Synthesen und Eigenschaften potentieller Ligandsysteme für **Zink(II)** – ausgehend von **Bis-thiadiazolo-triaziniumsalzen**

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena

von Diplomchemiker Martin Walther geboren am 09. August 1970 in Gotha

Gutachter:

1. Prof. Dr. E. Anders

2. Prof. Dr. M. Döring

Tag der Disputation: 05. 06. 2002

Inhaltsverzeichnis

Abki	ürzungsverzeichnis	4
1	Einleitung und Zielstellung	5
2	Bis-thiadiazolo-triaziniumsalze 1 und Triaziniumsalze 13	11
2.1	Neue 1-(Halogenoalkyl)pyridiniumsalze 6a aus funktionalisierten Aldehyden 3	11
2.2	Darstellung der Bis-thiadiazolo-triaziniumsalze 1 durch Umsetzung von 6 mit	
	2-Amino-5-alkyl-1,3,4-thiadiazolen 7	13
2.3	Darstellung der Bis-benzothiazolo-triaziniumsalzen 13 durch Umsetzung von	
	6b mit 2-Aminobenzothiazolen 12	18
3	Umsetzung der 5/6/5-Heterocyclen mit Nucleophilen	21
3.1	Überblick zu Reaktionen von 1 mit Aminen A	21
3.2	Weg A: C-N-Bindungstrennung im Traiziniumring als gemeinsamer erster Schritt zu	
	den Wegen A und B	23
3.3	Weg B : Bildung substituierter Aminothiadiazole 28 und Iminiumsalze 29	27
3.4	Weg C: Degenerative Ringtransformation zu Guanidinen G	29
3.4.1	Ringöffnungsschritt: Einfluß der negativen Hyperkonjugation	29
3.4.2	Charakterisierung der Betaine 26	33
3.4.3	Abfangreaktionen unter Bildung der Salze 32 und Ringschluß zu	
	NNS-Heterocyclen 33	35
3.4.4	Nebenreaktionen bei der Guanidinsynthese	36
3.5	Weg D: Bildung neuartiger, schwefelfreier 5/6/5-Heterocyclen 30	38
3.5.1	Umsetzungen der NNN-Heterocyclen 30 mit Nucleophilen	41
3.6	Orientierende Versuche zu Reaktionen von 1 mit Sauerstoff-, Schwefel-,	
	Phosphor- und Kohlenstoff-Nucleophilen	42
4	Liganden auf Guanidinbasis	46
4.1	Eigenschaften der neuen hochsubstituierten Guanidine G	46
4.2	Synthesen der D0–Guanidine G5-G11	49
4.3	Synthesen der D1-Guanidine G12-G18	51
4.4	N-Nucleophile mit zwei zusätzlichen Donorfunktionen: D2-Guanidine G19-G27	53

4.5	Piperazin, 1,2-Diaminocyclohexan, Cyclam und Tris-(2-aminoethyl)-amin als N-						
	Nucleophile	55					
5	Reaktionen der neuen Verbindungen mit Zink(II)-Salzen und Zink(II)-						
	Organylen	59					
5.1	Zink-Verbindungen der D0-Guanidine	60					
5.2	Zink-Verbindungen der D1-Guanidine	64					
5.3	Zink-Verbindungen der D2-Guanidine	66					
5.4	Bis-thiadiazolo-aminale 2 als Liganden	71					
5.5	Bis-triazolo-aminale 35 als Liganden	72					
6	Heterocumulen-Fixierung /-Aktivierung	74					
6.1	CO ₂ -Aktivierung	74					
6.1.1	1 NMR-Untersuchungen zur Fixierung von CO_2 durch Zink-D1- und						
	Zink-D2-Guanidin-Komplexe	74					
6.1.2	2 Copolymerisation von CO ₂ und Epoxiden	77					
6.1.3	3 Übertragung von 13 CO ₂ auf 1-Indanon und <i>p</i> -Methoxyacetophenon –						
	qualitativer Nachweis durch NMR-Versuche	83					
6.2	Aktivierung von Arylisocyanaten	85					
7	D0- und D1-Guanidine und Kupfer(II)-Salze	87					
8	Zusammenfassung und Ausblick	90					
9	Experimenteller Teil	96					
9.1	Bis-(1,3,4-thiadiazolo)-1,3,5-triaziniumsalze 1	98					
9.2	α-Halogenopyridiniumsalze 6a	102					
9.3	Bis-benzothiazolo-1,3,5-triaziniumsalze 13	104					
9.4	Guanidine G (Weg C)	106					
9.4.1	l Guanidinbeispiele G1-G4 aus sekundären Aminen (ohne NH-Funktion)	107					
9.4.2	2 D0-Guanidine G5-G11	109					
9.4.3	9.4.3 D1-Guanidine G12-G18 112						
9.4.4	4 D2-Guanidine G19-G27 und neue sekundäre Amine	117					
9.4.5	5 Guanidine G28-G32 aus Bis-benzothiazolo-triaziniumsalzen	123					

9.4.6	Guanidine aus Oligoaminen G33-G37	126
9.4.7	Betaine 26, mit Methyliodid abgefangene Salze 32 und	
	NNS-Heterocyclen 33	129
9.5	Aminale 2 / Wege A und B	133
9.6	Bis-triazolo-triaziniumsalze (Weg \mathbf{D}) und neue Aminale	134
9.7	Produkte mit anderen Nucleophilen	136
9.8	Synthesen und Reaktionen von Metall-Komplexen	137
9.8.1	D0-Guanidin-Zink-Verbindungen Z1-Z6	137
9.8.2	D1-Guanidin-Zink-Verbindungen Z7-Z9	140
9.8.3	D2-Guanidin-Zink-Verbindungen Z10-Z27	142
9.8.4	Zink(II)-Komplexe und Cumulene/ ¹³ CO ₂ -NMR-Untersuchungen	152
9.8.5	Polycarbonatsynthesen	153
9.8.6	Trimerisierung von Arylisocyanaten	157
9.8.7	Guanidin-Cu(II)-Komplexe	159
Anha	ang	160

Literaturverzeichnis

195

Abkürzungsverzeichnis

- Anion
- Abbildung
- 3-Parameter-Hybridfunktional aus HF- und DFT-Korrelations-
funktionalen
- normal-Butyllithium
- Carboanhydrase
- Chemische Ionisierung
- COrrelation SpectroscopY
- Dalton
- Dünnschicht-Chromatographie
- Distortionless Enhancement by Polarization Transfer
- Dichtefunktionaltheorie
- Dimethoxybenzylalkohol
- Dimethylformamid
- Dimethylsulfoxid
- Elementarladung
- Electron Spray Ionisation
- Gel-Permeations-Chromatographie
- Heteronuclear Multiple Bond Correlation
- Heteronuclear Multiple Quantum Coherence
- p-Nitrobenzylalkohol
- Natural Population Analysis
- Nuclear Overhauser Effect SpectroscopY
- Parametrization Method 3
- Raumtemperatur
- sekundär
- Tabelle
- Triethylamin
- Tetrahydrofuran
- TOtal Correlation SpectroscopY
- Turn Over Frequency
- Übergangszustand

1 Einleitung und Zielstellung

Die Synthese von *Bis-thiadiazolo-triaziniumsalzen*¹ **1**, einer Substanzklasse mit interessanten elektrophilen Eigenschaften an den Positionen C(3a) und C(4a), zugänglich aus *1-* (*Halogenoalkyl*)-pyridiniumsalzen^{2,3,4} **6a** oder *N*,*N-Bis(alkyl)pyridiniumsalzen*^{1,5} **6b**, ist **1998** von WERMANN und ANDERS beschrieben worden.¹ Im Rahmen dieser Arbeit sollen Umsetzungen von **1** mit verschiedenen Nucleophilen zur Darstellung neuer Heterocyclen herangezogen werden.

Abbildung 1-1

Die angenommene Elektrophilie der oben genannten Positionen in **1** wurde auch durch Ladungsberechnungen mittels DFT-Methoden⁶⁷ bestätigt .

Abbildung 1-2 Resultate einer NPA⁸-Berechnung für Modell-Kationen von **1**, Benzaldehyd und eines Iminium-Ions (B3LYP/6-311++G(d,p))

Die für die Positionen C(3a) bzw. C(4a) berechnete Ladung von q = 0.30 e ist demnach zwischen den mit der selben DFT-Methode ermittelten Werten des Benzaldehyds mit q = 0.42 e und des einfachsten Iminium-Ions mit q = 0.22 e einzuordnen.

Durch die Möglichkeiten von Variationen des angreifenden Nucleophils, der Reste R^1 und R^2 sowie der Reaktionsbedingungen werden eine Vielzahl physikalisch und chemisch unterschiedlicher Produkte zugänglich sein.

Eine erste, schon bei der Synthese von **1** aus den Pyridiniumsalzen **6** und den Aminothiadiazolen **7** (s. Abb. 1-4) anfallende, aminalartige Verbindung **2** (s. Abb. 1-3) erklärt sich als Ergebnis des nucleophilen Angriffs von **7** auf **1** (s. Kap. 3.2).

Abbildung 1-3

Diese Reaktion diente als Motiv für die vorliegende Arbeit, die sich zunächst auf die Verwendung von primären und sekundären Aminen A als Ringöffnungsreagenzien konzentriert. Mit den in Abbildung 1-3 dargestellten möglichen Variationen von 2 (bei 2' durch Donor-substituierte primäre Amine, bei 2'' durch eine zusätzliche Donorfunktion im Aldehydteil R¹) könnten auf diese Weise interessante Metallkomplexliganden zugänglich sein. Demzufolge muß schon mit der Wahl geeigneter Ausgangsaldehyde 3 für die Dreikomponentensynthese^{4,9} aus 3, Thionylhalogenid 4 und Pyridin (5) (s. Abb. 1-4) zu den Pyridiniumsalzen 6 die spätere Funktionalisierung der 5/6/5-Kationen 1 geplant werden.

Abbildung 1-4 Darstellung der Pyridiniumsalze 6

Weiterhin sind die Variationsmöglichkeiten bei dem Einsatz substituierter Aminothiadiazole 7 zu testen.

Abbildung 1-5 Darstellungen von 1 und 2

Ein anderer Zugang für die mit den *Bis-thiadiazolo-triaziniumsalzen* **1** strukturverwandten Azapyridocyanine **11** aus 2-Aminopyridinen **9** und Diiodmethan (**10**) wurde von MUNAVALLI, HSU und POZIOMEK beschrieben^{10,11} und inzwischen von HADDADIN, KURTH und OLMSTEAD auch zur Darstellung von *Bis-benzothiazolo-triaziniumsalze* **13** herangezogen¹² (s. Abb. 1-6). Allerdings wird bei dieser Methode ausschließlich eine Methylengruppe im neuen Triaziniumring ermöglicht, und die Ausbeuten sind durch die Zersetzung der Ausgangsverbindungen bei den z. T. drastischen Bedingungen stark begrenzt. Untersuchungen zu den elektrophilen Eigenschaften von **11** und **13** sind nicht bekannt.

Abbildung 1-6

Mit dem Ziel, die große Zahl von möglichen N-Nucleophilen sinnvoll einzuschränken und diesen Untersuchungen eine Anwendungsorientierung zu verleihen, wird in Anlehnung an das Teilprojekt A4 des *Sonderforschungsbereiches 436 "Metallvermittelte Reaktionen nach dem Vorbild der Natur*" die Eignung der neuen Verbindungen zur Komplexbildung mit Zink(II) als Auswahlkriterium festgelegt.

Zink wurde in diesem Zusammenhang wegen seiner großen Bedeutung^{13,14,15} in biologischen Systemen (es ist Bestandteil von ca. 300 Enzymen) und folgenden Eigenschaften gewählt: Zn²⁺ beteiligt sich nicht an Redoxprozessen, und die Geometrie von Zn²⁺-Komplexen wird durch Größe und Ladung der Liganden bestimmt. Zn²⁺ kann durch N-, O- und S-Liganden in ähnlicher Weise koordiniert (s. Abb. 1-7)¹³ werden, da seine Härte im Grenzbereich zwischen harten Metallkationen (z. B. Li⁺, Mg²⁺ und Ca²⁺, welche stark mit harten Sauerstoff-Liganden wechselwirken) und weichen Metallkationen (z. B. Ag⁺, Pd²⁺, Cd²⁺ und Hg²⁺, welche die hohe Affinität zu weichen Schwefel-Liganden kennzeichnet) einzuordnen ist.¹⁶

 Zn^{2+} zeichnet sich durch flexible Koordinationsgeometrien (drei- bis sieben-fache Koordination ist möglich) und damit leichten Ligandwechsel aus, was für katalytische Prozesse sehr

wichtig ist. Außerdem behalten Anionen wie ⁻OH, ⁻OR, ⁻NR₂ oder ⁻SR ihren nucleophilen Charakter, während sie am Zink(II) koordiniert sind.

Die aktivierende Wirkung von Zink auf reaktionsträge Moleküle wie Kohlendioxid wird in der Natur beispielsweise durch die *Carboanhydrasen* (CA) repräsentiert (s. Abb. 1-7). Sie können die Einstellung des Hydrolyse-Gleichgewichts zwischen Kohlendioxid/Wasser und Hydrogencarbonat bis um das **10⁷**-fache beschleunigen und werden deswegen als "perfekt evolvierte Enzyme" mit maximal möglichem Umsatz bezeichnet.¹⁷

Vereinfacht dargestellt, besteht das aktive Zentrum einer CA aus einem tetraedrisch durch drei neutrale Imidazolstickstoffe und einem Wassermolekül bzw. Hydroxidion (jeweils vom pH-Wert abhängig) koordiniertem Zink (s. Abb. 1-7).

Abbildung 1-7

Die umgebende Proteinmatrix bildet einen in hydrophile und lipophile Bereiche gegliederten konischen Hohlraum. Die CO₂-Aufnahme wird durch den lipophilen Charakter der Zink-Umgebung begünstigt, während über Wasserstoffbrücken miteinander verbundene Wassermoleküle (etwa 7) in Richtung His-64 (eines weiteren Imidazols) die Funktion eines Protonenrelais zwischen zinkgebundenem Wasser und äußerem wässrigen Medium erfüllen.

Aufgrund der hohen Effizienz dieser enzymatischen Katalyse wurden schon zahlreiche Modellkomplexe (von KIMURA 14, VAHRENKAMP/TROFIMENKO 15)^{18,15,19} und auch andere, der CA weniger ähnliche (DÖRING 16, DINJUS/KUNERT 17, COATES 18),^{20,21,22,23}

cumulenaktivierende Komplexe synthetisiert (s. Abb. 1-8) und Berechnungen dazu durchgeführt.^{24, 25, 26}

Abbildung 1-8

Katalytisch aktiv im Sinne der CA ist allerdings nur der von KIMURA synthetisierte Komplex 14, während sich an dem Tris-pyrazolylborat 15 und ähnlichen Komplexen nur einzelne Schritte des Katalysecyclus simulieren lassen. 17 und 18 sind als Katalysatoren bei der Copolymerisation von Cyclohexenoxid und CO₂ zu Polycarbonaten^{23,27,28} oder wie 18 auch zu Ringöffnungspolymerisationen²⁹ eingesetzt worden. In diesen Fällen ist im Gegensatz zur CA-analogen Kohlendioxidaktivierung das Zink niedriger koordiniert und erlaubt somit die Koordination größerer Substrate wie z. B. von Epoxiden.

Folgende allgemeine Merkmale eines potentiellen Liganden für die Heterocumulen-Aktivierung durch Zink(II)-Kationen können aus den Kenntnissen über die häufigsten Koordinationsarten aktiver Zinkzentren in natürlicher und modellierter Umgebung zusammengefaßt werden.

Diese Liganden unterstützen die Bildung tetraedrischer bzw. verzerrt tetraedrischer Strukturen, z. B. durch tripodale Ligandstruktur für CA-Modelle; zweizähnige oder verbrückende Liganden, die niedrige Koordinationszahlen stabilisieren, sind geeignet zur Aktivierung von sterisch anspruchsvolleren Substraten. Sie enthalten weiterhin eine deprotonierbare NH-, SH- oder eine OH-Funktion zur Ausbildung reaktiver $(ZnL_x-S)^+$ -, $(ZnL_x-O)^+$ - oder $(ZnL_x-N)^+$ -Spezies (mit x = 2-4, in Enzymen meist x = 3 realisiert), welche durch die Kombination von (Lewis)-saurer und (Lewis)-basischer Wirkung polarisierbare Substrate aktivieren (s. Abb. 1-9).³⁰

Abbildung 1-9

Das Ziel der vorliegenden Arbeit ist, die Entwicklung bzw. den Ausbau neuer Synthesemöglichkeiten für Heterocyclen *direkt* mit der Herstellung katalytisch wirksamer Metallkomplexe zu verbinden.

Im Teil I (Kapitel 2 bis 4) liegt der Schwerpunkt im Bereich der *Organischen Synthesechemie*. Dieser umfaßt die Herstellung funktionalisierter Varianten der *Bis-thiadiazolo-triaziniumsalze* 1 und Untersuchungen der Reaktionen von 1 mit Nucleophilen und daraus resultierende Darstellungsmöglichkeiten potentieller Liganden.

Der Teil II in den Kapiteln **5** bis **7** beschreibt die Synthesen von Zink(II)- und Kupfer(II)-Komplexen sowie Versuche zur Heterocumulenaktivierung. Im Vordergrund stehen hier vor allem ¹³CO₂-NMR-Untersuchungen^{27,31,32,33} und Katalysetests am Beispiel von Polycarbonatsynthesen aus CO₂ und Epoxiden.

2 Bis-thiadiazolo-triaziniumsalze 1 und Triaziniumsalze 13

2.1 1-(Halogenoalkyl)pyridiniumsalze 6a aus funktionalisierten Aldehyden 3

Die Chemie der N-(1-Halogenoalkyl)heteroaryliumsalze^{2,3,4} **6a** und der Bispyridiniumsalze¹ **6b** stellt die Grundlage für die Synthesen der neuen Substanzklasse 1 dar. Eine gewünschte Funktionalisierung im Aldehydteil setzt deshalb die Darstellung der entsprechenden neuen Pyridiniumsalze **6** voraus.

Basierend auf den Erfahrungen mehrerer Arbeitskreise zum Thema der CO₂–Aktivierung durch Zinkphenoxide^{27,31,34} war die Einführung einer phenolischen OH-Gruppe in die Ziel-Moleküle vom Typ **1** wünschenswert. Durch den Einsatz der doppelten Menge Thionylchlorid (**4a**) und Pyridin (**5**) sowie nachfolgender *in situ* Methanolyse der entstandenen Chlorschwefligsäureester **6a**(**SO**₂**Cl**) wurde die Synthese der α -Halogenopyridiniumsalze **6a1-6a4** abgeleitet von 2-, 3- und 4-Hydroxybenzaldehyd **3a-c** und 2-Hydroxy-3,5-di-*t*-butylbenzaldehyd (**3d**) realisiert.

Abbildung 2-1 und KS-1 (KS = Kristallstruktur) von 6a1 (ohne das Chlorid-Ion)

Die Kristallstruktur³⁵ **KS-1** des 1-[Chlor-(2-hydroxyphenyl)methyl]pyridiniumchlorids³⁶ **6a1** (s. Abb. 2-1) zeigt weitgehende Übereinstimmung zu der bekannten Struktur des 2-Methoxyphenylderivats³⁷ **6a5** (s. Abb. 2-2), das auch zur Synthese des Salzes **1h** herangezogen wurde (s. Tab. 2-2). Der 2-Hydroxyphenylsubstituent am C α ist, entsprechend der Literaturbeispiele⁴ der Salze **6a** mit anderen Substituenten, annährend senkrecht zur Pyridiniumeinheit ausgerichtet. Die Längen der Cl–C α -Bindungen in **6a1** und **6a5** sind mit **1.786** und **1.780** Å fast identisch, während auch die Werte der N-C α -Bindungen mit **1.497** und **1.490** Å nur sehr gering voneinander abweichen.

Als stabiler und damit leichter in größeren Mengen zugänglich, bei gleicher Einsatzmöglichkeit zur Synthese von 1, haben sich für die Beispiele von Pyridiniumsalzen 6 mit den Resten $R^1 = p$ -MePh und p-MeOPh die Bispyridiniumdibromide 6b (s. Abb. 2-2) erwiesen. Diese sind mit den entsprechenden Aldehyden (p-Tolylaldehyd (3f) und p-Anisaldehyd (3g)) ebenfalls durch die vorgestellte Dreikomponentensynthese unter Einsatz von 2 Mol Thionylbromid (4b), 2 Mol Pyridin (5) und 1 Mol Aldehyd 3 darstellbar (N,N-Bis[(4-methylphenyl)methyl]-pyridiniumbromid (6b1), 4-N,N-Bis[(4-methoxyphenyl)methyl]pyridiniumbromid (6b2)).¹

Abbildung 2-2 Literaturbekannte Pyridiniumsalze 6a5³⁷, 6a6³, 6b1¹ und 6b2¹

Die Synthese der *Bispyridiniumsalze* **6b** gelang mit den hydroxyphenylfunktionalisierten Aldehyden jedoch nicht bzw. in deutlich schlechteren Ausbeuten als die der N-(1-Chloroalkyl)pyridiniumchloride **6a**.

In der Tabelle 2-1 sind neben den Ausbeuten und den Schmelzpunkten von **6a1-6a4** die chemischen Verschiebungen des C α -Kohlenstoffs sowie des C α -Protons dargestellt. Sie führen nach jeder weiteren Reaktionsstufe leicht verändert, in Tabellenform dargestellt, wie ein roter Faden durch diese Arbeit.

Verbindungen 6a1-4	Ausbeute[%]/Fp[°C]]/Fp[°C]	¹³ C-NMR	¹ H-NMR
				$C(\alpha) \delta [ppm]$	H-C(α) δ [ppm]
6a1 $R^1 = 2$ -HOPh	68	/	168-172	76.8	8.38
6a2 $R^1 = 3$ -HOPh	71	/	147	78.7	8.48
6a3 $R^1 = 4$ -HOPh	60	/	141	78.6	8.74
6a4 $R^1 = 2$ -HO-3,5-di- <i>t</i> -BuPh	60	/	174	78.8	9.42

Tabelle 2-1 Charakteristische Daten von 6a1-6a4

Versuche, die entsprechenden Salze **6a** abgeleitet von o-Vanillin und 3,5-Dichlorsalicylaldehyd darzustellen, scheiterten an der Abtrennung der Salze von dem mit entstehenden Pyridiniumhydrochlorid. Auch der Einsatz eines sogenannten "Protonenschwamms⁴³⁸, des 1,8-Diamino-N,N-tetramethylnaphthalins, zur *in situ* Entfernung des Hydrochlorids führte nicht zum Erfolg.

2.2 Darstellung der Bis-thiadiazolo-triaziniumsalze 1 durch Umsetzung von 6 mit 2-Amino-5-alkyl-1,3,4-thiadiazolen 7

Die Cyclisierungsreaktion bekannter *N-Pyridiniumsalze* 6 mit 2-Aminothiadiazolen 7 über die entsprechenden Bis-aminothiadiazoliumsalze 19 zu den *Bis-thiadiazolo-triaziniumsalzen* 1 ist von WERMANN detailliert beschrieben worden.¹

Abbildung 2-3Darstellung der hydroxyphenylsubstituierten Derivate 1a-1g und des 2-
Methoxyphenylderivates 1h (charakteristische NMR-Werte s. Tab. 2-2)

Im Zusammenhang mit den Salzen **1** werden in dieser Arbeit neben der systematischen Bezeichnung die Synonyme 5/6/5-Heterocyclen und SNS-Heterocyclen für **1** verwendet. Grundlage für die Synthese der Verbindungen **1** ist die hohe Reaktivität der *aktivierten Aldehyde* in Form der Pyridiniumsalze **6** gegenüber Nucleophilen. Zahlreiche praktische^{4,9,39} und theoretische Untersuchungen^{40,41} belegen, daß der anomere Effekt,⁴² hervorgerufen durch die negative Hyperkonjugation, dabei in vielen Fällen eine entscheidende Rolle spielt. Mit folgender Darstellung einer *bond– no-bond* Resonanz kann die negative Hyperkonjugation veranschaulicht werden (s. Abb. 2-4).

Abbildung 2-4

Durch die partielle Delokalisierung von Elektronen des Substituenten Z (mit freiem Elektronenpaar) in das σ^* -Orbital der C α -N⁺-Bindung wird die Verlängerung der C α -N⁺-Bindung und die Verkürzung des C α -Z-Abstandes verursacht. Die stärkste Wirkung dieses Effekts tritt bei Z = O⁻ und Z = NR₂ auf, während Halogensubstituenten kaum einen Einfluß zeigen.

Im Fall der α -Halogenoalkylpyridiniumsalze **6a** wird dementsprechend bei nucleophilem Angriff bevorzugt das C α -Halogen substituiert. Danach wird allerdings auch das Pyridin von Nucleophilen leicht verdrängt, was mit dem Effekt der kationischen Bindungslockerung zu erklären ist.

Das Phänomen der Bindungslockerung durch Kationisierung und dessen Anwendung auf die Aktivierung neutraler Vorstufen zu Gruppenübertragungsreagenzien (z. B. werden N-Acyldihydropyridine durch Protonierung zu Acylierungsmitteln) wurde intensiv von ANDERS *et al.* bearbeitet und beschrieben.^{43,44,45}

Die Bildung der Bis-aminothiadiazoliumsalze **19**, bei der sowohl das Halogen als auch das Pyridin nucleophil vom C α -Zentrum verdrängt werden, ist demnach der erste Schritt zur Darstellung von **1**.

Eine Vielzahl analoger Synthesen stabiler Bisoniumsalze **19S** dieser Art bzw. von unsymmetrischen Bisoniumsalze **19N**, bei denen nur das C α -Halogen durch Stickstoffnucleophile substituiert wurde, oder **19P**, bei denen das C α -Halogen durch Phosphornucleophile wie Phosphane substituiert wurde, sind literaturbekannt.^{1-4,8,46}

Abbildung 2-5 Umsetzungen von 6a mit Nucleophilen

Von den hier untersuchten Bis-aminothiadiazoliumsalzen **19** kann nur im Fall von $R^1 = H$ das entsprechende Salz isoliert werden. Bei $R^1 = Alkyl$, Aryl folgt sofort die Cyclisierungs-reaktion zu **1**.³

Außer diesem vom Formaldehyd abgeleiteten Salz, das durch Umsetzung von 7 mit *N*-(*Chloromethyl*)-*pyridiniumchlorid*³ (**6a6**) (s. S. 12) entsteht, ist demzufolge die Herstellung der 5/6/5-Heterocyclen 1 unter Verwendung sehr unterschiedlicher Aldehyde möglich. Der Einsatz der neuen, hydroxyphenylsubstituierten *N*-(*1*-Haloalkyl)heteroaryliumsalze **6a1-6a3** führte ebenfalls in guten Ausbeuten zu den entsprechenden 5/6/5-Heterocyclen 1. Es wurden jedoch keine aminalartigen Folgeprodukten 2, die als Resultat der Öffnung des Triaziniumrings anfallen können, isoliert (s. Weg *A* S. 24).

Verbindungen 1a-1h	Ausb.[%]/Fp. [°C]		¹³ C-NMR	¹ H-NMR	Löslichkeiten	
				C(9)δ [ppm]	H(9)δ[ppm]	CHCl ₃ /H ₂ O
1a R^1 =2-HOPh, R^2 = Me	72	/	214	77.9	7.96	+/-
1b R^1 =2-HOPh, R^2 = Et	82	/	182	78.0	7.96	+/-
1c R^1 =2-HOPh, R^2 = t-Bu	72	/	190	78.1	7.98	_ / + +
1d R^1 =2-HOPh, R^2 = n-Pr	71	/	178	78.0	7.96	- / +
1e R^1 =2-HOPh, R^2 = n-Pn	62	/	198	78.0	7.95	- / +
1f R^1 =3-HOPh, R^2 = t-Bu	73	/	160	78.5	8.03	- / +
1g R^1 =4-HOPh, R^2 = t-Bu	20	/	174	79.0	7.91	- / +
1h R^1 =2-MeOPh, R^2 = Me	47	/	208-211	77.3	8.05	_ / +

 Tabelle 2-2
 Charakteristische Daten von 1a-1h

Die geringe Ausbeute des 4-Hydroxyphenylderivates **1g** ist vermutlich auf eine stärkere Tendenz zu Nebenreaktionen bzw. schnelle Zersetzung von **1g** zurückzuführen (s. Kap. 3.4.4, S. 36 ff, Zersetzung durch Phenolat-Triazinium-Betain-Bildung).

Außerdem konnte bei der Verwendung des Salzes **6a4** (von 2-Hydroxy-3,5-di-*tert*butylbenzaldehyd (**3d**) abgeleitet) für die Umsetzung mit **7** zur Darstellung des entsprechenden 5/6/5-Heterocyclus **1** leider kein entsprechendes Produkt isoliert werden. Versuche zur Klärung der konkreten Ursachen dafür (z. B. die Verhinderung der Cyclisierungsreaktion von **6a4** zu **1** durch die voluminösen *tert*-Butyl-Reste in 3- und 5-Position des 2-Hydroxyphenylsubstituenten R¹) wurden noch nicht abgeschlossen.

Da die Synthese von 1 mit \mathbb{R}^1 = H durch die Umsetzung *N*-(*Chloromethyl*)-*pyridiniumchlorid* 6a6 und 7 nicht realisiert werden konnte, wurde versuchsweise nach HADDADIN¹² *et al.* Diiodmethan mit 7 umgesetzt. Dabei konnte nur die Zersetzung von 7 festgestellt werden.

Weiterhin wurden für mechanistische Untersuchungen die schon literaturbekannten¹ Derivate 1i und 1j eingesetzt (s. Abb. 2-6).

Abbildung 2-6 5/6/5-Heterocyclen 1i-1k¹ (die Kristallstruktur von 1k ist beschrieben)¹, abgeleitet von den Aldehyden 3f, 3g und 3i

In der vorliegenden Arbeit sind vorwiegend die hydroxyphenylsubstituierten Derivate **1a-1g**, vor allem **1c** (s. Kristallstruktur **KS-2** von **1c**), zum Einsatz gekommen.

KS-2 5/6/5-Kation der Verbindung 1c mit ausgewählten Bindungslängen in Å

Die weitgehend symmetrische Struktur von **1c** zeigt, daß die drei Ringe annährend eine Ebene bilden, aus der nur das vom Aldehyd stammende prochirale $sp^{3}C(9)$ -Atom hinausragt (die Bindungswinkel um das C(9)-Atom zeigen mit **103.36**° für N(8)-C(9)-N(10) und mit **113.33**° für N(8)-C(9)-C(Ph) eine im Vergleich zu der bekannten Struktur von **1k**¹ (s. Abb. 2-6) stärker ausgeprägte Tendenz zur Bildung eines Halbsessels).

Mit **1.476** Å und **1.480** Å sind die Bindungen von N(8) bzw. N(10) zu C(9), wie für eine C-N-Einfachbindung zu erwarten, deutlich länger als alle anderen C-N- Bindungen des Moleküls. Im Unterschied zu **1k** fällt die senkrechte Ausrichtung der Ebene des Phenylrings von R¹ zur Ebene des 5/6/5-Systems auf.

Die fast gleich langen Bindungen zwischen C(4a)-N(4) mit 1.335 Å und C(4a)-N(8) mit 1.341 Å befinden sich hingegen in guter Übereinstimmung mit der angenommenen Delokalisierung der positiven Ladung über 5 Atome (N(8), C(4a), N(4), C(3a) und N(10)) des Triaziniumrings.

2.3 Darstellung der Bis-benzothiazolo-triaziniumsalzen 13 durch Umsetzung von 6b mit 2-Aminobenzothiazolen 12

2-Aminobenzothiazol (**12a**) reagiert in ähnlicher Weise wie 2-Aminothiadiazole **7** mit dem Bis-pyridiniumsalz **6b2** (s. S. 12) zu den entsprechenden Bis-benzothiazolo-triaziniumsalzen **13.** Die Ausbeuten sind allerdings, trotzt längerer Reaktionszeiten, mit 40-50 % deutlich geringer als bei den Synthesen von **1** (s. S. 15). Der limitierende Schritt dabei ist offenbar die erschwerte Abspaltung des Ammoniumhalogenids, dieses fällt jedenfalls in deutlich geringeren Mengen als bei den analogen Cyclisierungen zu den Salzen **1** an.

Abbildung 2-7

Dennoch werden nach dieser Synthesemethode die Salze **13** unter milderen Bedingungen als bei HADDADIN *mit Diiodmethan*¹² mit Variationsmöglichkeiten im Aldehydteil R¹ und Aminobenzothiazolteil R² zugänglich.

An dieser Stelle wurden Versuche zur Variation des Substituenten R^2 in 6-Position des 2-Aminobenzothiazols durchgeführt. Die schon von MUNAVALLI^{10,11} und HADDADIN¹² beschriebenen optischen Eigenschaften (die intensive Gelbfärbung von **13a** in Substanz und starke blaue Fluoreszenz in Lösung) des in den Salzen **1** und **13** enthaltenen *Cyaninfarbstoffsystems (bzw. Polymethinfarbstoffsystems)*^{9-11,47} sollten von der Art der Substituenten R^2 abhängig sein. Außerdem konnte bei dieser Gelegenheit geprüft werden, inwieweit ein experimenteller Zugang für unsymmetrisch substituierte Triaziniumsalze **13** bzw. 5/6/5-Heterocyclen **1** besteht.

Die Synthese und Charakterisierung der Salze **13a-13c** und einer unsymmetrisch substituierten Verbindung **13d** (**13d**: $R^2 = Me$, $R^{2^{\prime}} = OMe$) durch den Einsatz eines 1:1-Gemisches von **12b** und **12c** zur Umsetzung mit **6b2** konnten realisiert werden (s. Tab 2-3).⁶²

Verbindungen	Ausbeute[%]/Fp[°C]]/Fp[°C]	¹³ C-NMR	¹ H-NMR
				C(13) δ [ppm]	H-C(13)δ [ppm]
13a $R^2 = H$	43	/	288	70.3	8.91
13b $R^2 = Me$	37	/	264	70.3	8.82
$13c R^2 = MeO$	39	/	266	70.4	8.68
13d Me/MeO	22+10 1	3 b,	10 13c /253	70.3	8.87

 Tabelle 2-3
 Charakteristische Daten von 13a-13d

Durch die Messung von Absorbtions- und Emissionsspektren kann der Einfluß der Reste R² auf die Farbe und das Fluoreszensverhalten der Verbindungen **13a-d** gezeigt werden. Die Fluoreszenzquantenausbeute des Bis-(methyl)-Derivates **13b** ist mit $\Phi = 0.93$ (Acetonitril) deutlich höher als die der Bis-(methoxy)-Verbindung **13c** mit $\Phi = 0.68$ (Acetonitril), was durch die Wirkung des –I-Effektes der Methoxygruppe verursacht wird.

Tabelle 2-4 Absorbtions-	, Emissionswerte und	Fluoreszenzquantenaus	beuten von	13a-13d
---------------------------------	----------------------	-----------------------	------------	---------

	Lösungsmittel	$\lambda mA[nm]$	ε[l/mol x cm]	λem[nm]	Φ
13a	Acetonitril	395	28.862	434	0.81
	Ethanol	395	29.700	438	0.86
	Wasser	394	22.574	433	0.80
13b	Α	395	25.500	447	0.93
	Е	396	28.480	453	0.85
	W	394	21.078	448	0.80
13c	А	406	21.600	480	0.67
	Е	407	22.417	482	0.57
	W	404	1.699(sl)	478	0.55
13d	А	403	26.330	463	0.68
	Е	405	26.700	469	0.67
	W	399	8.021(sl)	462	0.59

Abbildung 2-8 Absorbtions- und Emissionsspektrum von 13b in Acetonitril

Versuche zur Synthese von 13 mit R^1 = Hydroxyphenyl wurden eingestellt, da bei dem vom Salicylaldehyd abgeleiteten Derivat von 13 (Ausbeute max. 5 %, durch Umsetzung von 6a1 mit 12a erhalten) eine sehr geringe Löslichkeit die Charakterisierung und weitere Umsetzungen erschwerten.

3 Umsetzung der 5/6/5-Heterocyclen 1 mit Nucleophilen

3.1 Überblick zu Reaktionsmöglichkeiten der Salze 1 mit Aminen A

Im Kapitel 3.1 wird die überraschende Vielschichtigkeit von Folgereaktionen der nucleophil angegriffenen 5/6/5-Heterocyclen **1** anhand einer knappen Zusammenfassung der gefundenen Reaktionskaskaden dargestellt. Damit soll die Orientierung in den Kapiteln 3.2-3.5 erleichtert werden, welche detaillierte Erläuterungen mechanistischer Aspekte enthalten.

Alle Reaktionen von 1 mit primären und sekundären Aminen A erfolgen aus einem Gleichgewicht der Ausgangsstoffe 1 und A mit einem kurzlebigen ammoniumartigen Zwischenprodukt 22a und der ungeladenen Form eines Andockproduktes 23 heraus (s. Abb. 3-1).

 $R^4 = H, Alkyl$

Abbildung 3-1

Bei Anwesenheit einer starken Base treten verstärkt die Bildung von 23 bzw. daraus resultierende Reaktionen auf. Als Base kann dabei das eingesetzte Amin A selbst (z. B. basische aliphatische Amine wie Piperidin (A1)) oder eine nichtnucleophile starke Hilfsbase wie Triethylamin oder Kalium-*tert*-butylat fungieren. Mit schwach basischen aromatischen Aminen wie Anilin (A6) (*ohne* Hilfsbase) erfolgen weitere Reaktionen deutlich langsamer, wobei 22a und daraus entstehende Umprotonierungsprodukte 22b-d zunehmend an Bedeutung gewinnen.

Die vorgestellten Protonierungsvarianten von 22 stellen eine Auswahl der theoretisch zu diskutierenden Möglichkeiten dar, welche mit Hinblick auf eine mögliche Relevanz für die

tatsächlich gefundenen Reaktionen getroffen wurde (weitere wären z. B. die Protonierung des N(8)-Stickstoffs oder eines Heteroatoms des zweiten Thiadiazolteils)⁴⁸.

Die sehr reaktive Spezies **23** enthält einen durch 4 Heteroatome substituierten Kohlenstoff (SNNN-C) als Strukturelement. Die chemische Verschiebung dieses sp³-Kohlenstoffatoms von ~120 ppm (gemessen während der Reaktion von **1i** (s. S. 16) und Piperidin (**A1**) bei $-50 \degree$ C in CDCl₃)⁴⁹ wird durch die von POTTS⁵⁰ und GRUBERT⁵¹ gefundenen Werte (124.8 bzw. 130.1 ppm) an ähnlich umgebenen Kohlenstoffatomen bestätigt (s. Abb. 3-3).

Abbildung 3-3

Leider konnte kein Beispiel der Andockprodukte **23** isoliert und analytisch vollständig charakterisiert werden, da diese zu schnell Folgereaktionen eingehen.⁵² Bei weiteren, in der Literatur erwähnten SNNN-C-Atom-Strukturen wurden diese ebenfalls als reaktive Zwischenstufen postuliert.⁵³ In Abhängigkeit vom eingesetzten Amin und verschiedenen Reaktionsbedingungen eröffnen sich vier unterschiedliche Reaktionskanäle (s. Abb. 3-4):

Abbildung 3-4

Die Reaktionspfade A und B führen bei wenig nucleophilen, schwach basischen Aminen A (*ohne* Hilfsbase) und langen Reaktionszeiten bzw. erhöhter Temperatur zu Bisthiadiazoloaminalen 2 und substituierten Thiadiazolen 28. Dabei spielen Umprotonierungen von 22a zu 22b-d, begünstigt durch die zur schwachen Base korrespondierenden starken Säure AH⁺, eine Schlüsselrolle.

Der bei den meisten Aminen A dominante Reaktionsweg C führt von der Ringöffnungsreaktion eines Thiadiazolrings zwischen C(4a) und S(5) der Verbindung 23 über eine betainische Zwischenstufe 26, gefolgt von einer intramolekularen S_N2-Reaktion zu hochsubstituierten Guanidinen G. Dieser Weg der Guanidinbildung kann auch als neues Beispiel einer S_N(ANRORC)^a-Reaktion⁵⁴ angesehen werden.

Eine weitere Konkurrenzreaktion D tritt bei primären benzylischen Aminen als Folge einer Umprotonierung des Betains 26 zu einer Thioamidzwischenstufe 27 (s. Kap. 3.5, Weg D) auf. Provoziert von einem erneuten nucleophilen Angriff des Benzylaminstickstoffs N(A), jetzt am Thioamidkohlenstoff, gefolgt von Protonenverlagerungen, kommt es zum Austritt von Schwefelwasserstoff. Nach wiederholtem Angriff des substituierten Benzylamins in gleicher Weise entstehen Bis-triazolo-triaziniumsalze 30. Die vier vorangestellten und weitere auftretende Folgereaktionen von 22 und 23 werden in den nächsten Kapiteln differenziert behandelt.

3.2 C-N-Bindungstrennung im Triaziniumring als gemeinsamer erster Schritt zu den Wegen *A* und *B*

Als einleitender gemeinsamer Schritt der Wege A und B ist die Öffnung der C(4a)-N(4)-Bindung, verursacht durch die Protonierung an der N(4)-Position in **22b** und hohe Temperaturen, zu betrachten. Vorstellungen und experimentelle Hinweise zum Reaktionsverlauf, die darauf schließen lassen, daß dieser Weg eher eine Ausnahme darstellt, wurden durch Resultate von DFT-Berechnungen untermauert.^{55,6}

In Abbildung 3-5 (s. S. 24) ist anhand der Modellberechnung die Wirkung der negativen Hyperkonjugation und der kationischen Bindungsdehnung auf die C(4a)-N(4)-Bindung dargestellt. In Übereinstimmung mit dem in Abbildung 3-1 (s. S. 21) vorangestellten Gleichgewicht führt ein Übergangszustand mit +10.5 kcal/mol von den getrennten Reaktanten 1 und A zu der mit +10.7 kcal/mol sogar ein wenig energiereicheren Spezies 22a.⁵⁶

^a ANRORC = Addition of Nucleophile, Ring Opening and Ring Closure

Abbildung 3-5 (rote Zahlen = relative Energien [kcal/mol])

Eine Stabilisierung zu +1.2 kcal/mol wird dagegen mit der Umprotonierung zu 22b bzw. der Deprotonierung zu 23 (s. Weg *C*) erreicht. Der berechnete Wert von 1.592 Å für die C(4a)-N(4)-Bindung in 22b ist ein deutlicher Hinweis auf einen möglichen Bindungsbruch, welcher dementsprechend auch über einen mit +9.6 kcal energetisch recht niedrigen Übergangszustand abläuft. Die mit +0.8 kcal/mol immer noch energiereiche Iminiumverbindung 25 sollte leicht zu 24 umprotoniert werden können (s. Abb. 3-6, S. 25) oder zu 28 und 29 zerfallen (s. S. 27). Die an Position N(1) protonierte, energiereiche Spezies 22e charakterisiert ein Kation, das zum Vergleich der Bindungslängen von 22b (vor allem der C(4a)-N(4)-Bindung) mit einer protonierten Form *ohne Wirkung* der negativen Hyperkonjugation oder kationischen Bindungslockerung auf das beobachtete Reaktionszentrum dient. Für die hier vorgestellten experimentellen Befunde ist 22e ohne Bedeutung.

Weg **A**: Aminalbildung

Bei der Verwendung der Aminothiadiazole 7 als Nucleophile und erhöhten Reaktionstemperaturen (80-100 °C) erfolgt die Bildung der Bis-dihydrothiadiazolo-aminale 2 mit Ausbeuten von max. 30 %. Der nur *schwach basische* Charakter von 7 verzögert einerseits die Deprotonierung zu 23 bzw. führt zu einer schnellen Umprotonierung zu 22b. Dieser Schritt wird durch die *Ambidenz* der Heteroaromaten 7 zusätzlich unterstützt. Wiederum führen Effekte der negativen Hyperkonjugation und der kationischen Bindungsdehnung zum Bindungsbruch zwischen C(4a) und N(4), während die neue Bindung von N(A) zu C(4a) Doppelbindungscharakter annimmt und eine resonanzstabilisierte Iminiumsalzstruktur **25** entsteht. Mit der Übernahme des zweiten, jetzt acideren Iminium-Protons durch den Stickstoff N(4) wird **24** gebildet. Das salzartige Ringöffnungsprodukt **24** kann nun durch einen erneuten nucleophilen Angriff von 7 und Austritt von Ammoniumhalogenid zu den bemerkenswert stabilen Bis-dihydrothiadiazolo-aminalen **2** weiterreagieren. Durch die Anwesenheit geringer Wassermengen kann darüber hinaus ein Teil von **24** zu **31** hydrolysiert werden⁵⁷.

Abbildung 3-6

Die geringe Ausbeute von max. 30 % konnte durch längere Reaktionszeiten oder höhere Temperaturen nicht überschritten werden. Die Reaktion stoppt bei einem bestimmten Umsatz, d. h. der größte Teil des eingesetzten Heterocyclus 1 (> 60 %) kann wiedergewonnen werden. Die Ursache dafür könnte ein bestimmter pH-Grenzwert sein, der durch das mitentstehende Ammoniumhalogenid erreicht wird. Das wurde im Rahmen dieser Arbeit nicht genauer untersucht. Beispiele der Aminale 2 sind beschrieben¹, für die Thiadiazolidinonderivate⁵⁸ 31 ist eine Publikation in Vorbereitung.⁵⁷

Ein anderer Weg zur Bildung der Aminale 2 trat bei Umsetzungen des vom Salicylaldehyd **3a** abgeleiteten 5/6/5-Heterocyclus **1c** in Gegenwart von starken, gering nucleophilen Basen (z.

B. Triethylamin) als Konkurrenzreaktion auf. Da diese Reaktion bei Salzen 1 ohne Hydroxyphenylfunktion *nicht* zu beobachten war, liegt der Schluß nahe, daß die Deprotonierung dieser aciden OH-Funktion durch eine starke Base eine Rolle spielt.

Als Testreaktion wurde die Deprotonierung von 1c durch *n*-Butyllithium untersucht. Dabei wurde das Aminal 2a tatsächlich in 30 %-iger Ausbeute erhalten. Die Phenolatfunktion im Betain 1cB könnte durch mesomere Effekte die Öffnung der Bindung zwischen C(9) und N(10) zu einer *o*-chinoiden Spezies 1cOC bewirken, welche in Mesomerie zu einer offenen betainischen Struktur 1cBO vorliegen kann. Neben der Ausbildung eines Gleichgewichtes zwischen der offenen 1cBO und der geschlossenen betainischen Form 1cB sollten auch Dimerisierungen zum (1c-Betain)₂ ablaufen können, welches wiederum bei wässriger Aufarbeitung zum Aminal 2 und Salicylaldehyd 3a hydrolysiert wird (s. Abb. 3-7).

Abbildung 3-7

Eine Verschiebung der Prioritäten zugunsten dieser Betain-Öffnung und darauffolgender Aminolyse wird auch als Ursache für die geringen Ausbeuten bei der Guanidinbildung aromatischer Amine A (s. S. 37 u. 38, Weg C) diskutiert.

Weiterführende Untersuchungen zu diesem Reaktionsweg, auf dem *das vorher nicht zugängliche* 2-hydroxyphenylsubstituierte Aminal **2a** erhalten wurde, stehen noch aus.

3.3 Weg **B**: Bildung substituierter Thiadiazole **28** und Iminiumsalze **29**

Die Verwendung von im Vergleich zu 7 etwas stärker nucleophilen aromatischen Aminen wie Anilin (A6) führt bei Raumtemperatur nach langen Reaktionszeiten 2 h < t < 80 h zu einem ähnlichen Weg über 22b.

Die Protonierung der N(4)-Position bewirkt ebenfalls eine Bindungstrennung zwischen C(4a) und N(4). Aufgrund der nicht möglichen Resonanzstabilisierung durch Aufgabe von Aromatizität des Arylsubstituenten sind nach der Ringöffnung bevorzugt Reaktionen, die aus der in Abbildung 3-8 dargestellten mesomeren Form des Iminiumsalzes **25** resultieren, zu erwarten. Dementsprechend zerfällt **25** spontan unter der Bildung des Arylaminothiadiazols **28** (aus dem nucleophil angegriffenen Molekülteil von **1** und **A**) und des Iminiumsalzes **29** (s. Abb. 3-8).

Abbildung 3-8

Die literaturbekannten Arylaminothiadiazolderivate **28a-c**⁵⁹ (R^2 = Me, für **28a-28c**, **28a** R^3 = Ph, **28b** R^3 = 4-MePh⁶⁰, **28c** R^3 = 4-MeOPh⁵⁹⁻⁶¹) können durch diese Reaktion (Umsetzung der entsprechenden Anilinderivate mit **1i** (s. S. 15) nach 27 h bei RT in Acetonitril) mit ca. 80 %-iger Ausbeute dargestellt werden.

In einem Ansatz im NMR-Maßstab in trockenem Deuterochloroform ist neben **28a** das stark hydrolyseempfindliche Iminiumsalz **29a** ($R^1 = 4$ -MePh, $R^2 = Me$) NMR-spektroskopisch nachgewiesen worden. Die Zuordnung des Signals bei $\delta = 166$ ppm im ¹³C-NMR als nucleophil angegriffenen Kohlenstoff C(4a) des 5/6/5-Heterocyclus **1** wurde außer durch den Vergleich mit den Literaturdaten durch den Einsatz von zu 50 % ¹⁵N-markiertem Anilin (**A6**) und die daraus resultierende ¹³C-¹⁵N-Kopplung von ca. 23 Hz möglich. Der Iminium-Kohlenstoff von **29a** wurde in einem DEPT135-Spektrum als stark tieffeldverschobenes breites CH-Signal mit einer chemischen Verschiebung von $\delta = 160$ ppm und durch eine C-H-Korrelation im HMQC-Spektrum identifiziert (s. Abb. 3-9). Nach Zugabe von Wasser war es möglich, auch die Hydrolyse des Iminiumsalzes **29a** zum Aldehyd **3f** und 2-Amino-5-methyl-1,3,4-thiadiazol (**7a**) zu beobachten.

Abbildung 3-9¹³C-NMR- und HMQC-Messung nach 3 Tagen

Außerdem ist durch eine HMBC-Messung ein weiteres ¹³C-Signal des Iminiumsalzes **29a** zugeordnet worden (siehe Anhang).

3.4 Weg C: Degenerative Ringtransformation zu Guanidinen G

Die Mehrzahl aller primären und sekundären Amine A^a mit pK-Werten zwischen 4 und 11 reagiert unter entsprechenden Bedingungen mit den 5/6/5-Heterocyclen 1 unter Bildung von Guanidinen **G** (s. Abb. 3-10).

Abbildung 3-10

Ausnahmen bilden lediglich sterisch extrem anspruchsvolle Amine, wie Triphenylmethylamin (A11), und ambidente, schwach nucleophile Amine, wie 2-Aminothiadiazole 7 oder *p*-Nitroanilin (A12). Substituierte Benzylamine wie A16-A18 nehmen durch eine weitere Reaktionsmöglichkeit neben der Guanidinbildung (wie im folgenden Kap. 3.5 für Weg *D* beschrieben) eine Sonderstellung ein. Über die Herstellung und Eigenschaften einiger Guanidine G1-G4 aus den Umsetzungen von 1a, 1b und 1i mit stark basischen Aminen, wie Piperidin (A1), Morpholin (A2), Pyrrolidin (A3) und Piperazin (A4), wurde berichtet.⁶² In folgenden Abschnitten werden die Teilschritte dieser interessanten Reaktion beschrieben.

3.4.1 Ringöffnungsschritt: Einfluß der negativen Hyperkonjugation

Die Bildung des inneren Salzes 26 als zweiter Schritt zur Guanidinbildung durch den Bindungsbruch zwischen C(4a) und S(5) ist sofort nach der Entstehung von 23 der

^a Alle eingesetzten Amine A siehe Tabelle 9-1 S. 98

bervorzugte Weg einer Stabilisierung.⁶² Eine vergleichbare Art der Ringöffnung durch Angriff eines Amins auf 2-Amino-2-thiazoline oder 2-Amino-5,6-dihydro-4H-1,3-thiazine wird auch von MANDRUGIN *et al.*⁶³ zur Darstellung von guanidinsubstituierten Alkanthiolen beschrieben.

Die Wirkung der negativen Hyperkonjugation kann, wie im Fall der Aminalbildung, durch DFT-Berechnungen verschiedener Rotamere des Andockproduktes verdeutlicht werden (s. Abb. 3-11). Ist das freie Elektronenpaar des Angriffsaminstickstoffatoms N(A), in der im stabileren Konformer B gezeigten Position, in der Lage, mit dem σ^* –Orbital der C(4a)-S(5)-Bindung in Wechselwirkung zu treten, wird diese Kohlenstoff-Schwefelbindung von 1.914 auf 1.943 Å gedehnt. Mit einem recht niedrigen Übergangszustand von +8.5 kcal/mol erfolgt die Ringöffnung zu den stabileren betainischen Intermediaten 26 (mit –3.6 kcal/mol) und kann in Übereinstimmung damit experimentell schon bei –50 °C nachgewiesen werden. Der Ringschluß zu den Guanidinen G durch die nucleophile Substitution des Stickstoffs durch den Schwefel am C(9) bedarf mit +20.4 kcal/mol eines etwas höheren Energiebetrags, was auch den experimentellen Befunden entspricht (die Betaine 26 sind gelöst bis 0 °C stabil und können isoliert und charakterisiert werden, s. S. 33).

Abbildung 3-11 (rote Zahlen = relative Energien [kcal/mol])

Auch eine Öffnung dieser Kohlenstoff-Schwefelbindung, verursacht durch Protonierung der N(7)-Position, gefunden bei der Berechnung des Protonierungsproduktes **22c** (s. S. 21, die Protonierung an der N(7)-Position verursacht eine starke Verlängerung bzw. den Bruch der S(5)-C(4a)-Bindung), stand zur Diskussion. Dieser Reaktionsweg konnte aber durch experimentelle Befunde *nicht* bestätigt werden:

 Die Ergebnisse der Umsetzungen aromatischer Amine A_{arom.} mit 1 zeigen, daß die Deprotonierung des primären Andockproduktes 22 zur neutralen Spezies 23 die *Voraussetzung dieser Ringöffnung* darstellt: Anilin (A6) reagiert mit 1i (s. S. 16) *ohne* Hilfsbase *ausschließlich* über Weg *B* zu den Zersetzungsprodukten 28 und 29 (s. S. 27, Weg *B*), während unter Zusatz von Triethylamin das Guanidin G9 gebildet wird (s. Abb. 3-12).

Abbildung 3-12

2) Ein weiterer Hinweis auf die Ringöffnung *ohne* Mitwirkung von Protonen wird dadurch gegeben, daß auch bei der Verwendung von Kalium-*tert*-butylat als Hilfsbase die Guanidine **G** in guten Ausbeuten gebildet werden. Die vollständige Zuordnung der NMR-Daten ist bei den aromatisch substituierten Guanidinen (ohne zum N-H benachbarte C-H-Funktion) auch durch zweidimensionale Meßmethoden kaum möglich. Der Einsatz des zu 50 % ¹⁵N-angereicherten Anilins ermöglicht auch im Fall dieser Guanidinsynthese eine eindeutige Strukturaufklärung und liefert durch die ¹⁵N - ¹H- und ¹⁵N - ¹³C-Kopplungen z. B. den Beweis für das Vorliegen des in Abbildung 3-12 gezeigten Tautomers von **G9** in Lösung (s. Abb. 3-

Abbildung 3-13 15 N - 1 H- und 15 N - 13 C Kopplungen bei Guanidin **G9**

3) Die Protonierung der N(7)-Position kann nicht essentiell für die Öffnung zum Betain sein, da auch die in Kapitel 2.3 beschriebenen *Bis-benzothiazolo-triaziniumsalze* **13**, in denen das N(7)-Atom durch ein Aryl-C-Atom ersetzt ist, mit den gleichen Aminen **A** unter der Bildung von entsprechenden Guanidinen **G** reagieren (s. Abb. 3-14).

Abbildung 3-14

Mit 13 und den Aminen Piperidin (A1), Morpholin (A2), Pyrrolidin (A3), 2-(Pyrid-2yl)ethylamin (A13) und 1,1-Diphenylmethylamin (A8) können die Guanidine G28-G31 in guten Ausbeuten erhalten werden (Daten von G28-G31 sind bereits publiziert⁶² und im experimentellen Teil beschrieben, G32 ist in der Tabelle 4-1 der D0-Guanidine auf Seite 50 zu finden.). Das Piperidinderivat G28 ist als ein Beispiel dieser vom 2-Aminobenzothiazol abgeleiteten Guanidine röntgenstrukturanalytisch aufgeklärt worden.

KS-3 Struktur des Guanidins G28 (ohne Protonen, Bindungslängen in Å)

Die Bindungslängen im zentralen Guanidinteil ähneln den entsprechenden Werten anderer Guanidine wie z. B. **KS-7** und **KS-8** (von **G14a** und **G14b**, s. S. 52). Die C-S-Bindung im Dihydrobenzothiazol ist, wie zu erwarten, mit **1.868** Å deutlich länger als die im aromatischen Benzothiazolteil mit **1.768** Å. Bemerkenswert ist auch, daß im Gegensatz zu den meisten

Strukturen der Guanidine **G** hier die Z-Konfiguration vorliegt. Somit kann der letzte Schritt der hier vorgestellten Guanidinbildung, der nucleophile Angriff des anionischen Schwefels S(5) am sp³-Kohlenstoff C(9) des Betains und damit die Öffnung des Triazinrings, besonders gut nachvollzogen werden.

3.4.2 Charakterisierung der Betaine 26

Drei Beispiele der geöffneten Produkte 26a, 26b und 26c (26c s. S. 130) wurden nach der Umsetzung zweier unterschiedlicher 5/6/5-Heterocyclen (1c und 1i, s. S. 15 u. 16) mit zwei verschiedenen Aminen (*n*-Butylamin (A5) und 2-Aminoethylthiophen (A14)) isoliert und vollständig charakterisiert. In der folgenden Abbildung sind die Synthesebedingungen und wichtige Strukturmerkmale von 26a und 26b dargestellt.

Abbildung 3-15 (vollständige NMR-Spektren von 26b s. Anhang)

Das Betain **26a** ist nur deshalb als ein bei Raumtemperatur stabiler Feststoff isolierbar (Fp.: 73 °C), da es während der Bildung aus der Reaktionslösung kristallin (im Fall von **26a** zusammen mit einem Molekül Triethylamin) ausfällt. Sobald **26a** wieder in THF, Chloroform, Essigsäureethylester oder Dimethylsulfoxid bei Raumtemperatur gelöst wird, setzt sofort die Umlagerung zum Guanidin ein. Deshalb ist eine Untersuchung in Lösung nur bei tiefen Temperaturen < -20 °C möglich. Die Öffnungsreaktion zu Betainen **26** kann in homogener Lösung (in Chloroform oder THF) auch schon bei –50 °C beobachtet werden. In den dargestellten Ausschnitten der ¹H-NMR-Spektren von **26a** bei –50 °C und derselben Probe nach Erwärmung auf Raumtemperatur ist deutlich die Tieffeldverschiebung des NH-Signals und die Hochfeldverschiebung des CH-Signals zu erkennen, welche die Umlagerung zum Guanidin **G5a** begleiten (s. Abb. 3-16).

Abbildung 3-16 ¹H-NMRSpektren von 26a bzw. G5a bei unterschiedlichen Temperaturen

Die Identifizierung des NH-Signals im Protonenspektrum von **26a** erfolgte durch die zweidimensionalen NMR-Methoden HMQC/HMBC (siehe Anhang).

Die Lokalisierung des Protons am Angriffsaminstickstoff wurde durch zwei verschiedene NMR-Methoden durchgeführt.

Einerseits zeigt ein 1D-TOCSY-Experiment des Betains **26b** (s. Abb. 3-17) durch eine selektive Anregung des N-H-Protons die Kopplung zu allen Signalen des *n*-Butylrests mit abnehmender Intensität bei steigender Entfernung.

Abbildung 3-17 1D-TOCSY-Experiment 26b
Andererseits wird auch durch eine COSY-DQF-Messung von **26a** die Kopplung zur benachbarten CH₂-Gruppe nachgewiesen (s. Abb. 3-18).

Abbildung 3-18 COSY-DQF-Messung von 26a

3.4.3 Abfangreaktionen zu den Salzen 32 und Ringschluß zu NNS-Heterocyclen 33

Nach der Ringöffnung zu den Betainen **26** bei 0 °C in einem für Elektrophile wie MeI inerten Lösungsmittel wie THF kann mit der Blockierung des nucleophilen Thiolats durch Zugabe von Methyliodid der Ringschluß zum Dihydrothiadiazol als letzter Teil der Guanidinbildung verhindert werden. Die abgefangenen Produkte **32** sind deutlich stabiler als die Betaine, können aber durch Erwärmen auf 50-110 °C (je nach Substituenten R²) mit einem neuen Ringschluß unter Eliminierung von Methylmercaptan in NNS-Heterocyclen **33** transformiert werden (s. Abb. 3-19).

Abbildung 3-19

	Ausb.[%	6]/Fp.[°C]	¹³ C-NMR	¹ H-NMR
	L		sp ³ C(triazin) δ[ppm]	$H-sp^{3}C(t) \delta[ppm]$
$32a//33a R^{1} = 2-Hydroxyphenyl$				
$R^2 = tBu$, $R^3 = 2$ -Ethylthien-2-yl	93//98	158//195	71.7 // 76.6	7.21 // 7.84
32b//33b R^1 = 2-Hydroxyphenyl				
$R^2 = tBu, R^3 = 2$ -Ethylpyrid-2-yl	87//98	150//161	71.7 // 76.5	7.22 // 7.86

Tabelle 3-1	Ausgewählte	Daten von	32a-b	und 33a-b
-------------	-------------	-----------	-------	------------------

Der Ringschluß von **32** zu **33** äußert sich sowohl bei dem ¹H- als auch dem ¹³C-Signal des sp³-Kohlenstoffatoms im Triazinteil durch eine Tieffeldverschiebung. Das weist auf eine den 5/6/5-Heterocylen **1** ähnliche Triazinium-Struktur in **33** hin. Die unsymmetrischen 5/6/5-Heterocylen **33**, welche auch bei Weg *D* bei entsprechender Reaktionsführung in geringen Ausbeuten erhalten werden können, sind allerdings auf diese Weise in *sehr guten Ausbeuten* mit diversen *primären Aminen A* zugänglich (nicht nur von Benzylaminen, wie bei Weg *D*). Selbst die *tert*-Butyl-Reste als Substituenten R² in **32a-b**, die die Blockierung des Weges *D* bewirken (s. Kap. 3.5), führen hier nur dazu, daß der vollständige Ringschluß zum Triazolderivat **33** längerer Zeit bei höheren Temperaturen von 110 °C bedarf (im Fall von R² = Me und Ethylthiol als Abgangsgruppe werden nur 50 °C benötigt)⁵⁷.

Die unsymmetrischen NNS-Heterocyclen **33** bieten sich wiederum zur Umsetzung mit Nucleophilen an, woraus sich erneut mehrere Reaktionskanäle ergeben, die jedoch im Rahmen dieser Arbeit nicht untersucht wurden.

3.4.4 Nebenreaktionen bei der Guanidinsynthese

Als Nebenprodukte der Guanidinsynthese nach der vorgestellten Methode treten in geringem Maße Imine aus der Aldehydkomponente **3** und dem eingesetzten Amin **A**, **3-A-Imine**, Alkyl(aryl)aminothiadiazole **28** (Weg *B*) und im Fall des 2-hydroxyphenylsubstituierten-5/6/5-Heterocyclus **1c** auch das Aminal **2a** (s. Weg *A*, S. 26) auf.

Abbildung 3-20

1,3,4-Thiadiazol-2-yl-(2-pyridin-2-yl)-ethylamin **28d** als Beispiel für den Weg *B* als Konkurrenzreaktion zur Guanidinbildung fällt bei der Synthese von **G13** (s. S. 51) in Mengen unter der NMR-Nachweisgrenze (< 5 %) an und ist nicht literaturbekannt. **28d** sollte wie das entsprechende Benzothiazol-2-yl-(2-pyridin-2-yl)-ethylamin⁶⁴ oder bekannte Thiazol-derivate⁶⁵ zugänglich sein. Die Struktur eines zweikernigen Zink-Komplexes von **28d** (**Zn**₂[**28d**]₂**7CIO**₄ s. S. 63) enthält wichtige Informationen über die Zink-Thiadiazol-Wechselwirkung und ist im Kapitel 5 beschrieben.

Für die Entstehung der **3-A-Imine** müssen zwei verschiedene Ursachen diskutiert werden. Einerseits eine langsame hydrolytische Zersetzung des 5/6/5-Heterocyclus **1** in Aldehyd **3** und Bis-(thiadiazolyl)-amin **28e** (s. Abb. 3-21), woraufhin der freigewordene Aldehyd **3** mit dem Amin **A** reagieren kann.

Abbildung 3-21

Andererseits kann bei den Verbindungen **1a-1e** und **1g** mit $R^1 = 2$ - oder 4-Hydroxyphenyl im stark basischen Reaktionsmedium wie Triethylamin die Ringöffnung am C(9) durch Deprotonierung der aciden OH-Funktion (und damit Betain-Bildung, s. S. 26) eine entscheidende Rolle spielen. Es gibt Hinweise,⁶⁶ daß die geringe Ausbeute von 34 % des Guanidins **G8** (s. S. 50), welches aus **1c** und dem aromatischen Amin **A10** dargestellt wurde, durch die Konkurrenzreaktion dieser **3a-A10-Imin-**Bildung (teilweise Imin > 50 %) verursacht wird (s. Abb. 3-22).

Abbildung 3-22

Bei der Synthese des Guanidins **G8** sind in NMR-Spektren vom Rückstand des eingeengten Diethyletherfiltrats nach Abtrennung von **G8** Signale enthalten, die dem **1c-A10-Imin** zugeordnet werden können. Systematische Versuche zu dieser speziellen Reaktionsvariante der hydroxyphenylsubstituierten 5/6/5-Heterocyclen **1** mit gering nucleophilen aromatischen Aminen **A** zu Salicylideniminen wurden im Rahmen dieser Arbeit nicht durchgeführt.

3.5 Weg D: Bildung neuartiger, schwefelfreier 5/6/5-Heterocyclen 30

Bei der Reaktion von 1 mit primären benzylischen Aminen^a (an dieser Stelle wurden 2-, 3und 4-Picolylamin (A16-A18) eingesetzt, um den potentiellen Ligandcharakter der Produkte hervorzuheben) findet neben der Guanidinbildung eine andere Umlagerung unter Austausch von Schwefel durch Stickstoff zu neuen substituierten Bis-triazolo-triaziniumsalzen **30** statt. Voraussetzung dafür ist ein primäres Amin A, welches nach dem nucleophilen Angriff, der Ringöffnung zum Betain **26** und durch Umprotonierung zu **27** erneut als recht starkes Nucleophil wirkend unter Angriff des Thioamid-Kohlenstoffs einen Ringschluß zum Triazol hervorruft (s. Abb. 3-23). Nach der Wiederholung dieser Reaktionssequenz am zweiten Thiadiazolteil des hier intermediär entstehenden unsymmetrischen 5/6/5-Heterocyclus **33** (s. S. 35 u. 36) entstehen die Bis-triazolo-triaziniumsalze **30** (s. Abb. 3-23).

^a Alle eingsetzten Amine A s. Tabelle 9-1 S. 98

Abbildung 3-23

Der entscheidende Unterschied zum Weg *C* folgt aus der Möglichkeit der Umprotonierung zu **27**, die auch durch die in der Reaktionslösung enthaltene Ammoniumverbindung unterstützt werden kann. Betaine **26** aus nicht benzylischen primären Aminen, z. B. *n*-Butylamin (**A5**), können jedoch auch durch Zugabe von Protonenlieferanten nicht in diese Richtung gelenkt werden, d. h. die Anwesenheit aciderer Protonen kann nicht allein der Grund für diesen Reaktionsweg sein. Die Umprotonierung und die offenbar starke Nucleophilie des Stickstoffs N(A) muß demnach durch den Benzylrest ermöglicht werden. Ist das Intermediat **27** einmal entstanden, verläuft die Reaktion zum NNS-Heterocyclus **33** zwanglos.

Tabelle 3-2 NNN-Heterocyclen 30a, 30b und Guanidine G17, G18 aus 1i und A16, A18

$\mathbf{R}^1 = 4 \mathbf{-} \mathbf{N}$	$fePh / R^2 = Me$	Ausb.[%]/Fp.[°C]	¹³ C-	-NMR δ [ppm]	¹ H-NN	VR δ [ppm]
30a $R^3 =$	Me-(pyrid-2-yl)	32 / 90-98	75.5	sp ³ C-(triazin)	7.61	H-(triazin)
G17	G17:30a = 38:62	20/158-162	71.9	C-(dihydrothia)	~7.1 H	-(dihydrothia)
30b $R^3 =$	Me-(pyrid-4-yl)	28 / ~60	76.0	sp ³ C-(triazin)	7.45	H-(triazin)
G18	G18:30b = 53:47	33 /150-153	71.0	C-(dihydrothia)	~7.0 H	-(dihydrothia)

Einschränkungen dieses Schwefel-Stickstoffaustausches werden durch den Rest R^2 in der Form gegeben, daß sowohl *tert*-Butylreste am Thiadiazol (R^2) als auch aromatische Substituenten am Schwefel (bei den Benzothiazolo-triaziniumsalzen **13**) diese Reaktion verhindern.

Eine ähnliche Umlagerung wird von KUMAR PADHY⁶⁷ zur Darstellung von substituierten Aminotriazolen aus Thiadiazolen und Hydrazin beschrieben, ist aber sonst noch nicht in der Literatur erwähnt.

KS-4 (SM) Links ist das Strukturmotiv des NNN-Kations **30a** dargestellt. Leider führten fehlgeordnete Lösungsmittelmoleküle und Perchlorat-Anionen im Kristall zu ungünstigen Voraussetzungen für eine Röntgenkristallstrukturanalyse hoher Auflösung.

Eine Berechnung des Reaktionsablaufes zeigt auch in diesem Fall Übereinstimmung mit den experimentellen Befunden:

Abbildung 3-24 (rote Zahlen = relative Energien [kcal/mol])

Mit den zwei Möglichkeiten der Protonierung des Betains **26** (am Schwefel oder Stickstoff des 1,3-Thioaza-Allyl-Anions) und nachfolgender Deprotonierung am Angriffsaminstickstoff N(A) resultieren Thiolstrukturen **27SH** mit **+9.9** kcal/mol oder die mit **+4.0** kcal/mol stabileren Thioamid-Intermediate **27**. Der Übergangszustand für die Cyclisierung zum Triazol von **27** aus liegt mit **+22.1** kcal/mol energetisch deutlich niedriger als für den Ringschluß der Thiolstruktur mit **+31.2** kcal/mol. Daraus kann geschlossen werden, daß dieser Weg der Triazolbildung bevorzugt über die Thioamid-Intermediate **27** verläuft.

3.5.1 Umsetzungen der NNN-Heterocyclen 30 mit Nucleophilen

Auch die schwefelfreien NNN-Heterocylen **30** sollten laut Ladungsberechnung elektrophile Eigenschaften besitzen.

Abbildung 3-25

Analog zu den Umsetzungen von 1 wurden primäre und sekundäre Amine A als Nucleophile für 30 getestet. Sowohl unter den gleichen Bedingungen als auch in siedendem THF konnte keine Reaktion von 30 mit Aminen A beobachtet werden. Selbst der Einsatz von Natriumamid führte nicht zu einer Umsetzung.

Abbildung 3-26

Allerdings findet mit Hydroxid-ionen als Nucleophil eine Ringöffnungsreaktion zu einem halogenfreien Produkt **35** statt, dessen Struktur sowohl durch NMR- und IR-Methoden, als auch durch eine Röntgenstrukturanalyse (s. **KS-5**) eindeutig als

2-[[5-Imino-3-methyl-4-(2-pyridinylmethyl)-4,5-dihydro-1H-1,2,4-triazol-1-yl]-4-methylphenyl-methyl]-5-methyl-4-(2-pyridinylmethyl)-2,4-dihydro-3H-1,2,4triazol-3-on (35a) bestimmt werden konnte. Ein charakteristisches Merkmal dieser Verbindung ist die starke Carbonyl-Schwingung des Triazolidinon-Teils bei 1703 cm⁻¹. Für weitere Umsetzungen ist die gegenüber den Aminalen 2 höhere Hydrolyse-Empfindlichkeit von Bedeutung (auch im Massenspektrum bei chemischer Ionisierung mit Wasser deutlich zu erkennen). Die Produkte einer durch Protonen beschleunigten Hydrolyse von 35a sind ein substituiertes Triazolidinimin, ein substituiertes Triazolidinon und der Ausgangsaldehyd. Versuche zur Verwendung von 35a als Ligand sind im Kapitel 5.5 beschrieben.

3.6 Orientierende Versuche zu Reaktionen von 1 mit Sauerstoff-, Schwefel-,Phosphor- und Kohlenstoff-Nucleophilen

Ziel dieser Versuche war es, Nucleophile zu finden, welche **1** an C(3a) bzw. C(4a) angreifen, jedoch nicht sofort zu einer Ringöffnung oder Umlagerung führen. Außerdem dienten diese Untersuchungen als Grundlage für fortführende Arbeiten mit den 5/6/5-Heterocyclen. Die Ringöffnung im Fall der Amin-Nucleophile wird durch Protonenübertragungen, welche kationische Bindungslockerung provozieren bzw. stark fördern, und durch das freie

Elektronenpaar des angreifenden Stickstoffzentrums und die damit mögliche negative Hyperkonjugation verursacht. Der Einsatz von Carbanionen, der beide destabilisierende Effekte ausschließt, oder die Verwendung anderer anionischer Nucleophile (Alkoholate, Thiolate), welche eine mögliche Kationisierung vermeiden, sollten deshalb zu neutralen "Andockprodukten" bzw. zur Betainbildung führen.

Abbildung 3-27

An dieser Stelle wird bewußt vom bisherigen schwach sauren Reaktionsmedium zu neutralen bzw. schwach basischen Bedingungen gewechselt, um Ringöffnungsreaktionen durch Kationisierungen zu vermeiden. Der Versuch, den 5/6/5-Heterocyclus **1c** mit Malonsäuredieethylester (**36**) in Gegenwart einer starken Base in Ethanol umzusetzen (siehe Abb. 3-28), führte nicht zum C-Angriffsprodukt **37**, sondern zur Reaktion des Heterocyclus mit der Base Natriumethanolat zu einem O-Ethyl-isoharnstoffderivat **38**.

Die Identifizierung der Struktur des Produktes **38** als O-Ethyl-isoharnstoff^{68,69} erfolgte mit NMR-Methoden. Erste Versuche, **38** durch saure Hydrolyse in das entsprechende Harnstoffderivat zu überführen, scheiterten an der geringen Stabilität des Dihydrothiadiazolteils gegenüber Säuren, was sich durch starke Schwefelwasserstoffentwicklung bemerkbar machte. Die Entstehung von **38** läßt den Schluß zu, daß die Reaktionen von **1** mit Alkoholaten ebenso über ein neutrales Andockprodukt **39** und eine betainische Zwischenstufe **40** verlaufen. Ein Hinweis auf **40** ist die intensive Rotfärbung der Reaktionslösung bei der Zugabe des Alkoholats, die durch das in **40** enthaltene (N-Donor-O-Akzeptor) Merocyanin-Farbstoffsystem⁷⁰ verursacht werden könnte (s. Abb. 3-29).

Systematische Untersuchungen dieser neuen Synthesemöglichkeit hochsubstituierter Isoharnstoffe bzw. von deren Eigenschaften sollten ebenfalls eine breite Palette an interessanten Folgeprodukten liefern, welche auf anderen Wegen schwer zugänglich sind. Die Reaktion von **1c** mit *p*-Thiocresolat **41** in Ethanol führten ebenfalls zu einem nucleophilen Angriff, jedoch am sp³-Kohlenstoff C(9) des ehemaligen Aldehydteils. Es resultiert eine heterocyclensubstituierte chirale (N,S)-Acetalstruktur **43** (s. Abb. 3-30).

Abbildung 3-30

KS-6 Struktur von **43** (vollständige Daten finden sich im Anhang)

Die Struktur von **43** konnte sowohl durch NMR-Untersuchungen (¹H-¹³C-Korrelation, HMBC, HMQC, COSY) als auch durch eine Kristallstrukturanalyse (s. **KS-6**) belegt werden. Zwei verschieden starke Phosphornucleophile^{39,71}, Trimethylphosphit (**44**) und Tri-*n*-butylphosphan (**45**), führten unter den selben milden Bedingungen bis hin zum Erhitzen am Rückfluß in Chloroform oder Pyridin zu keiner Reaktion mit dem 5/6/5-Heterocyclus **1c**.

Abbildung 3-31

4 Liganden auf Guanidinbasis

4.1 Eigenschaften der neuen hochsubstituierten Guanidine G

Die Eigenschaften des namengebenden Strukturelementes, des unsubstituierten Guanidins, sind *nicht* auf die hier dargestellten und untersuchten hochsubstituierten Derivate übertragbar. Ein deutlicher Unterschied besteht beispielsweise in ihrer geringen Basizität im Vergleich zu freiem Guanidin, welches ähnlich Alkalihydroxiden mit Wasser und Kohlendioxid aus der Luft Guanidiniumhydrogencarbonat bildet⁷². Die Ursache dafür sollte im viel geringeren Vermögen einer Resonanzstabilisierung der unsymmetrisch substituierten Guanidiniumverbindungen zu lokalisieren sein. Da bei allen Synthesen unter Verwendung von Triethylamin dessen Hydrochlorid **49**, nicht aber das des Guanidinderivats **GH**⁺ entstand, kann darauf geschlossen werden, daß ihre Basenstärke klar unter der von Triethylamin liegt (s. Abb. 4-1).

Abbildung 4-1

Ein ebenso deutlicher Hinweis auf diesen Sachverhalt ist die Tatsache, daß die dargestellten Verbindungen mit R^1 = HO-Aryl nachweislich in Lösung und im Kristall in der HO-Form, nicht in der Form eines inneren Guanidiniumphenoxid-Salzes **G-Betain** vorliegen (s. Abb. 4-2).

Abbildung 4-2

In ¹H-NMR-Spektren deuten die chemischen Verschiebungen der Guanidin-N-H-Protonen von 8-11 ppm auf deren hohe Acidität hin. Dementsprechend stellte sich bei den

Umsetzungen mit Zinkbasen, z. B. Diethylzink, heraus, daß sich die Guanidin-N-H-Funktion leicht deprotonieren läßt.

Eine weitere Folge der hohen Substitution durch teilweise stark lipophile Reste ist die geringe Löslichkeit in Wasser und die dafür gute Löslichkeit in THF und zum Teil auch in Diethylether.

Die im systematischen Namen erwähnte *Imin*-Funktion der Verbindungen G läßt mit ihrer geringen Reaktivität jedoch genausowenig einen Bezug zu den Eigenschaften der Verbindungen erkennen. Weder eine Hydrolyse zum Harnstoffderivat **52** (Hydrolyse-Versuche mit den Guanidinen G2, G5a und G13 bei unterschiedlichen Temperaturen unter Zusatz verschiedener Mengen Salzsäure), noch eine an vielen Iminen mögliche Addition von Grignard-Verbindungen^{73,74} **50** (G13 wurde mit 5 Äquiv. Benzylmagnesiumbromid (**50a**) versetzt) konnten durchgeführt werden (s. Abb. 4-3).

Abbildung 4-3

Diese gefundene hohe Stabilität des zentralen Molekülteils ist wiederum ein Argument für die Bezeichnung der Substanzen als Guanidine. Gegenüber starken Säuren ist allerdings die Stabilität des Dihydrothiadiazolteils begrenzt, was durch das Fehlen dieses Molekülteils nach Hydrolyseversuchen und dem bei der Zersetzung freiwerdenden Schwefelwasserstoff erkennbar ist. Durch starke Basen im Verhältnis 1:1 bilden sich im Fall der Derivate mit N-H-Funktion stabile Anionen (siehe Zinkverbindungen im Kapitel 5).

Die Koordinationschemie von "freien Guanidinen",^{75,76} welche meistens von einem hohen elektrovalenten Anteil zwischen einem Stickstoff und dem Metall gekennzeichnet ist, kann aus oben genannten Gründen ebenfalls nur mit starken Einschränkungen von ähnlich substituierten Guanidinen⁷⁷ auf die neuen Verbindungen übertragen werden.

Bei den wenigen bekannten, von Guanidinen abgeleiteten Chelatliganden sind kaum Informationen über Zinkverbindungen zu finden. Die Darstellung und Eigenschaften eines Metformin-Zink-Komplexes⁷⁸ **53** und der (1-Ethoxyiminomethylguanidin)dibromo-zink(II)-Spezies⁷⁹ (**54**) werden in diesem Zusammenhang beschrieben.

Abbildung 4-4

Das Strukturelement des 1,3,5-Triazapentadienylanions der Bis-N,N-Chelat-6-Ring-Zink-Verbindung **53** des biologisch aktiven Biguanidins Metformin^{80,81} spielt bei der Strukturdiskussion der neuen Zinkverbindungen im Kapitel 5 dieser Arbeit eine wichtige Rolle.

Für die Synthese potentieller Liganden auf der Basis der vorgestellten Guanidine war es nötig, eine Auswahl dafür geeigneter Substituenten R^1 - R^4 zu treffen. Als R^1 und R^2 kamen mit der Verwendung des 5/6/5-Heterocyclus **1c** vor allem der Salicylrest (R^1) und der *tert*-Butylrest (R^2) zum Einsatz. Die größte Einflußnahme auf die Ligandeigenschaften ist mit der Variation der Reste R^3 und R^4 der Aminkomponente möglich, da

1) die Umlagerung zum Guanidin unter *sehr milden Bedingungen* in *guten Ausbeuten* viele verschiedene Funktionalitäten zuläßt (z. B. *weitere Donoratome* wie N, S, O),

2) das starre Guanidingerüst an dieser Stelle flexibler gestaltet und an Metalle angepaßt werden kann, da funktionalisierte Amine leicht und in *großer Vielfalt* zugänglich und verwendbar sind,

3) durch die Wahl primärer oder sekundärer Amine die Option zwischen Guanidinen **mit** oder *ohne* N-H-Funktion offen steht.

In Abhängigkeit der Substituenten des verwendeten Amins wurden die darzustellenden Verbindungen in drei Gruppen jeweils ähnlicher Eigenschaften unterteilt.

Im folgenden Kapitel werden die Synthesen und Eigenschaften dieser in Abbildung 4-5 dargestellten Guanidingruppen beschrieben.

4.2 Synthesen der D0-Guanidine G5-G11

Die in Abbildung 4-6 dargestellten Amine A5-A12 wurden mit den 5/6/5-Heterocyclen 1c und 1i (s. S. 15 u. 16) zu Guanidinsynthesen eingesetzt. Die Ausbeuten an Guanidinen schwankten in Abhängigkeit vom Amin von ~0-5 (mit A11-A12) bzw. 35-90 % (mit allen anderen Aminen A). Mit den erfolgreichen Umsetzungen von 1,1-Diphenylmethylamin (A8) und 1-Adamantylamin (A9) als Beispiele sterisch anspruchsvoller primärer Amine wurden mit der N-H-Funktion und den voluminösen Resten begünstigende Faktoren zur Bildung monomerer Zink-Ligandeinheiten eingefügt. Die Verwendung von Triphenylmethylamin (A11) führte allerdings nicht zum Guanidin, womit die Grenze der Synthesemethode in Bezug auf Raumbedarf deutlich wird. Die Verwendung von p-Nitroanilin (A12) mit einem pK-Wert von 1.02 zur Abschätzung der zur Reaktion benötigten Nucleopilie führte, wie erwartet, ebenfalls nicht zum Guanidin.

Für die Reaktion der aliphatischen Amine **A** mit den 5/6/5-Heterocyclen **1** bewährte sich der Einsatz von reinem Triethylamin als Reaktionsmedium, während bei den Umsetzungen mit aromatischen Aminen wie Anilin (**A6**) und *p-tert*-Butylanilin (**A10**) ein 1:1-Gemisch aus Chloroform und Triethylamin zu besseren Ausbeuten führte: Da der Heterocyclus **1c** in reinem TEA nur gering löslich ist, deshalb aus einer Suspension heraus langsamer reagiert, nehmen die Nebenprodukte bei den aromatischen Aminen zu (s. S. 36). Außerdem wurde ein Benzothiazol-substituiertes D0-Guanidin **G32** durch Reaktion von **A8** und **13a** (s. S. 18) dargestellt.

G		Aust	. [%]]/Fp.[°C]	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
					$C(Dt) \delta [ppm]$	H-C(Dt) δ [ppm]	C(Gua) δ [ppm]
G5	(1c+A5)	72	/	159	66.3	7.23	150.0
G6	(1c+A7)	74	/	184	66.6	7.27	150.7
G7	(1c+A8)	37	/	174	66.0	6.82	151.1
G8	(1c+A10)	34	/	226	66.4	7.25	150.8
G9	(1i+A6)	65	/	162	72.4	7.20	149.4
G10	(1c+A11)	40	/	210	66.0	7.09	148.8
G11	(1i+A8)	69	/	184	71.6	7.20	150.8
G32	(13a+A8)	76	/	150-152	73.2	6.87	151.5

Tabelle 4-1	D0-Guanidine	G5-G11	und	G32	(alle	Strukturen	G	finden	sich	im
	experimenteller	n Teil 9)								

4.3 Synthesen der D1-Guanidine G12-G18

Mit der Verwendung von **Donor**-Gruppen enthaltenden primären Aminen konnte den Guanidinen **G12-G18** und **G31** neben der N-H-Funktion eine weitere mögliche flexible Koordinationsstelle zugefügt werden, womit eine deutliche Änderung ihrer Ligandeigenschaften einhergehen sollte. Die Daten der Picolinderivate **G17** und **G18** sind der Tabelle 3-2 (s. S. 39) zu entnehmen.

Abbildung 4-7

Die Verwendung chiraler Amine - wie 1-(2-Pyridyl)ethylamin $(A19)^{82}$ - bei der Guanidinsynthese führt durch die Bildung des zweiten Chiralitätszentrums im Dihydrothiadiazolteil zu Diastereomeren, welche sich im Fall von G14a/b durch fraktionierte Kristallisation trennen lassen. Diese gute Trennbarkeit wird durch unterschiedliche Wechselwirkung der Diastereomere mit Lösungsmitteln hervorgerufen, die sich darin äußern, daß G14a in Essigsäureethylester gut löslich ist, während G14b ausfällt, dann aber gut aus Methanol kristallisiert.

G	Ausb.[%]/Fp.[°C]	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
		$C(Dt) \delta [ppm]$	H-C(Dt) δ [ppm]	$C(Gua) \delta [ppm]$
G12 (1b+A13)	81 / 151	66.0	7.12	151.9
G13 (1c+A13)	72 / 184	65.9	7.10	151.2
G14a/b(1c+A19)	30/25 / 180/170	65.6 / 66.5	7.20 / 7.16	150.6 / 150.9
G15 (1c+A14)	82 / 165	65.6	7.27	152.5
G16 (1c+A15)	60 / 74	66.4	7.00	152.5
G31 (13a+A13)	86 / 90	72.3	6.98	151.1

Tabelle 4-2D1-Guanidine G12-G16 und G31 (alle Strukturen der Guanidine G finden sich
im experimentellen Teil 9)

Da bei dem ähnlichen 1-Phenylethylamin-Guanidinderivat diese Art der Trennung kaum möglich ist⁸³, muß der Pyridinrest dabei eine wesentliche Rolle spielen, was auch an seinen verschiedenen Anordnungen im Kristall nachvollziehbar ist.

4.4 N-Nucleophile mit zwei zusätzlichen Donorfunktionen: D2-Guanidine G19-G27

Zweifach donorsubstituierte sekundäre Amine, wie das käufliche Di-(2-picolyl)amin, oder durch einfache Synthesen, wie der reduktiven Aminierung⁸⁴ oder der Hydroaminierung⁸⁵ zugängliche Amine, führen bei der Umsetzung mit **1** ebenfalls in guten Ausbeuten zu den entsprechenden Guanidinen.

Abbildung 4-8

Die dargestellten und zur Guanidinsynthese verwendeten, z. T. nicht beschriebenen bifunktionellen sekundären Amine werden in folgender Tabelle zusammengefaßt:

 Tabelle 4-3
 Bifunktionelle sekundäre Amine A20-A26

Eine Zusammenfassung der dargestellten D2-Guanidine ist der Tabelle 4-4 zu entnehmen:

experimentenen ren)						
G	Ausl	o.[%]/ Fp.[°C]	¹³ C-NMR	¹ H-NMR	¹³ C-NMR	
			$C(Dt) \delta [ppm]$	H-C(Dt) δ [ppm]	$C(Gua) \delta [ppm]$	
G19 (1f+A24)	87	/ 115	72.0	7.07	150.0	
G20 (1c+A24)	95	/ 82	67.1	7.07	149.9	
G21 (1c+A23)	82	/ 153-160	67.0	7.20	150.2	
G22 (1c+A22)	65	/ 141-143	67.5	7.03	149.5	
G23 (1c+A21)	87	/ 104	67.0	7.10	149.3	
G24 (1c+A20)	62	/ 102-106	67.2	6.98	149.5	
G25 (1f+A20)	82	/ 56-59 Zers.	72.1	7.20	151.5	
G26 (1b+A20)	68	/ 105 Zers.	70.0	7.25	149.5	
G27 (1c+A25)	62	/ 85	67.2	7.02	149.5	

 Tabelle 4-4
 D2-Guanidine G19-G27 (alle Strukturen der Guanidine G finden sich im experimentellen Teil 9)

Einerseits können die D2-Guanidine mit dem bis-donorsubstituierten Aminsegment Metalle wie dreizähnige Liganden koordinieren, andererseits können sie unter Beteiligung des OH-Restes oder der Thiadiazoleinheit auch wie tripodale Liganden wirken. Ähnliche tripodale Substrukturen werden in mehreren Arbreitskreisen erfolgreich zur Zink-Komplexierung eingesetzt.^{86,114} Im Gegensatz zu Trispyrazolylborat- nach VAHRENKAMP oder Trisimidazolyl-phosphan-Zink-Komplexen⁸⁷ **15b** (s. Abb. 4-9) wie auch den 3- und 4-Aza-Kronen sind die

Abbildung 4-9

neu dargestellten Verbindungen unsymmetrisch aufgebaut, was eher den natürlichen Vorbildern entspricht. Dies könnte sich auch in einer höheren Reaktivität äußern, da der für Katalysen wichtige Wechsel von Komplexgeometrien durch labilere Ausgangssituationen leichter ablaufen sollte. Diese erklärte Flexibilität führt jedoch auch zu einer geringeren Tendenz der Kristallbildung.

4.5 Piperazin, 1,2-Diaminocyclohexan, Cyclam und Tris-(2-aminoethyl)-amin als N-Nucleophile

Aufgrund vieler bekannter auf Oligoaminen basierender Liganden wurden Amine wie Piperazin⁸⁸ (A4), 1,2-Diaminocyclohexan⁸⁹ (A26), Tris-(2-aminoethyl)-amin⁹⁰ (A28) bzw. Azamacrocyclen wie Cyclam^{91,92} (A27) auf die Möglichkeit ihrer Guanidin-Funktionalisierung mittels 1 hin untersucht.⁹³

Abbildung 4-10

Von allen eingesetzten Aminen konnten entsprechende Guanidinderivate **G33-G38** erhalten werden. Grenzen der angewandten Methode zur Aminfunktionalisierung werden bei dem Diaminocyclohexanderivat **G36** deutlich, welches nach der Aufarbeitung und Reinigung nur in 5 %-iger Ausbeute anfiel. Offenbar ist für den Umlagerungsprozess zum Guanidin ein größerer räumlicher Anspruch erforderlich, als er bei vicinalen Aminogruppen erfüllt werden kann. Dieser Befund entspricht auch dem Ergebnis der Umsetzung von **1** mit Triphenylmethylamin (**A11**), welche nicht zum Guanidin führte.

Verschiedene Piperazinderivate **G33-G35** sind mit Kristallstrukturanalysen der entstandenen Diastereomeren und der *meso*-Formen beschrieben⁶² und sollen hier nicht weiter diskutiert werden. Die Struktur des Tetraguanidinocyclam-derivates **G37a** mit $R^1 = 2$ -HOPh und $R^2 =$ *tert*-Butyl konnte durch eine Röntgenkristallstrukturanalyse bestätigt werden.⁹³

KS-9 der Verbindung G37a

Zur besseren Übersicht ohne Protonen und ohne die sechs im Kristall enthaltenen Pyridinmoleküle dargestellt. Das Molekül setzt sich vier identischen aus Teilen zusammen, d. h. vier Chiralitätsalle zentren haben dieselbe Konfiguration (R, R, R, R)bzw. (*S*,*S*,*S*,*S*).

Außerdem fällt hier wie bei **G28** die Z-Konfiguration in Bezug zur C=N-Bindung auf.

Ungewöhnlich sind auch die Längen der Guanidin-relevanten Bindungen mit N1-C4 **1.349** Å, N2-C4 **1.308** Å (damit kürzer als in allen anderen Guanidinen dieser Art), N3-C4 **1.395** Å (fast normale C-N-Einfachbindung). Für die Beschreibung der Eigenschaften von **G37a** (der kristallisierten Fraktion)^a in Lösung konnten aufschlußreiche NMR-Untersuchungen durchgeführt werden. Aus der HMQC-Messung in Abbildung 4-11 werden beispielsweise die großen Differenzen der chemischen Verschiebungen von 2.07 ppm zweier Methylenprotonen des ersten Kohlenstoffs (C1 mit 46.4 ppm) der Propylenbrücke und der Methylenprotonen der Ethylenbrücke (C3 mit 51.5 ppm) mit 1.72 ppm sichtbar, was auf eine extrem starre Fixierung ihrer Lage hinweist.

Abbildung 4-11 HMQC-Experiment von G37a

Ein weiterer Hinweis auf die Unbeweglichkeit des Moleküls ist die festgestellte hohe Auflösung bzw. geringe Linienbreite der NMR-Spektren (s. Abb. 4-12), welche erreicht wird,

^a Im Rohprodukt treten in NMR-Spektren dreifache Signale (mindestens 3 Stereoisomere) auf.

obwohl sich hinter jedem Signal die vierfache Zahl chemisch nicht äquivalenter Protonen bzw. Kohlenstoffe verbirgt.

Abbildung 4-12¹H-NMR-Spektrum von G37a

Mit einer anderen Perspektive auf die im Kristall vorliegende Struktur (s. Abb. 4-13) und den vorangestellten Eigenschaften zusammengefaßt, kann der Verbindung **G37a** nur eine sehr geringe Tendenz eingeräumt werden, nachträglich ein Metall im Zentrum aufzunehmen, da der Cyclamring durch die vier großen Reste stark abgeschirmt und in eine vorbestimmte Position gezwungen wird, welche zur Koordination von Metallen wenig geeignet ist (s. Kap. 5).

Abbildung 4-13

5 Reaktionen der neuen Verbindungen mit Zink(II)-Salzen und Zink(II)-Organylen

Zur Darstellung von $\text{RO-Zn}(N)_x$ -Komplexen sind zwei Hauptwege in der Literatur beschrieben:

Die Variante *K*omplex-*S*ynthese-*A* (*KS*-*A*) beinhaltet die Umsetzung des Liganden mit einem Zinksalz **55**, welches wenig nucleophile Anionen wie Perchlorat (**55a**), Sulfat (**55b**), Trifluormethansulfonat (**55c**) oder Acetat (**55d**) enthält, und die nachfolgende Deprotonierung bzw. den Austauch des Anions gegen Hydroxid. Diese Deprotonierung erfolgt dann zweckmäßigerweise mit einer Base, deren Kation mit dem eingesetzten Anion schwer lösliche bzw. gut abtrennbare Salze bildet (z. B. wird im Fall von Perchlorat Kaliumhydroxid und im Fall von Sulfat Bariumhydroxid verwendet). Auf diese Art zugängliche Zn(N)_x-Hydroxid-Komplexe dienen hauptsächlich als CA-Modelle, d. h. zu Struktur- und Reaktivitäts-untersuchungen von Zn²⁺-Komplexen, welche die Reaktion von CO₂ und Hydroxid zu Hydrogencarbonat katalysieren.^{15,18}

Abbildung 5-1 KS-A am Beipiel der Synthese von 14

Andererseits geht man bei der *KS-B*-Methode von Zinkbasen wie Diethylzink (**56**) oder Zinkbis(hexamethyldisilazid) (**57**) und dem Liganden aus und fügt bei Liganden mit nur einem aciden Proton nachträglich ein gewünschtes Anion hinzu. Dies geschieht durch Zugabe eines Alkohols oder einer Säure mit wenig nucleophilem Anion, welche unter Austritt von Ethan mit dem am Zink verbliebenen Ethanid-Rest reagieren.²³

Abbildung 5-3 KS-B am Beispiel der Synthese von 18

5.1 Zink-Verbindungen der D0-Guanidine

D0-Guanidine wurden ausschließlich nach der *KS-B*-Variante mit Diethylzink (56) in THF oder Diethylether zu den entsprechenden Zinkverbindungen umgesetzt. Die Deprotonierung ist schon bei Temperaturen von -30 °C an der Gasentwicklung zu erkennen und bei Raumtemperatur abgeschlossen. Die Produkte Z fallen annährend quantitativ als feine, weiße bis beige Niederschläge aus Diethylether aus und lassen sich gut mittels Schlenkfritten abfiltrieren.

In den IR-Spektren der Produkte ist zweifelsfrei das Fehlen der O-H- (bei $R^1 = HOPh$) und der N-H-Schwingung zu erkennen, während der Zink-Nachweis als RINMANNS GRÜN⁹⁴ bzw. durch Massenspektroskopie erfolgte. Durch Ansäuern einer Suspension der Zink-verbindungen **Z** in Chloroform und Ausschütteln können die Guanidine **G** zurückgewonnen werden, woraus man schließen kann, daß sie in den Verbindungen mit Zink unzersetzt als Anionen vorliegen.

R¹= 4-MePh, 4-MePh; von **1i**, **1j** (ohne Aryl-OH) abgeleitete **G** mit Zink

Abbildung 5-1

Die Koordination sollte N,N-Chelat-6-Ring-artig erfolgen, wie es für die Metformin-Zn- bzw. die Ethoxyguanidin-Zn-Verbindungen **53** und **54** beschrieben ist^{78,79} (s. Abb. 4-4, S. 47).

In Abhängigkeit vom eingesetzten Guanidin werden ohne Hydroxyphenylreste mit einem Äquivalent Zinkbase **56** (N,N-Zn-Ethyl)-Spezies **Z** und mit 0.5 Äquivalenten **56** Bis-Guanidin-Zink-Verbindungen G_2Z erhalten (s. Abb. 5-1). Die mit Hilfe der semiempirischen Methode PM3⁹⁵ berechnete Struktur **MG**₂**Zn** einer vereinfachten Modellverbindung ist in Abbildung 5-2 dargestellt.⁹⁷ Die Zuverlässigkeit von PM3 zur Strukturberechnung von Zink-Komplexen wurde mit großem Aufwand durch Vergleich von berechneten Werten und Kristallstruktur-Daten nachgewiesen.^{20,33}

Abbildung 5-2 PM3-Geometrie von MG₂Zn (ohne Protonen), Bindungslängen in Å (Stickstoffatome sind, um eine Verwechslung mit Kristallstrukturen auszuschließen, grün dargestellt)

Die Zn-N-Bindungslängen liegen mit 2.023 und 2.067 Å im Bereich vergleichbarer Literaturwerte^{23,29} von 1.977 bis 2.074 Å (Diimin-Zn-Komplexe wie 18, s. S. 9 und 59), während die C-N-Bindungen des im Guanidin enthaltenen 1,3,5-Triazapentadienylanionsystem (im Vergleich zu der Molekülstruktur des Guanidin-Cu(II)-Komplexes G13Cu, s. S. 88) etwas zu lang ausfallen. Mit dieser Strukturdarstellung wird plausibel gezeigt, daß durch voluminöse Reste R³ am Aminteil der Guanidine die Bildung der stabilen NNNN-Tetraeder aus zwei Guanidineinheiten und einem Zink kaum zu verhindern ist.

von **1c** (mit $R^1 = 2$ -Hydroxyphenyl) abgeleitete **Z** (Zink+Guanidin 1:1)

Abbildung 5-3

Aus Guanidinen G mit Hydroxyphenylresten und 56 werden bei 1:1-Umsatz schwerlösliche Koordinationspolymere erhalten, die Zink in drei unterschiedlich koordinierten Formen enthalten können (s. Abb. 5-3). Bei Versuchen, den verbliebenen Ethylrest in den hydroxyphenylfreien Z-Verbindungen durch Alkoxy- oder Carboxyreste auszutauschen, setzte unter Disproportionierung die Bildung von Zinkalkoholaten bzw. Zinkcarboxylaten und Bis-Guanidin-Zink-Verbindungen G_2Zn ein. Dieses auch von COATES beschriebene Verhalten sterisch weniger anspruchsvoller N,N-Chelatliganden¹⁰⁰, tetraedrische *Bis-Amid-Zink-Komplexe* zu bilden, wurde mit der Darstellung des Bis-Guanidin-Zink-Komplexes Z6 (s. S. 62, Tab. 5-1) aus dem Guanidin G32 (s. S. 50, Tab. 4-1) und Diethylzink (56) im Verhältnis 2:1 direkt für die Guanidine nachgewiesen. Die Tabelle 5-1 enthält die dargestellten D0-Guanidin-Zinkverbindungen Z1-Z6. Aus Gründen der besseren Übersicht wurde die intramolekulare Koordination des Phenoxids für die Strukturbilder gewählt.

Z	Struktur	Ausb./	Z	Struktur	Ausb./
		Fp.			Fp.
Z1	S.H.O	90 %	Z4	L s H O	87 %
		194 °C			220 °C
Z2	s. H	77 %	Z5	н Г	79 %
	N-N O	210 °C		S O	180 °C
				N S	
72		80.0/	76		80.04
LS	s TO	(232 °C	ZU	-0 S Ph S	00 70 171 °C
		Blasen)		N Zn N H	171 0
	Zn-N	300 °C		H N N Ph S O	
	1				

 Tabelle 5-1
 D0-Guanidin-Zink-Verbindungen Z1-Z6

Die sehr geringe Löslichkeit der erhaltenen **Z1-Z6-**Strukturen, auch in polaren Lösungsmitteln wie DMSO, erschwerte NMR-Untersuchungen bzw. machte sie unmöglich.

Hinweise über die Art der Wechselwirkungen zwischen Zink und den Guanidinen **G** konnten jedoch aus folgender Strukturbeschreibung (s. **KS-10**) und der Struktur eines D1-Guanidin-Kupfer-Komplexes **G13Cu** (s. Kap. 7, S. 88) gewonnen werden.

So kann beispielsweise eine mögliche Koordination des Zink-Ions durch den Schwefel des Thiadiazols mit Hilfe der Kristallstruktur **KS-10** (s. unten) des dinuklearen Zink-Komplexes $Zn_2[28d]_27ClO_4$ aus zwei 1,3,4-Thiadiazol-2-yl-(2-pyridin-2-yl-ethyl)amid-(28d)-Einheiten (s. S. 36) und einem verbrückenden 2-Aminothiadiazolo-Anion 7 ausgeschlossen werden.

Die Darstellung der wenigen Kristalle des gezeigten Zn_2 -Amid₃-Perchlorats geht auf einen der ersten Versuche zur Guanidin-Zn-Komplex-Synthese aus dem D1-Guanidin **G13** nach *KS-A* zurück, wobei das Guanidin mit geringen Mengen des Nebenprodukts **28d** und dem Aminothiadiazol **7** kontaminiert war, und wurde nicht in größerem Maßstab wiederholt.

Für nachfolgende Versuche wurden die Guanidine z. T. mehrfach umkristallisiert, bis durch DC-Kontrolle **28** oder **7** nicht mehr detektiert werden konnten.

Die fast gleichlangen Zn-N-Bindungen vom Zink zu den exocyclischen Stickstoffatomen, z. B. **1.954** Å, und den Ringstickstoffatomen, z. B. **1.972** Å, der Aminothiadiazoleinheiten weisen auf eine Ladungsdelokalisierung (Ambidenz des Heteroaromaten) hin.

KS-10 Kristallstruktur des $(Zn_2[28d]_27)^+$ -Kations (ohne Protonen) mit ausgewählten Bindungslängen (vollständige Daten finden sich im Anhang)

5.2 Zink-Verbindungen der D1-Guanidine

Für die Synthese entsprechend der *KS-A*-Variante wurde das Guanidin G15 in Methanol mit einem Äquivalent Zinkperchlorat und einem Äquivalent Kaliumhydroxid umgesetzt, fünf Stunden gerührt, filtriert und eingeengt. Neben dem freien Liganden und Zinkhydroxid konnten geringe Mengen eines nicht einheitlichen Zinkaddukts isoliert und mittels massenspektroskopischen Methoden untersucht werden. Außer einem schwachen Molpeak (5 %) eines Guanidin-Zink-Kations G15Zn⁺ trat die Massenzahl 1119, einer protonierten G₂Zn-Spezies 58 entsprechend, mit höherer Intensität auf. Die in Abbildung 5-5 gezeigte Annahme, daß in 58 die Guanidin-N-H-Funktionen deprotoniert werden, nicht die Hydroxyarylfunktionen, wurde außerdem von der Struktur eines Cu(II)-Komplexes G13Cu des Guanidins G13 abgeleitet (s. S. 88).

Abbildung 5-5

Das Guanidingerüst mit einer zusätzlichen Donorfunktion neben dem Salicylrest ist offensichtlich zu starr bzw. unflexibel, um ein Zinkion in einem 1:1-Komplex stark zu koordinieren. Durch Umsetzungen nach der Variante *KS-B* werden die zwei aciden Protonen der D1-Guanidine (z. B. **G13**) bei 1:1-Umsatz mit ZnEt₂ (**56**) oder Zinkbis(hexamethyldisilazid) (**57**) komplett entfernt, wobei ein schwerlösliches Koordinationspolymer mit der vermutlichen Struktur von **Z7** entsteht (s. Abb. 5-6).

Abbildung 5-6

Mit zwei Äquivalenten Diethylzink entsteht eine dinukleare Zn-Spezies⁹⁶ **59**, welche pro Zn noch einen Ethylrest behält (Zusammensetzung $\mathbf{Zn}_2\mathbf{GEt}_2$) und die bei der Synthese in THF in Lösung bleibt. Ein Strukturvorschlag für **59** ist in Abbildung 5-7 dargestellt. Diese und auch andere mögliche Strukturen einer Zinkverbindung mit dieser Zusammensetzung weisen Merkmale eines katalytisch wirksamen Systems auf: das Zink ist niedrig koordiniert, und mindestens ein leicht austauschbares Lösungsmittelmolekül ist vorhanden. Ferner sind eine reaktive Zn-O- als auch eine Zn-N-Bindung enthalten. Der Nachweis für die vermutete Aktivität von **59** konnte durch NMR-Untersuchungen zur CO₂-Aktivierung erbracht werden (s. Kap. 6).

Abbildung 5-7

Wird jedoch die selbe Synthese in Diethylether wiederholt, fällt langsam eine dem 1:1-Ansatz entsprechende Zinkverbindung **Z7** aus, d. h. ohne die Koordination von THF ist die **Zn₂GEt₂**-Spezies **59** nicht genügend stabilisiert, um einer Umwandlung in das schwerlösliche **Z** und ZnEt₂ (**56**) zu entgehen (s. Abb. 5-8).

Abbildung 5-8

Austauschversuche der Ethylreste führten in Analogie zu den D0-Guanidinen zu Zn-Salzen 55 und schwerlöslichen Koordinationspolymeren Z. Bei den später durchgeführten

Katalyseversuchen konnte allerdings festgestellt werden, daß die Aktivität der Verbindungen **59** und **Z7** sich nicht unterscheiden, der reaktive Teil also auch in den schwerlöslichen Verbindungen **Z** enthalten sein muß und *nicht* auf die lösliche Variante **59** beschränkt ist. Folgende Zinkverbindungen **Z** wurden nach *KS-B* von den 2-hydroxyphenylsubstituierten D1-Guanidinen **G13-G16** dargestellt.

Z	Struktur	Ausb./Fp.	Z	Struktur	Ausb./Fp.
Z 7		87 % 205 °C	Z8	N-N N-N S-Zn-N N S-Zn-N N	85 % 198 °C
Z9		83 % 200 °C	59	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nicht isoliert

Tabelle 5-2D1-Guanidin-Zink-VerbindungenZ7-Z9und 59

5.3 Zink-Verbindungen der D2-Guanidine

Die D2-Guanidine **G19-G27** wurden ebenfalls zuerst nach *KS-A*-Variante mit Zinkperchlorat (**55a**) und Kaliumhydroxid, außerdem mit Zink(II)sulfat und Bariumhydroxid umgesetzt. Dabei traten zwei unerwünschte Reaktionen auf: erstens Zersetzung der Guanidine, zweitens unvollständiger Austausch von Kalium (bzw. Barium) durch Zink (s. Abb. 5-9). Die Zersetzung des Guanidins **G22** war durch auskristallisierendes Ammoniumhydroperchlorat **61** der sekundären Aminkomponente **A22** erkennbar und von einer starken grünen Fluoreszens der Restlösung begleitet.

Die Struktur und Folgereaktionen des anderen durch Zersetzung entstandenen Teils **60** konnten an dieser Stelle nicht aufgeklärt werden (s. Abb. 5-9).

Schon erste Versuche mit der *KS-B*-Variante zeigten, daß dies die geeignetere Methode zur Darstellung derartiger Zinkverbindungen ist (s. Abb. 5-10). Eine Zersetzung des Guanidins durch Protonierung ist hier nicht möglich, außerdem muß keine zusätzliche Base verwendet werden.

Abbildung 5-9

Ein weiterer Vorteil besteht in der Option, verschiedene Anionen durch nachträgliche Zugabe einer "Säure" (vom Alkohol über Phenol, Thiophenol und Carbonsäure bis hin zur Mineralsäure) wählen zu können. Bei der Verwendung von Diethylzink (**56**) tritt hier im Unterschied zur Synthese von Zinkphenoxiden keine stabile O-Zn-Ethyl-Spezies²⁰ auf, so daß auf den Umweg über Zink-bis(hexamethyldisilazid) (**57**) verzichtet werden kann.

Abbildung 5-10

Unter Nutzung der verschiedenen D2-Guanidinvarianten und unterschiedlicher Anionen wurden folgende Zinkverbindungen Z dargestellt (Tab. 5-3).

Tabelle 5-3 D2-Guanidin-Zink-Verbindungen Z10-Z2
--

D2-Guanidin-Zn-Kation	Z	Anion aus:	Fp. [°C]:	MS (Molpeak,
$(D2-GZn^+)$				D2-GZn ⁺ I [%])
L s H T +	Z10	Pivalinsäure	159-163	680 (100)
	Z11	Benzoesäure	157-162	680 (90)
	Z13	Methanol	148-150	680 (100)

s H T +	Z15	Benzoesäure	162-165	680 (100)
	Z16	p-Thiocresol	165	680 (90)
	Z23	2,4,6-Trimethylphenol	147-152	680 (100)
s HO +	Z17	Pivalinsäure	125	677 (35)
	Z24	<i>p</i> -Thiocresol	135	677 (30)
$ \begin{array}{c} $	Z12	Pivalinsäure	188-190	680 (100)
S H O T+	Z21	2,4,6-Trimethylphenol	186-188	691 (10)
	722	<i>p</i> -Thiocresol	143-147	691 (10)
	Z14	Pivalinsäure	142-156	663 (60)
	Z18	Pivalinsäure	149-155	663 (80)
H	Z19	Benzoesäure	152-167	663 (80)
	Z20	<i>p</i> -Thiocresol	165	663 (5)
s HO +	Z25	2,4,6-Trimethylphenol	108-115	691 (10)
	Z26	Benzoesäure	133-144	691 (40)
$ \begin{array}{c} $	Z27	Benzoesäure	152	635 (20)

Die $(ZnG)^+A^-$ Zusammensetzung der Zinkverbindungen ist durch Massenspektren und Elementaranalysen nachgewiesen. NMR-Spektren zur genaueren analytischen Beschreibung sind durch die "Beweglichkeit" (den Wechsel zwischen verschiedenen Koordinationsmöglichkeiten) in Lösung in den meisten Fällen wenig aussagekräftig. Als hilfreich bei der Auswertung haben sich deutlich detektierbare Gruppen im Anion wie der Pivaloyl-, Toluoyl-, 2,4,6-Trimethylphenoxidrest erwiesen. Außerdem hat auch die Art und die Spacerlänge der beiden Donorreste im sekundären Aminteil entscheidenden Einfluß auf die im NMR-sichtbare Stabilität einer bestimmten Anordnung, wie es am Beispiel der ¹H-NMR-Spektren (anhand der Linienbreite) in Abbildung 5-11 zu erkennen ist. In Massenspektren der Verbindungen Z10-Z27 ist der Basispeak (100 %) in vielen Fällen der Peak des Guanidin-Zn-Kations (GZ)⁺, was auf eine hohe Komplexstabilität schließen läßt.

Für die Struktur im Feststoff kann bis jetzt keine durch Kristallstrukturanalyse gesicherte Angabe gemacht werden. Als zusammenfassendes Ergebnis bisheriger Analysen mit den verschiedenen hergestellten D1- und auch Donor-freien Guanidinen kann für die Zinkverbindungen der D2-Guanidine die höchste Stabilität, bedingt durch eine hohe Koordinationszahl (5), angenommen werden.

Abbildung 5-11 ¹H-NMR-Spektren von Z21 und Z23 (s. Tab. 5-3)

Trotz der hervorragenden Löslichkeit der D2-Guanidin-Zink-Verbindungen in THF, Chloroform und z. T. in Toluol können auch intermolekulare Zink-Phenoxid-Wechselwirkungen statt einer intramolekularen Koordination, wie in Abbildung 5-12 dargestellt, eine Rolle spielen.

Abbildung 5-12

Der wesentliche strukturelle Unterschied von **Z10-Z27** (s. Tab. 5-3, S. 67) zu den D0- und D1-Guanidin-Zink-Verbindungen **Z1-Z9** (s. Tab. 5-1 u. 5-2, S. 61 u. 66) besteht im Fehlen chelatartig koordinierender 1,3,5-Triazapentadienylanionsysteme.

Der Strukturvorschlag für ein Beispiel der D2-Guanidin-Zn-Kationen, das Ergebnis einer Berechnung⁹⁷ unter Verwendung der semiempirischen Methode PM3, ist in der Abbildung 5-13 dargestellt.

Abbildung 5-13
Ohne Berücksichtigung der schwachen Wechselwirkung mit dem Dihydrothiadiazol-Stickstoff (grüne Bindung mit 2.524 Å) ist das Zink verzerrt tetraedrisch koordiniert. Im Vergleich mit Zinkphenoxid-Kristallstrukturdaten³¹ ist der Zn-O-Abstand mit **1.948** Å zwischen den gemessenen Werten terminaler Zn-O-Ph-Bindungen von **1.831** Å und verbrückender Zn-O-Ph-Bindungen mit **1.980** Å oder dem Abstand von **1.885** Å bei dem 2,4,6-Trimethylphenoxid-Zn-Pyridin-Addukt von DARENSBOURG²⁸ als relativ groß einzuordnen. Mit der Annahme einer Proportionalität von Zn-O-Bindungslängen und Nucleophilie-Stärke nach BRÄUER^{26,33} ist damit eine hohe Reaktivität gegenüber Cumulenen wie CO₂ zu erwarten. Außerdem sollte auch die unsymmetrische Koordination durch verschieden substituierte Stickstoffe im Gegensatz zu den meisten anderen Modellsystemen zu geringerer Stabilität der Komplexe bzw. zu höherer Reaktivität führen.

5.4 Bis-thiadiazolo-aminale 2 als Liganden

Die Bis-thiadiazolo-aminale 2 erwiesen sich aus folgenden Gründen wenig geeignet als Liganden:

- Es bestehen im Fall von Zink nur sehr geringe Wechselwirkungen zwischen Metall und Ligand, sichtbar daran, daß in polaren Lösungsmitteln wie DMSO oder Methanol mit Zink in den NMR-Spektren *keine* Veränderungen der chemischen Verschiebungen zum freien Liganden auftreten.
- 2) In weniger polaren Lösungsmitteln wie Aceton fallen durch Zugabe von Zinkperchlorat Quasi-1:1-Verbindungen aus, die sich aber weder durch Massenspektroskopie noch durch Kristallisation charakterisieren lassen. Sie bestehen wahrscheinlich aus oligomeren oder polymeren Zink-Aminal-Verbänden, welche aber bei Zugabe von KOH (KS-A-Variante) sofort unter Bildung von Zinkhydroxid und dem freien Aminal 2 zerfallen.
- Bei Zugabe von Zinkperchlorat tritt schon nach wenigen Minuten der Geruch nach der Aldehydkomponente auf, d. h. die Aminale werden schnell hydrolysiert.

Die Zersetzung der Aminale 2 zu Bis-(thiadiazolyl)aminen 28e und dem Ausgangsaldehyd 3 durch Hydrolyse unter Zugabe eines wasserhaltigen Metallsalzes kann durch folgendes Strukturmotiv (SM) eines Bis-hydroxy-bis-[bis-(thiadiazolyl)amin]-Nickel-(II)-Komplexes 28eNi belegt werden, der durch die Zugabe von Nickel-(II)-perchlorat-Hexahydrat zum Aminal 2b in Aceton entstand (s. Abb. 5-14).

5.5 Bis-triazolo-aminale **35** als Liganden

Das durch Angriff eines Hydroxids an den NNN-Heterocyclus **30a** entstandene Bisdihydrotriazolo-aminal **35a** (s. S. 42) weist mit seiner Hydrolysempfindlichkeit und der Tendenz, polymere Komplexstrukturen mit Zinkperchlorat zu bilden, ähnliche Eigenschaften wie die Aminale **2** auf.

Positiv für **35a** gegenüber den Aminalen **2** in Hinblick auf Ligandeigenschaften sind die exocyclische Imin-Funktion und die stark koordinierend wirkenden Pyridylreste zu bewerten. Da die Unlöslichkeit der Verbindung **35aZnClO**₄ (bei gleichzeitiger Zersetzung in polaren Lösungsmitteln), welche aus der Reaktion von **35a** mit Zinkperchlorat erhalten wurde, kaum Möglichkeiten zu deren Charakterisierung offen ließ, wurde ein Versuch zur Darstellung eines Adduktes von **35a** mit Zinkchlorid in Acetonitril durchgeführt. Die festen Halogen-Zinkbindungen verhindern, wie in der Kristallstruktur **KS-12** gezeigt werden kann, tatsächlich die Bildung höherer Aggregate.

KS-12 35a ZnCl₂

Da mit den meist ausgesprochen stabilen $ZnHal_2N_x$ -Komplexen in der Regel keine Heterocumulenfixierungen möglich sind, wurde dieser Weg zur Darstellung von Zink-Komplexen nicht weiter verfolgt.

6 Heterocumulen-Fixierung /-Aktivierung

Im folgenden Kapitel werden drei verschiedene Methoden für die Aktivierung von Kohlendioxid und ein auf die Aktivierung von Arylisocyanaten basierendes Verfahren unter Verwendung der neuen Zinkverbindungen **Z1-Z27** (s. S. 62, 66 u. 67) vorgestellt.

- 6.1 CO₂-Aktivierung
- 6.1.1 NMR-Untersuchungen zur Fixierung von CO₂ durch Zink-D1- und Zink-D2-Guanidin-Komplexe

Die Löslichkeit von mindestens 10 mg/ml der Zinkverbindung in polaren aprotischen Lösungsmitteln wie DMSO, DMF oder Pyridin stellt die Voraussetzung dieser Methode zur Überprüfung der Reaktivität gegenüber Kohlendioxid dar. Aus diesem Grund konnten die D0-Guanidin-Zink-Komplexe **Z1-Z6** (s. S. 62) nicht nach dieser Verfahrensweise untersucht werden. Die folgende Abbildung 6-1 zeigt die chemischen Verschiebungen [ppm] des Zinkphenoxid- und des Zinkamid-CO₂-Adduktes (neben dem freien CO₂) der im NMR-Röhrchen dargestellten **Zn₂G13Et₂-Spezies 59** (s. S. 65) bei 20 °C in Pyridin-d₅.

Abbildung 6-1 13 C-NMR von **59** (s. S. 65) und CO₂ in Pyridin-d₅

Dargestellt ist der relevante Ausschnitt eines durch Differenzbildung aus den Spektren des Zink-Komplexes *ohne* und *mit* ¹³CO₂ (siehe Anhang) erhaltenen NMR-Spektrums. Die Zuordnung der CO₂-Addukt-Signale wurde anhand von Literaturdaten^{31,98} durchgeführt. Die experimentelle Bestätigung für die in Abbildung 6-1 getroffene Zuordnung ist durch die im folgenden Abschnitt dargestellten NMR-Untersuchungen der D2-Guanidine gegeben. Diese enthalten keine Zinkamidbindung, folglich auch kein Carbamat-Signal bei ~160 ppm. Eine Erklärung für die *geringere Tieffeldverschiebung* und die *größere Signalbreite* des Zink-Carbamats könnte ein Gleichgewicht zwischen Anlagerungsprodukt *a* und Insertionsprodukt *i* sein, welches zum größeren Teil auf der Seite von *a* liegt. Ein direkter Vergleich dieser experimentellen Befunde mit *ab initio* Berechnungen der Lindskog (**P1**) und Lipscomb (**P2**) analogen Zinkphenoxid-Kohlendioxid-Addukte³³ (s. Abb. 6-2) ist zwar nicht möglich, da keine NMR-Berechnungen von Zink-Carbamaten ausgeführt wurden, jedoch sollte damit ein Hinweis auf die unterschiedliche Art der *Zn-Phenoxid-* und *Zn-Amid*-CO₂-Wechselwirkung gegeben sein, wie im Experiment (s. Abb. 6-1) sichtbar wird.

Abbildung 6-2

Die gemessene chemische Verschiebung von $\delta = 169$ ppm für das Zn-Phenoxid-CO₂-Addukt ist in guter Übereinstimmung mit dem berechneten Wert für **P2** und früheren experimentellen Befunden^{27,31}. Auch das Zink-Carbamat-Signal bei $\delta = 159$ ppm liegt, verglichen mit experimentellen Werten von Magnesiumcarbamaten, im Erwartungsbereich⁹⁸. Außerdem ist in dem Spektrum der Abbildung 6-1 eine Beeinflussung der Pyridin-Signallage (d. h. des Lösungsmittels) zu erkennen. Aus dieser Beobachtung kann geschlossen werden, daß die Koordination durch Lösungsmittelmoleküle wie Pyridin oder THF bei **59** eine wesentliche Rolle spielt, was auch schon bei dem Verhalten von **59** in Diethylether vermutet worden war (s. Kap. 5.2). Die Abbildung 6-3 des Spektrums von **Z10** (s. S. 67) mit 13 CO₂ in DMSO-d₆ zeigt das Signal eines weiteren Zink-phenoxid- 13 CO₂-Adduktes. Dieses Beispiel aus der Palette der amid-

freien D2-Guanidin-Zink-Phenoxide bestätigt die in der Abbildung 6-1 getroffene Signalzuordnung. Außer den hier dargestellten Beispielen wurden noch **Z14**, **Z17**, **Z21** (s. S. 67) durch weitere NMR-Experimente dieser Art auf ihre Reaktivität gegenüber Kohlendioxid hin untersucht. Alle Messungen, auch nach dem Wechsel der NMR-Lösungsmittel (THF, Chloroform), bestätigten mit ihren Ergebnissen, daß sowohl mit D1-Guanidin-Zink-Verbindungen, als auch mit den D2-Guanidin-Zink-Phenoxid-Spezies die Aktivierung von Kohlendioxid möglich ist. Um festzustellen, ob neben der Cumulenfixierung die Reaktion mit einem Substrat bzw. die Übertragung auf ein Substrat erreicht werden kann, wurden die in den folgenden Kapiteln beschriebenen Experimente durchgeführt.

6.1.2 Copolymerisation von CO₂ und Epoxiden

Die Katalyse der Copolymerisation von Kohlendioxid und Epoxiden **62** zu Polycarbonaten **63** ist ein schon lange und intensiv bearbeitetes Thema.^{23,27,99} Die Aktivität des Katalysators ist neben Druck, Temperatur und Zeit ein sehr wichtiger Faktor bei dieser Art der Polycarbonatsynthese.

Abbildung 6-4

Das katalytisch aktivste System für diese Synthese stellen die Zinkverbindungen **18** (s. S. 9 u. 59) von COATES²³ dar (**TOF**^a **max. 247 bei 50** °C **und 6 bar**), welche sterisch anspruchsvoll substituierte β-Diimine als Liganden enthalten. Der große Raumbedarf der Liganden fördert die Bildung von sehr reaktiven ZnL⁺- also 1:1-Komplexfragmenten, welche jeweils nach der Syntheseart mit verschiedenen kleineren Anionen (Et⁻, MeO⁻, AcO⁻) anfallen. Die ungewöhnliche Dreifachkoordination, die dem Zink in diesen Komplexen **18** aufgezwungen wird, verursacht die hohe Reaktivität. Metallkomplexe mit dieser Art von Koordinationssphäre, d. h. ein großer, starrer Ligand einerseits und ein kleineres, leicht austauschbares Gegenion andererseits, welches den Metall-Ligand-Rumpf für Substrate gut zugänglich macht (zusammengefaßt unter dem Begriff *Single-Site-Katalyse*), sind häufig hochaktive und selektive Katalysatoren.^{100,101,102,103}

Durch das Strukturelement des Phenoxids in den Guanidin-Zink-Verbindungen Z liegt allerdings auch eine Vergleichbarkeit zu den Zink-Phenoxiden nach DARENSBOURG²⁷ nahe. Dort erwies sich $(2,4,6-Me_3C_6H_3O)Zn(pyridin)_2^b$ als effektivster Katalysatorkomplex mit einer **TOF^a von 9.7 bei 80** °C und 53 bar. Isopropyl-, Phenyl- und *tert*-Butylreste als Substituenten am Phenoxid führten unter äquivalenten Bedingungen mit TOF: 3.2, TOF: 4.1 und TOF: 4.6 zu deutlich geringeren Ausbeuten. Ein weiteres, kürzlich von DARENSBOURG

^a TOF in Mol umgesetztes Cyclohexenoxid (62a) pro Mol Zn pro Stunde

^b nicht explizit als Formel dargestellt

vorgestelltes Katalysatorsystem⁹⁹ auf der Basis von Bis-(salicylaldimin)-Zink-Komplexen arbeitet mit ähnlichen Katalysatoraktivitäten.

Analog den literaturbeschriebenen Bedingungen wurden Vetreter der drei dargstellten Guanidin-Zink-Verbindungstypen auf ihr Katalysepotential für die Polycarbonatsynthese getestet. Das Ergebnis der Überprüfung ist im Diagramm 6-1 dargestellt: die *höchste* Katalyse-Aktivität zeigen die schwer löslichen, im NMR nicht untersuchten D0-Guanidin-Zink-Komplexe (s. S. 62) **Z1** bis **Z6** (dunkelrot), gefolgt von den Derivaten der D1-Guanidine (s. S. 66) **Z7** und **Z8** (grau), während die D2-Guanidin-Zink-Phenoxid-Spezies (s. S. 67) wie **Z10**^a (rot) *keine* Aktivität aufweisen. Zum Vergleich ist im Diagramm die Aktivität eines von DARENSBOURG eingesetzen Katalysators **DP** (blau) unter den selben Bedingungen aufgeführt (es wurde nicht der aktivste Phenoxid-Katalysator zum Vergleich ausgewählt, da dieser nicht unter den von mir verwendeten Bedingungen (Druck) eingesetzt bzw. beschrieben worden ist, bei dem verwendeten Druck würde dessen TOF ca. 5 betragen).

Diagramm 6-1

^a außer Z10 wurden noch Z13, Z15, Z21 und Z27 getestet, alle ohne Aktivität

Zusätzliche koordiniernde Gruppen in den Guanidinen verringern demnach die Aktivität, dabei ist auch eine Abstufung vom stark koordinierenden Pyridin in **Z7** (s. S. 66) und der schwachen Wechselwirkung des Zinks zum Thiophenrest in **Z8** (s. S. 66) zu erkennen. Die in den D2-Guanidinen fehlende Amid-Funktion ist offenbar essentiell für die Reaktivität. Außerdem zeigt die katalytische Wirkung von **Z5** und **Z6** (s. S. 62), daß auch Guanidine ohne Hydroxyphenylrest aktiv sind.

Daraus kann nur der Schluß gezogen werden, daß nicht das Zink-Phenoxid-, sondern folgendes Zink-Amid-System $(\mathbf{GZ})^+$ für die Katalyse verantwortlich ist (s. Abb. 6-5).

Abbildung 6-5

In dem Zink-Amid-Kation $(GZ)^+$ ist die Strukturverwandschaft zu den von COATES²³ beschriebenen Diimid-Zinksystemen 18 (s. S. 9 u. 59) erkennbar, welche jedoch unter weit milderen Bedingungen mit der ~50-fachen Katalyseaktivität arbeiten. Die Ursache für die geringere Aktivität der Guanidin-Zink-Komplexe Z muß darin liegen, daß sie nicht die strukturellen Voraussetzungen für einen Single-Site-Katalysator besitzen.¹⁰⁰ Die bei den Guanidinen mögliche Koordination von zwei Amidteilen an einem Zink führt zu neutralen G₂Zn-Einheiten. Diese stabilen tetraedrischen Zinkdiamide müssen, um für Substrate zugänglich zu sein, erst dissoziieren, was ihre Reaktivität deutlich herabsetzt. Die Bildung von Bisamiden G₂Zn konnte auch durch das Einführen großer Reste R³, wie dem 1,1-Diphenylmethyl- oder Adamantyl-Rest nicht verhindert werden. Dies ist nachvollziehbar, da sich bei der tetraedrischen Anordnung in G_2Zn zwei beliebig große Reste R³ optimal aus dem Weg gehen können (s. S. 61). Eine Verschiebung des Verhältnisses von $G_2Zn \gg (GZ)^+$ zugunsten des reaktiven (GZ)⁺ wäre nur zu erreichen, wenn auch der zweite am N.N-Chelat-6-Ring beteiligte Stickstoff oder mindestens der nächste Nachbar durch einen großen Rest substituiert würde. Da mit dem in dieser Arbeit vorgestellten Syntheseweg über die beschriebenen 5/6/5-Heterocyclen 1 und 13 eine Substitution des zweiten Chelat-Stickstoffs ausgeschlossen ist, kann unter Verwendung dieser Methode keine Verbesserung der Aktivität erreicht werden. Ein Vorteil der hier beschriebenen Zink-Verbindungen ist ihre hohe

Beständigkeit ohne Schutzgasatmosphäre, d. h. sie sind nicht hygroskopisch wie die Zink-Phenoxid-Katalysatoren. Die katalytische *Inaktivität* der Verbindungen **Z10-Z27** läßt im Zusammenhang mit Mechanismusbetrachtungen zur Copolymerisation Rückschlüsse auf die D2-Guanidin-Zink-Komplexstruktur zu.

Abbildung 6-6

Der Mechanismus ist in drei Schritten analog zur Literatur⁹⁹ am Beispiel der Guanidin-Zink-Verbindungen dargestellt: **I**) Das Zinkdiamid reagiert mit CO₂ (dieser Schritt ist bei **18** von COATES besonders leicht, da kein stabiler N,N,N,N-Tetraeder aufgebrochen werden muß). **II**) Im zweiten Schritt wird ein Epoxidmolekül an den koordinativ *ungesättigten* Zink-Carbamat-Komplex angelagert. Dieser Schritt findet bei dem durch die D2-Guanidine *zu hoch koordiniertem* Zink nicht statt! **III**) Die durch Kationisierung gelockerte C-O-Bindung des Epoxids wird mit dem Angriff des Carbamat-Sauerstoffs am Epoxid-Kohlenstoff gebrochen. **I'**) Zwischen dem Epoxid-Sauerstoff und dem Zink wird ein weiteres Molekül Kohlendioxid eingelagert usw. Neben der Katalyse-Inaktivität gibt es weitere Hinweise für ein hohe Koordinationszahl des Zinks in den D2-Guanidin-Zink-Komplexen. Schon die Zink-Verbindungen der D1-Guanidine zeigen die deutliche Tendenz zu geringerer Aktivität. Außerdem wird die unterschiedliche Komplexstabilität auch bei der Charakterisierung durch Massenspektroskopie eindeutig sichtbar. **D0GZn**⁺-Kationen haben Molpeaks bis 10 %, **D1GZn**⁺ bis 30 %, **D2GZn**⁺ bis zu 100 % Intensität (s. S. 67).

Weitere wichtige Kriterien bei der Einschätzung von Katalysatorqualitäten sind die Eigenschaften der entstehenden Polymere. Dabei ist außer den erreichten Molmassen und der Molmassenverteilung vorallem das Verhältnis **m** : **n** von Polycarbonat zu mit entstandenem Polyether von Interesse, da dies die Selektivität des Katalysators für die Copolymerisation widerspiegelt. Die erreichten Molmassen/Molmassenverteilungen, bestimmt durch GPC, sind für drei Ansätze mit den D1-Guanidin-Zn-Verbindungen **Z7** und **Z8** (s. S. 66) im Diagramm 6-2 dargestellt.

 Diagramm 6-2
 grün: Z7, (0.87 mol-%) 6 h, 20 bar, 80 °C
 0.91 g
 Mw^a: 43 x 10³ Da

 rot:
 Z8, (0.49 mol-%) 20 h, 20 bar, 80 °C
 3.61 g
 Mw: 206 x 10³ Da

 blau:
 Z7, (0.75 mol-%) 24 h, 20 bar, 50 °C
 1.23 g
 Mw: 199 x 10³ Da

Dem Diagramm ist zu entnehmen, daß längere Reaktionszeiten zu höheren Molmassen, aber auch zu größeren Massenverteilungen führen, wobei Temperaturunterschiede hier kaum Auswirkungen zeigen. Die Ausbeute an Polymer ist jedoch stark temperaturabhängig. Das Verhältnis der im entstandenen Polymer vorliegenden Taktizitäten ähnelt dem von DARENSBOURG für die Phenoxid-Katalyse gemachten Angaben, d. h. der größte Teil der

^a Mw = gewichtsmittlere Molmasse

Verknüpfungen liegt syndiotaktisch vor (153.8 ppm). Daneben ist ein kleinerer Teil des Polycarbonats isotaktisch (153.1 ppm) und der geringste Anteil (153.3 ppm) ataktisch oder heterotaktisch verknüpft.¹⁰⁴

Abbildung 6-6

Mit einem Gehalt von 95-99 % Polycarbonat (aus den Protonenspektren ermittelt) kann die Selektivität der als Katalysator geprüften Verbindungen **Z1-Z8** als sehr hoch eingeschätzt werden.

Abbildung 6-7 Polycarbonatanteil > 99 % mit Z7 (s. S. 66) als Katalysator

6.1.3 Übertragung von ¹³CO₂ auf 1-Indanon und *p*-Methoxyacetophenon – qualitativer Nachweis durch NMR-Versuche

Carboxylierungsreaktionen von Acetophenon, Aceton, Östron-3-methylether und ähnlichen C-H-aciden Substraten **64** wurden schon in vielen Arbeitskreisen, erstmals von BOTTACHIO *et al.*¹⁰⁵, als Beispielreaktionen für die CO₂-Aktivierung zur C-C-Verknüpfung durch Metallphenoxide oder Metallamide **65** herangezogen.^{31,98,106,107} Motivation für die Mehrzahl dieser Arbeiten waren die Klärung mechanistischer Aspekte dieser Reaktionstypen und der Nachweis des aktivierten Kohlendioxids.

Abbildung 6-8

Die präparative Anwendung und analytische Auswertung solcher Reaktionen ist von einem unbefriedigenden Verhältnis von Aufwand zum Ergebnis gekennzeichnet. Erstens sind selbst bei sehr aktiven Übertragungsreagenzien 65 nur stöchiometrische 1:1-Umsetzungen möglich, zweitens sind die entstehenden Carboxylate 66 durch geringe thermische Stabilität schwer quantitativ zu bestimmen. Durch Veresterung direkt im Reaktionsgemisch vor der Aufarbeitung¹⁰⁶ oder am besten durch analytische HPLC-Untersuchungen können die Ausbeuten bestimmt werden. Gerade bei Metallkomplexverbindungen 65 mit sehr hohen Molmassen werden bei diesen Bedingungen verhältnismäßig große Ansätze für genaue Ergebnisse benötigt, weshalb ich an dieser Stelle den Nachweis der Übertragungsfähigkeit im NMR-Maßstab bevorzuge. Allerdings ist auf diesem Weg ausschließlich eine qualitative Aussage möglich, da durch die Verwendung von ¹³C-markiertem Kohlendioxid keine Aussagen über den Umsatz aus den Spektren zu entnehmen sind (auch 1 % Produkt kann schon überdimensionale Signale liefern). Für diese Untersuchung wurde die im Kapitel 6.1.1 vorgestellte NMR-Probe (in Abbildung 6-3) von Z10 weiterverwendet; nach der Zugabe von 20 mg 1-Indanon (64a) wurde die Probe 1 h auf 40 °C erwärmt und dann erneut vermessen. Neben den Signalen vom 1-Indanon ist ein intensives neues Signal bei 176 ppm zu erkennen (Abbildung 6-6). Dieses Signal ist sowohl laut Vergleichsmessungen (174 ppm) als auch anhand der C-NMR-Berechnung des Carboxylats **66a** $(176 \text{ ppm})^{108}$ als Beweis für das Vorliegen des Reaktionsprodukts zu interpretieren.

Abbildung 6-9 Z10 (s. S. 67) + 13 CO₂ + 1-Indanon (1 h, 40 °C) bei 20 °C (DMSO-d₆)

Ein weiteres Experiment, das dieses Ergebnis bestätigt, wurde mit *p*-Methoxyacetophenon (64b) als Substrat durchgeführt.

In Anbetracht der nicht gefundenen Aktivität der D2-Guanidin-Zink-Komplexe **Z10-Z27** (s. S. 67) in den Katalyseversuchen bei Polycarbonatsynthesen sind die Resultate der hier vorgestellten Übertragungsreaktionen im NMR-Maßstab jedoch mit Vorbehalt zu bewerten. Für die Durchführung der Reaktionen im präparativen Maßstab muß die Übertragung in guten bis sehr guten Ausbeuten stattfinden, da sonst die Zersetzung der ß-Ketosäuren in ähnlichem Ausmaß wie die Darstellung erfolgt, also keine Produkte isoliert werden können. Da für die angestrebten Übertragungen die Metallverbindung ähnliche Voraussetzungen wie für die Katalyseaktivität bei Polycarbonatsynthesen erfüllen muß, d. h. *beide* Substrate Zugang zum Metall haben müssen, ist es unwahrscheinlich, daß die D2-Guanidin-Zink-Phenoxid-Komplexe **Z10-Z27** für derartige Reaktionen geeignet sind.

6.2 Aktivierung von Arylisocyanaten

Arylisocyanate **67** wurden als Vertreter reaktiverer Heterocumulene gewählt, um das Aktivierungsvermögen der löslichen D2-Guanidin-Zink-Verbindungen **Z10-Z27** (s. S. 67) zu testen. Versuche, Cyclohexenoxid (**62a**) mit Phenylisocyanat (**67a**) unter Zusatz der Zink-Verbindungen umzusetzen, führten ausschließlich zum Trimerisierungsprodukt **68a** des Heterocumulens **67a**. Offenbar *überwiegt die Aktivierung des Cumulens* die des Epoxids bei weitem (eine Reaktion des Isocyanats **67** mit dem Epoxid **62** zu Oxazolidinonen¹⁰⁹ **OZ** fand nicht statt; leicht durch IR und Fp. zu unterscheiden). Dieser Befund stimmt auch mit der bei den *Polycarbonatsynthesen* gefundenen *Inaktivität* trotz *positiver* Ergebnisse der CO₂-Fixierungsversuche der Zinkverbindungen **Z10-Z27** (s. S. 67) im NMR-Maßstab überein.

Abbildung 6-10

Die Zinkverbindungen der D2-Guanidine, z. B. **Z10**, **Z14** und **Z21**, sind fähige Katalysatoren zur Trimerisierung von Arylisocyanaten, deren Aktivität an die bekannter Katalyse-Systeme heranreicht. Von TANG *et al.* wird eine effiziente Katalyse der Cyclisierung von Arylisocyanaten **67** zu Perhydro-1,3,5-triazin-2,4,6-trionen **68** durch Proazaphosphatrane **69** beschrieben (s. Abb. 6-11).¹¹⁰ Bei diesem Verfahren werden unter außergewöhnlich milden Bedingungen (5 min, RT, in Benzen, 100 % trimerisiert) im Vergleich zu anderen bekannten Methoden (+ 10 % TEA, 20 h, 70 °C, 8000 bar, 65 %)¹¹¹ *Triarylisocyanurate* **68** erhalten.

Abbildung 6-11

Diese besitzen wegen ihrer hohen thermischen Belastbarkeit und Hydrolysestabilität große Bedeutung für die Herstellung von Urethan-Polymer-Netzwerken. Außerdem werden sie als Aktivatoren bei der fortlaufenden anionischen Polymerisation von ε-Caprolactam zu Nylon 6, für die Polyurethanschaumherstellung, wegen ihrer geringen Brennbarkeit zur Herstellung schwer entflammbarer Beschichtungen und bei vielen anderen industriellen Prozessen verwendet.¹¹²

Es sind bereits eine Vielzahl von Substanzklassen wie Amine, Phosphorylide, Trialkylarsenoxide, Alkoxide und auch *Phenoxide*¹¹³ als Katalysatoren für diese Trimerisierungsreaktion beschrieben worden.

Es ist deshalb davon auszugehen, daß die hohe katalytische Aktivität der Zink-Komplexe auf der Wirkung der Phenolatfunktion als Lewis-Base beruht. Dies bestätigt die Vermutung, daß der Zn-O-Abstand in den dargestellten Zink-Verbindungen groß sein muß bzw. eine freie Phenoxid-Funktion vorliegt. Für diese Art von Katalyse erweist sich demnach das stark abgeschirmte Zink-Ion als Vorteil, da so auch weitere Isocyanatmoleküle freien Zugang zum aktivierten Isocyanat haben und damit optimale Bedingungen für die Trimerisierung gegeben sind. Insgesamt wurde so ein konkurrenzfähiger Weg zur Darstellung von Triazinonen des Typs **68** aus Arylisocyanaten **67** gefunden.

7 D0- und D1-Guanidine und Kupfer(II)-Salze

Aus anderen Arbeiten ist bekannt, daß sich zweizähnige und dreizähnige N-Donorliganden für die Modellierung des kupferhaltigen Enzyms Galactose-(Catechol)-Oxidase eignen.^{114,115} Die D1- und D0-Guanidine sollten deshalb auf diese Funktion hin überprüft werden. Oxidationen von 3,5-Di-*tert*-butylcatechol (**70**) zum entsprechenden *o*-Chinon **71** in Anwesenheit katalytischer Mengen der Kupfer(II)-Komplexe als Testreaktion (s. Abb. 7-1) wurden von R. WEGNER¹¹⁶ nach dem Verfahren von B. KREBS und J. REIM¹¹⁷ durchgeführt.

Die Darstellung von Guanidin-Kupfer(II)-komplexen für diese Untersuchungen erfolgte durch die Umsetzung der Liganden mit Kupfer(II)-acetat in Methanol. Die Katalyseaktivität der D1-Guanidin-Kupfer-Komplexe liegt im Bereich der von ROST¹¹⁴ beschriebenen Kupfer-Komplexe mit dreizähnigen Steroid-Liganden wie **72** (s. Abb. 7-2).

Abbildung 7-2

G15, mit dem weniger stark koordinierenden Thiophenrest, besitzt eine etwas höhere Aktivität. Dies weist auf die Tendenz der Aktivitätssteigerung mit dem Übergang von dreizähnigen zu zweizähnigen Liganden hin, welche auch in der Literatur beschrieben

wird.^{114,115} An den zwei getesteten Beispielen **G6** und **G7** der zweizähnig koordinierenden D0-Guanidine konnte deren höhere Aktivität nachgewiesen werden (s. Abb. 7-3). Diese höhere Aktivität bei der Verwendung von D0-Guanidinen bestätigt ebenfalls die gefundene Abstufung der Katalyseaktivitäten der Zink-Komplexe bei den Polycarbonatsynthesen.

Abbildung 7-3

Durch Umkristallisation aus DMF gelang es für das Beispiel **G13Cu**, geeignete Kristalle für eine Röntgenkristallstrukturanalyse **KS-13** zu erhalten. Die Struktur des Kupfer-Komplexes **G13Cu** bestätigt die Koordination des Kupfer(II)-Ions durch das D1-Guanidin als dreizähnigen Liganden.

Das Kupfer(II)-Ion ist quadratisch pyramidal koordiniert, wobei ein Acetatanion die vierte Position der Ebene besetzt und ein Wassermolekül die Spitze der Pyramide bildet.

Die C-N-Bindungungslängen im **1,3,5-Triazapentadienylanionsystem** sind mit **1.305** bis **1.349** Å zwischen den Werten für Doppel- und Einfachbindungen einzuordnen.

KS-13 G13Cu (ohne Protonen)

Die Struktur des Kupfer(II)-Komplexes **G13Cu** liefert auch wichtige Informationen über die Eigenschaften der Guanidine **G** und für die Strukturen der Zink-Guanidin-Verbindungen:

- Die Hydroxyphenylfunktion im Rest R¹ ist nicht deprotoniert und nicht intramolekular an der Koordination des Metalls beteiligt; stattdessen ist die Guanidin N-H-Funktion deprotoniert,
- II) die negative Ladung des Guanidins ist über ein 1,3,5-Triazapentadienylanionsystem (Bindungslängen rot) delokalisiert, so daß mit dem Kupfer ein N,N-Chelat-6-Ring gebildet wird.

8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde das Synthesepotential der *Bis-thiadiazolo-triaziniumsalze* **1** zur Darstellung metallkomplexierender S, N, O-Heterocyclen untersucht. Die Palette dieser kationischen 5/6/5-Heterocyclen **1** wurde durch den Einsatz neuer funktionalisierter Pyridiniumsalze wie **6a**, z. B. mit Einführung der Hydroxyphenylreste in Analogie zu bekannten katalytisch aktiven Zink-Phenoxid-Verbindungen^{27,31}, erweitert und durch die Synthese von Bis-benzothiazolo-triaziniumsalzen **13** ergänzt.

Auf vier Synthesewegen (*A-D*) sind in Abhängigkeit vom eingesetzten Stickstoffnucleophil und den Reaktionsbedingungen *Aminale* (*A*) 2, *substituierte Thiadiazole* (*B*) 28, *Guanidine* (*C*) G und schwefelfreie *Bis-triazolo-triaziniumsalze* (*D*) 30 zugänglich geworden (s. Abb. 8-2).

Durch orientierende Umsetzungen von 1 mit Sauerstoff- und Schwefel-Nucleophilen zu O-Alkylisoharnstoffen 38 und Heterocyclen-substituierten (N,S)-Acetalen 43 wurden zwei weitere aus 1 resultierende Perspektiven mit interessanter Folgechemie aufgezeigt.

Neben dem Ziel, Erkenntnisse zu den Mechanismen der 4 Reaktionstypen mit Aminen zu gewinnen, wurde besonders die Umlagerung zu hochsubstituierten *Guanidinen* **G** durch viele Beispiele ausgebaut, um *ligandartige Produkte* zu erhalten (s. Abb. 8-3).

Die Auswahl der Stickstoff-Nucleophile geschah deshalb nach der Maßgabe, neben sterisch anspruchsvollen Resten *ohne zusätzliche Donorfunktion* (*D0*) aus der Koordinationschemie bewährte Fragmente wie den 2-Ethyl-(pyrid-2-yl)-, 3-Propyl-imidazolyl- oder Bis-alkyl-pyridyl-Grundkörper (*D1*- und *D2*-Reste) zu involvieren. Damit wurde eine neue Möglichkeit erschlossen, aus einfachen Grundbausteinen in drei Synthesestufen zu komplexen Ligand-Strukturen zu gelangen. Die zentrale Guanidineinheit stellt ein starres Gerüst dar, welches somit in weiten Grenzen unter sehr milden Bedingungen funktionalisiert werden kann.

Abbildung 8-3 Bausteine zur Ligandsynthese

Die breite Anwendbarkeit der hier entwickelten Synthesemethode zum Einbau von Aminen in komplexe Guanidinstrukturen konnte an Umsetzungen der 5/6/5-Heterocyclen 1 mit Oligoaminen bzw. Azamacrocyclen wie Cyclam A27 (s. Abb. 8-4) demonstriert werden.

Abbildung 8-4

Die Grenzen der Möglichkeiten zur Guanidinsynthese wurden für Beispiele von Aminen mit hohem sterischen Anspruch wie Triphenylmethylamin (A11) oder zu geringer Nucleophilie des angreifenden Amins wie *p*-Nitroanilin (A12) aufgezeigt.

Im zweiten Teil der Arbeit standen die Synthesen von Zink-Verbindungen der neuen heterocyclischen Liganden und die Untersuchungen ihrer Eigenschaften im Vordergrund.

Aus den N-H-haltigen D0- und D1-Guanidinen einerseits und D2-Guanidinen ohne N-H-Funktion andererseits wurden durch Umsetzungen mit Diethylzink zwei unterschiedliche Typen von Guanidin-Zink-Komplexen **Z1-Z9** und **Z10-Z27** dargestellt (s. Abb. 8-5).

Abbildung 8-5

Beide Gruppen der Guanidin-Zink-Verbindungen wurden mit verschiedenen Methoden auf ihre Fähigkeiten zur Heterocumulenfixierung bzw. -aktivierung hin überprüft.

Z1-Z9 bewährten sich mit einer zu literaturbekannten Katalysatoren vergleichbaren Effiziens und hoher Selektivität in Copolymerisationsreaktionen von Kohlendioxid und Cyclohexenoxid.

Abbildung 8-6

Auch für Vetreter der Gruppe **Z10-Z27** wurde durch NMR-Untersuchungen unter dem Einsatz von ¹³C-markiertem Kohlendioxid die Fähigkeit zur Fixierung von CO_2 nachgewiesen, jedoch keine katalytische Wirkung bei den Polycarbonatsynthesen gefunden. Aus diesen Reaktivitätsunterschieden wurde abgeleitet, daß die N,N-Chelat-6-Ring-Zink-Amid-Funktion (**GZ**)⁺ der Verbindungen **Z1-Z9** durch die Möglichkeit, niedrig (dreifach) koordiniertes Zink für die Reaktion ausreichend zu stabilisieren, im Fall der vorgestellten Guanidin-Zink-Verbindungen essentiell für die Aktivierung mehrerer Substrate ist.

Abbildung 8-7

Die Eigenschaft der Verbindungen **Z10-Z27**, als nahezu freie Lewis-Basen (die Phenoxideinheit) mit einem stark abgeschirmten Lewis-sauren Metallzentrum cumulenaktivierend zu wirken, konnte für die Aktivierung von Arylisocyanaten genutzt werden. Auch für diese Guanidin-Zink-Verbindungen wurde damit eine Katalyseanwendung erschlossen. **Z10-Z27** stellen dabei wie andere starke Lewis-Basen, z. B. Proazaphosphatrane **69**, effiziente Katalysatoren für die Trimerisierung von Arylisocyanaten zu Perhydro-1,3,5-triazin-2,4,6-trionen (*Triarylisocyanurate*) **68** dar.

Abbildung 8-8

Im Kapitel 7 wurde der Einsatz von D1-Guanidinen als dreizähnige Liganden für Kupfer und die Untersuchung dieser Komplexe in Catechol-Oxidase-Modellreaktionen beschrieben. Weiterhin konnte das chelatartig koordinierende **1,3,5-Triazapentadienylanionsystem**, welches auch für die D0- und D1-Guanidin-Zink-Komplexe **Z1-Z9** als *prägendes Strukturelement* vorgeschlagen wurde, als Bestandteil eines D1-Guanidin-Kupfer-Komplexes **G13Cu** in der Kristallstruktur **KS-13** charakterisiert werden (s. Abb. 8-9).

Abbildung 8-9 Ausschnitt aus der Kristallstruktur KS-13 (s. S. 88)

Abschließend kann festgestellt werden, daß mit den gezeigten Synthese- und Anwendungsmöglichkeiten basierend auf den *Bis-thiadiazolo-triaziniumsalzen* 1, deren Potential zur Darstellung bisher nicht beschriebener heterocyclischer Verbindungen bei weitem nicht erschöpft ist.

Mit der Verwendung weiterer funktionalisierter Aldehyde **3** für die Synthese von **1**, wie z. B. Terephthalaldehyd oder Ferrocencarbaldehyd, können nach Umsetzung von **1** mit primären und sekundären Aminen verknüpfte bzw. neuartig substituierte komplexe Guanidinstrukturen erhalten werden.

Bei Reaktionen von 1 mit Sauerstoff- und Schwefel-Nucleophilen sind neben dem gefundenen O-Alkyl-isoharnstoff **38** (s. S. 44) und (N,S)-Acetal **43** (s. S. 45) weitere Produkte mit interessanter Folgechemie zu erwarten.

Umsetzungen der NNN-Heterocyclen **30** (s. S. 39) und der unsymmetrischen NNS-Kationen **33** (s. S. 35) können nach deren Synthese-Optimierung (z. B. Ausbeuteverbesserung durch Abfangen des entstehenden Schwefelwasserstoffs mit Kupfer(II)-Salzen) weiter untersucht werden.

Für die katalytische Anwendung bei Polycarbonatsynthesen sollte unabhängig von den hier vorgstellten Guanidin-Liganden nach Systemen gesucht werden, welche befähigt sind, chelatartig koordinierende **1,3,5-Triazapentadienylanionen** zu bilden. Diese sollten jedoch an **beiden** koordinierenden Stickstoffatomen sterisch anspruchsvoll substituierbar sein.

9 Experimenteller Teil

Vorbemerkungen

Die experimentellen Arbeiten wurden, wenn nicht anders erwähnt, in einer Atmosphäre von über Kaliumhydroxid und Phosphorpentoxid getrockneten Argon zum Ausschluß von Luftfeuchtigkeit und Sauerstoff durchgeführt.

Die verwendeten Lösungsmittel sind wie folgt gereinigt und getrocknet worden: Diethylether, Tetrahydrofuran - Vortrocknung über Kaliumhydroxid und Ketyllierung über Natrium/ Benzophenon; Acetonitril - Destillation über Phosphorpentoxid, Aufbewahrung über Molsieb A3; Ethanol - Destillation über Natrium und Phthalsäurediethylester, Aufbewahrung über Molsieb A3; Methanol - Destillation über Magnesium; Cyclohexenoxid (Fluka) - Destillation über Calciumhydrid; Triethylamin - Trocknung über Kaliumhydroxid und Destillation, verschiedene Amine **A** und Aldehyde **3** - Destillation bzw. durch Umkristallisieren.

Folgende trockene Lösungsmittel wurden bei ALDRICH oder FLUKA käuflich erworben:

(5) Pyridin (über Molsieb/Fluka) und Methylenchlorid (Aldrich).

Deuterierte Lösungsmittel für die NMR-Spektroskopie (unter Argon aufbewahrt):

THF-d₈ - Destillation über Natrium/Benzophenon;

DMSO-d₆ - Destillation über Calciumhydrid, Aufbewahrung über Molsieb A3;

Acetonitril-d₃ - Lagerung über Molsieb A3;

Pyridin-d₅ - Destillation über Calciumhydrid;

Chloroform-d₁ - Destillation über Calciumhydrid.

Eingesetzte Geräte für:

<u>*H-NMR-Spektren*</u>: Bruker AC 250 und AC 400, δ in ppm gegen TMS, J in Hz,

s = Singulett, d = Dublett, t = Triplett, q = Quartett, m = Multiplett

¹³*C*-*NMR*-*Spektren*: Bruker AC 250 und AC 400, δ in ppm

IR-Spektren: ATR – BIORAD FTS-25 und für KBr-Preßlinge: NICOLET Impact 420

<u>Massenspektren</u>: Quadrupol-Massenspektrometer SSQ 710 der Firma Finnigan MAT bzw. Finnigan MAT 900 XL TRAP

Elementaranalysen: Verbrennungsautomat LECO, CHNS-932

<u>Reaktionen im Autoklaven</u>: Büchi-Laborrührautoklav Modell: "*büchi mini clave drive bmc dr*" Metallversion für Drücke bis 60 bar, mit Rührer "cyclone 075",

Parr Instruments Autoklav

Käuflich erworbene und ohne weitere Aufreinigung verwendete Chemikalien:

1,8-Diamino-N,N-tetramethylnaphthalin (Merck)
Natriumhexamethyldisilazid (Aldrich) *p*-Thiocresol (Fluka)
1.6 M *n*-Butyllithium-Hexanlösung (Aldrich)
1.0 M Diethylzink-Lsg. in Heptan (Aldrich)
Diethylzink pur (STREM)
2-Aminobenzothiazol (Aldrich)
Kohlendioxid 5.3 (99.9993 %) (Linde)

Nach Literaturdaten dargestellte Verbindungen:

(**1i**): 9H-2,6-Dimethyl-9-(4-methylphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d]-[1,3,5]

-triazin-8-ium-chlorid¹

(1j): 9H-2,6-Dimethyl-9-(4-methoxyphenyl)-bis-[1,3,4]-thiadiazolo-[3,2-a:3',2'-d]-

[1,3,5]-triazin-8-ium-chlorid¹

(6a5): 1-[Chlor-(2-methoxyphenyl)methyl]-pyridinium-chlorid³⁷

(6b1): N,N-Bis-[(4-Methylphenyl)methyl]-pyridinium-bromid¹

(6b2): N,N-Bis-[(4-Methoxyphenyl)methyl]-pyridinium-bromid¹

(7a): 2-Amino-5-methyl-1,3,4-thiadiazol, (7b): 2-Amino-5-ethyl-1,3,4-thiadiazol, (7c):

2-Amino-5-t-butyl-1,3,4-thiadiazol, (7d): 2-Amino-5-propyl-1,3,4-thiadiazol,

(7e): 2-Amino-5-pentyl-1,3,4-thiadiazol¹¹⁸

(57): Zink-bis(hexamethyldisilazid)¹¹⁹

(12b): 2-Amino-6-methylbenzothiazol¹²⁰

(12c): 2-Amino-6-methoxybenzothiazol¹²⁰

Weitere eingesetzte Verbindungen:

Methyliodid - ohne Reinigung verwendet

(4b): Thionylbromid - ohne Reinigung verwendet

(4a): Thionylchlorid - Destillation über Chinolin und Leinöl, sofort verwendet

(67a): Phenylisocyanat - Destillation und Lagerung unter Argon

(67b): p-Methoxyphenylisocyanat - Destillation und Lagerung unter Argon

(67c): Naphthylisocyanat - Destillation und Lagerung unter Argon

Amin	pk _a -W	Nr.:	Amin	pk _a -W	Nr.:
Piperidin	9.30	(A1)	3-(Aminopropyl)imidazol	8~9	(A15)
Morpholin	8.49	(A2)	2-Picolylamin	8.57	(A16)
Pyrrolidin	11.30	(A3)	3-Picolylamin	7~9	(A17)
Piperazin	9.73/5.3	(A4)	4-Picolylamin	7~9	(A18)
<i>n</i> -Butylamin	10.81	(A5)	1-(2-Pyridyl)ethylamin ¹²¹	8~9	(A19)
Anilin	4.59	(A6)	Bis-2-(2-Pyridyl)ethylamin ⁸⁵	6~8	(A20)
Cyclohexylamin	10.63	(A7)	Bis-(3-picolyl)amin	6~8	(A21)
1,1-Diphenylmethylamin	6~8	(A8)	Bis-(2-picolyl)amin	6~8	(A22)
1-Adamantylamin	6~8	(A9)	3-(N-Imidazolyl)propyl-(3'- pyridyl)methyl-amin	6~8	(A23)
4- <i>tert</i> -Butylanilin	4~5	(A10)	3-(N-Imidazolyl)propyl-(2'- pyridyl)methyl-amin	6~8	(A24)
Triphenylmethylamin	6~8	(A11)	2-[(2'-Pyridylethyl) aminomethyl]pyridin	6~8	(A25)
<i>p</i> -Nitroanilin	1.02	(A12)	trans-1,2-Diaminocyclohexan	6~8	(A26)
2-(2`-Aminoethyl)pyridin	9.6/3.91	(A13)	Cyclam	6~8	(A27)
2-(2`-Aminoethyl)thiophen	9.6	(A14)	Tris-(2-aminoethyl)amin	9	(A28)

 Tabelle 9-1
 Eingesetzte Amine (mit pKa-Wert bzw. Bereich) A

9.1 Bis-(1,3,4-thiadiazolo)-1,3,5-triaziniumsalze 1

Die Darstellung der 5/6/5-Heterocyclen 1 erfolgt nach einer Variation der allgemeinen Literaturvorschrift;¹ durch 5-stündiges Erhitzen der entsprechenden Pyridiniumverbindung 6 und 2 Äquivalenten des Thiadiazolderivates 7 auf 75 °C in Acetonitril. Die Aufarbeitung muß entsprechend der Löslichkeitsunterschiede variiert werden.

(1a) 9H-2,6-Dimethyl-9-(2-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d]-1,3,5] triazin-8-ium-chlorid:

Die Synthese erfolgt aus **6a** und **7a**. Nach dem Einengen, Abkühlen und Abfritten wird mit wenig kaltem Wasser gewaschen und i. V. getrocknet. Es verbleibt allerdings 1 Äquiv. Kristallwasser, welches

durch Trocknen nicht entfernt werden kann.⁶²

Ausbeute: 72 %. Fp.: 214 °C. IR (ATR): 3100-2500 (breit, OH), 1455 (s) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 2.60 (s, 6H), 6.90 (t, 1H, J = 7.31 Hz), 7.10 (d, 1H, J = 8.05 Hz), 7.33 (t, 1H, J = 7.75 Hz), 7.65 (d, 1H, J = 7.80 Hz), 7.96 (s, 1H), 10.94 (s, 1H). ¹³C-NMR (DMSO-d₆): δ 16.7, 77.9, 116.5, 118.9, 119.7, 131.4, 133.0, 157.0, 159.8, 166.8. CI MS *m*/*z* 318 (38) für C₁₃H₁₂N₅OS₂⁺. C₁₃H₁₂CIN₅OS₂ x 1H₂O Ber.: C, 41.99; H, 3.79; N, 18.83; S, 17.24; Cl, 9.53. (353.84) Gef.: C, 41.79; H, 3.87; N, 18.75; S, 16.99; Cl, 9.87.

(1b) 9H-2,6-Diethyl-9-(2-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a: 3',2'-d]-1,3,5]-triazin-8-ium-chlorid:

Der komplett eingeengte Rückstand aus der Reaktion von **6a** und **7b** wird mit Chloroform extrahiert (heiß). Nach dem Verringern des Volumens der Chloroformlösung auf ein Drittel und 12 h Kühlung auf 4 °C wird der ci⁻ New signal kristalline Niederschlag abgesaugt und i. V. getrocknet. In diesem Fall verbleibt ein Äquivalent Chloroform im Kristallverband.⁶²

Aubeute: 82 %. Fp.: 182 °C.

IR (ATR): 2500 - 3100 (breit, OH), 1455 cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.16 (t, 6H, J = 7.44 Hz), 2.92 (m, 4H), 6.92 (t, 1H, J = 7.37 Hz), 7.02 (d, 1H, J = 8.04 Hz), 7.34 (t, 1H, J = 7.77 Hz), 7.68 (d, 1H, J = 6.33 Hz), 7.96 (s, 1H), 10.81 (s, 1H).

¹³C-NMR (DMSO-d₆): δ 12.4, 24.1, 78.0, 116.5, 118.9, 119.7, 131.5, 133.0, 157.0, 165.1, 166.6.

CI MS *m/z* 346 (58) für C₁₅H₁₆N₅OS₂⁺.

 $C_{15}H_{16}N_5OS_2Cl \ x \ CHCl_3$ Ber.: C, 38.34; H, 3.42; N, 13.97; S, 12.79; Cl, 28.29.(381.89)Gef.: C, 38.43; H, 3.54; N, 14.34; S, 13.05; Cl, 28.87.

(1c) 9H-2,6-Di-*t*-butyl-9-(2-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d]-[1,3,5]triazin-8-ium-chlorid:

Zur Aufarbeitung wird die Reaktionslösung aus **6a** und **7c** komplett eingeengt und in Chloroform aufgenommen. Die Chloroformlösung wird mit einem 1:1-Gemisch aus Wasser / Methanol gewaschen, wieder eingeengt und 72 h in *tert*-Butylmethylether oder Diethylether gerührt, bis ein feines, weißes Pulver entstanden ist.⁹³(**1c** kann auch aus viel Diethylether umkristallisiert werden).

Ausbeute: 72 % Fp.: 190 °C.

IR (ATR): 2500 - 3100 (breit, OH), 2968 (s), 1460 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.28 (s, 18H, CH3 *t*-Bu), 6.93 (t, 1H, Phenyl, J = 7.31 Hz), 6.98 (d, 1H, Phenyl, J = 8.05 Hz), 7.35 (t, 1H, Phenyl, J = 7.75 Hz), 7.70 (d, 1H, Phenyl, J = 7.80 Hz), 7.98 (s, 1H, CH Triazinium), 10.80 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 29.1, 36.9, 78.1, 116.4, 119.0, 119.5, 131.4, 133.2, 156.9, 166.7, 172.5.

CI MS *m*/*z* 402 (53) für C₁₉H₂₄N₅OS₂⁺.

 $C_{19}H_{24}N_5OS_2Cl$ Ber.: C, 52.10; H, 5.52; N, 15.99; S, 14.64; Cl, 8.09.(438.00)Gef.: C, 52.07; H, 5.35; N, 15.66; S, 14.36; Cl, 8.12.

(1d) 9H-2,6-Dipropyl-9-(2-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d]-

1,3,5]-triazin-8-ium-chlorid:

aus 6a und 7d, Aufarbeitung erfolgt wie bei 1c

Ausbeute: 71 %. Fp.: 178 °C.

IR (ATR): 2500 - 3100 (breit, OH), 2968 (s), 1462 (s) cm⁻¹.

¹H-NMR [400MHz](DMSO-d₆): δ 0.83 (t, 6H), 1.58 (m, 4H), 2.88 (m, 4H), 6.90 (t, 1H, J = 7.30 Hz), 7.07 (d, 1H, J = 8.12 Hz), 7.32 (t, 1H, J = 7.23 Hz), 7.67 (d, 1H, J = 7.55 Hz), 7.96 (s, 1H, CH Triazinium), 10.95 (s, 1H, OH).

¹³C-NMR (DMSO-d₆) δ 12.7, 21.5, 31.8, 78.0, 116.4, 118.8, 119.7, 131.4, 133.0, 157.0, 163.7, 166.7.

CI MS *m*/*z* 375 (55) für C₁₇H₂₀N₅OS₂⁺.

 $C_{17}H_{20}ClN_5OS_2$ Ber.: C, 49.81; H, 4.92; N, 17.08; S, 15.64; Cl, 8.65.(409.95)Gef.: C, 49.40; H, 4.89; N, 17.14; S, 15.56; Cl, 8.60.

(1e) 9H-2,6-Dipentyl-9-(2-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a: 3',2'-d]-[1,3,5]-triazin-8-ium-chlorid:

aus 6a und 7f, Aufarbeitung erfolgt wie bei 1c

Ausbeute: 62 %. Fp.: 198 °C (Rotfärbung).

IR (ATR): 2500 - 3100 (breit, OH), 2968 (s), 1460 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 0.77 (t, 6H), 1.17 (m, 8H), 1.57 (m, 4H), 2.93 (m, 4H), 6.90 (t, 1H, J = 7.38 Hz), 7.06 (d, 1H, J = 7.97 Hz), 7.32 (t, 1H, J = 7.25 Hz), 7.67 (d, 1H, J = 6.28 Hz), 7.95 (s, 1H, CH Triazinium), 10.92 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 13.6, 21.4, 27.6, 29.9, 36.9, 78.0, 116.4, 118.8, 119.7, 131.4, 132.9, 157.0, 163.8, 166.8.

CI MS *m/z* 431 (40) für C₂₁H₂₈N₅OS₂⁺.

 $C_{21}H_{28}CIN_5OS_2$ Ber.: C, 54.12; H, 6.06; N, 15.03; S, 13.76; Cl, 7.61.(466.05)Gef.: C, 53.78; H, 5.85; N, 15.33; S, 14.01; Cl, 8.02.

(1f) 9H-2,6-Di-*t*-butyl-9-(3-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d]-[1,3,5]-triazin-8-ium-chlorid:

aus 6b und 7c Aufarbeitung erfolgt wie bei 1c

Ausbeute: 73 %. Fp.: 160 °C.

IR (ATR): 2500 - 3100 (breit, OH), 2965 (s), 1460 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.32 (s, 18H, CH₃ t-Bu), 6.97 (t, 1H, J = 8.25 Hz), 7.01 (m, 2H), 7.28 (t, 1H, J = 7.75 Hz), 8.03 (s, 1H, CH-Triazinium), 10.15 (s, 1H, OH);

¹³C NMR (DMSO-d₆): δ 29.1, 37.0, 78.5, 114.7, 118.3, 118.4, 130.3, 134.7, 158.0, 166.4, 173.4.

CI MS m/z 402 (45) für C₁₉H₂₄N₅OS₂⁺.

 $C_{19}H_{24}N_5OS_2Cl \qquad \qquad \text{Ber.: } C, \ 52.10; \ H, \ 5.52; \ N, \ 15.99; \ S, \ 14.64; \ Cl, \ 8.09.$

(438.00) Gef.: C, 51.91; H, 5.28; N, 15.79; S, 14.38; Cl, 8.02.

(1g) 9H-2,6-Di-*t*-butyl-9-(4-hydroxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d] [1,3,5]triazin-8-ium-chlorid:

aus 6c und 7c, Aufarbeitung erfolgt wie bei 1c

Ausbeute: 20 %. Fp.: 174 °C.

IR (ATR): 2500 - 3100 (breit, OH), 2968 (s), 1462 (s) cm⁻¹.

¹H-NMR[400MHz] (DMSO-d₆): δ 1.28 (s, 18H, CH3 t-butyl), 6.85 (d, 2H, J = 8.56 Hz), 7.38

(d, 2H, J = 8.52 Hz), 7.91 (s, 1H, CH Triazinium), 10.27 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 29.2, 37.0, 79.0, 115.8, 124.4, 129.8, 160.0, 166.6, 173.2.

CI MS *m/z* 402 (8) für C₁₉H₂₄N₅OS₂⁺.

 $C_{19}H_{24}N_5OS_2Clx1H_2O \ \ Ber.:\ C,\ 50.04;\ H,\ 5.75;\ N,\ 15.36;\ S,\ 14.06;\ Cl,\ 7.77.$

(438.00) Gef.: C, 49.69; H, 5.63; N, 15.03; S, 14.01; Cl, 7.85.

(1h) 9H-2,6-Dimethyl-9-(2-methoxyphenyl)-bis-[1,3,4]thiadiazolo[3,2-a:3',2'-d]-[1,3,5] triazin-8-ium-chlorid:

aus 6f und 7a, Aufarbeitung wie bei 1i

Ausbeute: 47 %. Fp.: 208-211 °C

IR (ATR) 1454 (s) cm^{-1} .

¹H-NMR (DMSO-d₆): δ 2.60 (s, 6H), 3.69 (s, 3H), 7.10 (t, 1H, J = 7.47 Hz), 7.14 (d, 1H, J = 8.29 Hz), 7.53 (t, 1H, J = 7.90 Hz), 7.81 (d, 1H, J = 7.54 Hz), 8.05 (s, 1H).

¹³C-NMR (DMSO-d₆): δ 16.89, 56.1, 77.3, 112.6, 120.8, 121.4, 131.7, 133.6, 158.0, 160.2, 166.9.

CI MS *m/z* 368 (11) für C₁₄H₁₄N₅OS₂⁺.

 $C_{14}H_{14}Cl\,N_5OS_2 \qquad Ber.:\,C,\,45.71;\,H,\,3.84;\,N,\,19.04;\,S,\,17.43;\,Cl,\,9.64.$

(367.87) Gef.: C, 45.77; H, 3.96; N, 18.91; S, 17.24; Cl, 9.50.

9.2 α-Halogenopyridiniumsalze 6a

Allgemeine Vorschrift für die Darstellung der hydroxyphenylsubstituierten α -Halogenopyridiniumsalze **6a-6d**:

Zu einer mit Eis gekühlten Lösung von 0.2 mol Thionylchlorid in 150 ml Acetonitril werden unter Rühren 0.2 mol Pyridin und 0.1 mol des Aldehyds getropft. Nach einer Stunde Rühren bei 0 °C läßt man auf RT erwärmen und kühlt anschließend wieder auf 0 °C ab. Unter Rühren wird 0.1 mol Methanol zugegeben und auf RT erwärmt. Die Lösung wird auf ein Drittel

eingeengt und das Produkt nach Kristallisation bei 4 °C abgesaugt. Evt. ist Umkristallisieren aus Acetonitril notwendig.

(6a) 1-[Chlor-(2-hydroxyphenyl)methyl]pyridinium-chlorid:

(s. auch **KS-1**) aus Salicylaldehyd (**3a**), Thionylchlorid (**4a**) und Pyridin (**5**)

Ausbeute: 68 %. Fp.: 168-172 °C.

IR (ATR): 3100 - 2500 (breit), 1627 (s), 1478 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 7.01 (t, 1H, J = 7.56 Hz), 7.14 (d, 1H, J = 8.00 Hz), 7.36 (t, 1H, J = 7.28 Hz), 7.81 (d, 1H, J = 7.96 Hz), 8.24 (t, 2H, J = 7.08 Hz), 8.38 (s, 1H, H-C\alpha), 8.74 (t, 1H, J = 7.72 Hz), 9.38 (d, 2H, J = 5.80 Hz), 11.11 (s, 1H).

¹³C-NMR (DMSO-d₆): δ 76.8, 116.0, 119.2, 119.4, 128.4, 128.8, 132.6, 143.6, 148.4, 155.3. FAB MS (Glycerin) m/z 220 (100) für C₁₂H₁₁ClNO⁺.

 $C_{12}H_{11}Cl_2NO: \qquad \qquad Ber.: \ C,\ 56.26;\ H,\ 4.33;\ N,\ 5.47;\ Cl,\ 27.67.$

(256.13) Gef.: C, 56.21; H, 4.35; N, 5.57; Cl, 27.33.

(6b) 1-[Chlor-(3-hydroxyphenyl)methyl]pyridinium-chlorid:

aus 3-Hydroxybenzaldehyd (3b), 4a und 5

IR (ATR): 3100 - 2500 (breit), 1627 (s), 1477 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 6.95 (d, 1H, J = 7.20 Hz), 7.08 (m(s+d), 2H), 7.32 (t, 1H, J = 7.83 Hz), 8.27 (t, 2H, J = 7.32 Hz), 8.48 (s, 1H, H-C α), 8.76 (t, 1H, J = 7.78 Hz), 9.48 (t, 2H, J = 5.73 Hz), 10.20 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 78.5, 114.5, 117.8, 118.4, 129.5, 130.9, 135.6, 143.8, 148.9, 158.5. FAB MS (Glycerin) m/z 220 (100) für C₁₂H₁₁ClNO⁺.

- C₁₂H₁₁Cl₂NO: Ber.: C, 56.26; H, 4.33; N, 5.47; Cl, 27.67.
- (256.13) Gef.: C, 56.21; H, 4.35; N, 5.57; Cl, 27.33.

(6c) 1-[Chlor-(4-hydroxyphenyl)methyl]pyridinium-chlorid:

aus 4-Hydroxybenzaldehyd (3c), 4a und 5

Ausbeute: 60 %. Fp.: 141 °C. IR (ATR): 3100 - 2500 (breit), 1612 (s), 1514 (s), 1477 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 6.92 (d, 2H, J = 8.67 Hz), 7.57 (d, 2H, J = 8.62 Hz), 8.25 (t, 2H, J = 7.12 Hz), 8.56 (s, 1H, H-Ca), 8.74 (t, 1H, J = 7.71 Hz), 9.53 (d, 2H, J = 6.02 Hz), 10.43 (s, 1H).

¹³C-NMR (DMSO-d₆): δ 78.6, 116.0, 123.9, 129.0, 132.0, 143.2, 148.3, 159.9.

FAB MS (Glycerin) m/z 220 (100) für C₁₂H₁₁ClNO⁺.

C₁₂H₁₁Cl₂NO: Ber.: C, 56.26; H, 4.33; N, 5.47; Cl, 27.67.

(256.13) Gef.: C, 56.17; H, 4.51; N, 5.57; Cl, 27.43.

(6d) 1-[Chlor-(2-hydroxy-3,5-t-butylphenyl)methyl]pyridinium-chlorid:

aus 3,5-Di-t-butyl-2-hydroxybenzaldehyd (3d), 4a und 5

Ausbeute: 60 %. Fp.: 174 °C

IR (ATR): 3100 - 2500 (breit), 2960 (s), 1611 (s), 1514 (s), 1478 (s) cm⁻¹.

¹H-NMR (CDCl₃): δ 7.46 (d, 1H, J = 2.40 Hz), 7.66 (d, 1H, J = 2.35 Hz), 8.13 (t, 2H, J = 7.25 Hz), 8.64 (t, 1H, J = 7.72 Hz), 9.32 (d, 2H, J = 5.85 Hz), 9.42 (s, 1H, H-Cα).

¹³C-NMR (CDCl₃): δ 30.0, 31.5, 34.4, 35.3, 78.8, 122.3, 122.5, 127.7, 128.2, 141.7, 143.5, 144.1, 147.4, 151.7.

FAB MS (Glycerin) m/z 332 (20) für $C_{20}H_{27}CINO^+$.

C₂₀H₂₇Cl₂NO: Ber.: C, 65.22; H, 7.39; N, 3.80; Cl, 19.25.

(368.34) Gef.: C, 65.25; H, 7.60; N, 3.82; Cl, 18.59.

9.3 Bis-benzothiazolo-1,3,5-triaziniumsalze 13

Die Darstellung erfolgt ähnlich der von den Salzen 1 durch 12-stündiges Erhitzen der entsprechenden Pyridiniumverbindung 6 und 2 Äquivalenten des 2-Aminobenzothiazolderivates 12 auf 75 °C in Acetonitril. Die Produkte 13 fallen beim Abkühlen aus der Reaktionslösung zusammen mit dem entstandenen Ammoniumhalogenid aus. Die Reinigung erfolgt durch Waschen mit wenig kaltem Wasser und Umkristallisieren aus Methanol.

(13a) 13H-13-(4-Methoxyphenyl)-bis-benzothiazolo[3,2-a: 3',2'-d]-[1,3,5]triazin-12-ium-bromid:

aus 1j und 12a, strohgelb, kristallin

Ausbeute: 43 %. Fp.: 288 °C.

IR (ATR): 1479 cm⁻¹.

¹H-NMR (DMSO-d₆): δ 3.67 (s, 3H), 6.94 (d, 2H, J = 8.74 Hz), 7.55 (t, 2H, J = 7.62 Hz), 7.70 (t, 2H, J = 7.79 Hz), 7.92 (d, 2H, J = 8.80 Hz), 8.08 (d, 2H, J = 8.23 Hz), 8.21 (d, 2H, J = 7.37 Hz), 8.91 (s, 1H, H-C₍₁₃₎).

¹³C-NMR (DMSO-d₆): δ 55.3, 70.3, 114.2, 115.1, 124.5, 124.7, 125.6, 126.8, 128.6, 129.2, 135.0, 161.3, 166.2.

CI MS *m/z* 402 (20) für C₂₂H₁₆N₃OS₂⁺.

C₂₂H₁₆N₃OS₂Br: Ber.: C, 54.75; H, 3.34; N, 8.71; S, 13.29; Br, 16.56. (482.41) Gef.: C, 55.03; H, 3.79; N, 8.24; S, 12.86; Br, 16.38.

(13b) 13H-3,9-Dimethyl-13-(4-methoxyphenyl)-bis-benzothiazolo[3,2-a:3',2'-d]-[1,3,5]triazin-12-ium-bromid:

aus 1j und 12b, strohgelb, kristallin

Ausbeute: 37 %. Fp.: 264 °C.

IR (ATR): 1485 cm⁻¹.

¹H-NMR (DMSO-d₆): δ 2.39 (s, 6H), 3.67 (s, 3H), 6.93 (d, 2H, J = 8.70 Hz), 7.49 (d, 2H, J = 8.32 Hz), 7.86 (m, 6H), 8.82 (s, 1H, H-C₍₁₃₎).

¹³C-NMR (DMSO-d₆): δ 20.9, 55.4, 70.3, 114.0, 115.1, 124.2, 124.4, 125.7, 129.1, 129.5, 132.9, 136.9, 161.3, 165.5.

CI MS m/z 430 (12) für C₂₄H₂₀N₃OS₂⁺.

 $C_{24}H_{20}N_3OS_2Br; \qquad \qquad Ber.:\ C,\ 56.47;\ H,\ 3.95;\ N,\ 8.23;\ S,\ 12.56;\ Br,\ 15.65.$

(510.46) Gef.: C, 55.96; H, 4.18; N, 8.07; S, 12.05; Br, 15.30.

(13c) 13H-3,9-Dimethoxy-13-(4-methoxyphenyl)-bis-benzothiazolo[3,2-a:3',2'-d]-[1,3,5]-triazin-12-ium-bromid:

aus **1j** und **12c**, grüngelb, kristallin

Ausbeute: 39 %. Fp.: 266 °C. IR (ATR): 1488 cm⁻¹. ¹H-NMR (DMSO-d₆): δ 3.67 (s, 3H), 3.79 (s, 6H), 6.94 (d, 2H, J = 8.73 Hz), 7.27 (d, 2H, J = 9.12 Hz), 7.78 (m, 6H), 8.68 (s, 1H, H-C₍₁₃₎). ¹³C-NMR (DMSO-d₆): δ 55.4, 56.1, 70.4, 108.6, 115.0, 115.1, 116.2, 125.7, 126.0, 128.8, 129.1, 158.0, 161.3, 164.6. CI MS *m*/*z* 462 (19) für C₂₄H₂₀N₃O₂S₂⁺. C₂₄H₂₀N₃O₂S₂Br: Ber.: C, 53.14; H, 3.72; N, 7.75; S, 11.82; Br, 14.73.

(542.46) Gef.: C, 52.71; H, 3.82; N, 7.74; S, 11.88; Br, 14.65.

(13d) 13H-3-Methyl-9-methoxy-13-(4-methoxyphenyl)-bis-benzothiazolo[3,2-a: 3',2'-d]-[1,3, 5]triazin-12-ium-bromid:

aus 1j, 12b und 12c, (1:1:1) gelb, kristallin, 13d fällt zuerst aus

Ausbeute: 22 % + ca 10 % **13b** und 10 % **13c**. Fp.: 253 °C. IR (ATR): 1484 cm⁻¹.

¹H-NMR (DMSO-d₆): δ 2.37 (s, 3H), 3.67 (s, 3H), 3.79 (s, 3H), 6.93 (d, 2H, J = 8.64 Hz), 7.24 (m, 1H), 7.47 (d, 1H, J = 8.40 Hz), 7.85 (m, 6H), 8.87 (s, 1H, H-C₍₁₃₎).

¹³C-NMR (DMSO-d₆): δ 20.8, 55.3, 56.0, 70.3, 108.6, 113.9, 115.0, 116.2, 124.2, 124.3, 125.7, 125.9, 126.0, 128.7, 129.1, 129.5, 132.9, 136.8, 136.9, 157.9, 161.2, 164.9. CI MS m/z 446 (3) für C₂₄H₂₀N₃O₂S₂⁺.

 $C_{24}H_{20}N_3O_2S_2Br$:Ber.: C, 54.75; H, 3.83; N, 7.98; S, 12.18; Br, 15.18.(526.46)Gef.: C, 54.07; H, 4.01; N, 8.48; S, 11.98; Br, 16.08.

9.4 Guanidine **G** (Weg C)

Allgemeine Vorschrift zu Umsetzung stark basischer sekundärer und primärer Amine A mit den 5/6/5-Heterocyclen 1:

Zu einer Suspension von 5 mmol des Heterocyclus **1** oder **13** in 60 ml Pyridin werden bei Raumtemperatur 10.1 mmol des Amins **A** gegeben. Nach 2-24 h stündigem Rühren wird die jetzt fast klare Reaktionslösung bis zur Trockne eingeengt und der Rückstand mit Wasser gewaschen. Die Rohprodukte werden aus Methanol, Ethanol, Essigsäureethylester oder Methanol/*t*-Butylmethylether umkristallisiert.

9.4.1 Guanidinbeispiele G1-G4 aus sekundären Aminen (ohne N-H-Funktion)

(G1) (E)-1-[(5-Methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5methyl-1,3,4-thiadiazol-3-yl]methylpyrrolidin:

aus $1a \mbox{ und } A2$

Ausbeute: 87 %. Fp.: 148 °C. IR (ATR): 1549 cm⁻¹, C = N exocyclisch. ¹H-NMR (DMSO-d₆): δ 1.72 - 1.88 (2 m, 4H), 2.15 (s, 3H), 2.41 (s, 3H), 3.32 - 3.52 (2 m, 4H), 6.75 (m, 2H), 7.06 (m, 2H), 7.09 (s, 1H, H-C_(Dihydrothiazol)), 9.94 (s, 1H, OH). ¹³C-NMR (DMSO-d₆): δ 15.7, 16.3, 24.8, 49.5, 67.1, 115.3, 119.2, 125.5, 126.6, 129.2, 147.8, 151.6, 153.6, 157.3, 170.7. CI MS *m*/*z* 389 (85) für C₁₇H₂₁N₆OS₂⁺. C₁₇H₂₀N₆OS₂: Ber.: C, 52.56; H, 5.19; N, 21.61; S, 16.50.

(388.50) Gef.: C, 52.16; H, 5.13; N, 21.55; S, 16.43.

(G2) (E)-4-[(5-Methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5methyl-1,3,4-thiadiazol-3-yl]methylmorpholin:

aus $1a \ \text{und} \ A1$

Ausbeute: 85 %. Fp.: 124 °C.

IR (ATR): 1552 cm^{-1} , C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 2.18 (s, 3H), 2.45 (s, 3H), 3.06 - 3.63 (4 m, 8H), 6.75 (m, 2H), 7.01

(m, 2H), 7.11 (s, 1H, H-C_(Dihydrothiazol)), 10.02 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 15.7, 16.4, 48.8, 65.6, 66.9, 115.4, 119.2, 125.3, 126.4, 129.3, 149.3, 153.6, 154.3, 158.2, 170.5.

CI MS m/z 405 (62) für C₁₇H₂₁N₆O₂S₂⁺.

C₁₇H₂₀N₆O₂S₂: Ber.: C, 50.48; H, 4.98; N, 20.78; S, 15.85.

(404.50) Gef.: C, 50.07; H, 5.05; N, 20.29; S, 15.85.

(G3) (E)-1-[(5-Ethyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-ethyl-1,3,4-thiadiazol-3-yl]methylpyrrolidin:

aus $1b \; \mbox{und} \; A2$

Ausbeute: 84 %. Fp.: 127 °C.

IR (ATR): 1534 cm^{-1} , C = N exocyclisch.

¹H-NMR (CDCl₃): δ 1.13 (t, 3H, J = 7.48 Hz), 1.34 (t, 3H, J = 7.56 Hz), 1.76 (m, 4H), 2.40 (m, 2H), 2.92 (m, 2H), 3.38 (m, 4H), 6.80 (t, 1H, J = 7.40 Hz), 6.90 (d, 1H, J = 7.78 Hz), 7.12 (t, 1H, J = 6.98 Hz), 7.26 (m(d+s), 1H+1H-C_(Dihydrothiazol)), 9.96 (breit, 1H, OH).

¹³C-NMR (CDCl₃): δ 11.6, 14.1, 24.4, 24.6, 25.3, 50.2, 68.6, 117.1, 119.7, 126.5, 127.5, 129.9, 153.7, 154.0, 158.8, 165.8, 172.9.

CI MS *m/z* 417 (100) für C₁₉H₂₅N₆S₂O⁺.

C₁₉H₂₄N₆OS₂: Ber.: C, 54.78; H, 5.81; N, 20.17; S, 15.39.

(416.55) Gef.: C, 54.56; H, 5.92; N, 20.08; S, 15.25.

(G4) (E)-4-[(5-Ethyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-ethyl-1,3,4-thiadiazol-3-yl]methylmorpholin:

aus 1b und A1

Ausbeute: 89 %. Fp.: 144 °C.

IR (ATR): 1539 cm^{-1} , C = N exocyclisch.

¹H-NMR (CDCl₃): δ 1.21 (t, 3H, J = 7.48 Hz), 1.32 (t, 3H, J = 7.59 Hz), 2.51 (m, 2H), 2.91 (m, 2H), 3.19 (m, 4H), 3.56 (m, 4H), 6.78 (t, 1H, J = 7.53 Hz), 6.90 (d, 1H, J = 7.39 Hz), 7.14 (t, 1H, J = 7.69 Hz), 7.23 (m, (d+s), 1H+1H-C_(Dihydrothiazol)), 10.36 (breit, 1H, OH).

¹³C-NMR (CDCl₃): δ 11.7, 14.0, 24.4, 24.7, 49.3, 66.3, 67.7, 117.9, 120.1, 126.0, 127.3, 130.3, 154.3, 155.6, 157.9, 166.7, 171.3.

CI MS m/z 433 (53) für C₁₉H₂₅N₆O₂S₂⁺.

 $C_{19}H_{24}N_6O_2S_2: \qquad \qquad \text{Ber.: } C, \ 52.76; \ H, \ 5.59; \ N, \ 19.43; \ S, \ 14.82.$

(432.55) Gef.: C, 52.26; H, 5.78; N, 19.22; S, 14.25.

9.4.2 D0-Guanidine

(G5a) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(n-butyl)amin:

aus $\,1c$ und A5

Ausbeute: 72 %. Fp.: 159 °C.

¹H-NMR (DMSO-d₆): δ 0.89 (t, 3H, J = 7.32 Hz), 1.21 (s, 9H), 1.23 (s 9H), 1.31 (m, 2H), 3.50 (dd, 2H), 6.76 (t, 1H, J = 7.42 Hz), 6.81 (d, 1H, J = 7.04 Hz), 6.94 (d, 1H, J = 6.83 Hz), 7.07 (t, 1H, J = 8.03 Hz), 7.23 (s, 1H, H-C_(Dihydrothiazol)), 8.57 (breit, 1H, NH), 9.91 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 13.9, 19.8, 29.0, 30.7, 32.2, 36.0, 36.1, 44.3, 66.3, 115.7, 119.5, 125.1, 127.9, 129.4, 136.7, 150.0, 151.8, 153.5, 161.7, 171.6, 173.2.

DCI MS m/z 474 (100) für C₂₃H₃₅N₆OS₂⁺.

C₂₃H₃₄N₆OS₂: Ber.: C, 58.20; H, 7.22; N, 17.70; S, 13.51.

(474.68) Gef.: C, 58.60; H, 7.47; N, 17.69; S, 13.28.

- (G5b) (E)-[(5-Methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(4-methylphenyl)-5-methyl-1,3,4-thiadiazol-3-yl]methyl-(*n*-butyl)amin:
 aus 1i und A5 (siehe Guanidin-Publikation⁶²)
- (G6) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(cyclohexyl)amin:

aus $1c \mbox{ und } A7$

Ausbeute: 74 %. Fp.: 184 °C. IR (ATR): 3250 (w), 3123 (w), 3063 (sw), 2968 (m), 2927 (m), 1601 (ss), 1507 (m), 1453 (ss), 1396 (m), 1361 (m), 747 (m) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 1.22 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 1.30 - 2.0 (m, 10H, CH₂), 4.11 (m, 1H, CH), 6.76 (t, 1H, J = 7.40 Hz), 6.82 (d, 1H, J = 7.22 Hz), 6.93 (d, 1H, J = 6.10 Hz), 7.10 (t, 1H, J = 6.40 Hz), 7.27 (s, 1H, H-C_(Dihydrothiazol)), 8.94 (d, 1H, J = 7.65 Hz, NH), 9.91 (s, 1H, OH). ¹³C-NMR (DMSO-d₆): δ 24.6, 25.3, 29.0, 30.8, 33.8, 34.0, 36.0, 36.2, 53.1, 66.6, 115.8, 119.5, 125.1, 128.0, 129.3, 138.8, 150.7, 153.4, 162.0, 168.5, 171.2, 173.9. DCI MS (H₂O) *m*/*z* 501 (35) für C₂₅H₃₇N₆OS₂⁺. C₂₅H₃₆N₆OS₂: Ber.: C, 59.97; H, 7.25; N, 16.78; S, 12.81. (500.72) Gef.: C, 59.15; H, 7.67; N, 17.12; S, 12.42.

(G7) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(diphenylmethyl)amin:

aus 1c und A8

Ausbeute: 37 %. Fp.: 174 °C.

IR (ATR): 3272 (m), 3130 (m), 2967 (m), 1617 (ss), 1511 (ss), 1492

(s), 1455 (m), 1364 (m), 1329 (m), 746 (m) cm⁻¹.

N-N HO NH NS NNH NNH

¹H-NMR (DMSO-d₆): δ 1.21 (s, 9H), 1.30 (s, 9H), 6.16 (d, 1H, J = 7.35 Hz, CH), 6.45 (t, 1H, J = 7.45 Hz, arom.), 6.77 - 6.82 (m, 2H, arom. + H-C_(Dihydrothiazol)), 6.99 - 7.06 (t+d, 2H), 7.28 - 7.44 (m, 10H), 9.83 (breit, 1H, NH), 9.93 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 29.0, 30.7, 36.1, 36.2, 62.5, 66.0, 115.4, 119.5, 125.0, 127.3, 127.8, 129.2, 142.2, 142.8, 151.1, 153.3, 162.5, 168.5, 171.9, 174.1.

DCI MS (H₂O) *m*/*z* 585 (15) für C₃₂H₃₇N₆OS₂⁺.

C₃₂H₃₆N₆OS₂: Ber.: C, 65.72; H, 6.20; N, 14.37; S, 10.96. (584.79) Gef.: C, 64.83; H, 6.51; N, 15.29; S, 11.37.

(G8) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-tbutyl-1,3,4-thiadiazol-3-yl](4-t-butyl)anilin:

aus 1c und A10

Ausbeute: 34 %. Fp.: 226 °C. IR (ATR): 3391 (m, NH), 3100 - 2400 (breit, OH), 3039 (m), 2961 (m), 2563 (m), 1600 (sw),1558 (ss), 1522 (s), 1451 (m), 1247 (m), 751 (m) cm⁻¹. ¹H-NMR (CDCl₃): δ 0.99 (s, 9H), 1.28 (s, 9H), 1.42 (s, 9H), 6.84 (d, 2H, J = 8.52 Hz), 6.95 (t, 1H, J = 7.25 Hz), 6.98 (d, 1H, J = 8.25 Hz), 7.23 - 7.28 (d+s+t, 3H arom. +1H-C_(Dihydrothiazol)), 7.41 (d, 1H, J = 7.82 Hz), 11.0 (s, breit, 1H, OH), 11.16 (s, 1H, NH).

¹³C-NMR (CDCl₃): δ 28.8, 31.1, 31.7, 36.6, 36.7, 66.4, 119.5, 121.3, 123.8, 125.7, 126.4, 129.4, 131.3, 137.0, 148.4, 150.8, 154.9, 163.8, 172.4, 174.3. DCI MS (H₂O) m/z 551 (20) für C₂₉H₃₉N₆OS₂⁺. C₂₉H₃₈N₆OS₂: Ber.: C, 63.24; H, 6.95; N, 15.26; S, 11.64. (550.78) Gef.: C, 64.10; H, 7.41; N, 15.72; S, 11.19.

(G9) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(4-methylphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]anilin:

aus **1i** und **A6** (Ansatz mit 50 % ¹⁵N-Anilin)

Ausbeute: 65 %. Fp.: 162 °C.

IR (ATR): 3202 (w, NH), 3059 (w), 2944 (w), 1605 (s), 1595 (s), 1577 (ss), 1448 (m), 1441 (s), 1168 (m), 1066 (m), 752 (m) cm⁻¹.

¹H-NMR (CDCl₃): δ 2.08 (s, 3H), 2.35 (s, 3H) 2.52 (s, 3H), 7.06 - 7.32 (m, 9H arom. +H-C_(Dihydrothiazol)), 10.14 (s, 0.5H und d, ¹⁵N-¹H-Kopplung, 0.5H, J = 89 Hz).

¹³C-NMR (CDCl₃): δ 16.46 17.0, 21.6, 72.4, 122.8, 124.7, 126.9, 129.0, 129.8, 138.1, 139.0, 139.5 (und d, ¹⁵N-¹³C-Kopplung, J = 14.40 Hz), 148.3, 149.4 (d, ¹⁵N-¹³C-Kopplung, J = 17.42 Hz), 159.2, 173.5.

DCI MS (H₂O) m/z 410, 409 (100) für C₂₀H₂₁¹⁵N₆S₂⁺/C₂₀H₂₁N₆S₂⁺. C₂₀H₂₀¹⁵N₆S₂/C₂₀H₂₀N₆S₂: Ber.: C, 58.73; H, 4.92; N/¹⁵N, 20.66; S, 15.67. (409.53 / 408.53) Gef.: C, 58.32; H, 5.11; N, 21.05; S, 16.01.

(G10) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-tbutyl-1,3,4-thiadiazol-3-yl](1-adamantyl)amin:

aus 1c und A9

Ausbeute: 40 %. Fp.: 210 °C. IR (ATR): 3385 (w, NH), 3100 - 2400 (breit, OH), 3099 (m), 2963 (m), 1607 (w),1568 (s), 1530 (ss), 1437 (m), 1267 (m), 754 (m) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 1.11 (s, 9H), 1.27 (s, 9H) 1.55 (m, 6H), 1.89 (m, 6H), 1.96 (m, 3H), 6.62 (s, breit, 1H, NH), 6.73 (d+t, 2H), 7.09 (s, 1H, H-C_(Dihydrothiazol)), 7.06 - 7.15 (d+t, 2H), 9.85 (s, 1H, OH). ¹³C-NMR (DMSO-d₆): δ 29.0, 29.3, 30.9, 36.0, 36.4, 52.9, 66.0, 115.5, 119.4, 126.1, 126.8, 129.7, 148.8, 153.7, 159.5, 171.1, 172.2. DCI MS (H₂O) *m*/*z* 553 (20) für C₂₉H₄₁N₆OS₂⁺. C₂₉H₄₀N₆OS₂: Ber.: C, 63.01; H, 7.29; N, 15.20; S, 11.60. (552.79) Gef.: C, 62.14; H, 7.85; N, 13.88; S, 10.10.

(G11) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(4-methylphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl(diphenylmethyl)amin:

aus 1i und A8

Ausbeute: 69 %. Fp.: 184 °C.

IR (ATR): 3272 (m), 3130 (m), 2967 (m), 1617 (ss), 1511 (ss), 1492

(s), 1455 (m), 1364 (m), 1329 (m), 746 (m) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 2.23 (s, 3H), 2.26 (s, 3H), 2.48 (s, 3H), 6.65 (d, 1H, J = 7.40 Hz, CH), 6.78 (d, 2H, J = 7.92 Hz), 6.96 (d, 2H, J = 7.92 Hz), 7.15 (s, 1H, H-C_(Dihydrothiazol)), 7.26 - 7.37 (m, 10H), 9.74 (s, breit, NH).

¹³C-NMR (DMSO-d₆): δ 15.9, 16.6, 21.0, 62.5, 71.6, 125.9, 127.1, 127.3, 127.7, 129.1, 129.2, 137.7, 148.5, 150.9, 157.0, 157.8, 170.7.

DCI MS (H₂O) m/z 498 (15) für $C_{27}H_{27}N_6S_2^+$.

 $C_{27}H_{26}N_6S_2$:Ber.: C, 65.03; H, 5.26; N, 16.85; S, 12.86.(498.66)Gef.: C, 64.82; H, 5.44; N, 17.19; S, 12.96.

9.4.3 D1-Guanidine G12-G18

Die Darstellung der D1-Guanidine erfolgte in Triethylamin als Lösungsmittel (und als Base) durch Zugabe des Heterocyclus **1** zum Amin **A** im Verhältnis 1:1, um die notwendigen Mengen der einzusetzenden Amine **A** zu minimieren. Nach dem Einengen des Reaktionsgemisches wird das Produkt mit Wasser gewaschen (gerührt), abgesaugt, i. V. getrocknet und aus Essigsäureethylester umkristallisiert. Bei Umsetzungen mit den aromatischen Aminen **A6**, **A10** und **A12** wird ein 2:1-Gemisch aus Triethylamin und Chloroform als Lösungsmittel (z. B. 40 ml TEA und 20 ml CHCl₃ für 15 mmol Ansatz) verwendet.

(G12) (E)-[(5-Ethyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-ethyl-1,3,4-thiadiazol-3-yl]methyl-2-(pyridin-2-yl)ethylamin:

aus $1b \mbox{ und } A13$

Ausbeute: 81 %. Fp: 150 °C.

IR (ATR): 3258 (w), 3079 (w), 2972 (m), 1614 (s), 1590 (s), 1529 cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.10 - 1.18 (m, 6H), 2.50 (m, 2H), 2.77 (m, 2H), 3.01 (t, 2H, J = 6.88 Hz), 3.70 (m, 2H), 6.74 (t, 1H, J = 8.74 Hz), 6.81 (d, 1H, J = 8.50 Hz), 6.86 (d, 1H, J = 7.68 Hz), 7.08 (t, 1H, J = 7.45 Hz), 7.12 (s, 1H, H-C_(Dihydrothiazol)), 7.20 - 7.26 (m, 2H), 7.67 (t, 1H, J = 7.65 Hz), 8.36 (breit, 1H, NH), 8.47 (d, 1H, J = 6.64 Hz), 9.97 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 12.0, 14.2, 23.9, 24.4, 37.8, 43.8, 66.0, 115.7, 119.4, 122.0, 123.7, 125.0, 127.6, 129.5, 136.9, 149.4, 151.9, 153.5, 155.0, 159.1, 164.0, 172.1.

CI MS m/z 468 (100) für C₂₂H₂₆N₇OS₂⁺.

$C_{22}H_{25}N_7OS_2$:	Ber.: C, 56.51; H, 5.39; N, 20.97; S, 13.71.
(467.60)	Gef.: C, 56.27; H, 5.41; N, 20.69; S, 13.42.

(G13) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-2-(pyridin-2-yl)ethylamin:

aus $1c \mbox{ und } A13$

Ausbeute: 72 %. Fp.: 184 °C.

IR (ATR): 1518 cm^{-1} , C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 1.10 (s, 9H), 1.23 (s, 9H), 2.99 (t, 2H, J = 6.7 Hz), 3.71 (m, 2H), 6.69 (t, 1H, J = 7.44 Hz), 6.75 (d, 1H, J = 7.17 Hz), 6.82 (d, 1H, J = 6.94 Hz), 7.05 (t, 1H, J = 7.98 Hz), 7.10 (s, 1H, H-C_(Dihydrothiazol)), 7.16 - 7.20 (m, 2H), 7.63 (t, 1H, J = 6.13 Hz), 8.37 (breit, 1H, NH), 8.43 (d, 1H, J = 4.57 Hz), 9.91 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.7 30.4, 35.7, 35.8, 37.5, 43.4, 65.9, 115.4, 119.1, 121.6, 123.4, 124.7, 127.3, 129.1, 136.5, 149.0, 151.2, 153.1, 158.8, 161.6, 171.6, 172.0.

DCI MS *m*/*z* 524 (100) für C₂₆H₃₄N₇OS₂⁺.

C₂₆H₃₃N₇OS₂: Ber.: C, 59.63; H, 6.35; N, 18.72; S, 12.24.

(523.71) Gef.: C, 59.83; H, 6.51; N, 18.29; S, 11.96.

(G14a) R,S-(bzw. S,R)-(E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxy-phenyl)-5-t-butyl-1,3,4-thiadiazol-3-yl]methyl-1-(pyridin-2-yl)ethylamin:

aus **1c** und **A19**, Rohprodukt in Essigsäureethylester (EE) umkristallisieren; 1. Fraktion

Ausbeute: 30 %. Fp.: 180 °C. IR (ATR): 3290 (w, NH), 2966 (m, *t*-Bu), 3100 - 2400 (breit, OH), 1633 (ss), 1588 (m), 1451 (ss), 1399 (m), 752 (m) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 1.17 (s, 9H), 1.28 (s, 9H), 1.50 (d, 2H, J = 6.80 Hz), 5.52 (1, 2H, J = 6.95 Hz), 6.26 (d, 1H, J = 7.12 Hz), 6.52 (t, 1H, J = 7.29 Hz), 6.74 (d, 1H, J = 7.45 Hz), 7.02 (t, 1H, J = 6.48 Hz), 7.27 - 7.33 (m+s, 2H +1H-C_(Dihydrothiazol)), 7.75 (t, 1H, J = 5.91 Hz), 8.52 (d, 1H, J = 4.28 Hz), 9.40 (breit, 1H, NH), 9.92 (s, 1H, OH). ¹³C-NMR (DMSO-d₆): δ 23.0 28.6, 30.4, 35.6, 35.7, 54.9, 65.6, 115.1, 119.0, 120.6, 122.4, 124.7, 127.4, 128.9, 136.9, 149.1, 150.6, 152.9, 161.5, 162.2, 171.4, 173.1. DCI MS *m*/z 524 (100) für C₂₆H₃₄N₇OS₂⁺.

C₂₆H₃₃N₇OS₂: Ber.: C, 59.63; H, 6.35; N, 18.72; S, 12.24.

(523.71) Gef.: C, 59.48; H, 6.56; N, 18.31; S, 12.01.

(G14b) R,R-(bzw. S,S)-(E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxy-phenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-1-(pyridin-2-yl)ethylamin:

aus 1c und A19, 2. Fraktion (aus eingeengter EE-Lösung mit MeOH umkristallisiert)

Ausbeute: 25 %. Fp.: 171 °C.

IR (ATR): 3374 (w, NH), 2965 (m, t-Bu), 3100 - 2400 (breit, OH), 1599

(m), 1521 (s), 1455 (ss), 1364 (m), 749 (m) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.05 (s, 9H), 1.16 (d, 6H, MeOH), 1.26 (s, 9H), 1.46 (d, 2H, J = 6.73 Hz), 5.42 (t, 1H, J = 7.07 Hz), 6.74 (t, 1H, J = 7.53 Hz), 6.76 (d, 1H, J = 8.06 Hz), 6.92 (d, 1H, J = 7.65 Hz), 7.05 (t, 1H, J = 7.92 Hz), 7.16 (s, 1H, H-C_(Dihydrothiazol)), 7.22 - 7.32 (d+t, 2H), 7.73 (t, 1H, J = 5.89 Hz), 8.50 (d, 1H, J = 3.98 Hz), 9.20 (breit, 1H, NH), 9.87 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 23.9, 28.9, 30.8, 36.1, 36.2, 55.2, 66.5, 115.8, 119.6, 120.7, 122.7, 125.3, 127.9, 129.5, 137.4, 149.3, 150.9, 153.5, 162.3, 171.9, 173.3.

DCI MS *m*/*z* 524 (100) für C₂₆H₃₄N₇OS₂⁺.

C ₂₆ H ₃₃ N ₇ OS ₂ x 2CH ₃ OH:	Ber.: C, 58.35; H, 6.71; N, 17.64; S, 11.54.
(523.71+2 x 32.04)	Gef.: C, 58.21; H, 6.53; N, 17.44; S, 11.39.

(G15) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*butyl-1,3,4-thiadiazol-3-yl]methyl-2-(thiophen-2-yl)ethylamin:

aus 1c und A14

Ausbeute: 82 %. Fp.: 165 °C.

IR (ATR): 1517 cm^{-1} , C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 1.38 (s, 9H), 1.42 (s, 9H), 3.08 (t, 2H, J = 7.62 Hz), 3.75 - 3.90 (m, 2H), 6.71 (d, 1H, J = 3.40 Hz), 6.84 (t, 1H, J = 4.28 Hz), 6.90 - 6.96 (m, 2H), 7.06 (d, 1H, J = 5.14 Hz), 7.22 (t, 1H, J = 7.14 Hz), 7.27 (s, 1H, H-C_(Dihydrothiazol)), 7.43 (d, 1H, J = 7.80 Hz), 9.87 (breit, 1H, NH), 10.72 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 29.1, 30.7, 31.1, 36.2, 36.6, 47.0, 65.6, 118.7, 120.8, 123.8, 125.3, 126.4, 126.8, 129.1, 130.7, 140.5, 152.5, 154.5, 163.2, 172.5, 173.3.

DCI MS (H₂O) m/z 529 (100) für C₂₅H₃₃N₆OS₃⁺.

C₂₅H₃₂N₆OS₃: Ber.: C, 56.79; H, 6.10; N, 15.89; S, 18.19. (528.74) Gef.: C, 57.19; H, 6.47; N, 15.84; S, 18.17.

(G16) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-tbutyl-1,3,4-thiadiazol-3-yl]methyl-3-(imidazol-1-yl)propylamin:

aus 1c und A15

Ausbeute: 60 %. Fp.: 74 °C

IR (ATR): 1517 cm⁻¹, C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 1.16 (s, 9H), 1.28 (m, 11H, *t*-Bu + CH₂),

1.96 (m, 2H, J = 7.62 Hz), 3.93 - 4.04 (m, 2H), 6.72 - 7.17 (m+s,

7H+1H-C_(Dihydrothiazol)), 8.36 (breit, 1H, NH), 9.96 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 25.1, 29.1, 30.7, 31.1, 36.2, 36.6, 48.3, 66.4, 118.5, 120.4, 124.0, 125.3, 126.7, 126.8, 129.3, 130.7, 140.5, 152.5, 154.5, 163.2, 172.5, 173.3. DCI MS m/z 527 (25) für C₂₅H₃₅N₈OS₂⁺.

C₂₅H₃₄N₈OS₂: Ber.: C, 57.01; H, 6.51; N, 21.27; S, 12.17. (526.71) Gef.: C, 57.29; H, 6.37; N, 19.97; S, 12.87.

(G17) (E)-1-[(5-Methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(4-methylphenyl)-5methyl-1,3,4-thiadiazol-3-yl]methyl-(pyridin-2-yl)methylamin :

Die Synthese erfolgt aus **1i** und **A16** im Verhältnis **1:2.5** durch 5stündiges Rühren in Pyridin bei 50 °C. Nachdem die eingeengte Reaktionslösung in Diethylether gerührt wurde, abdekantieren; **G17** kristallisiert aus dem Ether, **30a** findet sich im Rückstand.

Ausbeute: 20 %. Fp.: 158-162 °C.

Gesamtausbeute (G17+30a): 52 %, Verhältnis G17:30a: 38:62.

IR (KBr): 1619 cm^{-1} , C = N exocyclisch.

¹H-NMR (CDCl₃): δ 2.21 (s, 3H), 2.19 (s, 3H), 2.52 (s, 3H), 4.83 (dd, 2H), 7.03 - 7.24 (m+s,

6H+1H-C_(Dihydrothiazol)), 7.56 (t, 1H, Py), 8.52 (d, 1H, Py), 9.23 (breit, 1H, NH).

¹³C-NMR (CDCl₃): δ 16.1, 16.6, 21.2, 49.8, 71.9, 121.1, 121.9, 126.5, 129.2, 136.6, 138.2, 138.3, 147.3, 149.0, 151.9, 158.1, 158.2, 173.8.

- DCI MS (H₂O) m/z 424 (100) für C₂₀H₂₁N₇S₂⁺.
- C₂₀H₂₀N₇S₂: Ber.: C, 56.85; H, 4.77; N, 23.20; S, 15.17.
- (423.55) Gef.: C, 57.05; H, 5.21; N, 23.44; S, 15.00.
- (G18) (E)-1-[(5-Methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(4-methylphenyl)-5methyl-1,3,4-thiadiazol-3-yl]methyl-(pyridin-4-yl)methylamin:

aus 1i und A18, wie G17

Ausbeute: 33 %. Fp.: 150-153 °C.

Gesamtausbeute (G18+30b): 61 %, Verhältnis G18:30b: 53:47.

IR (KBr): 1617 cm⁻¹, C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 2.21 (s, 3H), 2.25 (s, 3H), 2.44 (s, 3H), 4.51 - 4.66 (dd, 2H), 6.98 -

7.08 (m+s, 6H+1H-C_(Dihydrothiazol)), 8.42 (d, 2H), 8.78 (breit, 1H, NH).

¹³C NMR (CDCl₃): δ 15.6, 16.2, 20.7, 45.6, 71.0, 121.8, 125.6, 129.0, 137.8, 137.9, 148.0, 148.4, 149.4, 151.1, 157.6, 171.7.

DCI MS (H₂O), *m/z* 424 (100) für C₂₀H₂₁N₇S₂⁺.

C₂₀H₂₀N₇S₂: Ber.: C, 56.85; H, 4.77; N, 23.20; S, 15.17.

(423.55) Gef.: C, 56.72; H, 5.12; N, 23.22; S, 14.96.

9.4.4 D2-Guanidine G19-G26 und neue sekundäre Amine

Allgemeine Vorschrift für die Reduktive Aminierung mit NaBH₃CN:

40 mmol des primären Amins, 40 mmol des substituierten Aldehyds und 40 mmol Essigsäure werden in 100 ml Methanol vorgelegt. Unter Eiskühlung gibt man 40 mmol NaBH₃CN fest dazu und läßt 48 h bei RT rühren. Gleichfalls unter Eiskühlung werden 30 ml konz. HCl zugeben. Nach 6 h Rühren bei RT ist die Reaktionsmischung mit festem NaOH (Eiskühlung) auf pH 12 zu bringen und einzurotieren. Nach dem Verdünnen des Rückstandes mit Wasser und Extraktion mit CHCl₃ wird über Na₂SO₄ getrocknet und weitgehend eingeengt. Die Reinigung der Produkte erfolgt durch Säulenchromatographie (Kieselgel 60, 0.063 - 0.2 mm, Essigsäureethylester).

(A21) Bis-(3-picolyl)amin

aus A17 und Pyridin-3-carbaldehyd

Ausbeute: 70 %. Öl. ¹H-NMR (CDCl₃): δ 1.92 (s, breit, 1H, NH), 3.82 (s, 4H, CH₂), 7.23 - 7.29 (m, 1H, Py), 7.69 (d, 1H, J = 6.95 Hz, Py), 8.50 (d, 1H, J = 4.79 Hz, Py), 8.57 (s, 1H, Py). ¹³C-NMR (CDCl₃): δ 50.9, 123.8, 135.6, 136.2, 149.0, 150.1.

(A23) 3-(N-Imidazolyl)propyl-(3'-pyridyl)methyl-amin

aus A15 und Pyridin-3-carbaldehyd

Ausbeute: 95 %. Öl. ¹H-NMR (DMSO-d₆): δ 1.85 (qi, 1H, CH₂), 2.43 (t, 2H, J = 6.74 Hz, CH₂), 3.69 (s, 2H, CH₂), 4.02 (t, 2H, J = 7.00 Hz, CH₂), 6.87 (s, 1H, Im), 7.13 (s, 1H, Im), 7.34 - 7.36 (m, 1H, Py), 7.58 (s, 1H, Im), 7.73 (d, 1H, J = 7.82 Hz, Py), 8.44 (d, 1H, J = 4.77 Hz, Py), 8.52 (s, 1H, Py). ¹³C-NMR (DMSO-d₆): δ 31.2, 44.3, 45.7, 50.6, 119.6, 123.6, 128.6, 136.0, 136.6, 137.5, 148.2, 149.7.

(A24) 3-(N-Imidazolyl)propyl-(2'-pyridyl)methyl-amin

aus A15 und Pyridin-2-carbaldehyd

Ausbeute: 97 %.	Ol.
¹ H-NMR (CDCl ₃): δ 1.	89 (qi, 2H, CH ₂), 2.00 (breit, 1H, NH), 2.57 (t, 2H, J = 6.68 Hz, CH ₂),
3.80 (s, 2H, CH ₂), 3.99	P (t, 2H, J = 6.95 Hz, CH ₂), 6.82 (s, 1H, Im), 6.96 (s, 1H, Im), 7.07 -
7.12 (m, 1H, Py), 7.18	(d, 1H, J = 7.78 Hz, Py), 7.38 (s, 1H, Im), 7.57 (t, 1H, J = 7.65 Hz, Py),
8.48)d, 1H, J = 4.38 H	z, Py).
¹³ C-NMR (CDCl ₃): δ 3	31.3, 44.3, 45.9, 54.9, 119.4, 122.1, 128.6, 136.7, 137.4, 149.0, 159.5,
160.8.	
DEI MS <i>m/z</i> 217 (100)	für $C_{12}H_{17}N_4^+$.
$C_{12}H_{16}N_4$:	Ber.: C, 66.64; H, 7.46; N, 25.90.
	Gef.: C, 66.15; H, 7.45; N, 24.15.

(A25) 2-[(2'-Pyridylethyl)aminomethyl]pyridin

aus A13 und Pyridin-2-carbaldehyd

Ausbeute: 70 %. Öl. ¹H-NMR (CDCl₃): δ 2.21 (s, breit, 1H, NH), 2.97 - 3.14 (m, 4H, CH₂), 3.90 (d, 2H, J = 13.76 Hz, CH₂), 7.03 - 7.17 (m, 2H, Py), 7.26 - 7.35 (m, 2H, Py), 7.52 - 7.59 (m, 2H, Py), 8.47 -8.52 (m, 2H, Py). ¹³C-NMR (CDCl₃): δ 39.0, 55.6, 60.7, 122.2, 122.5, 123.6, 123.7, 149.3, 149.7, 160.4, 160.7.

Die Darstellung der D2-Guanidine erfolgt in einem 1:1-Gemisch aus Triethylamin (als Base) und Pyridin als Lösungsmittel durch Zugabe des Heterocyclus **1** zum Amin **A** im Verhältnis 1:1. Zur Aufarbeitung engt man die Reaktionslösung bis zur Trockne ein versetzt mit Wasser und mit schüttelt mit Essigsäureethylester aus. Die organische Phase wird über Natriumsulfat getrocknet und nach dem Abdestillieren des Lösungsmittels in Petrolether gerührt.

```
(G19) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(3-hydroxyphenyl)-5-t-
butyl-1,3,4-thiadiazol-3-yl]methyl-(3-(N-Imidazolyl)propyl)-((2'-
pyridyl)methyl)amin:
```

aus 1f und A24

Ausbeute: 87 %. Fp.: 115 °C. IR (ATR): 3301 (w), 3051 (w), 2962 (s), 2929 (m), 1682 (m), 1588 (s, C = N exocycl.), 1553 (s), 1454 (m), 1366 (m), 1245 (s), 1080 (m), 751 (s), 707 (s) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 1.18 (s, 9H), 1.31 (s, 9H), 1.87 - 1.98 (m, 2H, CH₂), 2.90 - 3.19 (m, 2H, CH₂), 3.90 (t, 2H, J = 6.92 Hz, CH₂), 4.31 - 4.52 (dd, 2H, CH₂), 6.71 - 6.88 (m, 4H), 7.07 (s, 1H, H-C_(Dihydrothiazol)), 7.12 - 7.29 (m, 4H), 7.54 (s, 1H, Im), 7.73 (t, 1H, J = 7.56 Hz, Py), 8.50 (d, 1H, J = 4.84 Hz, Py), 9.92 (breit, 1H, OH).

¹³C-NMR (DMSO-d6): δ 29.0, 30.6, 36.1, 36.5, 43.6, 47.5, 55.2, 60.1, 68.1, 114.7, 120.6, 122.6, 122.8, 126.4, 126.8, 128.8, 129.7, 136.4, 149.3, 149.8, 153.8, 154.4, 157.8, 163.2, 168.5, 170.2, 173.4.

DCI MS (H₂O) m/z 618 (25) für C₃₁H₄₀N₉OS₂⁺.

C₃₁H₃₉N₉OS₂: Ber.: C, 60.27; H, 6.36; N, 20.40; S, 10.38.

(617.83) Gef.: C, 60.05; H, 6.91; N, 18.49; S, 10.47.

(G20) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*butyl-1,3,4-thiadiazol-3-yl]methyl-(3-(N-Imidazolyl)propyl)-((2'pyridyl)methyl)amin:

aus 1c und A24

Ausbeute: 95 %. Fp.: 82 °C.

IR (ATR): 3200 - 2500 (breit, OH), 2964 (m), 1594 (m), 1548 (s),

1455 (s), 1420 (m), 1256 (w), 1079 (w), 750 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.14 (s, 9H), 1.28 (s, 9H), 1.96 - 1.99 (m, 2H, CH₂), 2.99 - 3.13 (m, 2H, CH₂), 3.94 (t, 2H, J = 6.77 Hz, CH₂), 4.38 - 4.62 (dd, 2H, CH₂), 6.76 - 6.92 (m, 4H), 7.07 (s, 1H, H-C_(Dihydrothiazol)), 7.08 - 7.11 (m, 2H), 7.25 - 7.34 (m, 2H), 7.52 (s, 1H), 7.72 (t, 1H, J = 4.70 Hz, Py), 8.50 (d, 1H, J = 4.04 Hz, Py), 9.95 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.9, 30.8, 36.0, 36.1, 43.6, 47.4, 55.0, 60.1, 67.1, 115.7, 119.6, 122.5, 122.9, 126.3, 126.7, 128.8, 129.7, 136.4, 149.4, 149.9, 154.0, 154.8, 156.8, 163.3, 168.5, 170.3, 173.5.

DCI MS (H₂O) *m*/*z* 618 (3) für C₃₁H₄₀N₉OS₂⁺.

C₃₁H₃₉N₉OS₂: Ber.: C, 60.27; H, 6.36; N, 20.40; S, 10.38.

(617.83) Gef.: C, 59.72; H, 6.71; N, 20.52; S, 10.62.

(G21) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(3-(N-Imidazolyl)propyl)-((2'-pyridyl)methyl)amin:

aus 1c und A23

Ausbeute: 82 %. Fp.: 153-160 °C. IR (ATR): 3400 - 2500 (breit OH), 2966 (m), 1597 (m), 1539 (s), 1453 (s), 1418 (m), 1259 (w), 1072 (w), 750 (s) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 1.18 (s, 9H), 1.30 (s, 9H), 1.99 (m, 2H, CH₂), 3.13 - 3.35 (m, 2H, CH₂), 3.97 (t, 2H, J = 6.87 Hz, CH₂), 4.32 - 4.55 (m, 2H, CH₂), 6.73 - 7.65 (m, 9H, arom.+ 1H -C_(Dihydrothiazol)), 8.43 (m, 2H, arom.), 10.01 (breit, 1H, OH). ¹³C-NMR (DMSO-d₆): δ 28.6, 29.0, 30.8, 36.1, 36.2, 36.6, 43.7, 47.0, 50.6, 67.0, 115.8, 119.5, 124.2, 126.3, 128.7, 129.8, 132.6, 136.1, 136.5, 137.4, 149.7, 150.2, 154.0, 154.5, 162.3, 168.5, 170.4, 173.5. DCI MS (H₂O) *m*/*z* 618 (30) für C₃₁H₄₀N₉OS₂⁺. C₃₁H₃₉N₉OS₂: Ber.: C, 60.27; H, 6.36; N, 20.40; S, 10.38.

(617.83) Gef.: C, 59.88; H, 6.57; N, 19.97; S, 10.05.

(G22) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-picolyl))amin:

aus $1c \; \text{und} \; A22$

Ausbeute: 65 %. Fp.: 141 - 143 °C.

IR (ATR): 1518 cm^{-1} , C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 1.09 (s, 9H), 1.24 (s, 9H), 4.36 - 4.57 (dd,

4H, CH₂), 6.70 - 6.79 (t+d, 2H), 7.03 (s, 1H, H-C_(Dihydrothiazol)), 7.08 - 7.13 (t+d, 2H), 7.29 (t, 2H, J = 5.95 Hz, Py), 7.39 (d, 2H, J = 7.80 Hz, Py), 7.76 (t, 2H, J = 7.67 Hz, Py), 8.51 (d, 2H, J = 4.34 Hz, Py), 9.97 (s, breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.8, 30.8, 36.0, 36.1, 55.5, 67.5, 115.6, 119.4, 122.4, 122.9, 126.3, 126.4, 129.7, 137.0, 149.5, 154.0, 154.8, 156.8, 162.4, 170.0, 173.7.

DCI MS m/z 601 (50) für C₃₁H₃₇N₈OS₂⁺.

C₃₁H₃₆N₈OS₂: Ber.: C, 61.97; H, 6.04; N, 18.65; S, 10.67.

(600.79) Gef.: C, 61.59; H, 6.27; N, 18.84; S, 10.17.

(G23) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(3-picolyl))amin:

aus $1c \; \text{und} \; A21$

Ausbeute: 87 %. Fp.: 104 °C.

IR (ATR): 3300 - 2500 (breit, OH), 2964 (m), 1590 (w), 1545 (s),

1456 (s), 1419 (m), 1259 (w), 1054 (w), 751 (m), 709 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.18 (s, 9H), 1.30 (s, 9H), 4.26 - 5.51 (dd, 4H, CH₂), 6.68 (t, 1H, J = 6.98 Hz), 6.80 - 6.84 (m, 2H), 7.10 (s, 1H, H-C_(Dihydrothiazol)), 7.12 (t, 1H, J = 7.11 Hz), 7.34 - 7.39 (m, 2H, Py), 7.65 (d, 2H, J = 7.84 Hz, Py), 8.45 (s, 2H, Py), 8.51 (d, 2H, J = 3.78 Hz, Py), 9.97 (s, breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.6, 30.4, 35.7, 35.8, 50.9, 67.0, 115.4, 119.0, 123.3, 125.6, 126.1, 129.4, 132.0, 135.7, 148.6, 149.3, 153.6, 153.9, 161.8, 169.6, 173.7.

DCI MS (H₂O) *m*/*z* 601 (40) für C₃₁H₃₇N₈OS₂⁺.

C₃₁H₃₆N₈OS₂: Ber.: C, 61.97; H, 6.04; N, 18.65; S, 10.67. (600.79) Gef.: C, 61.24; H, 6.13; N, 18.22; S, 9.82.

(G24) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin:

aus 1c und A20, mit CHCl 3 extrahieren

Ausbeute: 62 %. Fp.: 102-106 °C Zers.

IR (ATR): 3300 - 2500 (breit, OH), 2962 (m), 1540 (s), 1465 (s), 750 (m), cm⁻¹.

¹H-NMR (DMSOd₆): δ 1.12 (s, 9H, *t*-Bu), 1.18 (t, 1.5H, Essigester),

1.26 (s, 9H, *t*-Bu), 2.00 (s, 1.5H, EE), 2.94 (m, 4H, CH₂), 3.58 (m, 4H, CH₂), 3.99 (q, 1H, EE), 6.76 – 6.82 (d+t, 2H, arom.), 6.98 (s, 1H, H-C_(Dihydrothiazol)), 7.06 - 7.14 (d+t, 2H, arom.), 7.21 (t, 2H, J = 4.70 Hz, arom.), 7.23 (d, 2H, J = 7.60 Hz, arom.), 7.69 (t, 2H, J = 7.57 Hz, arom.), 8.50 (d, 2H, J = 4.38 Hz), 9.95 (breit, 1H, OH).

¹³C-NMR (DMSOd₆): δ 14.4, 21.1, 28.9, 30.8, 36.0, 36.1, 38.8, 49.4, 60.1, 67.2, 109.4, 115.7, 119.5, 122.0, 123.8, 125.9, 126.9, 129.5, 136.8, 149.5, 153.7, 155.2, 158.8, 162.1, 170.2, 170.7, 173.2.

DCI MS (H₂O) m/z 629 (20) für C₃₃H₄₁N₈OS₂⁺.

(G25) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(3-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin:

aus 1f und A20, mit CHCl 3 extrahieren

Ausbeute: 82 %. Fp.: 56-59 °C Zers.

IR (ATR): 3200 - 2500 (breit, OH), 2962 (m), 1589 (w), 1557 (s), 1473

(m), 1455 (s), 1434 (m), 1261 (w), 1058 (w), 750 (m), 693 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.16 (s, 9H, *t*-Bu), 1.30 (s, 9H, *t*-Bu), 2.52 -

2.94 (m, 4H, CH₂), 3.48 - 3.66 (m, 4H, CH₂), 6.63 - 6.75 (m, 4H, arom.), 7.11 - 7.23 (m, 5H, arom. + H-C_(Dihydrothiazol)), 7.63 - 7.70 (m, 2H, arom.), 8.46 (d, 2H, J = 5.69 Hz, arom.), 9.57 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.9, 30.9, 35.7, 36.1, 36.3, 49.4, 72.1, 113.7, 116.1, 117.4, 122.1, 123.8, 130.2, 136.8, 141.8, 149.5, 151.5, 154.6, 158.8, 160.2, 170.3, 173.4.

DCI MS (H₂O) *m*/*z* 629 (8) für C₃₃H₄₁N₈OS₂⁺.

C₃₃H₄₀N₈OS₂: Ber.: C, 63.03; H, 6.41; N, 17.82; S, 10.20.

(628.85) Gef.: C, 62.84; H, 6.44; N, 17.42; S, 9.64.

(G26) (E)-[(5-Ethyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-ethyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin:

aus 1b und A20, mit CHCl3 extrahieren

Ausbeute: 68 %. Fp.: 105 °C Zers.

IR (ATR): 3200 - 2500 (breit, OH), 2963 (m), 1590 (w), 1558 (s), 1472 (m), 1455 (s), 1260 (w), 1058 (w), 750 (m) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.13 - 1.20 (m, 6H, CH₃), 2.41 (m, 2H, CH₂),

2.76 (m, 2H, CH₂), 2.99 (m, 4H, CH₂), 3.62 (m, 4H, CH₂), 6.79 (m, 2H, arom.), 7.04 - 7.27 (m, 6H, arom. + 1H-C_(Dihydrothiazol)), 7.66 - 7.73 (m, 2H, arom.), 8.46 (d, 2H, J = 3.97 Hz, arom.), 10.03 (breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 11.8, 14.1, 23.9, 24.3, 35.7, 49.5, 70.0, 115.7, 119.5, 122.0, 123.9, 125.7, 126.9, 129.5, 136.9, 149.5, 153.9, 154.8, 155.7, 158.8, 165.1, 170.1.

DCI MS (H₂O) *m*/*z* 573 (10) für C₂₉H₃₃N₈OS₂⁺.

C₂₉H₃₂N₈OS₂: Ber.: C, 60.82; H, 5.63; N, 19.56; S, 11.20.

(572.74) Gef.: C, 60.98; H, 5.81; N, 18.03; S, 10.73.

(G27) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(2-pyridylmethyl)-(2-pyridylethyl)-amin:

aus 1c und A25, mit CHCl₃ extrahieren

Ausbeute: 62 %. Fp.: 85 °C Zers.

IR (ATR): 3200 - 2500 (breit, OH), 2965 (m), 1594 (m), 1552 (s),

1457 (m), 1435 (m), 1237 (m), 1055 (w), 752 (s), 697 (w) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.09 (s, 9H, *t*-Bu), 1.25 (s, 9H, *t*-Bu), 2.97 -

3.04 (m, 2H, CH₂), 3.45 - 3.65 (m, 2H, CH₂), 4.46 - 4.50 (m, 2H, CH₂), 6.76 - 6.80 (t+d, 2H, arom.), 7.02 (s, 1H, H-C_(Dihydrothiazol)), 7.10 - 7.13 (d+t, 2H, arom.), 7.18 - 7.37 (m, 4H, Py), 7.64 - 7.75 (m, 2H, Py), 8.46 (d, 1H, J = 4.50 Hz, Py), 8.51 (d, 1H, J = 4.34 Hz, Py), 9.91 (s, breit, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.9, 30.8, 36.0, 36.1, 49.6, 55.3, 55.3, 67.2, 115.7, 119.5, 121.9, 122.4, 122.9, 123.7, 126.2, 126.7, 129.6, 136.7, 136.8, 149.4, 149.5, 153.9, 155.0, 156.9, 158.7, 161.9, 170.1, 173.4.

DCI MS (H₂O) m/z 615 (12) für C₃₂H₃₉N₈OS₂⁺.

C₃₂H₃₈N₈OS₂: Ber.: C, 62.51; H, 6.23; N, 18.23; S, 10.43.

(614.82) Gef.: C, 61.14; H, 6.71; N, 18.74; S, 11.14.

9.4.5 Guanidine G28-G32 aus Bis-benzothiazolo-triaziniumsalzen

(G28) (Z)-1-[(Benzothiazol-2-yl)imino]-[2H-2-(4-methoxyphenyl)benzothiazol-3-yl] methyl-piperidin (10a): (mit Kristallstr. KS-3)

aus $13a \mbox{ und } A1$

Ausbeute: 90 %. Fp.: 147-149 °C.

IR (ATR): 1544 cm⁻¹, C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 1.10 - 1.47 (2 m, 6H), 3.18 - 3.57 (2 m, 4H), 3.73 (s, 3H), 6.45 (s, 1H, H-C_(Dihydrobenzthiazol)), 6.77 (d, 2H, J = 7.88 Hz), 6.87 (m, 3H), 7.05 - 7.34 (m, 6H), 7.53 (d, 1H, J = 7.90 Hz), 7.72 (d, 1H, J = 7.56 Hz).

¹³C-NMR (DMSO-d₆): δ 23.5, 24.6, 47.4, 55.2, 70.4, 112.1, 113.8, 120.1, 121.2, 122.1, 122.6, 125.4, 125.8, 126.2, 126.3, 129.0, 129.5, 133.1, 141.0, 151.4, 152.0, 159.8, 168.1.

CI MS *m*/*z* 487 (100) für C₂₇H₂₇N₄OS₂⁺.

 $C_{27}H_{26}N_4OS_2$:Ber.: C, 66.64; H, 5.39; N, 11.51; S, 13.18.(486.64)Gef.: C, 66.08; H, 5.24; N, 11.80; S, 13.09.

(G29) (Z oder E)-4-[(Benzothiazol-2-yl)imino]-[2H-2-(4-

methoxyphenyl)benzothiazol-3-yl]methyl-morpholin (10b):

aus $13a \; \mbox{und} \; A2$

Ausbeute: 91 %. Fp.: 176 °C.

IR (ATR): 1557 cm⁻¹, C = N exocyclisch.

¹H-NMR (CDCl₃): δ 3.02 - 3.86 (m, 8H), 3.76 (s, 3H), 6.45 (s, 1H, H-C_(Dihydrobenzthiazol)), 6.68 (d, 1H, J = 7.73 Hz), 6.78 (d, 2H, J = 8.66 Hz), 6.90 (t, 1H, J = 7.40 Hz), 7.03 - 7.19 (m, 3H), 7.29 - 7.37 (m, 3H), 7.57 (d, 1H, J = 7.38 Hz), 7.72 (d, 1H, J = 7.97 Hz).

¹³C-NMR (CDCl₃): δ 46.9, 55.3, 66.2, 71.1, 111.2, 113.9, 121.1, 121.2, 122.2, 122.7, 123.1, 125.5, 125.8, 127.1, 129.3, 129.6, 133.8, 140.8, 151.5, 152.0, 160.5, 167.7.

CI MS *m/z* 489 (100) für C₂₆H₂₅N₄O₂S₂⁺.

 $C_{26}H_{24}N_4O_2S_2: \qquad \qquad \text{Ber.: } C, \, 63.91; \, \text{H}, \, 4.95; \, \text{N}, \, 11.47; \, \text{S}, \, 13.12.$

(488.62) Gef.: C, 63.80; H, 5.12; N, 11.50; S, 13.21.

(G30) (Z oder E)-1-[(Benzothiazol-2-yl)imino]-[2H-2-(4-

methoxyphenyl)benzothiazol-3-yl]methyl-pyrrolidin (10c):

aus $13a \mbox{ und } A3$

Ausbeute: 90 %. Fp.: 177-180 °C.

IR (ATR): 1546 cm⁻¹, C = N exocyclisch.

¹H-NMR (CDCl₃): δ 1.76 - 1.83 (m, 4H), 3.37 (m, 4H), 3.75 (s, 3H), 6.54 (s, 1H, H-C_(Dihydrobenzthiazol)), 6.56 (d, 1H, J = 7.82 Hz), 6.76 (d, 2H, J = 8.68 Hz), 6.87 (t, 1H, J = 7.18 Hz), 7.01 - 7.15 (m, 3H), 7.28 (t, 1H, J = 7.20 Hz), 7.35 (d, 2H, J = 8.70 Hz), 7.54 (d, 1H, J = 7.71 Hz), 7.67 (d, 1H, J = 7.94 Hz).

¹³C-NMR (CDCl₃): δ 25.0, 48.4, 55.2, 71.7, 110.9, 113.8, 120.8, 120.9, 122.1, 122.3, 122.6, 125.2, 125.7, 127.3, 129.0, 129.6, 133.9, 141.1, 149.9, 152.1, 160.2, 168.0.

CI MS m/z 473 (100) für C₂₆H₂₅N₄OS₂⁺.

C₂₆H₂₄N₄OS₂: Ber.: C, 66.08; H, 5.12; N, 11.85; S, 13.57.

(472.62) Gef.: C, 65.78; H, 5.24; N, 11.40; S, 13.31.

(G31) (E)-[(Benzothiazol-2-yl)imino]-[2H-2-(4-methoxyphenyl)benzothiazol-3vl]methyl-(2-pyridin-2-yl-ethyl)amin:

aus 13a und A13

Ausbeute: 86 %. Fp.: 90 °C.

IR (ATR): 1582 cm⁻¹, C = N exocyclisch.

¹H-NMR (CDCl₃): δ 2.77 - 2.97 (2 m, 2H), 3.67 (m, 2H), 3.74 (s, 3H), 6.81 - 6.90 (m, 4H+ 1H-C_(Dihydrobenzthiazol)), 6.98 - 7.15 (m, 5H), 7.26 (t, 1H, J = 7.70 Hz), 7.38 (m, 2H), 7.59 (m, 3H), 8.52 (d, 1H, J = 4.82 Hz), 9.98 (s, 1H, NH).

¹³C-NMR (CDCl₃): δ 38.6, 43.7, 55.2, 72.3, 112.1, 113.7, 120.2, 120.9, 121.6, 122.3, 122.7, 123.0, 123.6, 125.3, 125.6, 127.8, 129.6, 131.0, 132.6, 136.3, 141.0, 149.5, 151.1, 153.6, 158.1, 159.8, 172.0.

CI MS m/z 524 (28) für C₂₉H₂₆N₅OS₂⁺.

 $C_{29}H_{25}N_5OS_2\cdot 1H_20: \quad \text{Ber.: } C, \, 64.30; \, \text{H}, \, 5.03; \, \text{N}, \, 12.93; \, \text{S}, \, 11.84.$

(523.67) Gef.: C, 64.96; H, 4.79; N, 13.03; S, 11.85.

(G32) (E)-[(Benzothiazol-2-yl)imino]-[2H-2-(4-methoxyphenyl)benzothiazol-3yl]methyl-(1,1-diphenylmethyl)amin:

aus $13a \mbox{ und } A8$

Ausbeute: 76 %. Fp.: 150-152 °C.

IR (ATR): 3226 (w, NH), 3059 (w), 1605 (ss), 1572 (s), 1511 (w),

1435 (m), 1398 (m), 1246 (m), 750 (s) cm⁻¹.

¹H-NMR (CDCl₃): δ 3.76 (s, 3H), 5.86 (d, 1H, J = 9.27 Hz), 6.61 (d,

2H, J = 8.78 Hz), 6.87 (s, 1H-C_(Dihydrobenzthiazol)), 7.04 - 7.41 (m, 18H),

7.73 (m, 2H), 11.21 (d, 1H, J = 9.09 Hz).

¹³C-NMR (CDCl₃): δ 55.6, 63.0, 73.2, 113.8, 113.9, 120.8, 121.6, 123.1, 123.8, 125.9, 126.1, 126.9, 127.5, 127.6, 128.2, 129.1, 129.2, 129.4, 129.6, 129.7, 130.9, 133.0, 141.1, 141.8, 142.9, 151.5, 153.9, 159.9, 173.0. (Es treten mehr ¹³C-Signale auf, als bei freier Rotation des Diphenylmethylrestes zu erwarten wären.)

CI MS m/z 585 (30) für $C_{35}H_{29}N_4OS_2^+$.

C₃₅H₂₈N₄OS₂. Ber.: C, 71.89; H, 4.83; N, 9.58; S, 10.97.

(584.75) Gef.: C, 71.25; H, 4.77; N, 9.67; S, 11.13.

9.4.6 Guanidine G33-G37 aus Oligoaminen

(G33) (E,E)-1,4-Bis-[[(5-methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2hydroxyphenyl)-5-methyl-1,3,4-thiadiazol-3-yl]methylpiperazin:

aus 1a und A4 (2:1 in Pyridin)

Ausbeute: 85 %. Fp.: 169 °C. IR (ATR): 1536 cm⁻¹, C = N exocyclisch. ¹H-NMR (DMSO-d₆): δ 2.17 (s, 6H), 2.46 (s, 6H), 3.10 - 3.41 (m, 8H), 6.75 (m, 4H), 7.01 (m, 4H), 7.11 (s, 2H, H-C_(Dihydrothiazol)), 10.01 (s, 2H). ¹³C-NMR (DMSO-d₆): δ 15.7, 16.4, 47.9, 66.9, 115.4, 119.2, 125.4, 126.3, 129.3, 149.6, 153.6, 153.3, 158.3, 170.5. FAB MS (Dmba) *m*/*z* 721 (7) für C₃₀H₃₃N₁₂O₂S₄⁺. C₃₀H₃₂N₁₂O₂S₄: Ber.: C, 49.98; H, 4.47; N, 23.32; S, 17.79.

Gef.: C, 49.43; H, 4.69; N, 22.48; S, 17.41.

(G34) (E,E)-1,4-Bis-[[(5-methyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2methoxyphenyl)-5-methyl-1,3,4-thiadiazol-3-yl]methylpiperazin:

aus $1h \; \mbox{und} \; A4$

Ausbeute: 82 %. Fp.: 178-180 °C.

IR (ATR): 1551 cm^{-1} , C = N exocyclisch.

¹H-NMR (CDCl₃): δ 2.15 (s, 6H), 2.51 (s, 6H), 3.16 - 3.51 (4 m,

8H), 3.76 (s, 6H), 6.79 (d, 2H, J = 8.17 Hz), 6.89 (t, 2H, J = 7.44

Hz), 7.09 (t, 2H, J = 6.91 Hz), 7.19 - 7.28 (m (d+s), 2H, arom. + 2H,

C_(Dihydrothiazol)).

¹³C-NMR (CDCl₃): δ 16.3, 16.8, 48.3, 55.5, 67.4, 110.8, 120.7, 125.8, 128.1, 129.7, 150.1, 154.5, 155.7, 159.0, 171.3.

CI MS *m*/*z* 749 (1) für C₃₂H₃₇N₁₂O₂S₄⁺.

$C_{32}H_{36}N_{12}O_2S_4$:	Ber.: C, 51.32; H, 4.84; N, 22.44; S, 17.12.
(748.95)	Gef.: C, 50.76; H, 5.08; N, 22.17; S, 16.50.

126

(G35) (Z,Z)-1,4-Bis[(benzothiazol-2-yl)imino]-[2H-2-(4methoxyphenyl)benzothiazol-3-yl]methylpiperazin (13):

aus 13a und A4

Ausbeute: 90 %. Fp.: 237 °C. IR (ATR): 1545 cm⁻¹, C = N exocyclisch. ¹H-NMR (DMSO-d₆): δ 2.74 - 3.40 (2 m, 8H), 3.72 (2 m, 6H), 6.53 (s, 2H, H-C_(Dihydrobenzthiazol)), 6.84 (m, 8H), 7.02 (d, 2H, J = 7.63 Hz), 7.15 (m, 4H), 7.26 (t, 2H, J = 7.55 Hz), 7.32 (d, 4H, J = 8.51 Hz), 7.52 (d, 2H, J = 7.96 Hz), 7.68 (d, 2H, J = 7.75 Hz). ¹³C-NMR (DMSO-d₆): δ 47.1, 55.7, 71.1, 112.9, 114.4, 120.8, 121.5, 122.4, 123.1, 123.2, 125.8, 126.1, 127.2, 129.4, 130.1, 133.8, 141.3, 152.0, 152.4, 160.4, 168.3. CI MS m/z 889 (20) für C₄₈H₄₀N₈O₂S₄⁺.

Verunreinigungen konnten NMR-spektroskopisch nicht nachgewiesen werden. Die Elementaranalyse lieferte aber nur unbefriedigende Werte, was auf Zersetzungsprozesse zurückzuführen ist, die beim Umkristallisieren aus Methanol auftreten.

(G36) (E,E)1,2-Bis-{[(5-t-butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2hydroxyphenyl)-5-t-butyl-1,3,4-thiadiazol-3-yl]methyl}-1,2-transcyclohexandiamin:

3 g (26.3 mmol) Amin A26 und 11.5 g (26.3 mmol) 1c werden in 80 ml TEA 5 h gerührt. Der entstandene Niederschlag wird abgesaugt, in Wasser gerührt und getrocknet (1. Fraktion:

4.324 g). Nach dem Einengen der Restlösung rührt man den klebrigen Rückstand in Hexan und erhält nach dem Absaugen die 2. Fraktion des Rohprodukts: 6.749 g. Das Rohprodukt enthält mindestens 50 % Aminal 1a. Die schwierige Reinigung wegen Zersetzung auf Säule (EE) oder beim Umkristallisieren oder Sublimieren trägt ebenfalls zur geringen Ausbeute bei.

Ausbeute: 1.21 g (1.31 mmol), 5 %. Fp.: 170-180 °C (Diastereomerengemisch). IR (ATR): 3370 (w), 2962 (w), 1601 (w), 1537 (C = N exocyclisch) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 1.20 - 1.32 (m, 40H), 1.68 (m, 2H), 2.15 (m, 2H), 4.1 - 4.50 (m, 2H), 6.48 (t, 2H, NH), 6.68 - 7.20 (m, 8H+ 2H-C_(Dihydrothiazol)), 9.88 (breit, 2H, OH).

¹³C-NMR (DMSO-d₆) (teilweise Signale breit bzw. doppelt): δ 23.7, 28.6, 30.4, 32.9, 35.8, 35.9, 56.7, 66.2, 66.5, 115.0, 115.3, 119.0, 124.6, 124.8, 127.5, 128.6, 128.9, 150.5, 150.6, 153.0, 161.6, 171.2, 171.5.

FAB MS (NBA) *m*/*z* 917 (15) für C₄₄H₆₁N₁₂O₂S₄⁺.

C₄₄H₆₀N₁₂O₂S₄: Ber.: C, 57.61; H, 6.59; N, 18.32; S, 13.98.

(917.27) Gef.: C, 57.32; H, 6.81; N, 18.02; S, 13.52.

(G37) (Z,Z,Z,Z)-1,4,8,11-Tetrakis-{[(5-t-butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2hydroxy-phenyl)-5-t-butyl-1,3,4-thiadiazol-3-yl]methyl}-1,4,8,11tetraazacyclotetradecan:

aus $1c \; \text{und} \; A27$

Ausbeute: 85 % (Rohprodukt), 48 % (nach fraktionierter Kristallisation aus Pyridin).

Fp.: 215 °C.

IR (ATR): 1545 cm⁻¹, C = N exocyclisch.

¹H-NMR (CDCl₃): δ 0.93 (m, 4H, CH₂ Cyclam; 36H, *t*-Bu), 1.41 (s,

36H, *t*-Bu), 1.56 (m, 4H, CH₂ Cyclam), 2.71 (dd, 4H, CH₂ Cyclam), 3.04 (m, 4H, CH₂ Cyclam), 4.43 (dd, 4H, CH₂ Cyclam), 6.67 (t, 4H, Ph), 6.68 (d, 4H, Ph), 6.95 (d, 4H, Ph), 6.99 (t, 4H, Ph), 7.17 (s, 4 H, H-C_(Dihydrothiazol)), 12.37 (s, 4H, OH).

¹³C-NMR (CDCl₃): δ 28.6, 30.9, 34.5, 36.0, 36.4, 46.4, 51.5, 70.2, 116.2, 119.7, 124.3, 128.8, 129.3, 152.8, 156.5, 172.0, 173.5, 174.1.

CI MS m/z 1806 M [M+H] (90) für C₈₂H₁₁₇N₂₄S₈O₄⁺.

(G38) N,N,N-Tris-{[(5-*t*-butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-amino}-ethylamin:

aus **1c** und **A28**; Die Reinigung des Produkts erfolgt durch Säulenchromatographie (Kieselgel 60, 0.063 - 0.2 mm, Essigsäureethylester/Methanol 2:1).

Ausbeute: 61 %. Fp.: 143-146 °C. IR (KBr): 1602 cm⁻¹, C = N exocyclisch.

¹H-NMR (DMSO-d₆): δ 1.13 (s, 27H, CH₃ *t*-Bu), 1.22 (s, 27H, *t*-Bu), 2.71 (m, 6H, CH₂), 3.49 (m, 6H, CH₂), 6.69 (t, 3H, Ph), 6.76 (d, 3H, Ph), 6.87 (d, 3H, Ph), 7.05 (t, 3H, Ph), 7.15 (s, 3H, CH _{Dihydrothiadiazol}), 8.3 (s, 3H, NH), 9.9 (s, 3H, OH). ¹³C-NMR (DMSO-d₆): δ 28.6, 30.4, 35.6, 36.1, 42.1, 53.4, 65.7, 115.3, 119.0, 124.5, 127.4, 128.9, 151.1, 152.9, 161.4, 171.4, 172.0. FAB MS (DMBA) *m*/*z* 1350.6 (30) M [M+H] für C₆₃H₈₈N₁₉O₃S₆⁺. C₆₃H₈₈N₁₉O₃S₆⁺. C₆₃H₈₇N₁₉O₃S₆ x 0.5 CH₃COOC₂H₅: Ber.: C, 55.97; H, 6.58; N, 19.08; S, 13.79. (1350.86) Gef.: C, 56.12; H, 6.45; N, 19.03; S, 14.13.

9.4.7 Betaine 26, mit Methyliodid abgefangene Betaine 32 und NNS-Heterocyclen 33

(26a) (1*E*)-*N*-[2-*t*-Butyl-5(2-hydroxyphenyl)-7-(n-butylamino)-5H-[1,3,4thiadiazolo[3,2-a][1,3,5]triazin-6-ium-6-yl]-2,2-dimethylpropanimidothioat x 1 TEA:

0.366 g (5 mmol) *n*-Butylamin (A5) werden in 20 ml TEA vorgelegt, auf 0 °C gekühlt und mit 2.19 g (5 mmol) **1c** versetzt. Es entsteht eine gelbe Suspension, die nach einigen Minuten dicker wird. Nach 1 h Rühren bei 0 °C, saugt man den Niederschlag ab, rührt 2 h in Eiswasser, saugt wieder ab und trocknet i.V.(ohne Erwärmen!).

Ausbeute: 2.47 g, 86 %. Fp.: 73 °C.

IR (ATR): 3348 (NH), 1598 (C = N) cm⁻¹.

¹H-NMR (CDCl₃, 233K): δ 0.83 (t, 3H, J = 7.18 Hz), 0.94 (m, 2H,

J = 7.06 Hz), 1.12 (s, 9H, am Thioamid - C 204.1), 1.21 (s, 9H,

am Thiadiazol - C 168.1), 1.25 (m, 2H), 1.45 (m, 2H), 2.56 (m, 6H), 3.30 (m, 2H), 6.16 (t, breit, 1H, NH), 6.51 (d, 1H, J = 7.87 Hz), 6.63 (t, 1H, J = 7.33 Hz), 7.10 (t, 1H, J = 7.56 Hz), 7.14 (d, 1H, J = 8.06 Hz), 8.27 (s, 1H).

¹³C-NMR (CDCl₃, 233K): δ 11.8, 13.8, 19.8, 29.0, 30.5, 31.2, 36.2, 41.5, 45,3 47.0, 70.2, 117.7, 120.8, 123.5, 126.8, 130.7, 151.4, 156.1, 168.1, 168.5, 204.1.

MS: nur vom Guanidin G5a möglich.

(26b) (1*E*)-*N*-[2-Methyl-5-(4-methylphenyl)-7-(n-butylamino)-5H-[1,3,4thiadiazolo[3,2-a]-[1,3,5]triazin-6-ium-6-yl]-propanimidothioat

aus 1i und A5, nach der Vorschrift von 26a

Ausbeute: 86 %. Fp.: 103-105 °C.

IR (ATR): 3350 (m, NH), 1597 (C = N) cm⁻¹.

¹H-NMR (CDCl₃, 223K, 250 MHz): δ 0.83 (t, 3H, J = 7.11 Hz), 1.21 (m,

2H), 1.41 (m, 2H), 2.25 (s, 3H), 2.35 (s, 3H), 2.46 (s, 3H), 3.28 (m, 2H),

6.70 (breit, 1H, NH), 7.11 (dd, 4H, arom.), 8.28 (s, 1H).

¹H-NMR (CDCl₃, 223K, 400 MHz), 1D-TOCSY-Experiment: selektive N-H-Anregung (siehe

Kap.3.) zum Positionsnachweis des Protons.

¹³C-NMR (CDCl₃, 223K): δ 14.1, 17.4, 20.0, 21.7, 31.8, **33.1**, 41.4, 71.0, 126.6, 130.1, 132.2, 140.9, 151.2, 155.4, 167.0, 194.8.

MS: nur vom Guanidin (s. Lit)⁶² möglich.

C₁₈H₂₄N₆S₂: Ber.: C, 55.64; H, 6.23; N, 21.63; S, 16.50.

(388.54) Gef.: C, 55.16; H, 6.37; N, 21.72; S, 16.42.

(26c) (1*E*)-*N*-[2-*t*-Butyl-5(2-hydroxyphenyl)-7-(2-thienylethylamino)-5H[1,3,4thiadiazolo[3,2-a][1,3,5]triazin-6-ium-6-yl]-2,2-dimethylpropanimidothioat x 1 TEA

aus 1c und A14, nach der Vorschrift von 26a

Ausbeute: 53 %. Fp.: 78 °C.

IR (ATR): 3348 (NH), 1596 (C = N) cm⁻¹.

¹H-NMR (CDCl₃, 223K): δ 0.93 (breit, 9H), 1.07 (s, 9H, am

Thioamid - C 204.1), 1.22 (s, 9H, **am Thiadiazol - C 168.1**), 1.25 (m, 2H), 2.53 (m, 6H), 3.01 (m, 2H), 3.54 - 3.68 (m, 2H), 6.29 (t, breit, 1H, NH), 6.53 - 7.12 (m, 7H), 8.27 (s, 1H). ¹³C-NMR (CDCl₃, 223K): δ 11.6, 29.0, 30.5, 31.2, 36.2, 41.5, 45.3, 47.0, 70.1, 116.8, 119.3, 119.6, 125.3, 127.2, 127.7, 131.6, 133.1, 138.4, 149.9, 156.3, 167.7, 168.4, 204.3. MS: nur vom Guanidin **G15**.

C ₃₁ H ₄₇ N ₇ OS ₃ :	Ber.: C, 59.11; H, 7.52; N, 15.56; S, 15.27.
(629.94)	Gef.: C, 59.89; H, 8.02; N, 16.35; S, 15.77.

(32a) (7E)-N-[(1Z)-2,2-Dimethyl-1-(methylsulfanyl)propyliden]-2-*t*-butyl-5-(2hydroxy-phenyl)-7-(thien-2-ylethylamino)-5H-[1,3,4-thiadiazolo-[3,2a][1,3,5]triazinium-6(7H)-aminium-iodid:

Zu einer auf -10 °C gekühlten Suspension von 5 mmol 1c in THF werden 5 mmol des Amins

A14 gegeben und 1 h unter fortgesetzter Kühlung gerührt. Langsam tropft man danach 5 mmol Methyliodid unter Rühren in die kalte Reaktionslösung. Während einer weiteren Stunde läßt man auf RT erwärmen. Das ausgefallene Produkt wird abgesaugt, mit wenig Diethylether gewaschen und i.V. getrocknet.

Ausbeute: 93 %. Fp.: 158 °C.

IR (ATR): 1606 (C=N), 1487 (Triazinium) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.00 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 2.38 (s, 3H, SCH₃) 3.09 (t, 2H, J = 8.52 Hz, CH₂), 3.65 (m, 2H, CH₂), 6.82 (t, 1H, J = 7.60 Hz, Ph), 6.83 (d, 1H, J = 7.90 Hz, Ph), 6.93 (d, 1H, J = 4.79 Hz, Thiophen), 6.95 (t, 1H, J = 4.95 Hz, Thiophen), 7.18 (d, 1H, J = 6.49 Hz, Ph), 7.21 (s, 1H, CH), 7.28 (t, 1H, J = 8.30 Hz, Ph), 7.36 (d, 1H, J = 5.02 Hz, Thiophen), 8.16 (breit, 1H, NH), 10.45 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 16.7, 28.2, 29.6, 29.8, 37.1, 43.1, 43.3, 71.7, 116.3, 119.2, 119.6, 124.8, 126.1, 127.5, 130.9, 132.7, 140.5, 152.2, 156.4, 167.6, 170.2, 184.9.

FAB MS (DMBA) m/z 543 (100) für C₂₆H₃₅N₆OS₃⁺.

C₂₆H₃₅IN₆OS₃: Ber.: C, 46.56; H, 5.26; I, 18.92; N, 12.53; S, 14.34. (670.68) Gef.: C, 46.95; H, 5.37; I, 19.22; N, 12.69; S, 14.33.

(32b) (7E)-N-[(1Z)-2,2-Dimethyl-1-(methylsulfanyl)propyliden]-2-*t*-butyl-5-(2hydroxy-phenyl)-7-(pyridin-2-ylethylamino)-5H-[1,3,4-thiadiazolo-[3,2a][1,3,5]triazinium-6(7H)-aminium-iodid:

aus 1c, A13 und Methyliodid, nach der Vorschrift von 32a

Ausbeute: 87 %. Fp.: 150 °C. IR (ATR): 1610 (C=N), 1487 (Triazinium) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 0.98 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 2.43

(s, 3H, SCH₃) 3.09 (t, 2H, J = 7.18 Hz, CH₂), 3.85 (m, 2H, CH₂), 6.82 (t, 1H, J = 10.4 Hz, Ph), 6.85 (d, 1H, J = 8.08 Hz, Ph), 7.17 - 7.29 (m, 5H, CH), 7.72 (t, 1H, J = 7.70 Hz, Py), 8.23 (breit, 1H, NH), 8.46 (d, 1H, J = 4.42 Hz, Py), 10.51 (s, 1H, OH). ¹³C-NMR (DMSO-d₆): δ 16.8, 28.2, 29.5, 37.1, 37.3, 41.6, 43.1, 71.7, 116.4, 119.2, 119.9, 122.3, 124.0, 130.9, 132.7, 137.3, 149.4, 152.2, 156.4, 158.7 167.5, 170.1, 184.8. FAB MS (DMBA) *m*/*z* 539 (3) für C₂₇H₃₆N₇OS₂⁺. C₂₇H₃₆IN₇OS₂: Ber.: C, 48.72; H, 5.45; I, 19.06; N, 14.73; S, 9.63. (665.65) Gef.: C, 48.98; H, 5.60; I, 19.13; N, 14.77; S, 9.15.

(33a) 2,6-Di-*t*-butyl-5-(2-thien-2-ylethyl)-9-(2-hydroxyphenyl)-5,9-dihydro[1,3,4] thiadiazolo[2,3-d][1,2,4]triazolo[1,5-a][1,3,5]triazin-8-ium-iodid:

Die Darstellung erfolgt aus **32a** durch 5-stündiges Erhitzen in Pyridin am Rückfluß (heftiger Geruch!). Zur Aufarbeitung wird komplett eingeengt, mit wenig Acetonitril gewaschen und i. V. getrocknet (evt. aus Acetonitril umkristallisiert).

Ausbeute: 98 %. Fp.: 195 °C.

IR (ATR): 1579 (Thiophen), 1487 (Triazinium) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.22 (s, 9H, CH₃), 1.28 (s, 9H, CH₃), 3.37 (t, 2H, J = 5.37 Hz, CH₂), 4.39 (t, 2H, J = 7.45 Hz, CH₂), 6.82 - 6.98 (m, 3H, Ph, Thiophen), 7.21 - 7.43 (m, 3H, Ph, Thiophen), 7.65 (d, 1H, J = 6.22, Thiophen), 7.84 (s, 1H, CH), 10.40 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.1, 29.5, 33.3, 36.3, 37.2, 46.6, 76.6, 116.6, 119.5, 119.8, 125.6, 127.1, 127.8, 131.8, 133.3, 138.2, 148.9, 156.8, 158.7, 168.6, 170.3.

FAB MS (DMBA) *m/z* 495 (100) für C₂₅H₃₁N₆OS₂⁺.

 $C_{25}H_{31}IN_6OS_2$:Ber.: C, 48.23; H, 5.02; I, 20.38; N, 13.50; S, 10.30.(622.58)Gef.: C, 49.01; H, 5.36; I, 19.35; N, 13.01; S, 11.98.

(33b) 2,6-Di-*t*-butyl-5-(2-ethylpyridin)-9-(2-hydroxyphenyl)-5,9-dihydro-[1,3,4]thiadiazolo[2,3-d][1,2,4]triazolo[1,5-a][1,3,5]triazin-8-ium-iodid:

aus 32b wie 33a, aus Essigsäureethylester umkristallisiert

Ausbeute: 98 %. Fp.: 161 °C. IR (ATR): 1584 (Py), 1490 (Triazinium) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.21 (s, 9H, CH₃), 1.32 (s, 9H, CH₃), 3.32 (t, 2H, J = 10.27 Hz, CH₂), 4.59 (t, 2H, J = 9.15 Hz, CH₂), 6.88 (d, 1H, J = 8.07 Hz, Ph), 6.96 (t, 1H, J = 7.47 Hz, Ph), 7.31 - 7.41 (m, 3H, CH), 7.66 (d, 1H, J = 6.20 Hz, Py), 7.75 (t, 1H, J = 7.65 Hz, Py), 7.86 (s, 1H, CH), 10.40 (s, 1H, OH).

¹³C-NMR (DMSO-d₆): δ 28.1, 29.5, 33.3, 36.3, 37.2, 44.9, 76.5, 116.7, 119.5, 119.9, 122.7, 124.1, 131.7, 133.3, 137.4, 149.1, 149.7, 156.7, 156.8, 158.7, 168.6, 170.3.

FAB MS (dmba) m/z 490 (100) für C₂₆H₃₂N₇OS⁺.

 $C_{26}H_{32}IN_7OS \ge 0.5$ Ethylacetat:Ber.: C, 50.83; H, 5.48; I, 19.18; N, 14.82; S, 4.85.(617.55)Gef.: C, 50.96; H, 5.36; I, 19.95; N, 14.53; S, 4.98.

9.5 Aminale 2 / Wege A und B

(2a) Bis{2,3-dihydro-5-*t*-butyl-2-[(5-*t*-butyl-1,3,4-thiadiazol-2-yl)-imino]-1,3,4thiadiazol-3-yl-}(2-hydroxyphenyl)-methan:

2.19 g (5 mmol) **1c** werden in 60 ml THF suspendiert und auf -30 °C gekühlt. Nach der Zugabe von 3.125 ml 1.6 M *n*-BuLi-Lösung (Hexan) läßt man unter Rühren langsam auf RT erwärmen. Die Reaktionslösung färbt sich orange bis rot. Im Anschluß wird die Lösung filtriert, komplett eingeengt und der Rückstand mit Chloroform aufgenommen.

Nach wiederholtem Einengen wird die klebrige Masse in Diethylether gerührt und aus Acetonitril umkristallisiert.

Ausbeute: 1.14 g (1.6 mmol), 30 %. Fp.: 261-263 °C.

IR (ATR): 3200-2400 (w), 2962 (w), 1628 (ss, C = N exocyclisch) cm⁻¹.

¹H-NMR (DMSOd₆): δ 1.24 (s, 18H), 1.33 (s, 18H), 6.85 (t, 1H, J = 7.65 Hz), 6.88 (d, 2H, J = 8.00 Hz), 7.12 (d, 1H, J = 7.70 Hz), 7.21 (t, 1H, J = 8.15 Hz), 8.40 (s, 1H, CH Aminal), 10.08 (s, OH).

¹³C-NMR (DMSOd₆): δ 29.0, 30.4, 35.6, 35.7, 66.6, 115.2, 118.9, 120.4, 128.5, 130.3, 154.8, 159.2, 163.5, 170.4, 174.4.

FAB MS (NBA) *m/z* 699 (25) für C₃₁H₄₃N₁₀OS₄⁺.

C₃₁H₄₂N₁₀OS₄: Ber.: C, 53.27; H, 6.06; N, 20.04; S, 18.35.

(698.98) Gef.: C, 52.97; H, 6.00; N, 18.85; S, 17.42.

Umsetzung von T1 und Anilin im NMR-Maßstab (Weg B) :

Die Ansatz erfolgte durch Lösen der Ausgangsverbindungen in deuteriertem Chloroform direkt im NMR-Röhrchen in folgendem Verhältnis:

In den NMR-Spektren nach 3 Tagen (C) bzw. 7 Tagen (D) konnten durch zweidimensionale-Methoden und die charakteristische ¹⁵N-¹³C-Kopplung die Produkte identifiziert werden (Daten und Zuordnung: siehe Kapitel 3.3).

9.6 Bis-triazolo-triaziniumsalze (Weg D) **30** und neue Aminale **35**

(30a) 9H-2,6-Dimethyl-3,5-di-(pyridin-2-ylmethyl)-9-(4-methylphenyl)bis[1,2,4]triazolo [3,2-a:2['],3[']-d][1,3,5]triazin-8-ium-bromid:

aus 1i und A16, Vorschrift siehe G17

Ausbeute: 32 %. Fp.: 90-98 °C.

IR (ATR): 1557 cm⁻¹, C = N (Triazinium).

¹H-NMR (DMSO-d₆): δ 2.32 (s, 6H), 2.35 (s, 3H), 5.33 - 5.39 (dd, 4H),

7.29 - 7.53 (m, 8H), 7.61 (s, 1H), 7.83 (t, 2H, Py), 8.47 (d, 2H, Py).

¹³C-NMR (CDCl₃): δ 10.9, 20.8, 46.8, 75.5, 122.5, 123.4, 128.2, 129.6, 130.9, 137.3, 140.8, 149.4, 150.0, 150.9, 152.9.

DCI MS (H₂O) *m*/*z* 464 (10) für C₂₆H₂₆N₉⁺.

C₂₆H₂₆BrN₉: Ber.: C, 57.36; H, 4.81; Br, 14.68; N, 23.15.

(544.45) Gef.: C, 56.66; H, 5.29; Br, 12.93; N, 22.91.

9H-2,6-Dimethyl-3,5-di-(pyridin-4-ylmethyl)-9-(4-methylphenyl)-(**30b**) bis[1,2,4]triazolo [3,2-a:2,3,-d][1,3,5]triazin-8-ium-bromid:

aus 1i und A18, Vorschrift siehe G17

Ausbeute: 28 %. Fp.: ~60 °C (sehr hygroskopisch). IR (ATR): 1557 cm^{-1} , C = N (Triazinium). æ ¹H-NMR (DMSO-d₆): δ 2.30 (s, 6H), 2.32 (s, 3H), 5.25 (s, 4H), 7.27 (d, 2H, J = 7.93 Hz, Ph), 7.33 (d, 4H, J = 5.97 Hz, 3/5-Py), 7.45 (s, 1H), 7.49 (d, 2H, J = 8.10 Hz, Ph), 8.47 (d, 4H, J = 6.04 Hz, 2/6-Py). ¹³C-NMR (CDCl₃): δ 10.6, 20.8, 44.8, 76.0, 122.4, 128.7, 129.5, 130.5, 140.9, 142.7, 150.0, 150.1, 150.3. FAB MS (DMBA) m/z 465 (100) für C₂₆H₂₆N₉⁺. $C_{26}H_{26}BrN_9$: Ber.: C, 57.36; H, 4.81; Br, 14.68; N, 23.15.

(544.45) Gef.: C, 56.14; H, 5.38; Br, 11.81; N, 22.34.

2-[[5-Imino-3-methyl-4-(2-pyridinylm 2,4-triazol-1-(35a)-dihydro-3Hyl](4-methylphenyl)methyl]-5-methyl 1,2,4-riazol-3-on

Ein Lösung von 5 mmol 30a in THF wird bei RT mit 5 mmol KOH und 5 mmol KOtBu versetzt und 1 h gerührt. Danach wird das Lösungsmittel komplett abgezogen, der Rückstand in Methylenchlorid aufgenommen, filtriert und erneut eingeengt. Zur Reinigung kann aus Essigsäureethylester umkristallisiert werden.

Fp.: 170-172 °C. Ausbeute: 95 %.

IR (ATR): 3317 (w, NH), 1703 (ss, C = O), 1639 (s), 1592 (s), 1427 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 2.09 (s, 3H), 2.18 (s, 3H), 2.29 (s, 3H), 4.85 - 4.95 (m, 4H), 7.11 -7.29 (m, 10H), 7.56 - 7.60 (m, 2H), 8.48 (d, 2H).

¹³C-NMR (CDCl₃): δ 11.7, 12.2, 21.0, 46.6, 46.7, 66.2, 121.5, 122.0, 122.6, 122.9, 127.6, 128.2, 129.1, 129.9, 131.0, 136.8, 137.1, 138.3, 144.9, 145.0, 149.3, 149.4, 153.7, 154.2, 155.0, 155.7.

DCI MS (H₂O) m/z 482 (60) für C₂₆H₂₈N₉O⁺,

	m/z 191 (100) für C ₈ H ₁₁ N ₄ O ⁺ , m/z 292 (9	5) $C_{17}H_{18}N_6^+$.	NH
C ₂₆ H ₂₇ N ₉ O:	Ber.: C, 64.85; H, 5.65; N, 26.18.		N + N
(481.56)	Gef.: C, 65.03; H, 5.84; N, 25.21.	N-H N	N N
		C ₉ H ₁₁ N₄O ⁺ 191.093286	Ć C ₁₇ H ₁₈ N₅ ⁺ 292.156220

9.7 Produkte mit anderen Nucleophilen

(38) Ethyl-2-(2-hydroxyphenyl)-5-*t*-butyl-N-(5-*t*-butyl-1,3,4,-thiadiazol-2-yl)-1,3,4thiadiazol-3(2*H*)-carboximidoat:

Malonesteransatz: Aus 0.115 g (5 mmol) Natrium (22.99 g/mol) und 30 ml Ethanol wird eine Alkoholatlösung hergestellt und mit 0.8 g (5 mmol) Malonsäurediethylester (160.17 g/mol) versetzt. Nach der Zugabe von 2.19 g (5 mmol) **1c** ist eine Rotfärbung und Trübung der Lösung zu beobachten. Nach 15 h rühren bei RT wird die Lösung filtriert und eingeengt.

Die 3 g Rohprodukt enthalten laut NMR neben etwa 30 % des Produktes **38** auch etwa 30 % des Ausgangsheterocyclus **1c**, Malonester und geringere Anteile weiterer nicht identifizierter Produkte. Ein Reaktionsprodukt aus dem 5/6/5-Heterocyclus **1c** und dem Malonsäurediethylester kann auch massenspektroskopisch nicht nachgwiesen werden. **38** wird säulenchromatographisch gereinigt (Kieselgel 60, Essigsäureethylester).

Ausbeute: 510 mg (1.13 mmol), 23 %. Fp.: 229 °C. IR (ATR): 3100 - 2400 (w, breit, OH), 2965 (m), 2927 (m, *t*-Bu), 1634 (ss, C=N), 1596 (m), 1476 (ss), 1457 (s), 1407 (m), 1264 (m), 1119 (w), 1054 (w), 747 (m). ¹H-NMR (CDCl₃): δ 1.10 (m, 12H, *t*-Bu, Me), 1.41 (s, 9H, *t*-Bu), 4.22 (m, 2H, CH₂), 6.78 (t, 1H, J = 7.23 Hz, Ph), 7.00 (d, 1H, J = 7.93 Hz, Ph), 7.08 (t, 1H, J = 7.35 Hz, Ph), 7.12 (s, 1H, CH _{Dihydrothiadiazol}), 7.14 (d, 1H, J = 8.1 Hz, Ph), 9.43 (s, breit, OH). ¹³C-NMR (CDCl₃): δ 14.2, 28.9, 30.8, 36.0, 36.3, 66.2, 66.9, 117.7, 120.2, 126.7, 127.7, 129.7, 151.5, 153.7, 163.8, 170.6, 175.5. ESI MS (MeOH) *m*/*z* 448 (30) für C₂₁H₃₀N₅O₂S₂⁺. C₂₁H₂₉N₅O₂S₂: Ber.: C, 56.35; H, 6.53; N, 15.65; S, 14.32.

(447.61) Gef.: C, 57.05; H, 7.01; N, 16.13; S, 14.72.

(43) 2-{[2-*t*-Butyl-5-[(5-*t*-butyl-1,3,4-thiadiazol-2-yl)amino]-1,3,4-thiadiazol-3(2*H*)yl][(4-methylphenyl)sulfanyl]methyl}phenol

(Name mit >ACD/IUPAC Name Free v5.0< bestimmt) Zu einer Ethanolatlösung aus 0.138 g (6 mmol) Natrium (22.99 g/mol) in 60 ml Ethanol werden 0.745 g (6 mmol) *p*-Thiocresol (124.21 g/mol), anschließend 2.628 g (6 mmol) **1c** gegeben und 1 h bei RT gerührt. Nach dem Einengen und Aufnehmen in

Chloroform wird filtriert, erneut eingeengt und aus Essigsäureethylester umkristallisiert.

Ausbeute: 36 %. Fp.: 162 °C.

IR (ATR): 3200 - 2400 (w), 3061 (w), 2965 (w), 1625 (ss), 1598 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.31 (s, 9H, *t*-Bu), 1.33 (s, 9H, *t*-Bu), 2.08 (s, 3H, CH₃), 6.83 (t, 1H, J = 7.44 Hz, Ph), 6.85 (d, 1H, J = 8.32 Hz, Ph), 6.98 (d, 2H, J = 7.96 Hz, Thiocresol), 7.14 (t, 1H, J = 7.16Hz, Ph), 7.19 (d, 2H, J = 8.00 Hz, Thiocresol), 7.64 (s, 1H, CH), 7.75 (d, 1H, J = 7.8 Hz), 10.04 (s, breit, OH).

¹³C-NMR (DMSO-d₆): δ 21.0, 29.7, 30.9, 36.4, 36.6, 61.2, 115.8, 119.5, 122.5, 128.7, 130.1, 130.2, 130.5, 134.8, 139.1, 154.5, 159.9, 164.5, 170.9, 174.2.

ESI MS (MeOH) m/z 526 (20) für C₂₆H₃₂N₅OS₃⁺.

 $C_{26}H_{31}N_5OS_3: \qquad \qquad Ber.: C, \ 59.40; \ H, \ 5.94; \ N, \ 13.32; \ S, \ 18.29.$

(525.74) Gef.: C, 59.15; H, 6.11; N, 13.12; S, 17.99.

9.8 Synthesen und Reaktionen von Metall-Komplexen

9.8.1 D0-Guanidin-Zink-Verbindungen Z1-Z6

Alle D0-Guanidin-Zink-Komplexe **Z1-Z6** werden durch die Deprotonierung des Guanidins **G** mit Diethylzink (**56**) in Diethylether dargestellt. Zu einer auf -10 °C gekühlten Suspension von 4 mmol des Liganden **G** in 20 ml Diethylether gibt man langsam 4 ml einer 1.0 M Diethylzinklösung in Hexan (Gasentwicklung sichtbar). Danach entfernt man die Kühlung, läßt noch 1 h bei RT rühren und saugt den entstandenen feinkristallinen Niederschlag unter Verwendung einer Schlenkfritte (G4) ab.

(Z1) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(cyclohexyl)amin-Zink-Et₂O:

aus $G6 \mbox{ und } 56$

Ausbeute: 90 %. Fp.: 191-194 °C.

IR (ATR): 3060 (w), 2928 (s), 2854 (m), 1597 (ss), 1541 (ss), 1472

(ss), 1451 (ss), 1362 (m), 1258 (m), 1011 (m), 831 (m), 747 (s) cm⁻¹.

¹H-NMR (DMSO-d₆)/¹³C-NMR (DMSO-d₆): auch bei erhöhter Temperatur (50 °C) kaum löslich, daher nur breite Linien.

FAB MS (NBA) m/z 563 (10) für C₂₅H₃₄N₆OS₂Zn⁺.

 $C_{29}H_{44}N_6O_2S_2Zn: \qquad Ber.: \ C, \ 54.58; \ H, \ 6.95; \ N, \ 13.17; \ S, \ 10.05.$

(638.20) Gef.: C, 55.33; H, 6.30; N, 15.91; S, 11.75.

(Z2) E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(diphenylmethyl)amin-Zink-Et₂O:

aus G7 und 56

Ausbeute: 77 %. Fp.: 205-210 °C.

IR (ATR): 3060 (sw), 2962 (s), 1593 (s), 1570 (s), 1551 (m), 1476

(m), 1452 (m), 1422 (m), 1361 (m), 1054 (w), 750 (s) cm⁻¹.

¹H-NMR (DMSO-d₆)/¹³C-NMR (DMSO-d₆): auch bei erhöhter Temperatur (50 °C) kaum löslich, daher nur breite Linien.

FAB MS (Nba) m/z 647 (40) für $C_{32}H_{34}N_6OS_2Zn^+$. $C_{36}H_{44}N_6O_2S_2Zn$:Ber.: C, 59.87; H, 6.14; N, 11.64; S, 8.88.(722.28)Gef.: C, 54.68; H, 5.11; N, 13.10; S, 9.60.

(Z3) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(4-*t*-butyl-phenyl)amin-Zink:

aus G8 und 56

Ausbeute: 89 %. Fp.: 232 °C Blasen, 290-300 °C Schmelzen. IR (ATR): 3060(sw), 2961 (s), 1595 (s), 1516 (s), 1474 (ss), 1391 (m), 1256 (m), 1011 (m), 751 cm⁻¹.

¹H-NMR (DMSO-d₆) (nur wenig Substanz gelöst, alle Signale sehr breit): δ 1.05 (s, 9H, *t*-Bu), 1.20 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 1.89 (m, 2H, CH₂), 6.28 - 8.59 (m, 9H, arom.). ¹³C-NMR (DMSO-d₆) (alle Signale breit): δ 28.8, 29.0, 30.9, 36.4, 36.6, 60.6. ESI MS (THF) m/z 687 (5) für C₂₉H₃₇N₆OS₂Zn⁺. C₂₉H₃₆N₆OS₂Zn: Ber.: C, 56.72; H, 5.91; N, 13.68; S, 10.44. (688.26) Gef.: C, 56.25; H, 6.41; N, 13.22; S, 9.30.

(Z4) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(adamantyl)amin-Zink-Et₂O:

aus $G10 \mbox{ und } 56$

Ausbeute: 87 %. Fp.: 220 °C.

IR (ATR): (kein NH, OH), 3059 (sw), 2962 (w), 2905 (s), 1595 (s), 1548 (s), 1473 (s), 1451 (s), 1361 (m), 1239 (m), 1010 (m), 752 (m) cm⁻¹.

¹H-NMR (DMSO-d₆): (wenig Substanz gelöst, alle Signale sehr breit) δ 1.07 - 1.22 (s, 18H, *t*-Bu), 1.61 (m, 6H, CH₂), 1.91 - 2.1 (m, 9H, CH₂), 6.6 - 7.3 (m, 5H, 4 arom. + 1 CH). ¹³C-NMR (DMSO-d₆): (zu wenig gelöst und sehr breit Signale). ESI MS (THF) m/z 615 (3) für C₂₉H₃₉N₆OS₂Zn⁺. C₂₉H₃₈N₆OS₂Zn x C₂H₁₀O: Ber.: C, 57.42; H, 7.01; N, 12.17; S, 9.29.

(690.28) Gef.: C, 56.86; H, 6.73; N, 13.01; S, 9.78.

(Z5) [(Benzothiazol-2-yl)imino]-[2H-2-(4-methoxyphenyl)benzothiazol-3yl]methyl-(1,1-diphenylmethyl)amin-ethyl-Zink:

aus G32 und 56 im Verhältnis 1:1

Ausbeute: 79 %. Fp.: 179-180 °C. IR (ATR): 3059 (sw), 3023 (sw), 2932 (w), 2861 (w), 1607 (m), 1582 (m), 1507 (s), 1476 (ss), 1448 (ss), 1270 (m), 1025 (m), 740 (s) cm⁻¹. ¹H-NMR (DMSO-d₆) (durch die geringe Löslichkeit von **Z5** entsprechen die NMR-Spektren dem freien Guanidin **G32**, welches bei der Probenvorbereitung durch Hydrolyse entsteht): δ 3.76 (s, 3H), 5.86 (d, 1H, J = 9.27 Hz), 6.61 (d, 2H, J = 8.78 Hz), 6.87 (s, 1H-C_(Dihydrobenzthiazol)), 7.04 - 7.41 (m, 18H), 7.73 (m, 2H), 11.21 (d, 1H, J = 9.09 Hz).

139

¹³C-NMR (DMSO-d₆) (alle Signale breit): δ 55.6, 63.0, 73.2, 113.8, 113.9, 120.8, 121.6, 123.1, 123.8, 125.9, 126.1, 126.9, 127.5, 127.6, 128.2, 129.1, 129.2, 129.4, 129.6, 129.7, 130.9, 133.0, 141.1, 141.8, 142.9, 151.5, 153.9, 159.9, 173.0. FAB MS (Dmba) m/z 585 (5) **G32**; 647 (0) kein Molpeak für **GZn**⁺ C₃₅H₂₇N₉OS₂Zn⁺. C₃₇H₃₂N₄OS₂Zn: Ber.: C, 65.53; H, 4.76; N, 8.26; S, 9.45. (678.18) Gef.: C, 65.97; H, 4.62; N, 8.42; S, 9.27.

(Z6) Bis-{(Z)-[(Benzothiazol-2-yl)imino]-[2H-2-(4-methoxyphenyl)benzothiazol-3yl]methyl-(1,1-diphenylmethyl)amin}-zink:

aus G32 und Diethylzink (56) im Verhältnis 1:0.5

Ausbeute: 80 %. Fp.: 166-171 °C. IR (ATR): 3060 (sw), 3022 (sw), 2932 (w), 1608 (m), 1582 (m), 1507 (s), 1477 (ss), 1448 (ss), 1270 (m), 1025 (m), 740 (s) cm⁻¹.

¹H-NMR (DMSO-d₆) (durch die geringe Löslichkeit von **Z6** entsprechen die NMR-Spektren dem freien Guanidin **G32**, welches bei der Probenvorbereitung durch Hydrolyse entsteht): δ 3.76 (s, 3H), 5.86 (d, 1H, J = 9.27 Hz), 6.61 (d, 2H, J = 8.78 Hz), 6.87 (s, 1H-C_(Dihydrobenzthiazol)), 7.04 - 7.41 (m, 18H), 7.73 (m, 2H), 11.21 (d, 1H, J = 9.09 Hz). ¹³C-NMR (DMSO-d₆) (alle Signale breit): δ 55.6, 63.0, 73.2, 113.8, 113.9, 120.8, 121.6, 123.1, 123.8, 125.9, 126.1, 126.9, 127.5, 127.6, 128.2, 129.1, 129.2, 129.4, 129.6, 129.7, 130.9, 133.0, 141.1, 141.8, 142.9, 151.5, 153.9, 159.9, 173.0. ESI MS (THF) m/z 647 (0) kein Molpeak für **GZn**⁺ C₃₅H₂₇N₉OS₂Zn⁺. C₇₀H₅₄N₈O₂S₄Zn: Ber.: C, 68.20; H, 4.41; N, 9.09; S, 10.40. (1232.87) Gef.: C, 67.10; H, 5.22; N, 9.80; S, 11.12.

9.8.2 D1- Guanidin- Zink-Verbindungen Z7-Z9

Die Darstellungen der weiteren D1-Guanidin-Zinkverbindungen erfolgten analog zur Synthese der D0-Guanidin-Zink-Komplexe mit Diethylzink in Diethylether.

(Z7) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(2-pyrid-2-ylethyl)amin-Zink-Et₂O:

aus $G13 \mbox{ und } 56$

Ausbeute: 87 %. Fp.: 205 °C. IR (ATR): (kein NH, OH), 3055 (w), 2963 (m, *t*-Bu), 1592 (m), 1530 (ss), 1474 (s), 1449 (m), 750 (m) cm⁻¹. ¹H-NMR [250] (DMSO-d₆): kaum löslich. FAB MS (NBA) m/z 586 (12) für C₂₆H₃₂N₇OS₂Zn⁺. C₂₆H₃₁N₇OS₂Zn x C₄H₁₀O: Ber.: C, 54.50; H, 6.25; N, 14.83; S, 9.70. (661.20) Gef.: C, 54.95; H, 6.38; N, 15.03; S, 9.62.

(Z8) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(2-thien-2-ylethyl)amin-Zink-Et₂O:

aus $G15 \mbox{ und } 56$

Ausbeute: 85 %. Fp.: 198 °C. IR (ATR): (kein NH, OH), 3055 (w), 2963 (m, *t*-Bu), 1592 (m), 1530 (ss), 1474 (s), 1449 (m), 750 (m) cm⁻¹. NMR (DMSO-d₆): unlöslich. FAB MS (NBA) m/z 591 (10) für C₂₅H₃₁N₆OS₃Zn⁺. C₂₅H₃₀N₆OS₃Zn x 1C₄H₁₀O: Ber.: C, 52.28; H, 6.05; N, 12.61; S, 14.44.

(666.23) Gef.: C, 51.95; H, 6.19; N, 13.03; S, 14.67.

(Z9) R,S-(bzw.S,R)-(E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2hydroxyphenyl)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(1-pyridin-2-ylethyl)amin-Zink-Et₂O:

aus G14a und 56

Ausbeute: 83 %. Fp.: 200 °C.

IR (ATR): (kein NH, OH), 3055 (w), 2963 (m), 1592 (m), 1530 (ss),

1474 (s), 1449 (m), 750 (m) cm⁻¹.

NMR (DMSO-d₆): kaum löslich .

FAB MS (NBA) m/z 586 (10) für C₂₆H₃₂N₇OS₂Zn⁺.

C₂₆H₃₁N₇OS₂Zn x C₄H₁₀O: Ber.: C, 54.50; H, 6.25; N, 14.83; S, 9.70. Gef.: C, 54.87; H, 6.43; N, 15.10; S, 9.89.

9.8.3 D2-Guanidin-Zink-Verbindungen Z10-Z27

Allgemeine Vorschrift:

Variante (*KS-B*) 1: Ligand **G** in THF lösen, Lösung auf –30 °C kühlen, 1 Äq. Diethylzink **56** zugeben, langsam auf RT erwärmen lassen, 1 h bei RT rühren, 1 Äq. eines aciden Alkohols, eines Phenols oder einer Säure zugeben. Gegebenenfalls Produkt mit Pentan ausfällen. Variante (*KS-B*) 2: Ligand **G** in Diethylether suspendieren, auf –30 °C kühlen, 1 Äq. Diethylzink (**56**) zugeben, langsam auf RT erwärmen lassen, 1 h bei RT rühren, 1 Äq. eines aciden Alkohols oder einer Säure zugeben. Nach einer weiteren Stunde Rühren wird das Produkt abgefrittet.

(Z10) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((2'-pyridyl)methyl)amin-Zink-pivaloat:

aus **G20**, **56** und Pivalinsäure nach Variante 2: (orange Suspension)

Ausbeute: 90 %. Fp.: 159-163 °C.

IR (ATR): 3061 (sw), 2963 (s), 1593 (s), 1570 (s), 1550 (m), 1476 (m), 1452 (m), 1422 (m), 1361 (m), 1220 (w), 1055 (w), 750 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): (alle Signale sehr breit) δ 1.05 (s, 9H, *t*-Bu), 1.20 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 1.89 (m, 2H, CH₂), 2.46 - 4.52 (m, 6H, CH₂), 6.28 - 8.59 (m, 11H, arom.). ¹³C-NMR (DMSO-d₆): (alle Signale breit) δ 22.0, 28.8, 29.0, 30.9, 36.4, 36.6, 38.5, 44.7, 47.4, 55.1, 68.8, 113.9, 115.8, 119.8, 120.6, 122.7, 122.9, 124.5, 127.7, 129.5, 137.1, 138.8, 148.7, 149.5, 155.5, 156.9, 164.4, 168.3, 168.8, 171.5, 173.2, 184.4. ESI MS (THF) *m*/*z* 679.9 (100) für C₃₁H₃₈N₉OS₂Zn⁺. C₃₆H₄₇N₉O₃S₂Zn: Ber.: C, 55.20; H, 6.06; N, 16.09; S, 8.19. (783.32) Gef.: C, 55.16; H, 6.13; N, 16.85; S, 8.27.

Außerdem wurde die Synthese von **Z10** in Toluol (orange Lösung) und Dioxan (orange Lösung) wiederholt.
(Z11) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-t-butyl-1,3,4thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((2'-pyridyl)methyl)amin-Zinkbenzoat:

Synthese nach Variante 2: aus 3.085 g (5 mmol) **G20**, 5 ml (5 mmol) 1.0 M Diethylzinklsg. (**56**) in 50 ml Diethylether, beige Suspension, 610 mg (5 mmol) Benzoesäure bläselt, Produkt fällt aus.

Ausbeute: 91 %. Fp.:157-162 °C.

IR (ATR): 3059 (sw), 2963 (s), 1599 (s), 1557 (s), 1476 (m), 1452 (m), 1412 (m), 1364 (m), 718 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): (alle Signale breit) δ 1.07 (s, 9H, *t*-Bu), 1.24 (s, 9H, *t*-Bu), 2.5 - 3.9

(m, 6H, CH₂), 4.45 (m, 2H, CH₂), 6.7 - 8.7 (m, 16H, aromat.).

¹³C-NMR (DMSO-d₆): δ 28.9, 30.7, 36.1, 128.1, 129.8, 135.8, 137.0, 149.4, 171.7 (restliche Signale im Rauschen...).

FAB MS (NBA) *m*/*z* 680 (90) für C₃₁H₃₈N₉OS₂Zn⁺.

C₃₈H₄₅N₉OS₃Zn: Ber.: C, 56.82; H, 5.40; N, 15.69; S, 7,98.

(803.31) Gef.: C, 56.79; H, 5.40; N, 15.66; S, 7.91.

(Z12) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(3-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((2'-pyridyl)methyl)amin-Zink-pivaloat:

Synthese nach Variante 1: aus 2.468 g (4 mmol) Ligand **G19**, 4 ml (4 mmol) 1.0 M Diethylzinklsg. (**56**) in 20 ml THF, 0.408 g (4 mmol) Pivalinsäure.

Ausbeute: 2.421 g, 77 %. Fp.: 188-190 °C. 1 H-NMR (DMSO-d₆): breite Signale.

¹³C-NMR (DMSO-d₆): δ 21.0, 29.7, 30.9, 36.4, 36.6, 61.2, 115.8, 119.5, 122.5, 128.7, 130.1, 130.2, 130.5, 134.8, 139.1, 154.5, 159.9, 164.5, 170.9, 174.2.

ESI MS (THF) m/z 679.9 (100) für C₃₁H₃₈N₉OS₂Zn⁺.

C₃₂H₄₁N₉O₂S₂Zn: Ber.: C, 53.89; H, 5.79; N, 17.67; S, 8.99. (783.32) Gef.: C, 54.14; H, 6.02; N, 17.55; S, 8.67. (Z13) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((2'-pyridyl)methyl)amin-Zink-methanolat:

Synthese nach Variante 1: aus G20, 56 und Methanol

Ausbeute: 77 %.Fp.: 148-150 °C.Keine auswertbaren NMR-Spektren durch starke Linienverbreiterung.ESI MS (THF) m/z 679.9 (100) für C₃₁H₃₈N₉OS₂Zn⁺.C₃₂H₄₁N₉O₂S₂Zn:Ber.: C, 53.89; H, 5.79; N, 17.67; S, 8.99.(713.23)Gef.: C, 54.02; H, 5.89; N, 17.38; S, 8.56.

(Z14) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-picolyl))amin-Zink-pivaloat:

Synthese nach Variante 1: 3.587 g (5.97 mmol) Ligand **G22**, 5.97 ml (5.97 mmol) 1.0 M Diethylzinklsg. in 20 ml THF, hellgelbe Lösung, 0.61 g (5.97 mmol) Pivalinsäure, gelbe Lösung, 130 ml Pentan zugeben (kein Niederschlag), -20°C Tiefkühlschrank, Fraktion 1 vom Produkt fällt aus.

Ausbeute: 2.49 g (4.5 mmol), 89 %. Fp.: 142-156 °C. ¹H-NMR (DMSO-d₆): (alle Signale breit) δ 1.07 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 2.5 - 3.9 (m, 6H, CH₂), 4.45 (m, 2H, CH₂), 6.7 - 8.6 (m, 16H, aromat.). ¹³C-NMR (DMSO-d₆): δ 29.0, 30.7, 36.1, 36.2, 128.1, 129.8, 135.8, 137.0, 149.4, 171.7 (restliche Signale nicht auswertbar). FAB MS (DMBA) *m*/*z* 663 (60) für C₃₁H₃₅N₈OS₂Zn⁺. C₃₆H₄₄N₈O₃S₂Zn: Ber.: C, 56.43; H, 5.79; N, 14.62; S, 8.37. (766.29) Gef.: C, 56.23; H, 5.83; N, 14.72; S, 8.47.

(Z15) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((3'-pyridyl)methyl)amin-Zink-benzoat: Synthese nach Variante 2: 10.0 g (16.21 mmol) Ligand **G21**, 16.21 ml (16.21 mmol) 1.0 M Diethylzinklsg. in 100 ml Diethylether, 1.979 g (16.21 mmol) Benzoesäure.

Ausbeute: 11.313 g (14.1 mmol), 87 %. Fp.: 162-165 °C. IR (ATR): 3063 (sw), 2965 (s), 1599 (m), 1545 (s), 1476 (m), 1453 (m), 1417 (m), 1366 (m), 1249 (w), 1071 (w), 716 (s) cm⁻¹. ¹H-NMR (DMSO-d₆): (alle Signale breit) δ 1.07 (s, 9H, *t*-Bu), 1.26 (s, 9H, *t*-Bu), 2.5 - 3.9 (m, 6H, CH₂), 4.45 (m, 2H, CH₂), 6.7 - 8.6 (m, 16H, aromat.). ¹³C-NMR (DMSO-d₆): δ 29.0, 30.7, 36.1, 36.2, 128.1, 129.8, 135.8, 137.0, 149.4, 171.7 (restliche Signale nicht auswertbar).

ESI MS (THF) *m*/*z* 680 (100) für C₃₁H₃₈N₉OS₂Zn⁺.

 $C_{38}H_{43}N_9O_3S_2Zn:$ Ber.: C, 56.82; H, 5.40; N, 15.69; S, 7.98.(803.31)Gef.: C, 56.61; H, 5.60; N, 15.41; S, 7.84.

(Z16) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((3'-pyridyl)methyl)amin-Zink-*p*-thiocresolat:

Synthese nach Variante 2: 3.085 g (5 mmol) Ligand **G21**, 5 ml (5 mmol) 1.0 M Diethylzinklsg. in 50 ml Diethylether, beige Suspension, 0.621 g (5 mmol) *p*-Thiocresol (bläselt stark), Produkt fällt aus.

Ausbeute: 3.529 g (4.38 mmol), 87%. Fp.: 165 °C.

IR (ATR): 3063 (sw), 3010 (sw), 2963 (m), 1590 (s), 1529 (ss), 1475 (s), 750 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): (alle Signale, außer Methyl vom *p*-Thiocresol, breit) δ 1.13 (s, 9H, *t*-

Bu), 1.32 (s, 9H, *t*-Bu), 2.10 (s, 3H, CH₃), 2.5 - 3.8 (m, 6H, CH₂), 4.37 (m, 2H, CH₂), 6.30 - 8.6 (m, 16H, aromat.).

¹³C-NMR (DMSO-d₆): δ 20.7, 29.0, 30.3, 36.1, 36.2, 61.2, 123.9, 124.4, 128.7, 132.7, 149.6 (restliche Signale nicht auswertbar).

FAB MS (NBA) *m/z* 680 (90) für C₃₁H₃₈N₉OS₂Zn⁺.

 $C_{38}H_{45}N_9OS_3Zn:$ Ber.: C, 56.67; H, 5.63; N, 15.65; S, 11.94.(805.39)Gef.: C, 56.55; H, 5.87; N, 16.52; S, 11.83.

(Z17) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(2-pyridylmethyl)-(2-pyridylethyl)-amin-Zinkpivaloat:

Synthese nach Variante 1: 2.456 g (4 mmol) Ligand **G27**, 4 ml (4 mmol) 1.0 M Diethylzinklsg. in 20 ml THF, rotbraune Lsg. 0.408 g (4 mmol) Pivalinsäure, mit Pentan fällen.

Ausbeute: 1.715 g, 54 % (Rest einengen). Fp.: 125 °C. Keine auswertbaren NMR-Spektren durch starke Linienverbreiterung.

ESI MS (THF) m/z 677 (35) für C₃₂H₃₇N₈OS₂Zn⁺.

 $C_{37}H_{46}N_8O_3S_2Zn:$ Ber.: C, 56.95; H, 5.94; N, 14.36; S, 8.22.(780.32)Gef.: C, 59.00; H, 6.03; N, 15.11; S, 8.19.

(Z18) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(3-picolyl))amin-Zink-pivaloat:

Synthese nach Variante 2: 3.004 g (5 mmol) Ligand **G23**, 5 ml (5 mmol) 1.0 M Diethylzinklsg. in 30 ml Diethylether, hellgelbe Suspension, 0.511 g (5 mmol) Pivalinsäure bläselt stark, Produkt fällt aus.

Ausbeute: 3.44 g (4.5 mmol), 89 %. Fp.: 149-155 °C.

Keine auswertbaren NMR-Spektren durch starke Linienverbreiterung.

FAB MS (DMBA) *m/z* 663 (80) für C₃₁H₃₅N₈OS₂Zn⁺.

 $C_{36}H_{44}N_8O_3S_2Zn:$ Ber.: C, 56.43; H, 5.79; N, 14.62; S, 8.37.(766.29)Gef.: C, 56.72; H, 5.91; N, 15.02; S, 8.33.

(Z19) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-t-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(3-picolyl))amin-Zink-benzoat:

Synthese nach Variante 2: 10.0 g (16.64 mmol) Ligand G23, 16.64 ml (16.64 mmol) 1.0 M Diethylzinklsg. in 100 ml

Diethylether, hellgelbe Suspension, 2.032 g (16.64 mmol) Benzoesäure bläselt, Produkt fällt aus.

Ausbeute: 12.291 g (15.6 mmol), 93 %. Fp.: 152-167 °C. IR (ATR): 3059 (sw), 2964 (m), 1680 (w), 1597 (s), 1531 (ss), 1477 (s), 750 (s) cm⁻¹. Keine auswertbaren NMR-Spektren durch starke Linienverbreiterung. FAB MS (DMBA) m/z 663 (80) für C₃₁H₃₅N₈OS₂Zn⁺. C₃₈H₄₀N₈O₃S₂Zn: Ber.: C, 58.05; H, 5.13; N, 14.25; S, 8.10. (786.28) Gef.: C, 57.77; H, 5.30; N, 14.41; S, 8.36.

(Z20) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-t-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(3-picolyl))amin-Zink-p-thiocresolat:

Synthese nach Variante 2: 3.004 g (5 mmol) Ligand **G23**, 5 ml (5 mmol) 1.0 M Diethylzinklsg. in 50 ml Diethylether, gelbe Suspension, 0.621 g (5 mmol) *p*-Thiocresol zugeben (bläselt stark) Produkt fällt aus.

Ausbeute: 3.692 g (4.68 mmol), 93 %. Fp.: 165 °C. IR (ATR): 3060 (sw), 2963 (m), 1596 (s), 1530 (ss), 1472 (s), 1260 (m), 750 (s) cm⁻¹. ¹H-NMR (DMSO-d₆): (alle Signale, außer Methyl vom p-Thiocresol, breit) δ 1.13 (s, 9H, *t*-Bu), 1.32 (s, 9H, *t*-Bu), 4.37 (m, 4H, CH₂), 6.30 - 8.6 (m, 17H, aromat.). ¹³C-NMR (DMSO-d₆): δ 20.7, 29.0, 30.6, 36.1, 36.3, 52.2, 123.9, 128.7, 130.9, 132.7, 136.6, 149.6 (restliche Signale nicht auswertbar). FAB MS (DMBA) *m/z* 663 (5) für C₃₁H₃₅N₈OS₂Zn⁺. C₃₈H₄₂N₈OS₃Zn: Ber.: C, 57.89; H, 5.37; N, 14.21; S, 12.20.

(788.36) Gef.: C, 57.42; H, 5.73; N, 14.39; S, 11.95.

(Z21) (E)-[(5-t-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-t-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin-Zink-2,4,6-trimethylphenolat

Synthese nach Variante 2: 3.14 g (5 mmol) Ligand **G24**, 5 ml (5 mmol) 1.0 M Diethylzinklsg. in 50 ml Diethylether, gelbe Lösung, 0.681 g (5 mmol) 2,4,6-Trimethylphenol bläselt, Produkt fällt langsam aus.

(Z22) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin-Zink-*p*-thiocresolat:

Synthese nach Variante 2: 2.513 g (4 mmol) Ligand **G24**, in 50 ml Diethylether auf -30 °C kühlen, weiße Suspension, 4 ml (4 mmol) 1.0 M Diethylzinklsg., helle Suspension, nach Erwärmen auf RT und 1 h rühren, gelbe Lösung, 0.497 g (4 mmol) *p*-Thiocresol zugeben, bläselt, wird sofort trüb, über Nacht rühren,

wenig klebriger Niederschlag, dekantieren, Lösung über Nacht in den Kühlschrank, Niederschlag absaugen.

Ausbeute: 1.575 g (1.92 mmol), 48 %. Fp.: 143-147 °C.

IR (ATR): 3055 (sw), 3011 (sw), 2962 (m), 1592 (s), 1533 (ss), 1473 (s), 1449 (m), 1300 (w), 1258 (m), 750 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.16 (s, 9H, *t*-Bu), 1.25 (s, 9H, *t*-Bu), 2.15 (s, 3H, CH₃), 2.97 (m, 4H, CH₂), 3.55 - 3.70 (m, 4H, CH₂), 6.78 (d, breit, 2H, arom.), 6.99 - 7.25 (m, 2H, arom.), 7.68 (t, breit, 2H, arom.), 8.49 (d, 2H, arom.).

¹³C-NMR (DMSO-d₆): δ 20.7, 28.9, 30.8, 35.5, 36.0, 36.2, 49.3, 67.3, 115.7, 119.5, 122.0, 123.8, 124.6, 125.9, 126.9, 128.7, 129.5, 131.0, 136.9, 139.2, 149.5, 153.8, 155.3, 158.8, 162.2, 170.2, 173.2.

FAB MS (DMBA) m/z 691 (10) für $C_{33}H_{39}N_8OS_2Zn^+$. $C_{40}H_{46}N_8OS_3Zn$:Ber.: C, 58.85; H, 5.68; N, 13.73; S, 11.78.(816.41)Gef.: C, 57.47; H, 5.98; N, 13.52; S, 12.13.

(Z23) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(3-(N-imidazolyl)propyl)-((3'-pyridyl)methyl)amin-Zink-2,4,6-trimethylphenolat:

Synthese nach Variante 2: 3.141 g (5 mmol) Ligand **G21**, in 50 ml Diethylether auf –30 °C kühlen, gelbe Suspension, 5 ml (5 mmol) 1.0 M Diethylzinklsg., dunkelgelbe Suspension, nach Erwärmen auf RT und 1 h rühren, 0.681 g (5 mmol) 2,4,6-Trimethylphenol zugeben, gelbe Suspension, Produkt absaugen.

Ausbeute: 3.409 g (4.17 mmol), 83 %. Fp.: 147-152 °C. IR (ATR): 3061 (sw), 2966 (s), 1596 (m), 1542 (s), 1476 (m), 1454 (m), 1419 (m), 1365 (m), 1249 (w), 1073 (w), 750 (s) cm⁻¹. ¹H-NMR (DMSO-d₆): (starke Linienverbreiterung) δ 1.13 (s, 9H, *t*-Bu), 1.30 (s, 9H, *t*-Bu), 2.5 - 3.9 (m, 6H, CH₂), 4.45 (m, 2H, CH₂), 6.69 (s, 2H, arom.), 6.93 - 8.56 (m, 12H, arom.). ¹³C-NMR (DMSO-d₆): δ 16.9, 20.4, 28.7, 29.0, 30.7, 35.8, 36.1, 36.2, 44.1, 50.7, 119.9,

123.8, 124.3, 127.7, 128.3, 129.0, 132.6, 136.1, 149.6, 151.1, 168.5 (restliche Signale im Rauschen).

ESI MS (THF) m/z 680 (100) für C₃₁H₃₈N₉OS₂Zn⁺.

 $C_{40}H_{49}N_9O_2S_2Zn:$ Ber.: C, 58.78; H, 6.04; N, 15.42; S, 7.84.(817.38)Gef.: C, 58.42; H, 5.88; N, 15.51; S, 8.01.

(Z24) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(2-pyridylmethyl)-(2-pyridylethyl)-amin-Zink-2,4,6trimethylphenolat:

Synthese nach Variante 2: 3.07 g (5 mmol) Ligand **G27**, in 50 ml Diethylether auf –30°C kühlen, beige Suspension, 5 ml (5 mmol) 1.0 M Diethylzinklsg. zugeben, orange Suspension, nach Erwärmen auf

RT und 1 h rühren, 0.681 g (5 mmol) 2,4,6-Trimethylphenol zugeben, klebrige Suspension, bleibt auch bei langem Rühren klebrig, über Nacht Kühlschrank, pulvrigen Niederschlag absaugen.

Ausbeute: 0.744 g (0.91 mmol), 18 %. Fp.: 135 °C Zers.

¹H-NMR (DMSO-d₆): (starke Linienverbreiterung) δ 1.11 (s, 9H, *t*-Bu), 1.33 (s, 9H, *t*-Bu), 2.11 (breit, 9H, CH₃), 3.03 (breit, 4H, CH₂), 4.44 (breit, 4H, CH₂), 6.69 (s, 2H, arom.), 6.78 - 8.52 (breit, 13H, arom.).

¹³C-NMR (DMSO-d₆): δ 16.8, 20.4, 28.9, 30.3, 30.8, 35.3, 36.1, 49.6, 55.3, 65.3, 121.9, 122.5, 123.8, 124.4, 127.6, 129.0, 136.9, 137.0, 149.4, 151,1 156.9, 158.7, 168.5.

ESI MS (THF) m/z 677 (30) für $C_{32}H_{37}N_8OS_2Zn^+$.

C₄₁H₄₈N₈O₂S₂Zn: Ber.: C, 60.47; H, 5.94; N, 13.76; S, 7.87.

(814.38) Gef.: C, 59.95; H, 6.01; N, 14.06; S, 8.03.

(Z25) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(3-phenoxy)-5-*t*-butyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin-Zink-2,4,6-trimethylphenolat:

Synthese nach Variante 2: 3.141 g (5 mmol) Ligand **G25**, in 50 ml Diethylether auf –30 °C kühlen, trübe orange Lösung, 5 ml (5 mmol) 1.0 M Diethylzinklsg., helle Suspension, nach Erwärmen auf RT und 1 h rühren, 0.681 g (5 mmol) 2,4,6-Trimethylphenol zugeben, klebrige Suspension, über Nacht rühren, absaugen.

Ausbeute: 2.938 g (3.54 mmol), 70 %. Fp.: 108-115 °C.

IR (ATR): 3063 (sw), 2963 (m), 1590 (s), 1565(ss), 1472 (s), 1450 (m), 747 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): (geringe Linienvebreiterung) δ 1.16 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 2.11 (s, 6H, CH₃), 2.13 (s, 3H, CH₃), 2.88 - 2.94 (m, 4H, CH₂), 3.35 - 3.60 (m, 4H, CH₂), 6.66 - 6.75 (m, 5H, arom. + 1H, CH _{Dihydrothiadiazol}), 7.06 - 7.23 (m, 5H, arom.), 7.64 (t, 2H, J = 5.84 Hz, arom.), 8.47 (d, 2H, J = 4.39 Hz, arom.).

¹³C-NMR (DMSO-d₆): δ 16.9, 20.4, 28.9, 30.8, 35.7, 36.0, 36.2, 49.3, 72.0, 113.6, 116.0, 117.3, 121.6, 123.5, 124.3, 127.7, 129.0, 130.0, 136.8, 141.6, 149.4, 151.1, 154.5, 157.9, 159.0, 160.1, 170.2, 173.3.

FAB MS (DMBA) *m/z* 691 (10) für C₃₃H₃₉N₈OS₂Zn⁺.

 $C_{42}H_{50}N_8O_2S_2Zn:$ Ber.: C, 60.90; H, 6.08; N, 13.53; S, 7.74.(828.41)Gef.: C, 60.55; H, 5.79; N, 13.63; S, 7.92.

(Z26) (E)-[(5-*t*-Butyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(3-phenoxy)-5-*t*-butyl-1,3,4thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin-Zink-benzoat:

Synthese nach Variante 2: 3.141 g (5 mmol) Ligand G25 in 50 ml

Diethylether bei –30 °C, leicht trübe orange Lsg., 5 ml (5 mmol) Diethylzinklsg., helle Suspension, nach einer Stunde bei RT rühren, 0.622 g (5 mmol) Benzoesäure zugeben, klebt alles am Boden, über Nacht rühren, beige Suspension, absaugen.

Ausbeute: 3.395 g (4.17 mmol), 83 %. Fp.: 133-144 °C.

IR (ATR): 3059 (sw), 2963 (m), 1685 (w), 1594 (s), 1545 (ss), 1480 (s), 1439 (m), 1365 (s), 1261 (m), 718 (s) cm⁻¹.

¹H-NMR (DMSO-d₆): δ 1.17 (s, 9H, *t*-Bu), 1.30 (s, 9H, *t*-Bu), 2.88 (m, 4H, CH₂), 3.42 - 3.58 (m, 4H, CH₂), 6.73 (m, 3H, arom.), 6.76 - 7.23 (m, 4H, arom.), 7.35 - 7.43 (m, 4H, arom.), 7.66 (m, 2H, arom.), 7.92 (d, 2H, J = 6.74 Hz, arom.), 8.47 (d, 2H, J = 3.99Hz, arom.).

¹³C-NMR (DMSO-d6): δ 28.9, 30.8, 35.6, 36.0, 36.2, 49.3, 72.0, 113.6, 116.0, 117.3, 122.0, 122.6, 123.7, 124.5, 128.1, 129.8, 130.0, 131.1, 135.5, 136.8, 138.8, 141.7, 149.4, 154.6, 158.0, 160.1, 170.3, 173.3.

FAB MS (DMBA) *m/z* 691 (40) für C₃₃H₃₉N₈OS₂Zn⁺.

 $C_{40}H_{44}N_8O_3S_2Zn:$ Ber.: C, 59.00; H, 5.45; N, 13.76; S, 7.87.(814.34)Gef.: C, 58.65; H, 5.76; N, 13.83; S, 8.03.

(Z27) (E)-[(5-Ethyl-1,3,4-thiadiazol-2-yl)imino]-[2H-2-(2-phenoxy)-5-ethyl-1,3,4-thiadiazol-3-yl]methyl-(di-(2-pyridylethyl))amin-Zink-benzoat:

Synthese nach Variante 2: aus Ligand **G26**, **56** und Benzoesäure weiße Suspension in Diethylether,

Ausbeute: 90 %. Fp.: 152 °C.

IR (ATR): 3058 (sw), 2963 (m), 1684 (w), 1593 (s), 1544 (ss), 1478

(s), 1439 (m), 1366 (s), 718 (s) cm⁻¹.

¹H-NMR (CDCl₃): (alle Signale breit) δ 1.26 (m, 6H, CH₃), 2.54 (m, 2H, CH₂), 2.99 (m, 2H, CH₂), 3.46 - 3.54 (m, 4H, CH₂), 3.89 (m, 4H, CH₂), 6.72 - 7.38 (m, 15H, arom.), 8.15 (m, 2H), 8.50 (m, 2H,).

¹³C-NMR (CDCl₃): δ 11.2, 12.9, 23.8, 36.1, 50.1, 120.9, 123.3, 126.8, 129.6, 129.9, 130.6, 136.1, 148.3, 157.6.

FAB MS (NBA) *m/z* 635 (20) für C₂₉H₃₁N₈OS₂Zn⁺.

$C_{36}H_{36}N_8O_3S_2Zn$:	Ber.: C, 57.03; H, 4.79; N, 14.78; S, 8.46.
(758.23)	Gef.: C, 56.85; H, 5.01; N, 15.02; S, 8.53.

9.8.4 Zink(II)-Komplexe und Cumulene/¹³CO₂-NMR-Untersuchungen

Darstellung von **59** (aus **G13** und Diethylzink im Verhältnis **1:2**) und ¹³**CO**₂ - NMR-Experimente

Ein bis zwei Tropfen Diethylzink (lösungsmittelfrei) wird mit einer 1 ml Fortunapipette in einem gut ausgeheizten, argonbefüllten, verschraubbaren und gewogenen NMR-Röhrchen vorgelegt. Nach der Zugabe von 0.8 ml trockenem deuterierten Pyridin werden bei der Einwaage von 110 mg (0.891 mmol) Diethylzink (123.5 g/mol) langsam 233 mg (0.445 mmol) des Guanidins **G13** (523.71) fest zugegeben (starke Gasentwicklung!, Deckel nicht fest verschließen!). Ist die Gasentwicklung abgeschlossen und eine klare Lösung entstanden, wird das Röhrchen vorsichtig evakuiert, um Ethanreste aus der Lösung zu entfernen, und wieder mit Argon befüllt.

I) ¹H- und ¹³C-NMR-Spektren der so hergestellten Zink-Verbindung **59** werden aufgenommen.

¹H-NMR (Pyridin-d₅): δ 0.70 - 0.80 (m, 6H, CH₃), 1.11 (s, 9H, *t*-Bu), 1.21 (s, 9H, *t*-Bu), 1.58 - 1.63 (m, 4H, CH₂), 3.42 (m, breit, 1H, CH₂), 3.49 (m, breit, 1H, CH₂), 4.40 (m, breit, 1H, CH₂), 4.73 (m, breit, 1H, CH₂), 6.46 (m, 1H), 7.02 - 7.53 (m, 5H), 8.35 - 8.56 (m, 2H).

¹³C-NMR (Pyridin-d₅): δ -2.5, -1.3, 13.9, 14.0, 29.1, 30.1, 35.7, 35.9, 39.0, 51.0, 69.5, 113.6, 118.6, 121.8, 123.9, 128.7, 131.9, 137.7, 148.2, 156.0, 158.8, 160.3, 169.2, 168.0, 176.2.

II) Zum Einbringen des mit ¹³C-angereicherten Kohlendioxids wird das Röhrchen mit flüssigem Stickstoff gekühlt, evakuiert und der Druckausgleich mit dem CO₂ vorgenommen. Für die NMR-Messung nach dem Auftauen der Probe ist darauf zu achten, daß nicht zu hoher Druck im Röhrchen entstanden ist (evt. mit feiner Kanüle Druck ablassen). Anschließend nimmt man ¹H- und ¹³C-NMR-Spektren mit den selben Messparametern wie bei der vorangegangenen Messung (ohne Kohlendioxid) auf.

Z10 und ¹³**CO**₂

- I) 100 mg der D2-Guanidin-Zink-Verbindung Z10 werden in einem NMR-Röhrchen eingewogen und durch Zugabe von 0.7 ml DMSO-d₆ gelöst. Die Befüllung mit CO₂ erfolgt analog dem vorangestellten Beispiel. Die NMR-Spektren entsprechen, mit Ausnahme der CO₂-Signale (s. S 76), denen von Z10.
- II) 20 mg 1-Indanon bzw. 20 mg *p*-Methoxyacetophenon werden jeweils zu einer Probe gegeben. Danach werden die Röhrchen verschlossen und 1 h lang auf 40 °C temperiert.

Z14, Z17, Z21 und ¹³CO₂

 Jeweils 100 mg der D2-Guanidin-Zink-Verbindungen Z14, Z17 bzw. Z21 werden in einem NMR-Röhrchen eingewogen und durch Zugabe von 0.7 ml THF-d₈ gelöst. Die Befüllung mit ¹³CO₂ erfolgt analog den vorangestellten Beispielen.

9.8.5 Polycarbonatsynthesen

Bei den ersten Versuchen zur Polycarbonatsynthese (**PC1-PC4**) wurden verschiedene Variationen (Temperatur, Zeit, Katalysatormenge) an ausgewählten Zink-Verbindungen **Z** getestet, um mit einer allgemeinen Vorschrift möglichst nah an den optimalen Einsatzbedingungen der Guanidin-Zink-Verbindungen zu arbeiten.

Allgemeine Vorschrift (für die Versuche PC5-PC17)

100-800 mg (0.12-0.3 mmol) der Zinkverbindung Z werden eingewogen und in den ausgeheizten Autoklaven mit Magnetrührer überführt. Anschließend gibt man 10 ml (9.7 g = 98.6 mmol) Cyclohexenoxid (98.14 g/mol) (d = 0.97 g/cm³) hinzu, verschließt den Autoklav und preßt solange CO₂ auf, bis ein konstanter Druck von 20 bar erhalten bleibt (Druck nimmt beim Rühren bis 17 bar ab, nach 5 min nochmals nachfüllen auf 20 bar). Danach wird der Autoklav im Ölbad unter Rühren auf 85 °C (Badtemperatur) erwärmt, wobei der Druck auf ca. 24 bar steigt.

Nach 20 h ist bei den meisten Ansätzen (mit ca. 30 % Umsatz) der Druck auf ca. 21 bar gefallen. Man kühlt auf RT, läßt den Druck ab und erhält einen grün floureszierenden

geleeartigen Rückstand. Dieser wird in 20 ml Dichlormethan gelöst und in 100 ml Methanol geben, dabei fällt ein klumpiger flockig-weißer Niederschlag aus. Nach dem Abdekantieren wird mit viel MeOH gewaschen, i. V. getrocknet und zur Reinigung von nicht umgesetzten Cyclohexenoxid nochmals umgefällt.

Da sich die NMR-Daten für das Polycarbonat wiederholen, wurden diese nur für den Versuch **PC1** vollständig aufgeführt.

PC1 mit **Z7**

570 mg (0.862 mmol) **Z7** (661.2) Bedingungen: 80 °C, 6 h Ausbeute: 0.910 g, (M_{mono}142.15) 6.4 mmol TON: 7.4 TOF: 1.2 IR(ATR): 1751 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57 Verhältnis von Polycarbonat zu Polyether (m : n) = 99 : 1 ¹³C-NMR (CD₂Cl₂): δ 22.1/22.4/22.9/23.1, 28.7/28.9/29.5/29.8, 76.1/76.6/77.2/77.3, 153.2/153.3/153.8 GPC: **Mn** 16.5 x 10³; **Mw** 43.13 x 10³; **Mz** 107.1 x 10³; **My** 37.51 x 10³

PC2 mit Z7 490 mg (0.741 mmol) Z7 (661.2) Bedingungen: 50 °C, 24 h Ausbeute: 1.23 g, (M_{mono} 142.15) 8.66 mmol TON: 11.47 TOF: 0.5 IR(ATR): 1747 cm⁻¹ Verhältnis von Polycarbonat zu Polyether (m : n) = 99 : 1 GPC: Mn 43,76 x 10³; Mw 199.6 x 10³; Mz 903.2 x 10³; Mv 155.8 x 10³

PC3 mit Z2 1600 mg (2.215 mmol) Z2 (722.28) Bedingungen: 80 °C, 2.5 h Ausbeute: 1.1 g, (M_{mono}142.15) 7.7 mmol TON: 3.5 TOF: 1.4 IR(ATR): 1750 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25-2.10, 4.57, 3.45 Verhältnis von Polycarbonat zu Polyether (m : n) = 95 : 5 GPC: Mn 8.0 x 10³; Mw 49.88 x 10³; Mz 166.6 x 10³; Mv 40.17 x 10³

PC4 mit Z2

278 mg (0.384 mmol) **Z2** (722.28) Bedingungen: 50 °C, 21.5 h Ausbeute: 1.71 g, (M_{mono}142.15) 12.0 mmol TON: 31.3 TOF: 1.5 IR(ATR): 1748 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57, 3.45 Verhältnis von Polycarbonat zu Polyether (m : n) = 87 : 13 GPC: **Mn** 5.232 x 10³; **Mw** 135 x 10³; **Mz** 1075 x 10³; **Mv** 90.09 x 10³

PC5 mit Z8

320 mg (0.480 mmol) **Z8** (666.23) Bedingungen: 80 °C, 20 h Ausbeute: 3.61 g, (M_{mono}142.15) 25.4 mmol TON: 52.9 TOF: 2.6 IR(ATR): 1747 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57 Verhältnis von Polycarbonat zu Polyether (m : n) = 99 : 1 GPC: **Mn** 26.36 x 10³; **Mw** 206.0 x 10³; **Mz** 1299 x 10³; **Mv** 148.7 x 10³

PC6 mit **Z10**

349 mg (0.472 mmol) **Z10** (783.32) einwiegen, Bedingungen: 80 °C, 20 h Ausbeute: kein Polymer erhalten.

PC7-PC10 In diesen Ansätzen wurden unter den selben Bedingungen außer Z10 noch Z13, Z15, Z21 und Z27, ebenfalls kein Polymer erhalten.

PC11 mit **Z2**

260 mg (0.360 mmol) **Z2** (722.28) Bedingungen: 80 °C, 20 h Ausbeute: 5.34 g, (M_{mono}142.15) 37.56 mmol TON: 104 TOF: 5.2 IR(ATR): 1750 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25-2.10, 4.57, 3.45 Verhältnis von Polycarbonat zu Polyether (m : n) = 95 : 5 GPC: **Mn** 21.58 x 10³; **Mw** 241.4 x 10³; **Mz** 1639 x 10³; **Mv** 161.5 x 10³

PC12 mit **Z1**

192 mg (0.301 mmol) **Z1** (638.20) Bedingungen: 80 °C, 20 h Ausbeute: 5.06 g, (M_{mono}142.15) 35.6 mmol TON: 108.3 TOF: 5.4 IR(ATR): 1750 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57, Verhältnis von Polycarbonat zu Polyether (m : n) = 99 : 1 GPC: **Mn** 23.01 x 10³; **Mw** 204.8 x 10³; **Mz** 1401 x 10³; **Mv** 146.0 x 10³

PC13 mit **Z5**

172 mg (0.254 mmol) **Z5** (678.18) Bedingungen: 80 °C, 21 h Ausbeute: 3.93 g, (M_{mono}142.15) 27.64 mmol TON: 109.1 TOF: 5.2 IR(ATR): 1750 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57, 3.45 Verhältnis von Polycarbonat zu Polyether (m : n) = 96 : 4 GPC: **Mn** 14.53 x 10³; **Mw** 215.8 x 10³; **Mz** 1387 x 10³; **Mv** 152.5 x 10³

PC14 mit **Z6**

336 mg (0.273 mmol) **Z6** (1232.87) Bedingungen: 80 °C, 18 h Ausbeute: 3.72 g, (M_{mono}142.15) 26.2 mmol TON: 95.8 TOF: 5.3 IR(ATR): 1750 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25-2.10, 4.57, 3.45 Verhältnis von Polycarbonat zu Polyether (m : n) = 94 : 6 GPC: **Mn** 13.83 x 10³; **Mw** 277.1 x 10³; **Mz** 2003 x 10³; **Mv** 186.8 x 10³

PC15 mit Z3 (34) 156 mg (0.226 mmol) Z3 (688.26) Bedingungen: 80 °C, 20 h Ausbeute: 3.64 g, ($M_{mono}142.15$) 25.60 mmol TON: 113.2 TOF: 5.6 IR(ATR): 1750 cm⁻¹ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57, 3.45

Verhältnis von Polycarbonat zu Polyether (m : n) = 95 : 5GPC: **Mn** 14.77 x 10³; **Mw** 238.1 x 10³; **Mz** 1789 x 10³; **Mv** 175.2 x 10³

PC16 mit **Z4**

132 mg (0.191 mmol) Z4 (690.28) einwiegen, Bedingungen: 80 °C, 20 h Ausbeute: 1.88 g, (M_{mono}142.15) 16.7 mmol TON: 69.2 TOF: 3.5 $IR(ATR): 1750 \text{ cm}^{-1}$ ¹H-NMR (CD₂Cl₂): δ 1.25 - 2.10, 4.57, 3.45 Verhältnis von Polycarbonat zu Polyether (m:n) = 95:5GPC: **Mn** 17.20 x 10³; **Mw** 239.2 x 10³; **Mz** 1622 x 10³; **Mv** 159.4 x 10³

Trimerisierung von Arylisocyanaten 9.8.6

Allgemeine Vorschrift:

0.5 mmol der D2-Guanidin-Zink-Verbindung werden in 50 ml Cyclohexenoxid (62) oder THF vorgelegt und unter Rühren mit 50 mmol des Arylisocyanats 67 versetzt. Innerhalb von ca. 5 min setzt Trübung und leichte Erwärmung des Reaktionsgemisches ein (Beschleunigung). Nach 10 min ist eine sehr dicke Suspension (beinahe fest) entstanden.

Die Reaktion läuft bei größerer Verdünnung oder weniger Katalysator langsamer ab, wurde jedoch nicht systematisch für verschiedene Bedingungen untersucht.

Das Produkt wird abgesaugt, mit wenig Diethylether gespült und i. V. getrocknet. Die kristallinen Produkte enthalten ein Äquivalent Cyclohexenoxid oder THF (des Lösungsmittels) und haben deshalb von den Literaturwerten abweichende Schmelzpunkte.

68a 1,3,5-Triphenyl-perhydro-1,3,5-triazin-2,4,6-trion aus 67a mit Z10 oder Z14 in Cyclohexenoxid

Ausbeute: 98 %. Fp.: 268-270 °C. IR (ATR): 1722 cm^{-1} , C = O. ¹H-NMR (DMSO-d₆): δ 1.11 - 1.35 (m, 4H), 1.80 (m, 4H), 3.41 (m, 2H), 7.36-7.52 (m, 15H). ¹³C-NMR (DMSO-d₆): δ 19.4, 24.8, 51.3, 129.1, 129.2, 129.3, 135.2, 149.3.

DEI MS m/z 357 (95) für C₂₁H₁₅N₃O₃⁺.

$C_{21}H_{15}N_3O_3 \ge 1 C_6H_{10}O$:	Ber.: C, 71.19; H, 5.53; N, 9.22.
(357.36 u. 98.14)	Gef.: C, 69.59; H, 5.46; N, 9.51.

68b 1,3,5-Tri-(4-methoxyphenyl)-perhydro-1,3,5-triazin-2,4,6-trion aus 67b mit Z10 oder Z14 in Cyclohexenoxid

Ausbeute: 92 %. Fp.: 241-243 °C. IR (ATR): 1697 cm⁻¹, C = O. ¹H-NMR (DMSO-d₆): δ 1.11 - 1.35 (m, 4H), 1.80 (m, 4H), 3.41 (m, 2H), 3.80 (s, 9H), 7.02 (d, 6H, J = 8.80 Hz), 7.34 (d, 6H, J = 8.70 Hz). ¹³C-NMR (DMSO-d₆): δ 19.4, 24.8, 51.3, 55.7, 114.8, 127.8, 130.2, 149.7, 159.5. DEI MS *m*/*z* 447 (40) für C₂₄H₂₁N₃O₆⁺. C₂₄H₂₁N₃O₆ x 1 C₆H₁₀O: Ber.: C, 66.04; H, 5.73; N, 7.70. (447.44 u. 98.14) Gef.: C, 65.85; H, 5.87; N, 7.92.

68c 1,3,5-Tri-(1-naphthyl)-perhydro-1,3,5-triazin-2,4,6-trion aus 67bc Naphthylisocyanat. mit Z14 in Cyclohexenoxid

Ausbeute: 97 %. Fp.: ab 322 °C Zers. IR (ATR): 1700 cm⁻¹, C = O. ¹H-NMR (DMSO-d₆): δ 1.11 - 1.35 (m, 4H), 1.80 (m, 4H), 3.41 (m, 2H), 7.60-8.55 (m, 21H). ¹³C-NMR (DMSO-d₆): δ 19.4, 24.8, 51.3, 123.2, 126.0, 126.9, 127.4, 127.8, 128.7, 129.9, 130.7, 131.7, 134.2, 149.5. DEI MS *m*/*z* 507 (10) für C₃₃H₂₁N₃O₃⁺. C₃₃H₂₁N₃O₃ x 1 C₆H₁₀O: Ber.: C, 77.34; H, 5.16; N, 6.94.

(507.54 u. 98.14) Gef.: C, 77.28; H, 5.44; N, 7.28.

9.8.7 Guanidin-Cu(II)-Komplexe

G13Cu

Die Synthese dieser Guanidin-Cu(II)-Verbindung erfolgte durch die Umsetzung von einem Äquivalent des Guanidinis **G13** mit einem Äquivalent Kupfer(II)-acetat in THF. Bei der Zugabe von Kupfer(II)acetats zu einer Suspension des Guanidins **G13** entsteht eine dunkelgrüne, klare Lösung, aus der bei Kühlung auf –20 °C feine Nadeln auskristallisieren. Durch Einengen der THF-Lösung und Rekristallisation aus Dimethylformamid (DMF) können röntgenfähige grüne Kristalle erhalten werden.

IR (ATR): 1660 (C = O), 1680 (w), 1577 (s), 1510 (ss), 1480 (ss) cm⁻¹. FAB MS (DMBA) m/z 585 (10) für C₂₆H₃₂CuN₇OS₂⁺. C₃₄H₅₁CuN₉O₆S₂ Ber.: C, 50.45; H, 6.35; N, 15.57. (809.5) Gef.: C, 50.22; H, 6.40; N, 15.72.

Von allen anderen Guanidin-Cu(II)-Verbindungen wurden nur Lösungen durch Umsetzungen den Guanidine mit Kupfer(II)acetat in Methanol hergestellt und direkt für die Katalyseversuche verwendet.

Publikationen und Tagungsbeiträge

"Preparation and Conversion of *N*-Halomethylpyridinium Halides. Comparison with Related Compounds."

Anders, E.; Opitz, A.; Wermann, K.; Wiedel, B.; Walther, M.; Imhof, W.; Görls, H. J. Org. Chem. **1999**, 64, 3113.

"Synthesis of Novel Substituted Aza-Macrocycles" Posterpräsentation auf dem 8th **B**elgian Organic **S**ynthesis **S**ymposium (BOSS 8) Walther, M.; Wermann, K.; Görls, H.; Anders, E. 10.-14. Juli **2000** in Ghent

Bis-(1,3,4-thiadiazolo)-1,3,5-triazinium Halides, 2: "Intramolecular Ring Transformation and Synthesis of Novel Highly Substituted Guanidines" Wermann, K.; Walther, M.; Günther, W.; Görls, H.; Anders, E. *J. Org. Chem.* **2001**, *66*, 720.

Bis-(1,3,4-thiadiazolo)-1,3,5-triazinium Halides, 3: "Synthesis of Guanidyl Functionalized 1,4,8,11-Tetraazacyclotetradecanes and Tris-(2-aminoethyl)amines: Application of a Novel Rearrangement" Walther, M.; Wermann, K.; Görls, H.; Anders, E. *Synthesis* **2001**, 1327.

Vewendung ausgewählter Ergebnisse der Dissertation zum Vortrag bei: FLORIDA HETEROCYCLIC COURSE AND CONFERENCE University of Florida Gainsville, Fl, March 6-8, **2002**, Organized by ARKAT-USA. Anders, E.; Wermann, K.; Walther, M.

Bis-(1,3,4-thiadiazolo)-1,3,5-triazinium Halides 4:"Syntheses of Azole-substituted Guanidines and *Bis*-(azolyl)-alkanes"Wermann, K.; Walther, M.; Anders, E. zur Veröffentlichung eingereicht.

Bis-(1,3,4-thiadiazolo)-1,3,5-triazinium Halides, 5:

"A New Precursor for the Synthesis of Guanidines and Bis-(1,2,4-triazolo)-1,3,5-triazinium Halides"

Wermann, K.; Walther, M.; Günther, W.; Görls, H.; Anders, E.

Publikation in Vorbereitung

Die vorliegende Arbeit wurde unter Anleitung von Herrn Prof. Dr. E. Anders in der Zeit von August 1997 bis April 2002 am Institut für Organische Chemie und Makromolekulare Chemie der Friedrich-Schiller-Universität Jena angefertigt.

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. E. Anders für die interessante Themenstellung, die Bereitstellung des Arbeitsplatzes und seine ergänzenden Beiträge zu Mechanismeninterpretationen in Form von DFT-Berechnungen bedanken. Herrn Dr. K. Wermann danke ich für anregende Diskussionen und die Zusammenarbeit bei der Untersuchung der 5/6/5-Heterocyclen.

Weiterhin danke ich:

Frau H. Zdon und Frau A. Schramm für ihre umfangreichen präparativen Arbeiten.

Herrn S. Schenk für die PM3-Struktur-Berechnungen und Unterstützung bei Problemen aus dem Bereich der *Computational Chemistry*.

Herrn PD Dr. G. Rauhut für weitere DFT-Berechnungen.

Herrn Dr. M. Kunert für die Zusammenarbeit im Rahmen des Sonderforschungsbereiches (SFB 436) und das Know How zu ¹³CO₂-NMR-Experimenten.

Herrn Dr. W. Günther, Frau K. Feuerstein, Frau U. Hallpap und Frau Friedrich für die Aufnahme der zahlreichen NMR-Spektren.

Herrn Dr. H. Görls für die Anfertigung der Röntgenkristallstrukturanalysen.

Herrn Dr. W. Poppitz und Frau Heineck für die Aufnahme der Massenspektren.

Frau E. Arnold für die GPC-Messungen.

Herrn Prof. M. Döring ebenfalls für die Zusammenarbeit im Rahmen des Sonderforschungsbereiches (SFB 436) und die Anregungen aus "Anorganischer Sicht".

Frau H. Naumann und Frau H. Schönfeld für die Anfertigung der Elementaranalysen.

Frau D. Hampe, Frau S. Kaiser und Frau C. Jacobitz für die Korrekturarbeiten am umfangreichen Manuskript.

Herrn Dr. M. Rost für die präparativen Tips und Anregungen und die motivierenden Gespräche.

Herrn Dr. R. Wegner für die gute Zusammenarbeit im Rahmen des Sonderforschungsbereiches (SFB 436).

Herrn U. Hempel für die schnelle und unermüdliche Instandsetzung von Glasgeräten.

Allen Mitarbeiter der Arbeitsgruppe Anders für die angenehme Arbeitsatmosphäre.

Allen Studenten, die im Rahmen von Praktikas an den vorgestellten Synthesen beteiligt waren und allen anderen Mitarbeitern des Instituts für ihre Hilfsbereitschaft und Unterstützung.

Selbständigkeitserklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt habe.

Jena, 06.05. 2002

Lebenslauf

Persönliche Daten:

Name:	Martin Walther
Geburtstag:	09.08.1970
Geburtsort:	Gotha
Anschrift:	Dorfstraße 37, 07778 OT Nerkewitz / Lehesten
Familienstand:	ledig
Eltern:	Dr. Heinrich Walther
	Gertrud Walther, geb. Migula
Schulausbildung:	
1977-1987	Zehnklassige Allgemeinbildende Polytechnische Oberschule
	"Reyer I" in Gotha.
1987-1989	Erweiterte Oberschule "Arnoldi" in Gotha
Juni 1989	Abitur
Wehrdienst:	
1989-1990	NVA, Bausoldat im zivilen Einsatz
Studium:	
1991-1996	Studium der Chemie an der Friedrich-Schiller-
	Universität Jena
	Schwerpunktfach: Organische Chemie
	Wahlpflichtfach: Metallorganische Chemie
1996	Diplomarbeit im Fachbereich: Organische Chemie
	(Prof. Dr. E. Anders)
	"Synthese, Eigenschaften und Reaktionen neuer
	N-(Polyhalogenoalkyl)heteroaryliumhalogenide"
02.10.1996	Diplom-Chemiker-Hauptprüfung
1996-1997	Magisterstudium Biologie und Geographie an der
	Friedrich-Schiller-Universität Jena
seit August 1997	Dissertation (bei Prof. Dr. E. Anders)

Anhang

NMR-Spektren des Betains **26b** ¹H-NMR in CDCl₃ bei –50 °C

Bezeichnung	Energie	ZPE	NIMAG	Korrektur	Rel. Energie
					in kcal/mol
getrennte Rktd.	-1476.683947	0.249582	0	-1476.434365	0.0
ÜZ(A)	-1476.671328	0.254046	1	-1476.417282	10.7
22a	-1476.670172	0.252545	0	-1476.417627	10.5
22b	-1476.685973	0.253580	0	-1476.432393	1.2
22e	-1476.640277	0.252555	0	-1476.387722	29.3
ÜZ(B)	-1476.670517	0.251518	0	-1476.418999	9.6
25	-1476.685556	0.252398	0	-1476.433158	0.8

Daten der Berechnungen zur Abb. 3-5 (B3LYP/cc-pVDZ Optimierung)

Daten der Berechnungen zur Abb. 3-11 (B3LYP/cc-pVDZ Optimierung)

Bezeichnung	Energie	ZPE	NIMAG	Korrektur	Rel. Energie
					in kcal/mol
23 (Konf. A)	-1476.283899	0.239854	0	-1476.044045	4.9
23 (Konf. B)	-1476.292481	0.240682	0	-1476.051799	0.0
26	-1476.297432	0.239909	0	-1476.057523	-3.6
ÜZ(A)	-1476.278152	0.239820	1	-1476.038332	8.5
ÜZ(B)	-1476.256451	0.237208	1	-1476.019243	20.4
G	-1476.306473	0.238435	0	-1476.068038	-10.2

Daten der Berechnungen zur Abb. 3-24 (B3LYP/cc-pVDZ Optimierung)

Bezeichnung	Energie	ZPE	NIMAG	Korrektur	Rel. Energie
					in kcal/mol
26	-1476.297432	0.239917	0	-1476.057515	0.0
27SH	-1476.277826	0.236108	0	-1476.041718	9.9
27	-1476.291048	0.239949	0	-1476.051099	4.0
ÜZ-A	-1476.242958	0.235120	1	-1476.007838	31.2
ÜZ-B	-1476.262673	0.240395	1	-1476.022278	22.1
NNS27SH	-1476.289705	0.237335	0	-1476.052370	3.2
NNS27	-1476.267332	0.241797	0	-1476.025535	20.1

Verbindung 6a	KS-1 (FO840) CCDC no. 146230
Summenformel	$C_{12}H_{11}Cl_2NO$
Molekulargewicht (berechnet) [g/mol]	256.12
Zellparameter	
a [Å]	12.0348 (4)
b [Å]	8.6911 (2)
c [Å]	11.4507 (4)
α [°]	90
β [°]	90
γ ^[°]	90
Volumen der Elementarzelle V [Å ³]	1197.69(6)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.420
Kristallsystem	orthorhombisch
Raumgruppe	$Pna2_1$ No. 14
Kristallgröße [mm ³]	0.32 x 0.28 x 0.26
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	5.19
Absorptionskorrektur, min-max. Transmission	-
Anzahl aller gemessenen Reflexe	3040
Anzahl symmetrieunabhängiger Reflexe	1641
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	1588
Anzahl der verfeinerten Parameter	153
GOOF	0.883
R1 _{obs}	0.0235
wR2 _{obs}	0.0678
Differenzelektronendichte(min/max)[e Å ⁻³]	0.167 und -0.216

Table 3. Bond lengths $[\dot{A}]$ and angles $[^{\circ}]$ for 1.

	the second s		1	
C1(1) - C(1)	1,786(2)	0-C(12)	1.363(3)	
N-C(2)	1.352(3)	N-C(6)	1.351(3)	
N-C(1)	1.497(3)	C(1)-C(7)	1.504(3)	
C(2)-C(3)	1.375(4)	C(3)-C(4)	1.386(4)	
C(4)-C(5)	1.387(4)	C(5)-C(6)	1.376(4)	
C(7)-C(8)	1.401(3)	C(7)-C(12)	1.414(3)	
C(8)-C(9)	1.394(4)	C(9)-C(10)	1.381(4)	1
C(10)-C(11)	1.384(4)	C(11)-C(12)	1.398(3)	
C(2)-N-C(6)	121.0(2)	C(2)-N-C(1)	120.1(2)	
C(6)-N-C(1)	118.9(2)	N-C(1)-C(7)	111.7(2)	
N-C(1)-Cl(1)	107.70(14)	C(7)-C(1)-C1(1)	114.1(2)	
N-C(2)-C(3)	120.5(2)	C(2)-C(3)-C(4)	119.1(2)	
C(5)-C(4)-C(3)	119.7(2)	C(6)-C(5)-C(4)	119.3(2)	
N-C(6)-C(5)	120.3(2)	C(8)-C(7)-C(12)	118.9(2)	
C(8)-C(7)-C(1)	124.0(2)	C(12)-C(7)-C(1)	117.1(2)	
C(9)-C(8)-C(7)	_ 120.5(2)	C(10) -C(9) -C(8)	120.0(2)	
C(9)-C(10)-C(11)	120.7(2)	C(10)-C(11)-C(12)	120.1(2)	
0-C(12)-C(11)	123.3(2)	0-C(12)-C(7)	116.8(2)	
C(11)-C(12)-C(7)	119.8(2)	같아. 많은 방송 관람이 있는 것이.		

Verbindung 1c Kation mit Zn-Imin-Kompl.	KS-2 (FO1158)
Summenformel	$C_{35}H_{43}Cl_2N_7O_{11}S_2Zn$
Molekulargewicht (berechnet) [g/mol]	938.15
Zellparameter	
a [Å]	10.0344(4)
b [Å]	13.3586(4)
c [Å]	17.2515(5)
α[°]	77.865(2)
β [°]	83.487(2)
γ [°]	68.247(2)
Volumen der Elementarzelle V [Å ³]	2098.22 (12)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	2
Dichte (berechnet) [g/cm ³]	1.485
Kristallsystem	triklin
Raumgruppe	P-1 No. 2
Kristallgröße [mm ³]	0.28 x 0.24 x 0.12
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	8.77
Absorptionskorrektur, min-max. Transmission	0.7912-0.9020
Anzahl aller gemessenen Reflexe	15996
Anzahl symmetrieunabhängiger Reflexe	9453
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	7145
Anzahl der verfeinerten Parameter	659
GOOF	1.011
R1 _{obs}	0.0452
wR2 _{obs}	0.110
Differenzelektronendichte(min/max)[e Å ⁻³]	0.635 und -0.696

Table 1. Bond lengths $[\dot{A}]$ and angles $[^{O}]$ for foll58.

	0.0000/10)		0.000/01
2n-0(1A)#1	2.0328(19)	Zn-N(2A)	2.060(2)
2n-0(1A)	2.0/95(19)	211-N(1A)	2.100(2)
2n-0(2A)	2.109(2)	V(1h) - C(1h)	1.344(3)
V(1A) - C(FA)	1 363/4)	N(1A)-C(1A)	1 291(4)
$N(2\lambda) - C(2\lambda)$	1 494 (4)	C(13)-C(23)	1 393/4)
R(2R) - C(7R)	1 301/5)	$C(2\mathbf{x}) = C(2\mathbf{x})$	1.303(4)
C(2R) = C(5R)	1 303(4)	C(5A) - C(4A)	1 496(5)
C(4R) - C(5R)	1.535(4)	C(8)-C(8)	1 457(4)
C(0X) - C(14X)	1 416(4)	C(0A) -C(1A)	1 416(4)
C(3R) - C(13R)	1 380/5)	C(112) - C(122)	1.380(6)
C(12h) - C(11h)	1 302(5)	C(13A) -C(14A)	1 407 (4)
0(23) -0(153)	1 451 (4)	C(15A) -C(16A)	1.503(5)
C(1) -C(1)	1 729(2)	6(1)-C(2B)	1.758(2)
S(2) -C(4B)	1.726(2)	B(2)-C(5B)	1.761(2)
O(1P) - C(11P)	1 367 (3)	N(1B) -C(3B)	1 341(3)
N(1P)-N(2P)	1.307(3)	N(1B)-C(3B)	1 476(3)
N(2B) -C(2B)	1 299(3)	N(3B)-C(3B)	1,335(3)
N(2B) -C(4B)	1.336(3)	N(4B)-C(5B)	1,297(3)
N(AB) -N(5B)	1.379(3)	N(5B)-C(4B)	1,343(3)
N(ED) -C(1D)	1 490(3)	C(1B) -C(5B)	1 508(3)
G(2B) -C(12B)	1.517(3)	C(5B)-C(16B)	1.520(3)
C(2B) - C(12B)	1 300/3)	C(5B) -C(7B)	1 399(3)
C(7P) -C(PP)	1 391 (4)	C(8B)-C(9B)	1.386(4)
C(0B) = C(10B)	1 303(4)	C(10B) - C(11B)	1 399(3)
C(12B) - C(15B)	1.535(4)	C(12B) -C(14B)	1.547(4)
C(12B) - C(13B)	1 548(4)	C(16B) -C(17B)	1.502(5)
C(16B) -C(19B)	1.512(5)	C(16B) - C(19B)	1.513(4)
C1(1)-O(2)	1.419(2)	C1(1)-0(4)	1.431(2)
$C_1(1) = O(1)$	1.450(2)	C1(1)-0(3)	1,457(2)
C1(2) = O(7)	1.374(4)	C1(2) = O(8)	1.374(5)
C1 (2) -O(6)	1.416(3)	C1(2) = O(5)	1,462(3)
01(1)-0(0)	11110(0)	01(0) 0(0)	
O(1A)#1-Zn-N(2A)	113.95(9)	O(1A)#1-Zn-O(1A)	79.42(8)
N(2A)-Zn-O(1A)	86.13(9)	O(1A)#1-Zn-N(1A)	101.75(8)
N(2A)-Zn-N(1A)	94.65(10)	O(1A)-Zn-N(1A)	178.16(8)
O(1A)#1-Zn-O(2A)	101.42(9)	N(2A)-Zn-O(2A)	142.50(9)
0(1A)-Zn-0(2A)	88.58(8)	N(1A)-Zn-O(2A)	89.78(9)
C(14A)-O(1A)-Zn#1	129.22(17)	C(14A)-O(1A)-Zn	123.79(17)
Zn#1-0(1A)-Zn	100.58(8)	C(1A)-N(1A)-C(5A)	118.3(3)
C(1A)-N(1A)-Zn	116.23(19)	C(5A)-N(1A)-Zn	125.4(2)
C(8A)-N(2A)-C(7A)	118.2(3)	C(8A)-N(2A)-Zn	125.7(2)
C(7A)-N(2A)-Zn	115.81(19)	N(1A)-C(1A)-C(2A)	123.7(3)
C(3A)-C(2A)-C(1A)	117.9(4)	C(4A)-C(3A)-C(2A)	119.2(3)
C(3A)-C(4A)-C(5A)	120.9(3)	N(1A)-C(5A)-C(4A)	120.0(3)
N(1A)-C(5A)-C(6A)	119.7(3)	C(4A)-C(5A)-C(6A)	120.3(3)
C(5A)-C(6A)-C(7A)	116.8(3)	N(2A)-C(7A)-C(6A)	111.7(3)
N(2A)-C(8A)-C(9A)	126.7(3)	C(14A)-C(9A)-C(10A)	118.8(3)
C(14A)-C(9A)-C(8A)	123.5(3)	C(10A)-C(9A)-C(8A)	117.7(3)
C(11A) -C(10A) -C(9A)	121.5(4)	C(12A)-C(11A)-C(10A)	119.1(3)
C(11A) -C(12A) -C(13A)	121.4(3)	C(12A)-C(13A)-C(14A)	120.4(3)
0(1A)-C(14A)-C(13A)	119.9(3)	O(1A)-C(14A)-C(9A)	121.5(2)
C(13A)-C(14A)-C(9A)	118.7(3)	C(15A)-O(2A)-Zn	122.9(2)
O(2A)-C(15A)-C(16A)	112.6(3)	C(3B)-S(1)-C(2B)	88.97(11)
C(4B)-S(2)-C(5B)	88.74(11)	C(3B)-N(1B)-N(2B)	117.95(18)

C(3B)-N(1B)-C(1B)	125.54(19)	N(2B) - N(1B) - C(1B)	116.40(18)
C(2B)-N(2B)-N(1B)	109.59(19)	C(3B)-N(3B)-C(4B)	112.01(19)
C(5B)-N(4B)-N(5B)	109.48(18)	C(4B) - N(5B) - N(4B)	117.81(19)
C(4B)-N(5B)-C(1B)	125.26(18)	N(4B) - N(5B) - C(1B)	116.85(17)
N(1B) - C(1B) - N(5B)	103.86(17)	N(1B) - C(1B) - C(6B)	113.33(19)
N(5B)-C(1B)-C(6B)	112.86(19)	N(2B) - C(2B) - C(12B)	123.8(2)
N(2B) - C(2B) - S(1)	114.50(17)	C(12B)-C(2B)-S(1)	121.65(17)
N(3B) - C(3B) - N(1B)	126.3(2)	N(3B)-C(3B)-S(1)	124.74(17)
N(1B) - C(3B) - S(1)	108.94(17)	N(3B) - C(4B) - N(5B)	126.2(2)
N(3B) - C(4B) - S(2)	124.53(18)	N(5B) - C(4B) - S(2)	109.21(16)
N(4B)-C(5B)-C(16B)	124.0(2)	N(4B) - C(5B) - S(2)	114.71(17)
C(16B)-C(5B)-S(2)	121.28(18)	C(11B)-C(6B)-C(7B)	119.0(2)
C(11B)-C(6B)-C(1B)	121.8(2)	C(7B)-C(6B)-C(1B)	119.2(2)
C(8B)-C(7B)-C(6B)	121.0(3)	C(9B)-C(8B)-C(7B)	119.3(3)
C(8B)-C(9B)-C(10B)	120.8(3)	C(9B)-C(10B)-C(11B)	119.7(3)
O(1B)-C(11B)-C(6B)	117.4(2)	O(1B)-C(11B)-C(10B)	122.5(2)
C(6B)-C(11B)-C(10B)	120.1(2)	C(2B)-C(12B)-C(15B)	110.5(2)
C(2B) - C(12B) - C(14B)	108.7(2)	C(15B)-C(12B)-C(14B)	111.0(2)
C(2B) - C(12B) - C(13B)	107.5(2)	C(15B)-C(12B)-C(13B)	109.9(3)
C(14B)-C(12B)-C(13B)	109.2(2)	C(17B)-C(16B)-C(18B)	110.3(5)
C(17B)-C(16B)-C(19B)	109.3(4)	C(18B)-C(16B)-C(19B)	110.6(4)
C(17B)-C(16B)-C(5B)	107.9(2)	C(18B)-C(16B)-C(5B)	108.5(3)
C(19B)-C(16B)-C(5B)	110.2(2)	O(2)-Cl(1)-O(4)	109.51(15)
O(2) - Cl(1) - O(1)	110.05(15)	O(4)-Cl(1)-O(1)	110.09(14)
O(2) - Cl(1) - O(3)	108.98(16)	O(4)-Cl(1)-O(3)	109.54(16)
O(1) - Cl(1) - O(3)	108.66(13)	0(7)-Cl(2)-O(8)	109.7(5)
O(7) - Cl(2) - O(6)	110.2(3)	O(8)-Cl(2)-O(6)	110.6(3)
O(7) - C1(2) - O(5)	106.2(3)	O(8)-Cl(2)-O(5)	108.7(3)
O(6)-Cl(2)-O(5)	111.37(19)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z+1

Mit dem 5/6/5-Kation 1c auskristallisierter Zink-Pyrid-2-yl-Salicylidenimin-Komplex

Verbindung G28	KS-3 (FO1536)
Summenformel	$C_{27}H_{26}N_4OS_2$
Molekulargewicht (berechnet) [g/mol]	486.64
Zellparameter	
a [Å]	9.9870(6)
b [Å]	14.1255(7)
c [Å]	17.1257(8)
α [°]	90.00
β [°]	90.193(2)
γ [°]	90.00
Volumen der Elementarzelle V [Å ³]	2415.9(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.338
Kristallsystem	monoklin
Raumgruppe	$P2_1/n$ No.14
Kristallgröße [mm ³]	0.10 x 0.10 x 0.09
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	2.49
Absorptionskorrektur, min-max. Transmission	0.9756-0.9780
Anzahl aller gemessenen Reflexe	9568
Anzahl symmetrieunabhängiger Reflexe	5434
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	3869
Anzahl der verfeinerten Parameter	307
GOOF	1.792
R1 _{obs}	0.1458
wR2 _{obs}	0.4427
Differenzelektronendichte(min/max)[e Å ⁻³]	1.789 und -0.692

		* ************************************	21
S(1) - C(2)	1.768(7)	S(1) - C(1)	1.868(7)
S(2) - C(22)	1.718(7)	S(2) - C(21)	1.768(7)
O(1) - C(11)	1.364(9)	O(1)-C(14)	1.421(10)
N(1) - C(20)	1.385(8)	N(1) - C(7)	1.402(9)
N(1) - C(1)	1.461(8)	N(2) - C(20)	1.348(8)
N(2) - C(15)	1.461(8)	N(2) - C(19)	1.468(8)
N(3) - C(20)	1.319(8)	N(3) - C(21)	1.363(8)
N(4) - C(21)	1.308(9)	N(4) - C(27)	1.390(8)
C(1) - C(8)	1.493(10)	C(2)-C(3)	1.372(10)
C(2) - C(7)	1.407(9)	C(3)-C(4)	1.385(11)
C(4) - C(5)	1.382(10)	C(5)-C(6)	1.390(10)
C(6)-C(7)	1.372(10)	C(8)-C(13)	1.393(10)
C(8)-C(9)	1.394(10)	C(9)-C(10)	1.381(11)
C(10)-C(11)	1.397(10)	C(11)-C(12)	1.390(10)
C(12)-C(13)	1.366(11)	C(15)-C(16)	1.528(10)
C(16)-C(17)	1.525(11)	C(17)-C(18)	1.521(12)
C(18)-C(19)	1.524(11)	C(22)-C(23)	1.405(9)
C(22) - C(27)	1.405(10)	C(23)-C(24)	1.395(12)
C(24)-C(25)	1.377(13)	C(25)-C(26)	1.393(10)
C(26)-C(27)	1.394(11)		
		(00) (0) (01)	
C(2) - S(1) - C(1)	90.3(3)	C(22) - S(2) - C(21)	89.4(3)
C(11) - O(1) - C(14)	117.3(6)	C(20) - N(1) - C(7)	123.4(5)
C(20) - N(1) - C(1)	122.8(6)	C(7) - N(1) - C(1)	112.5(5)
C(20) - N(2) - C(15)	123.6(5)	C(20) - N(2) - C(19)	121.6(5)
C(15) - N(2) - C(19)	114.7(5)	C(20) - N(3) - C(21)	121.2(6)
C(21) - N(4) - C(27)	110.5(6)	N(1) - C(1) - C(8)	114.4(6)
N(1) - C(1) - S(1)	101.9(4)	C(8) - C(1) - S(1)	110.9(5)
C(3) - C(2) - C(7)	120.9(6)	C(3) - C(2) - S(1)	128.5(6)
C(7) - C(2) - S(1)	110.5(5)	C(2) - C(3) - C(4)	119.0(7)
C(3) - C(4) - C(5)	120.4(7)	C(4) - C(5) - C(6)	120.5(7)
C(7)-C(6)-C(5)	119.4(6)	C(6) - C(7) - N(1)	127.5(6)
C(6) - C(7) - C(2)	119.6(6)	N(1) - C(7) - C(2)	112.8(6)
C(13)-C(8)-C(9)	117.6(7)	C(13) - C(8) - C(1)	119.8(6)
C(9) - C(8) - C(1)	122.5(6)	C(10) - C(9) - C(8)	121.2(6)
C(9)-C(10)-C(11)	119.7(6)	O(1) - C(11) - C(10)	124.0(6)
O(1)-C(11)-C(12)	116.3(6)	C(10) - C(11) - C(12)	119.7(7)
C(13)-C(12)-C(11)	119.5(7)	C(12) - C(13) - C(8)	122.2(7)
N(2) - C(15) - C(16)	110.8(6)	C(17)-C(16)-C(15)	110.1(6)
C(18)-C(17)-C(16)	110.0(6)	C(17)-C(18)-C(19)	112.0(6)
N(2) - C(19) - C(18)	112.3(6)	N(3) - C(20) - N(2)	120.4(6)
N(3) - C(20) - N(1)	124.2(6)	N(2) - C(20) - N(1)	115.3(6)
N(4) - C(21) - N(3)	129.6(6)	N(4) - C(21) - S(2)	115.0(5)
N(3) - C(21) - S(2)	115.2(5)	C(23)-C(22)-C(27)	121.1(7)
C(23)-C(22)-S(2)	129.2(6)	C(27)-C(22)-S(2)	109.7(5)
C(24)-C(23)-C(22)	118.0(8)	C(25)-C(24)-C(23)	121.3(7)
C(24)-C(25)-C(26)	120.7(8)	C(25)-C(26)-C(27)	119.7(8)
N(4) - C(27) - C(26)	125.3(7)	N(4) - C(27) - C(22)	115.4(6)
C(26)-C(27)-C(22)	119.2(6)		

Table 1. Bond lengths [Å] and angles [^O] for fo1536.

Verbindung 30a (Strukturmotiv)	KS-4 (FO1310)
Summenformel	C ₂₆ H ₂₆ ClN ₉ O ₄ x 0.5CH ₃ OH
Molekulargewicht (berechnet) [g/mol]	580.03
Zellparameter	
a [Å]	23.9830(5)
b [Å]	12.1432(2)
c [Å]	19.3079(4)
α [°]	90.00
ß[°]	92.163(1)
γ [°]	90.00
Volumen der Elementarzelle V [Å ³]	5597.9(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	8
Dichte (berechnet) [g/cm ³]	1.376
Kristallsystem	monoklin
Raumgruppe	$P2_1/n$ No. 14
Kristallgröße [mm ³]	0.18 x 0.12 x 0.12
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	1.89
Absorptionskorrektur, min-max. Transmission	0.9668-0.9777
Anzahl aller gemessenen Reflexe	9390
Anzahl symmetrieunabhängiger Reflexe	6452
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	5482
Anzahl der verfeinerten Parameter	740
GOOF	3.185
R1 _{obs}	0.2056
wR2 _{obs}	0.4216
Differenzelektronendichte(min/max)[e Å ⁻³]	1.302 und -1.252

V 1 1 2 7 .	KG = (EQ1207)
Verbindung 35a	KS-5 (FO1307)
Summenformel	$C_{26}H_{27}N_9O$
Molekulargewicht (berechnet) [g/mol]	481.57
Zellparameter	
a [A]	10.34.7(6)
b [Å]	10.6149(8)
c [Å]	12.9281(9)
α [°]	74.003(4)
β [°]	77.040(4)
γ [°]	64.075(4)
Volumen der Elementarzelle V [Å ³]	1218.9(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	2
Dichte (berechnet) [g/cm ³]	1.312
Kristallsystem	triklin
Raumgruppe	P-1 No. 2
Kristallgröße [mm ³]	0.20 x 0.18 x 0.12
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	0.86
Absorptionskorrektur, min-max. Transmission	0.9830-0.9897
Anzahl aller gemessenen Reflexe	8063
Anzahl symmetrieunabhängiger Reflexe	5425
Anzahl der Reflexe mit $F_0^2 > 2\sigma(F_0^2)$	4193
Anzahl der verfeinerten Parameter	433
GOOF	1.177
Rlobs	0.0936
wR2 _{obc}	0 1418
Differenzelektronendichte(min/max)[e Å ⁻³]	0.192 und -0.296
	C26 ()

	1 242 (2)	N(2) (2)	1 200 (2)
O(1) - C(2)	1.243(3)	N(2) - C(3)	1.299(3)
N(2) - N(1)	1.397(3)	N(3) - C(3)	1.374(3)
N(3) - C(2)	1.384(3)	N(3) - C(4)	1.40/(3)
N(4) - C(5)	1.334(4)	N(4) - C(9)	1,355(5)
N(5) - C(10)	1.378(3)	N(5) - N(6)	1, 202 (2)
N(5) - C(1)	1.447(3)	N(6) - C(11)	1, 303 (3)
N(7) - C(11)	1.3/2(3) 1.4FF(2)	N(7) = C(10)	1.383(3)
N(7) - C(12)	1,400(3)	N(8) - C(10)	1.262(3)
N(9) - C(13)	1.334(3)	R(3) = C(17)	1, 540(3)
C(1) - N(1)	1.456(3)	C(1) - C(20)	1.317(3)
N(1) - C(2)	1.500(3)	C(3) = C(18)	1.481(4)
C(4) - C(5)	1.309(4)	C(3) - C(8)	1.366(4)
C(6) - C(7)	1.386(5)	C(7) = C(8)	1.354(6)
C(8) - C(9)	1.349(6)	C(11) - C(19)	1.482(3)
C(12) - C(13)	1.515(3)	C(13) - C(14)	1.381(3)
C(14) - C(15)	1.382(4)	C(15) - C(16)	1.372(4)
C(16) - C(17)	1.376(4)	C(20) - C(25)	1.380(3)
C(20) - C(21)	1.393(3)	C(21) - C(22)	1.383(3)
C(22) - C(23)	1.390(4)	C(23) - C(24)	1.383(4)
C(23)-C(26)	1.509(4)	C(24)-C(25)	1.392(4)
C(3)-N(2)-N(1)	104.22(19)	C(3)-N(3)-C(2)	108.13(19)
C(3)-N(3)-C(4)	127.9(2)	C(2) - N(3) - C(4)	123.7(2)
C(5) - N(4) - C(9)	116.3(3)	C(10)-N(5)-N(6)	112.64(18)
C(10)-N(5)-C(1)	124.25(19)	N(6) - N(5) - C(1)	123.09(18)
C(11)-N(6)-N(5)	103.83(18)	C(11)-N(7)-C(10)	108.94(19)
C(11)-N(7)-C(12)	129.0(2)	C(10) - N(7) - C(12)	122.0(2)
C(13)-N(9)-C(17)	117.3(2)	N(5) - C(1) - N(1)	112.03(18)
N(5)-C(1)-C(20)	113.30(19)	N(1) - C(1) - C(20)	113.26(19)
C(2) - N(1) - N(2)	112.24(19)	C(2) - N(1) - C(1)	124.78(19)
N(2) - N(1) - C(1)	122.14(18)	O(1) - C(2) - N(1)	129.2(2)
O(1)-C(2)-N(3)	127.4(2)	N(1) - C(2) - N(3)	103.4(2)
N(2) - C(3) - N(3)	112.0(2)	N(2) - C(3) - C(18)	124.5(2)
N(3)-C(3)-C(18)	123.5(2)	N(3) - C(4) - C(5)	112.1(2)
N(4) - C(5) - C(6)	122.6(3)	N(4) - C(5) - C(4)	115.9(3)
C(6)-C(5)-C(4)	121.5(3)	C(5)-C(6)-C(7)	119.0(4)
C(8)-C(7)-C(6)	119.5(4)	C(9)-C(8)-C(7)	118.0(3)
C(8) - C(9) - N(4)	124.7(4)	N(8) - C(10) - N(5)	132.5(2)
N(8)-C(10)-N(7)	125.0(2)	N(5) - C(10) - N(7)	102.54(19)
N(6)-C(11)-N(7)	112.0(2)	N(6)-C(11)-C(19)	123.8(2)
N(7)-C(11)-C(19)	124.2(2)	N(7) - C(12) - C(13)	112.74(19)
N(9)-C(13)-C(14)	122.7(2)	N(9)-C(13)-C(12)	116.3(2)
C(14)-C(13)-C(12)	120.9(2)	C(15)-C(14)-C(13)	118.9(2)
C(16)-C(15)-C(14)	119.0(3)	C(17)-C(16)-C(15)	118.2(3)
N(9)-C(17)-C(16)	123.8(3)	C(25)-C(20)-C(21)	118.8(2)
C(25)-C(20)-C(1)	118.4(2)	C(21)-C(20)-C(1)	122.8(2)
C(22)-C(21)-C(20)	119.8(2)	C(21)-C(22)-C(23)	122.1(2)
C(24)-C(23)-C(22)	117.5(2)	C(24)-C(23)-C(26)	121.5(3)
C(22)-C(23)-C(26)	121.0(3)	C(23)-C(24)-C(25)	121.1(3)
C(20)-C(25)-C(24)	120.8(2)		

Table 1. Bond lengths [Å] and angles [^O] for fo1307.

Verbindung 43	KS-6 (FO1498)
Summenformel	$C_{26}H_{31}N_5OS_3$
Molekulargewicht (berechnet) [g/mol]	525.74
Zellparameter	
a [Å]	7.6178(6)
b [Å]	9.532(1)
c [Å]	10.344(2)
α [°]	83.24(1)
ß [°]	70.42(1)
γ [°]	72.99(1)
Volumen der Elementarzelle V [Å ³]	676.6(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	1
Dichte (berechnet) [g/cm ³]	1.290
Kristallsystem	triklin
Raumgruppe	P1 No.1
Kristallgröße [mm ³]	0.22 x 0.20 x 0.18
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	3.02
Absorptionskorrektur, min-max. Transmission	0.9365-0.9476
Anzahl aller gemessenen Reflexe	3264
Anzahl symmetrieunabhängiger Reflexe	3264
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	2603
Anzahl der verfeinerten Parameter	324
GOOF	1.059
R1 _{obs}	0.0426
wR2 _{obs}	0.1008
Differenzelektronendichte(min/max)[e Å ⁻³]	0.502 und -0.415

G(1) G(2)	1 746(4)	C(1) = C(2)	1 751(4)
S(1) - C(2)	1.740(4) 1.736(4)	S(1) - C(3) S(2) - C(8)	1.740(4)
S(2) - C(3)	1.753(4)	S(2) = C(0)	1.810(4)
S(3) = C(14)	1 359(5)	N(1) = C(3)	1.010(4) 1.301(5)
V(1) - C(20)	1.359(5)	N(2) = C(3)	1.364(5)
N(1) - C(8)	1 200(5)	N(2) = C(1)	1.304(5) 1.461(5)
N(2) - N(3)	1.380(5)	N(2) = C(1) N(4) = C(8)	1.295(6)
N(3) - C(2)	1 201 (5)	N(4) = C(0)	1.294(6)
N(4) - N(5)	1.501(5) 1.527(6)	R(3) = C(3)	1.505(6)
C(1) = C(21)	1.525(8)	C(2) = C(2)	1.505(0) 1.527(7)
C(4) = C(5)	1.525(8)	C(9) - C(10)	1,527(7) 1,507(6)
C(4) = C(3)	1.527(6)	C(10) - C(13)	1.528(7)
C(10) - C(12)	1.525(0) 1.540(7)	C(14) - C(15)	1 401 (6)
C(10) - C(11)	1.340(7)	C(15) - C(15)	1.377(7)
C(14) - C(13)	1 392(7)	C(17) - C(18)	1.377(7) 1.384(7)
C(17) - C(20)	1.592(7) 1.505(7)	C(18) - C(19)	1.385(7)
C(21) - C(22)	1.383(6)	C(21) - C(25)	1,400(6)
C(21) - C(22)	1.386(7)	C(23) - C(24)	1,381(7)
C(22) = C(25)	1.383(7)	C(25) = C(24)	1.378(6)
C(24) = C(25)	1.303(7)	C(25) = C(25)	1.570(0)
C(2) - S(1) - C(3)	89.1(2)	C(9) - S(2) - C(8)	87.5(2)
C(14) - S(3) - C(1)	104.8(2)	C(3) - N(1) - C(8)	117.2(4)
C(3) - N(2) - N(3)	117.2(4)	C(3) - N(2) - C(1)	122.1(3)
N(3) - N(2) - C(1)	120.5(3)	C(2) - N(3) - N(2)	110.3(4)
C(8) - N(4) - N(5)	112.7(4)	C(9) - N(5) - N(4)	113.8(4)
N(2) - C(1) - C(21)	114.0(3)	N(2) - C(1) - S(3)	112.8(3)
C(21) - C(1) - S(3)	105.7(3)	N(3) - C(2) - C(4)	123.8(4)
N(3) - C(2) - S(1)	115.2(3)	C(4) - C(2) - S(1)	120.8(3)
N(1) - C(3) - N(2)	122.1(4)	N(1) - C(3) - S(1)	129.7(3)
N(2) - C(3) - S(1)	108.1(3)	C(2)-C(4)-C(6)	110.0(4)
C(2)-C(4)-C(7)	110.9(4)	C(6)-C(4)-C(7)	108.4(5)
C(2) - C(4) - C(5)	107.3(4)	C(6)-C(4)-C(5)	110.0(6)
C(7)-C(4)-C(5)	110.3(5)	N(4) - C(8) - N(1)	126.0(4)
N(4) - C(8) - S(2)	113.3(3)	N(1) - C(8) - S(2)	120.8(3)
N(5)-C(9)-C(10)	124.6(4)	N(5) - C(9) - S(2)	112.8(3)
C(10)-C(9)-S(2)	122.5(3)	C(9)-C(10)-C(12)	110.6(4)
C(9)-C(10)-C(13)	108.9(4)	C(12)-C(10)-C(13)	109.5(4)
C(9)-C(10)-C(11)	107.8(4)	C(12)-C(10)-C(11)	109.4(4)
C(13)-C(10)-C(11)	110.6(4)	C(15)-C(14)-C(19)	117.9(4)
C(15)-C(14)-S(3)	126.2(3)	C(19)-C(14)-S(3)	115.8(4)
C(16)-C(15)-C(14)	120.3(4)	C(15)-C(16)-C(17)	122.2(4)
C(18)-C(17)-C(16)	117.4(5)	C(18)-C(17)-C(20)	121.3(5)
C(16)-C(17)-C(20)	121.3(5)	C(17)-C(18)-C(19)	121.7(4)
C(18)-C(19)-C(14)	120.5(4)	C(22)-C(21)-C(26)	119.8(4)
C(22)-C(21)-C(1)	121.9(4)	C(26)-C(21)-C(1)	118.1(4)
C(21)-C(22)-C(23)	121.0(4)	C(24)-C(23)-C(22)	118.7(4)
C(23)-C(24)-C(25)	121.0(5)	C(26)-C(25)-C(24)	120.4(4)
O(1)-C(26)-C(25)	122.6(4)	O(1)-C(26)-C(21)	118.3(4)
C(25)-C(26)-C(21)	119.1(4)		

Table 1. Bond lengths [Å] and angles [^O] for fo1498.
Verbindung G14a	KS-7 (FO1352)
Summenformel	$C_{26}H_{33}N_7OS_2$
Molekulargewicht (berechnet) [g/mol]	523.71
Zellparameter	
a [Å]	10.4901(5)
b [Å]	14.7756(7)
c [A]	18.1833(7)
α [°]	90.00
ß [°]	105.020(2)
γ [°]	90.00
Volumen der Elementarzelle V [A ³]	2722.2(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.278
Kristallsystem	monoklin
Kaumgruppe	$P2_1/c$ No.14
Kristallgröße [mm ⁻]	0.20 x 0.18 x 0.12
Kristalltarbe	tarbios
Absorptionskoetfizient [cm]	2.28
Absorptionskorrektur,min-max. Transmission	0.9558-0.9731
Anzani aller gemessenen Ketlexe	10452
Anzahl symmetrieunabhangiger Reflexe	6190
Anzahl der Kellexe mit $F_0 \ge 2\sigma(F_0)$	4454
	551 1 161
DOOF	0.1201
$\mathbf{X}\mathbf{I}_{obs}$	0.1501
MRZ_{obs} Differenzelektronendichte(min/max)[e Å ⁻³]	1.034 und -0.561
	1.054 und -0.501
$\begin{array}{c} 01 & 0 & 02 \\ 026 & 026 \\ 026 & 026$	$\begin{array}{c} 124\\ 23\\ \end{array}$
C14	

-			×		
S(1)-C(3)	1.728(4)	S(1)-C(2)	1.743(4)		
S(2)-C(15)	1.748(5)	S(2)-C(16)	1.836(4)		
O(1)-C(26)	1.350(6)	N(1) - C(1)	1.320(5)		
N(1) - C(2)	1.361(5)	N(2) - C(2)	1.314(5)		
N(2) - N(3)	1.383(5)	N(3) - C(3)	1.297(5)		
N(4) - C(1)	1.342(5)	N(4) - C(8)	1.460(6)		
N(5) - C(9)	1.350(6)	N(5) - C(13)	1.359(8)		
(6) - C(1)	1.369(5)	N(6) - N(7)	1.395(5)		
N(6) - C(16)	1.486(5)	N(7) - C(15)	1.276(6)		
C(3) - C(4)	1.509(6)	C(4) - C(5)	1.502(8)		
C(4) - C(6)	1.498(7)	C(4) - C(7)	1.520(8)		
C(8) - C(9)	1.511(7)	C(8) - C(14)	1.527(6)		
C(9) - C(10)	1.374(7)	e(10) - e(11)	1.366(9)		
C(11) - C(12)	1.370(10)	C(12) - C(13)	1.353(10)		
C(15) - C(17)	1.522(6)	C(16) - C(21)	1.501(6)		
C(17) - C(18A)	1.527(5)	C(17) - C(18)	1.529(5)		
C(17) - C(20)	1.530(5)	C(17) - C(19)	1.530(5)		
(17) - C(20A)	1.531(5)	C(17) - C(19A)	1.536(5)		
	1 389(8)	C(21) - C(26)	1.410(0)		
C(22) - C(23)	1.389(7)	C(23) - C(24)	1.304(7)		
2(24)-C(25)	1.380(7)	C(25)-C(26)	1.391(7)		
2(3)-5(1)-C(2)	88.4(2)	C(15) - S(2) - C(16)	90.7(2)		
C(1) - N(1) - C(2)	120.2(3)	C(2) - N(2) - N(3)			
C(3) - N(3) - N(2)	114.1(3)	C(1) - N(4) - C(8)	133.1(4)		
C(9) - N(5) - C(13)	116.5(5)	C(1) - N(6) - N(7)	117.6(3)		
(1) - N(6) - C(16)	121.1(3)	N(7) - N(6) - C(16)	125.0(4)		
(1) (1) N(1) N(6)	111.7(3)	N(1) - C(1) - N(4) N(4) - C(1) - N(6)	125.0(4)		
N(1) - C(1) - N(0)	129.2(4)	N(4) - C(1) - N(6)	120.2(4)		
(2) - C(2) - N(1)	129.3(4)	N(2) = C(2) = S(1) N(2) = C(2) = C(4)	112.1(3)		
(1) - C(2) - S(1) T(2) - C(2) - g(1)	112.6(3)	R(3) - C(3) - C(4) C(4) - C(3) - g(1)	123.0(2)		
(3) - C(3) - B(1)	112.3(5)	$C(\frac{1}{2}) - C(\frac{1}{2}) - C(\frac{1}{2})$	109 9(4)		
C(5) - C(4) - C(3)	110.4(4)	C(5) - C(4) - C(7)	107.2(6)		
C(0) = C(4) = C(3)	109 6 (6)	C(3) - C(4) - C(7)	107 3 (4)		
Z(0) - C(1) - C(1)	114.5(4)	N(4) - C(8) - C(14)	107.3(4) 105.8(4)		
(1) - C(0) - C(0)	110.0(4)	N(5) - C(9) - C(10)	122.8(5)		
f(5) = C(9) = C(8)	119.0(4)	C(10) - C(9) - C(8)	118.1(4)		
C(11) - C(10) - C(9)	117.7(6)	C(10) - C(11) - C(12)	121.6(6)		
C(13) - C(12) - C(11)	117.0(6)	C(12) - C(13) - N(5)	124.3(6)		
(7) - C(15) - C(17)	122.1(4)	N(7) - C(15) - S(2)	117.3(3)		
C(17) - C(15) - S(2)	120.6(3)	N(6) - C(16) - C(21)	114.0(3)		
(6) - C(16) - S(2)	102.8(3)	C(21)-C(16)-S(2)	110.8(3)		
C(15) -C(17) -C(18A)	107.8(8)	C(15)-C(17)-C(18)	109.2(6)		
C(18A) -C(17) -C(18)	35.7(8)	C(15)-C(17)-C(20)	109.0(5)		
C(18A) -C(17) -C(20)	132.8(9)	C(18)-C(17)-C(20)	103.3(8)		
C(15) -C(17) -C(19)	112.1(9)	C(18A) -C(17) -C(19)	63.2(11)		
C(18)-C(17)-C(19)	96.1(11)	C(20)-C(17)-C(19)	125.0(10)		
C(15) -C(17) -C(20A)	110.1(11)	C(18A) -C(17) -C(20A)	80.6(13)		
C(18) -C(17) -C(20A)	45.6(11)	C(20)-C(17)-C(20A)	59.5(12)		
C(19)-C(17)-C(20A)	130.7(15)	C(15)-C(17)-C(19A)	109.1(5)		
C(18A) -C(17) -C(19A)	98.5(9)	C(18) -C(17) -C(19A)	127.7(8)		
C(20)-C(17)-C(19A)	96.5(7)	C(19)-C(17)-C(19A)	35.9(9)		
C(20A) -C(17) -C(19A)	138.9(12)	C(22)-C(21)-C(26)	118.8(4)		
C(22)-C(21)-C(16)	123.6(4)	C(26)-C(21)-C(16)	117.7(4)		
C(23)-C(22)-C(21)	121.1(4)	C(24)-C(23)-C(22)	119.5(5)		
C(23) - C(24) - C(25)	120.6(5)	C(24) - C(25) - C(26)	120.2(4)		
O(1) = C(26) = C(25)	C(25) - C(25) - C(25) = 123.5(4)		116 C(A)		
(1) = (40) = (40)	110 0/4)	U(1)-U(20)-U(21)	TTO . 0 (4)		
C(25) - C(26) - C(21)	TTA'R(4)				

Table 1. Bond lengths [Å] and angles [⁰] for fo1352.

Verbindung G14b	KS-8 (FO1353)
Summenformel	$C_{26}H_{33}N_7OS_2 \times CH_3OH$
Molekulargewicht (berechnet) [g/mol]	555.76
Zellparameter	
a [Å]	9.6218(2)
b [Å]	28.360(1)
c [Å]	11.5099(4)
α [°]	90.00
ß [°]	107.556(2)
γ [°]	90.00
Volumen der Elementarzelle V [Å ³]	2994.3(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.233
Kristallsystem	monoklin
Raumgruppe	$P2_1/c$ No.14
Kristallgröße [mm ³]	0.20 x 0.12 x 0.10
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	2.14
Absorptionskorrektur, min-max. Transmission	0.9585-0.9789
Anzahl aller gemessenen Reflexe	10763
Anzahl symmetrieunabhängiger Reflexe	6530
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	3847
Anzahl der verfeinerten Parameter	336
GOOF	1.024
R1 _{obs}	0.0881
wR2 _{obs}	0.2045
Differenzelektronendichte(min/max)[e Å ⁻³]	1.131 und -0.619

S(1) - C(15)	1 754(4)	S(1) - C(16)	1 827 (4)
S(2) - C(3)	1,730(4)	S(2) - C(2)	1,027(4) 1,753(4)
O(1) - C(26)	1,351(5)	N(1) - C(1)	1,318(5)
N(1) = C(2)	1,350(5)	N(2) = C(2)	1,312(5)
N(2) = N(3)	1,387(5)	N(2) = C(2) N(3) = C(3)	1,303(5)
N(2) - N(3)	1 339(5)	N(3) = C(3)	1.303(5)
N(4) = C(1)	1,335(5)	N(4) = C(0) N(5) = C(9)	1,344(5)
N(5) = C(15)	1 380(5)	N(5) - C(5)	1.391(4)
N(6) = C(16)	1,380(5) 1,473(5)	N(0) - N(7) N(7) - C(15)	1,391(4)
R(0) = C(10)	1, 512(6)	C(4) = C(5)	1,294(3)
C(3) = C(4)	1.512(6)	C(4) = C(5)	1,518(7) 1,542(6)
C(4) - C(7)	1.532(8)	C(4) - C(5)	1.542(6)
C(8) - C(9)	1.321(5)	C(8) - C(14)	1.334(6)
C(9) - C(10)	1.367(6)	C(10) - C(11)	1.394(7)
C(11) - C(12)	1.365(7)	C(12) - C(13)	1.368(7)
C(15) - C(17)	1.498(6)	C(16) - C(21)	1.303(3)
C(17) - C(18)	1.439(10)	C(17) - C(20)	1.492(9)
C(17) - C(19)	1.572(10)	C(21) - C(22)	1.383(6)
C(21) - C(26)	1.397(5)	C(22) - C(23)	1.392(6)
C(23) - C(24)	1.383(7)	C(24) - C(25)	1.377(7)
C(25)-C(26)	1.390(6)	O(2) - C(27)	1.381(7)
C(15)-S(1)-C(16)	89.85(18)	C(3)-S(2)-C(2)	88.36(18)
C(1) - N(1) - C(2)	120.6(3)	C(2) - N(2) - N(3)	112.9(3)
C(3) - N(3) - N(2)	113.9(3)	C(1) - N(4) - C(8)	131.9(4)
C(13) - N(5) - C(9)	117.2(4)	C(1) - N(6) - N(7)	121.8(3)
C(1) - N(6) - C(16)	120.5(3)	N(7)-N(6)-C(16)	116.4(3)
C(15) - N(7) - N(6)	111.2(3)	N(1) - C(1) - N(4)	125.7(4)
N(1) - C(1) - N(6)	113.8(3)	N(4) - C(1) - N(6)	120.6(4)
N(2) - C(2) - N(1)	129.4(4)	N(2) - C(2) - S(2)	112.1(3)
N(1) - C(2) - S(2)	118.5(3)	N(3)-C(3)-C(4)	123.4(3)
N(3) - C(3) - S(2)	112.7(3)	C(4) - C(3) - S(2)	123.9(3)
C(6) - C(4) - C(3)	108.7(4)	C(6) - C(4) - C(7)	111.3(4)
C(3) - C(4) - C(7)	109.1(3)	C(6) - C(4) - C(5)	109.0(4)
C(3) - C(4) - C(5)	109.7(3)	C(7) - C(4) - C(5)	109.0(4)
N(4) - C(8) - C(9)	112.3(3)	N(4) - C(8) - C(14)	107.6(3)
C(9) - C(8) - C(14)	110.8(3)	N(5) - C(9) - C(10)	122.3(4)
N(5) - C(9) - C(8)	114.3(4)	C(10) - C(9) - C(8)	123.4(4)
C(9) - C(10) - C(11)	119.2(4)	C(12) - C(11) - C(10)	119.0(5)
C(11) - C(12) - C(13)	118.3(5)	N(5) - C(13) - C(12)	123.9(4)
N(7) - C(15) - C(17)	123.9(4)	N(7) - C(15) - S(1)	116.3(3)
C(17) - C(15) - S(1)	119.9(3)	N(6) - C(16) - C(21)	113.7(3)
N(6) - C(16) - S(1)	102.8(2)	C(21) - C(16) - S(1)	110.5(3)
C(18) - C(17) - C(20)	117.4(6)	C(18) - C(17) - C(15)	112.3(5)
C(20) = C(17) = C(20)	110 3 (5)	C(18) - C(17) - C(19)	105.4(6)
C(20) = C(17) = C(15)	103 7(6)	C(15) = C(17) = C(19)	106 9(5)
C(20) = C(11) = C(15)	$110 \ 4(4)$	C(22) = C(21) = C(15)	123 0(3)
C(22) - C(21) - C(20)	117 E(2)	C(22) = C(21) = C(10) C(21) = C(22) = C(22)	123.0(3) 101 1(4)
C(20) - C(21) - C(10)	110 <i>c(A</i>)	C(21) = C(24) = C(23)	121 2(4)
C(24) - C(23) - C(22)	100.0(4)	C(25) = C(24) = C(25) O(1) = C(26) = C(25)	100 7(A)
C(24) - C(25) - C(26)	11C 7(4)	O(1) - C(20) - C(20)	110 - 6(A)
O(1) - C(26) - C(21)	116.7(4)	C(25) - C(26) - C(21)	119.0(4)

Table 1. Bond lengths [Å] and angles [⁰] for fo1353.

Symmetry transformations used to generate equivalent atoms:

Verbindung G37a	KS-9 (FO1311) CCDC no.156254
Summenformel	$C_{86}H_{116}N_{24}O_4S_4 \ge 6C_5H_5N$
Molekulargewicht (berechnet) [g/mol]	2288.11
Zellparameter	
a [Å]	23.4961(7)
b [Å]	25.6165(5)
c [Å]	40.8831(1)
α [°]	90.00
β [°]	90.00
γ [°]	90.00
Volumen der Elementarzelle V [Å ³]	24607(1)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	8
Dichte (berechnet) [g/cm ³]	1.235
Kristallsystem	orthorhombisch
Raumgruppe	Fddd
Kristallgröße [mm ³]	0.18 x 0.12 x 0.10
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	2.08
Absorptionskorrektur, min-max. Transmission	0.9635-0.9795
Anzahl aller gemessenen Reflexe	13075
Anzahl symmetrieunabhängiger Reflexe	6869
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	5671
Anzahl der verfeinerten Parameter	318
GOOF	1.201
R1 _{obs}	0.1261
wR2 _{obs}	0.3119
Differenzelektronendichte(min/max)[e Å ⁻³]	1.166 und -1.103

Einer der vier kristallographisch identischen Teile

S(1) - C(6)	1.764(5)	S(1) - C(5)	1.840(5)
S(2) - C(11)	1.741(4)	S(2) - C(12)	1.741(5)
O(1) - C(22)	1.349(6)	N(1) - C(4)	1.349(6)
N(1) - C(1)	1.469(6)	N(1) - C(3)	1.477(6)
N(2) - C(4)	1.308(6)	N(2) - C(11) N(2) - N(4)	1,400(6)
N(3) = C(4) N(3) = C(5)	1 479(5)	N(3) - N(4) N(4) - C(5)	1.422(5)
N(5) = C(3)	1, 306(7)	N(4) = C(0) N(5) = N(6)	1.270(0) 1.376(6)
N(5) = C(12)	1,300(7) 1,297(7)	C(1) - C(2)	1.570(0) 1.527(5)
$C(2) - C(1) \pm 1$	1,527(5)	C(3) - C(3) = 2	1.541(10)
C(5) - C(17)	1,510(6)	C(6) - C(7)	1,530(6)
C(7) - C(8)	1.510(8)	C(7) - C(10)	1.527(8)
C(7) - C(9)	1.530(9)	C(12) - C(13)	1.526(7)
C(13)-C(15)	1.517(9)	C(13)-C(16)	1.539(9)
C(13)-C(14)	1.537(10)	C(17)-C(18)	1.383(7)
C(17)-C(22)	1.396(6)	C(18)-C(19)	1.384(8)
C(19)-C(20)	1.381(10)	C(20)-C(21)	1.380(9)
C(21)-C(22)	1.402(7)	N(7) - C(23)	1.3900
N(7) - C(27)	1.3900	C(23)-C(24)	1.3900
C(24)-C(25)	1.3900	C(25)-C(26)	1.3900
C(26)-C(27)	1.3900	C(28)-C(30A)	1.3899
C(28)-C(29)	1.3899	C(29)-C(30)	1.3902
C(30)-C(28A)	1.3899	C(28A)-C(29A)	1.3899
C(29A)-C(30A)	1.3902		
C(6)-S(1)-C(5)	88.5(2)	C(11)-S(2)-C(12)	87.6(2)
C(4) - N(1) - C(1)	126.4(4)	C(4) - N(1) - C(3)	115.6(4)
C(1) - N(1) - C(3)	116.8(3)	C(4) - N(2) - C(11)	122.5(4)
C(4) - N(3) - N(4)	114.9(3)	C(4) - N(3) - C(5)	121.8(3)
N(4) - N(3) - C(5)	114.5(3)	C(6) - N(4) - N(3)	111.1(4)
C(11) - N(5) - N(6)	113.6(4)	C(12) - N(6) - N(5)	113.2(4)
N(1) - C(1) - C(2)	109.9(4)	C(1)-C(2)-C(1)#1	116.3(5)
N(1) - C(3) - C(3) #2	112.6(4)	N(2) - C(4) - N(1)	117.7(4)
N(2) - C(4) - N(3)	124.6(4)	N(1) - C(4) - N(3)	117.7(4)
N(3) - C(5) - C(17)	114.9(4)	N(3) - C(5) - S(1)	103.4(3)
C(17) - C(5) - S(1)	108.2(3)	N(4) - C(6) - C(7)	121.5(4)
N(4) - C(6) - S(1)	117.7(3)	C(7) - C(6) - S(1)	120.8(4)
C(8) - C(7) - C(10)	109.4(5)	C(8) - C(7) - C(6)	110.9(5)
C(10) - C(7) - C(6)	108.6(4)	C(8) - C(7) - C(9)	111.4(6)
C(10) = C(7) = C(9)	109.7(6)	C(6) - C(7) - C(9)	100.0(5)
N(2) - C(11) - S(2)	120.0(4) 121 0(4)	N(5) - C(12) - C(13)	123.5(4)
N(2) = C(12) = S(2) N(6) = C(12) = S(2)	121.0(4) 113 1(4)	C(13) - C(12) - S(2)	123.3(3)
C(15) - C(13) - C(12)	109.2(5)	C(15) - C(13) - C(16)	110.8(7)
C(12) - C(13) - C(16)	109.6(5)	C(15) - C(13) - C(14)	110.1(7)
C(12) - C(13) - C(14)	108.3(5)	C(16) - C(13) - C(14)	108.8(5)
C(18) - C(17) - C(22)	119.8(4)	C(18) - C(17) - C(5)	122.8(4)
C(22) - C(17) - C(5)	117.3(4)	C(19) - C(18) - C(17)	121.3(5)
C(18) - C(19) - C(20)	118.4(5)	C(21)-C(20)-C(19)	122.0(5)
C(20) - C(21) - C(22)	119.2(5)	O(1)-C(22)-C(17)	117.6(4)
O(1)-C(22)-C(21)	123.0(4)	C(17)-C(22)-C(21)	119.4(5)
C(23) - N(7) - C(27)	120.0	C(24) - C(23) - N(7)	120.0
C(25)-C(24)-C(23)	120.0	C(24)-C(25)-C(26)	120.0
C(27)-C(26)-C(25)	120.0	C(26)-C(27)-N(7)	120.0
C(30A)-C(28)-C(29)	120.0	C(28)-C(29)-C(30)	120.0
$C(28\lambda) = C(30) = C(20)$	120 0	C(30) = C(28b) = C(28b)	120 0
$C(28\lambda) = C(20\lambda) = C(20\lambda)$	120.0	C(28) = C(20x) = C(29x)	120.0
C(20A) - C(23A) - C(30A)	120.0	C(20) -C(30A) -C(29A)	120.0

Table 1. Bond lengths [Å] and angles [⁰] for fo1311.

Symmetry transformations used to generate equivalent atoms:

#1 -x+7/4,y,-z-1/4 #2 -x+7/4,-y+3/4,z

Verbindung 28b ₂ Zn ₂ 7	KS-10 (FO1336)
Summenformel	$C_{32}H_{44}N_{11}S_3Zn_2^+ClO_4^- x 0.5 CH_3CN$
Molekulargewicht (berechnet) [g/mol]	929.68
Zellparameter	
a [Å]	11.3670(3)
b [Å]	27.4047(6)
c [Å]	14.1713(2)
α [°]	90.00
ß [°]	101.4900(10)
γ [°]	90.00
Volumen der Elementarzelle V [Å ³]	4326.02(16)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.427
Kristallsystem	monoklin
Raumgruppe	P2 ₁ /n No.14
Kristallgröße [mm ³]	0.20 x 0.18 x 0.18
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	13.65
Absorptionskorrektur, min-max. Transmission	0.7720-0.7913
Anzahl aller gemessenen Reflexe	16083
Anzahl symmetrieunabhängiger Reflexe	9526
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	7320
Anzahl der verfeinerten Parameter	487
GOOF	1.060
R1 _{obs}	0.0678
wR2 _{obs}	0.1619
Differenzelektronendichte(min/max)[e Å ⁻³]	1.035 und -0.903

	1.054/4)	$r = (1) \cdot N(2)$	1.008(4)	
$Z_{II}(1) - N(9)$	1.954(4)	Zn(1) - N(2)	1.998(4) 2.020(4)	
$Z_{11}(1) - N(7)$	2.000(4) 1.070(4)	ZH(1) - N(1)	2.039(4)	
ZH(2) - N(10)	1.9/2(4)	ZH(2) - N(6)	1.989(4)	
2n(2) - N(3)	2.002(4)	$Z_{II}(2) - N(5)$	2.043(4)	
S(1)-C(9)	1.755(5)	S(1)-C(8)	1.755(5)	
S(2)-C(22)	1.763(5)	S(2)-C(21)	1.759(4)	
S(3)-C(28)	1.747(5)	S(3)-C(27)	1.755(5)	
N(1) - C(1)	1.338(7)	N(1) - C(5)	1.346(6)	
N(2) - C(8)	1.308(6)	N(2) - C(7)	1.464(6)	
N(3)-C(8)	1.339(6)	N(3) - N(4)	1.388(5)	
N(4) - C(9)	1.284(6)	N(5)-C(14)	1.330(6)	
N(5)-C(18)	1.355(6)	N(6)-C(21)	1.310(6)	
N(6)-C(20)	1.465(6)	N(7)-C(21)	1.337(6)	
N(7)-N(8)	1.385(5)	N(8)-C(22)	1.281(6)	
N(9)-C(27)	1.320(6)	N(10) - C(27)	1.332(6)	
N(10) - N(11)	1.388(5)	N(11)-C(28)	1.292(6)	
C(1)-C(2)	1.376(8)	C(2)-C(3)	1.362(10)	
C(3)-C(4)	1.366(9)	C(4)-C(5)	1.390(7)	
C(5)-C(6)	1.510(7)	C(6)-C(7)	1.528(7)	
C(9) - C(10)	1.508(7)	C(10) - C(12)	1.507(9)	
C(10) - C(13)	1.526(8)	C(10)-C(11)	1.536(9)	
C(14) - C(15)	1.377(8)	C(15)-C(16)	1.390(9)	
C(16) - C(17)	1.378(9)	C(17) - C(18)	1,380(7)	
C(18) - C(19)	1,505(7)	C(19) - C(20)	1.531(7)	
C(22) - C(23)	1,525(7)	C(23) - C(25)	1,524(9)	
C(22) - C(23)	1,520(9)	C(23) - C(25)	1 529(9)	
C(29) - C(24)	1.520(3) 1.503(7)	C(29) - C(31)	1 506 (9)	
C(20) - C(20)	1.505(7) 1.534(8)	C(29) - C(32)	1.536(7)	
C(29) - C(30)	1.554(8)	C(23) = C(32)	1.330(7) 1.412(3)	
CI = O(2)	1 411 (2)	CI = O(1)	1.412(3)	
CI = O(3)	1.416(2)		1.416(2)	
$CI = O(3\mathbf{A})$	1.420(3)	CI = O(2R)	1 401 (2)	
	1.420(3)	CI = O(2R)	1.421(3)	
O(3) - O(4)	2.19(3)	O(2A) - O(4A)	1.510(19)	
N(12)-C(34)	1.022(18)	C(33)-C(34)	1.32(2)	
N(9) - Zn(1) - N(2)	123.46(16)	N(9) - Zn(1) - N(7)	112.72(16)	
N(2) - Zn(1) - N(7)	107.73(15)	N(9) - Zn(1) - N(1)	105.74(16)	
N(2) - Zn(1) - N(1)	96.91(15)	N(7) - Zn(1) - N(1)	108.27(16)	
N(10)-Zn(2)-N(6)	114.75(16)	N(10) - Zn(2) - N(3)	116.45(16)	
N(6)-Zn(2)-N(3)	111.54(16)	N(10)-Zn(2)-N(5)	110.23(15)	
N(6)-Zn(2)-N(5)	98.37(16)	N(3)-Zn(2)-N(5)	103.28(15)	
C(9)-S(1)-C(8)	88.2(2)	C(22)-S(2)-C(21)	88.3(2)	
C(28)-S(3)-C(27)	88.2(2)	C(1) - N(1) - C(5)	118.2(4)	
C(1) - N(1) - Zn(1)	123.0(4)	C(5) - N(1) - Zn(1)	118.6(3)	
C(8)-N(2)-C(7)	117.1(4)	C(8) - N(2) - Zn(1)	124.7(3)	
C(7) - N(2) - Zn(1)	117.6(3)	C(8) - N(3) - N(4)	114.2(4)	
C(8) - N(3) - Zn(2)	127.1(3)	N(4) - N(3) - Zn(2)	115.6(3)	
C(9) - N(4) - N(3)	113.1(4)	C(14)-N(5)-C(18)	118.5(4)	
C(14) - N(5) - Zn(2)	123.4(3)	C(18) - N(5) - Zn(2)	117.5(3)	
C(21) - N(6) - C(20)	119.1(4)	C(21) - N(6) - Zn(2)	126.2(3)	
C(20) = N(6) = 7n(2)	114.3(3)	C(21) - N(7) - N(8)	114.6(4)	
C(21) = N(7) = Zn(1)	128.7(3)	N(8) - N(7) - Zn(1)	113.7(3)	
C(22) = N(8) = N(7)	113.5(4)	C(27) - N(9) - Zn(1)	126.2(3)	
C(27) = N(10) = N(11)	114 6 (4)	C(27) - N(10) - 7n(2)	128.8(3)	
N(11) = N(10) = 2n(2)	116.5(3)	C(28) - N(11) - N(10)	112.6(4)	
AT \ _ AT \ _ AT \ _ AT \ _ ATA \ A \				

Table 1. Bond lengths [Å] and angles [⁰] for fol336.

N(1)-C(1)-C(2)	123.0(6)	C(3)-C(2)-C(1)	118.6(6)
C(2)-C(3)-C(4)	119.6(6)	C(3)-C(4)-C(5)	119.4(6)
N(1) - C(5) - C(4)	121.2(5)	N(1)-C(5)-C(6)	117.1(4)
C(4) - C(5) - C(6)	121.7(5)	C(5)-C(6)-C(7)	113.4(4)
N(2) - C(7) - C(6)	111.5(4)	N(2) - C(8) - N(3)	124.6(4)
N(2) - C(8) - S(1)	124.7(3)	N(3) - C(8) - S(1)	110.7(3)
N(4) - C(9) - C(10)	124.2(4)	N(4) - C(9) - S(1)	113.7(3)
C(10)-C(9)-S(1)	122.0(4)	C(12)-C(10)-C(9)	110.7(5)
C(12)-C(10)-C(13)	111.1(6)	C(9)-C(10)-C(13)	110.6(5)
C(12)-C(10)-C(11)	108.5(6)	C(9)-C(10)-C(11)	107.7(5)
C(13)-C(10)-C(11)	108.1(6)	N(5)-C(14)-C(15)	123.9(5)
C(14)-C(15)-C(16)	118.0(5)	C(17)-C(16)-C(15)	118.4(5)
C(18)-C(17)-C(16)	120.7(5)	N(5)-C(18)-C(17)	120.5(5)
N(5)-C(18)-C(19)	117.7(4)	C(17)-C(18)-C(19)	121.8(5)
C(18)-C(19)-C(20)	114.4(4)	N(6)-C(20)-C(19)	111.8(4)
N(6) - C(21) - N(7)	124.2(4)	N(6)-C(21)-S(2)	125.4(3)
N(7)-C(21)-S(2)	110.3(3)	N(8)-C(22)-C(23)	124.5(5)
N(8) - C(22) - S(2)	113.2(4)	C(23)-C(22)-S(2)	122.3(4)
C(25)-C(23)-C(22)	109.4(5)	C(25)-C(23)-C(24)	111.1(7)
C(22)-C(23)-C(24)	109.5(5)	C(25)-C(23)-C(26)	107.0(6)
C(22)-C(23)-C(26)	109.5(5)	C(24)-C(23)-C(26)	110.3(6)
N(9)-C(27)-N(10)	124.7(4)	N(9)-C(27)-S(3)	124.5(3)
N(10)-C(27)-S(3)	110.7(3)	N(11)-C(28)-C(29)	124.8(4)
N(11)-C(28)-S(3)	113.9(4)	C(29)-C(28)-S(3)	121.2(4)
C(28)-C(29)-C(31)	110.7(4)	C(28)-C(29)-C(30)	107.2(5)
C(31)-C(29)-C(30)	109.2(6)	C(28)-C(29)-C(32)	110.2(4)
C(31)-C(29)-C(32)	109.7(5)	C(30)-C(29)-C(32)	109.9(5)
0(2)-C1-0(1)	115.8(4)	O(2)-Cl-O(3)	112.6(6)
0(1)-Cl-0(3)	127.6(6)	O(2)-Cl-O(4)	102(2)
0(1)-Cl-0(4)	87.1(19)	O(3)-Cl-O(4)	102(2)
0(2)-C1-0(3A)	135.6(7)	0(1)-Cl-0(3A)	107.2(7)
0(3)-Cl-0(3A)	37.2(7)	O(4)-Cl-O(3A)	69.0(19)
0(2)-Cl-0(4A)	110.3(6)	0(1)-Cl-0(4A)	29.1(5)
0(3)-Cl-0(4A)	113.7(8)	0(4)-Cl-0(4A)	115.9(19)
0(3A)-Cl-0(4A)	112.6(8)	0(2)-Cl-0(1A)	98.3(9)
0(1)-Cl-0(1A)	83.3(9)	0(3)-Cl-0(1A)	108.5(10)
0(4)-Cl-0(1A)	7(3)	0(3A)-Cl-0(1A)	75.6(12)
0(4A)-Cl-0(1A)	112.3(10)	O(2)-C1-O(2A)	90.1(8)
0(1)-Cl-0(2A)	93.2(8)	O(3)-Cl-O(2A)	67.7(8)
0(4)-Cl-0(2A)	167(2)	0(3A)-Cl-0(2A)	98.3(10)
0(4A)-Cl-0(2A)	64.3(9)	0(1A)-C1-0(2A)	171.6(11)
Cl-0(3)-0(4)	39.2(9)	Cl-0(4)-0(3)	39.0(10)
Cl-0(2A)-0(4A)	57.6(5)	Cl-0(4A)-0(2A)	58.0(5)
N(12)-C(34)-C(33)	174(2)		

Symmetry transformations used to generate equivalent atoms:

Verbindung 28eNi (Strukturmotiv)	KS-11 (FO1034)
Summenformel	C ₂₆ H ₄₀ Cl ₂ N ₁₀ Ni O ₁₇ S ₄
Molekulargewicht (berechnet) [g/mol]	1017.85
Zellparameter	
a [Å]	9.6610(4)
b [Å]	14.3944(4)
c [Å]	17.0885(7)
α [°]	94.021(2)
β [°]	98.442(2)
γ [°]	90
Volumen der Elementarzelle V [Å ³]	2338.0(2)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	2
Dichte (berechnet) [g/cm ³]	1.452
Kristallsystem	triklin
Raumgruppe	P-1 No. 2
Kristallgröße [mm ³]	0.23 x 0.20 x 0.10
Kristallfarbe	violett
Absorptionskoeffizient [cm ⁻¹]	7.81
Absorptionskorrektur, min-max. Transmission	0.8409-0.9260
Anzahl aller gemessenen Reflexe	15302
Anzahl symmetrieunabhängiger Reflexe	9465
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	6246
Anzahl der verfeinerten Parameter	579
GOOF	1.023
R1 _{obs}	0.0875
wR2 _{obs}	0.2423
Differenzelektronendichte(min/max)[e Å ⁻³]	0.931 und -0.763

Verbindung 35aZnCl ₂	KS-12 (FO1333)
Summenformel	$C_{26}H_{27}Cl_2N_9OZn$
Molekulargewicht (berechnet) [g/mol]	617.84
Zellparameter	
a [Å]	11.0678(3)
b [Å]	12.1289(5)
c [Å]	21.0669(7)
α [°]	90.00
ß [°]	92.289(2)
γ [°]	90.00
Volumen der Elementarzelle V [Å ³]	2825.75(17)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.452
Kristallsystem	monoklin
Raumgruppe	P2 ₁ /n No.14
Kristallgröße [mm ³]	0.20 x 0.18 x 0.18
Kristallfarbe	farblos
Absorptionskoeffizient [cm ⁻¹]	10.96
Absorptionskorrektur, min-max. Transmission	0.8106-0.8272
Anzahl aller gemessenen Reflexe	10592
Anzahl symmetrieunabhängiger Reflexe	6299
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	5112
Anzahl der verfeinerten Parameter	448
GOOF	1.087
R1 _{obs}	0.0594
wR2 _{obs}	0.1060
Differenzelektronendichte(min/max)[e Å ⁻³]	0.377 und -0.465

							0		
Table	1.	Bond	lengths	[Å]	and	angles	ເັງ	for	fo1333.

Zn-N(3)	1,979(3)	Zn - N(1)	2,070(2)
Zn-Cl(2)	2.2375(8)	Zn-Cl(1)	2.2472(8)
0-C(18)	1.225(4)	N(1) - C(5)	1.343(4)
N(1) - C(1)	1.352(4)	N(2) - C(8)	1.377(4)
N(2) - C(7)	1.380(4)	N(2) - C(6)	1.469(4)
N(3) - C(8)	1.296(4)	N(4) - C(7)	1.297(4)
N(4) - N(5)	1.400(4)	N(5)-C(8)	1.357(4)
N(5) - C(10)	1.452(4)	N(6) - C(18)	1.366(4)
N(6) - N(7)	1.393(4)	N(6) - C(10)	1.450(4)
N(7) - C(19)	1.295(4)	N(8)-C(19)	1.373(4)
N(8) - C(18)	1.381(4)	N(8) - C(21)	1.454(4)
N(9) - C(22)	1.326(4)	N(9) - C(26)	1.344(4)
C(1) - C(2)	1.384(5)	C(2) - C(3)	1.368(5)
C(3) - C(4)	1.390(5)	C(4) - C(5)	1.380(4)
C(5)-C(6)	1.505(4)	C(7)-C(9)	1.485(5)
C(10) - C(11)	1.524(4)	C(11) - C(12)	1.382(5)
C(11)-C(16)	1.396(4)	C(12)-C(13)	1.383(5)
C(13) - C(14)	1.386(6)	C(14) - C(15)	1.382(5)
C(14) - C(17)	1.514(5)	C(15)-C(16)	1.384(5)
C(19) - C(20)	1.479(5)	C(21) - C(22)	1.508(4)
C(22) - C(23)	1.375(5)	C(23)-C(24)	1.389(6)
C(24)-C(25)	1.373(7)	C(25)-C(26)	1.358(6)
N(3) = 7n = N(1)	106.04(11)	N(3) - Zn - Cl(2)	112.89(9)
N(1) = 2n - C1(2)	106.18(7)	N(3) - Zn - Cl(1)	110.42(8)
N(1) - Zn - Cl(1)	106.77(7)	Cl(2) - Zn - Cl(1)	113.94(3)
C(5) - N(1) - C(1)	118.4(3)	C(5) - N(1) - Zn	122.62(19)
C(1) - N(1) - 2n	118.8(2)	C(8) - N(2) - C(7)	108.0(2)
C(8) - N(2) - C(6)	123.6(3)	C(7) - N(2) - C(6)	127.5(2)
C(8) - N(3) - 7n	127.3(2)	C(7) - N(4) - N(5)	104.1(2)
C(8) - N(5) - N(4)	112.2(2)	C(8) - N(5) - C(10)	128.4(3)
N(4) - N(5) - C(10)	118.9(2)	C(18) - N(6) - N(7)	113.1(2)
C(18) - N(6) - C(10)	126.1(2)	N(7) - N(6) - C(10)	120.1(2)
C(19) - N(7) - N(6)	103.8(2)	C(19) - N(8) - C(18)	108.7(2)
C(19) - N(8) - C(21)	127.6(3)	C(18) - N(8) - C(21)	123.5(3)
C(22) - N(9) - C(26)	117.4(3)	N(1) - C(1) - C(2)	122.3(3)
C(3) - C(2) - C(1)	119.1(3)	C(2) - C(3) - C(4)	119.0(3)
C(5) - C(4) - C(3)	119.3(3)	N(1) - C(5) - C(4)	121.9(3)
N(1) - C(5) - C(6)	117.2(3)	C(4) - C(5) - C(6)	120.8(3)
N(2) - C(6) - C(5)	113.3(2)	N(4) - C(7) - N(2)	111.8(3)
N(4) - C(7) - C(9)	124.6(3)	N(2) - C(7) - C(9)	123.6(3)
N(3) - C(8) - N(5)	131.5(3)	N(3) - C(8) - N(2)	124.6(3)
N(5) - C(8) - N(2)	103.8(3)	N(6) - C(10) - N(5)	109.8(2)
N(6) - C(10) - C(11)	113.0(3)	N(5) - C(10) - C(11)	111.6(2)
C(12) - C(11) - C(16)	118,9(3)	C(12) - C(11) - C(10)	121.7(3)
C(16) - C(11) - C(10)	119.3(3)	C(11) - C(12) - C(13)	120.1(3)
C(12) - C(13) - C(14)	121.7(4)	C(13) - C(14) - C(15)	117.7(3)
C(13) - C(14) - C(17)	121.1(4)	C(15) - C(14) - C(17)	121.2(4)
C(16) - C(15) - C(14)	121.5(3)	C(15) - C(16) - C(11)	120.0(3)
O-C(18) - N(6)	128.8(3)	O-C(18) - N(8)	128.8(3)
N(6) - C(18) - N(8)	102.4(2)	N(7) - C(19) - N(8)	112.0(3)
N(7) - C(19) - C(20)	124.1(3)	N(8) - C(19) - C(20)	124.0(3)
N(8) - C(21) - C(22)	113.6(3)	N(9) - C(22) - C(23)	122.2(3)
N(9) - C(22) - C(21)	119.0(3)	C(23)-C(22)-C(21)	118.8(3)
C(22)-C(23)-C(24)	119.2(4)	C(25)-C(24)-C(23)	118.8(4)
C(26)-C(25)-C(24)	117.9(4)	N(9)-C(26)-C(25)	124.3(4)

Symmetry transformations used to generate equivalent atoms:

Verbindung G13CuAc	KS-13 (FO1396)
Summenformel	$C_{28}H_{34}CuN_7O_4S_2 \ge C_3H_7NO$
Molekulargewicht (berechnet) [g/mol]	806.47
Zellparameter	
a [Å]	12.837(2)
b [Å]	22.303(2)
c[Å]	13.8500(10)
α [°]	90.00
β [°]	90.00
γ ^[°]	90.00
Volumen der Elementarzelle V [Å ³]	3965.3(8)
Temperatur [K]	183(2)
Anzahl der Formeleinheiten	4
Dichte (berechnet) [g/cm ³]	1.351
Kristallsystem	orthorhombisch
Raumgruppe	$Pna2_1$ No.
Kristallgröße [mm ³]	0.22 x 0.18 x 0.16
Kristallfarbe	grün
Absorptionskoeffizient [cm ⁻¹]	7.1
Absorptionskorrektur, min-max. Transmission	0.8595-0.8949
Anzahl aller gemessenen Reflexe	4701
Anzahl symmetrieunabhängiger Reflexe	4701
Anzahl der Reflexe mit $F_0^2 \ge 2\sigma(F_0^2)$	4074
Anzahl der verfeinerten Parameter	479
GOOF	1.030
R1 _{obs}	0.0357
wR2 _{obs}	0.0916
Differenzelektronendichte(min/max)[e Å ⁻³]	0.730 und -0.484

Cu-N(4)	1.958(3)	Cu-N(2)	1.990(3)
Cu-0(2)	2.002(3)	Cu-N(1)	2.003(3)
Cu-0(4)	2.323(4)	S(1)-C(10)	1.736(4)
S(1)-C(9)	1.747(4)	S(2)-C(15)	1.754(4)
S(2)-C(16)	1.835(4)	O(1)-C(26)	1.361(5)
0(2)-C(27)	1.291(5)	O(3)-C(27)	1.228(5)
N(1)-C(5)	1.335(5)	N(1)-C(1)	1.349(5)
N(2)-C(8)	1.305(5)	N(2)-C(7)	1.479(5)
N(3)-C(9)	1.335(5)	N(3)-C(8)	1.349(5)
N(4) - C(9)	1.320(5)	N(4)-N(5)	1.385(4)
N(5)-C(10)	1.290(6)	N(6)-N(7)	1.394(4)
N(6)-C(8)	1.407(5)	N(6)-C(16)	1.474(5)
N(7)-C(15)	1.267(5)	C(1)-C(2)	1.372(6)
C(2)-C(3)	1.382(7)	C(3)-C(4)	1.384(6)
C(4)-C(5)	1.381(6)	C(5)-C(6)	1.518(6)
C(6)-C(7)	1.514(6)	C(10)-C(11)	1.514(5)
C(11)-C(14B)	1.46(2)	C(11) - C(13A)	1.474(13)
C(11) - C(14A)	1.508(13)	C(11) - C(12A)	1.556(11)
C(11)-C(12B)	1.56(2)	C(11)-C(13B)	1.610(16)
C(15)-C(17)	1.522(5)	C(16)-C(21)	1.499(6)
C(17) - C(19)	1.520(8)	C(17)-C(18)	1.529(8)
C(17) - C(20)	1.532(7)	C(21) - C(22)	1.386(6)
C(21) - C(26)	1.402(6)	C(22)-C(23)	1.381(6)
C(23)-C(24)	1.390(7)	C(24) - C(25)	1.380(7)
C(25)-C(26)	1.386(6)	C(27)-C(28)	1.509(6)
0(5)-C(29)	1.233(7)	N(8) - C(29)	1.326(7)
N(8)-C(31)	1.446(6)	N(8) - C(30)	1.450(6)
0(6)-C(32)	1.219(7)	N(9) - C(32)	1.334(7) 1.461(7)
N(9) - C(33)	1.440(8)	N(9) - C(34)	1.401(/)
N(4) - Cu - N(2)	89.74(13)	N(4) - Cu - O(2)	90.77(12)
N(2) - Cu - O(2)	154.71(12)	N(4) - Cu - N(1)	176.11(14)
N(2) - Cu - N(1)	93.29(13)	O(2) - Cu - N(1)	85.45(13)
N(4) - Cu - O(4)	89.97(14)	N(2) - Cu - O(4)	109.14(14)
O(2) - Cu - O(4)	96.15(13)	N(1) - Cu - O(4)	91.33(14)
C(10) - S(1) - C(9)	88.23(19)	C(15) - S(2) - C(16)	90.00(18)
C(27) - O(2) - Cu	127.1(3)	C(5) - N(1) - C(1)	118.4(4)
C(5) - N(1) - Cu	121.5(3)	C(1) - N(1) - Cu	119.8(3)
C(8) - N(2) - C(7)	118.9(3)	C(8) - N(2) - Cu	123.5(3)
C(7) - N(2) - Cu	117.5(2)	C(9) - N(3) - C(8)	121.1(3)
C(9) - N(4) - N(5)	114.0(3)	C(9) - N(4) - Cu	121.5(2)
N(5) - N(4) - Cu		C(10) - N(5) - N(4)	113.0(4)
N(7) - N(6) - C(8)	119.8(3)	N(7) - N(6) - C(16)	110.9(3)
C(8) - N(6) - C(16)	119.9(3)	C(15) - N(7) - N(8)	1100(4)
N(1) - C(1) - C(2)	122.5(4)	C(1) - C(2) - C(3)	118.9(4)
C(4) - C(3) - C(2)	119.0(4)	C(5) - C(4) - C(3)	118.9(4)
N(1) - C(5) - C(4)	122.3(4)	R(1) - C(5) - C(6)	113.0(3)
C(4) - C(5) - C(6)	144.1(4)	C(7) = C(8) = C(3)	127.6(3)
M(2) - C(7) - C(0) M(2) - C(0) - M(6)	122.4(3)	M(2) = C(0) = M(3) M(2) = C(0) = M(5)	110 0(3)
M(4) = C(0) = M(0) M(4) = C(0) = M(2)	120 <i>4(4</i>)	M(3) = C(0) = M(0) M(4) = C(0) = g(1)	111.3(3)
M(3) = C(3) = M(3)	118 2(2)	N(3) = C(3) = C(1)	124.1(4)
N(5) = C(3) = B(1)	113 5(3)	C(11) - C(10) - S(1)	122.4(3)
C(14R) = C(11) = C(13R)	142.5(11)	C(14B) - C(11) - C(14A)	54.0(10)
C(13A) - C(11) - C(14A)	110.1(7)	C(14B) - C(11) - C(10)	108.0(9)
		,,	

Table 1. Bond lengths [Å] and angles [⁰] for fo1396.

C(13A)-C(11)-C(10)	109.5(6)	C(14A)-C(11)-C(10)	109.9(6)
C(14B)-C(11)-C(12A)	55.2(10)	C(13A)-C(11)-C(12A)	112.1(7)
C(14A)-C(11)-C(12A)	105.9(7)	C(10)-C(11)-C(12A)	109.2(5)
C(14B)-C(11)-C(12B)	122.8(13)	C(13A)-C(11)-C(12B)	40.4(9)
C(14A)-C(11)-C(12B)	135.4(10)	C(10)-C(11)-C(12B)	112.0(9)
C(12A)-C(11)-C(12B)	73.8(10)	C(14B)-C(11)-C(13B)	105.5(11)
C(13A)-C(11)-C(13B)	60.6(8)	C(14A)-C(11)-C(13B)	53.2(8)
C(10)-C(11)-C(13B)	108.5(6)	C(12A)-C(11)-C(13B)	141.6(7)
C(12B)-C(11)-C(13B)	98.6(11)	N(7)-C(15)-C(17)	123.9(4)
N(7)-C(15)-S(2)	117.4(3)	C(17)-C(15)-S(2)	118.7(3)
N(6)-C(16)-C(21)	113.8(3)	N(6)-C(16)-S(2)	103.6(2)
C(21)-C(16)-S(2)	111.6(3)	C(15)-C(17)-C(19)	108.9(4)
C(15)-C(17)-C(18)	108.2(4)	C(19)-C(17)-C(18)	109.6(5)
C(15)-C(17)-C(20)	109.3(4)	C(19)-C(17)-C(20)	110.3(5)
C(18)-C(17)-C(20)	110.5(5)	C(22)-C(21)-C(26)	119.1(4)
C(22)-C(21)-C(16)	124.1(4)	C(26)-C(21)-C(16)	116.8(4)
C(23)-C(22)-C(21)	121.1(4)	C(22)-C(23)-C(24)	119.3(4)
C(25)-C(24)-C(23)	120.4(4)	C(24)-C(25)-C(26)	120.2(4)
O(1)-C(26)-C(25)	124.2(4)	O(1)-C(26)-C(21)	116.0(4)
C(25)-C(26)-C(21)	119.8(4)	O(3)-C(27)-O(2)	124.5(4)
O(3)-C(27)-C(28)	120.6(4)	O(2)-C(27)-C(28)	115.0(4)
C(29)-N(8)-C(31)	121.8(4)	C(29)-N(8)-C(30)	120.7(4)
C(31)-N(8)-C(30)	117.5(4)	0(5)-C(29)-N(8)	124.5(5)
C(32)-N(9)-C(33)	120.7(5)	C(32)-N(9)-C(34)	121.4(6)
C(33)-N(9)-C(34)	117.8(5)	O(6)-C(32)-N(9)	124.7(6)

10 Literaturverzeichnis

- (1) Anders, E.; Wermann, K.; Wiedel, B.; Günther, W. and Görls, H. *Eur. J. Org. Chem.* **1998**, 2923.
- (2) Anders, E.; Tropsch, J. G. Bull. Soc. Chim. Belg. 1987, 96, 719.
- (3) Anders, E.; Opitz, A.; Wermann, K.; Wiedel, B.; Walther, M.; Imhof, W.; Görls, H.
 J. Org. Chem. 1999, 64, 3113.
- (4) Anders, E.; Vanden Eynde, J.-J.; and Wermann, K. in *Advances in Heterocyclic Chemistry* (Eds. A. R. Katritzky, A.-J. Boulten) Academic Press, New York, San Francisco, London, 2000, 77, 183.
- (5) frühere bekannte Möglichkeiten der Synthese von Bispyridiniumsalzen:
 (A) Kröhnke, F.; Leister, H.; *Chem. Ber.* 1958, *91*, 1295.
 (B) Almarzoqi, B.; George, A.V.; Isaaks, N. S. *Tetrahedron*, 1986, *46*, 601.
- (6) Berechnungen von Prof. Dr. E. Anders
- (7) (A) GAUSSIAN 98, Revision A.5, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G. Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, **1998**. (B) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. (C) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785.
- (8) Reed, E. A.; Curtiss, L. A.; Weinhold, F. *Chem. Rev.* **1988**, 88, 899.
- (9) Tropsch, J. *Dissertation*, Erlangen, **1990**.
- (10) Munavalli, S.; Poziomek, L. Synthesis 1985, 402.
- (11) Munavalli, S.; Hsu, F.-L.; Poziomek, L. J. *Heterocycles* **1986**, *24*, 1893.
- (12) Haddadin, M. J.; Kurth, M. J.; Olmstead, M. Tetrahedron Letters 2000, 41, 5613.
- (13) (A) Parkin, Gerard; Review; *Chem. Commun.* **2000**, *20*, 1971-1985.

 (B) Parkin, Gerard; Vortrag auf dem *Kongress des SFB 436* "Metallvermittelte Reaktionen nach dem Vorbild der Natur", Friedrich Schiller Universität Jena, September **1999**.

- (14) Rombach, M.; Maurer, C.; Weis, K.; Keller, E.; Vahrenkamp, H. *Chem. Eur. J.* **1999**, *5*, No. 3, 1013.
- (15) (A) Vahrenkamp, H. *Bioinorganic Chemistry*; "Coordination Chemistry of Zinc Related to an Understanding of its Biological Functions"; Wiley-VCH; **1997**, 540.
 (B) Vahrenkamp, H. Vortrag auf dem *Kongress des SFB 436* "Metallvermittelte Reaktionen nach dem Vorbild der Natur", Friedrich Schiller Universität Jena, September **1999**.
 (C) Müller, B.; Vahrenkamp, H. *Eur. J. Inorg. Chem.* **1999**, 137.
- (16) Gade, Lutz H. *Koordinationschemie*, WILEY-VCH, **1998**, *1. Aufl.*, 92.
- (17) (A) Christianson, D. W.; Fierke, C. A. Acc. Chem. Res. **1996**, *29*, 331.
 (B) Lindskog, S. ; in "Carbonic Anhydrase", Ed.Wiley, New York **1983**, 77.
 (C) Liang, J. Y.; Lipskomp, W. N. *Biochemistry* **1988**, *27*, 8676.
- (18) A) Kimura, E.; Koike, T.; Toriumi, K. *Inorg. Chem.* 1988, 27, 3687.
 (B) Kato, M.; Ito, T. *Inorg. Chem.* 1985, 24, 509.
 (C) Kimura, E.; Nakamura, I.; Koike, T.; Shionoya, M.; Kodama, Y.; Ikeda, T.; Shiro, M. *J. Am. Chem. Soc.* 1994, *116*, 4764.
- (19) Trofimenko, S. Scorpionates- The Coordination Chemistry of Pyrazolylborate Ligands, Imperial College Press, London, 1999.
- Bräuer, M; Kunert, M.; Dinjus, E.; Klußmann, M.; Döring, M.; Görls, H.; Anders, E. *Theochem* 2000, 505, 289-301.
- (21) Döring, M.; Ciesielski, M.; Walter, O. J. Inorganic Biochemistry 2001, 86, 205.
- (22) Geerts, R. L.; Huffmann, J. C. Caulton, K. G. Inorg. Chem. 1986, 25, 1803-1805.
- (23) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018.
- (24) Mauksch, M.; Bräuer, M.; Weston, J.; Anders, E. CheBioChem 2001, 2, 190.
- (25) Sinnecker, Sebastian; Bräuer, Michael; Koch, Wolfram; Anders, Ernst *Inorg. Chem.* 2001, 40, 1006-1013.
- (26) Bräuer, M.; Pérez-Lustres, J. L.; Weston, J.; Anders, E. *Inorg. Chem.* **2002**, 41, 1454.
- (27) (A) Inoue, S.; Koinuma, H.; Tsuruta, T. *Makromol. Chem.* 1969, *130*, 210.
 (B) Inoue, S.; Koinuma, H.; Tsuruta, T. *Makromol. Chem.* 1971, *143*, 97.

	(C) Inoue, S.; Takada, T.; Tatsu, H. Makromol. Chem., Rapid. Commun. 1980, 1,
	775.
	(D) Kuran, W.; Rokicki, A.; Romanowska, D. J. Polym. Sci., Chem. Ed. 1979, 17,
	2003.
(28)	Darensbourg, D. J.; Holtcamp, M. W.; Struck, G. E.; Zimmer, M. S.; Niezgoda, S.
	A.; Rainey, P.; Robertson, J. B.; Drapper, J. D.; Reibenspies, J. H. J. Am. Chem. Soc.
	1999 , <i>121</i> , 107-116.
(29)	Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc.
	1999 , <i>121</i> , 11583.
(30)	Kaim, W.; Schwederski, B. Bioanorganische Chemie, Teubner-Studienbücher:
	Chemie, 1995, 2. überarb. Aufl., 254.
(31)	Kunert, M.; Bräuer, M.; Klobes, O.; Görls, H.; Dinjus, E.; Anders, E.
	Eur. J. Inorg. Chem. 2000, 1803.
(32)	Rau, S. Dissertation, Friedrich Schiller Universität Jena, 2000.
(33)	Bräuer, M. Dissertation, Friedrich Schiller Universität Jena, 2000.
(34)	persönliche Mitteilung von Prof. Dr. Döring, M.,
(35)	(A) COLLECT, Data Collection Software; Nonius B.V., Netherlands, 1998.
	(B) Otwinowski, Z.; Minor, W. Processing of X-Ray Diffraction Data Collected in
	Oscillation Mode in Methods in Enzymology, Vol. 276; Macromolecular
	Crystallography, PartA, edited by Carter, C.W.; Sweet, R. M., p 307. Academic
	Press 1997 .
	(C) Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467-473.
	(D) Sheldrick, G. M. SHELXL-97, University of Göttingen, Germany, 1993.
(36)	Further details of the crystal structure investigations are available on requests from
	the director of the Cambridge Crystallographic Data Center, 12 Union Road, GB-
	Cambridge CB2 1 EZ, on quoting the depository number CCSD-146230 (6a) the
	names of the authors, and the journal citation.

- (37) Kataeva, O. N.; Litvinov, I. A.; Kataev, V. E.; Vanden Eynde, J.-J.; Mayence, A.; Anders, E. *Mol. Struct.* **1998**, *442*, 55.
- (38) Literatur "Protonenschwamm"
 - (A) J. Chem. Soc. Perkin Trans. 1991, 857.
 - (B) Brown; Letang J. Amer. Chem. Soc. 1941, 63, 358, 359.
 - (C) Ernst, L. Z. Naturforsch. B Anorg. Chem. Org. Chem. 1975, 30, 794.

(D) Hibbert, Frank; Hunte, Kenneth P. P. J. Chem. Soc. Perkin Trans. 2 1983, 12, 1895.

- (39) Haase, M. Dissertation, Friedrich Schiller Universität Jena, 1999.
- (40) Anders, E.; Markus, F., Meske, H.; Tropsch, J.; Maas, G. Chem. Ber. 1987, 120, 735.
- (41) Anders, E.; Wermann, K.; Wiedel, B.; Vanden Eynde, J.-J. *Liebigs Ann.* 1997, 745.
- (42) Schleyer, P. v. R; Jemmis, E. D.; Spitznagel, J. J. Am. Chem. Soc. 1985, 107, 6393.
- (43) Anders, E.; Stankowiak, R.; Riemer, R. Synthesis 1987, 931.
- (44) (A) Anders, E.; Gaßner, T. Angew. Chem. 1982, 94, 292.
 (B) Anders, E. Synthesis 1978, 586.
 (C) Anders, E.; Will, W. Chem. Ber. 1982, 115, 390.
- (45) Wagner, R.; Günther, W.; Anders, E. Synthesis 1998, 883.
- (46) Laubig, F. *Diplomarbeit*, Jena **1996**.
- (47) (A) Polymethine: Berlin, L.; Riester, O. *Houben Weyl.* 1972, *Bd. 5/1d*, 227.
 (B) Zusammenhang von Struktur und Farbe: *Chem. Unserer Zeit* 1978, *12*, 1.
 (C) Trichochrome: *Angew. Chem.* 1974, *86*, 355.
- (48) persönlicher Hinweis von Prof. Dr. Anders, E.
- (49) Bei Tieftemperatur-NMR-Untersuchungen traten f
 ür kurze Zeit (einige Minuten) neben den Signalen des Ausgangsheterocyclus 1i und des entsprechenden Betains 26 weitere Signale auf, die einem Andockprodukt 22/23 zugeordnet wurden. Genauere Untersuchungen mittels zweidimensionalen ¹³C-NMR-Messungen waren durch die geringe Zeitspanne nicht möglich.
- (50) Potts, Kevin T.; Kanemasa, S. J. Org. Chem. 1979, Vol. 44, No. 22, 3303-3308.
- (51) Grubert, L.; Pätzel, M.; Jugelt, W.; Riemer, B.; Liebscher, J. *Liebigs Ann. Chem.* 1994, 1005-1011.
- (52) Bei –50 °C findet auch schon die Öffnung zu Betainen 26 statt, NMR-Experimente bei tieferen Temperaturen sind durch die geringe Löslichkeit der Salze 1 in tiefschmelzenden meist unpolaren Löungsmitteln ausgeschlossen.
- (53) Mlostoń, Grzegorz; Gendek, Tomasz; Linden, Anthony; Heimgartner, Heinz. *Helv. Chim. Acta* **1998**, *Vol. 81*, 66-77.
- (54) Van der Plas, H. C., in *Advances in Heterocyclic Chemistry* (Eds. A. R. Katritzky)Academic Press, New York, **1999**, *74*, 87.

- (55) Ergebnisse einer gemeinsamen Untersuchung von Prof. Dr. E. Anders (FSU Jena und Privatdozent Dr. G. Rauhut (Universität Stuttgart);
 Publikation in Vorbereitung.
- (56) Bei diesem Phänomen eines Übergangszustands ÜZ, der energetisch 0.2 kcal/mol niedriger als das Produkt liegt, handelt es sich um einen in der Methode begründeten Berechnungsfehler. Dieser resultiert daraus, daß die Nullpunktsenergien der instabilen Übergangsstrukturen weniger genau als die der Getrennten Reaktanten berechnet werden, wodurch es bei energetisch sehr ähnlichen Werten des Produktes und des ÜZ zu solchen Fehlern kommen kann. Eine Korrektur ist durch die Verwendung eines höheren Basissatzes möglich, konnte aber aus Zeitgründen nicht durchgeführt werden.

Zum Vergleich von Basissätzen:

Raymond, K. S.; Wheeler, K. R. J. Comp. Chem. 1999, Vol. 20, 2, 207.

- (57) persönliche Mitteilung von Dr. Wermann, K.; *Publikation in Vorbereitung*.
- (58) (A) Abdel-Megeid, F. M. E.; Elkaschef, M. A. F.; Ghatta, A. A. G. *Egypt. J. Chem.* 1977, 20, 235.
 (B) El-Barbary, A. A.; Hammouda, H. A.; *Arch. Pharm. (Weinheim Ger.)* 1984, *317*, 547.
- (59) Tripathy, P.B.; Rout, M. R. J. Indian Chem. Soc. 1960, 37, 414.
- (60) (A) Das; Rout, M. R. J. Sci. ind. Res. 1955, 14B, 98.
 (B) Dubenko, R.G. et al. Zh.Obshch. Khim. 1963, 33, 274.
- (61) Dubenko, R.G. et al. J.Gen. Chem. USSR (Engl Transl.), **1963**, 33, 266.
- (62) Wermann, K.; Walther, M.; Günther, W.; Görls, H.; Anders, E. J. Org. Chem. 2001, 66, 720.
- (63) Mandrugin, A. A.; Fedsoseev, V. M.; Rodunin, A. A.; Semenko, M. N.; Chemistry of Heterocyclic Compounds, 2001, Vol 37, No. 3, 360.
- (64) Ganellin, C. Robin; Hosseini, S. Kiumars; Khalaf, Yasmin S.; Tertiuk, Wasyl;Arrang, Jean-Michel; et al. J. Med. Chem. EN, 1995, 38, 17, 3342.
- Bailey, Nicholas; Dean, Anthony W.; Judd, Duncan B.; Middlemiss, David; Storer,
 Richard; Watson, Stephen P. *Bioorg. Med. Chem. Lett.* EN; **1996**, 6, *12*, 1409.
- (66) Persönlicher Hinweis von Dr. Wermann, K.: Bei Umsetzungen von 1c mit weiteren aromatischen Aminen werden die entsprechenden Salicylidenimine bis zu 60% Ausbeute erhalten.

- (67) Kumar Padhy, A.; Nag, V. L.; Panda, C. S. *Ind. J. Chem. Sec B* **1999**, *38B*, 998.
- (68) Isoharnstoffe (Reaktionen z. B.Hydrolyse):
 - (A) Dains, F. B. J. Am. Chem. Soc. 1899, 21, 136.
 - (B) Bruce, W. M. J. Am. Chem. Soc. 1904, 26, 449.
 - (C) Lengfeld, F.; Stieglitz, Chem. Ber. 1894, 27, 926.

(D) Busch, M.; Blume, G.; Pungs, E. J. Prakt. Chemie, 1909, 513.

- (69) Glaß, D.; Buschauer, A.; Tenor, H.; Bartel, S.; *Arch. Pharm.*(Weinheim Ger.); **1995**, *328*, *10*, 709.
- (70) Merocyanine; Bedeutung bei analyt. Farbreaktionen: *Pharm. Unserer Zeit*, **1976**, *5*, 145.
- (71) Walther, M. Diplomarbeit, Jena **1996**.
- (72) Falbe, J.; Regitz, M. CD Römpp Chemie Lexikon V1.0 (9.Auflage), Thieme Verlag.
- (73) Spero, D. M.; Kapadia, S. R. J. Org. Chem. 1997, 62, 5537.
- (74) Rodrigues, J. G.; Urrutia, A. J. Chem. Soc. Perkin Trans. 1995, 665.
- (75) (A) Quintela, M. J.; Peinador, C.; Botana, L.; Estevez, M.; Riguera, R. *Bioorg. Med. Chem.* 1997, *5*, 1543-1554.
 (B) Bogdanowicz-Szwed, K.; Krasodomska, M.; *Monatsh. Chem.* 1996, *12*, 1273.
 (C) Otto-Jaworska, T. *Acta Pol. Pharm.* 1992, *49*, 77. *Chem. Abstr.* 1994, *120*, 323173.
- Turner, S.; Myers, M.; Gadie, B.; Hale, S. H.; Horsley, A.; Nelson, A. J.; Pape, R.;
 Saville, J. F.; Doxey, J. C.; Berridge, T. L. *J. Med. Chem.* **1988**, *31*, 906.
- (77) La Mattina, J. L.; McCarthy, P. A.; Reiter, L. A.; Holt, W. F.; Yeh, Li-An. J. Med. Chem. 1990, 33, 543.
- (78) Abu-El-Wafa, S. M.; El-Ries, M.A.; Ahmed, F.A. Inorg. Chim. Act. 1987, 136, 127.
- (79) Pickardt, J.; Kühn, B. Z. Naturforschung B, 1996, 51, 1469.
- (80) Biologische Wirkung von Metformin:
 (A) Siet, G.; Roes, F.; Gabon, J. J.; *Bull, Soc. Chim. Pharm.* 1963, 58, 29.
 (B) Pignard, *P. Ann. Biol. Clin.* 1962, 20, 325.
- (81) Metallkomplexe von Metformin:
 (A) Banerjee, R. N.; Gangopadhy, S. *J. Coord. Chem.* 1983, *15*, 287.
 (B) Abu-El-Wafa, S. M.; Issa, R. M.; McAulliffe, C. A.; *Inorg. Chim. Acta* 1985, *99*, 103.
- (82) Darstellung und Racemattrennung von 1-(2-Pyridyl)ethylamin:

	Michelsen, Kirsten Acta Chimica Scandinavica, 1974 , A28, 428.
(83)	Lutsche, M. Diplomarbeit, Jena 2002.
(84)	(A) Schepartz; Breslow, J. Am. Chem. Soc. 1987, 109, 1824.
	(B) Hoorn, H.J.; de Joode, P.; Driessen, W. L.; Reedijk, J. Recl. Trav. Chim. Pays-
	Bas 115, 1996 , 191.
(85)	(A) Profft, E. Chem. Techn., Jg.7., Heft 9, 1955, 511.
	(B) Gonschior, M.; Kötteritsch, M.; Rost, M.; Schönecker, B. Tetrahedron:
	Asymmetry 11, 2000 , 2159.
(86)	Niklas, N.; Walter, O.; Alsfasser, R. Eur. J. Inorg. Chem. 2000, 1055.
(87)	Kläui, W.; Piefer, C.; Rheinwald, G.; Lang, H. Eur. J. Inorg. Chem. 2000, 1549-
	1555.
(88)	Loukiala, S.; Ratilainen, J.; Airola, K.; Valkonen, J.; Rissanen, K. Acta Chimica
	Scandinavica, 1998 , 52, 593.
(89)	Jacobsen Katalysator: J. Am. Chem. Soc. 1991, 113, 7063.
(90)	Beispiele für Tris-(2-aminoethyl)amin in der Koordinationschemie:
	(A) Rai, B. L.; Khodr, H.; Hider, C. R. Tetrahedron 1999, 55, 1129.
	(B) Chen, D.; Motekaitis, R. J.; Murase, J.; Martell, A. E. Tetrahedron 1995, 51, 77.
	(C) Walther, D.; Geßler, S.; Ritter, U.; Schmidt, A.; Hamza, K.; Imhof, W.; Görls,
	H.; Sieler, J. Chem. Ber. 1995, 128, 281.
(91)	Beispiele für Cyclam in der Koordinationschemie:
	(A) Kimura, E. Tetrahedron 1992, 48, 6175.
	(B) König, B.; Pelka, M.; Möller, O.; Dix, I.; Jones, P. G. Chem. Ber./Recueil 1997,
	130, 521.
	(C) Kimura, E. J. Biol. Inorg. Chem. 1996, 431.
	(D) Sakurai, M.; Furuki, T.; Inoue, Y. J. Phys. Chem. 1995, 99, 17789.
(92)	Review zur Cyclam und Cyclen – Funktionalisierung: Denant, F.; Brandès, S.;
	Guilard, R. Synlett 2000, 5, 561.
(93)	Walther, M.; Wermann, K.; Görls, H.; Anders, E. Synthesis 2001, 1327.
(94)	Jander Blasius, Lehrbuch der analytischen und präparativen und anorganischen
	Chemie, 14. Auflage, S.Hirzel Verlag Stuttgart, 1995, 414.
(95)	aus dem Programmpaket MOPAC 6.0.
(96)	Trost, B. M.; Yeh, V. S. C. Angew. Chem. 2002, 114, 5, 889.
(97)	Schenk, S. unveröffentliche Ergebnisse.

- (99) Darensbourg, D. J.; Rainey, P.; Yarbrough, J., *Inorg. Chem.* 2001, 40, 986-993.
- (100) Coates, Geoffrey W. J. Chem. Soc. Dalton Trans. 2002, 467-475.
- (101) Coates, Geoffrey W. Chem. Rev. 2000, 100, 1223.
- (102) (A) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. *Chem. Commun.* 2000, 2007.
 (B) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.;
- (103) Willems, S. T. H.; Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Chem. Eur. J. 2002, No.6, 8, 1310.
- (104) (A) Kuran, W.; Listos, T. *Macromol. Chem. Phys.* 1994, *195*, 977.
 (B) Hasebe, Y.; Tsuruta, T. Macromol. Chem. 1987, *188*, 1403.

Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229.

- (105) (A) Bottaccio, G.; Chiusoli, G. P.; *Chem. Commun.* 1966, 24, 618.
 (B) Bottaccio, G.; Marchi, M. *Gaz. Ch. Ital.* 1977, 107, 499.
- (106) Walther, D.; Ritter, U.; Kempe, R.; Sieler, J.; Undeutsch, B. Chem. Ber. 1992, 125, 1529.
- (107) Gebhardt, P. Dissertation, Friedrich Schiller Universität Jena, 2001.
- (108) berechnet mit: ACD C-NMR-Predictor.
- (109) Fujiwara, M. Chem. Lett. 1986, 1963.
- (110) Tang, J.; Mohan, T. Verkade, J.G.; J. Org. Chem. 1994, Vol 59, 17, 4931.
- (111) Tagachi, Y.; Shibaya, I.; Yasumoto, Y.; Yonemoto, K. Bull. Chem. Soc. Jpn. 1990, 63, 3486.
- (112) Zitiert in (97)
- (113) Sorokin, M. F.; Shode, L.G.; Onosova, L. A. Deposit. Doc. VINITI, 1976, 1679.
- (114) Rost, M. Dissertation, Friedrich Schiller Universität Jena, 2001.
- (115) (A) Ackermann, J.; Meyer, F.; Kaifer, E.; Pritzkow, H. *Chem. Eur. J.* 2002, *8*, 247.
 (B) Neves, A.; Rossi, L. M.; Bortoluzzi, A. J.; Mangrich, A. S.; Haase, W.; Werner, R. *J. Braz. Chem. Soc.* 2001, Vol. 12, *No.6*, 747.
 (C) Solomon, E. I.; Sundaram, U. M.; Mechonkin, T. E. *Chem. Rev.* 1996, *96*, 2563.
 - (D) Battaini, G.; Monzani, E.; Casella, L.; Pagliarin, R. J. Biol. Inorg. Chem. 2000, 5, 262.

- (116) Wegner, R. Gottschaldt, M.; Görls, H.; Jäger, E. G.; Klemm, D. Chem. Eur. J. 2001, 7, 2143.
- (117) Reim, J.; Krebs, B. J. Chem. Soc. Dalton Trans. 1997, 3793.
- (118) Matti, J.; Ledoux, C.; Kesler, E. Bull. Soc. Chim. France 1959, 477.
- (119) H. Bürger, W. Sawodny, U. Wannagat, J. Organomet. Chem. 1965, 3, 113-120.
- (120) Organikum, 21. Auflage, WILEY-VCH, 2001.
- (121) persönlicher Hinweis von Dr. Ciesielsky, M., abgewandelte Vorschrift nach: Niemens, E.; Hiltmann, R. *Synthesis* 1976, 593.