation 

method shows good model results for horizontal-horizontal (HH)–polarized 

signals with an incidence angle up to 60° (DOBSON AND ULABY, 1998:P.418) but 

overestimates when applied to vertical-vertical (VV) polarization. The best 

model results, according to DOBSON AND ULABY (1998), have been achieved with 

the semi-empirical model.  

The Backscatter Coefficient from Vegetated Surfaces  

In the case of vegetated surfaces the backscattering signal is influenced 

by the backscattering contribution of bare soil, the direct backscattering of the 

vegetated surfaces, the two–way attenuation of the vegetation, and the mixed 

backscattering which includes vegetation elements as well as ground surface 

elements (DOBSON AND ULABY, 1998:P.426). Additionally, the structure of 

vegetation, in particular of branches and leaves controls the intensity of the 

backscattered signal. Also, similar to the soil backscattering the backscatter 

coefficient increases with an increasing vegetation water content (HENDERSON 

AND LEWIS, 1998; NJOKU AND CHAN, 2005). 

In terms of soil moisture retrieval, the interactions between the signal 

and the vegetation are a problem. Therefore, research has been carried out to 

determine the extent to which the microwave signal is influenced by vegetation 

effects (SCHMULLIUS AND FURRER (1992), LEE, BURKE ET AL. (2002) AND NJOKU 

AND CHAN (2005)). The possibility of microwave signals transmitting through 

vegetation increases with frequency, incidence angle and less biomass density 

(ENGMAN AND CHAUHAN, 1995:P.194; DOBSON AND ULABY, 1998:P.426). Studies 

have revealed that the L-Band is the most unaffected wavelength in terms of its 

vegetation influence for soil moisture retrieval (KERR, 2007). The retrieval of soil 

moisture using C-Band is possible but the vegetation effects should not be 

ignored (TACONET, VIDAL-MADJAR ET AL., 1996; KERR, 2007). However, using L-

Band for soil moisture retrieval at a similar spatial resolution as C-Band 

requires huge technical effort (KERR, 2007).  
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Studies, especially of measurements of C-Band scatterometers have been 

conducted on how to reduce the vegetation influence within the C-Band and to 

select the soil water information within the mixed signal. Its feasibility for soil 

water retrieval depends on the scatterometers technical design. Scatterometers 

use different incidence angles and, as stated in WOODHOUSE AND HOEKMAN 

(2000), the vegetation influence is highest at larger angles. WOODHOUSE AND 

HOEKMAN (2000) have chosen four test sites in Spain (Ciudad Real, Murcia, 

Zaragoza and San Sebastian) to retrieve soil water information using data from 

the scatterometer onboard of ERS-1 captured between 1992 and 1995. However, 

the research community has been and is skeptical of the capability of the 

scatterometer to measure soil water (KERR, 2007). FRISON, MOUGIN ET AL. (2000) 

compared the ERS-windscatterometer and Special Sensor Microwave/Imager 

(SSM/I) data for vegetation monitoring over a Sahelian region in Mali. The 

authors examined the backscatter behavior at an incidence angle of 45° and 

found a relationship between the backscatter signal and the herbaceous 

biomass. In the previous study, FRISON AND MOUGIN (1996) found agreements 

between the wind-scatterometer data and vegetation types, especially in 

regions with dense vegetation, such as the tropics. Also, SCHMULLIUS AND 

FURRER (1992) analyzed the three C-Band polarizations (HH, HV and VV) for 

their feasibility of soil water retrieval at an incidence angle of 23˚. They found a 

high influence of vegetation on the C-Band but there was also a dependence on 

the polarization. The result was that HH-polarization is more significant for soil 

water changes, whereas the HV- and VV- polarizations react more to the 

surface wetness of the vegetation cover. 

Despite the skepticism and disadvantages, the first global soil water 

product has been derived from the ERS-scatterometer (SCIPAL, 2002). The 

retrieval of soil water from the scatterometer will be explained in the following 

section.  

2.2.1.3 The ERS Macro-Scale Soil Water Estimates 

This section will provide an overview on the investigated macro-scale 

soil water product derived from the ERS-scatterometer. The ERS-scatterometer 

was onboard of the ERS-1 and 2 satellites, both having the exact same technical 

design. The ERS-1 satellite was launched in 1991 and was followed by the 
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launch of ERS-2 in 1995. As of today, ERS-2 is still in operation (EUROPEAN 

SPACE AGENCY, 2008). 

The ERS-scatterometer features three antennas which are looking in 

different directions: one antenna faces forward, one antenna backwards and the 

third antenna looks vertical downwards (WOODHOUSE AND HOEKMAN, 2000). 

The incidence angle of every antenna is variable. The incidence angle ranges 

from 18° to 47° for the downward looking antenna, and from 25° to 59° for the 

backwards and forwards looking antennae (WAGNER, LEMOINE ET AL., 

1999A:P.938) The ERS-windscatterometer works at C-Band Frequency (5.3 GHz) 

with a vertical (VV) polarization. The beam of each of the antennas scans a 

500 km strip on the Earth’s surface crossways to the flight track. The temporal 

resolution of the microwave instrument is three to four days with a spatial 

resolution of approximately 50 km (FRISON, MOUGIN ET AL., 2000:P.1794).  

Revealing the Vegetation Cover Effects from the Scatterometer Data  

As discussed in Section 2.2.1.2, the surface backscattering is very complex 

and one of the most influential parameters is vegetation cover. Therefore, the 

vegetation has to be extracted in order to extract soil moisture from the 

backscattering signal.  

As shown in ULABY, BATLIVALA ET AL. (1978), the intensity of the 

vegetation influence increases with the incidence angle due to an increasing 

volume scattering of the vegetation cover. However, the vegetation 

contribution to the backscattered signal stays similar over larger ranges of 

incidence angles (WAGNER, LEMOINE ET AL., 1999A:P.940).  

In order to detect the vegetation influence on the ERS-scatterometer data 

WAGNER, LEMOINE ET AL.(1999A) analyzed the backscattered signal with 

Normalized Difference Vegetation Index (NDVI) scenes from Advanced Very 

High Resolution Radiometer (AVHRR) images over the Iberian Peninsula. One 

of their findings was that the backscattering coefficient showed a higher 

temporal variability than the NDVI, whereas the NDVI has been seen as a 

greenness indicator rather than a wetness parameter for vegetation canopy 

(WAGNER, LEMOINE ET AL., 1999A:P.940). The authors followed the concept of 

finding an incidence angle at which the vegetation contribution to the 

backscatter signal is mainly constant and backscatter changes are affected by 

changes of surface soil water. The authors succeed and found the lowest 
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vegetation influence under wet soil conditions at an incidence angle of 40° and 

for dry soil conditions at an incidence angle of 25° (WAGNER, LEMOINE ET AL., 

1999A:P.941-942).  

These two incidence angles were later used for a determination of a 

seasonal vegetation signal, which then was eliminated from the overall 

backscattered signal. For dry soil moisture conditions, the vegetated portion on 

the backscattered signal was determined to range from 1.5 to 2.5 dB depending 

on the status of vegetation growth (WAGNER, 1998:P.53). For wet soil moisture 

conditions the vegetation influence was very low. Through the determination of 

the relationship of the backscatter coefficient between different incidence 

angles, the backscatter coefficient at an incidence angle 40° is calculated. In their 

analyses WAGNER, LEMOINE ET AL. (1999A) also revealed that temporal changes 

in the backscatter signal at an average incidence angle of 40° are caused by the 

moisture status of the surface layer rather than by vegetation.  

The Retrieval of the Surface Soil Water Content  

The determination of the surface soil water content (ms) is based on a change 

detection approach (WAGNER, 1998; SCIPAL, WAGNER ET AL., 2002). The 

developed algorithm (WAGNER, LEMOINE ET AL., 1999A; WAGNER, LEMOINE ET 

AL., 1999B; WAGNER, NOLL ET AL., 1999) relates the actual measured value σ0 

(40,t) to the lowest 0 (40, )dry tσ  and highest values 0 (40, )
wet

tσ  of the respective time 

series. The soil water content ms is then determined according to the following 

equation (WAGNER, LEMOINE ET AL., 1999B:P.195) 
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0 0(40, ) (40, )

t t
dry

m
s

t t
wet dry

σ σ

σ σ

−
=

−
 Equation 2-4 

  

This equation can only be applied under the condition of a non frozen 

and non snow covered soil. The achieved surface water values (ms) represent a 

relative topsoil soil water value (<5 cm) (WAGNER, SCIPAL ET AL., 2003) of a bare 

soil or only sparse covered part of a pixel such as agricultural land or grassland. 

The two backscatter parameters, 0 (40, )dry tσ  and 0 (40, )
wet

tσ  are characterizing dry 

and wet soil water conditions. These two boundary values are assumed to 

characterize wilting point ( 0 (40, )dry tσ ) and field capacity ( 0 (40, )
wet

tσ ). This 



RESEARCH REVIEW 

 19

assumption can be made because of the processed time period of 1992 to 2000, 

in which it is most likely that measurements under dry and wet soil water 

conditions were taken.  

This algorithm can also not be applied in desert and wetland areas. In 

order to solve the problem, a specific correction method has been applied for 

arid regions but not for wetlands (SCIPAL, 2002). In wetland areas the derived 

soil water content is constantly underestimated.  

The Calculation of the Root Zone Soil Water Content  

The scatterometer can only measure the surface soil water content. To 

retrieve the profile soil water content, a simple two layer soil infiltration model 

has been used (WAGNER, LEMOINE ET AL., 1999B:P.196). This model divides the 

soil profile into the top layer, representing the layer scanned by the satellite and 

the bottom layer, the “reservoir” (WAGNER, LEMOINE ET AL., 1999B:P.196). The 

authors assume that the reservoir is only influenced by the water flow of the 

top layer and shows no interactions with the surrounding environment 

(WAGNER, 1998). Processes such as transpiration, groundwater recharge, lateral 

flow as well as upward fluxes are neglected. The developed model describes 

the soil water content of the bottom layer by the past events in the upper layer 

whereas the most recent events have a higher priority. The consequential trend 

indicator ERS-Soil Water Index (SWIERS) is calculated as follows (WAGNER, 

LEMOINE ET AL., 1999B:P.197):  

  

( )

( )            

L

ERS

L

t t
i

T
m t e

s i
iSWI t for t t

it t
i

T
e

i

−
−

∑

= ≤
−

−

∑

 Equation 2-5 

ms  = saturation of the surface layer    

TL = characteristic time length  

t   = time  

  

The crucial parameter in this equation is the determination of the 

characteristic time length TL, which is connected to the hydraulic conductivity 
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of the soil. According to WAGNER (1998:P.72) the parameter TL increases with an 

increasing length of the reservoir, and reduces with a decreasing soil hydraulic 

conductivity. The characteristic time length has been determined according to 

different climatic conditions. In tropical climates TL amounts ten days, whereas 

in Mediterranean and humid continental climates TL equals twenty days 

(WAGNER, 1998).  

The calculation of the SWIERS is restricted to the availability of an 

adequate amount of surface soil water measurements (ms). For the case that TL 

equals twenty, the necessary amount therefore, is at least one measurement of 

the surface soil water in the time frame of twenty days and at least three 

measurements within a timeframe of 100 days (WAGNER, 1998:P.72). 

In conclusion, the calculation of the SWIERS is a low pass filter which 

reduces the influence of higher frequency (RICHARDS AND XIUPING, 2006:P. 115-

118). Therefore, the image information or in this case the root zone soil water 

content is smoother than the surface soil water time series.  

Validation of the Macro-Scale Soil Water Estimates 

The validation of scatterometer derived soil moisture was carried out 

through several studies at local and large scale. At the local scale, SCIPAL (2002) 

compared over 45.000 soil moisture measurements from 372 stations worldwide 

were compared to the remotely sensed datasets. The results showed an average 

error range of 5-6 vol. % (SCIPAL, 2002:P.114). In a more detailed analysis the 

remotely sensed data were evaluated with soil moisture field measurements 

from the REMEDHUS network (CEBALLOS, MARTÍNEZ-FERNÁNDEZ ET AL., 2002; 

CEBALLOS, SCIPAL ET AL., 2005). All stations of the REMEDHUS network are 

situated within one scatterometer pixel. For comparison all in-situ 

measurements were averaged and afterwards a regression analysis was carried 

out. The coefficient of determination amounted to 0.74 with a mean square error 

of 2.2 vol. % (CEBALLOS, SCIPAL ET AL., 2005). The validation at global scale was 

accomplished by WAGNER, SCIPAL ET AL. (2003). The remotely sensed data was 

compared to precipitation data and global modeled soil moisture. The result 

showed a reasonable agreement between the two datasets for tropical and 

temperate climates whereas less satisfactory results were observed over steppe 

and desert climates.  
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FONTAINE, LOUVET ET AL. (2007) applied the SWIERS to derive fluctuations 

in rainfall, soil moisture and heat fluxes in West Africa. The study showed that 

the pattern in annual, as well as inter seasonal, cycles in soil water content 

could be explained by the pattern in rainfall.  

The results of the mentioned studies showed that the SWIERS could 

provide interesting information on the root zone soil water content that was not 

available previously. It could, therefore, be a valuable tool for hydrological 

modeling.  

2.2.2 Soil Moisture Generation in Land Surface Modeling  

Land surface models help to understand and describe the natural system 

processes. The models also help to study interactions between components of 

the hydrological cycle. Since 1966, when the first watershed model, the Stanford 

Watershed Model, was developed by Crawford and Linsley (SINGH, 1995) the 

number of hydrological models has been increased. Land surface models have 

been developed for different purposes, input data, and scales. This section 

analyses 1) the current models available and 2) evaluates the available 

approaches in order to model soil moisture generation. 

2.2.2.1 Classification of Models  

One requirement of the study is to develop a downscaling scheme taking 

all landscape parameters into account. Therefore, the hydrological model used 

has to simulate soil moisture using these landscape characteristics. The 

available model types will be introduced in the following section and evaluated 

according to the purpose of the study in order to select the appropriate model.  

According to SINGH (1995:P.6) hydrological models can be distinguished 

according to their 1) process description, 2) their time and space scale and 3) 

their representation of spatial variability.  

Firstly, the two classic categories of hydrological models are 

deterministic and stochastic. Deterministic models can be further distinguished 

depending on whether the description is empirical, conceptual or more 

physically based (REFSGAARD, 1996:P.28): Empirical models are based on a 

mathematical description of the relationship between input and output 

(REFSGAARD, 1996:P.28). Conceptual models use semi-empirically equations 

based on the underlying physical processes (REFSGAARD, 1996:P.29). These 
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models are characterized by two points: first, they include feedbacks between 

the model components and second, this model type includes a threshold which 

activates or inactivates model components (DOOGE AND O' KANE, 2003:P.2). The 

last group, physically based models, describe hydrological processes using 

“governing continuum (partial differential) equations” (REFSGAARD, 1996:P.30). 

Stochastic models, however, are based on long term time series analysis for 

which the relationship between input and output is determined (REFSGAARD, 

1996:P.30). Classical statistical techniques for a determination of that 

relationship can be the Monte Carlo Method (REFSGAARD, 1996:P.31) or 

autoregressive moving average (YEVJEVIEH, 1987). 

Secondly, models can be distinguished according to the represented 

spatial scale. There are three scales according to SINGH (1995:P.9): small 

(>100 km2), medium-sized (100 to 1000 km2) and large watershed (>1000 km2) 

models. 

Thirdly, hydrological models can be classified according to their 

representation of spatial variability. A distinction can be made between the 

lumped and distributed modeling approach. Lumped models do not account 

for spatial variations, the catchment is considered to be a single model entity 

and therefore only a single model parameter set is applied representing the 

entire catchment (BEVEN, 2001B:P.18). The processes are mostly described using 

simplified hydraulic laws or are based on empirical-algebraic equations (SINGH, 

1995:P.6). The tank model (SUGAWARA, 1995) and the Stanford model 

(CRAWFORD  AND LINSLEY, 1966: AS CITED IN REFSGAARD, 1996) are examples of 

the lumped modeling approaches. The distributed modeling approach, 

however, accounts for spatial variability in the process description, input data 

and watershed characteristics (SINGH, 1995:P.8). Distributed models make 

hydrological predictions “by discretizing the catchment into a large number of 

elements or grid squares and solving the equations for the state variable 

associating with every element grid square” (BEVEN, 2001B:P.18). In reality, 

distributed models still often follow the lumped modeling concept but on scale 

of the model entities (BEVEN, 2001B). Examples for distributed models are 

Precipitation-Runoff–Modelling System (PRMS) (LEAVESLEY, LICHTY ET AL., 

1983), J2000 (KRAUSE, 2001) and TOPMODEL (BEVEN AND KIRKBY, 1979). 

Based on this summary of models, the distributed process oriented 

models would be more suitable to account for a spatially explicit representation 
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of natural processes and landscape characterization and should therefore be 

applied in the present study.  

2.2.2.2 Determination of Soil Moisture Using Land Surface Modeling 

As part of the hydrologic cycle, hydrological models take care of soil 

moisture accounting. However, hydrological models are developed to analyze a 

specific problem, which is reflected in its model structure (SINGH, 1995). In the 

following section the four existing concepts to describe soil moisture generation 

will be explained and later evaluated for their applicability in the study.  

Soil Storage as Single Storage 

The single storage, known as the single bucket method, is the simplest 

approach for modeling soil moisture generation (IRANNEJAD AND SHAO, 

2002:P.179). According to IRANNEJAD AND SHAO (2002:179) the soil moisture 

storage in the single bucket is defined by the upper and lower boundary. The 

upper boundary, saturation, is set to field capacity and the lower boundary is 

the wilting point. Internal flows within the bucket are neglected.  

MANABE (1969) introduced this approach to atmospheric science by 

integrating surface hydrology into a general circulation model (GCM). He 

introduced a single soil layer with 1 m depth in which vegetation roots can be 

included, for representing interactions between land surface and soil. Instead of 

using the field capacity as an upper boundary, he used the fixed value of 15 cm 

water in the soil column for generating runoff. Another example of a bucket 

model is given in GUSWA, CELIA ET AL. (2002). The model uses a volume balance 

equation over the plant root zone. In this example the bucket loses water 

through evapotranspiration and leakage as a function of the soil saturation.  

The simple bucket soil approach is often applied in large scale models, 

such as the Water Balance Model (WBM) by VÖRÖSMATRY, MOORE ET AL. (1989).  

The Force-Storage Model (Based on Irannejad and Shao, 2002: Section 5.3.2) 

The force-storage model improves upon of the single bucket model by 

implementing a thin top-layer. This approach to model soil water was 

introduced by DEARDORFF (1977: AS CITED IN IRANNEJAD AND SHAO, 2002). 

According to IRANNEJAD AND SHAO (2002) the top layer is driven by the forces of 

the boundary layer between the atmosphere and land surface. Upward fluxes 
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from the deeper soil layer to the surface layer are taken into account through 

moisture diffusion from the lower soil layer (IRANNEJAD AND SHAO, 2002:181-

182). DEARDORFF (1977: AS CITED IN IRANNEJAD AND SHAO, 2002) also introduced 

a vegetation layer on top of the soil layers in order to account for interception 

and evaporation for the vegetated surface.  

Vertical Distinction of the Soil Column into Two or More Soil Layers 

The application of a vertically layered distinction of the soil column is 

one of the most common concepts in hydrology. The soil column can be divided 

into two or more layers. There are two different concepts in determining water 

flow between the different soil layers. The first concept handles the different 

soil layers as buckets in which the soil water cascades into the lower zones 

when field capacity in the upper zones is reached (IRANNEJAD AND SHAO, 

2002:P.180). Modifications of this approach can be found in the PRMS-Model 

(LEAVESLEY, LICHTY ET AL., 1983).  

The second concept, a more advanced way to model soil moisture 

transfer between the soil layers, is the application of numerical solutions of the 

Richards Equation (GUSWA, CELIA ET AL., 2002; IRANNEJAD AND SHAO, 2002). The 

Richards Equation describes the vertical water movement in unsaturated soil in 

a three dimensional system (DINGMAN, 2002:P.249). It is a non-linear differential 

equation with specific boundaries and conditions (SUMMER, 2000:P.A-98). The 

equation can only be solved under very limited conditions and often no 

solution is found (SUMMER, 2000:P.A-98). Therefore, the equation had to be 

simplified. Attempts have been made by PHILIP (1957; 1969: BOTH AS CITED IN 

DINGMAN, 2002:P. 250-251) and SWARTZENDRUBER (1997: AS CITED IN DINGMAN, 

2002:P. 250-251).  

The advantage of applying the vertical distinction of the soil column is its 

improved simulation of the interactions between atmosphere and land surface 

and therefore a better representation of soil humidity, temperature and 

evapotranspiration (LEAVESLEY, LICHTY ET AL., 1983; GUSWA, CELIA ET AL., 2002; 

IRANNEJAD AND SHAO, 2002). It also allows the drying of the upper soil layer and 

therefore leads to a reduction of evaporation (SNELGROVE, 2002).  
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Distinction of the Soil Layer into the Specific Pore Storages 

The fourth concept divides the soil column into specific pore storages 

(KRAUSE, 2001) to account for different runoff processes (BEVEN AND KIRKBY, 

1979).  

BEVEN AND KIRKBY (1979:P.44-45) analyzed four different ways runoff can 

occur: (1) overland flow due to rainfall rate exceeding the infiltration rate over 

the entire catchment (Horton overland flow) (HORTON, 1933; AS CITIED IN BEVEN 

AND KIRKBY, 1979); (2) the same situation as (1) but only on parts of the 

catchment; (3) overland flow due to soil saturation (saturation overland flow) 

(DUNNE AND BLACK, 1970; AS CITIED IN BEVEN AND KIRKBY, 1979); and (4) 

subsurface flow in saturated and unsaturated soil. BEVEN AND KIRKBY (1979), 

therefore divided the soil column into the interception depression storage, the 

near-surface infiltration storage and the subsurface soil water storage. The 

concept of BEVEN AND KIRKBY (1979) was also applied in the WaSiM-Model by 

SCHULLA AND JASPER (1998). KRAUSE (2001) took this concept and developed the 

soil module for the J2000 model.  

In summary, the different concepts of soil water generation are evaluated 

for their applicability within the project. The first two concepts neglect 

processes such as up- and downward soil water movement within the soil 

column, which are important for soil water generation (SCHEFFER AND 

SCHACHTSCHABEL, 2002). The third concept, the distinction of the soil column 

into vertical layers, would be similar to the two layered model of the SWIERS. 

The fourth concept, however, takes physical soil parameters into consideration 

and represents, therefore, a realistic generation of soil moisture, which is an 

important requirement of the study. Therefore, a model, described in Section 

3.2.1, has been applied that implements the fourth concept. 

2.3 On Temporal and Spatial Scaling of Soil Moisture  

As a “hierarchical organization of the geographical world” (MARCEAU, 

1999:P.2) the scale concept has been widely accepted and analyzed amongst 

scientists of different fields such as remote sensing (QUATTROCHI AND 

GOODCHILD, 1997) and hydrology (BLÖSCHL, 1996). The scale concept was 

created to overcome the problem that results made at one scale cannot be 
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transferred to another scale (BLÖSCHL, 1996). Scale defines „the spatial 

dimensions at which entities, patterns, and processes can be observed and 

characterized“ (MARCEAU, 1999:P.3). BLÖSCHL (1996) went one step further and 

differentiated between the scale of natural processes (BLÖSCHL, 1996:P.73), the 

scale of measurements, which are constrained by the measurement technique 

applied and the modeling scale. The process scales is the only scale describing 

natural events, whereas the measurement and modeling scale are referring to 

artificial scales.  

BLÖSCHL (1996:P.73) defines the measurement scale with a triplet 

consisting of extent, spacing and support. According to the same author, extent 

describes the spatial coverage of the dataset, spacing determines the space 

between two measurement points and the support refers to the “integration 

volume (time) of one sample” (BLÖSCHL, 1996:P.73). This triplet can also be 

applied to the modeling scale (WESTERN AND BLÖSCHL, 1999). 

In order to apply the scale triplet, the different scales have to be defined 

first. The following table describes the scales ranges in hydrology according to 

BECKER (1992) in which the scale definitions after BLÖSCHL (1996) have been 

added.  

Table 2-1: Scale Ranges in hydrology (modified after Becker (1992:p. 19) and Blöschl (1996))  

CHARACTERISTIC  MAIN 

SCALE 

TRANSITION 

SCALE LENGTH AREA 

SCALE ACCORDING 

TO BLÖSCHL (1996) 

Macro- - > 100 km > 104 km² Regional  

 Lower Macro-

scale  

30 to 100 km 103 to 104  km²  

Meso- Upper Meso-

scale 

10 to 30 km 10² to 103 km²  

 - 1 to 10 km 1 to 10² km² Catchment  

 Lower Meso-

scale 

0.1 to 1 km 0.1 to 1 km²  

Micro- Upper Micro-

scale 

30 to 100 m 0,001 to 0,1 km² Hillslope 

 - > 30 m >0,001 km² Local 

 

In order to change scales, information has to be transferred from one 

scale to another (MARCEAU, 1999:P.4). This process can be described by one of 

two scaling methods: up scaling and downscaling. Up scaling describes the 

transition of information from a smaller scale to a higher scale whereas 
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downscaling is defined as disaggregation of spatial information with a change 

from macro-scale or meso-scale to a lower scale (BECKER, 1992). The 

transformation from one scale to another “requires an understanding of the 

complex hierarchical organization of the geographic world where different 

patterns and processes are linked to specific scales of observation, and where 

transitions across scales are based on geographically meaningful rules“ 

(MARCEAU, 1999:P.4). Therefore, the next section focuses on scale dependencies 

of the soil moisture variability. 

2.3.1 Scale Dependent Spatial and Temporal Distribution of Soil Moisture 

Variability  

Soil moisture is a highly variable parameter in space and time 

(FAMIGLIETTI, DEVEREAUX ET AL., 1999; MARTINEZ, HANCOCK ET AL., 2007). The 

determination of soil moisture variability derived from different scales was 

investigated in several studies such as GRAYSON, WESTERN ET AL. (1997), PETERS-

LIDARD, PAN ET AL. (2001) and MERZ AND PLATE (1997). The finding of these 

studies was that soil moisture variability is driven by a number of parameters, 

such as vegetation, soil type, topography and meteorological patterns, where 

the importance of each of these parameters decreases or increases depending on 

scale. 

In general, the greatest knowledge about soil moisture distribution has 

been achieved in laboratory work or through experiments and observation in 

the field. These results provided a general understanding of the governing 

processes in soil moisture distribution at micro-scale. Due to technical 

limitations, knowledge of soil moisture distribution on the meso- or macro-scale 

is restricted. Here, geoinformatics and remote sensing have to be used in order 

to determine soil moisture distribution (VAN OEVELEN, 1998:P.511). 

At the micro-scale, the soil moisture pattern is influenced by topography 

(WESTERN, GRAYSON ET AL., 1999; SVETLICHNYI, PLOTNITSKIY ET AL., 2003). 

SVETLICHNYI, PLOTNITSKIY ET AL. (2003) analyzed with topography parameters 

can be used to describe soil moisture pattern. They found that the slope 

morphometry, which is a combination of aspect, gradient, profile and plan 

slope showed the highest influence on the spatial soil moisture variability. The 

importance of topography was initially indicated by BEVEN AND KIRKBY (1979), 

who introduced the topography index for analyzing soil moisture variability. 
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Other parameters were determined by MOHANTY ET AL. (2004) by analyzing the 

distribution within and between four field sites in the Walnut Creek watershed. 

They found that the soil moisture patterns were influenced by vegetation, in 

particular the portion of the soil covered by vegetation. The corn plants 

analyzed had a higher leaf area index (LAI) than soybeans. This lead to a 

reduction of soil evaporation and therefore to a higher soil moisture under crop 

vegetation (JACOBS, MOHANTY ET AL., 2004:P.440). In the same study, MOHANTY 

ET AL. (2004) determined topography, cropping practice and soil properties (e.g. 

sand content) as additional driving parameters in spatial soil moisture 

distribution. The influence of agricultural practices was also identified by 

FAMIGLIETTI, DEVEREAUX ET AL (1999). In the Tarrawarra catchment, WESTERN, 

GRAYSON ET AL. (1999) indicated a dependency of spatial distribution on the 

initial soil moisture content. Under low soil saturation the soil moisture pattern 

was randomly distributed, whereas under high saturation the soil moisture 

pattern was controlled by topography. 

At the meso-scale, topography remains the main factor in driving the 

spatial pattern but only up to a specific medium scale. WESTERN, GRAYSON ET 

AL. (1999) analyzed the depiction of soil moisture patterns using terrain indices. 

They found that the wetness index of BEVEN AND KIRKBY (1979) only represents 

the soil moisture distribution up to the catchment scale. An application on 

higher scales resulted in unrealistic spatial patterns. Other parameters were 

identified as being the driving factors for soil moisture distribution. In their 

study MARTINEZ, HANCOCK ET AL. (2007) differentiated key driving parameters 

between near-surface soil moisture and root zone soil moisture. They found 

that near-surface soil moisture is primarily influenced by aspect whereas the 

root zone soil moisture is driven by slope gradient, elevation and soil type 

(MARTINEZ, HANCOCK ET AL., 2007:P.14). Additionally, BARDOSSY AND LEHMANN 

(1998) identified vegetation and soil properties as governing factors in the their 

test area of the Weihersbach in Germany. They also studied the influence of the 

initial soil moisture distribution and determined it to be a key parameter. 

According to a study of VAN OEVELEN (1998) geomorphological features can be 

added to this list. Furthermore, studies also indicated a dependence on climatic 

conditions (GRAYSON, WESTERN ET AL., 1997; WESTERN, GRAYSON ET AL., 1999; 

WILSON, WESTERN ET AL., 2005). These authors identified preferred states of soil 

moisture: first, the wet state dominated by topography and second, the dry 
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state governed mainly by soil properties (soil texture) and the local terrain. 

These differences are caused by seasonal changes in the precipitation–

evaporation relationship (GRAYSON, WESTERN ET AL., 1997).  

On the macro-scale, the driving factors change. Results of studies, such 

as BLÖSCHL (1996) showed the influence of atmospheric effects on soil moisture 

variability as a main factor. This finding was confirmed by GÓMEZ-PLAZA, 

ALVAREZ-ROGEL ET AL. (2000:P.1267) who demonstrated a higher soil moisture 

distribution during the wet period than during the dry period.  

It can be concluded, that spatial patterns of soil moisture are scale 

dependent. VINNIKOV, ROBOCK ET AL. (1996) and ENTIN, ROBOCK ET AL. (2000) 

introduced a two-scale concept: on meso-scale the patterns are driven by 

vegetation, soil type, root structure and topography whereas on large scale the 

variability is caused mainly through climatic conditions. Thus, soil moisture 

variation at a scale higher than 500 km is most likely caused by precipitation 

and evapotranspiration. This result was also verified by JACKSON, LE VINE ET AL. 

(1999) who determined rainfall at regional scale as the driving factor. Here, also 

the temporal scale should be analyzed. VINNIKOV, ROBOCK ET AL. (1996) defined 

a temporal scale of three months at macro-scale. The study was extended by 

ENTIN, ROBOCK ET AL. (2000), who analyzed soil moisture time series from the 

available archives for Illinois and Iowa in the United States, as well as data from 

Russia, Mongolia and China. They also distinguished between the upper soil 

layer (10 cm) and the root zone soil layer (1 m depth). The derived time scale for 

the 10 cm layer was less than two months and approximately two months for 

the 1 m layer. However, the results were achieved using soil moisture time 

series from grassland and agricultural sites and a transformation of those 

results to other vegetation types has to be researched (ENTIN, ROBOCK ET AL., 

2000).  

Based on these results, the conclusion can be made, that the spatial 

resolution of scatterometer derived soil water estimates is able to provide soil 

water variability driven by atmospheric effects (SCIPAL, WAGNER ET AL., 2003). 

2.3.2 The Up- and Downscaling Process 

To transfer information, such as soil moisture, from a higher scale to a 

lower resolution or vice versa, up scaling and downscaling procedures have to 

be applied.  
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The process of up scaling consists of two steps. In the first step the 

distribution of information at smaller scale (BLÖSCHL AND SIVAPALAN, 

1995:P.18), meaning the determination of characteristics of heterogeneity (WU 

AND LI, 2006:P.26), is analyzed. Hydrological parameters, such as precipitation 

or evapotranspiration, are often only available for specific points because those 

measurements can only be achieved on point scale. In order to retrieve spatial 

information, these point measurements have to be interpolated (BLÖSCHL AND 

SIVAPALAN, 1995; BIERKENS, FINKE ET AL., 2000; WU AND LI, 2006). The second 

step in up scaling involves the aggregation of the information to the larger scale 

(BLÖSCHL AND SIVAPALAN, 1995; WU AND LI, 2006). 

The reverse procedure, called downscaling, also involves two steps: 

disaggregation and singling out. Disaggregating aims to reconstruct the 

variations at a specific scale under the assumption that the values at the larger 

scale are the average of the values at the smaller scale (BIERKENS, FINKE ET AL., 

2000:P.111) by using auxiliary information (WU AND LI, 2006). To downscale 

information, there are three disaggregation approaches: deterministic, 

conditional stochastic and unconditional stochastic (BIERKENS, FINKE ET AL., 

2000). In the deterministic approach, the average value at the larger scale is 

known and there is only one solution in order to determine the variation at 

smaller scale (BIERKENS, FINKE ET AL., 2000). The conditional stochastic problem 

also assumes that the average value is known but that there are multiple 

functions describing the temporal and spatial distribution on a finer scale 

(BIERKENS, FINKE ET AL., 2000). In the case of the unconditional stochastic 

problem, the average value at the larger scale is not exactly known (BIERKENS, 

FINKE ET AL., 2000). The distribution at finer scale is described through different 

models. In the second step of downscaling, the so called singling out, the 

known pattern are assigned to the smaller scale (BLÖSCHL AND SIVAPALAN, 

1995:P.19) and therefore connects the values between the two interested scales.  

2.3.2.1 Upscaling methods 

The first step in the upscaling procedure mentioned above is distribution 

of information, which is basically an interpolation of information over space 

(BLÖSCHL AND SIVAPALAN, 1995:P.19). Several interpolation techniques have 

been analyzed for various hydrological parameters and scales (VIRDEE AND 

KOTTEGODA, 1984; GOOVAERTS, 2000; LIN AND CHEN, 2004). The traditional 
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problem in hydrological modeling is the point measurement of climatologic 

parameters such as temperature, precipitation and humidity and the need for 

areal information. Common methods to interpolate these point measurements 

are kriging, and inverse distance, as well as spline interpolation 

(WACKERNAGEL, 1995; KITANIDIS, 1997; WEBSTER AND OLIVER, 2001).  

In the second step the information will be aggregated to the higher scale. 

Here, two issues have to be analyzed (BLÖSCHL AND SIVAPALAN, 1995:P.21): First, 

the dominant processes at the respective scales have to be analyzed and second, 

an appropriate aggregation rule has to be chosen to describe adequately the 

distribution pattern at higher scale. 

The study carried out by DE LANNOY, HOUSER ET AL. (2007) analyzed six 

statistically based upscaling methods: the absolute mean difference, the relative 

mean difference, linear relationship, the cumulative distribution function (cdf) 

matching, transfer function in frequency domain and the autoregressive 

moving average filter (ARMA) model. These methods have been evaluated in 

terms of their applicability to predict mean soil moisture over the investigated 

study area. In their study, the best results were found by applying the linear 

relationship and the cdf-matching methods. Furthermore, they examined the 

possibility of finding a representative soil moisture measurement station for 

representing different soil moisture depths. Unfortunately, the authors were not 

able to determine one or several probes that fit for all soil layers. This leads to 

the conclusion that the soil moisture distribution in different layers is driven by 

different parameters. As a result of their study, the authors suggest that, if a 

representative point measurement is used, the applied transfer function has to 

be chosen carefully.  

CROW, RYU ET AL. (2005) examined the uncertainty of upscaling soil 

moisture using only field observations, only model predictions or a 

combination of both by applying a linear relationship. The best results were 

made using a two-step upscaling approach. First, determine a representative 

station using the time stability method (VACHAUD, PASSERAT DE SILANS ET AL., 

1985) to upscale the point measurements to field scale. And second, apply the 

model-based approach in order to determine the soil moisture at footprint- 

scale. 
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2.3.2.2 Downscaling Methods 

Traditionally downscaling methods were used in the fields of 

climatology and meteorology to obtain regional precipitation or other 

climatological information (HEWITSON AND CRANE, 1996; PEGRAM AND 

CLOTHIER, 2001; HUTH, 2002) or model outputs (ZORITA AND VON STORCH, 1999; 

MACKAY, CHANDLER ET AL., 2001) on smaller scale. The availability of macro-

scale soil water estimates encouraged researchers such as REICHLE, ENTEKHABI 

ET AL. (2001), PELLENQ, KALMA ET AL. (2003) and KIM AND BARROS (2002A) to 

explore methods to use these datasets in regional hydrological modeling, either 

for validation or calibration purposes or even as input datasets. For the 

successful application of a downscaling method it is necessary to determine the 

relationship between the large scale and local scale characteristics. 

For example, REICHLE, ENTEKHABI ET AL. (2001) investigated the 

possibility of achieving small resoluted soil water information from passive, 

lower resolution, microwave measurements using data assimilation techniques 

for interpolation and extrapolation of remotely sensed data. The applied 

downscaling method for estimating the soil water content at smaller scale was 

based on micrometeorological data, soil texture and land cover inputs. 

An other approach was carried out by CHARPENTIER AND GROFFMAN 

(1992), who examined the soil water distribution within a remote sensing pixel 

in Kansas. One of the findings was that the remotely sensed soil water captured 

the spatial soil water distribution better under wet condition than under dry 

conditions. BURKE AND SIMMONDS (2003) compared microwave brightness 

temperature to modeled soil moisture data using MICRO-SWEAT. In their 

research, they found an influence of the vegetation water content on the 

accuracy of soil water retrieval. The error increased for dense vegetation types. 

BINDLISH AND BARROS (2002) examined the downscaling potential of 

electronically scanned thinned array radiometer (ESTAR) images from 200 to 

40 m to determine the temporal and spatial variability of soil water content in 

the Little Washita catchment. The key finding was that the sub-pixel soil water 

variability is strongly related to soil hydraulic properties. These result were 

taken by KIM AND BARROS (2002A) who went one step further. They successfully 

disaggregated macro-scale soil water information from 10 km to 1 km using a 

fractal interpolation scheme and ancillary data, such as soil texture and 
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vegetation water content. Also PELLENQ, KALMA ET AL. (2003) developed a 

downscaling method. They established their downscaling algorithm by 

applying the simple Soil Vegetation Atmosphere Transfer (SVAT) model 

coupled with TOPMODEL. The soil moisture information at catchment scale 

was determined using a simple relationship between mean quantities of 

topography and soil depth. The findings were compared to soil moisture 

measurements taken in the catchment and the results were very promising. 

These studies showed that meso-scale soil water information can be 

estimated from low resolution data. However, the applied downscaling 

approaches are based on individual relationships which depend on local 

constraints. For instance, the approach of KIM AND BARROS (2002A) did not 

consider topography as an important factor for soil moisture variability at all. 

For an exact scientific development of a scale concept, based on the results 

above, a combination of all driving parameters that influence spatial and 

temporal variability is recommended. In addition, the concept of distributed 

response units (FLÜGEL, 1995; FLÜGEL, 1996), which is more process oriented 

than the raster based concepts used in most studies, could help in the 

development of a more generic downscaling method which is less dependent 

on local constraints of the test sites. 

A very promising approach was examined by WAGNER, PATHE ET AL. 

(SUBMITTED). The authors investigated the possibility of describing the 

relationship between local and regional backscatter information of the 

microwave signal of Environmental Satellite (ENVISAT) Advanced Synthetic 

Aperture Radar (ASAR) as a linear approach. The authors found, that the 

implemented scaling parameter can be described as function of soil moisture 

properties, vegetation and topography since the backscatter coefficient is very 

sensitive to these parameters. In a previous studies by CROW, RYU ET AL. (2005) 

and DE LANNOY, HOUSER ET AL. (2007) a linear relationship has been already 

used to up scale soil moisture information.  

2.4 Research Needs 

Based on the review of the literature, the following research needs can be 

derived, which are addressed in this study:  
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How can the relationship between macro-scale and meso-scale soil water 

distribution be described?  

In the literature review, different downscaling approaches, such as 

statistical, fractal and linear regression, were highlighted. However, some of 

these downscaling schemes were applied to the microwave signals, which are 

determined by landscape parameters such as surface and vegetation roughness, 

soil water content and topography. Other downscaling scheme do not account 

for all parameters driving the spatial distribution of soil water. In this study, the 

question to be answered is if such a downscaling algorithm can be applied to 

process driven soil water time series.  

 

What are the driving variables controlling the scaling parameter to downscale 

the macro-scale soil water product? 

The discussion on spatial soil water distribution showed that the driving 

parameter changes when the scale changes. On the macro-scale it is the climatic 

parameters, especially precipitation and evapotranspiration that determine the 

spatial distribution whereas, on the meso-scale, topography, vegetation cover 

and soil properties are the important parameters. At the micro-scale more local 

parameters such as slope morphometry, amount of vegetation cover on top of 

the soil influence the soil distribution. This leads to the question to what extent 

these parameters can be used to downscale the macro-scale soil water estimates.  

 

What are the limitations for the downscaling method?  

There are limitations to the remotely sensed soil water dataset. For 

instance, in densely vegetated areas the microwave signal can not penetrate into 

the soil column, and therefore no information on the actual soil water content 

can be derived.  

On the other hand, hydrological models are developed for certain 

research questions and, therefore, have their own limitations. Also, 

hydrological models depend highly on calibration parameters, which have to be 

determined. A change in the calibration parameters might influence the 

downscaling method. This leads to a two fold limitation that has to be 

evaluated.  
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CHAPTER 3 

SCIENTIFIC OBJECTIVES AND 

METHODICAL APPROACH 

The overall goal of this work is the Evaluation of the ERS-remotely 

sensed soil water estimates for an application in regional hydrological 

modeling. Here fore, the macro-scale soil water estimates have to be transferred 

to a smaller scale. To accomplish such a scale transfer the development of an 

appropriate downscaling scheme is necessary. Therefore, the cornerstone of this 

work is the development of a downscaling scheme for application of the 

macro-scale soil water estimates in meso-scale hydrological modeling.  

To accomplish this goal, reference data are needed. An estimation of soil 

moisture using in-situ measurements on spatial scale of the remotely sensed soil 

water estimates is not possible. Therefore, other sources of information have to 

be used. Here, hydrological modeling offers a possibility to retrieve meso-scale 

soil water distribution. In hydrological modeling, the soil water content will be 

achieved as part of the water cycle calculation with high spatial and temporal 

resolution. The so resulting simulated soil water time series will be compared to 

the macro-scale soil water estimates and later used to derive the downscaling 

method. To achieve the research goal the study is into the following three 

research objectives: 
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• Application of a distributed hydrological model to estimate the 

spatial soil water distribution and the factors influencing this 

distribution 

• Evaluation of the influence of landscape parameters (soil, land 

cover, topography and geology) on the macro-scale soil water 

estimates (SWIERS) and using this information for  

• Development of a downscaling method for the macro-scale soil 

water estimates for an application on various scales. 

For the realization of the overall goal of the work and the three specific 

objectives the following three methodical steps were followed, shown in the 

flowchart figure. The three steps and its proposed methods a more described in 

detail in the following sections. 
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Figure 3-1: Flowchart of the Methodological Approach 

3.1 Step I: Hydrological System Analysis and Delineation of 
Hydrological Response Units  

3.1.1 Hydrological System Analysis  

The hydrological system analysis is the base for the delineation of the 

Hydrological response units (HRUs) and the calibration of the distributed 

hydrological model J2000. Initially, the hydrological system analysis studies the 

interactions of the landscape parameters soil, water, vegetation and climate in 

order to understand the system response to rainfall and therefore the 
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generation of the respective hydrological response. Also, the examination of the 

hydro-meteorological time series using data analysis methods for changes in 

hydrological system response is an important preparation for the rainfall-runoff 

modeling of the catchment. 

3.1.1.1 Data Analysis of Hydro-Meteorological Time Series  

The quality of the model output depends directly on the input data 

(BEVEN, 2001B). Hydrological models are driven, in part, by hydro-

meteorological data, which contains daily field observations. The resulting time 

series are never perfect and the data contains data errors (BEVEN, 2001B). The 

data errors are divided into systematic errors and random errors. The first 

group contains errors which affect the measuring instrument systematically 

(BEVEN, 2001B) and result in a constant measurement bias. These errors can be 

caused, for instance, by false calibration of the instrument. Random errors, on 

the other hand, are caused by randomly occurring factors, such as interference 

of the automatic recording by animals. To achieve good modeling results it is 

crucial to control for data quality. 

Rainfall Data  

Rainfall data are measured as point observations and there are several 

potential sources of data errors associated with those measurements (DINGMAN, 

2002:P.114). The design of rain gauges can lead to a standard error between 3 to 

30 % of the total annual measured rainfall sum (DINGMAN, 2002:P.115). These 

data errors can be corrected using an approach presented by RICHTER (1995). 

Rainfall time series might also include missing values. Here, DINGMAN 

(2002:P.115-117) suggests the following methods for data filling: station average 

method, normal ratio method, inverse distance weighting, regression analysis 

or the most common technique: the double mass curve between two stations. 

Runoff Data 

The discharge observed at the runoff station is an integrated value over 

the entire catchment. In a hydrological model, the data is used for calibration of 

simulated runoff against observed runoff. Therefore, it is necessary to check 

runoff data for homogeneity and inconsistency (BEVEN, 2001B). The most 

common technique, in case of available data at a nearby station, is the double 
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mass curve (BEVEN, 2001B). The double mass analysis compares two 

neighboring measuring stations by the plotting of accumulated volumes. 

Changes in the runoff records will be visible in slope changes compared to the 

reference line. 

 This analysis gives information on missing values or changes in the 

catchment affecting the measured runoff. Another technique to check for data 

errors is the statistical analysis of low flows and high flows as suggested in 

DEUTSCHER VERBAND FÜR WASSERWIRTSCHAFT UND KULTURBAU (1983; 1999). The 

resulting data was used to calculate the annual and monthly average runoff and 

to establish the rainfall runoff relationship. 

Additional Datasets  

The time series data on wind speed, humidity, temperature as well as the 

time series of the macro-scale soil water product was checked for homogeneity 

and consistence using the aforementioned methods for rainfall and runoff data 

analysis. Missing values were filled by applying regression analysis. 

3.1.1.2 Spatial Data Modeling 

Hydrological models require spatial information of the hydro-

meteorological information. The hydro-meteorological time series used, 

however, contain measurements at point scale. For a spatial representation of 

these parameters the missing information has to be interpolated. Here, several 

methods exist such as kriging, Thiessen Polygons, linear regression and inverse 

distance weighting (IDW) (WACKERNAGEL, 1995; KITANIDIS, 1997; WEBSTER AND 

OLIVER, 2001).  

Regionalization of the hydro-meteorological datasets is accomplished by 

the preprocessing module in J2000 and is based on the inverse distance 

weighting approach (KRAUSE, 2001). The regionalization consists of several 

steps (JAMS; KRAUSE, 2001): First, the linear regression is applied to determine 

the relationship between station measurements and the respective station 

elevation. In the second step, the numbers of stations next to each HRU is 

determined, whereas the user defines the number of stations necessary to take 

into account. Then the distance between the found stations and each HRU is 

calculated. To account for the difference in the distance between HRU and 

station, the application of a user defined weighting factor weightings the 



CHAPTER 3 

 40

distances. In the third step, the final weighting factor for the hydrometric 

station is calculated applying an inverse distance weighting method. In the last 

step, the actual data values were calculated under consideration of the 

weighted values of step 3 and the elevation factors of step 1. For more detailed 

information on the regionalization algorithm in J2000 refer to KRAUSE (2001) 

and JAMS (JAMS). 

Another important step in this framework is to check the spatial data for 

missing values. Particularly important is the digital elevation model (DEM), 

which is one of the most important datasets, because it will be used for the 

delineation of the stream network, catchment boundaries and topographic 

parameters such as slope, aspect, flow direction and flow accumulation. The 

DEM can be derived from remote sensing imagery, such as SAR Interferometry 

(LUDWIG, HELLWICH ET AL., 2000) or from the Shuttle Radar Topography 

Mission (SRTM) (U.S. GEOLOGICAL SURVEY EROS DATA CENTER AND NASA, 

2007). The SRTM-DEM, in particular, often contains voids which have to be 

filled for a hydrological application (KÄÄB, 2005; GROHMAN, KROENUNG ET AL., 

2006).  

3.1.2 Delineation of Hydrological Response Units  

 The rainfall-runoff relationship of a catchment is determined by the 

following characteristics: topography, vegetation cover, land cover, soils, 

climate and geology (BEVEN, 2001B:P.179). To account for a realistic 

representation of the catchment characteristics, the model used should be fully 

distributed. This type of model is difficult to apply because the model demands 

highly spatially distributed input information of the landscape parameters, 

which cannot be measured at the requested resolution (BEVEN, 2001B; BLÖSCHL, 

2005). Therefore, the attempt has been made to define model entities that show 

a “hydrological similarity” (BEVEN, 2001B:P.179), which can be defined using 

one of the following three approaches. The first, the concept of Aggregated 

Simulation Area (ASA) has been applied in the SLURP (Semi-distributed Land 

Use-based Runoff Processes) model (KITE, 1995). This concept involves 

aggregating simulation areas which are heterogeneous in their land cover and 

elevation; however, the distribution of these parameters within the respective 

entity is known. These ASAs have the requirement of contributing runoff to a 

stream channel and, therefore, act as sub catchments (KITE, 1995). The second 
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approach, the Representative Elementary Area (REA) (WOOD, SIVAPALAN ET AL., 

1990) defines minimal areas in which the spatial heterogeneity of hydrological 

variables such as infiltration, evaporation, and runoff are unimportant. The 

distribution of these variables within the areas is represented by a probability 

function. The third concept, the Hydrological Response Unit (HRU), was 

introduced by LEAVESLEY, LICHTY ET AL. (1983) as model entities in the 

Precipitation Runoff Modelling System (PRMS). HRUs are characterized as 

homogenous areas with respect to their hydrological response (LEAVESLEY, 

LICHTY ET AL., 1983:P.9). This approach was extent by FLÜGEL (1995, 1996) who 

defined HRUs as areas with common in “climate, land use and underlying 

pedo-topo-geological conditions” (FLÜGEL, 1995:P.426). The delineation of HRUs 

involves the definition of classification criteria, which are based on hydrological 

system analysis (FLÜGEL, 2000). The concept of HRUs has been tested and 

applied in several studies as an integrated regionalization tool (BONGARTZ, 

2001; KRAUSE, 2001; MÄRKER, 2001; KRAUSE, 2002; FINK, KRAUSE ET AL., 2007; 

SCHEFFLER, BÄSE ET AL., 2007; SCHEFFLER, KRAUSE ET AL., 2007).  

It can be concluded that the concepts of HRUs are the only modeling 

entities that consider all landscape parameters important in hydrological 

processes. Therefore, the HRU-approach has been applied in this study and is 

explained in the following section. 

Conceptual Approach of the Hydrological Response Units 

The HRU concept, according to FLÜGEL (1995; 1996), is based on the 

representation of the catchment heterogeneity in the form of entities showing a 

similar or equal system response.  

The landscape parameters of geology, soil, vegetation and climate are 

strongly interacting to each other. The soil is formed from bedrock material 

through various weathering and erosion processes. Climate conditions 

determine the intensity of these various processes and, therefore, the types of 

soil formed. Soil formation and distribution is also determined by the 

topography controlling the accumulation of soil material and the water 

movement within and on top of the soil column. The natural vegetation 

depends on climate, relief and soil type. A specific combination of geology, soil, 

relief, vegetation and climate characteristics, therefore, generates a specific 

system response.  
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The HRUs divide the catchment into areas with similar or equal geology-

soil-relief-vegetation and climate combinations. These entities are delineated 

based on detailed hydrological system analyses in a Geographical Information 

System (GIS) (FLÜGEL, 1995; 1996). Based on the results of the hydrological 

system analysis the GIS datasets are reclassified, aggregated and overlaid in a 

step-by-step procedure. To ensure the hydrological flow between HRUs and to 

the stream network, the flow routing is determined (STAUDENRAUSCH, 2001, 

JAMS; KRAUSE, 2002). As a result, the derived HRUs represent topologically 

connected lumped model entities. These entities act as model input for the 

rainfall-runoff simulation of the study area.  

3.2 Step II: Rainfall-Runoff Modeling with J2000 

To obtain the above stated study goal, the meso-scale distribution of soil 

moisture has to be estimated. Due to the lack of in-situ measurements covering 

the entire ERS-scatterometer footprint area, the meso-scale soil water 

distribution is simulated. For this purpose, the distributed hydrological model 

has been applied. The delineated HRUs serve as spatial modeling entities in the 

model. The following section gives an introduction in the model design but also 

the steps of the modeling process (Figure 3-2) such as input data preparation 

(Section 3.2.2), parameterization and calibration (Section 3.2.3) are described. 

Figure 3-2: Flowchart Methodological Steps in the Rainfall-Runoff Modeling 
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3.2.1 Modular Design of J2000  

The model used for this study was the distributed, process oriented, 

modeling system J2000 (KRAUSE, 2001). The structure of the model is shown in 

Figure 3-3. The modeling system has been successfully applied in catchments of 

between 2 and 6000 km² in Europe (KRAUSE, 2001). Additionally the model was 

applied in the semi-arid catchments of the Tsitsa River (BÄSE, HELMSCHROT ET 

AL., 2006) as well as the Great Letaba (SCHEFFLER, BÄSE ET AL., 2007) in South 

Africa. 

Figure 3-3: The Modeling System J2000 (modified from Krause (2001:p.74 and p.89) and Bäse 
(2005:p.25)) 

As shown in the figure, the modeling system is divided into process 

modules such as the interception, snow, soil water, and ground water modules 

as well as the reach routing module. 

For every model entity (HRU), the surface runoff and interflow are 

calculated in the soil module while the fast and slow base flow components are 

calculated in the groundwater module. Afterwards, the simulated values of all 

the runoff components are routed to the adjacent HRUs and added to the 

respective storages. This process is repeated until a stream segment is reached. 

Within the reach segment the water is transported to the catchment outlet.  
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The Soil Water Module (based on Krause (2001) and JAMS (JAMS)) 

The soil module separates the soil layer into medium pore storage and 

large pore storage. The medium pore storage represents pores with a diameter 

of 0.2 to 50 µm. The large pore storage represents pore diameters over 50 µm. 

The fine pore storage is neglected. In addition to these pore storages, there is 

the depression storage which mainly generates surface runoff and is defined 

through the terrain. In areas where the slope is higher than 5°, the available 

storage is reduced by 50 %. Depending on the empirically calculated infiltration 

rate water infiltrates into the soil storages or is routed to the depression storage. 

The actual infiltration (Inf) rate for every time step is dependent on the 

current soil saturation and the user-defined maximum infiltration rate. In order 

to take into account different infiltration scenarios depending on precipitation 

generation, three different infiltration scenarios have been developed: summer 

infiltration, winter infiltration and snow infiltration. 

The actual infiltration rate is calculated using the following equation; 

  

max(1 ) *= −
sat

Inf soil inf  Equation 3-1 

  

The actual soil saturation (soilsat) is derived according to the following 

equation. 

  

max max

+
=

+
act act

sat

MPS LPS
soil

MPS LPS
 Equation 3-2 

  

If the precipitation amount is higher than the actual infiltration rate, the 

water is stored temporarily in the depression storage. The infiltrated 

precipitation water is transported into the pore storages whereas the saturation 

of the medium pore storage determines how much water can infiltrate.  

The medium pore storage acts like a sponge in which water is held more 

strongly with decreasing saturation. This behavior reflects the natural forces in 

the soil column. The inflow in the medium pore storage is calculated using 

Equation 3-3. The calibration parameter (soilDistMPSLPS) determines how much 

water infiltrates into the medium pore storage. If the parameter is set close to 

zero more water infiltrates into large pore storage. 
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max

1*

inflow inf*(1 )

−

= −
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soilDistMPSLPS

MPS

MPS
MPS e  Equation 3-3 

  

The reduction of the medium pore storage is forced by 

evapotranspiration. The forces of evapotranspiration are depending on the 

saturation of the medium pore storage. The evapotranspiration increases with 

increasing saturation.  

The residual infiltration water is transported into the large pore storage.  

  

inflow inflowinf= −LPS MPS  Equation 3-4 

  

The outflow of this storage is determined by the moisture conditions, 

according to the following equation: 

  
SoilOutLPS

outlow ( )= −
sat act

LPS soil LPS  Equation 3-5 

  

The water in the large pore storage gets distributed to lateral flow 

component (inter) and percolation (perc). The amount of water that is 

distributed to each of these processes is dependent on the calibration parameter 

(soilLatVerDist) and the surface slope (slope), as highlighted in the following 

equations:  

  
*(1 tan( )* )= −

out
perc LPS slope soilLatVerDist  Equation 3-6 

  
*(tan( )* )=

out
inter LPS slope soilLatVerDist  Equation 3-7 

  

The water movement between large pores and medium pores is 

represented using the following equation: 

  

max2 *(1 )

−

= −
act

soilDiffMPSLPS

MPS

MPS

act
LPS MPS LPS e  Equation 3-8 

  

in which the parameter soilDiffMPSLPS determines the fraction of water 

distribution. 
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The flow of the direct surface (runoffdirect) and subsurface (runoffsubsurface) 

runoff can be delayed by using adjustment parameters, in which are described 

the following equations. 

  
1

* 1=
direct

runoff RD
soilconcRD1

 Equation 3-9 

  
1

* 2=
subsurface

runoff RD
soilconcRD2

 Equation 3-10 

  

A more detailed description of the soil water module can be found in 

KRAUSE (2001).  

3.2.2 Input Data Preparation  

The model J2000 requires the following data files, shown in the following 

table.  

Table 3-1: Data Input Files in J2000 

DESCRIPTION UNITS 

Absolute Humidity g/cm3 

Relative Humidity % 

Observed Runoff  m3/s 

Observed Rainfall mm 

Sunshine Duration H 

Maximum Daily Temperature °C 

Minimum Daily Temperature °C 

Mean Daily Temperature  °C 

Wind Speed m/s 

 

The needed daily mean temperature was not provided by the South 

African Weather Service, hence it was calculated as the average of the 

maximum (Tmax) and minimum (Tmin) daily temperature.  

Also, the model requires the absolute humidity as an input parameter 

dataset. The dataset, therefore, has been calculated in several steps, depicted in 

the following equations:  

1. Calculation of the saturation vapor pressure es (DINGMAN, 2002:P.586) 

  
17.3*

237.3( ) 6.1078 *
T

T
se T e +=  [hPa] Equation 3-11 
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2. Calculation of the maximum humidity with T as mean air temperature 

and the computed values for es 

  
216.7

( ) *
273.15

=
+

m s
R T e

T
 3[ ]

g

cm
 Equation 3-12 

  

3. Calculation of the absolute humidity (Ra) by taking relative humidity 

Ru and maximum humidity Rm into account.  

  

( ) *
100

= u
a m

R
R T R  [ ]

³

g

cm
 Equation 3-13 

  

All data files (Table 3-1) were transformed into ASCII- format. In addition 

to the actual data values, J2000 requires information on geographical location as 

well as the elevation of the station. The geographical location for the stations 

was derived using ArcMAP 9.1 (ESRI, 2003). In case of missing elevation data, 

that information was taken from the available digital elevation model (SRTM 

2004).  

3.2.3 Model Parameterization and Calibration  

The hydrological model J2000 requires parameter input files in order to 

describe the natural characteristics. These parameter values were obtained from 

literature and are described in Section 5.2.1. Additionally, the model J2000 

contains 30 direct model parameters: four parameters in the groundwater 

module, fifteen parameters in the soil module (lumped approach), eight snow 

module parameters, one reach routing parameter and two interception 

parameters, shown in Appendix A. The table in Appendix A does not include the 

snow parameters because the snow module was not applied in the study area of 

Great Letaba River.  

The goal of model calibration is a satisfactory fit between simulated and 

observed variables (REFSGAARD AND STORM, 1996:P.42). Therefore these 

parameters have to be adjusted. This is necessary for three reasons as stated in 

BLÖSCHL (2005): First, the hydrological models are based on empirical equations 

which are depended on catchment characteristics. Second, model boundaries 

are mostly poorly defined. The model calibration adjusts input errors such as 

measurement errors. Third, landscape parameters such as soil, vegetation, 
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geology and topography are highly variable in space, and the knowledge of 

their real occurrences as well as physical characteristics is limited. Here, 

parameter adjustment accounts for unknown parameters and characteristics.  

According to REFSGAARD AND STORM (1996:P.47), three approaches can be 

used to calibrate hydrological models: 1) manual adjustment using “trial and 

error”, 2) automatic model calibration, and 3) a combination of 1) and 2). The 

“trial and error” method requires expert knowledge about the model structure 

and involves a lot of time because the manual assessment it requires a larger 

number of number runs (REFSGAARD AND STORM, 1996:P.47). The automatic 

model calibration, however, is much faster and less subjective than the manual 

method (REFSGAARD AND STORM, 1996:P.47). The drawback of the automatic 

parameter adjustment is the evaluation of the model fit depending only on the 

objective function, which can lead to a wrong model solution. In order to 

account for the catchment characteristics and decrease the time effort, a 

combination of both methods is recommended (REFSGAARD AND STORM, 

1996:P.48). In this study, the automatic parameter adjustment was used to 

define sensitive parameters and parameter ranges and afterward the model was 

calibrated using the “trial and error” method. 

3.2.3.1 Automatic Parameter Estimation using Sensitivity Analysis  

Sensitivity analysis is an important tool in hydrological modeling. 

Especially during the model design and model calibration phase, sensitivity 

analysis provides a better understanding of the relationship between model 

parameters and model processes (MCCUEN, 1973). It allows the identification of 

sensitive parameters influencing the model output (BAHREMAND AND DE SMEDT, 

2008:P.2). 

BÄSE (2005) analyzed the parameter sensitivity in J2000 using one 

dimensional parameter analysis Monte Carlo and Latin-Hypercube Method in 

the Wilde Gera Catchment, Germany. The author reported the following 

sensitive parameters influencing high peak flow: gwCapRise, soilPolRed, 

soilOutLPS, soilLatVertDist, soilrecRD1, soilrecRD2, soilmaxPerc, 

soiMaxlInfSummer as well as soiMaxlInfWinter. In terms of base flow, all 

parameters in the groundwater module as well as in the soil water modules 

with the exception of IP >80, IP<80 and SoilMaxDPS, were determined as 

sensitive parameters. BÄSE (2005) also examined parameter interactions and 
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determined three direct parameter interactions: coldContFac and groundFac, 

tempFac and groundFac as well as soilDistMPSLPS and soilDiffMPSLPS. A more 

detailed description can be found in BÄSE (2005:P.57). 

For determination of sensitive parameters and sensitive parameter 

ranges in the Great Letaba catchment, first the one dimensional sensitivity 

analysis in J2000 has been applied. Here, the reaction of the model output to 

one specific parameter change is analyzed. The reaction was then evaluated 

using objective functions: Nash-Sutcliffe-Efficiency (NaS) (NASH AND SUTCLIFFE, 

1970), logarithmic Nash-Sutcliffe Efficiency (log. NaS), absolute volume error 

(AVE) and the coefficient of determination (R²). 

Nash- Sutcliffe Efficiency 

The Nash-Sutcliffe Efficiency (NaS) (NASH AND SUTCLIFFE, 1970) is used 

in hydrological models to determine the goodness of fit between the modeled 

and observed runoff. The NaS is calculated as follows: 
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with Qobs representing the observed runoff value and Qsim the modeled 

runoff value at time i, 
_

obsQ  defines the observed mean runoff for the given time 

period. The range of the NaS lies between -∞ and 1; a NaS of 1, therefore, 

confirms a perfect fit. As stated in KRAUSE, BOYLE ET AL. (2005:P.90), the 

disadvantage of the NaS is an insensitivity to model over- and under 

predictions, especially in periods of low flow. The authors suggest using the 

NaS with logarithmic values. 

Logarithmic Nash Sutcliffe Efficiency  

The calculation of the logarithmic Nash-Sutcliffe Efficiency (log. NaS) is 

carried out as follows: 
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The influence of the low flow values is stronger than in the NaS 

calculation due to the logarithmic values of 
_

obsQ , Qobs and Qsim. This leads to a 

higher sensitivity to over and under estimation of the observed runoff during 

low flow conditions (KRAUSE, BOYLE ET AL., 2005:P.91).  

The Absolute Volume Error 

The AVE estimates the difference between the predicted runoff volume 

(Qsim) and the observed runoff volume (Qobs) over a given time period. The AVE 

is calculated as follows: 
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The crucial identification of a good fit between the two outputs was the 

visual comparison of the observed and simulated runoff. In the second step, the 

“trial and error” method was used to determine final parameter values which 

acted as baseline values for the estimation of uncertainty. 

3.2.3.2 Prediction of Model Uncertainty 

The achieved model calibration will contain uncertainty because it is not 

feasible to represent the model boundary conditions as a true reflectance of 

nature and also input data still contain error (BEVEN, 2001B:P.217). To estimate 

the uncertainty range, the sensitivity index (SI) according to FENTIE, MARSH ET 

AL. (2005) has been calculated. The SI determines the influence of the parameter 

change in relationship to the model output and is calculated as follows:  

  

SI
Y

X

∂
=

∂
 Equation 3-17 

  

In which �Y defines the relative change in the model output in 

comparison to the baseline output and �X defines the relative parameter change 

from the baseline values.  
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3.3 Step III: Analysis of the Macro-Scale Soil Water Estimates 
with the Simulated Soil Water Time Series  

The achieved soil water time series (Section 3.2) were then assessed and 

evaluated at two scales: first at the footprint scale and second at HRU-scale. The 

evaluation of these datasets on footprint scale will identify difference and 

similarities on reflecting soil water generation in the catchment. This analysis 

will provide the base for the meso-scale analysis. Here, the goal is to find a 

relationship describing the connection between the remotely sensed data and 

the simulated soil water data.  

3.3.1 Retrieving the Catchment Area Covered by one ERS-Scatterometer 

Footprint 

To develop the downscaling scheme, the area covered by the 

scatterometer footprint was determined. The ERS-scatterometer features three 

antennae which measure the backscattered signal of each antenna beam in 19 

nodes being 25 km apart from each other (BARTALIS, 2005). Each of these nodes 

contains the backscattered information integrated over an area of 

approximately 50 km diameter (BARTALIS, 2005). The flight route of the ERS-

satellite is not stable in terms of its geographical location. To assign the 

measurements to permanent coordinates, a fixed grid with a resolution of 

25x25 km² was determined. The transfer of measurements to the fixed orbit was 

done by applying spatial averaging in terms of a Hamming window (HAMMING 

AND JUNGE, 1987) with a side width of 36 km (WAGNER, 1998). This window side 

width was chosen with respect to the orbit grid. A minimum of three orbit 

measurements are required in order to carry out the spatial weighting. 

Therefore, each point of the fixed grid contains a spatially averaged value of the 

closest satellite measurements representing a measurement integrated over 

50 km diameter. To derive the integrated area of each scatterometer footprint a 

circle of 25 km radius was used. The scatterometer footprint covers an area of 

about 1963 km². 

3.3.2 Delineation of the HRU-Soil Water Index (SWIHRU) 

According to Section 2.2.1.3, the SWIERS is derived using a change 

detection method, taking the highest and lowest ever measured value for the 
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soil water content. Therefore, the SWIERS describes the soil water content of the 

soil column as a value between zero and one. The macro-scale soil water index 

is also described as the soil moisture status between wilting point and field 

capacity, where the highest value of the SWIERS-time series is defined as field 

capacity and the lowest value as the moisture status at wilting point. However, 

this argumentation raises questions regarding the representation of wilting 

point and field capacity.  

The saturation of the soil to field capacity does not mean that no further 

water infiltration is possible. The grand size pores are still able to store water, 

so that saturation above field capacity is possible. This fact was shown by 

KAMARA AND HAQUE (1987), who examined the moisture content in a Verticsol 

toposequence in Ethiopia and found soil saturations above field capacity. In an 

other study, carried out by GABRIELLE AND BORIES (1999), found that field 

capacity and infiltration rate are not unique parameters. These parameters 

depend on the soil depth and time scale chosen for the study (GABRIELLE AND 

BORIES, 1999:P.143). Based on the results of these studies it can be argued that 

the highest remotely measured soil moisture values do not necessarily 

represent the moisture status at field capacity. It is even more likely that this 

value represents a moisture status above field capacity. 

Similar observation can be made with regard to the wilting point. 

ARCHER, HESS ET AL. (2002) studied a field site in south–eastern Spain and they 

found that the soil moisture was dropping down to wilting point during the 

dry season. Similar results have been made by KINCAID, GARDNER ET AL. (1964). 

They observed that soil moisture can drop below wilting point in the first 

approx. 15 cm of the soil column, at a test site in the Walnut Gulch 

Experimental Catchment.  

Based on this argumentation, it is questionable that the highest and 

lowest measured moisture value of the surface soil moisture time series reflects 

field capacity and wilting point respectively. Therefore, for the comparison of 

the simulated and remotely sensed soil water time series the water content of 

the entire soil column and its storages from the model has been taken into 

account. The time series of the model J2000 had to be normalized using the 

following equation:  

  
sw = FPS + MPS + LPS

act act act act
 Equation 3-18 
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−

HRU

sw sw
act minSWI  =

sw - sw
max min

 Equation 3-19 

  

First, the daily actual water content of the entire soil column (swact) was 

calculated by summing the water amount stored of the three storages: fine pore 

storage (FPSact), medium pore storage (MPSact) and large pore storage (LPSact). 

The fine pore storage acts hereby as a constant, derived from the soil 

parameters of the FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED 

NATIONS (FAO) (2003). In the second step, the highest (swmax) and lowest 

(swmin) value of the respective model time period was determined. To calculate 

the modeled soil water index (SWIHRU), the actual soil water content (swact) was 

then put into relationship to the highest (swmax) and lowest (swmin) soil water 

content. Also the temporal resolution had to be adjusted. The SWIERS is 

calculated for every 10th day within a month. For comparison, the 

corresponding day has been extracted from the time series of the SWIHRU. 

3.3.3 Procedures for Evaluation of the Time Series at Footprint Scale  

The comparison on the footprint scale will provide insight on the overall 

evolution of the time series at this scale. The modeling results for each HRU 

were used to calculate the area average. Here, the HRUs contribution is 

weighted according to the area covered within the footprint. The resulting 

average time series were compared to the SWIERS. Later, the decomposition of 

the time series into its trend and seasonal is used to analyze similarities and 

variations of trend in the time series components.  

3.3.3.1 Decomposition of Time Series  

In time series the observations made are arranged chronologically (HIPEL 

AND MCLEOD, 1994:P.63). The time series analysis examines these datasets and 

tries to find typical behaviors and trends (ASSENMACHER, 1998:P.195). Time 

series can be divided into three components: 1) trend component, 2) cyclical 

trend or seasonal component and 3) a random component (ASSENMACHER, 

1998:P.197).  

For the decomposition of time series two techniques can be used: 

nonparametric tests and parametric test (HIPEL AND MCLEOD, 1994). The 

parametric tests consider the absolute values and therefore the results are 
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affected by data distribution. The nonparametric tests, on the other side, use 

relative values or ranks and ignore the magnitude of observations (HIPEL AND 

MCLEOD, 1994:P.854). As a result, these tests might not provide information of 

the magnitude of the trend. For the decomposition of environmental data, 

however, time series nonparametric regression techniques are recommended 

because environmental data, such as data on water quality contain more 

information, which affects the application of parametric tests (HIRSCH AND 

SLACK, 1984: AS CITED IN HIPEL AND MCLEOD, 1994).  

In this study, the decomposition of the time series into the seasonal and 

trend components has been carried out using the “stl”–Function (CLEVELAND, 

CLEVELAND ET AL., 1990) provided in the statistical software R (R DEVELOPMENT 

CORE TEAM, 2008). This function uses a nonparametric function in form of the 

local regression technique in order to predict the estimates in trend.  

3.3.3.2 Agreement Criteria  

The agreement between the two time series SWIERS and SWIHRU in each 

component, had been evaluated using the coefficient of determination (R²) 

(ROGERSON, 2006), bias as well as the root mean square error (RMSE). The later 

ones are described in the following sections.  

Bias  

The bias (WAGNER, SCIPAL ET AL., 2003) determines the difference in the 

soil water content between the satellite derived values (SWIERS) and the 

modeled content (SWIHRU). The value n describes the number of time steps in 

the analysis.  
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The Root Mean Square Error 

The RMSE defines the average magnitude of the error. A value of zero 

would describe the perfect fit between the two analyzed variables.  
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3.3.3.3 Procedures for Evaluation of the Time Series at HRU Scale 

Based on the findings of the authors CROW, RYU ET AL. (2005), DE 

LANNOY, HOUSER ET AL. (2007) and WAGNER, PATHE ET AL. (SUBMITTED) a linear 

regression was used in this study as a base for developing of the downscaling 

approach. However, the preliminary analysis, described in Section 5.3.3, reveals 

that precipitation is an important predictor in the model and has to be taken 

into account. Therefore, the applied model Equation 3-23 includes the sum of the 

precipitation between two ERS-observations (Equation 3-22) as an independent 

variable. Also, a further analysis of the resulting distribution of the scaling 

parameters within all possible landscape parameter combinations will 

determine the range of uncertainty according to the respective class properties. 

  

( ) ( )

n

sum HRU d HRU
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P = P∑  Equation 3-22 

  

( )HRU 1 ERS 2 sum HRUSWI = m * SWI + m * P + d  Equation 3-23 

  

Pd (HRU) 

Psum(HRU) 

n 

m1  

m2 

SWIERS 

SWIHRU 

d 

= Daily precipitation of the specific HRU in mm 

= Precipitation sum between two SWIERS calculations of the specific HRU 

= Number of days between two SWIERS calculations 

= Regression coefficient for SWIERS variable for a specific HRU 

= Regression coefficients for Psum variable for a specific HRU 

= ERS-Soil water index in %  

= J2000-Soil water index of a specific HRU in % 

= Intercept (point of intersection of the plane with the y-axis) 

  

For every HRU an estimation of the specific multiple regression 

parameters m1, m2 and d has been carried out. The factors m1, m2 and d are 

calculated based on least-squares multiple regressions according to the 

following equations Equation 3-25 to Equation 3-27. 
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Equation 3-24 

  
2

1 1 1 1
1

2 2 2

1 1 1

[( ) * ( )] * ) [( ) * ] * [( ) * ( )]

( ) * ( ) ( [( ) * ( )])

n n n n

ERS HRU sum sum HRU ERS sum
i i i i

n n n

ERS sum ERS sum
i i i

SWI SWI P P SWI SWI P

m

SWI P SWI P

= = = =

= = =

∆ ∆ ∆ − ∆ ∆ ∆ ∆

=

∆ ∆ − ∆ ∆

∑ ∑ ∑ ∑

∑ ∑ ∑

 

 Equation 3-25 

  
2

1 1 1 1
2

2 2 2

1 1 1

[( ) * ( )] * ) [( ) * ] * [( ) * ( )]

( ) * ( ) ( [( ) * ( )])

n n n n

sum HRU ERS ERS HRU ERS sum
i i i i

n n n

ERS sum ERS sum
i i i

P SWI SWI SWI SWI SWI P

m

SWI P SWI P

= = = =

= = =

∆ ∆ ∆ − ∆ ∆ ∆

=

∆ ∆ − ∆ ∆

∑ ∑ ∑ ∑

∑ ∑ ∑

 

 Equation 3-26 

  
____________ ___________ ______

1 2* *HRU ERS sumd SWI m SWI m P= − −  Equation 3-27 

  

It is assumed that the regression parameters m1, m2 and d can be 

described as functions of landscape parameter combinations (land cover, soil, 

slope, aspect and geology). For example, HRUs characterized by woodland over 

a soil with clay content between 10-25 % on a north facing hillside sloping 

between 5-15 ° will have different m1, m2 and d parameters then a HRU with 

the same landscape parameters but covered by forest instead of woodland. 

Therefore, after calculation of the HRU specific regression parameters their 

dependency on the landscape parameter combinations was analyzed. For this 

purpose the corresponding value ranges of m1, m2 and d values for all possible 

landscape parameter combinations (classes) were statistically evaluated using 

measures of descriptive statistics. To reduce the influence of outliers in 

describing the class properties the median and quintiles were used as decision 

criteria. Afterwards, the class corresponding medians of m1, m2 and d were 

used to evaluate and validate the downscaling success of the macro-scale soil 

water estimates using the simulated time series of the second modeling time 

period. The coefficient of determination acted as quality criteria of the 

downscaling success and the derivation of the adequate regression parameters 

m1, m2 and d for the possible landscape parameter combinations. 
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CHAPTER 4 

STUDY AREA AND DATA BASE 

The study area chosen had to fulfill certain requirements due to the 

constraints of the satellite technique. The transmitted signal of the satellite is not 

able to penetrate dense vegetation, such as forest. The SWIERS also cannot be 

derived in deserts, wetland areas and areas with permafrost. Since 

anthropogenic infrastructures also interfere with the backscattered signal, the 

goal was to find areas that primarily exhibit natural characteristic and have low 

anthropogenic influence.  

Since a hydrological modeling was used to derive meso-scale soil water 

distribution, the study area should have data of sufficient quality and quantity 

to run the model.  

The study area chosen was the Great Letaba River in South Africa. The 

catchment of the Great Letaba encompasses the quaternary catchments B81A-J 

and it is located in the north eastern part of the Northern Province of South 

Africa (Figure 4-1). The study area covers about 4,700 km² at the river gauge 

Letaba Ranch (23°39’29’’S, 31°03’00’’E) (DEPARTMENT OF WATER AFFAIRS AND 

FORESTRY, 2007). The catchment itself lies approximately between 23°20’ S and 

24°5’ S latitude and 29°53’ E and 31°03’ E longitude. The altitude of this region 

ranges from 330 m above sea level at the catchment outlet to up to 2120 m 

above sea level at the foothills of the Great Escarpment (U.S. GEOLOGICAL 

SURVEY, 2003). Only one major city, Tzaneen, is located within the catchment. 
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Figure 4-1: Geographic Location of the Study Area 

4.1 Study Area 

4.1.1 Climate 

The major part of the Great Letaba catchment lie in the Bsh-climate zone 

according to the Köppen-Geiger Classification (GEIGER, 1961: AS CITED IN 

KOTTEK, GRIESER ET AL., 2006). This zone is characterized by a dry to semi-arid 

savanna climate, defined as having three to five months when precipitation 

exceeds evapotranspiration (LAUER AND FRANKENBERG, 1992). The mean annual 
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precipitation (MAP) amounts to approximately 760 mm (SCHEFFLER, KRAUSE ET 

AL., 2007). This value is based on the analysis of the 35 rainfall stations 

(available from 1980-1999) located within and outside of the catchment and 

using an inverse distance weighting method for interpolation (SHEPARD, 1968). 

Figure 4-2 shows the spatial distribution of the MAP over the catchment.  

Figure 4-2: Spatial Distribution of the Yearly Rainfall Amount in the Catchment of the Great 
Letaba Derived from Inverse Distance Weighting Interpolation 

The MAP ranges from 1751 mm in the mountainous area in the western 

part to approximately 419 mm in the eastern part of the catchment. According 

to TYPSON (1987:P.6) most of the summer rainfall is of convective origin. In 

addition to the high spatial distribution, the rainfall shows a high seasonality 

with a precipitation peak in the summer (between October and March), in 

which over 80 % of the annual rainfall is measured (TYPSON, 1987:P.1-2). As 

stated in SCHULZE, MAHARAJ ET AL. (1997:P.41-56), for the Northern Province the 

average value for the percentage of summer rainfall on MAP is 92 %, peaking in 

January (with December a close second monthly rainfall) (Figure 4-3). This value 

is approximately the same for the Great Letaba catchment in which over 85 % of 

precipitation occurs in the summer period and with a slight delay of its peak to 

February.  
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Figure 4-3: Monthly Mean Precipitation and Evaporation in the Northern Province (Data 
Source: Schulze, Maharaj et al. 1997) 

The annual potential evaporation rate for Northern Province lays 

between 1787 and 2219 mm (A-Pan-Technique) (SCHULZE, MAHARAJ ET AL., 

1997:P.152-172). Its seasonal distribution is shown in Figure 4-3. The highest 

evaporation rates are reached in early summer, i.e. November. During the 

winter time, the evaporation rate drops down to a mean of 125 mm. These 

values are also confirmed through a study carried out by MCKENZIE AND CRAIG 

(1999) in which the authors determined the evaporation rate for South Africa 

also using the A-Pan Method. Their analysis had a higher spatial distribution 

and values for the study area could be derived. The net evaporation in the 
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mountainous area reaches between 1000 to 1300 mm, whereas in the eastern 

part the net evaporation reaches between 1300 to 1600 mm. The highest net 

evaporation was estimated for the central part with values between 1600 and 

1900 mm (MCKENZIE AND CRAIG, 1999:P.6-5) 

In the Northern Province, the temperature ranges from an average 

minimum of 9° C (SCHULZE, MAHARAJ ET AL., 1997:P.93-98) during the winter 

time to an average maximum of 28.1° C (SCHULZE, MAHARAJ ET AL., 1997:P.93-

98) in summer.  

4.1.2 Runoff and Water balance  

The Great Letaba River is a tributary of the Olifants River, one of the 

most important rivers in southern Africa. The most important tributaries in the 

Great Letaba catchment are the Molototsi, Thabina and Letsitele.  

Dams and weirs were installed along the Great Letaba River to 

compensate for the limited water resources, caused by the high spatial and 

temporal variation of rainfall (DEPARTMENT OF WATER AFFAIRS AND FORESTRY 

AND DIRECTORATE: NATIONAL WATER RESOURCE PLANNING (NORTH), 2004). The 

most important dams are the Tzaneen Dam with a capacity of 157.6 million m³, 

the Ebenezer Dam with a capacity of 70 million m³ and the Magoebaskloof Dam 

with a capacity of 4.91 million m³ (DEPARTMENT OF WATER AFFAIRS AND 

FORESTRY AND DIRECTORATE: NATIONAL WATER RESOURCE PLANNING (NORTH), 

2004: APPENDIX F). The dams are for domestic, industrial and irrigation 

purposes. In addition there are four schemes to transfer water out of the Great 

Letaba catchment. In 2000, about 10.7 million m³ water were transported into 

the surrounding catchments (DEPARTMENT OF WATER AFFAIRS AND FORESTRY, 

2003A). 

As discussed above, semi-arid environments are characterized by highly 

spatially distributed rainfall events which result in an accordingly high spatial 

distribution of runoff generation (HERALD, 1989:P.4), expressed also in 

variability of the runoff-rainfall coefficient (RRC) within the different 

quaternary catchments, shown in the figure below.  
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Figure  4-4: Location of the Quaternary Catchments and Runoff-Rainfall Coefficients for the 
Quaternary Catchments (Data Source: Midgeley, Pitman et al.( 1994a: Appendix 8.6); 

Midgeley, Pitman et al. (1994b), Pitman and Middleton (1994) 

Figure  4-4 shows a reduction of precipitation going from west to east and 

corresponding to a reduction of the mean annual runoff (MAR). Whereas in the 

QUATERNARY 

CATCHMENT (B81X) 

MAP [MM] MAR [MM] RRC 

[%] 

A 1194 378 32.0 

B 1163 323 28.0 

C 880 83 9.0 

D 832 141 17.0 

E 667 44 7.0 

F 544 16 3.0 

G 627 31 5.0 

H 510 11 2.0 

J 502 9.4 2.0 

B 81 684 77 11.0 
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western part of the catchment (Quaternary catchment: B81A/B) approximately 

30 % of the precipitation contributes to runoff, in the eastern part of the 

catchment only 2 % of the precipitation is measured as runoff. As shown in the 

table, on average only 77 mm of 684 mm measured precipitation is contributing 

to runoff. This corresponds to a RRC of 11 %. The majority of the precipitation 

water is used in evapotranspiration processes. MCKENZIE & CRAIG (1999) 

calculated evaporation losses for two flow rate scenarios for the Orange River in 

South Africa. For a flow release of 50 m³/s about 575 million m³/a (=18.23 m³/s 

– own calculation) water is evaporated (MCKENZIE AND CRAIG, 1999:7-2). This 

number corresponds to 36 % of the annual flow. In the second scenario, a flow 

rate of 400 m³/s resulted in evaporation losses of 989 million m³/a (= 31.36m³/s 

– own calculation) (MCKENZIE AND CRAIG, 1999:P.7-2), which corresponds to 

7.8 % of the annual flow.  

4.1.3 Geology 

The geological formation of the Great Letaba catchment took place in the 

precambrian era (DU TOIT AND HAUGHTON, 1954; VEGTER, 1995) whereas the 

headwater region of the Great Letaba catchment has been formed through the 

Drakensberg activities during the proterozoic period and is thereby younger 

than the rest of the catchment. 

Granite and diorite entities form the steep foothills of the Drakensberg 

Escarpment. The eastern part of the catchment is characterized by gneisses and 

granitoids (VEGTER, 2003:P.I) which show a higher potential for weathering and 

lead to a undulated surface.  

The Great Letaba has its source in the foothills. In the mountainous area 

the Great Letaba shows a very interesting river course. According to OBST AND 

KAYSER (1949:P.105) the headwater river stream consists of two parts: first the 

river shows a meandering river course following a North-South-Line, and 

second, turning in the East-North-East direction and deeply carving into the 

material. OBST AND KAYSER (1949:P.105) found indication that the Great Letaba 

River was twice cutting back on itself through the mountains, followed by a 

connecting with an older river stream.  
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4.1.4 Soil 

Soil formation depends on various factors such as geological bedrock, 

climate, overlaying vegetation, topography as well as groundwater (SCHEFFER 

AND SCHACHTSCHABEL, 2002:P.439).  

The following map (Figure 4-5) shows the distribution of soil types based 

on the World Reference Base of Soil (WRB) classification (FAO, ISRIC ET AL., 

1998) in the catchment of the Great Letaba River.  

 

Figure 4-5: The WRB- Soil Types in the Catchment of the Great Letaba River 

Rhodic Acrisols are found in the headwater of the Great Letaba River. 

This area is characterized by high rainfall amounts which have formed this 

deeply weathered soil type in that area. The Acrisols are characterized by “a 

higher clay content in the subsoil then in the topsoil” (FAO, ISRIC ET AL., 

2006:P.67) due to leaching of the clay from the topsoil into the subsoil. The deep 

weathering also determined the low base saturation (FAO, ISRIC ET AL., 

2006:P.67). Also found in the headwater are Lixisols, which have similar 
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characteristics as Acrisols. This soil type also shows weathering processes that 

lead to a higher clay content in the subsoil than in the topsoil. In comparison, 

Lixisols show a higher base saturation, which results in higher fertility and 

greater use for agriculture, including crops such as bananas and maize (FAO 

AND UNESCO, 1977:P. 208). Following the river stream downwards, Rhodic 

Nitisol developed, which is deeply weathered and characterized by a deep 

reddish color (FAO, ISRIC ET AL., 2006:P.87). According to the same source, this 

soil type develops over intermediate to basic parent material and is also found 

in more humid climates. In high elevations and steep areas Leptosols are found. 

This soil type is an azonal soil which only develops shallowly and is 

characteristic of mountainous areas (FAO, ISRIC ET AL., 2006:P.84). The Regosol 

is the most dominant soil in the catchment. This soil type is most commonly 

found in arid regions (FAO, ISRIC ET AL., 2006:P.92) and is characterized by a 

low water holding capacity and has be irrigated to be used for agricultural 

needs (FAO, ISRIC ET AL., 2006:P.92). The soil found in the area of the catchment 

outlet, the Arenosol, is also a poor soil for agricultural use. It has been 

developed over sand deposits and therefore contains a high sand percentage. 

4.1.5 Land Cover and Land Use  

The natural vegetation of the Great Letaba basin spans over the 

following Acocks Veld Types (ACOCKS, 1988; SCHULZE AND PIKE, 2004): the 

Inland Tropical Forest and the Tropical Bush Savanna. In order to derive the 

actual land cover, the National Land Cover (NLC) of South Africa (CSIR AND 

ARC, 2005) has been analyzed. This dataset includes 48 land cover classes. 

These classes are grouped according to Section 5.2.1.1 and shown in Figure 4-6.  

The high elevated (> 650 m asl.) areas are dominated by forests, 

especially monocultures of eucalyptus, pine and acacia. The lower elevations 

are characterized by savanna vegetation (bush- and woodland) which is 

interspersed by agriculture mainly along the river course. The intensive 

agriculture, however, leads to the problem of extensive soil exposure. Thus, in 

combination with the climatic conditions, these areas are affected by soil 

erosion.  
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Figure 4-6: Reclassified Land Cover of the Great Letaba Catchment  

Afforestation occurred in the high rainfall areas, located in the upper 

parts, of the Great Letaba catchment (DEPARTMENT OF WATER AFFAIRS AND 

FORESTRY AND DIRECTORATE: NATIONAL WATER RESOURCE PLANNING (NORTH), 

2004). These activities resulted in monocultures of pine and eucalyptus; both are 

alien plants in South Africa (RICHARDSON AND VAN WILGEN, 2004). Those 

plantations had an impact on the natural environment. The plantation of 

eucalyptus, for instance, reduced the freshwater supply to the rivers due to its 

higher water demand (RICHARDSON AND VAN WILGEN, 2004:P.49). The 

DEPARTMENT OF WATER AFFAIRS AND FORESTRY AND DIRECTORATE: NATIONAL 

WATER RESOURCE PLANNING (NORTH) (2004) estimated the stream flow 

reduction due to afforestation to be 35 million m³ in the Great Letaba 

catchment.  

Another important characteristic of the Great Letaba catchment is its 

importance for South African agriculture production. Due to the high annual 

variation of rainfall the crops have to be irrigated. The most common 

techniques in the area of the Great Letaba are flood irrigation, sprinkler and 



STUDY AREA AND DATA BASE 

 67

micro systems (VAN VUUREN, JORDAAN ET AL., 2003:TABLE P. 3-25). Irrigation 

farming occurs perennially with a maxima in mid-summer (January / 

February) and mid- winter (July / August) (VAN VUUREN, JORDAAN ET AL., 

2003:P.3-24). According to CSIR and ARC (2005) about 9 % of the agricultural 

area is under irrigation using about 161.9 million m3 water in 2000 

(DEPARTMENT OF WATER AFFAIRS AND FORESTRY AND DIRECTORATE: NATIONAL 

WATER RESOURCE PLANNING (NORTH), 2004).  

4.2 Data Base 

4.2.1 Hydro-meteorological time series 

For rainfall-runoff modeling of the Great Letaba River catchment the 

following daily hydro-meteorological time series have been used as input data.  

4.2.1.1 Rainfall Data  

The rainfall data used has been extracted from the rainfall database for 

southern Africa (LYNCH, 2004). This database contains rainfall observation 

between 1950 and 1999 from more than 12000 stations. The available stations in 

the catchment as well as in the surrounding areas were extracted and the 

proportion of patched values was analyzed. From that database 35 stations 

within and surrounding the catchment were extracted (Appendix B). For eight 

stations the amount of interpolated data is higher than 50 %. In a first model 

approach these stations were not used as model input. The model results, 

however, showed an under-simulation of runoff events. Therefore, the rainfall 

data from the neglected stations were compared with available runoff data. 

After an experiment to model the catchment with all 35 rainfall data the 

simulation improved, which indicated that the originally excluded stations 

were a good source of data. According to LYNCH (2004) the filling algorithm 

was based on a long term relationship (1903 to 2000). Within this time frame the 

stations had measurements for at least 57 % which corresponds to 55 years of 

data. Therefore, it can be assumed that the patched data are a good estimate of 

the actual rainfall amount and can be used in this study. The resulting rainfall 

network density amounts approximately seven stations per 1000 km².  
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4.2.1.2 Temperature Data  

There were two data sources used for the temperature data (Table 4-1): 1) 

data were provided by the South African Weather Service (SAWS) and 2) data 

were extracted from the temperature database of SCHULZE AND MAHARAJ (2004) 

which contains daily minimum and maximum temperature data for the time 

period 1950 to 2000.  

Table 4-1: Available Stations with Temperature Measurements  

NUMBER STATION NAME START  END  LON LAT ELEVATION SOURCE  

0677802_BX Pietersburg 1992 2004 29.45 -23.87 1250 SAWS 

0678291_A Pietersburg 1950 2000 29.40 -23.51 1295 Database 

0679009_A Goedgelegen 1950 2000 30.1 -23.39 753 Database 

0679194_A Duiwelskloo 1950 2000 30.7 -23.44 808 Database 

0679274_W Koedoesrivi 1950 2000 30.10 -23.34 732 Database 

0679562_A Letaba Letsitele 1950 2000 30.19  -23.52 520 Database 

0679608_W Modjadji 1950 2000 30.21  -23.38 975 Database 

0681722_W Mopani 1950 2000 31.25  -23.32 330 Database 

0682141_W Letaba 1950 2000 31.35  23.51 240 Database 

0724260_W Giyani 1950 2000 30.39  -23.20 472 Database 

7220991_W Mara 1992 2004 28.33 -24.90 897 SAWS 

5895941_W Warmbad 1992 2004 29.57 -23.15 1143 SAWS 

 

The data extracted from the database are data which had been already 

filled. The percentage of filled data for the time frame between 1993 and 1999 is 

shown in Table 4-2. With the exception of the Letaba and Giyani stations, the 

percentage of filled data is below 10 % for the respective time frame. 

Table 4-2: Percentage of Filled Minimum and Maximum Data from Lynch (2004) 

STATION NUMBER STATION  NAME 
% FILLED  

MAX TEMP 

% FILLED 

MIN TEMP 

0678291_A Pietersburg 6 6 

0679009_A Goedgelegen 2 4 

0679194_A Duiwelskloo 2 7 

0679274_W Koedoesrivi 4 4 

0679562_A Letaba Letsitele 3 5 

0679608_W Modjadji 6 7 

0681722_W Mopani 6 7 

0682141_W Letaba 100 100 

0724260_W Giyani 8 11 
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For three stations Pietersburg, Warmbad and Mara data from both 

sources were available. Here, the difference between filled data (database value) 

and measured value (SAWS-value) was estimated and a quality analysis of the 

data base had been carried out (Section 5.1.1). This analysis showed that the 

filled data are a good estimated of the actual measured temperature.  

4.2.1.3 Additional Climatological Parameters 

The additional climatological parameters (wind speed, sunshine duration 

and relative humidity) were provided by the SAWS. Despite the existence of the 

Pietersburg station, measurements for these parameters within and in the area 

surrounding the catchment were not available or incomplete. Therefore, 

measurements of the Mara, Warmbad and Messina hydrometric stations, 

located up to 200 km away from the catchment, were taken into account, as 

shown in the following table.  

Table 4-3: Additional Climatological Parameters 

 

The relative humidity was measured at three stations (Pietersburg, 

Warmbad and Mara). Two stations (Warmbad and Messina) recorded sunshine 

duration and only one station (Pietersburg) provided wind speed 

measurements. 

4.2.1.4 Runoff Data  

The runoff data was provided by the online database of the Department 

of Water Affairs and Forestry in South Africa (DEPARTMENT OF WATER AFFAIRS 

AND FORESTRY, 2003D). The catchment outlet is the hydrometric station B8h008 

(Letaba Ranch), which went into operation in September 1959 (DEPARTMENT OF 

WATER AFFAIRS AND FORESTRY, 2003D) and has been delivering automatic 

STATION 

NUMBER 

STATION 

 NAME 

START 

RECORD 

END 

RECORD 

LON LAT ELEVATION MEASURED 

PARAMETER 

0677502_BX Pietersburg 1993 2004 29.45 -23.87 1226 

Rhum 

Wind 

7220991_W Mara 1993 2004 28.33 -24.90 897 Rhum 

5895941_W Warmbad 1993 2004 29.57 -23.15 1143 

Rhum 

Sun 

0809706_X  Messina 1993 2004 29.90 -22.27 525 Sun 
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recordings since 1965. The structure, which is shown in Figure 4-7, is comprised 

of two sharp crested notches with gauging capacity of 0.585m (VILJOEN, 2006). 

The stage discharge relationship was updated two times during the operational 

period: in October 1986 and October 2002 (DEPARTMENT OF WATER AFFAIRS AND 

FORESTRY, 2003D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7: The Gauging Station Letaba Ranch (Photo: Scheffler, March 2006) 

4.2.2 Spatial Datasets (GIS-Datasets) 

The J2000 modeling system uses distributed model entities as input. 

These entities are based on the concept of the HRUs (FLÜGEL, 1995; FLÜGEL, 

1996) using GIS-datasets of land cover, soil, geology as well as a DEM. The 

datasets used in this study are summarized in Table 4-4. The shuttle radar 

topography mission (SRTM) dataset (U.S. GEOLOGICAL SURVEY EROS DATA 

CENTER AND NASA, 2007) provided information on topography parameters 

such as elevation, slope and aspect. Additionally, it was used to delineate the 

stream network, catchment borders and sub catchments. Information on soil 

type was derived from the Soil and Terrain Database for Southern Africa (FAO, 

2003). This database contains vector datasets of this area; it also gives 

information on soil texture for the soil types in Southern Africa. The geological 

information was provided by the Department of Water Affairs and Forestry in 

form of a vector dataset of the hydrogeological maps (DEPARTMENT OF WATER 
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AFFAIRS AND FORESTRY, 2002; DEPARTMENT OF WATER AFFAIRS AND FORESTRY, 

2003C; DEPARTMENT OF WATER AFFAIRS AND FORESTRY, 2003B). The land cover 

parameters (vegetation type, vegetation height) were obtained using the 

National Land Cover dataset of South Africa 2000 (CSIR AND ARC, 2005).  

Table 4-4: GIS-datasets for the HRU-delineation 

DATA- 

SET 

DESCRIPTION FORMAT RES SOURCE MODEL-

PARAMETER 

DEM 

Shuttle Radar 

Topography Mission 

(SRTM) 

Raster 90m2 

US Geological 

Survey (2003, 

2007) 

Elevation 

Aspect 

Slope 

Stream network 

Geology 

Hydrogeol. Maps 

(Messina, Polokwane, 

Phalaborwa) 

Vector 1:500.000 
DWAF (2002, 

2003) 

Bed rock 

characteristics, 

Storage Capacity, 

Soil 

Soil and Terrain 

Database for Southern 

Africa 

Vector 1:2Mill. FAO 2003 Soil Texture 

Land 

Cover 

National Land cover 

(NLC) South Africa 

2000 

Raster 320 m2 
CSIR AND 

ARC ( 2005) 

Vegetation Type, 

Rooting depth, 

Vegetation height 

 

For the HRU delineation, all datasets should have the same spatial 

resolution as well as projection. Therefore, all datasets were transformed into 

the UTM-Projection, Zone 36 South with a spatial resolution of 100 m. Datasets, 

having a coarser spatial resolution, such as soil information, land cover, and 

geology have been resampled in ArcGIS 9.1 (ESRI, 2003) using the nearest 

neighborhood method. 

4.2.3 The Remotely Sensed Soil Water Dataset 

The remotely sensed soil water dataset, ERS-Soil Water Index (SWIERS), 

was derived from the ERS 1/2 and was provided by the Institute for 

Photogrammetry and Remote Sensing (IPF) at the Technical University Vienna. 

The dataset span a time frame from 1992 to 2000 and contains information on 

the soil water within the soil column with 10 day resolution. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

In this chapter, the results of the study will be presented. The chapter is 

divided into three sections. First, in the data analysis section (Section 5.1.1), the 

input data will be checked for missing values as well as for plausibility. 

Subsequently, a system analysis will be carried out to investigate the data for 

indications of an influence on the hydrological response. Second, the conclusion 

drawn from this analysis will be used for the model calibration and validation 

(Section 5.2). The modeling outputs will also be investigated for their sensitivity 

to parameter changes. The conclusions will later be used to assess the 

downscaling results.  

Third, to compare the meso-scale soil water time series with the macro-

scale soil water time series, the area under investigation had to be determined 

(Section 5.3.1). After doing so, the model entities lying in this area of interest are 

averaged using the area weight, and then compared to the macro-scale soil 

water time series (Section 5.3.2). In this step, similarities and variations in long 

term (trend) and short term (seasonal) soil moisture will be highlighted. This 

analysis will give an insight on the evolution of the time series and therefore 

information on future behavior can be drawn. Based on these results, the 

downscaling scheme will be developed using the meso-scale soil water time 

series by applying a multiple regression model using precipitation and macro-
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scale soil water time series as independent variables. The results will be 

presented in Section 5.3.  

5.1 System Analysis and Delineation of Hydrological Response 
Units 

5.1.1 Data Analysis and System Analysis  

5.1.1.1 Rainfall Data Analysis 

As documented in Section 4.2.1.1, the rainfall data needed in this study 

were collected by LYNCH (2004). Thirty five rainfall stations (Figure 4-1) in and 

surrounding the catchment area were extracted from this database and used in 

this study. As discussed in Section 4.2.1.1, the author filled the data using a 

combination of algorithms such as inverse distance weighting, expectation 

maximization algorithm, median ratio method and monthly infilling technique 

(LYNCH, 2004).  

For each station the long term monthly and yearly statistical parameters 

mean, median, minimum, maximum and standard deviation were calculated 

for the time frame from 1980 to 1999 and summarized in Appendix C. The long 

term mean annual precipitation (MAP) amounts to between 416 and 1751 mm 

with a standard deviation ranging from 124 mm to 517 mm. The regression 

analysis reveals a very strong positive relationship between the standard 

deviation and the mean values (R² = 0.90). In other words, the year-to-year 

variability increases with an increasing MAP.  

5.1.1.2 Runoff Data Analysis 

The double mass approach, explained in 3.2.2, has been applied to 

analyze the runoff observation between stations along the Great Letaba River 

stream. Figure 5-1 shows the double mass–analysis between the runoff stations 

Letaba Ranch and Prieska as well as Letsitele and Letaba Junction, whose 

locations are shown Figure 4-1.  
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The left hand side of Figure 5-1 shows the double mass curve between the 

catchment outlet (Letaba Ranch) and the Prieska station, located approximately 

43 km upstream from the Letaba Ranch station. On the right hand side of the 

figure, the double mass curve between the Letsitele and the Letaba Junction 

stations is illustrated. The Letsitele measuring station records the discharge of 

the Letsitele River, a tributary to the Great Letaba River. The Letaba Junction 

runoff station lays about 0.5 km before the Letsitele River joins the Great Letaba 

River. The two runoff stations are approximately 1.5 km apart from each other, 

shown in Figure 4-1.  

 

 
Figure 5-1: Double Mass Curve Analysis in the Great Letaba Catchment 

Recall that the double mass curve analysis plots accumulated discharge 

recorded at the two sites. Under ordinary circumstances, the downstream site 

will record more water, but the relationship between the two sites should be 

linear. The double mass curve on the left side of Figure 5-1, shows that runoff 

relationship between the two station had been changed, and “more” runoff has 

been recorded at the outlet station (Great Letaba Ranch) than at the upstream 

station (Prieska) within the 1980 to 1999 time frame. The first 1/6 of the curve, 

covering the time period January 1980 to February 1982, is characterized by a 

nearly diagonal gradient to the dashed line (perfect fit). After that the curve 

bends towards the Great Letaba Ranch station, indicating more discharge has 

been recorded at this station (flag 1a). In February 1988 the curve shows nearly 

parallel gradient again until March 1992. At this point the double mass curve 

bends again toward the outlet station (flag 1b) with the “peak” by November 
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1996 and follows up to a parallel gradient again. The comparison of this curve 

with the MAP-data indicates that these characteristics could be explained by 

anthropogenic influences on the river discharge. The first section marks the 

time period until the end of 1982, characterized by an above average mean 

annual precipitation (MAP) (Figure 5-2). The years from 1982 to 1996, with the 

exception of two years 1985 and 1988 are characterized by low precipitation, 

whereas the years from 1996 to 1999 show above average MAP. Given the 

intensive agricultural activities in this catchment, the changes in slope can be 

explained by water uptake along the river before the Prieska station, especially 

during the years with low precipitation (1982 to 1996). The Great Letaba Ranch 

station measures the of the main channel of the Great Letaba River system and 

the Malotsi River, a river stream tributary that is only minor affected by 

irrigation (DEPARTMENT OF WATER AFFAIRS AND FORESTRY AND DIRECTORATE: 

NATIONAL WATER RESOURCE PLANNING (NORTH), 2004).  

This argument of anthropogenic impacts on the stream flow volume is 

supported by the analysis of the second double mass curve on the right hand 

side of Figure 5-1. In this figure two bends are shown (flag 2a and 2b). The first 

bend (flag 2a) covers the time frame February 1981 to September 1988, 

indicating “less” recorded discharge at Letaba Junction. During this period the 

recorded precipitation was below average. The lower recorded discharge 

during that time period would be a sign of restricted water supply through the 

dams located upstream. The opposite situation has been illustrated in flag 2b. 

Here, “more” discharge has been measured at the Letaba Junction. The year 

1996 marks the beginning of a time period of above average MAP. A 

comparison with allocation data from the dam located upstream, the Tzaneen 

dam, showed that the water supply from the dam was not restricted anymore 

and water was transferred into the river stream.  

This double mass analysis indicates intensive anthropogenic regulation 

of the discharge. The discharge in the river stream is especially ruled by the 

major dams, Ebenezer dam and Tzaneen dam, located in the headwater of the 

catchment. To reduce the anthropogenic influence in the rainfall-runoff 

modeling, the catchment area of the dams was not taken into model calibration. 

The amount of water supplied in the river stream from the dams was used as an 

input dataset in J2000.  
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5.1.1.3 Temporal Relationship between Rainfall and Runoff in the Great 

Letaba River 

The hydrological modeling of the catchment of Great Letaba River 

requires an understanding of the natural as well as anthropogenic influences on 

the runoff generation as shown in the preceding analysis. The rainfall-runoff 

interaction analysis was carried out for a longer time period (1980-1999) than in 

the actual study (1993-1999). This was done to gain more information on the 

system. The investigation focuses on the annual, seasonal and daily temporal 

scale.  

Figure 5-2 compares the long term mean annual precipitation (blue bars) 

to the annual runoff sum (blue line), as well as the variation from the 20 years 

average for rainfall (blue filled bars) and runoff (blue unfilled bars).  

Figure 5-2: Long term (20 years) Evaluation of Precipitation and Runoff  

The figure shows that the years 1980, 1981, 1985, 1988, 1996, 1997 and 

1999 are characterized with rainfall above the 20 years average whereas in the 

years 1982, 1983, 1986, 1991-1994 MAP-values below average have been 

recorded. The years 1984, 1989, 1990, 1995 and 1998 are characterized with a 

MAP approximately on average. Comparing this with the recorded runoff it is 

shown that the runoff follows the precipitation dynamics. However, there are 
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some exceptions, which reflect the anthropogenic influence and the high water 

demand in this region. For example, in 1995 the MAP-annual rainfall is roughly 

on average, whereas the mean annual runoff (MAR) runoff was 61 % below 

average. Data from the DWAF on the actual water allocation of the Tzaneen 

dam shows that no water has been released from the dam. It can be assumed, 

therefore, that water was still taken from the river stream. Similar situations, in 

which the MAR was measured below under MAP can be found in the years 

1985, 1989, 1990, 1995 and 1998.  

In the next step, the seasonal variability has been studied. The Great 

Letaba catchment lies in the semi-arid climate zone with a strong distinction 

between the dry and wet seasons, as illustrated in Figure 5-3.  

Figure 5-3: The 20 years Monthly Average of Precipitation and Runoff 

Figure 5-3 compares the average monthly values of the runoff rate (black 

line) at the outlet of the catchment and the observed precipitation (grey bars). 

The picture is based on data from 1980 to 1999.  

As shown in the figure, the temporal variability in rainfall amount varies 

between the dry and wet periods. In the wet period (October to March) about 

723 mm, corresponding to 85 % of the annual rainfall, are recorded. In the dry 

season (April to September) the measured monthly rainfall amounts to less than 

50 mm, whereas during June to August only 12 to 14 mm precipitation are 

documented. The high temporal variability is also reflected in the runoff, as 

shown in the differences between the low flow and high flow seasons (Figure 

5-3). During the dry season, the average monthly flow rate falls under 1 m³/s. It 

also possible for the river to run dry and no runoff is observed. The wet season, 
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however, is characterized by high discharge values with a runoff peak in 

February corresponding to the precipitation peak.  

In the following examination, the daily flows were analyzed. The daily 

flow varies depending on natural process behavior and natural extraction 

(evapotranspiration) as well as due to human influence (water extraction for 

irrigation purposes) along the river.  

Figure 5-4: Comparison of the Daily Flow at the Great Letaba Ranch Between Two Time 
Periods 1993/94 and 1998/99 

The figure shows daily runoff in comparison to daily rainfall for two 

time periods: the first figure is from the summer of 1993/94, representing a 

relatively “dry” year, and the second figure is from the summer of 1998/99, 

illustrating a “wet” year. In the wet year the runoff response to rainfall occurs 

earlier than in the dry year. During the wet year the first runoff occurs at the 

beginning of December. In the dry year, however, no discharge was observed 

until the end of December. This analysis indicates that the runoff might be 

generated due to accumulated precipitation between 300 and 350 mm.  
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5.1.1.4 Analysis of the Additional Datasets 

Temperature 

As shown in Section 4.2.1.2, the temperature estimates were taken from 

12 stations within and surrounding the catchment and come from two data 

sources (Figure 4-1, Table 4-1). For three stations (Pietersburg, Warmbad and 

Mara) data from both data sources were available. Here, a regression analysis 

between the two datasets has been carried out. The calculated coefficient of 

determination amounted to between R² = 0.97 to R² = 0.98. The difference 

between filled data (database value) and measured value (SAWS-value) was 

estimated. It showed that for over 83 % of the filled values the difference to the 

actual value amounted to +/- 3° C, whereas over 50 % of these were in the 

range of +/-1° C. These results justify taking the database with the filled data 

values as an input into the modeling. Also, the missing values within the 

SAWS-time series (Warmbad = 8 days, Mara = 1 day, Pietersburg= 4 months) 

were filled with the values from the database.  

The data were used to calculate the mean monthly temperature for the 

timeframe of 1993 to 19991. The calculated mean temperature in the area of the 

Great Letaba catchment amounts to 19.5° C with the lowest mean temperatures 

in July with 14.6° C and the highest mean temperatures in December with 

22.9° C. The minimum annual temperature reaches from 7.1° C in July to 18.7° C 

in January and the maximum annual temperature amounts to between 23° C in 

July to 29.7° C in January.  

Humidity, Wind Speed and Sunshine Duration  

Measurements at 8 am, 2 pm and 8 pm were available for humidity and 

wind speed. The daily mean average was calculated by averaging over these 

measurements. The mean values were calculated if at least two measurements 

of the specific day were available. If only one measurement during the day was 

available, this value has been compared the monthly mean value and its 

standard deviation. If the measured value was lying within the range of the 

standard deviation, the value was taken as a daily measurement. Otherwise 

that value was set as a missing value. The missing values were then filled using 

1 This calculation of the mean values is based on a simple average calculation. Due to 

their location, the stations Mara and Warmbad were not taken into account. 
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a regression analysis with a station nearby. Because wind speed is a chaotic 

component and has a local dependency, stations with a distance over 100 km 

from each other were not used to fill the missing values. Due to these 

requirements, only the Pietersburg station was used as input data for wind 

speed in the modelling system. For relative humidity the measurements of the 

Pietersburg, Mara and Warmbad stations were used as input data. For these 

stations the absolute humidity was calculated using Equation 3-11 to Equation 

3-13.  

For sunshine duration only data measured outside of the catchment were 

available. After analyzing the missing values and carrying out regression 

analysis, the data of the Warmbad and Messina stations were used. For these 

time series only 2.3 % of the data were missing, which were filled using nearby 

stations.  

Preparation of Macro-Scale Soil Water Index  

The scatterometer derived soil water data were checked for missing 

values and one single missing value was found in the time series of the 

footprint ID393. To fill this value, the linear regression analysis between the 

time series of ID393 and ID394 as well as ID393 and ID376 was carried out. The 

resulting coefficient of determination (R²) ranged from R² = 0.94 (ID 376) to 

R² = 0.97 (ID 394). Due to the higher R² between ID393 and ID394, the missing 

value was filled using the following linear relationship  

  

393 3941.02* 2.1
ID ID

SWI SWI= +  Equation 5-1 

  

5.1.1.5 Summary of the Data Analysis 

In summary, the data were checked for missing values, and reliability. 

The data analysis reveals the hydrometric time series are fitting together and 

therefore will provide a sufficient database for direct input to the hydrologic 

model. The data analysis also showed an intensive anthropogenic influence on 

observed runoff data over the time period of the investigation.  

Here, the following conclusions can be made. An intensive water 

infrastructure can be found in the headwater of the Great Letaba River. The 

analysis of rainfall and runoff data revealed that the time period from 1981 to 
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1988 was described by water shortage, since the double mass analysis revealed 

that the relationship between accumulated runoff changed. A comparison of 

water release data from Tzaneen dam with the double mass analysis indicate 

the time period from 1992 to 1996 as a time under water restriction. This 

changes in 1996 with the start of a period with above average MAP and the 

restriction on water supply was reversed. This was also seen in the double mass 

analysis by observing more water in the main channel. However, the second 

double mass analysis reveals intensive water uptake within the middle part of 

the river stream.  

The anthropogenic influence has to be accounted for in the hydrological 

modeling. The catchment of the Tzaneen dam will be excluded during this 

procedure to reduce the influence of the dams on the model calibration. Since 

there are no data available to determine the actual water uptake along the river 

and the hydrological model does not take irrigation farming or water uptake 

into account, it will be expected that the modeled runoff simulation will 

overestimate some events.  

5.1.2 Spatial Datasets 

Table 4-4 shows the datasets used to delineate the HRUs used in the 

model. In order to achieve a common spatial resolution the raster datasets, land 

cover and the DEM, were resampled to 100 m. The vector datasets, the soil data 

and the geology dataset, were converted into raster files with a resolution of 

100 m by applying the nearest neighbor method. All GIS-data files were than 

transformed into the UTM Projection, Zone 36 South.  

The DEM delineated from the SRTM-data (U.S. GEOLOGICAL SURVEY 

EROS DATA CENTER AND NASA, 2007) was used to derive topographical 

parameters such as aspect and slope. Therefore, the dataset had to first be 

prepared and sinks had to be filled (KÄÄB, 2005; GROHMAN, KROENUNG ET AL., 

2006) with the “fill” routine implemented in ArcInfo within ArcGIS Destop 9.1 

(ESRI, 2003). Afterwards, flow direction and flow accumulation were delineated 

in ArcInfo within ArcGIS Destop 9.1 (ESRI, 2003). An accumulation threshold of 

1000 cells was used for the delineation of the stream network. The resulting 

stream network was compared visually to the available topographic maps and 

corrected if necessary. Afterwards, the sub catchments were delineated using 

the ArcHydro-Tools (MAIDMENT, 2003) for ArcGIS Desktop. The location of 
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available hydrometric stations was corrected so that the runoff stations were 

located on the delineated stream network. As a result, 17 sub catchments with 

sizes from 104 to 619 km² were delineated. 

The hydro-meteorological time series (Table 4-1, Table 4-3, Appendix B) are 

representing measurements at point scale. To obtain spatial information for 

these hydro-meteorological parameters, the measurements had to spatially 

generalized using the IDW- method implemented in J2000 (KRAUSE 2001) 

described in Section 3.1.1.2. 

5.1.3 Delineation of Hydrological Response Units  

The delineation of the HRUs consists of several steps, as shown in Figure 

5-5. In the first step the individual GIS-datasets will be reclassified according to 

their hydrological significance. Then the prepared datasets will be overlaid on 

one another and, if necessary, reclassified again. Afterwards, small polygons 

under a certain threshold will be aggregated into neighboring polygons. 

Finally, the flow routing (topology) will be delineated for this final dataset and 

the resulting HRUs will act as model entities in the hydrological model. The 

following sections give a more detailed description of these steps.  

Figure 5-5: Flow-chart of the Delineation of HRUs (modified after Bäse, Helmschrot et al. 
(2006)) 

Data Preparation and Reclassification 

The first step of the HRU-delineation involves data preparation and 

reclassification of the GIS-datasets. This is necessary to meet the requirements 

for the hydrological model (KRAUSE, 2001:P. 140). The single values of the 
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topography, slope, aspect, geology, soil and land cover datasets are reclassified 

according to their hydrological importance to reduce the number of HRUs. 

The slope values were grouped into the following classes: low slope 

areas (0-5°), medium slope areas (5- 15°) and high slope areas (>15°) according 

to the work of BONGARTZ (2001). For the aspect, classes modified from 

BONGARTZ (2001) and HELMSCHROT (2006) have been used, as shown in Table 

5-1.  

Table 5-1: Classification of Aspect  

 

As discussed in Section 2.3, one of the most important factors for soil 

moisture generation is the soil texture, namely the particle composition of sand, 

silt and clay, The studies carried out by SALVE AND ALLEN-DIAZ (2001) showed a 

positive correlation between the clay content and the soil moisture content. 

Soils are dominated by clay particles that mainly show a coherent arrangement, 

which allows shrinking and swelling processes to take place (SCHEFFER AND 

SCHACHTSCHABEL, 2002:P.201). The swelling process leads to a reduction of the 

coarse pores and an increase of the amount of medium and fine pores in which 

water is stored (SCHEFFER AND SCHACHTSCHABEL, 2002:P.217). In the opposite 

process, shrinking, the stored water is slowly released to the surrounding area. 

Based on these findings the soil was grouped according to it’s the clay content. 

After analyzing the available texture data of the soil dataset (FAO, 2003), the 

following classes were delineated. 

 

 

 

CLASS DESCRIPTION  ASPECT IN ° 

North 337.5 – 360; 0-22.5 

Northeast 22.5- 67.5 

1 

Northwest 292.5 – 337.5 

Southeast 112.5 – 157.5 

South 157.5 – 202.5 

2 

Southwest 202.5- 247.5 

West 247.5 – 292.5 3 

East 67.5 – 112.5 
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Table 5-2: Classification of the Soil Types 

SOIL GROUP CLAY CONTENT[%] FAO SOIL TYPES  

1 <10 Rubic Arenosol 

2 10-25 Lithic Leptosols 

Eutric Regosols 

Leptic Regosols 

3 >25 Rhodic Acrisols 

Ferric Luvisols 

Haplic Luvisols 

Rhodic Lixisols 

Rhodic Nitisols 

4 -  Wetland Soil 

 

The first group describes the soil class with a very low clay content 

(below 10 %), accompanied with a low water holding capacity. The only soil 

type present in this group is the Arenosol, which is characterized by a sand 

content of up to 90 % (FAO, 2003). The second group summarizes soils with 

clay content between 10 and 25 %, including the Leptosol and Regosol soil 

types. The third group contains all the soil types with clay content more than 

25 %. In this group the Lixisole, Acrisole, Nitisole and Luvisole types are 

included. The last group has been created because of the specific hydrological 

dynamics of wetland soils.  

The land cover information was grouped into land cover classes, shown 

in Table 5-3. Distinction between the major land cover classes was made based 

on vegetation characteristics, such as vegetation height, rooting depth, leaf area 

index and stomata resistance. Smallholding urban areas were group to the 

surrounding land cover class. The field work showed that these areas are only 

mud hut with a small sealing of the soil, as shown in Figure 5-6. 
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Figure 5-6: Example of a Smallholding Area in South Africa (Photo: Scheffler, 2006) 

 

The available geology information was grouped into only two classes, 

shown in Table 5-4. This is due to the fact that in the Great Letaba basin the 

underground material does not play an important role in runoff dynamics. As a 

Table 5-3: Classification of the Land Cover Classes (Source: CSIR and ARC (2005)) 

LAND COVER CLASS LAND COVER 

CLASSES  

DESCRIPTION  

Broadleaf forest 1, 8, 10, 11, 12 Indigenous Forest and Forest Plantations of 

Acacia, Eucalyptus and others 

Conifer forest 9 Forest Plantations (Pine) 

Woodland 2, 39 Forest & Woodland; 

Smallholding Urban Area in Woodland Area  

Bushland 0, 3, 4, 40, 41 Thicket & Bushland, Shrubland,  

Smallholding Urban Area in Bushland and 

Shrubland Areas 

Grassland 5, 6, 7,42 Herbland, Grassland (un- and improvement), 

Smallholding Urban Area Grassland  

Bare soil and rocks 15,16,17,18,19,20,21,

22,36,37,38,47,48,49 

Degraded Land (areas with low vegetation 

cover) 

Area of townships, Mineries 

Water 13 Water 

Wetland 14 Wetland 

Agriculture 24,25,27,28,23,26,29 Agricultural Land (Cultivated and 

Uncultivated) 

Urban Area 30,33,35,43,44,45,46 

31,32,34 

Urban Land (commercial, residential, Build-

up) 
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result, base flow does not contribute to the mean annual runoff in major parts of 

the catchment (VEGTER, 1995). It is only in the mountainous area, in the western 

part of the catchment, that the base flow contribution can reach up to 50 % 

(VEGTER, 1995: FIGURE 6). 

Table 5-4: 1. Step of the Geology Classification 

 

The depth of the weathering layer is influenced by the topography, 

mainly by the slope. To take this control factor into account, the two geology 

classes were later further subdivided. For HRUs with slope values over 5° the 

weathering layer was determined to be at a depth of 2.5 m, leading to the 

following geology classes: 

Table 5-5: 2. Step of the Geology Classification 

GEOLOGY CLASS DESCRIPTION 

1 Fracture-bedrock aquifers with a weathering layer of 15 m depth 

2 Sedimentary aquifers with a weathering layer of 15 m depth 

3 Fracture-bedrock aquifers with a weathering layer of 2.5 m depth 

4 Sedimentary aquifers with a weathering layer of 2.5 m depth 

CLASS DESCRIPTION DWAF-

CODE  

Igneous Rocks 

Mafic / ultramafic intrusive rocks (dolerite, diabase, diorite, gabbro, 

dunite, pryoxenite, norite, anthrosite, hornblendite, carbonatite 

50 

Igneous Rocks 

Acid/ Intermediate, Alkaline intrusive rocks (various granitoide) 

51 

Igneous Rocks 

Mafic/ ultramafic extrusive rocks 

52 

Igneous Rocks 

Acid / intermediate/ alkaline extrusive rocks 

53 

Metamorphic Rocks 

Predominately meta-argillaceous rocks (slate, phylite, meta-pelite, 

schist, serperntine amphibolite, hornfels) 

54 

Metamorphic Rocks 

Predominately meta-arenceous rocks (quartzite, gneiss, migmatite, 

granuite) 

55 

1 

 

Metamorphic Rocks 

Predominately gneissoid rocks with xenoliths and undifferentiated 

metamorphic rocks 

57 

2 Sedimentary, Igneous and metamorphic rocks 

Undifferentiated rock and various mixed lithogies 

58 
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Overlay Analysis and Reclassification 

The overlay of the GIS-datasets was carried out in successive steps as 

shown in Figure 5-5. The first overlay (aspect and slope) build Topography-

Complex (TC) entities. Here, the number of classes was reduced by eliminating 

the aspect in classes with a slope < 5° due to the similar radiation input as flat 

surface (SCHULZE, MAHARAJ ET AL., 1997).  

In a second overlay the Vegetation-Soil-Complexes (VSC) were created 

by overlaying soil and land cover. Classes with a pixel amount below 1000, 

which corresponds to 0.21 % of the catchment area, were added to a class with 

similar natural characteristics (e.g. grassland to bushland, woodland to 

broadleaf forest). After the reclassification of the VSC, the resulting VSC were 

overlaid with the TC. In this step, two major reclassification processes were 

undertaken: 1) Agriculture classes with slopes over 15° were transformed to 

bushland. The same procedure was applied to wetlands. Additionally about 

3 % of the bushland area had been transformed to woodland with the same soil 

group, because the soil characteristics were set to a higher priority. In the last 

aggregation step, in woodland and forest classes with a slope below 5°, the 

east / west aspects have been transformed to a north aspect. SCHULZE, 

MAHARAJ ET AL. (1997:P.29-30) analyzed the solar radiation on different slopes 

and aspects. Their finding was that with a slope below 5° the radiation amount 

for North, NE/NW, as well as E/W facing aspects were comparable, whereas 

SE/SW and South facing aspects with the same slope showed a much higher 

radiation input. This has only been applied to areas with dense vegetation, such 

as woodland and forest. In the last step of the successive overlay processes the 

resulting Topography-Soil-Vegetation Complexes were overlaid with the 

geology groups. The reclassification process was done using the same 

parameter as before: The reclassification was only carried out with classes 

amounting to less than 1000 pixels. As a result of the generalization process 

31830 HRUs were defined for the Great Letaba Catchment.  

Generalization and Delineation of Linkage and Routing  

After finishing the knowledge based aggregation, the resulting entities 

were overlaid with the sub catchments. The smallest polygons with an area 

below 10 Pixels (<0.1 km²), were then eliminated using the Dissolve Adjacent 

Polygons 1.7 Extension (JENNESS, 2005) in ArcView 3.0 (ESRI, 1997) with the 
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following options: 1) dissolve into polygon with longest adjacent border and 2) 

dissolve if polygons share a common border. A requirement for the polygon 

aggregation was that only polygons within the same sub catchment were 

eliminated, thereby ensuring that no water flow occurs across the watershed 

borders. The 31830 HRUs were generalized to 8051 HRU-Polygons and used as 

model entities for the J2000 model. The physical characteristics were assigned 

using the majority function for land cover, soil and geology. For elevation, slope 

and aspect mean values were calculated using the Landscape Management 

Analyst Extension (HURVITZ, LAST ACCESS 2007) for ArcView 3.0. The so resulted 

model entities cover the catchment of the Great Letaba River and same parts of 

its surrounding area. This was necessary because the scatterometer footprints 

are extend over the catchment boarder and in the further analysis the entire 

footprint area will be under investigation.  

5.2 Rainfall–Runoff Modeling using J2000  

5.2.1 Model Parameterization  

The model requires separate parameter files for land cover, soil and 

ground water. Each land cover class consists of 23 land use parameters, each 

soil class of 24 soil parameters and each groundwater class of 4 groundwater 

parameters. The parameter values were taken from literature values and are 

explained in more detail in the following sections. 

5.2.1.1 Land Cover Information 

The J2000 model calculates the daily evapotranspiration rate based on 

the Penman-Monteith approach (MONTEITH, 1975). This approach estimates the 

evapotranspiration in the canopy layer using several vegetation parameters 

such as leaf area index (LAI), stomata resistance, rooting depth, and vegetation 

height. This information was retrieved from literature values, shown in Table 

5-6 for land cover classes. According to SCHULZE AND PIKE (2004) the vegetation 

growing period in this region of South Africa occurs between October and 

February. In the simulation of the rainfall-runoff dynamics the months 

September and March act as transition periods between the growing season and 

the season with no vegetation growth.  
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MAXIMUM BULK SURFACE 

CONDUCTANCE 

LAI EFFECTIVE 

HEIGHT 

[SM-1] [-] [M] 

1 2 3 4 5 6 D1 D2 D1 D2 

LAND COVER 

CLASS 

ALB 

[-] 

7 8 9 10 11 12 D3 D4 D3 D4 

RD 

[DM] 

135 135 138 141 141 141 3 1.5 15 10 Forest 

(deciduous) 

0.2 

141 141 138 135 135 135 1.5 3 10 15 

18 

140 140 160 179 179 179 3.5 2.7 10 10 Forest 

(broadleaf)  

0.12 

179 179 160 140 140 140 2.7 3.5 10 10 

14 

181 181 190 198 198 198 3 1 5 2 Woodland 0.14 

198 198 190 181 181 181 1 3 2 5 

12 

170 170 205 240 240 240 3 0.5 3 1 Bushland 0.18 

240 240 205 170 170 170 0.5 3 1 3 

10 

150 150 200 250 250 250 1.5 0.5 1 0.5 Grassland 0.24 

250 250 200 150 150 150 0.5 1.5 0.5 1 

8 

140 140 155 170 170 170 1 1 0.6 0.3 Bare soil and 

sparse 

vegetation 

0.1 

170 170 155 140 140 140 1 1 0.3 0.6 

10 

20 20 20 20 20 20 1 1 0.1 0.1 Water 0.06 

20 20 20 20 20 20 1 1 0.1 0.1 

0 

55 55 67 80 80 80 3 1.5 2 1 Wetland 0.2 

80 80 70 55 55 55 1.5 3 1 2 

10 

90 90 105 120 120 120 3 1 2 1.5 Agriculture 0.18 

120 120 105 90 90 90 1 3 2 1.5 

15 

90 90 90 90 90 90 1 1 5 5 Urban areas 0.1 

 90  90  90  90  90  90 1 1 5 5 

2 

Table 5-6: Parameters of the Land Cover Classes for the Soil Water and Evapotranspiration 
Module 

 (The values in the table above are taken from: Matthews (1984: as cited in Center for 
Environmental Remote Sensing Chiba University, 2006), Koerner (1995), Kelliher, Leuning et al. 
(1995), CSIR and ARC (2005), Schulze (1995), Canadell, Jackson et al. (1996), Breuer and Frede 
(2003), Schenk and Jackson (2002), Krause (2001), Kim and Lee (2004)) 

5.2.1.2 Information on Soil Data  

The soil information was taken from the Soil and Terrain Database for 

Southern Africa (SOTERSAF). That database contains field measurements with 

information on soil type and its texture. Several measurements are available for 

each soil type. The database unfortunately did not contain any field probe 

within the study area. To achieve representative soil texture characteristics for 

the soil types found in the study area, the available soil texture information was 

averaged according to the soil type and later the values for each soil type were 
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averaged according to the soil groups. The field capacity and air capacity 

parameters were derived from ARBEITSGRUPPE BODEN (1994) and AD-HOC 

ARBEITSGRUPPE BODEN AND SPONAGEL, H. (2005) assuming a soil density of four 

to five for the top soil horizon and a soil density of three for the lower horizons. 

Table 5-7: Parameters of the Soil Classes for the Soil Water Module 

 

In addition to these input soil parameters, J2000 has two parameters to 

adapt the field capacity and air capacity. The available field capacity defines the 

upper boundary water available to plants. The parameter values shown in the 

table above are mean values for each of these soil classes. The hydrological 

modeling with the initial values showed a tremendous overestimation by the 

model which could not be explained by the aforementioned water uptake along 

the river. To reduce this overestimation, the field capacity values were adapted 

by a factor of 1.5. However, in the sensitivity analysis this value was changed 

and the results and consequences analyzed.  

5.2.1.3 Information on Geology Data 

In the groundwater module the base flow components are divided into 

the fast (RG1) and the slow base flow (RG2) component. For each base flow 

component the module requires to define the maximum storage capacity 

(RG1max, RG2max) and a coefficient determining the retention time (RG1_K, 

RG2_K). The applied coefficients are shown in the table below.  

 

 

AVAILABLE FIELD CAPACITY 

[MM/DM] 

1 2 3 4 5 6 7 8 9 10 11 12 13 

SG D 

[CM] 

AC 

[MM] 

14 15 16 17 18 19 20 21 22 23 24 25 26 

1 125 212.5 13.5 13.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 - 

   - - - - - - - - - - - - - 

2 139 150 14.5 21 21 21 21 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 

   - - - - - - - - - - - - - 

3 254 129.8 12 12 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 

 

   21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 

4 110 59.0 55 55 55 55 55 21.5 21.5 21.5 21.5 21.5 21.5 - - 

   - - - - - - - - - - - - - 
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Table 5-8: Parameters of the Geology classes for the Groundwater Module  

GEOLOGY CLASS RG1 MAX RG2 MAX RG1_K RG2_K 

1 1000 1200 8 250 

2 2500 2000 14 100 

3 40 600 8 250 

4 125 1000 14 100 

(The values in the table above modified from: Davis and DeWiest (1966), Krause (2001), Vegter (2003)). 

The parameters RG1max and RG2max were calculated using the suggested 

calculation method after KRAUSE (2001:P.157). 

5.2.2 Modeling Results  

Semi-arid areas are characterized by a strong seasonal rainfall 

accompanied by high evapotranspiration rates. The soil water content can drop 

tremendously, especially during the dry season. ARCHER, HESS ET AL. (2002) 

studied a field site in southeastern Spain and they found that the soil moisture 

was dropping down to the wilting point during the dry season. Therefore, the 

parameters of the soil water module and groundwater module within J2000 

were set for depletion of the medium pore storage and by doing so to have a 

better representation of the soil water generation.  

The runoff-precipitation simulation of the Great Letaba River has been 

carried out for the time frame between 1993 and 1999 in which February 1993 to 

September 1997 was used as a calibration period and October 1997 to December 

1999 as a validation period. The simulation results are presented in the 

following figure.  



 

 

 
Figure 5-7: Simulated Hydrological Dynamics with the Distributed Model J2000, Great Letaba River Catchment (Without Catchment of the Tzaneen Dam) 
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The simulated hydrological dynamics (blue line) are shown in 

comparison to the observed runoff (red line) in the upper figure. The black 

columns reflect the daily catchment precipitation. The lower figure displays the 

difference between observed and simulated runoff and highlights over- and 

under simulation. The figure illustrates that the J2000 model is able to predict 

the runoff dynamics of the Great Letaba River. 

Table 5-9: Efficiency Criteria for the Simulation 

 

With the exception of the log NaS value (log NaS = 0.36), the efficiencies 

in Table 5-9 show a good model fit. However, as discussed in SCHEFFLER, BÄSE ET 

AL. (2007), the first half of the calibration period (1993 to 1995) was below MAP. 

This period was characterized by seasonal dry periods up to seven months in 

which no runoff was measured. This seasonality of the observed river runoff 

was not simulated by the model. The validation period, however, shows a very 

good value of the log. NaS (log. NaS = 0.62). During this period the river never 

runs dry, mainly as a result of higher precipitation during the years 1996 to 

1999 in comparison to the time period 1992 to 1995. However, regardless of 

better model efficiencies some overall modeling problems remain: 

 

1) Over prediction of single events 

The representation of single events, such as the over-prediction of the 

observed runoff at the beginning of the summer 1995/96 (flag 1a, Figure 5-7) is 

deficient. Analysis of the precipitation data showed that a precipitation event in 

the headwater of the Letsitele River, a tributary of the Great Letaba River, was 

the main cause of the runoff event. This was also confirmed through measured 

runoff data at the Letsitele gauge station. Examination of the runoff data along 

the course of the Great Letaba River showed that the runoff continuously 

decreased because of evaporation losses (MCKENZIE AND CRAIG, 1999) and 

water extraction due to irrigation (DEPARTMENT OF WATER AFFAIRS AND 

FORESTRY, 2003A; DEPARTMENT OF WATER AFFAIRS AND FORESTRY AND 

EFFICIENCY CRITERIA TIME PERIOD 

NAS LOG. NAS R² AVE [M³/S] 

1993-1997 

(Calibration) 

0.80 0.36 0.81 1653 

1997-1999 

(Validation) 

0.77 0.62 0.77 169 
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DIRECTORATE: NATIONAL WATER RESOURCE PLANNING (NORTH), 2004). Both of 

these factors are not yet considered in J2000. The hydrological dynamics of the 

Great Letaba River is mainly influenced by irrigation farming and dams, which 

were built for this purpose. Due to the low precipitation that characterized the 

1988 to 1995 time period (Figure 5-2) it can be assumed that the dams along the 

river course contained only a limited amount of water at this time. The runoff 

reduction at the beginning of the rainy season 1995/96 can be partially 

explained through backfilling of the dams. Flag (1b) in Figure 5-7 shows a 

similar situation for which it is assumed that the runoff reduction has been 

caused by water extraction along the river course.  

 

2) Under prediction of single events 

The modeling results showed an under simulation of single events 

during the rainy season e.g. in the year 1994/95 (flag 2a, Figure 5-7). In order to 

clarify that under simulation, data from runoff stations along the river were 

analyzed. The analysis of these data showed that the runoff has its source in the 

area between the catchment outlet and the Letsitele river station. Also, a 

comparison of the six stations in this 3000 km² expanse showed that 

precipitation had been recorded in this area but the total amount of these events 

can not explain the observed runoff. Therefore, it can be argued that the density 

of precipitation stations in this area is not able to measure local precipitation 

events and leads to the conclusion that the precipitation can be underestimated. 

Flag 2b in Figure 5-7 refers to similar situations for which an underestimation of 

the precipitation might cause the under prediction of the runoff by the model.  

Verification of the Modeling Results 

Table 5-10 shows the calculated water budget components for the 

modeled time period from 1993 to 1999.  
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Table 5-10: Water Budget Components for the Entire Modeled Period (1993 to 1999) 

 

The calculated evapotranspiration values range between 473 mm and 

861 mm and, in conjunction with rainfall amounts between 478 mm to 

1046 mm, which results in an evapotranspiration/rainfall ratio of 82 to 99 %. In 

other words, between 82 % and 99 % of the rainfall water is evapotranspired. 

Similar ranges for the percentage of water evapotranspired were achieved by 

SCHOEMAN, MATLAWA ET AL. (2002). They calculated the evapotranspiration as 

part of the water balance equation for different test sites in the Mpumalanga–

Province, located south of the catchment used in this study. They achieved 

values showing that between 45 and 100 % of the precipitation water was 

evapotranspired.  

Also, the estimated potential evapotranspiration was compared to 

estimated potential evapotranspiration values found IN SCHULZE, MAHARAJ ET 

AL. (1997). The values of 1359 mm to 1634 mm for the entire modeled period are 

within the estimated range of 1250 and 1899 mm for the Northern Province.  

5.2.3 Sensitivity Analysis  

The sensitivity analysis was carried out to determine the parameters 

influencing the model outputs. The parameter values, found during the 

calibration phase, were increased and decreased by 5 and 10 %. The differences 

in the model output have been calculated. The applied parameter values are 

shown in the following table. 

 

YEAR P  

[MM] 

PET  

[MM] 

AET  

[MM] 

∆ STOR 

[MM] 

QSIM  

[MM] 

QOBS 

[MM] 

1993/94 507 1585 498 3 6 7 

1994/95 596 1590 592 -1 6 14 

1995/96 1046 1359 861 49 135 104 

1996/97 808 1398 774 -39 73 64 

1997/98 478 1634 473 -10 15 11 

1998/99 856 1408 817 -41 80 87 

Mean 638 1496 596 -3 45 50 

Max 1046 1634 861 49 135 104 

Min 478 1359 473 -41 6 7 

Median 702 1496 682 -6 44 39 

STD 224 120 169 33 52 43 
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Table 5-11: Parameter Values for Sensitivity Analysis  

 

The Sensitivity Index (SI) (Equation 3-17), a measure of the change in 

model output for a given change in model parameter, has been calculated for 

two model outputs: 1) the simulated runoff and 2) the modeled soil water 

amount (sum of actual soil water amount in the large pore storage and the 

medium pore storage). The following figure illustrates the results for 

parameters affecting the soil water module. 

PARAMETER CHANGES IN % 
MODULE 

ANALYZED 

PARAMETER -10 -5 0 +5 +10 

SoilMaxDPS 2.7 2.85 3 3.15 3.3 

InfSummer 18 19 20 21 22 

InfWinter  49.5 52.25 55 57.75 60.5 

soilDistMPSLPS 1.8 1.9 2.0 2.1 2.2 

SoilDiffMPSLPS 0.45 0.475 0.5 0.525 0.55 

SoilOutLPS 0.36 0.38 0.4 0.42 0.44 

SoilLatVertLPS 0.45 0.475 0.5 0.525 0.55 

SoilMaxPerc 2.7 2.85 3 3.15 3.3 

soilconcRD1 1.53 1.615 1.7 1.785 1.87 

soilconcRD2 1.8 1.9 2.0 2.1 2.2 

FCAdaptation 1.35 1.425 1.5 1.575 1.65 

Soil Water  

ACAdaptation 1.35 1.425 1.5 1.575 1.65 

gwdistRG1RG2 0.81 0.855 0.9 0.945 0.99 

gwfacRG1 1.35 1.425 1.5 1.575 1.65 

gwfacRG2 6.66 7.03 7.4 7.77 8.14 

Ground-

water  

gwCapRise 0.009 0.0095 0.01 0.0015 0.02 

Reach 

Routing  
TA 9.9 10.45 11 11.55 12.1 
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Figure 5-8: Sensitivity Index for the Parameter of the Soil Water Module in Regard to 

Simulated Runoff and Simulated Soil Water Volume  

In the case of SI = 0, the model output is not sensitive to the parameter 

increase. A value of SI below zero illustrates a decreasing volume of model 

output as the parameter increases, whereas value higher then zero showing an 

increasing model volume with the parameter increase (FENTIE, MARSH ET AL., 

2005:P. 1143). The higher the absolute values of SI, the higher the sensitivity of 

the model output to the respective parameter (FENTIE, MARSH ET AL., 

2005:P.1143). 

In Figure 5-8 only the soil parameters soilInfWinter, soilInfSummer, 

soilconcRd1, soilconcRd2, FCAdaptation and ACAdaptation are shown because the 

values for the parameters soilMaxDPS, soilDistMPSLPS, soilDiffMPSLPS, 

soiloutLPS, soilLatVertLPS and soilMaxPerc are close to zero. In Appendix D and E, 

a summary of the actual SI-values can be found. As expected, the parameter 

changes have a different effect on the analyzed model outputs. The parameter 

increase results in increasing observed runoff, whereas the soil water amount 

decreases. The actual sensitive parameters are mostly the same for both model 

outputs.  

For both model outputs investigated the most sensitive parameter is the 

soil module parameter FCAdaptation. Additionally, for the runoff output the 

parameters soilInfWinter (SI=0.29 to 0.37) and the soilconcRD1 (SI=0.16 to 0.21) 
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are significant. The soil water is also slightly sensitive to the soilInfWinter 

parameter (SI=0.04 to 0.05).  

Figure 5-9 illustrates the effects of parameter changes in the groundwater 

module on the soil water and runoff volume. The most sensitive parameter for 

both model outputs is the gwRG1RG2dist with SI = 0.02 for the soil water and 

SI = 0.2 for the runoff. The modeled soil water and runoff volume are 

insensitive to the other parameters. 

 

 

Figure 5-9: Sensitivity Index for the Parameter of the Ground Water Module in Regard to 
Simulated Runoff and Simulated Soil Water Volume  

In summary, the sensitivity analysis indicates that the parameter 

FCAdapation has the greatest effect on both model outputs. In Figure 5-10 the 

influence of a 10 % parameter increase and decrease is pictured. 
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Figure 5-10: Effects of Changes in FCAdapation Parameter to the MPS-Saturation Output, 
Time Period 1995/96 

The figure shows variations in the saturation of the medium pore 

storages during the summer of 1995/96. A decrease of the parameter by 10 % 

leads to a higher saturation during the summer time whereas an increase of 

10 % results in a lower saturation. This behavior turns in the transition period 

from summer to winter. Here, a reduction of the parameter results in less 

saturation in the medium pore storage and a higher saturation in the case of a 

parameter increase. This can be explained by the evapotranspiration algorithm 

applied in the model. The evapotranspiration rate depends on the soil 

saturation. In case of the parameter increase less water is stored as soil water in 

the soil column, which reduces the available water for evapotranspiration 

processes.  

These variations in the soil water amount will be taken into account in 

the following investigation to determine if such parameter changes will 

influence the relationship between the remotely sensed soil water dataset and 

the simulated time series.  

5.3 Assessment and Evaluation of the Macro-Scale Soil Water 
Estimates  

The assessment and evaluation analysis is based on the J2000 modeling 

results from October 1993 to September 1997. The period from October 1997 to 

September 1999 will act as a validation period for the results. 
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5.3.1 Delineation and Characterization of the ERS-Scatterometer Footprints 

in the Catchment 

In the catchment of the Great Letaba River three ERS-scatterometer 

footprints are located as shown in Figure 5-11. For the comparison of the 

scatterometer derived soil water content with the modeled soil moisture, the 

area covered by the scatterometer footprint was determined. As explained in 

Section 3.3.1, one scatterometer footprint covers an area of about 1963 km² 

(BARTALIS, 2005). To derive the integrated area of each scatterometer footprint a 

circle of 50 km diameter was used. The three footprints cover different parts of 

the catchment. The summary of the landscape parameters is given in Table 5-12.  

Figure 5-11: ERS-Scatterometer Footprints in the Great Letaba Catchment 
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Table 5-12: Description of the Landscape Characteristics of Each Footprint  

 

The three footprints are characterized by different vegetation, soil 

distribution, and geology, as well as topography. The footprint ID376, located 

in the mountainous western part of the catchment, has slope values higher than 

5° for more than 50 % of the footprint area. This higher elevation (500 m to 

2121 m) of the footprint is represented mainly by the main vegetation types: 

Bushland (35.2 %) as well as forest (28.7 %) where soils with high clay content 

(>25 %) dominate. The footprints located in the center and eastern parts of the 

catchment (ID393 and ID394) are dominated by relief with low slope ranges. 

The main vegetation changes from a bushland (23.9 %)-woodland (21.2 %)-

plant community influenced landscape in the center to plant community 

dominated by woodland (41.1 %) and lesser bushland (17.5 %) in the east. 

Additionally, agriculture plays an important role in both footprints due to the 

low elevation (<500 m) for the most parts of the footprints. The major area of 

the grid points is represented by soils having medium clay content (10-25 %). 

PARAMETER PARAMETER SUBCLASS ID376 ID393 ID394 

Forest (Deciduous) 26.7 - - 

Forest (Broadleaf) 2.0 - - 

Woodland 0.5 23.9 41.1 

Bushland 35.2 21.2 17.5 

Grassland 0.8 - - 

Bare soil and sparse 

vegetation 

10.9 18.4 12.3 

Water 1.7 0.4 0.4 

Wetland 1.3 0.099 - 

Agriculture 19.5 36.0 28.7 

Land Cover 

Class 

 

Urban areas 1.4 0.001 - 

C: <10 % - - 1.4 

C: 10-25 % 33.3 66.3 54.7 

C.25 % 65.4 33.6 43.9 

Soil Group 

 

Wetland Soil 1.3 0.1 - 

0-5° 48.2 93.4 99.6 

5-15° 35.9 5.8 0.399 

Slope 

Class 

 >15° 15.9 0.8 0.001 

1 44.5 91.8 93.5 

2 4.2 1.699 6.4 

3 44.8 6.5 0.2 

Geology 

Class 

4 6.5 0.001 0.1 
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The HRUs lying with each footprint were extracted (1733 HRUs (ID394) 

to 3711 HRUs) whereas HRU characterized as water were not taken into 

account. For every extracted HRUs, the modeled soil water index (SWIHRU) has 

been calculated according to Equation 3-18 with an adjusted temporal resolution 

as described in Section 3.3.2. 

5.3.2 Comparison of Remotely Sensed Soil Water and Modeled Soil Water 

Time Series at Footprint Scale 

To compare the SWIHRU and SWIERS time series at footprint scale (50 km), 

the SWIHRU was averaged over all HRUs lying within each respective footprint 

(Figure 5-11) and taking the area weight into account. The result was the area 

weighted average 
___________

HRUSWI .  

Figure 5-12 shows the SWIERS (blue line) compared to the area-weighted 
___________

HRUSWI  (red line) for each of the three ERS-footprints for the time frame 

between 1993 and 1997. In the figure the footprints are sorted from the river 

source to the outlet, starting with ID376 located in the western part and 

finishing with ID394 in the eastern part of the catchment. Figure 5-12 shows 

similar dynamics between the analyzed model-concepts, which is also reflected 

by the coefficient of determination (R²) summarized in Table 5-13. 
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Figure 5-12: Time Series with Trend Components of the 
___________

HRUSWI  and the SWIERS for Each 

Footprint for the time frame 1993 to 1997 

Table 5-13: Summary of Coefficients of Comparison  

Coefficient ID376 ID393 ID394 

R² 0.53 0.62 0.60 

Bias 4.0 15.4 15.9 

The coefficient of determination ranges between 0.53 for ID376 and 0.62 

for ID393. These values can be interpreted that between 53 % and 62 % of 
___________

HRUSWI  (y) variability can be explained by the variability in the SWIERS (x). The 

corresponding x-y-plots are illustrated in Figure 5-13 with the 
___________

HRUSWI  on the y-

axis and SWIERS on the x-axis. The dashed black line highlights the regression 

SWIHRU  SWIERS  Trend-SWIHRU  Trend-SWIERS 
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line representing the relationship between the two variables. Similar results 

have been found by VISCHEL, PEGRAM ET AL. (2007) who compared the ERS-data 

to model results of TOPKAPI.  

 

Figure 5-13: X-Y-Plots 
___________

HRUSWI  and SWIERS for Each Footprint 

The plots reveal a two-fold relationship between the analyzed variables. 

When 
___________

HRUSWI -soil water values are below 40 % saturation an increase in the 

values of SWIERS is associated with a smaller increase in the 
___________

HRUSWI values. For 
___________

HRUSWI -soil water values over 40 % this observation is reversed: An increase of 

SWIERS-values is now connected to larger increase in 
___________

HRUSWI -values.  

This two-fold relationship might be traced back to the “observed” 

volumes. The SWIERS is based on surface soil water measurements whereas the 
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___________

HRUSWI  was derived from the saturation of the entire soil column. The volume 

of the surface layer is smaller than the soil column volume. In case of low soil 

water saturation, the same input will result in a stronger saturation change for 

the surface volume than for the entire soil volume. 

Table 5-13 highlights differences between the footprints in their 

coefficients of determination. This might be caused to some extent by the 

variability in land cover and especially in differences in land cover density. As 

discussed above, the scatterometer cannot penetrate into dense vegetation cover 

such as forests (LEWIS, 1998). As documented in Table 5-12 footprint ID376 is 

mainly characterized by forest, bushland and agriculture, whereas footprint 

ID393 and ID394 are covered mainly by savanna vegetation and agriculture. 

Figure 5-12 also shows that the 
___________

HRUSWI  mostly predicts lower values 

than the SWIERS. This is also reflected by the bias (WAGNER, SCIPAL ET AL., 2003; 

2007) with values between 4.0 and 15.9, summarized in Table 5-13. This wide 

range might be caused by the conceptual formulation of the SWIERS. According 

to WAGNER (1998), the calculation of the SWIERS only depends on the water 

content of the surface soil layer. Interactions with the surrounding environment 

such as transpiration, lateral flow as well as upward fluxes are neglected. These 

processes, however, are important processes for soil water generation in semi-

arid areas.  

The first process, transpiration, leads to a reduction of soil water up to 

several decimeters in the soil column in which the surface layer plays a special 

role. The soil saturation, especially the soil surface saturation controls the 

beginning of plant growth. ARCHER, HESS ET AL. (2002) examined different 

savannah species in Spain. They found a relationship between plant growth and 

the surface soil moisture content. Additionally, the authors documented soil 

drying of up to 2 m due to evapotranspiration processes (ARCHER, HESS ET AL., 

2002). The second process leading to a reduction of the soil water content in 

semi-arid areas are upward soil fluxes documented in particular under bare-soil 

conditions (WYTHERS, LAUENROTH ET AL., 1999). They found the greatest 

decrease in moisture occurs in the first centimeters independent of soil 

properties. The third processes, the lateral sub surface flow can not be neglected 

in semi-arid areas. UHLENBROOK, WENNINGER ET AL. (2005) observed lateral flow 

processes in the semi-arid Weatherley catchment in South Africa. On their 

experimental site, they documented macro pores leading the precipitation 



RESULTS AND DISCUSSION 

 107

water through the surface layer which responded in a drying of the surface 

layer within 12hours after a heavy rainfall event.  

These processes lead to a decreases of saturation in the subsurface layer 

as well as the entire soil column and, therefore, have to be accounted for. The 

processes are implemented in J2000 but not accounted for in deriving the ERS-

scatterometer index, which explains the occurrence of the bias. The difference in 

the range of the bias between the footprints might be explained by the 

conceptual calculation of the 
___________

HRUSWI . As explained above, the footprint ID376 

is characterized by forest, bushland and agriculture whereas the footprints 

ID393 and ID394 show savannah vegetation. 
___________

HRUSWI  was calculated taking all 

HRUs, except for HRUs characterized by water, into account but the microwave 

signal can not penetrate dense vegetation such as forest (HENDERSON AND 

LEWIS, 1998). Forests reduce the soil water stress (CAYLOR, SHUGART ET AL., 2005) 

by conserving water and providing a more balanced water regime. The 

consideration of HRUs characterized by forest leads to a higher 
___________

HRUSWI  and 

the reduction of the bias between 
___________

HRUSWI  and SWIERS.  

After analyzing the entire time series as one element, in the next step, the 

time series components have been analyzed. The investigation of the time series 

in detail will increase the knowledge about the evaluation of the soil water over 

time and will give insight into the seasonal behavior of soil water in semi-arid 

areas. The comparison of each of the 
___________

HRUSWI  and SWIERS components will 

indicate further similarities as well as variances in observations.  

Decomposition of the Time Series  

Each time series contains a long term trend, a seasonal component and a 

random component (ASSENMACHER, 1998). The trend component describes the 

long term movement over the analyzed time period. The seasonal component 

describes the short term variation due to seasonal weather patterns such as 

summer and winter. The random component is an unpredictable error caused 

by factors such as local weather conditions at a given time. 

The SWIERS and 
___________

HRUSWI  time series were portioned into their trend and 

seasonal components using the stl–function (CLEVELAND, CLEVELAND ET AL., 

1990) which are compared and analyzed in the following sections.  
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Trend Component 

 The trend component was calculated for the time frame October 1993 to 

September 1997, shown in Figure 5-12. The red line highlights the 
___________

HRUSWI  time 

series, its trend component is illustrated with a dashed red line. The blue line 

describes the SWIERS time series with the trend component picture by the 

dashed blue line.  

Both the SWIERS and 
___________

HRUSWI  data series reveal a similar trend behavior, 

also reflected in the R2-values ranging from R2=0.79 (ID394) to R2=0.94 (ID376) 

shown in Table 5-14. The trend curve is corresponding to the annual measured 

rainfall. After a period of low annual precipitation in the years 1993 to 1995, in 

1996 the annual precipitation was greater than the long term average. The 

observed precipitation in 1997 was close to the long term MAP. The trend 

curves decrease from the beginning in October 1993 until the middle of the year 

1994. In the beginning of the 1994/95 rainy season the curves increase smoothly 

which increases more strongly by the beginning of the 1995/96 rainy season 

and peaks in the middle of the year 1996. 

Table 5-14: Summary of the Comparison between the 
___________

HRUSWI  and SWIERS Trend Components 

SWIHRU [%] SWIERS [%]  

MIN MAX RANGE MIN MAX RANGE 

TIME LAG 

(IN 10DAYS TIME 

STEPS) 

R² 

ID 376 10.4 59.6 49.2 26.20 46.5 20.3 6 0.94 

ID 393 4.0 35.9 31.9 19.6  43.6 24.0 8 0.87 

ID 394 3.5 33.2 29.7 16.8  42.6 25.8 5 0.79 

 

The comparison, however, of the SWIERS and 
___________

HRUSWI  trend curves 

exhibits differences in magnitude. The range of values for the 
___________

HRUSWI  trend 

curve amounts to between 29.7 (ID376) and 49.2 (ID394) percent whereas the 

SWIERS curve ranges only from 20.3 (ID376) to 25.8 (ID376) percent (Table 5-14). 

An analysis also shows a time lag between the SWIERS and the 
___________

HRUSWI  peak of 

five to eight time steps which approximately correspond to 50 to 80 days. 

As explained above, the SWIERS is an integrated value based on the 

surface soil water amount. For this reason, in the beginning of the rainy season 

the SWIERS shows higher saturation values than the 
___________

HRUSWI , which is an 

integrative measurement that also takes the dry lower soil into account. This 

also explains the earlier peak of SWIERS by the end of January whereas the 
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___________

HRUSWI  peaks in mid February. In the transition period (April to June) the time 

series are a fit to each other. During June to October the SWIERS predicts lower 

values. After a certain time of wetting the surface soil layer, the water infiltrates 

deeper in the soil and the surface soil layer dries out, which results in higher 
___________

HRUSWI  values than SWIERS. 

Seasonal Component 

In the second, step the seasonal component of the 
___________

HRUSWI  and SWIERS 

time series have been analyzed. The Figure 5-14 illustrates the seasonal 

component of the SWIERS and the 
___________

HRUSWI  time series by plotting the soil 

saturation percentage for each footprint.  

 

 
 

Figure 5-14: Seasonal Analysis Between 1993 and 1997 for Each Footprint 

The overall picture shows that the seasonal components of the SWIERS 

and 
___________

HRUSWI  are similar to each other. This is also highlighted in Table 5-15 by 

SWIHRU   SWIERS 
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comparing the range values and the coefficients of determination for the 

seasonal components of the two indices. 

Table 5-15: Summary of the Comparison between the Seasonal Components SWIHRU and 
SWIERS 

 

The seasonal component follows the seasonal precipitation dynamics 

with a peak in February, though the SWIERS peaks about 30 days earlier than the 
___________

HRUSWI . Also, the SWIERS seasonal component of the footprint ID393 and ID394 

is characterized by a double peak with a primary maximum by the end of 

January and the second maximum by the end of February. Differences in the 

curve evaluation are obvious, in particular during the transition periods: 

between the dry and wet season (September/October) and from wet to dry 

season (March/April). In all footprints the SWIERS rises earlier than the 
___________

HRUSWI . These variations in the seasonal component might also be caused by 

differences in the observed soil water volumes of SWIERS and 
___________

HRUSWI . With the 

beginning of the rainy season, the surface layer gets wet, resulting in higher 

saturation of SWIERS. After a certain period in which the surface layer gets wet, 

the water infiltrates into the underlying soil column, resulting in rising 
___________

HRUSWI  

values. This also explains the earlier peak of SWIERS by the end of January 

whereas the 
___________

HRUSWI  peaks at the end of February. In the transition period 

(April to June) the surface layer dries out. By the end of June the surface layer is 

nearly dry whereas water is still available in lower parts of the soil 

compartments. This results in higher 
___________

HRUSWI  values between June and 

October. The footprint ID376, however, depicts lower SWIERS values than 
___________

HRUSWI  during April to September. An explanation here might again be the 

conceptual calculation of the 
___________

HRUSWI , taking HRUs with forest cover into 

account. The forest vegetation delays the drying out of the surface layer, which 

would result in higher 
___________

HRUSWI  values. 

In summary, the analysis shows that significant similarities in the 

evaluation of the soil water over time can be found, which indicates that the 

macro-scale soil water estimates contains valuable information on soil water 

SWIHRU [%] SWIERS [%]  

MIN MAX RANGE MIN MAX RANGE 

R² 

ID 376 -24.2 26.5 50.7 -19.7 21.9 41.6 0.74 

ID 393 -15.4 26.2 41.6 -18.5 25.4 43.9 0.85 

ID 394 -12.0 22.6 34.6 -16.6 24.02 40.2 0.81 
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content. The similarities in the trend component, as well as in the seasonal 

component, are very promising results that justify taking this analysis further 

and comparing the macro-scale soil water estimates to the meso-scale 

distribution. The analysis also showed that the absolute values can not be used 

in the analysis due to differences in observed volumes, which results in a bias of 

up to 16 %.  

5.3.3 Development of the Downscaling Scheme  

As described in Section 3.3.3.3, a multiple linear regression approach, 

Equation 3-23, was used to downscale the macro-scale soil water estimates. The 

preliminary analysis showed that precipitation had to be included into the 

downscaling model. The hypothesis is that the regression parameters m1, m2 

and d (Equation 3-25 to Equation 3-27) can act as scaling parameters, which can 

be described as a function of combinations of the landscape parameters: land 

cover, soil, slope, aspect and geology. The derivation of the scaling parameters 

will be carried out using the simulation period from October 1993 to September 

1997 and will be validated using the simulation period from October 1997 to 

September 1999.  

The Importance of Precipitation  

A single linear regression analysis with the SWIERS as the independent 

and the SWIHRU as the dependent variables has been applied. The resulting R², 

regression coefficient m and the intercept value d were plotted to analyze their 

spatial distribution. The spatial distribution indicated that the regression was 

influenced by the mean annual precipitation (MAP). The overlay of the 

regression coefficient with the MAP-map, experimentally for footprint ID376, 

showed that HRUs with MAP over 850 mm result in a regression coefficient 

higher than 1, whereas HRUs characterized by MAP under 850 mm had 

regression coefficients under 1. The hypothesis of the precipitation influence 

was verified by adding precipitation as an independent parameter into a 

multiple linear regression model (Equation 3-23). The multiple regression 

analysis was carried out with the lm-function within the R-Software (R 

DEVELOPMENT CORE TEAM, 2008). The function includes a T-Test, analyzing the 

distribution of the sample mean and assesses the statistical significance between 

two samples (ROGERSON, 2006) and the associated p-values, to provide a 



CHAPTER 5 

 112

measure for significance of the respective predictor. The null hypothesis states 

that the analyzed variable, in this case precipitation, does not influence the 

dependent variable (SWIHRU). The associated p-value defines the probability to 

wrongly reject the null hypothesis in the case that the null hypothesis is true 

(ROGERSON, 2006). If the p-value is equal to or less than the significance level the 

null hypothesis can be rejected. For the analysis of the importance of 

precipitation as an exploratory variable in the model, p-values higher than the 

significance level (in this case over 0.05) indicate that Psum does not explain the 

dependent variable SWIHRU in the applied model whereas p-values equal or less 

than 0.05 point to a statistical significance of precipitation. The analysis revealed 

that precipitation is a significant predictor in the model for 34.8 % (ID376) to 

58.8 % (ID394) of the HRUs. These findings agree with studies by VINNIKOV, 

ROBOCK ET AL. (1996), JACKSON, LE VINE ET AL. (1999) AND ENTIN, ROBOCK ET AL. 

(2000) who have shown that precipitation is a driving parameter in spatial 

distribution of soil water on a larger scale. Also as stated in SCIPAL, WAGNER ET 

AL. (2003), the SWIERS does provide information on soil moisture variability 

which is driven by precipitation. This is strengthened by the results found here. 

The analysis shows that whether Psum is statistically significant in the regression 

equation depends on landscape parameters, especially land cover. The land 

cover classes bushland, woodland and forest are primarily the ones influenced 

by Psum rather than wetland, urban, bare soil and sparsely vegetated areas. This 

can be traced back to the fact that in bushland, woodland and forests the 

effectiveness of precipitation on the actual soil moisture content is higher than 

for the wetland, urban and bare soil and sparse vegetated areas.  

Therefore, precipitation is an important variable in the applied 

regression model and can not be neglected in the further data analysis. 

Subsequent analysis extends the downscaling model by including precipitation 

as an independent variable by applying the model defined in Equation 3-23. 

Spatial Distribution of the Regression Parameters 

The spatial distribution of the regression parameters was again plotted, 

including the additional precipitation parameter, to investigate the assumption 

that different landscape parameter combinations result in a variation in the 

relationship between the SWIERS and modeled SWIHRU. The following figures 

show the spatial variability within the footprint ID376 of the regression 
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coefficient m1 and m2, the intercept d and the coefficient of determination (R²). 

The figures for the footprints ID393 and ID394 are in Appendix F to M. 

Figure 5-15 illustrates the spatial distribution of R²-coefficients. The figure 

reveals that the R²-values are spatially variable within the footprint. For the 

majority of HRUs R² lays between 0.4 and 0.6, highlighted in greenish colors in 

Figure 5-15. R2-values over 0.60, plotted in yellow to orange colors, can be found 

isolated primarily in the southern half of the footprint. The first hypothesis was 

that this distribution of R² might be explained by landscape parameter 

characteristics, in particular by the land cover. Forest and woodland vegetation 

does occur in the east and the northern part of the footprint, whereas 

agriculture and bushland dominate in the south. The analysis of the R²-range of 

the land cover classes revealed a high distribution of R²-values, indicating that 

other landscape parameters such as soil group, aspect, slope and geology might 

help to explain this distribution.  

Figure 5-16 illustrates the spatial variability of the regression coefficient 

m1 between the SWIHRU and the macro-scale soil water time series (SWIERS). 

Areas with a regression coefficient higher than 1 are those where a change in 

the SWIERS corresponds to a stronger change in saturation by the hydrological 

model. Areas having a regression coefficient under 1, represent regions where a 

change to the SWIERS saturation corresponds to a smaller amount of change in 

the soil moisture calculated by the hydrological model. HRUs showing an m1- 

value higher than 1 are pictured in blue to blue-green color in Figure 5-16.These 

areas are mainly located in the western half of the footprint whereas HRUs 

characterized by regression coefficients less than 1 (highlighted with a green to 

red coloration) are in the southeastern part of the footprint. This distribution 

has been overlaid with the land cover and soil information. This analysis 

indicates that these parameters might be responsible for the spatial distribution. 

Forests over very clayed soils can be found in the western part of the footprint 

corresponding to values below 1, whereas in the southern part (values >1) it is 

agricultural areas, bushland and areas with bare soil and sparse vegetation over 

soils with medium clay content (10 to 25 % clay content) that are dominant.  

Similar results are found for the regression parameters m2 and d. Figure 

5-17 shows the regression coefficients m2 for Psum for every HRU. The figure 

shows distinctive spatial patterns for this parameter. In the northern as well as 

in the western part of the footprint, which are dominated by forests, the m2-
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values range from -0.2 to 0. In the southern part of the footprint the m2-values 

reach from 0 up to 0.5, especially in the south to southeastern part of the 

footprint, where values up to 0.5 can be found.  

The intercept of each HRU, pictured in Figure 5-18 defines the 

intersection point of the plane with the y-axis. The figure shows that the 

intercept value ranges from -25 to 20 and is also spatially distributed. The 

picture shows a decrease in the intercept values from west to east. Intercepts 

equal or higher than zero are found in the very western part, dominated by 

dense forests, as well as isolated HRUs in the southeastern part of the footprint. 

The eastern part of the footprint, agricultural and bushland area, has intercept 

values below -5, though intercept values between -15 and -20 can be found in 

the eastern part of the footprint.  

These figures highlight the spatial variability of the regression 

parameters m1, m2 and d, indicating that these empirical values might be 

dependent upon specific landscape parameter combinations. In the next step 

this dependency will be investigated and the specific m1, m2 and d parameters 

for the respective landscape parameter combinations derived. 



 

 

 

Figure 5-15: Multiple Linear Regression: Spatial Variability of the Coefficient of Determination, Footprint ID376 



 

 

 

Figure 5-16: Multiple Linear Regression: Spatial Variability of the Regression Coefficient m1, Footprint ID376 



 

 

 

Figure 5-17: Multiple Linear Regression: Spatial Variability of the Regression Coefficient m2, Footprint ID376 



 

 

 

Figure 5-18: Multiple Linear Regression: Spatial Variability of the Intercept, Footprint ID376 
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Determination of Landscape Specific Downscaling Parameters  

Taking the results of the analysis carried out before, the hypothesis will 

be tested that the spatial distribution of the model parameters m1, m2 and d 

might be the driven by landscape parameter combinations. HRUs with similar 

or equal landscape parameter combinations will have similar model 

parameters. To verify this hypothesis, the model parameters are statistically 

evaluated using measures of descriptive statistics. The measures chosen are 

median and quintiles, to reduce the influence of outliers on the results 

(HOFFMANN AND RÖDEL, 2004:P.17-20). The 20th (1st quintile) and 80th (4th 

quintile) percentile of the distribution were used in this study, to make sure that 

more than 50 % of the values are taken into the analysis. The values of the 

upper and lower quintile will be used to distinguish between the different 

combinations and to determine specific parameter distributions.  

The model parameters were analyzed stepwise. First, the upper and 

lower quintiles as well as median were calculated for every possible 

combination of land cover and soil group. Land cover and soil group were 

chosen due to their direct impact on soil water. The soil group, based on clay 

content, influences the amount of stored water within the soil column. Land 

cover controls various processes such as evapotranspiration and, therefore, 

affects the soil water content. Also, vegetation can reduce soil water losses. 

Second, the analysis was extended to include the slope. The sloping of a hillside 

influences runoff generation and therefore impacts the soil water content. In the 

third step, the aspect of an area was taken as a parameter into the analysis. The 

aspect of an area determines the radiation input and consequentially the 

evapotranspiration. In the last step, the geology was added as a fifth parameter 

into the analysis.  

For each of the respective landscape parameter combinations:  

I.) Land cover and soil group (LCS) (20 classes) , 

II.) Land cover , soil group and slope (LCSS) (45 classes), 

III.) Land cover , soil group, slope and aspect (LCSSA) (113 classes),  

IV.) Land cover, soil group, slope, aspect and geology (LCSSAG) (213 

classes),  

the median for each possible combination (class) was calculated and if 

feasible regrouped. For the resulting classes the quintiles and median of the 
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respective distribution were calculated. For the following analysis, 22 HRUs 

characterized with agriculture on a hillside sloping over 15° were excluded 

(equaling 0.08 % of the modeled area). These areas are an artifact of applying 

the majority function after eliminating the small polygons.  

Results for Downscaling using Land Cover and Soil Group  

For the first landscape parameter combination LCS, the scaling 

parameters m1, m2 and d were grouped according to the all available 

combinations of the soil group with land cover. The achieved parameters are 

summarized in Table 5-16. 

Regression coefficient m1 

SG1 SG2 SG3 WETLAND MISC 
 LQ UQ MD LQ UQ MD LQ UQ MD LQ UQ MD LQ UQ MD 

Urban Area             0.00 0.12 0.06 

Broadleaf Forest    0.98 1.16 1.10 1.21 1.37 1.29       

Conifer Forest    1.03 1.14 1.11 1.23 1.45 1.37       

Woodland 1.02 1.02 1.02 0.81 0.99 0.90 0.73 0.91 0.82       

Bushland 1.03 1.03 1.03 0.91 1.26 1.10 0.83 1.36 1.02       

Grassland    1.00 1.18 1.07          

Bare Soil 0.74 0.75 0.75 0.67 1.06 0.76 0.62 1.02 0.70       

Agriculture 0.78 0.78 0.78 0.60 1.04 0.82 0.55 1.13 0.99       

Wetland          0.25 0.39 0.30    

 

Regression coefficient m2  

 

Table 5-16: Scaling Parameters for the Land Cover and Soil Groups

SG1 SG2 SG3 WETLAND MISC 
 LQ UQ MD LQ UQ MD LQ UQ MD LQ UQ MD LQ UQ MD 

Urban Area             0.25 0.31 0.29 

Broadleaf Forest    0.09 0.12 0.10 -0.02 0.03 -0.01       

Conifer Forest    0.09 0.11 0.10 -0.01 0.07 0.01       

Woodland 0.00 0.00 0.00 0.02 0.11 0.06 0.06 0.15 0.12       

Bushland 0.01 0.01 0.01 0.00 0.12 0.07 0.03 0.13 0.08       

Grassland    0.15 0.18 0.16          

Bare Soil 0.14 0.15 0.15 0.09 0.18 0.14 0.13 0.22 0.18       

Agriculture 0.13 0.13 0.13 0.03 0.19 0.09 0.03 0.23 0.08       

Wetland          0.26 0.32 0.30    
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Table 5-16 (continued): Scaling Parameters for the Land Cover and Soil Groups 

Intercept d 

MiSc=miscellaneous, grey background = based on a small number of events 

For the downscaling, the parameter m1 and m2 and d are contributing 

together as input variables in the downscaling model. Therefore, for each land 

cover class, the arrangement of all three parameters was analyzed. The wetland 

and urban areas have, with the exception of m2, very distinctive parameters and 

could be clearly separated from the other LCS-groups. The range of m1, m2 and 

d values of the other groups overlap one another and no strong separation 

between the parameter values could be derived. For instance, take the m1 and 

m2-parameters of the two forest types on soil group 2. Here the median of m1 

and m2 are similar or only by 0.01 different from one another, with the range of 

the conifer forest a little bit narrower than for the broadleaf forest. The clear 

distinction was observed in the intercept values. The parameters for the LCS-

groups woodland, bushland, bare soil and sparse vegetation as well as 

agriculture on top of soil group 1, are highlighted by a grey background in Table 

5-16, are derived from a very small HRU number (<5 HRUs). The 

representation of achieved parameters for the particular LCS-group is therefore 

questionable.  

The median values of m1, m2 and d for the different classes 

(combinations of land cover and soil type) were then used as input parameters 

in Equation 3-23 to downscale again the macro-scale soil water estimates for the 

time period October 1993 to September 1997 but now with the before grouped 

scaling parameter. The resulting soil water time series was compared to the 

simulated soil water time series with J2000 (Section 5.2.2). The correlation 

between the two times series was used to evaluate the performance of the 

 SG1 SG2 SG3 WETLAND MISC 

 LQ UQ MD LQ UQ MD LQ UQ MD LQ UQ MD LQ UQ MD 

Urban Area             -3.0 0.4 -1.1 

Broadleaf Forest    -14.3 -10.2 -12.6 -10.1 -5.1 -8.7       

Conifer Forest    -13.3 -10.1 -11.7 -8.7 2.3 -5.6       

Woodland -13.0 -12.8 -12.9 -13.1 -12.5 -12.9 -13.2 -12.0 -12.6       

Bushland -10.9 -10.9 -10.9 -14.1 -10.9 -12.6 -14.3 -7.4 -12.3       

Grassland    -16.4 -11.8 -14.5          

Bare Soil -11.9 -11.8 -11.9 -14.0 -11.0 -11.9 -13.8 -10.6 -11.5       

Agriculture -12.8 -12.8 -12.8 -15.8 -10.3 -13.3 -14.5 -8.9 -12.8       

Wetland          -8.6 -4.5 -6.3    
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downscaling model. For this landscape parameter combination the R²-

distribution was plotted in Figure 5-19 for each footprint as a relative frequency 

histogram. 

Figure 5-19: Relative Frequency of the R²-values for Each Footprint Achieved with the LCS-
Scaling Parameters  

The figure reveals that 43.2 % (ID376) to 99.7 % (ID394) of the HRUs 

within the respective footprint received a R²-value higher than 0.5. The analysis 

of areas with low R²-values (R²<0.5) show that they are, for the most parts, 

forest (broadleaf and conifer) on top of soil group 3 as well as agricultural areas 

on top of soil group 3. Therefore, in the next step, the slope, aspect and geology 

parameters will be taken into account and the result will be analysed.  

Effect of Slope, Aspect and Geology 

In the next step the scaling parameters according to land cover, soil 

group and slope (LCSS) have been derived and applied in the downscaling 

model. The resulting R²-values were subtracted from the previous R²-values 

and HRUs with an increase (∆R²>0.01) were extracted and their landscape 

parameter combination was analyzed.  

An R²-improvement of higher than 0.01 were seen in 6 % (ID376), 9 % 

(ID393) and 8 % (ID394) of the HRUs. However, the SWIERS is an integrated 

signal over the entire footprint area. It is, therefore, assumed that classes 

covering a larger area have more impact on the signal than classes with low 
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footprint coverage. In order to account for this, the area weight of the improved 

LCSS-class was taken into account. The analysis shows that only the 

agricultural LCS-class on top of soil group 2 and 3 shows a significant 

improvement of R², covering between 7 % (ID376) to 21 % (ID394) of the 

respective footprint. In conclusion, the consideration of slope in the grouping of 

scaling parameters only improved the results for agricultural areas. For the 

other LCS classes the improvement was below 0.01 and therefore not 

significant.  

In the next step, the scaling parameters were differentiated according to 

land cover, soil group, slope and aspect. Here the same procedure was applied 

as above. Here, a further improvement was achieved for 0.2 % (ID394) to 5.3 % 

(ID393) of the respective footprint area. This improvement was mainly 

observed in agriculture areas with soil group 2 and 3, whereas no improvement 

in the areas covered with forest was observed.  

The last step, the improvement of applying the scaling parameter for the 

land cover, soil group, slope, aspect and geology (LCSSAG)-combinations was 

analyzed. The application of these parameter resulted in an R²-improvement for 

0.5 % (ID393) to 1.6 % (ID394) of the footprint area. The examination of the 

respective LCSSAG-classes did not reveal an improvement in a specific class. 

Discussion of the Downscaling Results  

The results show that in the case study of the Great Letaba catchment 

geology does not significantly improve the results. Only up to 1.6 % of the 

footprint area show an increase of R² by at least 0.01. This weak influence could 

be explained by the minor influence of underlying geology formation on the 

rainfall-runoff generation in that area. For the Great Letaba catchment, the 

landscape parameters of land cover and soil group are the driving parameters 

to predict the meso-scale soil water distribution. This agrees with the findings 

of KIM AND BARROS (2002B) who disaggregated soil water information based on 

a fractional interpolation scheme and used soil texture and vegetation water 

content as additional data. In the present study, instead of vegetation water 

content, the actual land cover class has been used which is connected to the 

vegetation water content.  

An adding of the topography parameters slope and aspect as additional 

landscape parameters helped to improve the R²-values and therefore the 
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explained variability of SWIHRU with SWIERS and Psum only for agricultural areas 

with the soil group 2 and 3. The additional topography information needed for 

agricultural land might be explained by the studies of FAMIGLIETTI, DEVEREAUX 

ET AL. (1999) and MOHANTY, SKAGGS ET AL. (2000) who identified an influence of 

agricultural practice on soil moisture distribution. Parameters determining 

tillage operations are, for instance, slope and stone cover of the agricultural 

field (GOE, 1999). Also, agricultural land is affected by crop rotation, which 

might result in variations of the signal contributions into the integral remotely 

sensed signal.  

In the case of the forested areas, the downscaling method showed only 

weak success. The reasons can be found in the constraints of the microwave 

remote sensing. As discussed in Section 2.2.1.2 the transmitted microwave signal 

can not penetrate dense vegetation such as forests. The microwave can only 

penetrate into the soil in areas with clear cuts in the forest. The integrated ERS-

signal, therefore, contains no, or only minor, information on the soil water 

content under this vegetation cover, which constraints the application of the 

downscaling model in these areas.  

Downscaling Results with the Resulting Scaling Parameters 

The downscaling was carried out for the timeframe October 1997 to 

September 1999 using the scaling parameter based on the land cover and soil 

combination (Table 5-16) with the exception of agricultural areas for which the 

following parameter were applied (Table 5-17). The resulting time series were 

than compared to the modeled SWIHRU time series.  
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Table 5-17: Scaling Parameters for Agricultural Land under Consideration of the Specific Soil, 
Slope and Aspect Group 

 

As a quality criterion, the coefficient of determination between the two 

time series was calculated and its spatial distribution was analyzed. The 

resulting R²-distributions are plotted in Figure 5-20 to Figure 5-22.  

The figures show the spatial distribution of the R²-values within the 

respective footprints. In general, the downscaling of the macro-scale root zone 

soil water estimates resulted in R²-values between R² = 0.03 and R² = 0.87 with 

between 66.2 % (ID376) and 94.9 % (ID394) of the respective footprint area 

achieving R²-values higher than 0.5 (Table 5-18).  

 

M1 M2 D 
 

SG SLOPE ASPECT 
LQ UQ MD LQ UQ MD LQ UQ MD 

N 0.57 0.95 0.70 0.05 0.21 0.15 -14.68 -9.81 -11.84 

E/W 0.63 1.05 0.84 0.01 0.19 0.08 -15.01 -10.60 -13.43 

<5° 

S 0.54 1.03 0.75 0.02 0.23 0.11 -14.31 -9.21 -12.61 

N 0.95 1.10 1.04 0.03 0.08 0.05 -16.42 -13.53 -14.32 

E/W 0.84 1.11 1.02 0.02 0.13 0.04 -16.92 -12.07 -14.03 

2 

5°-15° 

S 0.86 1.12 1.03 0.03 0.16 0.06 -16.56 -13.88 -14.45 

N 0.49 1.06 0.74 0.06 0.24 0.15 -14.06 -8.35 -11.90 

E/W 0.49 1.05 0.64 0.05 0.25 0.19 -13.81 -8.08 -11.18 

<5° 

S 0.47 0.93 0.69 0.07 0.25 0.19 -12.92 -7.85 -11.29 

N 1.03 1.19 1.11 0.03 0.09 0.06 -14.67 -12.77 -13.87 

E/W 1.04 1.17 1.12 0.00 0.07 0.04 -14.63 -12.25 -13.44 

A
gr

ic
u

lt
u

re
 

3 

5°-15° 

S 1.04 1.15 1.11 0.02 0.08 0.06 -14.83 -13.33 -14.02 



 

 

 

 

Figure 5-20: R²-Spatial Distribution for the Downscaling, (Timeframe 1997 to 1999), Footprint ID376 



 

 

 

 

Figure 5-21: R²-Spatial Distribution for the Downscaling (Timeframe 1997 to 1999), Footprint ID393 



 

 

 

 

Figure 5-22: R²-Spatial Distribution for the Downscaling, (Timeframe 1997 to 1999), Footprint ID394 
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Table 5-18:HRU-Amount and its Respective Footprint Area of HRUs achieving R² over 0.5 

 

 

 

 

 

As illustrated in Table 5-18, parts of the footprints show R²-values under 

0.5, especially in the footprint ID376 where values below R²=0.5 were calculated 

for about 34 % of the area. The spatial distribution of R²-values indicates that 

some land cover classes achieve better downscaling results than others. About 

28.7 % of the footprint area of ID376 is covered by forest whereas savanna 

vegetation (bushland and woodland) are the major land cover classes for the 

footprints ID393 and ID394, (Table 5-12) which indicates that dense vegetated 

areas show low R²-values. This was analyzed by plotting the lower quintile, 

upper quintile as well as the median for every land cover class. The results are 

summarized in Table 5-19.  

Table 5-19: Statistical Summary of the R²-values for the Land Cover Classes 

R²-DISTRIBUTION   

LQ UQ MD MIN MAX MEAN 

Deciduous Forest  0.39 0.51 0.44 0.09 0.76 0.45 

Conifer Forest 0.39 0.55 0.48 0.15 0.70 0.46 

Woodland 0.57 0.66 0.61 0.36 0.74 0.61 

Bushland 0.53 0.65 0.59 0.20 0.84 0.59 

Grassland 0.63 0.70 0.65 0.37. 0.73 0.65 

Bare soil and Sparse 

Vegetated Areas 

0.52 0.64 0.56 0.28  0.75 0.57 

Wetland 0.43 0.53 0.48 0.37 0.80 0.50 

Agriculture 0.49 0.63 0.56 0.18  0.87 0.55 

Urban Areas 0.15 0.39 0.25 0.04 0.59 0.27 

 

The table above shows differences in the achieved R²-values between the 

land cover classes. Urban areas, for instance, resulted in R²-values between 0.04 

and 0.59, whereas 60 % of the HRUs are lying between 0.15 and 0.39. Also for 

forest areas, deciduous and conifer, R²-values reached only between 0.09 and 

0.76, respectively 0.15 to 0.70, in which 60 % of the HRUs are within the range of 

0.39 and 0.51 and 0.55 respectively. Land cover classes with R²-values between 

R² >0.5  

AMOUNT HRUS % FOOTPRINT AREA 

ID376 62.6 % 66.2 % 

ID393 85.9 % 86.4 % 

ID394 96.0 % 94.9 % 
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0.56 and 0.65 in median, are woodland, bushland, grassland and bare soil and 

sparse vegetated areas. Agricultural areas ranged from 0.18 to 0.87, but the 

majority, 60 % of the HRUs, are ranged from R² = 0.49 to R² = 0.63 but as shown 

in Figure 5-21 and Figure 5-22 some areas reach values below this range and 

highlighted with light blue coloring.  

The difference in the explained variability of SWIHRU with Psum and 

SWIERS might be explained by the application of two different concepts: 1) the 

remotely sensed approach and 2) the hydrological model. As discussed in 

Section 2.2.1, the ERS-scatterometer can not penetrate dense vegetation such as 

forest but also in impervious areas the soil water content can not be predicted 

(WAGNER, LEMOINE ET AL., 1999A; WAGNER, LEMOINE ET AL., 1999B; WAGNER, 

NOLL ET AL., 1999). It is therefore predicted that in those areas the macro-scale 

soil water estimates does not contain information and the downscaling of those 

areas is of a minimal success. The resulting small R²-values of HRUs 

characterized by urban and forest vegetation is, therefore, not surprising. 

Wetland areas are also difficult to measure with the ERS-scatterometer (SCIPAL, 

2002). For areas with bushland, woodland, agriculture bare soil, sparse 

vegetation and grassland, high R²-values have been achieved. Here, the 

transmitted signals can penetrated into the surface soil layer due to low 

vegetation cover or open vegetation areas and the integrated ERS-signal does 

contains soil water information on those areas. The results agree with the 

findings of WAGNER, PATHE ET AL. (SUBMITTED) who also achieved good 

downscaling results for cropland and herbaceous areas.  

Also, on the side of the applied hydrological model, limits occur that 

reduce the explanatory power of the downscaling scheme. In the model 

applied, irrigation is not implemented in the model structure. About 9 % of the 

agricultural area in the Great Letaba river is temporally or permanently under 

irrigation (CSIR AND ARC, 2005), which affects the remotely sensed signal. As a 

result, a difference evolves between the modeled and disaggregated time series 

especially in these areas.  

Despite the limitations of the applied procedure discussed, the results 

achieved are very positive, indicating that the model is able to disaggregated 

soil water dynamics in the Great Letaba River. In the next section, the influence 

of the applied hydrological model will analyzed. Therefore, the scaling 
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parameter will be calculated based on the variation of the model output 

resulting from the sensitivity analysis. 

5.3.4 Impact of Model Calibration Parameter on the Downscaling 

Parameters  

The downscaling scheme described above is based on meso-scale soil 

water time series derived from the rainfall-runoff modeling using the J2000 

hydrological modeling system. The resulting soil water time series are, 

therefore, a result of the calibration of J2000. The sensitivity analysis identified 

the FCAdaptation parameter as having the largest influence on the soil water 

output. An important question to answer is how much this specific model 

calibration parameter impacts the m1, m2 and d downscaling parameters. 

To assess this influence the calibration parameter FCAdaptation was 

changed by +/- 10 %. The resulting soil water time series were then used to 

recalculate the m1, m2 and d downscaling parameters. The first test, the 

reduction of FCAdaptation by 10 %, results in a decrease of the soil water storage 

and the second test, the increase of FCAdaptation by 10 %, results in an increase 

of the soil water storage. 

For each land cover and soil group combination the scaling parameters 

were calculated for the two test cases and compared to the former values 

achieved with the baseline J2000 model output. For the forest, bushland, 

woodland, bare soil and sparse vegetated surfaces, and wetland land cover 

classes the calculated maximum difference between the median of the baseline 

and the test runs amounted to +/- 6.2 % for the m1 and m2 parameters and +/- 

8.6 % for the intercept. 

The direction of change was also analyzed. The decrease of FCAdaptation 

resulted in a decline of the m2 parameter by 4.3 % for the aforementioned land 

cover classes. The increase of FCAdaptation resulted in an increase of the m2 

parameter by 6.2 %. Parameters m1 and d showed the opposite behavior. Here 

an increase of the maximum soil water storage resulted in a decrease of the 

scaling parameters m1 and d of about 5 % whereas a decrease of the soil water 

storage showed an increase of the scaling parameters of up to 8.6 %. 

For two land cover soil groups, however, these model parameter changes 

resulted in larger variations of the downscaling parameters. First, for 

agricultural land on soil group 2 with a hillside slope lower 5°, as well as 
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agricultural land on soil group 3 with a hillside slope between 5° and 15°, the 

parameter adaptation resulted in changes of the scaling parameters up to 50 %. 

A possible explanation could be the missing consideration of irrigation by the 

J2000 modeling system, which is common practice for this land cover soil group 

combination. A second explanation might be the low number of samples (below 

50 HRUs), especially for all HRUs characterized by the soil group 1. Here high 

variations of the scaling parameters could be observed as a result of the 

parameter variation. Because of the absolute low number of samples it is very 

likely that these classes could not produce a stable distribution, which results in 

higher variations of the scaling parameters.  

In summary, the analysis showed that the downscaling parameters are 

changing when they are based on different model calibration parameters. In 

particular, the parameters influencing the simulated soil water storage will alter 

the scaling parameters and therefore influence the relationship between the 

macro-scale and meso-scale soil water time series. This analysis, therefore, gives 

an indication of variation in the prediction range of the developed downscaling 

scheme, which can be quantified as less than 10 %. However, considering the 

assumptions made and considering the fact that the applied modeling system is 

able to reflect hydrological processes in this area, the resulting variations are 

acceptable. For further studies, an a priori estimation of model calibration 

parameters based on “stable” landscape characteristics, such as topography, 

might result in more generic model calibration parameter sets. This would then 

lead to more stable downscaling parameters and therefore to a reduction of 

uncertainty 
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CHAPTER 6  

SUMMARY, CONCLUSIONS AND 

FUTURE RESEARCH 

6.1 Summary and Conclusions  

The goal of the presented study was the development of a downscaling 

scheme for application of the macro-scale soil water estimates in meso-scale 

hydrological modelling. To achieve this goal three main objectives were 

addressed: I) application of a distributed hydrological model to estimate the 

spatial soil water distribution and the factors influencing this distribution, II) 

evaluation of the influence of landscape parameters (soil, land cover, 

topography, geology) on the macro-scale soil water estimates and, using this 

information, III) the development of a method for disaggregating macro-scale 

soil water estimates. 

For the realization of the overall goal of the work and the three specific 

objectives, the conceptual and methodical approach of this study was based on 

the following aspects: a) data analyses and integrated systems analysis; b) 

estimation of meso-scale soil water distribution by establishing the rainfall-

runoff relationship using a hydrological model; and c) evaluation of the 

relationship between macro-scale and meso-scale soil water distribution. 

The area used as a case study was the Great Letaba River catchment (ca. 

4.700 km²), a tributary of the Olifants River in South Africa. This area was 
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chosen, due to constraints in the microwave techniques, in the inability of 

penetrating dense vegetation cover, such as forests, while also covering a large 

enough catchment size to include at least three scatterometer grid points. A 

database was established for this area incorporating land cover, soil, geology, a 

digital elevation model, hydrometric data (runoff) and meteorological data such 

as humidity, wind speed and air temperature time series. The database then 

was used in the integrated systems analysis. This resultant analysis indicated 

that the hydrological response of the Great Letaba River is influenced by 

hydrometric infrastructure. Two major dams and several small dams were built 

within the catchment to ensure water availability for daily use as well as the 

extensive application of irrigation water for farming. This infrastructure was 

not taken into account in the modeling approach by calibrating the model 

without taking the catchment of the dams into account.  

For a process oriented estimation of the meso-scale soil water 

distribution, the concept of HRUs was applied. These HRUs were then used as 

model entities in the process oriented modular J2000 modeling system. The 

model estimates the soil water content of the soil column as a component of the 

water balance.  

The modeling system was able to predict the hydrological processes 

using the available data in an acceptable manner for the Great Letaba River 

catchment, despite the problems of representing the observed runoff by the 

model due to: 1) uncertain inputs and model validation resulting from 

incomplete and inaccurate hydro-meteorological data and 2) unknown water 

allocation along the stream channel.  

The model performance was evaluated by the comparison of observed 

and simulated runoff as well as with the comparison of the modeled 

evapotranspiration with theoretical values published in the literature. 

Considering that the parameters of the water balance (precipitation as an input 

variable, evapotranspiration as an output) compared favorably with values 

found in literature and the observed and simulated runoffs were comparable, it 

can be assumed that the soil moisture is adequately accounted for. However, 

the modeling still includes “room for improvement” that is discussed further in 

the next section.  

As a next step, the variable for comparison had to be identified. The 

SWIERS variable is described as the soil water content between wilting point and 
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field capacity. However, research has indicated that, in semi-arid areas, the soil 

water content can drop below wilting point and saturation above field capacity 

is possible. In order to overcome this problem, the simulated soil water index 

(SWIHRU) has been calculated, taking the soil water content of the three pore 

storage components (large pore storage, medium pore storage and fine pore 

storage) into account. 

The resultant time series values were compared to the macro-scale soil 

water estimates at a footprint scale. The analyses indicated considerable 

similarities in the evaluation of the soil water over time. This indicates that the 

macro-scale soil water estimates contain valuable information on soil water 

content. The similarities in the time trend data series, as well as in the seasonal 

component, are very promising results that justify extending this analysis to 

develop a downscaling scheme for the macro-scale soil water estimates.  

The overall downscaling concept is based on a linear regression 

approach that indicated encouraging results in previous studies (CROW, RYU ET 

AL., 2005; DE LANNOY, HOUSER ET AL., 2007; WAGNER, PATHE ET AL., SUBMITTED). 

In a preliminary analysis, precipitation was determined to be an important 

parameter. To take this parameter into account, the conceptual downscaling 

approach was transformed into a multiple linear regression approach. The 

included scaling parameters determined by the regression model were found to 

be related to the landscape characteristics. With the exception of agricultural 

areas, the combination of land cover and soil group can be used to derive the 

scaling parameters. For agricultural areas, the consideration of the specific 

topography group, slope and aspect in this case study improved the 

downscaling results.  

The resulting scaling parameters were applied on the time period of 1997 

through 1999 and the results evaluated accordingly. For grassland, bushland, 

woodland and bare soil and sparse vegetation land cover classes, it was found 

that the downscaling model achieved very good results. Wetland areas and 

urban areas exhibited unsatisfactory results, that are primarily caused by 

satellite limitations. Specifically, the transmitted signal cannot penetrate dense 

vegetation, impervious areas as well as water. The downscaling results for 

agricultural areas are moderate; this condition might be explained by model 

limitations. The integrated systems analysis indicated that some parts of 

agricultural areas in the catchment are currently under irrigation. This form of 
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water resources management could not be included in the modeling structure 

and therefore was not accounted for.  

These results are very promising, despite the underlying uncertainties 

inherent in both concepts, model results vs. macro-scale estimates. From the 

model standpoint, uncertainties occur in the uncertain input data, 

anthropogenic influence and the lack of including irrigation use in the model 

structure. In addition, the analysis indicated that the scaling parameters are 

dependent on the calibration model parameters, which increase the 

uncertainties of the resulting scaling parameters. In the case of the macro-scale 

soil water estimates, uncertainties occur in the conceptual approach of the 

SWIERS based on the simple infiltration model as well as the definition of the 

index and the inability of microwave to penetrate dense vegetation, impervious 

areas and water.  

Hence, further research should be conducted (see next section). Taking 

these uncertainties into account, the results are very promising and justify 

further research to downscale macro-scale soil water estimates. The main 

contributions to this field can be summarized by answering the following 

research questions.  

 
Which characteristics of the macro-scale soil water estimates are important for 

their application in meso-scale hydrological modeling?  

The results of this study show that both concepts, hydrological modeling 

and remotely sensed soil water estimates, reveal large similarities in predicting 

the soil water distribution over time. This analysis also exhibited variations in 

the prediction of the actual soil water values. These differences can be explained 

by the difference in the observed soil water volumes. The remotely sensed soil 

water estimates are based on the surface soil water content, whereas the 

simulated soil water time series are based on the root zone soil water content. 

From this it can be concluded that the macro-scale soil water estimates can act 

as a data source on dynamics of the soil water content for meso-scale 

hydrological modeling. 
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What downscaling method can be applied to describe the relationship between 

macro-scale and meso-scale soil water distribution?  

The study confirms results published BY CROW, RYU ET AL. (2005), DE 

LANNOY, HOUSER ET AL. (2007) and WAGNER, PATHE ET AL. (SUBMITTED), in which 

the relationship between macro-scale and meso-scale soil water is described by 

a linear relationship. The study also shows that precipitation acts as a control 

factor and has to be included in the downscaling scheme. The study showed 

that the meso-scale soil water distribution can be described as a multivariable 

linear regression function of the macro-scale soil water values and the regional 

measured precipitation. 

 

What are the driving variables controlling the scaling parameters used to 

downscale the macro-scale soil water estimates and how can they be used to 

explain meso-scale soil water distribution? 

The results of this study show that land cover and soil group are suitable 

parameters to derive regression parameters to explain the meso-scale soil water 

distribution. For the most part, a very good downscaling result has been 

achieved using these parameters. The addition of the slope and aspect 

parameters only improved the results slightly for agricultural areas. The study 

indicates that the simulated modeled time series is not a complete description 

of the soil water distribution, because the effects of irrigation processes in the 

catchment were not modeled. Geology was not found to be an important 

parameter describing the meso-scale soil water distribution in the Great Letaba 

River catchment. 

 

Which areas can be disaggregated with the macro-scale soil water product and 

with what level of success? 

The downscaling model developed has been applied in the Great Letaba 

River catchment for the time period from 1997 through 1999. The downscaling 

model was able to predict the meso-scale soil water distribution and indicate 

the differences among the various applicable land cover classes. Very good 

downscaling results were achieved for the woodland, bushland, grassland, bare 

soil and sparsely vegetated areas land cover classes. For agricultural areas, the 

applied model generated only moderately acceptable results, which might be 

mainly caused by limitations in the applied model structure. The downscaling 
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scheme resulted in completely unsatisfactory results only for urban areas, 

wetlands and forest classes. In these cases, the limitations of the applied satellite 

technique were a significant factor.  

6.2 Future Research 

This study presents very promising results for downscaling macro-scale 

soil water data. However, uncertainties still exist, from which key areas for 

further research can be derived.  

First, a validation of the downscaling method should be conducted in the 

same study area but for a different time frame and with different input data. 

Two directions for research are recommended: 1) the estimation of meso-scale 

soil water time series based on different input data, such as precipitation 

information derived from radar. Such datasets would help to characterize the 

areal rainfall patterns more accurately. Also, data on the actual water uptake 

would ensure a more certain and acceptable model calibration; 2) application of 

different macro-scale soil water data. Possible datasets could be data from the 

Advanced Scatterometer (ASCAT) onboard the MetOp-Satellite launched in 

2006 or the Soil Moisture and Ocean Salinity (SMOS), expected to launch in 

2008 (EUROPEAN SPACE AGENCY, 2007).  

Second, the proposed method needs to be applied to other catchments. 

Specifically, two kinds of study areas are recommended to be analyzed: 1) 

study areas with similar catchment characteristics will give an indication of the 

dependency of the study on the specific catchment characteristics. There is a 

need to validate the findings in other areas that are similar to the area used to 

develop the method; 2) the proposed method has to be applied to areas with 

different natural characteristics. Such an analysis would give an indication of 

applicability of the method under various climatic and natural conditions.  

Third is the application of a hydrological model with a vertical 

subsurface profile layer. The ERS-scatterometer penetrates only into the upper 

(< 5 cm) (WAGNER, SCIPAL ET AL., 2003) surface soil layer and the applied simple 

infiltration model component introduces considerable uncertainty. The 

hydrological modeling of the soil water distribution in the upper soil layer and 

its comparison with the remotely sensed measurements would help in the 

following ways: 1) to understand the applicability of the assumed infiltration 
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model for the ERS-scatterometer measurements and 2) to give further insight 

for SWIERS model improvement. Also it would help to establish a better 

relationship between the meso-scale and macro-scale distribution.  

This would also be helpful for a fourth area for future research, 

establishing a method for integrating macro-scale remotely sensed data, such as 

the SWIERS-data, in meso-scale hydrological models. The study shows that the 

remotely sensed datasets contain valuable information which could help to 

improve meso-scale hydrological models. In particular, in areas with no or only 

limited hydrometric infrastructure, these data could act a validation tool. 

Modeling results could be evaluated using an additional data source. With the 

development of appropriate methods, the remotely sensed data could serve as 

an important data source in model parameterization and model calibration. In 

this way, remotely sensed soil water data provides a valuable tool for water 

resources management. 
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APPENDIX 

 

APPENDIX A: J2000 MODEL PARAMETERS (SOURCE: KRAUSE 2001; 

BÄSE 2005) 

MODULE PARAMETER PARAMETER DESCRIPTION  

αRain Water storage capacity per m² leave area (rain) 
Interception 

αSnow Water storage capacity per m² leave area (snow) 

SoilMaxDPS Maximum capacity for depression storage  

SoilPolRed 
Reduction parameter for the potential 

Evapotranspiration  

SoilLinRed Maximum value for the MPS storage  

soilMaxInfSummer 
Infiltration capacity between the months May and 

October  

soilMaxInfWinter  
Infiltration capacity between the months November 

and April  

soilMaxInfsnowcover Infiltration capacity for snow cover 

soilImpGT80 
Relative infiltration capacity for areas over 80% 

sealing  

soilImpLT80 
Relative infiltration capacity for areas below 80% 

sealing 

soilDistMPSLPS 
Calibration parameter for infiltration distinction 

between LPS and MPS 

soilDiffMPSLPS 
Calibration parameter for distribution of the LPS 

storage to MPS at the end of a model time step 

soilOutLPS Calibration parameter for LPS out flow 

soilLatVertLPS 
Calibration parameter for distribution of the LPS 

outflow to subsurface flow or percolation  

soilMaxPerc Maximum percolation rate 

soilconcRD1 Time delay coefficient for surface runoff  

soilconcRD2 Time delay coefficient for subsurface flow 

FCAdaptation Coefficient for field capacity adaptation  

Soil Water  

ACAdaptation Coefficient for air capacity adaptation 

gwRG1RG2dist 
Calibration parameter for distribution of percolation 

water  

gwfacRG1 Time delay coefficient for the fast base flow 

gwfacRG2 Time delay coefficient for the slow base flow 

Groundwater  

gwCapRise Coefficient for capillary ascension 

Reach 

Routing  
TA Coefficient for determination of the discharge wave 
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APPENDIX B: OVERVIEW ON THE RAINFALL STATIONS 

SAWS-

NUMBER 

STATION  

NAME 

START 

RECORD 

END 

RECORD 

LON LAT ELEVATION % FILLED 

1903-2000 

% FILLED 

1993-1999 

635873 Serala 1903 2000 30.08 -24.02 1742 0 1 

636518 Schelm 1903 2000 30.30 -24.13 826 32 92 

678381 Syferkraal 1903 2000 29.70 -23.87 1259 4 5 

678680 Masealama 1903 2000 29.88 -23.83 1497 12 8 

678776 Haenertsburg 1903 2000 29.93 -23.93 1485 1 0 

678836 Glenshiel 1903 2000 29.97 -23.93 1431 0 0 

678858 Broederstrom  1903 2000 29.97 -23.85 1620 0 1 

678863 Stampblokfo 1903 2000 29.98 -23.88 1426 35 0 

679019 De Hoeck  1903 2000 30.02 -23.82 1274 19 50 

679086 Letabadrift 1903 2000 30.05 -23.93 916 1 0 

679135 Belvedere  1903 2000 30.08 -23.75 862 0 0 

679141 Vergelegen 1903 2000 30.08 -23.85 1047 1 0 

679164 Westfalia 1903 2000 30.10 -23.73 932 3 0 

679194 Duiwelskloo 1903 2000 30.12 -23.73 850 24 3 

679197 Zomerkomst 1903 2000 30.13 -23.78 763 0 0 

679209 Mamathola 1903 2000 30.15 -23.97 752 3 3 

679227 Merensky 1903 2000 30.13 -23.80 777 1 0 

679267 New Agatha 1903 2000 30.13 -23.95 1105 1 2 

679268 Monavein 1903 2000 30.12 -23.97 886 0 0 

679274 Koedersrivi 1903 2000 30.17 -23.57 686 32 0 

679284 Quantock 1903 2000 30.17 -23.73 832 3 0 

679508 Thabina 1903 2000 30.28 -23.97 571 19 49 

679562 Letaba  1903 2000 30.32 -23.87 550 42 100 

679608 Modjadji 1903 2000 30.35 -23.63 916 0 0 

679654 Berlyn 1903 2000 30.37 -23.90 521 21 58 

680207 Gravelotte 1903 2000 30.62 -23.95 545 1 1 

680225 Black Hills 1903 2000 30.65 -23.78 470 13 33 

680280 Eiland 1903 2000 30.67 -23.65 548 0 0 

680354 Consolidate 1903 2000 30.70 -23.90 508 0 0 

680494 Kondowi 1903 2000 30.78 -23.75 421 40 100 

681691 Tsende 1903 2000 31.40 -23.53 331 2 0 

723231 Bontfontein 1903 2000 30.15 -23.35 740 22 46 

723656 Bellevue 1903 2000 30.42 -23.42 561 43 100 

724790 Shangoni 1903 2000 30.95 -23.17 426 5 0 

725373 Woodlands 1903 2000 31.22 -23.22 341 15 0 
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APPENDIX C: SUMMARY OF THE STATISTICAL PARAMETER FOR THE 

LONG-TERM YEARLY ANALYSIS OF RAINFALL FOR EACH STATION 

 

 

Std= Standard Deviation 

STATION-

NUMBER 

MEAN 

[MM] 

MEDIAN 

[MM] 

MIN 

[MM] 

MAX 

[MM] 

STD 

[MM] 

635873 769 764 402 1283 204 

636518 844 802 392 1766 344 

678381 416 396 229 704 124 

678680 461 491 196 807 162 

678776 817 827 518 1557 233 

678836 1050 992 575 1846 316 

678858 1751 1688 874 2876 517 

678863 1205 1205 524 2303 410 

679019 1634 1619 723 2563 483 

679086 979 952 367 1740 312 

679135 1250 1240 465 1948 396 

679141 1332 1273 554 2099 391 

679164 1081 1026 396 1742 371 

679194 1071 1067 364 1759 364 

679197 1049 998 533 1617 322 

679209 1128 1118 603 1933 323 

679227 961 942 410 1512 304 

679267 1337 1330 693 2037 383 

679268 1259 1252 722 1784 323 

679274 608 488 219 1179 290 

679284 1061 1043 521 1674 313 

679508 636 652 259 1047 210 

679562 769 783 238 1046 192 

679608 725 720 392 1089 198 

679654 572 541 282 858 174 

680207 470 459 204 780 164 

680225 506 473 286 921 160 

680280 554 556 234 944 202 

680354 478 484 238 802 153 

680494 419 429 126 730 173 

681691 428 381 194 838 170 

723231 578 510 229 1002 240 

723656 552 538 163 928 226 

724790 477 436 270 771 157 

725373 453 422 247 888 180 
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APPENDIX D: SENSITIVITY INDEX IN REGARD TO CHANGES IN THE SOIL 

WATER VOLUME   

 

 

RR= Reach Routing 

PARAMETER CHANGE [%]  PARAMETER 

-10 -5 5 10 

soilMaxDPS -0.01 -0.01 -0.01 -0.01 

soilmaxInfSummer -0.01 -0.01 -0.01 -0.01 

soilmaxInfWinter -0.10 -0.10 -0.08 -0.08 

SoilDistMPSLPS -0.04 -0.04 -0.03 -0.03 

soilDiffMPSLPS 0.00 0.00 0.00 0.00 

soilOutLPS 0.00 0.00 0.00 0.00 

soilLatVertLPS 0.00 0.00 0.00 0.00 

soilMaxPerc -0.01 -0.01 -0.01 -0.01 

soilconcRd1 -0.05 -0.05 -0.04 -0.04 

soilconcRd2 -0.01 -0.01 -0.01 -0.01 

FCAdaptation -0.82 -0.80 -0.78 -0.77 

So
il 

W
at

er
 M

od
u

le
 

ACAdaptation -0.02 -0.02 -0.02 -0.02 

gwRG1RG2dist -0.02 -0.02 -0.03 -0.03 

gwfacRG1 0.00 0.00 0.00 0.00 

gwfacRG2 0.00 0.00 0.00 0.00 G
ro

u
nd

 

W
at

er
 

M
od

u
le

 

gwCapRise -0.01 -0.01 -0.08 -0.07 

R
R

 

TA 0.00 0.00 0.00 0.00 
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APPENDIX E: SENSITIVITY INDEX IN REGARD TO RUNOFF VOLUME 

CHANGES 

 

 

RR= Reach Routing 

 

 

PARAMETER CHANGE [%]  PARAMETER  

-10 -5 5 10 

soilMaxDPS 0.03 0.03 0.03 0.03 

soilmaxInfSummer 0.09 0.08 0.07 0.07 

soilmaxInfWinter 0.37 0.35 0.31 0.29 

SoilDistMPSLPS 0.00 0.00 0.00 0.00 

soilDiffMPSLPS 0.00 0.00 0.00 0.00 

soilOutLPS 0.01 0.01 0.01 0.01 

soilLatVertLPS 0.00 0.00 0.00 0.00 

soilMaxPerc 0.07 0.07 0.07 0.06 

soilconcRd1 0.21 0.20 0.17 0.16 

soilconcRd2 0.04 0.04 0.04 0.04 

FCAdaptation 0.63 0.59 0.53 0.50 

So
il 

W
at

er
 M

od
u

le
 

ACAdaptation 0.07 0.07 0.06 0.06 

gwRG1RG2dist 0.19 0.19 0.19 0.19 

gwfacRG1 0.00 0.00 0.00 0.00 

gwfacRG2 0.02 0.02 0.02 0.02 

G
ro

u
nd

- 
W

at
er

 
M

od
u

le
 

gwCapRise -0.01 -0.01 -0.06 -0.05 

R
R

 

TA 0.00 0.00 0.00 0.00 
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