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icologie” pentru ”bunăvointa” lor de a ma ”integra” in grup.



Outline of the thesis

Coordination chemistry constitute a common ground for molecular magnetism and bioin-

spired chemistry. The topic of molecular magnetism and supramolecular assemblies are

the focus of this thesis. Summarily, the thesis describes the supramolecular organization

of homo- and heteropolynuclear complexes, containing different paramagnetic centers,

going from d-block metal ions to combination of d-f spin carriers topologies. These

polynuclear complexes have been structurally and spectroscopically characterized, and

partly magnetostructural correlations have been performed.

The work is divided into seven chapters. The first chapter comprises a brief in-

troduction into phenomenon of magnetism and contains relevant example of molecular

magnetic compounds that have been described in last decades.

The second chapter is concerned with the synthesis, characterization and magne-

tostructural studies of antiferromagnetically coupled aza-metallacrown compounds with

iron(iii) ions as constituting metal centers. It has to be mentioned here that metal-

lacrown, as a general class of coordination compounds, are the inorganic analogs of or-

ganic crown- and aza-crown ethers. Trinuclear and tetranuclear Fe(iii) complexes have

been isolated via self-assembly reaction between N-imidazol-2-yl-salicyloyl hydrazide and

FeX3·xH2O salts. The topology of the resulting complexes is based on iron-diazine bridged

metal centers, with each Fe(iii) ion in distorted octahedral environment. Each ligand

molecule acts as bis-nucleating pentadentate system, accommodating two different iron

ions. The coordination sphere of the metal ion is completed by halide and pseudo-halides

(azide, thiocyanate), respectively which act as monodentate anionic ligands. The in-

teresting feature of the chapter is the self-organization of the trinuclear Fe(iii) complex

which contains the thiocyanate anion ligand. This complex is re-assembled in basic media

to a tetranuclear [2+2]-grid Fe(iii) compound. All iron(iii) complexes showed an anti-

ferromagnetic coupling interaction for which the magnitude is strongly dependent upon

torsion metal-bridging units.

The third chapter presents homonuclear Ni(ii) and Co(iii) complexes constructed

using three-fold tridentate tris(2-hydroxybenzylidene)triaminoguanidine derivatives lig-

ands. The influence of used co-ligands in the resulting self-organization of the oligomeric
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d-metal complexes will be also presented. Although the strategy upon which these com-

plexes were synthesized is a rational one, the serendipity plays also a key-role in the

organization of the molecules. Firstly, the trinuclear Ni(ii) complexes are re-organizing

in presence of an outer metal ions to form pentanuclear Ni(ii) complexes, independently

of the used co-ligand moieties. The magnetism of this series of homonuclear Ni(ii) com-

plexes is characterized by antiferromagnetic exchange interaction between the constitut-

ing nickel(ii) ions with different ground spin state of the NiII
3 -core. The supramolecular

arrangement in the solid state is dominated by π-π-stacking and hydrogen bonding in-

teraction with the highlight of a honeycomb architecture which contains void-channels

formed along the a crystallographic axis. In addition, a trinuclear Co(iii)-complex formed

through ”in situ” oxidation of the starting Co(ii) salt will be also described.

In the fourth chapter serendipity plays the key-role in the isolation of oxygen-bridged

homonuclear Fe(iii) and Cu(ii) complexes. Dinuclear Fe(iii)-complexes with oxo- and

alkoxy-bridge have been structurally and spectroscopically characterized. Although the

oligomeric units are based on simple dinuclear iron(iii)-entities, one-dimensional polymers

formed via hydrogen bonding interaction have been observed. These complexes are char-

acterized by strong antiferromagnetic interaction transmitted by the oxygen-containing

bridges. The last part of the chapter is focused on self-assembly formed dinuclear and trin-

uclear Cu(ii) complexes with [2-(2-dimethylamino-ethylimino)-methyl]-phenol ligands.

While the trinuclear Cu(ii)-complex contains a partial cubane-like Cu3O4-core formed

by phenoxy and hydroxy-bridges, the dinuclear Cu(ii) complex formed with methoxy-

derivative of the [2-(2-dimethylamino-ethylimino)-methyl]-phenol ligand comprises only

one Cu–O(Ph)–Cu bridge. These structural arrangements are vital for the magnetic prop-

erties which vary from ferromagnetic coupled copper(ii) centers in trinuclear complex to

weak antifferomagnetic coupled copper spins in the dinuclear complex.

The fifth and the sixth chapters discuss the building up of heteropolynuclear com-

plexes based on ”complex-as-ligand” strategy. In chapter five trinuclear copper(ii)-

cobalt(ii) complex with oxamate-derivative bridging and supporting ligand will be pre-

sented. Oxamide and oxamate-based ligands function as good transmitters of the mag-

netic interaction due to a good overlap of the magnetic orbitals of the spin carriers

mediated by these bridging units.
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The sixth chapter is based on heteronuclear copper-lanthanide topology and is di-

vided into two subchapters. The first one comprises rare examples of one-dimensional

Cu(ii)-Ln(iii) complexes based on compartmental salen-type ligands and pyrazine-2,3-

dicarboxylic acid bridges. The supramolecular architecture is represented by zigzag alter-

nating [Cu-Ln]-tectons, resulting in formation of coordination polymers. The magnetic

interaction is determined by the constituting lanthanide ions and vary from antiferro-

magnetic one-dimensional chains for praseodymium to europium containing coordination

polymers. For the other lanthanide-ion containing one-dimensional chains, the mag-

netism is dominated by ferromagnetic interaction. The interpretation of the magnetic

properties of copper-gadolinium chain showed that the pyrazine 2,3-dicarboxylic bridge

does not transmit very well the magnetic interaction along the 1-D polymeric structure.

The second subchapter describes the synthesis and structural characterization of trinu-

clear copper-lanthanide complexes based on the same salen-like supporting ligand and

salicylic acid bridge. The high spin trinuclear [Cu2Gd]-complex showed a ferromagnetic

interaction with a spin ground state S = 9/2. For all the other lanthanide-containing

complexes, an antiferromagnetic interaction is to be expected.
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Chapter 1

Introduction

1.1 Brief history of magnetism

Magnets play an important role in our daily lives and are to be found in a large number

of electronic devices that are surrounding us, ongoing from telephone, loudspeakers, mi-

crophones or video to data storage devices, motors, generators, medical devices, magnetic

separators and the list can go on and on.1

The phenomenon of magnetism dates from ancient times and has been firstly dis-

covered by Greeks and later used by Chinese to create the ”south pointing” compass.

Initially, the attractive power of lodestone which is rich in magnetite (an iron rich oxide

mineral) led to a plethora of myths on going from the soul possession of the stone to the

”bone” of Haroeri (the grand sone of the goddess of the earth) in the ancient Egyptian

belief.2 Since these early times however, advances and understanding of the magnetism

phenomenon has been greatly influenced by many peoples over many years. It was firstly

Petrus de Maricourt in twelve century who identified that magnets have two poles labeled

by him as north and south. He also observed that breaking a magnet leads not to its

destruction but, to two magnets. Years later, in sixteen century, Dr. William Gilbert

devoted a huge scientific activity to stop the growing trove of myths and superstitions

regarding the magnetism phenomenon. He made an unprecedent revelation by deducing

that the earth itself is a magnet and he prepared the first man-made magnet based on

iron metal.3
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Ulterior advances and understanding into the phenomenon of magnetism have been

influenced by pivotal contributions from M. Faraday, A. M. Ampere and H. C. Øer-

sted who established the connectivity between electricity and magnetism whereas, later

Maxwell made the connection among the two phenomena and predicted the electromag-

netic waves.4

With Maxwell’s equations, classical electromagnetism was complete, but the fer-

romagnetism remained still a mystery. The question ”why an iron bar does not melt

when high amperian currents pass through” persisted until 1907 when the French physi-

cist P. Weiss developed the theory of ferromagnetism based on the assumption that the

interaction between magnetic molecules could be described empirically considering an

internal molecular field. This new discovery was still elusive and the fundamental as-

pects of magnetism were to be understood only by quantum mechanics which explains

that the key role of magnetic behavior is the electron spin.4 The number, vicinity and

coupling among spins dictate the overall magnetic behavior. The magnetic susceptibility

of isolated spins obeys the Curie law (page 16). When spins are brought together, they

frequently oppose each other with the resulting magnetic susceptibility lower than the

sum of the independent spins, phenomenon known as antiferromagnetic coupling. In-

stead, when the alignment of the spins enhance the value of magnetic susceptibility, the

coupling is ferromagnetic.1,5

Traditional magnetic materials are prepared at very high temperatures using metal-

lurgical methodologies. These materials are atom-based magnets which means that their

active spins are located on the atomic orbitals of the constituting metal ions.6 These

classical magnets are two- or three-dimensional arrays of inorganic atoms, composed

of transition metals and/or lanthanide metal containing spin units.6,7 Modern alloys

comprising Sm-Co (SmCo5), Nd-Fe-B and Sm-Fe-nitride are commercially available and

used especially in applications were miniaturization is an important design criteria. The

disadvantage of these magnets is represented by their high cost.

Therefore, the research to develop new magnetic materials has been known a raising

interest. This has led to a new field of research called molecular magnetism of which

purpose is to design molecular based magnets with bulk magnetism. In this phenomenon,

the spins in a solid, align in the same direction to result a net magnetic moment.8 This
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class of magnetic materials can no longer be synthesized in metallurgical manner because

the molecular magnets comprise purely organic and organic/inorganic hybrid materials

for which high temperature conditions usually inhibit their formation.8 In addition, the

field of molecular magnetism is an interdisciplinary area of research with chemists and

physicists collaborating closely with the stated goal to design, synthesize and characterize

the magnetic properties of molecular based materials. Conversely to classical magnets,

the molecular based magnets exhibit different Curie temperature Tc (temperature above

which a magnetic material loses its magnetic properties in a ferromagnetic materials) and

in addition, a better control over its magnetic characteristics due to a easily processed

strategy.7 Moreover, a combination of magnetic properties with mechanical, electrical

and/or optical properties will allow synthesis of multi-functional materials. In order to

design materials with interesting bulk magnetic properties is necessary to understand

how such a magnetism arises in samples. A complete understanding of this phenomenon

has not yet been formulated, however new phenomena associated with these mesoscopic

systems have been developed and comprise: macroscopic quantum tunneling, quantum

hysteresis, magnetoresistance and magnetocaloric effects to name a few.9

A plethora of molecular magnetic materials have been reported for which inter-

esting magnetic properties have been found.10 One of the exciting aspect of molecular

magnetism was represented by pure organic compounds capable of possessing magnetic

properties in addition to their specific organic reactivity.11–13 The most representative

examples of organic compounds that posses strong magnetic interaction are the radical

class from which the nitronyl-nitroxide and dithiadiazolyl radicals have been extensively

studied (Figure 1.1). The nitroxide derivatives are a group of molecules which contains

NO-functionality with unpaired electrons in π∗ orbital.14 This is stabilized by presence

of bulky groups which do not allow the molecules to interact in order to dimerise. Its

phenyl-derivatives have been also synthesized and it has been reported to order as weak

bulk ferromagnet at relatively low Tc values. The dithiadiazolyl radical has also ex-

hibited ferromagnetic interaction with Tc value of 36 K.13 An exciting feature of the

organic radical compounds comes from their association with transition metals and/or

rare earth ions. Single chain magnets have been isolated combining phenyl-nitroxide rad-

ical derivatives with hexafluoroacetylacetonate salts of anisotropic metal ions, i.e Co2+
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Figure 1.1: Selected organic radical molecules which exhibit ferromagnetic interaction.

and Dy3+ ion.15,16 Single chain magnets (SCM) exhibit bulk ferromagnetic interaction

of one-dimensional coordination polymers.

Another representative example for this class of molecular magnetic materials based

on mixed organic radical-transition metal ions is the ferromagnet reported by Miller et

al using tetracyanoethylene (TCNE) radical.17 This new radical ion posses four nitrogen

atoms which can bind to various metal ions forming extended networks. The metallocene-

radical complex of type [Fe(C5Me5)2][TNCE] ordered in 3-D arrangement with a Tc value

of 4.8 K, whereas the vanadium-[TCNE] complex showed a Tc = 400 K.6,17,18

N

N N

N

tetracyanoethylene radical

Another category of molecular magnetic materials that should be briefly introduce

is based upon Prussian Blue analogs compounds.19 The Prussian blue compound is a

pure inorganic mixed valence FeIII/FeII cyanide salt of type FeIII
4 [FeII(CN)6]3·15H2O

with long range ferromagnetic ordering at Tc = 5.6 K.20,21 Other similar d-transition

metal cyanide complexes have isolated and magnetically investigated. Depending on the

used metal ion, their magnetic behavior vary from three dimensional ferromagnets or

antiferromagnets to ferrimagnetic behavior.21 These pure inorganic compounds are more

similar to classical magnets due to variations in properties achieved by incorporating

different metal ions, rather than modification of the organic ligands as usually happens
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in molecular magnetic materials. Nonetheless, the Prussian blue family are considered

molecular due to their synthesis methodology which assembles the molecular chemistry,

rather than solid-state chemistry. In addition, the cyanide ligands may function as bridges

between d-complex entities resulting in one-dimensional single chain magnets as previ-

ously mentioned for the organic radical-metal complexes compounds.22

The molecular magnetism has been fueled by the discovery of single molecule mag-

net (SMM) discovered firstly in 1993 by Sessoli et al .23,24 This inorganic cluster, synthe-

sized firstly in Poland by Lis25 and extensively studied in the early 1990s. The molecular

structure contains oxo-bridged Mn(iii) and Mn(iv) centers wrapped around by acetate

ligands and this is abbreviated as Mn12Ac. This inorganic cluster served as classical

framework to understand the quantum properties of magnets, especially the quantum

tunneling of the magnetization.9 The bulk magnetic property is truly due the individ-

ual molecule and not to long range interactions. Since these molecules are bistable, in

the sense that they can be magnetized in two directions, application in data storage de-

vices of Mn12Ac was proposed.9 Every molecule can be considered as a bit of data with

the bulk of this material capable of information density calculated to be three to four

times higher than what is currently possible.26 Another representative example of single

molecule magnet is represented by Fe8-inorganic cluster (shown below) which also showed

slow relaxation of magnetization and hysteresis loop, two characteristic properties for a

material to function as small magnet.26,27

Mn Ac single molecule magnet12
Fe single molecule magnet8
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1.2 Basic theoretical background of magnetism

The magnetism behavior of the molecular magnetic material is described from two points

of view: the magnetic characteristics on the atomic or ion level and as cooperative mag-

netism phenomenon. On the atomic or ion level there exist two fundamental types of

magnetism: diamagnetism and paramagnetism.5,10

A diamagnetic behavior of ions or atoms appears when molecular or atomic orbitals

contain paired electrons and the substance is repulsed out of an applied magnetic field.

With the exception of hydrogen radical, all atomic or molecular materials exhibit some

diamagnetic behavior. This observed effect is temperature independent and the strength

of the interaction is roughly proportional to the molecular weight of the material.

Conversely, paramagnetism is characterized by attraction of a substance into an

applied magnetic field and this behavior arises from interaction between the magnetic

field and unpaired electrons in atomic or molecular orbitals. Typically, paramagnetic

species contain one or more unpaired electrons, and the strength of paramagnetism is

temperature dependent. However, some substances also exhibit temperature independent

paramagnetism (TIP) that arises from coupling between the magnetic ground-state and

non-thermally populated excited states.

Bulk magnetic behavior of the molecular magnetic materials is characterized by

cooperative magnetism. This arises from magnetic interactions between paramagnetic

atoms or molecules and can lead to magnetic or non-magnetic materials depending on

how adjacent magnetic spins align with each other. The magnetic interactions occur in

three dimensions and the type and strength of these interaction can be defined for each

dimension. In cases where different magnetic interactions are observed due to dimension-

ality, the material is characterized by the strongest one. Bulk magnetic behavior of a

material can be described by four major classes of magnetism: paramagnetism, antiferro-

magnetism, ferromagnetism and ferrimagnetism. These magnetic behavior is determined

by the interaction pathway of adjacent magnetic moments at absolute zero.

If no alignment of adjacent magnetic moments occur at zero absolute, the mate-

rial is called paramagnet (Figure 1.2, pictogramm a). This phenomenon appears when

individual electron spin is unaffected by its neighbors and the spins of the material are

14



a b c d

Figure 1.2: The alignment of the magnetic moments at absolute zero. No alignment of

the adjacent magnetic moments in paramagnets (a). Ferromagnets (b) exhibit a parallel

alignment of the adjacent magnetic moments. Antiferromagnets show an antiparallel ori-

entation of the adjacent magnetic moments (c). The d pictogramm shows the antiparallel

orientation of adjacent magnetic moments of different strength in ferrimagnets.

easily aligned by an applied magnetic field. However, the alignment is very weak and

vanishes upon removal of the magnetic field when the system relaxes back to a random

distribution of magnetic moments.

Ferromagnetism is a result of parallel ordering of adjacent magnetic spins that yields

large net magnetic moment (Figure 1.2, pictogramm b). This alignment of the magnetic

spins is more rare and unlike paramagnets, ferromagnets exhibit a net magnetic moment

in the absence of an applied magnetic field.

Antiferromagnetism is a consequence of antiparallel alignment of magnetic spins

resulting in no net magnetic moment (Figure 1.2, pictogramm c). At absolute zero, anti-

ferromagnets exhibit a diamagnetic response to an applied magnetic field. This magnetic

behavior is most commonly observed bulk magnetism and long-range antiferromagnetism

is even exhibited by materials that order local ferromagnetically.

Ferrimagnetism is a special case of antiferromagnetic behavior where the material

consists of lattice of rigidly alternating spins of different magnitude. The adjacent mag-

netic spins align parallel as in antiferromagnetism, but because of different magnitudes,

the resulting material possess a net magnetic moment in the absence of the applied mag-

netic field (Figure 1.2, pictogramm d). This magnetic behavior appears in [Mn–Cu],

[Co–Cu] systems.28,29
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Magnetic interactions are typically characterized by their responses to variations in

temperature and applied magnetic field. Each of these classes of magnetism, described

above, has a characteristic response to temperature and applied magnetic field used to

determine the type and strength of the magnetic interaction in a molecular material. The

temperature dependance magnetic behavior of a molecular magnetic material is described

by Curie law, whereas the field dependance of the magnetism is described by Brillouin

function.

The Curie law describes the temperature dependance of the magnetic susceptibility

for an ideal paramagnet.

χM =
Nµ2

βg2

3kT
S(S + 1)

where χM is molar magnetic susceptibility, N is Avogadro’s number, g- the Landé factor,

µβ is the Bohr magneton and k is the Boltzman constant. The magnetic susceptibility is

defined as the quantitative measure of the response of a material to an applied magnetic

field.

This equation can be reduced to:

χM =
C

T − θ

called Curie-Weiss law, where C is the Currie constant and θ the Weiss constant. A

positive sign of the θ value is characteristic for ferromagnetic coupling of the magnetic

spins, whereas the negative sign describes an atiferromagnetic alignment of the magnetic

spins.

All magnetic materials behave as paramagnets at high temperature, because the

thermal energy over comes the alignment of the spins. Typically the magnetic behav-

ior of magnetic materials is carried out by examining the temperature dependance of

susceptibility, the susceptibility temperature product and thermal dependance of inverse

susceptibility. Each of these analysis provide slightly different information about the bulk

magnetism of the material.

From the plots of thermal variation of magnetic susceptibility is in general difficult

to determine the type of magnetic interaction. The most useful information can be

obtained for antiferromagnetic materials which exhibit a maximum at low temperature.
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The higher the temperature value at which the maximum is observed, the stronger the

antiferromagnetic interaction. The shape of the maximum suggests the dimensionality

of interactions, with one and two dimensional antiferromagnets marked by a rounded

maximum, while a sharp maximum appears for three dimensional antiferromagnetism.

The most informative plot is the thermal variation of the temperature-magnetic

susceptibility product. For a true paramagnetic material, the response is a straight line,

whereas variations of the χMT values in the low temperature range differ from antifer-

romagnets to ferromagnets to ferrimagnets. At high temperatures, the χMT product

vary little or remains unvaried due to the effective paramagnetic behavior of magnetic

materials. On lowering the temperature, ferromagnetic materials display an upward devi-

ation from the curve for an ideal paramagnet, whereas the antiferromagnetic interactions

display downward curvature with decreasing temperature values. For ferrimagnetic ma-

terials, the χMT vs T curve present a slight downward curvature and then increases in

the low temperature range.
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The Brillouin function describes the magnetization of a magnetic material at certain

temperature. In practice it is used to determine the spin ground state of molecular

magnets by varying applied magnetic field at constant temperature. The function has

the following form:

M = NgµβSBS(y)

BS(y) =
2S + 1

2S
coth(

2S + 1

2S
y) −

1

2S
coth(

1

2S
y)

y =
gµβSH

kT

One of the most distinctive feature of materials with bulk magnetism is represented

by hysteresis. This effect is observed for ferromagnetic and ferrimagnetic materials below

their critical temperature and, is determined by magnetization measurements as function

of an applied field. This behavior is defined by two distinctive points: remnant magneti-

zation (Mr) and coercive field (Hc). Remnant magnetization is obtained by applying and

removing large magnetic field and represents the extent to which a bulk magnetic mate-

rial exhibits spontaneous magnetism. The coercive field is the magnetic field required to

bring the magnetization of a sample to zero. Materials with low coercive fields (< 1G)

are called ”soft” magnets, while materials with high coercive fields (> 500 G) are termed

”hard” magnets.5,10
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1.3 State of art

The design of novel magnetic materials is a focusing area of research. While the ferro- and

ferrimagnets may be useful materials for device design, the antiferromagnetic interaction

observed in molecular magnetic material has also its apport in understanding the physical

background of magnetism. Two main approaches have been involved in the attempts to

isolate organic-inorganic hybrid materials. This are based on ”self-assembly” process and

rational design based on ”complex as ligand” strategy. Both approaches led to interest-

ing magnetic materials. Self-assembly is the most efficient approach in supramolecular

chemistry and paved the field of crystal engineering which is interrelated to material sci-

ence. Even though the oligomeric units are isolated following a rational strategy, their

organization in solid state is hard to be predicted. Crown ethers and the corresponding

aza-crown ethers are a class of organic compounds important in molecular recognition.

The combination between the two types of organic compounds, namely cryptates play

an important role in ion transport through membranes. The inorganic analogous class of

crown ether have been reported as recognition agents, with 15-metallacrown-5 copper and

nickel derivatives encapsulating lanthanide ions.30 While the metallacrown compounds

have been extensively studied, the corresponding aza-crown metal complexes have re-

ceived less attention. Hence, the second chapter of the thesis will be focused on magneto-

structural characterization of Fe(iii)-complexes formed by self-assembly process between

Schiff base N-imidazolyl-salicyloyl hydrazide ligand and iron(iii) salts. The polydentate

nature of the ligand system allowed development of rare examples of 12-azacrown-iron

compounds and in addition a first example of trinuclear iron complexes in which the

presence of µ3-bridged mode of oxygen atom31 is not present. The influence of the sur-

roundings of the iron center towards magnetic interaction in the resulting complexes

was also investigated. Self-assembly approach to design novel magnetic materials have

been reported by Thompson et al.32 for hydrazide-based ligands and the resulting mag-

netic interaction is dictated by the torsion metal-diazine-bridging angles, varying from

ferromagnetic to antiferromagnetic behavior. An eloquent example of self-assembled iso-

lated complex will be described in Chapter 4 and comprises a ferromagnetic homonuclear

Cu(ii) complex with partial-cubane core. Cubane-like structural core in inorganic-organic
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hybrids is a peculiar case of accidental orthogonality occurring as a consequence of 90◦

orientation of the magnetic orbitals. The strict orthogonality orientation of the magnetic

orbitals has been reported only for VIV -CuII , NiII-CrIII and FeIII-CuII couple systems,

whereas the number of accidental orthogonality comprises other d-transition metal ions

as well.10

Nevertheless, the most challenging area of research comprises the isolation of pre-

defined coordination compounds. Hence, three-fold tridentate triaminoguanidine-based

Schiff base ligands have been employed as organic-support to isolate Ni(ii) complexes.

From the magnetochemistry point of view, this polydentate system with C3 symmetry

is versatile because it may yield trinuclear metal-complexes with a resulting non-zero

spin ground state when capping ligand are employed to complete the coordination sphere

of the metal ions.33–40 The judicious selection of capping ligand systems may give the

opportunity to obtain interesting supramolecular assemblies by self-organization of trinu-

clear complex unit in solid state through non-covalent interactions. Hence, 2,2’-bipyridine

(bipy) and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) have been employed as co-ligands in

order to avoid the uncontrolled polymerization of polynuclear complexes. The triangu-

lar antiferromagnetically ordered magnetic spins play a key-role in molecular magnetism

owing to their capacity to show magnetic frustration mechanism. In a triangular ar-

rangement of the spins, it is impossible to obtain an antiparallel alignment of spins,

such that all of them will interact antiferromagnetically. This has been termed as spin

frustration10,41 since if two spins are align antiparallel, the third spin cannot be aligned

antiferromagnetically with both of the spins (Figure 1.3).

?

Figure 1.3: Illustration of spin frustration mechanism.

The synthetic organization of paramagnetic centers into close-spaced arrays with

strong magnetic interaction mediated by the chosen bridges is still a challenge for inor-
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ganic chemists. Cyanide has been proved to be useful in this regard and orthogonality

connected metal orbitals and long range ferromagnetic ordering was achieved. The opti-

mal close organization of paramagnetic centers within extended bridged structures with

very short metal-metal contact has been achieved with single atom bridging unit, i.e.

oxygen-based bridges. An extended organic bridge that offers a good overlap of the mag-

netic orbitals is based on oxalic acid and its oxamide and oxamate-derivatives. Oxalate-

bridged dinuclear copper(ii) complex has been found to be strongly antiferromagnetically

coupled of order of magnitude of J = - 384.5 cm−1, although the paramagnetic centers

are relatively well-separated metal by a distance of 514 pm.10 The disadvantage of the

oxalate dianion is represented by uncontrolled polymerization effects, hence oxamide and

oxamate-derivatives are more adequate bridging units. The strong electron donating ca-

pability of the nitrogen amide in the above mentioned derivatives, accounts for greater sta-

bility of the resulting metal complexes when compared with oxalate. Moreover, the lower

electronegativity of the nitrogen atoms in oxamide and oxamate dianions allows a stronger

magnetic interaction in polynuclear complexes and the polynuclear complexes are suitable

candidates for designing molecular ferrimagnets. Based on these consideration, a novel

mononuclear Cu(ii) anion complex has been involved as molecular brick to isolate hetero-

trinuclear [Cu2Co]-complex. The high anisotropic metal ions are desirable paramagnetic

centers in design of new ferromagnetic materials. Besides the strict orthogonality that

conduct to a ferromagnetic coupling of the paramagnetic centers in a magnetic material,

another example of ferromagnet is represented by CuII-GdIII couple. Although the num-

ber of oligo-heterodinuclear d- transition metal-gadolinium complexes have been reported,

the number of polymeric architecture with d-f topology is rather scarce. One-dimensional

polymers which may function as single chain magnets are highly desirable since they can

have possible applications such as nanowires. A rational approach, based on ”complex as

ligand” strategy will be described in Chapter 6. Starting from compartmental salen-type

organic ligands, one dimensional [Cu(OMesalen)Ln(NO3)(Pyr(COO)2)]n·(DMF)n com-

pounds will be described. The anisotropic lanthanide ions, i.e dysprosium and terbium

containing compounds have been described to posses interesting magnetic behavior with

lanthanide-containing complexes reported as magnet-like behavior.
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Evaluation of the magnetic behavior of complexes described herein has been per-

formed for isotropic exchange interaction based on the corresponding spin-Hamiltonian,

generally represented as:

Ĥ = −
∑

JijSiSj

where the sum represents the over all pairwise interactions of intensity Jij between Si

and Sj spins of molecules. This model of the isotropic interactions between the spins

carriers is based on concept of magnetic orbitals and overlaps densities between pairs of

such orbitals and allows the analyze of the spin coupling. In molecular magnetism, the

magnetic behavior concerns not only the local spins associated with metal ions, but also

the molecular spins associated with open-shell molecular units as a whole. The mathe-

matical methods for calculating the magnetic susceptibilities in polynuclear complexes is

based upon vector coupling method formulated by Kambe.42
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Chapter 2

Novel tri- and tetranuclear iron

azacrown clusters

The concept of supramolecular architectures being self-assembled from simple compo-

nents that are carefully designed, has been attracted considerable attention becoming a

challenging area of research.43–45 Self-assembly reactions between transition-metal salts

and polydentate ligands have lead to a large variety of interesting assemblies that include

helicates,46 cage,47,48 ladders,49,50 rocks51 and grids.50,52 The versatility of this process

has also been supported by the interesting properties and wide range of applications of

the resulting metal-based assemblies, including magnetic,53,54 electronic55 and optical56

features. Among other compounds, metallamacrocycles have been received a special at-

tention due to the fact that this class of molecular materials is relevant to a variety of

modern chemistry including catalysis,57 sensors,58 molecular recognition59,60 and chiral

buildings blocks for one, two, and tree-dimensional solids.61–63 Examples of metallamacro-

cycles include metallacrowns,30,64,65 molecular squares,66–68 metallahelicates,69,70 metal-

lacryptates and metallacryptands71–74 as well as metalacalixarenes.75,76 Metallacrowns

(MC) exhibit a cyclic structure analog to crown ethers with transition metal ions and

nitrogen atoms replacing the methylene carbon of the corresponding organic structure

(Figure 2.1). The resulting assemblies contain -[M-N-O-]-n repeating units and there are

in general constructed by using ketonoximic acids77–79 and/or hydroxamic acid, such as

salicylhydroxamic acid (H3shi)65,80–83 and β-alanine hydroxamic acid.84
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Figure 2.1: Schematic representation of the analogy between organic crown-ether (C)

topologies and corresponding metallacrown (MC) inorganic compounds taken from ref-

erence.30

One advantage of the metallacrown structural topology is in general represented by the

fact that many metal centers are placed in close proximity and they can be exploited for

a variety of applications. Metallacrown compounds are an example of molecular class

which exhibits selective recognitions of cations80,85 and anions86,87 and in addition they

can display interesting magnetic properties.88 Azametallacrowns are a particular case of

metallacrown compounds with the main differences staid by the repeating units in which

the oxygen atom has been replaced by nitrogen atom, resulting in -[M-N-N-]-n repeat-

ing fragments. The most frequently occurring structural motif of the azametallacrown

derivatives is represented by hydrazide-based supporting ligands.89–92 The chelation ca-

pacity of a broad range of hydrazide based ligands has lead to interesting supramolecular

assemblies93,94 including metal helicates structures,95 pin-wheel clusters96 as well as ex-

tended one- and two-dimensional metal complexes.97 Azametallacrown compounds based

on hydrazide topology comprise in general an even number of metal ions and it starts
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from six and range up to twelve metal ions.89–92,98–101 This shows that a direct predic-

tion of the resulting polynuclear structure is still an opened challenge. Nonetheless, the

knowledge about trinuclear iron-azacrown compounds is rather scarce and the existing

reports of trinuclear iron(iii) ions have been focused on oxo- and/or hydroxy-bridged

Fe(iii) centers. Hence the magnetostructural characterization of rare examples of trin-

uclear Fe(iii)-azametallacrown represent the focus of this chapter. A complete serie of

neutral trinuclear iron complexes with mixed ligand composition of type [9-MC-3](L)3 (L

is Cl−, NNN− and NCS− end-on bound ligands) have been synthesized and magnetically

investigated. These complexes represent very rare examples of trinuclear azametallacrown

complexes and they are also the first example of trinuclear iron complexes in which the

presence of µ3-bridged mode of oxygen atom31 is not present. The three compounds main-

tain the same structural motif with remark that the coordination sphere of iron atoms is

changed. When thiocyanate has been used as pseudohalide source, the trinuclear iron-aza

compound showed the ability to encapsulate nitrate anion acting as host-guest system.

Finally this last 9-membered azametallacrown complex can support a ring size expansion

to form a tetranuclear azametallacrown complex of type [2+2] grid compound in which

the chirality of the iron atoms in the molecular structure alternates between the Λ and

∆ form.

2.1 Synthesis and spectroscopic characterization

The Schiff base ligand, derived from the condensation reaction of imidazole-2-carboxaldehy-

de and salicyloyl hydrazide, reacts stoichiometrically with iron(iii) salts to form trinuclear

iron complexes in which [–Fe–N–N–]3 linkage has been observed. These azametallacrown

compounds present an neutral character since chloride and/or pseudohalide were used

as coligands. The chosen organic system behaves as chelate and bridging ligand, act-

ing as pentadentate dianionic coordination support. A schematic representation of the

coordination mode of the used Schiff base ligand is depicted in Figure 2.2.

Stoichiometric reaction between H2imsalhy ligand and FeCl3 in presence of one

equivalent of base resulted in the formation through self-assembly reaction of the trin-

uclear iron complex [Fe(imsalhy)(Cl)]3·3CH3OH (1). Replacement of FeCl3 with other
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Figure 2.2: Schematic representation of the coordination mode of H2imsalhy ligand.

salt, i.e. Fe(NO3)3 and use of pseudohalides, such as azide and thiocyanate afforded the

neutral trinuclear iron complexes with N−
3 ([Fe(imsalhy)(N3)]3·3.5DMF (2) and NCS−

([Fe(imsalhy)(NCS)]3·(H3imsalhy)·(NO3)·H2O·4.25CH3OH (3) acting as monodentate col-

igands at each metal center (Figure 2.3). All these compounds are analogs of the organic

azacrown compounds and therefore by analogy their nomenclature can be defined as

9-MC-3 complexes, where MC is the abbreviation for metallacrown. Any attempt to

transform the in situ formed trinuclear iron complex 1 in the azide (2) or isothiocyanate

(3) derivatives failed. Instead, when potassium thiocyanate has been used as source of

pseudohalide, a tetranuclear iron complex [Fe(imsalhy)(NCS)]4·4CH3OH (4) has been

isolated. Alternatively, the last complex can be also isolated through self-assembly re-

action using equimolecular amounts of the Schiff base ligand and iron chloride salt in

presence of an excess of base, namely two equivalents of sodium hydroxide (Figure 2.3).

The formation of these complexes was confirmed by IR spectroscopy which shows

stretching vibrations characteristic to the supporting ligand as well as specific stretch-

ing vibrations of the coligands. The IR spectrum of the free ligand H2imsalhy shows

stretching bands at 1665 and 3213 cm−1 attributed to C=O and phenolate vibrations, re-

spectively. The IR spectra of the polynuclear iron complexes showed no such stretching

vibrations consisting with the enolization of the hydrazide functionality and deproto-

nation of phenolate group upon iron coordination. This is also confirmed by 638-673

cm−1 vibrations attributed to the M–O linkage and 506-583 cm−1 vibrations assigned to

M–N linkage. The IR spectra of all four iron complexes shows a strong stretching vibra-

tion in the region 1595-1600 cm−1 specific for –C=N–N=C– functionality. In addition
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Figure 2.3: Scheme representing the synthesis of the polynuclear iron complexes.

strong stretching vibrations revealing the presence of the pseudohalides were detected

at 2059 cm−1 in complex 2 (ν N−
3 ) and 2040 and 2049 cm−1 attributed to NCS coordi-

nated stretching vibration102 in complex 3 and 4, respectively.103 Stretching vibrations

near 2050 cm−1 are considered typical for isothiocyanate form (N - coordination), while

thiocyanate coordination (S - coordinated form) gives a stretching vibration near 2100

cm−1.104

The integrity of the complexes in solution has been established by electronic spec-

troscopy and mass spectroscopy. The UV-Vis spectrum of the free ligand H2imsalhy

recorded in methanol solution display absorption maxima at 240 and 326 nm. The

electronic spectra for the iron clusters are quite similar, showing absorption maxima at

246-257, 319-324, 508-519 nm (See experimental part). While the first two maxima are

similar to the one detected for the electronic transitions in the free ligand, the 508-519

nm absorption maxima are tentatively attributed to d–d transition of the Fe(iii) ions in

the ligand field. The UV-Vis spectra of the two isothiocyanate-containing iron complexes

have been also recorded in solid form using BaSO4. There is a good agreement between

solution UV-Vis spectra and the corresponding solid ones (see experimental part) which

agree well with the integrity of the complexes in solution. Moreover, fast atom bom-

bardment ionization (FAB) in methanol solution in a 3-nitrobenzyl alcohol matrix gave
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molecular ion peaks at 851.0 m/e associated to the trinuclear iron core-[Fe(imsalhy)]−3 for

each azametallacrown complex that have been measured. FAB-MS spectrum of complex

1 containing peaks with mass-to-charge ratios corresponding to one, two and three chlo-

ride ions associated with the trinuclear iron core are observed (see Experimental part)

with the intact ion peak at 958 m/e corresponding to [Fe(imsalhy)Cl]3. Similar patterns

of peaks corresponding to mass-to-charge ratios that contain one, two and three isothio-

cyanate ions associated with the [Fe(imsalhy)]−3 core are observed for complex 3 solution

by FAB-MS. FAB-MS spectrum of 4 contains also peaks with mass-to-charge ratio corre-

sponding to one more iron associated to previous detected trinuclear core-[Fe(imsalhy)]−3

and additionally the 1139 m/e ion peak corresponding to [Fe(imsalhy)]4−4 , respectively.

Therefore, it can be concluded through UV-Vis and FAB-MS spectral data that these

complexes retain their structure in solution. Moreover, the herein presented polynuclear

iron complexes are also stable at high temperatures. In instance, thermogravimetric

measurement, performed on complex 3 shows a multistage weight losses of 27% in the

temperature range 30-300 ◦C. This total loss corresponds to a calculated mass of 371.8 g

which is around the molecular weight of the four water molecules, the free ligand molecule

and the encapsulated nitrate anion. The tetranuclear iron complex 4 shows also a loss

in weight of around 9.4% in the temperature range 30-143 ◦C. This amount of weight

loss corresponds to the calculated mass of four methanol solvent molecules (128 g). Fur-

ther heating up to 300 ◦C cause a loss of 6.1% corresponding to a calculated mass of

75 g. This last loss might be generated by pyrolysis of the isothiocyanate functionality

to the corresponding CS2 under high temperature conditions. All four iron complexes

crystalize with solvent molecules with methanol being the frequent present solvent. The

elemental analyze results agrees in the majority of the cases with water molecules in-

stead of methanol molecules. Probably, the atmospheric water molecules exchange the

crystallographic found methanol solvent molecules. Similar situation has been reported

for a hexanuclear manganese cluster were the observed exchange of methanol with wa-

ter molecules has been confirmed by paramagnetically shifted 1H NMR spectroscopy.98

The easy replacement of the solvent is also obvious by crystallographic determination

of molecular structure for complex 1 in different solvent solutions, when methanol have

been replaced by the used reaction solvents, i.e ethanol and dimethylformamide.
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2.2 Structural studies

[Fe(imsalhy)(Cl)]3·3CH3OH (1). The azametallacrown complex 1 consists of a trinu-

clear iron core and presents a neutral character since the 3+ charge of the metal centers is

balanced by the oxygen atoms of the diprotonated ligand and the chloride ligand. Molec-

ular structure determination of complex 1 is depicted in Figure 2.6, whereas selected

bond lengths and angles and listed in Table 2.1. The diprotonated pentacoordinated imi-

dazolyl hydrazide ligand bridges two neighboring iron atoms through its hydrazide group

resulting in a triangular iron core linked by three N–N bridge. The first iron atom is coor-

dinated in the tridentate pocket of the ligand through phenolate oxygen atom (O1), the

hydrazide and imidazole nitrogen atoms (N1 and N3) (Figure 2.4) with the bite angles of

around 84.6◦ (O1–Fe–N1) and 82.1◦ (N3–Fe–N1), whereas the other imine nitrogen atom

N2 and the iminolate oxygen atom O3 binds an adjacent iron atom with the bite angle of

72.5◦ (O2–Fe–N2). Each iron atom is six-coordinated in a N3O2Cl environment with the

sixth coordination site occupied by the chloride ligands (Figure 2.6) in a bond distance

of 229.6 pm.

Figure 2.4: Asymmetric unit cell of the molecular structure of complex

[Fe(imsalhy)(Cl)]3·3CH3OH (1). Thermal ellipsoids of non-hydrogen atoms are drawn

at 50% probability.

The organization found in complex 1 results in a 9-membered trinuclear core with an

–[Fe–N–N–Fe]– repeating unit (Figure 2.5) as the first example of a 9-azametallacrown-3

compound. Similar trinuclear 9-MC-3 compounds have been reported for vanadium64,81

and other d-metal containing compounds77,82,83 but with the repeating unit consisting
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Table 2.1: Selected bond lengths (pm) and angles (◦) for complex 1.

Fe–O1 191.5(3) Fe–N2 221.2(3)

Fe–O2 202.3(3) Fe–Cl 229.63(9)

Fe–N3 210.7(3) N1–C7 135.2(5)

Fe–N1 212.2(3) N1– N2 138.1(4)

O1–Fe–O2 88.04(12) N3–Fe–N1 82.07(12)

O1–Fe–N3 108.13(12) N3–Fe–N2 90.06(11)

O1–Fe–N1 84.61(11) N3–Fe–Cl 91.03(9)

O1–Fe–N2 158.04(12) N2–N1–Fe 127.7(2)

O1–Fe–Cl 98.52(8) N2–Fe–Cl 93.21(8)

O2–Fe– N3 161.93(11) N1–Fe–N2 85.89(11)

O2–Fe–N2 72.51(11) N1–N2–Fe 114.1(2)

O2–Fe–Cl 94.56(9) N1–Fe–Cl 173.03(8)

of N–O group30 whereas the reports of iron based azametallacrown complexes contain at

least 18-membered core motif.105

All iron atoms in complex 1 are in a distorted octahedral environment with the

neighboring Fe· · ·Fe interatomic distances of 509.8 pm and interatomic Fe· · ·Fe· · ·Fe angle

of 60◦, value characteristic for an equilateral triangle. The Fe· · ·Fe separation is slightly

longer than that of classical Fe(iii)-MC-3 complexes based on salicylhydroximate80 (484.8

pm) and longer than that found in even nuclear membered iron azacrowns of 487.2-490.6

pm in octanuclear90 and 488.1 pm in hexanuclear100 iron azametallacrowns. In complex

1 the three iron atoms are crystallographically identical with Fe–N–N–Fe torsion angle

of 150◦ and the N–Fe–N—N torsion angle of 82.1◦. The C7–O2 and C7–N1 bond lengths

in the ligand fragments are around 126.0 and 135.3 pm, respectively. These bond lengths

are similar to corresponding ones reported for d-metal complexes based on iminolate form

of the hydrazide containing ligands.100,105 The Fe–Nhydrazide (212.2 pm) and Fe–Nimidazole

(210.6 pm) bond lengths are significantly shorter than the Fe-Nimine bond lengths (221.4

pm). This difference is possibly due to the bridging nature of the ligand and the rigidity

of the tridentate pocket of the organic system.
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Figure 2.5: Representation of the structural core motif of complex

[Fe(imsalhy)(Cl)]3·3CH3OH (1) showing the 9-membered 3-iron aza ring.

Figure 2.6: Molecular structure and numbering scheme of the coordinated heteroatoms

in complex [Fe(imsalhy)(Cl)]3·3CH3OH (1). Hydrogen atoms and solvent molecules have

been omitted for clarity.

The trinuclear iron complex 1 crystalizes in the rhombohedral R3c space group

with a centrosymmetric point placed in the middle of the cavity. The Fe–O (phenolate
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and iminolate oxygen atoms) bond distances of around 191 and 201 pm are similar with

reported corresponding bond lengths in polynuclear iron complexes.90,100 Complex 1

contains lattice methanol molecules which forms hydrogen bonds with the phenolate

oxygen atom (O1M· · ·O1 279.3 pm) of the trinuclear Fe(iii) entity. In addition the

protonated imidazole moiety is also hydrogen bonded to neighboring solvent molecules

(O1M· · ·N4 277.7 pm). These lattice methanol molecules can be easily replaced by other

solvent molecules according with the used reaction media. For example, performing the

same reaction stoichiometry in ethanol lead to 1·3EtOH (Figure 2.7). The trinuclear

iron core remains unchanged, presenting the same symmetry as previously described.

The Fe· · ·Fe separation of 509.8 pm is very close to above described complex, as well as

the Fe–N–N–Fe torsion angle of 150◦. Small difference has been observed for N–Fe–N–N

torsion angle which is 79.81◦, around 2◦ smaller than that of 1·3MeOH complex but

within the error range of measurements. The ethanol molecules are in hydrogen bonding

interaction with the imidazole moiety through protonated NH group of around 269.9 pm

(N· · ·OEt).

Figure 2.7: Molecular structure and selected numbering scheme of complex 1·3EtOH.

Hydrogen atoms have been omitted for clarity. Dashed lines represent hydrogen bonding

interactions.
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[Fe(imsalhy)(N3)]3·3.5DMF (2). The molecular structure of the neutral complex

2 is depicted in Figure 2.8, and selected bond lengths and angles are listed in Table 2.2.

The three six-coordinated Fe(iii) centers are bridged through hydrazide nitrogen atoms

in a similar fashion as described for complex 1. The trinuclear iron complex 2 crystallizes

in the triclinic space group P1 with the same 9-MC-3 motif with three Fe(iii) membered

ring, three ligand molecules while the chloride ligands have been replaced with the azide

anions. All iron atoms are in a distorted octahedral N4O2 environment. The H2imsalhy

ligand coordinates in the same fashion as previously described, namely it bridges two

iron atoms providing a three chelate donor set to one iron atom trough the phenolate

oxygen O(1), hydrazide nitrogen N(1) and nitrogen N(3) atoms from the imidazole ring,

while the second diazine nitrogen N(2) and the iminolate oxygen atom O(2) are bonded

to another iron atom.

Figure 2.8: Molecular structure and selected numbering scheme of complex

[Fe(imsalhy)(N3)]3·3.5DMF (2). Hydrogen atoms and solvent molecules have been omit-

ted for clarity.

At this point it should be noted that in this case the centrosymmetric structure of com-

pound 1 is not found in complex 2. In the last case the iron atoms are located at the

vertex of a scalene triangle with the interatomic distances raising from 506.5-510.9 pm.
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Table 2.2: Selected bond lengths (pm) and angles (◦) for complex 2.

FeA–O1A 189.3(3) FeB–O1B 189.3(3) Fe2–O1C 189.8(3)

FeA–O2B 202.6(3) FeB–O2C 201.4(3) Fe2–O2A 202.4(3)

FeA–N1A 213.1(3) FeB–N1B 212.4(3) Fe2–N1C 212.2(3)

FeA–N2B 222.7(3) FeB–N2C 222.6(3) Fe2–N2A 224.1(3)

FeA–N4A 208.8(3) FeB–N3A 208.6(4) Fe2–N4C 211.1(4)

FeA–N5A 199.4(4) FeB–N5B 201.6(4) Fe2–N5C 198.4(4)

N1A–C7A 134.1(5) N1B–C7B 134.6(5) N1C–C7C 135.1(5)

N1A–N2A 138.1(4) N1B–N2B 139.2(4) N1C–N2C 138.5(4)

O2A–C7A 127.4(5) O2B–C7B 127.1(5) O2C–C7C 127.9(4)

O1A–FeA–O2B 89.55(12) O1B–FeB–O2C 90.19(12) O1C–Fe2–O2A 89.27(12)

O1A–FeA–N1A 84.08(13) O1B–FeB–N1B 84.41(12) O1C–Fe2–N1C 84.81(12)

O1A–FeA–N2B 157.71(13) O1B–FeB–N2C 159.84(12) O1C–Fe2–N2A 158.72(12)

O1A–FeA–N4A 107.43(13) O1B–FeB–N3A 106.18(13) O1C–Fe2–N4C 108.47(13)

O1A–FeA–N5A 99.29(17) O1B–FeB–N5B 100.43(14) O1C–Fe2–N5C 97.05(15)

O2B–FeA–N1A 93.81(12) O2C–FeB–N1B 92.86(12) O2A–Fe2–N1C 89.74(12)

O2B–FeA– N2B 71.84(12) O2C–FeB–N2C 72.69(11) O2A–Fe2–N2A 71.98(11)

O2B–FeA–N4A 162.13(13) O2C–FeB–N5B 94.61(14) O2A–Fe2–N4C 159.58(12)

N1A–FeA– N2B 85.03(12) N1B–FeB–N2C 85.89(12) N1C–Fe2–N2A 85.11(12)

N4A–FeA–N1A 82.77(13) O2C–FeB–N3A 162.26(12) N4C–Fe2–N1C 82.13(12)

N4A–FeA–N2B 90.37(13) N3A–FeB–N2C 89.91(13) N4C–Fe2–N2A 88.62(13)

N5A–FeA–O2B 95.14(14) N5B–FeB–N3A 89.20(16) N5C–Fe2–O2A 96.14(16

N5A–FeA–N1A 170.45(15) N5B–FeB–N1B 171.07(15) N5C–Fe2–N1C 173.84(16)

N5A–FeA–N2B 94.61(16) N5B–FeB–N2C 91.68(14) N5C–Fe2–N2A 94.96(15)

N1B–N2B–FeA 113.9(2) N1C–N2C–FeB 113.9(2) N5C–Fe2–N4C 91.71(16)

N2A–N1A–FeA 128.7(2) N3A–FeB–N1B 82.22(14) N2C–N1C–Fe2 127.6(2)
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To each iron atoms is bound an azide ligand into a bent fashion with a torsion angle in

the range 119,3 - 133,3◦. This monodentate ligand is almost linear with N-N-N angles of

176.7, 177.3 and 178.0◦, respectively. The Fe-Nazide bond distance range between 198.1

and 201.9 pm, distances similar with reported end-on bound azide to iron center,106 but

significantly shorter than reported distances for µ-bridged azide ligand.107 The diproto-

nated form of the ligand, therefore the presence of the iminolate form of the hydrazide

functionality is illustrated by C7–O2 bond distances of around 127 pm and further con-

firmed by the considerable double bound character of the C7–N1 bonds of around 134

pm. These values are similar to previous bond distances found in complex 1. The other

Fe–O (phenolate and iminolate oxygen atoms), as well as Fe–N (imine, hydrazide and

imidazole nitrogen atoms) are within expected bond lengths and similar with the cor-

responding ones found in complex 1. Selected bond lengths and angles for complex 2

are listed in Table 2. Complex 2 crystalizes with 3.5 molecules of DMF as solvent of

crystallization, which are in hydrogen bonding contact with the protonated NH group of

the imidazole moiety (Nimidazole–ODMF = 263.2 - 267.6 pm).

[[Fe(imsalhy)(NCS)]3·(H3imsalhy)·(NO3)·0.5H2O·4.25CH3OH (3). The new

trinuclear iron complex contains a 9-membered aza ring similar to that previously de-

scribed for complexes 1 and 2, respectively. Three ligand molecules are directly coordi-

nating the iron atoms in one five-membered and two six-membered chelate rings (Figure

2.2) which forms an N3O2 environment around each iron center. The sixth coordination

site of each metal center is now occupied by the isothiocyanate ligands, that bound in

monodentate fashion in a bond distance that range from 198.1 to 199.5 pm, significantly

shorter than that reported for mononuclear Fe–NCS systems.103,108 The isothiocyanate

ligand coordinates almost linear with Fe–N–C angles within the range 163-176◦.

Complex 3 crystalizes in the P-1 space group with three crystallographically distinct

iron atoms which form an propeller triangle with the interatomic Fe· · ·Fe distance in the

range 502.2-507.1 pm, values close to previous found in complex 2. The connectivity

around the ring consisting of Fe–N–N linkage is similar with previous herein described

trinuclear iron complexes, with torsion angles of 149.7-151.2◦ for Fe–N–N–Fe and 78.2-

82.4◦ for N–Fe–N–N, respectively. All the other bond distances, i.e. Fe–O and Fe–N are

similar and within reported similar bond lengths. Selected bond lengths and angles in
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Figure 2.9: Molecular structure and selected numbering scheme of complex

[[Fe(imsalhy)(NCS)]3·(H3imsalhy)·(NO3)·0.5H2O·4.25CH3OH (3). Only selected hydro-

gen atoms are shown. The solvent molecules have been omitted for clarity. Broken lines

represent hydrogen bonding interactions.

complex 3 are listed in Table 2.3. By comparison with previous two described trinuclear

iron complexes, complex 3 crystalizes with a free ligand molecule, whereas a nitrate

molecules is hosted by the 9-membered aza ring (Figure 2.9).

The architecture of the 3 metallacrown structural motif presupposes the concept

of molecular recognition of anions. Similar situation has been reported for a trinuclear

Cu(ii) complex based on 3-(benzylimino)butanone 2-oxime, where a perchlorate anion

has been hosted by the trinuclear copper core.86 More recently, trinuclear metallacrown

compounds have been reported as hosts for iron acetate80 and/or vanadate moiety.109 The

negative charge of the nitrate molecule hosted by complex 3 is compensated by the ligand

molecule which contains a protonated imidazole ring. The nitrate anion is in hydrogen

bonding distance with an imidazole moiety of the supporting ligand (N3A(imidazole)–

O1NO2 = 276.8 and N3A(imidazole)–O2NO2 = 312.4 pm). Intramolecular hydrogen

bonding interactions have been observed in the free ligand between the phenolate oxygen
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Table 2.3: Selected bond lengths (pm) and angles (◦) for complex 3

FeA–O1A 190.1(5) FeB–O1B 193.3(5) FeC–O1C 189.1(5)

FeA–O2C 200.0(5) FeB–O2A 199.2(5) FeC–O2B 201.1(5)

FeA–N4A 210.4(7) FeB–N1B 211.5(6) FeC–N1C 211.4(6)

FeA–N2C 221.6(6) FeB–N1A 219.8(6) FeC–N2B 221.9(5)

FeA–N2A 209.8(6) FeB–N4B 209.3(6) FeC–N4C 207.9(6)

FeA–N5A 199.4(7) FeB–N5B 199.7(6) FeC–N5C 198.2(7)

N2A–C7A 135.2(9) N1B–C7B 133.5(8) N1C–C7C 134.5(9)

N2A–N1A 138.9(8) N1B–N2B 138.7(8) N1C–N2C 139.7(8)

O2A–C7A 127.5(8) O2B–C7B 127.7(8) O2C–C7C 128.6(9)

O1A–FeA–O2C 87.0(2) O1B–FeB–O2A 86.9(2) O1C–FeC–O2B 87.6(2)

O1A–FeA–N2A 85.2(2) O1B–FeB–N1B 83.6(2) O1C–FeC–N1C 85.1(2)

O1A–FeA–N2C 157.3(2) O1B–FeB–N1A 155.7(2) O1C–FeC–N2B 157.5(2)

O1A–FeA–N4A 109.9(2) O1B–FeB–N4B 108.6(2) O1C–FeC–N4C 109.9(2)

O1A–FeA–N5A 97.0(3) O1B–FeB–N5B 96.2(2) O1C–FeC–N5C 98.0(3)

O2C–FeA–N2A 93.7(2) O2A–FeB–N1B 94.3(2) O2B–FeC–N1C 91.8(2)

O2C–FeA–N2C 72.5(2) O2A–FeB–N1A 72.5(2) O2B–FeC–N2B 72.11(19)

O2C–FeA–N4A 162.2(2) O2A–FeB–N5B 95.9(2) O2B–FeC–N4C 161.0(2)

N2A–FeA–N2C 86.5(2) N1B–FeB–N1A 85.3(2) N1C–FeC–N2B 86.1(2)

N2A–FeA–N4A 82.7(2) O2A–FeB–N4B 163.7(2) N4C–FeC–N1C 82.9(2)

N4A–FeA–N2C 89.9(2) N5B–FeB–N4B 87.5(3) N4C–FeC–N2B 89.3(2)

N5A–FeA–O2C 94.8(3) N4B–FeB–N1B 82.9(2) N5C–FeC–O2B 94.0(2)

N5A–FeA–N2A 171.3(3) N5B–FeB–N1B 169.8(2) N5C–FeC–N1C 173.5(2)

N5A–FeA–N2C 94.4(3) N4B–FeB–N1A 91.2(2) N5C–FeC–N2B 93.1(3)

N5A–FeA–N4A 88.7(3) N5B–FeB–N1A 98.6(2) N5C–FeC–N4C 90.7(3)

N1B–N2B–FeC 113.9(4) N1C–N2C–FeA 113.5(4) N2C–N1C–FeC 128.1(4)

N1A–N2A–FeA 127.1(4) N2A–N1A–FeB 113.9(4) N2B–N1B–FeB 128.3(4)
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atom (O1) and the carbonyl oxygen atom (O2) of around 253.9 pm. In addition, in

the crystal lattice of 3, the methanol molecules and the cocrystalized H3imsalhy ligand

form a hydrogen bonding channel with the shorter hydrogen contact of 294.3 pm (N3–

O3M) and the longest hydrogen bond distance of 278.0 pm for N4–O3M (Figure 2.10).

The observed hydrogen bonding channel is based mainly on hydrogen bonding network

established among the methanol molecules with the shortest OM–OM contact of 277.9

pm and the longest OM–OM distance of around 297.3 pm. The arrangement through

crystal packing shows also strong hydrogen bonding interaction between the methanol

molecules and two different azametallacrown molecules by OM–N3 hydrogen bonding

contacts that range between 266.2 and 278.0 pm.

Figure 2.10: Crystal packing in complex [[Fe(imsalhy)(NCS)]3·(H3imsalhy)·(NO3)·0.5H2O

·4.25CH3OH (3) showing the hydrogen bonding channel formed between the cocrystal-

ized free ligand molecules, lattice methanol molecules and trinuclear iron cluster. View

along the c axis.

As can be observed, these azametallacrown compounds posses a labile coordination

site at the iron centers which may be used as strategic points to design new dendritic
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materials. A peculiar role can be played in this direction by the chloride-containing

trinuclear iron(iii) azacrown complex owing to known ”leaving capacity” of the chloride

ligand. Hence, in situ reaction between H2imsalhy and Fe(NO3)3 salt followed by addi-

tion of [Mn(bipy)2Cl2] in MeOH/DMF mixture has been performed in order to isolate a

dissimilar polynuclear complex. Instead, only the [Fe(imsalhy)(Cl)]3·CH3OH·3DMF (1a)

has been formed which seems to be thermodynamically the most stable specie. Molecu-

lar structure determination of complex 1a is depicted in Figure 2.11 with selected bond

lengths and angles listed in Table 2.4. Conversely to initial described complex 1, the

new 1a complex does not present the centrosymmetry observed previously. The Fe· · ·Fe

interatomic separation, although very similar differs among the three constituting iron

ions, i.e 510.7 pm for FeA· · ·FeB, 509.8 pm for FeB· · ·Fe and 508.1 pm for Fe· · ·FeB,

respectively. The diazine-bridging torsion angles are also different within the azacrown

Fe3-triad and have values of 152.5◦ (FeA–N2B–N1B–FeB), 152.8◦ (FeA–N1A–N2A–Fe)

and 150.7◦ (Fe–N1–N2–FeB). All the other bond lengths and angles show very close values

to corresponding bond distances found in complex 1.

Figure 2.11: Molecular structure and selected numbering scheme of complex

[Fe(imsalhy)(Cl)]3·CH3OH·3DMF (1a). Hydrogen atoms have been omitted for clarity.

Dashed lines represent hydrogen bonding interactions.
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Lattice solvent molecules, i.e DMF and MeOH form hydrogen bonding interactions

with the protonated nitrogen atoms of the imidazole moieties, as a common crystal pack-

ing pattern observed for all 9-Fe(iii)azacrown-3 complexes. In this case ODMF · · ·Nimidazole

hydrogen bonding contacts fall in the 276.1-271.7 pm range, whereas the hydrogen bond-

ing interaction OMeOH · · ·Nimidazole is 268.9 pm. Additionally, lattice solvent molecules

are also in hydrogen bonding interaction distance of 264.4 pm for ODMF · · ·OMeOH hy-

drogen bonding contacts.

[Fe(imsalhy)(NCS)]4·4CH3OH (4). The molecular structure determination ex-

hibits a tetranuclear core of iron atoms linked by four hydrazide N–N groups, resulting in

a 12-membered ring motif (Figure 2.12). Similarly to previous trinuclear iron complexes

based on H2imsalhy ligand, the diprotonated Schiff base system acts as pentadentate

ligand. The first iron atom is coordinated in the tridentate pocket of the ligand through

phenolate oxygen atom (O1) and two nitrogen atoms, one from the imidazole ring (N3)

and the other from the hydrazide nitrogen atom (N1), respectively (Figure 2.13) with the

bite angles of around 84.5◦ (O1–Fe–N1) and 73.8 (N3–Fe–N1).

Figure 2.12: Representation of the structural core motif in complex

[Fe(imsalhy)(NCS)]4·4CH3OH (4) showing the 12-membered 4-iron(iii) aza ring.
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Table 2.4: Selected bond lengths (pm) and angles (◦) for complex 1a.

FeA–O1A 189.24(17) FeA–O2B 200.91(17)

FeA–N1A 213.95(18) FeA–N3A 208.8(2)

FeA–N2B 223.1(2) FeA–ClA 231.13(7)

FeB–O2 203.13(18) FeB–O1B 188.84(18)

FeB–N1B 213.2(2) FeB–N3B 211,6(2)

FeB–N2 220.9(2) FeB–ClB 230.60(8)

Fe–O1 189.14(17) Fe–O2A 202.04(18)

Fe–N1 213.2(2) Fe–N2A 221.8(2)

Fe–N3 210.6(2) Fe–Cl 229.81(8)

O1A–FeA–O2B 90.64(7) O1A–FeA–N1A 84.21(7)

O1A–FeA–N2B 158.89(7) O1A–FeA–N3A 107.16(8)

O2B–FeA–N1A 89.98(7) O2B–FeA–N2B 72.14(7)

O2B–FeA–N3A 159.64(8) N3A–FeA–N1A 82.26(7)

N3A–FeA–N2B 88.25(8) N1A–FeA–N2B 83.69(7)

N2B–FeA–ClA 93.76(5) O1B–FeB–O2 86.95(8)

O1B–FeB–N1B 84.21(8) O1B–FeB–N3B 108.50(8)

O1B–FeB–N2 155.58(8) O2–FeB–N2 72.03(7)

O2–FeB–N1B 92.47(8) O2–FeB–N3B 162.82(8)

N1B–FeB–N2 84.43(7) N3B–FeB–N1B 81.98(8)

N3B–FeB–N2 91.19(8) N1B–FeB–ClB 171.04(6)

O1–Fe–N1 83.77(8) O1–Fe–N3 106.99(8)

O1–Fe–O2A 89.26(7) O1–Fe–N2A 158.14(8)

O2A–Fe–N1 91.18(8) O2A–Fe–N3 161.48(7)

O2A–Fe–N2A 72.63(7) N1–Fe–N2A 84.46(7)

N3–Fe–N1 82.05(8) N1–Fe–Cl 173.28(6)
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The carbonyl oxygen atom (O2) plus the imine nitrogen atom (N2) of the same lig-

and molecule coordinates an adjacent iron atom with the bite angle of around 72.5◦

(O2–Fe–N2). The sixth coordination site at the metal center is occupied by the isoth-

iocyanate ligand (Figure 2.14) with a bond distance Fe–NCS of 203.7 pm and Fe–N–C

angle of 149.4◦. Complex 4 presents a propeller configuration with an alternating Λ and

∆ stereochemistry. Two thiocyanate ligands are in Λ configuration on one face of the aza-

metallacrown compounds and the remaining two monodentate thiocyanate ligands in ∆

configuration on the other face of the tetranuclear ring. The two faces of the tetranuclear

azametallacrown have opposite chirality.

Figure 2.13: Asymmetric unit cell of the tetranuclear iron complex

[Fe(imsalhy)(NCS)]4·4CH3OH (4). Thermal ellipsoids of non-hydrogen atoms are

drawn at 50% probability. Sulfur atom of the isothiocyanate functionality is distorted in

a ratio of 50% A and 50% B.

The complex crystalizes in the tetragonal P42/n space group with four crystallo-

graphically identical Fe(iii) atoms. The Fe· · ·Fe separation of around 512.3 pm is a little

bit longer than in the case of trinuclear iron complexes, but significantly larger than that

reported for hexanuclear iron complexes based on N-R-oylsalicylhydrazide ligands100,110

or the Fe· · ·Fe separation reported for a decanuclear iron azametallacrown complex.89

Therefore, the planar tetranuclear structure in complex 4 is different than other even-

membered iron azametallacrown iron complexes, with the Fe· · ·Fe· · ·Fe interatomic angles
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Figure 2.14: Molecular structure and selected numbering scheme of complex

[Fe(imsalhy)(NCS)]4·4CH3OH (4). Hydrogen atoms and solvent molecules have been

omitted for clarity.

of around 89.95◦, value close to the interior angle in a square. The Fe–N–N–Fe torsion

angle of 165◦ and the N–Fe–N—N torsion angle of 114◦ are larger than similar angles

found in the centrosymmetric trinuclear iron complex 1. The coordination mode of the

ligand is similar to one found in the corresponding trinuclear iron complexes (Figure 2.2).

The C7–O2 and C7–N1 bond lengths in the ligand fragments are around 127.6 and 134.9

pm, respectively, proving the tautomerization and ulterior deprotonation of the amide

functionality upon iron coordination. All other Fe–O/N bond distances are within ex-

pected limits and very close to the corresponding bond lengths found in complexes 1, 2

and 3, respectively. Selected bond lengths and angles for complex 4 are listed in Table

2.5.

The tetranuclear iron complex 4 crystalizes with four methanol molecules as solvent

of crystallization. These solvent molecules interact through hydrogen bonding with the

isothiocyanate ligand of the iron centers (S—OM 309.7 pm) as well as with the protonated

nitrogen atom of the imidazole ring (N4–OM 273.2 pm), resulting in a two-dimensional

polymer build up by hydrogen bonding interactions (Figure 2.15).

43



Figure 2.15: Crystal packing in complex 4 showing the hydrogen bonding network formed

by the methanol molecules and tetranuclear iron cluster. View along the a axis.

Table 2.5: Selected bond lengths (pm) and angles (◦) for complex 4

Fe–O1 188.58(18) Fe–N2 219.5(2)

Fe–O2 201.06(18) Fe–N5 203.7(2)

Fe–N3 209.4(2) N1–C7 134.9(3)

Fe–N1 212.0(2) N1–N2 138.8(3)

O1–Fe–O2 158.36(8) N1–Fe–N2 101.60(8)

O1–Fe–N3 114.38(8) N3–Fe–N1 83.86(8)

O1–Fe–N1 84.47(8) N3–Fe–N2 156.68(8)

O1–Fe–N2 88.81(8) N5–Fe–N1 169.88(9)

O1–Fe–N5 92.82(9) N5–Fe–N2 88.06(9)

O2–Fe–N1 88.67(8) N5–Fe–N3 88.41(9)

O2–Fe–N2 72.47(7) N1–N2–Fe 115.74(15)

O2–Fe–N3 85.13(8) N2–N1–Fe 125.07(16)

O2–Fe–N5 97.20(9)
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2.3 Magnetic properties

The temperature dependence of the magnetization data of the trinuclear compounds 1 to

3 was studied on polycrystalline samples in the 2-300 K range. These data are shown in

Figure 2.16 to 2.18 in the form of χT and χ vs. T plots, where χ is the molar paramagnetic

susceptibility with the diamagnetism correction.

Figure 2.16: Temperature-dependent susceptibility measurements for complex 1 as χ vs.

T and χT vs. T plots. The solid lines represent the theoretical curves calculated with

Van Vleck equation described in the text. Squares represent the measured values.

The three iron complexes exhibit a similar behavior with the χT product decreasing

monotonously on lowering the temperature. The highest χT value is 11.17 for complex 1,

11.34 for complex 2 and 9.82 cm3 K mol−1 for complex 3. These values are significantly

smaller than calculated value (χT=13.15 cm3 K mol−1) for three noninteracting S = 5/2

spins assuming g = 2. This suggests an antiferromagnetic pairwise interactions that give

rise to an uncompensated magnetic moment. Upon cooling, the χT product decreases

monotonously and reaches at 2 K a value of around 0.42 cm3 K mol−1 in complex 1, 0.41

cm3 K mol−1 in complex 2 and 0.29 cm3 K mol−1 in complex 3. In the case of complex 3

a sharp drop occurs below 7 K which might be originated either by intercluster antiferro-

magnetic interactions and/or zero field splitting. Since this drop could not be described

properly, fitting of the magnetic parameters has been performed in the temperature range

45



Figure 2.17: Temperature-dependent susceptibility measurements for complex 2 as χ vs.

T and χT vs. T plots. The solid lines represent the theoretical curves calculated with

Van Vleck equation described in the text. Squares represent the measured values.

8-300 K. A quantitative analysis of the experimental magnetic data sets χT -values has

been performed using the Hamiltonian expression for an equilateral triangle:

Ĥ = −J
(

Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ1Ŝ3

)

(1)

with S1 = S2 = S3 = 5/2. Based on structural features, such an exchange pathway inter-

action is adequate for trinuclear Fe(iii)-azacomplex 1. For trinuclear iron(iii) complexes

2 and 3 the magnetic properties can be interpreted considering the isosceles triangle

case described by Kahn10 with an additional coupling constant J’. For the last magnetic

model the appropriate Hamiltonian expression contains two coupling constants and has

the following form:

Ĥ = −J
(

Ŝ1Ŝ2 + Ŝ1Ŝ3

)

− J ′
(

Ŝ2Ŝ3

)

(2)

with the energy eigenvalue expressed as following:

E(S, S ′) = −
J

2
S(S + 1) −

J ′ − J

2
S ′(S ′ + 1)

with Ŝ ′ = Ŝ1 + Ŝ2 and Ŝ = Ŝ ′ + Ŝ3.
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Figure 2.18: Temperature-dependent susceptibility measurements for complex 3 as χ vs.

T and χT vs. T plots. The solid lines represent the theoretical curves calculated with

Van Vleck equation described in the text. Squares represent the measured values.

Although the crystallographic characterization of trinuclear iron(iii) azaclusters 2

and 3 compounds showed no equivalence of the constituting Fe(iii) centers, their mag-

netic properties are very close to the magnetic behavior of complex 1 that contain three

equivalents metal centers and for which an isosceles triangle can be used to interpret

the experimental data set. Therefore such a model may be used to interpret the mag-

netic behavior of all three Fe(iii) azacompounds. In this case J = J’ in the Hamiltonian

expression 2 which leads to the energy expression:

E(S) = −
J

2
S(S + 1)

By inserting this energies into the Van Vleck formula and taking into account intermolec-

ular interaction (θ) and paramagnetic impurities (ρ) the dependence of the χT product

can be described by the following final equation:

χT =
NAβ2g2

3k(T − θ)



(1 − ρ)

∑2S1
S′=0

∑S′+S2
S=|S′−S2| S(S + 1)(2S + 1)e−

E(S)
kT

∑2S1
S′=0

∑S′+S2

S=|S′−S2|
(2S + 1)e−

E(S)
kT

· T + ρ · S(S + 1)



 (3)
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For complex 1, the best fit of the magnetic data set through the above equation

was obtained for g = 2.09 ± 0.003, J = −9.28 ± 0.06 for fixed ρ = 0 in order to avoid

overparametrization. The resulting reliability factor is R2 = 0.99987 for θ=0.29 ± 0.10

with the calculated curve (solid line in Figure 2.16) that matches well to experimental

magnetic data set. Similar results have been obtained for complex 2, where a good

agreement between experimental data set and the calculated one was obtained for g =

2.06±0.0015, resulting in a coupling exchange constant J = −7.68±0.034 with θ=0.21±

0.062 and reliability factor R2 = 0.99995 (Figure 2.17, solid lines). In the case of complex

3, the best fit of the experimental data set was obtained for ρ and θ fixed as zero values,

resulting in a coupling exchange constant J = −8.95 ± 0.03 for g = 1.96 ± 0.001 and a

reliability factor R2 = 0.99991 (Figure 2.18).

Hence, it can be concluded that the three iron azacrown compounds comprising

three six-coordinated Fe(iii) ions facilitate an antiferromagnetic exchange coupling be-

tween 5/2 spin centers which represents a common feature for the metallacrown com-

pounds class. The magnitude of the antiferromagnetic interaction within the triad FeIII
3 -

core is similar with reported antiferromagnetic coupling of the Fe(iii) centers in iron-

containing azacrown complexes,90,100 but stronger than reported value of -4.92 cm−1 for

trinuclear Fe(iii) compounds with -[M-N-O-]-n repeating units.80

For the tetranuclear [2+2] grid-compound 4, the value χT at 300 K is 12.00

cm3 K mol−1 which is substantially smaller than the calculated spin-only value of 17.50

cm3 K mol−1 for four noninteracting Fe(iii) centers, assuming g = 2.0. Again, the mag-

netic interaction suggests overall antiferromagnetic exchange coupling with χT product

decreasing steadily to a value of 0.22 cm3 K mol−1 at 3 K. Correspondingly, χ increases

gradually reaching a maximum at 17.5 K and decreases gradually as the temperature is

decreased to 3.5 K (Figure 2.19).

Based on structural topology, the magnetic interaction can be explained considering

one coupling exchange constant (J) for four equivalents high spin Fe(iii) centers. The

Hamiltonian used in this case has the following expression:

Ĥ = −J(Ŝ1Ŝ2 + Ŝ2Ŝ4 + Ŝ3Ŝ4 + Ŝ1Ŝ3)

with S1 = S2 = S3 = S4 = 5/2.
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Figure 2.19: Plots of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for complex 4, measured with an applied magnetic field of 2000 Oe; the solid

lines represent the theoretical curves.

The best fit of the experimental values was obtained for χMT vs T plot based

on the above mentioned Hamiltonian expression and led to J = −6.14 ± 0.142 cm−1

and g = 1.91 ± 0.017 for a paramagnetic impurity ρ=0.01 ± 4.4 · 10−4. The simulation

of the experimental data set has been achieved with a reliability factor R2 = 0.97377

which shows a good agreement between calculated and experimental data sets. This

coupling constant value is smaller than reported magnitude of the antiferromagnetic

interaction between aza-bridged Fe(iii) centers estimated to be J/k = -5.61 K (J = −8.13

cm−1) for neighboring Fe(iii) centers in octanuclear iron(iii) complex90 and very close to

antiferromagnetic coupling interaction existent in Fe6-azacrown compounds for which J/k

= -4.87 K (J = − 7.00 cm−1 ) has been reported between neighboring Fe(iii) centers.100

Compared to magnitude of the antiferromagnetic coupling interaction which occurs in

the trinuclear Fe(iii) aza-crown complexes described previously, in the tetranuclear iron

complex 4, the iron(iii) centers are weaker antiferromagnetic coupled. This may be a

consequence of larger Fe· · ·Fe interatomic separation in the last case and also larger Fe–

N–N–Fe torsion angles (165◦ in complex 4 compared to 150◦ in the symmetric complex

1).
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2.4 Ni(II)-complexes with N-imidazol-2-yl-salicyloyl

hydrazide ligand

Stoichiometric reaction of N-imidazol-2-yl-salicyloyl hydrazide (H2imsalhy) ligand with

Ni(NO3)2 in CH3CN/MeOH solvents mixture in presence of NaOH base yield a clear

yellow-solution from which [Ni(imsalhy)2]·4CH3CN complex (5) has been isolated. Con-

versely to stoichiometric reaction of the Schiff base - H2imsalhy ligand with FeX3·nH2O

salts where a self-assembly process occurred to yield tri- and tetranuclear compounds, the

similar reaction pathway with nickel(ii) salts affords only mononuclear Ni(ii) complex 5.

The coordination mode of the supporting ligand is also different compared to its chelating

fashion described for iron(iii) complexes. The Schiff base ligand acts as tridentate chelate

system embedding nickel ion by two pairs of five-membered rings with a uncoordinated

phenolate group (Figure 2.20). The molecular structure determination shows the Ni(ii)

ion in distorted octahedral geometry formed by pair of N2O donor atoms of two equiva-

lent ligand molecules. The Ni–N bond distances are around 200.3 pm (Ni–N2) and 211.1

pm (Ni–N4), similar with corresponding bond lengths in iron(iii) complexes. The Schiff

base ligand is present in its iminolate form, hence a Ni–O2 bond distance of 211.2 pm

and single bond character for C7–O2 bond of 127.0 pm.

Figure 2.20: Molecular structure and numbering scheme of complex

[Ni(imsalhy)2]·4CH3CN (5). Intramolecular hydrogen bonding interactions are

also shown as dashed lines.
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Table 2.6: Selected bond lengths (pm) and angles (◦) for complex 1a.

Ni–O2 211.17(18) Ni–N2 200.3(2)

Ni–N4 211.1(2) O2–C7 127.0(3)

O2–Ni–O2A 91.74(10) N2–Ni–N4 78.99(8)

N2–Ni–O2 76.40(7) N2–Ni–O2A 101.49(7)

N2–Ni–N2A 177.04(11) N2–Ni–N4A 103.09(8)

N4–Ni–N4A 93.15(11) N4–Ni–O2A 92.76(7)

N4–Ni–O2 155.38(7) -

Complex 5 crystallizes in the monoclinic C2c space group as a centrosymmetric com-

pound. The uncoordinated phenolate functionalities are involved in bifurcated intra- and

intermolecular hydrogen bonding interactions. Intramolecular hydrogen bonding contacts

are established with the hydrazide nitrogen atoms (O1· · ·N1 and O1A· · ·N1A) of 253.6

pm and intermolecular hydrogen bonding contacts with the protonated nitrogen atoms

of the imidazole moieties (O1· · ·N3 280.3 pm) of neighboring nickel(ii) molecules (Figure

2.21). This has as result a 2-D rhombohedrons ”brick-walls”-like architectures which

can be imaged as infinite-columnae architectural motif similarly to Brancusi sculptural

masterpiece (Figure 2.22).

Figure 2.21: Packing diagram of complex 5 as viewed along the a axis showing the

hydrogen bonding interaction between sheets of Ni(ii) units. Lattice molecules have

been omitted for the sake of clarity of the picture.
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Figure 2.22: Packing diagram of complex 5 as viewed along the a axis . Lattice molecules

have been omitted for a better clarity of the picture.

2.5 Conclusions and future perspectives

In summary a series of three neutral trinuclear iron complexes with mixed ligand com-

position have been isolated and fully characterized. Each iron atom is six-coordinated

with the dianionic pentadentate ligand fulfilling five of the coordination sites of the metal

center, whereas monodentate chelate coligands such as chloride, azide and isothiocyanate

occupy the remained vacant position of the metal center. The structural core is based on

[Fe–N–N]3 linkage which led to a 9-membered aza ring motif. These complexes represent

rare example of azametallacrown compounds based on Fe(iii) ion metal and in addition

the first examples of trinuclear iron(iii) complexes in which the presence of µ3-bridged

mode of oxygen atom is not present. The structural topology of these complexes is also

retained in solution as could be proved by spectroscopic characterization methods. The

magnetic behavior can be described as overall antiferromagnetically mediated by diazine

bridges between neighboring Fe(iii) centers with coupling constant values that fall in
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the -7.68 cm−1 to -9.28 cm−1. The very close coupling interaction J values within the

serie of trinuclear complexes originate from the fact that an similar Fe· · ·Fe separation

has been observed. Interesting structural feature have been found for the isothiocyanate

derivative of type [Fe(L)(NCS)]3 which presuppose the host-guest concept, encapsulat-

ing nitrate anion in the cavity of the Fe3 ring. Moreover, this compounds supports an

ring expansion leading to a tetranuclear Fe(iii) complex with the structural core based

on 12-membered aza-ring motif which can be regarded as [2+2] grid compound.32 The

complex showed an alternating chirality at the iron centers with the isothiocyanate lig-

and in ∆ and Λ configurations in relation with the two faces of the tetranuclear ring.

The [Fe–N–N]4 linkage is also responsible for the antiferromagnetic exchange interaction

between the iron centers (J = -6.14 cm−1).

A common synthesis pathway for designing high-spin molecules involves reaction

between cationic assemblies and anionic molecules. The triad Fe3-core of the series of

trinuclear iron(iii) complexes described herein may be considered as cationic triad-core

with labile coordination position on each metal center. Hence, such a coordination unit

can be successfully used as molecular brick to construct high-nuclearity metal clusters.

Organic radical molecule with p-carrier electron favor strong magnetic interaction and

therefore desirable to build up high-spin magnetic materials. The proposed organic radi-

cal (Figure 2.23, first structure) presents a free -COOH functionality which may be used

to replace the halide and pseudohalide monodentate ligands of above described trinu-

clear Fe(iii) complexes. Cyanide-bridged polynuclear complexes of Prussian Blue type

are highly desirable due to their rich chemical properties, i.e single-molecule magnets,

photomagnetism and/or building blocks to design coordination polymers with differ-

ent dimensionality.111–113 Cyanide-bridge mediates strong magnetic interaction between

metal centers and bimetallic Prussian Blue type solids were reported to exhibit sponta-

neous magnetization at temperature as high as 376 K.114 According with the proposed

strategy to isolate cyanide-bridged polynuclear complexes, halide and/or pseudohalides

are the best ”leaving groups”, easy replaceable by cyanide ligand. Therefore, cyanide

derivatives depicted in Figure 2.23 may also be used to construct extended magnetic

dendrimers.
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Figure 2.23: Schematic representation of the possible reactivity of trinuclear Fe(iii)-core

(up) and proposed ”building” units (down) for design of new high-nuclearity magnetic

dendrimers.

On the other hand, regarding the isolated mononuclear Ni(ii)-complex 5, an inter-

esting future perspective is represented by modification of the supporting organic ligand,

namely a hydrazide derivative of dicarboxylic acid (Figure 2.24). The new organic frame-

work can accommodate at least two Ni(ii) ions and/or following a self-assembly strategy

to yield grid-type compounds with high-nuclearity topology.
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Figure 2.24: Schematic representation of the proposed organic framework capable to form

polynuclear d-metal complexes.

2.6 Experimental Part

Schiff base ligand - H2imsalhy

2-Imidazole-carboxaldehyde (2.40 g, 2.50 mmol) was added stepwise to a solution of

salicyloylhydrazide (3.80 g, 2.50 mmol) dissolved in methanol (50 mL). The resulting

mixture was stirred under reflux when a clear solution formed. The reflux has been

continued until a precipitate starts to be formed and the reaction was continued overnight

at room temperature. The precipitate was filtered off and washed with cold methanol

and diethylether and used without further purification. Yield: 4.68 g (2.03 mmol, 81.2%).

Anal. Calc. for C11H10N4O2 (230.25): C 57.39, H 4.38, N 24.34. Found: C 56.84, H 4.40,

N 23.85. 1H NMR (400 MHz, DMSO-d6): δ = 6.93-7.00 (m, 3H, arom. CH ), 7.17 (br, 2H,

imidazole NH ), 7.35-7.53 (m, 2H, imidazole CH ), 7.80-7.86 (m, 1H, arom. CH ), 8.37 (s,

1H, CH=N), 11.83 and 12.88 (br. NH and OH ) ppm. 13C NMR (100 MHz, DMSO-d6): δ

= 116.0 116.7 (arom.C ), 117.2, 117.4, 118.9, 119.3, 128.5, 130.3 (arom.CH), 133.8, 134.0

(imidazole CH), 140.4, 141.0 (CH=N) ppm), 142.2 (imidazoleC ), 158.9 (arom.C –OH),

167.7 (C=O) ppm. Selected IR data (cm−1): 3435 (br, NH), 3213 (br, OH intermolecular

hydrogen bonded), 3125 (s, NH imidazole), 1665 (s, CO), 1600 (w, -CH=N-N=C-), 1539

(s, -CH=N). UV/Vis (CH3OH solution, λmax in nm (ε in 103 M−1 cm−1)): 240 (11032),

326 (4150).
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Iron complexes

[Fe(imsalhy)(Cl)]3·3CH3OH (1). To the H2imsalhy ligand (115 mg g, 0.5 mmol) sus-

pended in MeOH (15 mL) was added one equivalent of NaOH (0.5 mL of 1 N aqueous

solution) which cause a dissolution of the ligand. To this resulting solution, FeCl3·6H2O

(135 mg, 0.5 mmol) dissolved in MeOH (5 mL) was added stepwise under continuous

stirring and the reaction mixture stirred at room temperature for 15 minutes. The black

solution was filtered and left at room temperature for slow evaporation of the solvent.

Black prismatic crystals suitable for X-ray measurement were obtained within two days.

Yield: 88 mg (0.1 mmol, 54%). Anal. Calc. for C33H24Cl3N12O6Fe3·H2O (976.521): C

40.85, H 2.55, N 17.48. Found: C 40.59, H 2.67, N 17.51. Selected IR data (cm−1): 3430

(br, H2O), 3125 (s, NH imidazole), 1595 (s, -CH=N-N=C-), 668, 639 (s, Fe–O), 560, 506

(s, Fe–N). UV/Vis (CH3OH solution, λmax in nm (ε in 103 M−1 cm−1)): 257 (3913), 319

(3750), 519 (1060). FAB-MS (nba): m/e = 375 [Fe2(imsalhy)]Cl, 851.0 [Fe3(imsalhy)]−,

886.0 [Fe3(imsalhy)Cl]−, 921.0 [Fe3(imsalhy)Cl2]
−, 958.0 [Fe(imsalhy)Cl]3.

[Fe(imsalhy)(Cl)]3·3CH3CH2OH (1·3EtOH) has been isolated following the

above procedure by replacement of MeOH with EtOH. Yield: 94 mg (0.08 mmol, 51%).

Anal. Calc. for C33H24Cl3N12O6Fe3·3EtOH (1096.71): C 42.71, H 3.86, N 15.33. Found:

C 42.43, H 4.33, N 14.62.

[Fe(imsalhy)(N3)]3·3.5DMF (2). To the H2imsalhy ligand (115 mg, 0.5 mmol)

suspended in MeOH (20 mL) was added one equivalent of NaOH (0.5 mL of 1 N aqueous

solution) which cause a dissolution of the ligand. To this resulting solution, Fe(NO3)3·9H2O

(202 mg, 0.5 mmol) dissolved in MeOH (5 mL) was added stepwise under continuous

stirring followed by addition of solid NaN3 (65 mg, 1.0 mmol) and the reaction mixture

stirred at room temperature for 60 minutes. The black solution was filtered and addi-

tional DMF (5 mL) was added. The solution was left undisturbed at room temperature

for slow evaporation of the solvent. Black prismatic crystals suitable for X-ray measure-

ment were obtained within one month. Yield: 42 mg (0.10 mmol, 20%). Anal. Calc.

for C43.5H48.5N24.5O9.5Fe3 (1234.14): C 42.33, H 3.96, N 27.80. Found: C 42.31, H 3.80,
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N 18.24. Selected IR data (cm−1): 3435 (br, solvent), 3132 (m, NH imidazole), 2059 (s,

azide), 1597 (s, -CH=N-N=C-), 673, 635 (s, Fe–O), 583, 560 (s, Fe–N). UV/Vis (CH3OH

solution, λmax in nm (ε in 103 M−1 cm−1)): 256 (4841), 319 (4792), 512 (1307).

[Fe(imsalhy)(NCS)]3·(H3imsalhy)·(NO3)·0.5H2O·4.25CH3OH (3). This com-

plex was prepared following the procedure previously described for 2 by replacement of

sodium azide with KSCN (2 equiv, 97 mg, 1.0 mmol) dissolved in methanol (5 mL). The

resulting methanolic solution was filtered and left to stand at room temperature. Black

needle-shape crystals start to appear within three-four hours. Yield: 109 mg (0.23 mmol,

47.5%). Anal. Calc. for C47H35N19O9S3Fe3·4H2O (1377.67): C 40.98, H 3.15, N 19.32,

S 6.92. Found: C 40.56, H 3.12, N 19.48, S 6.96. Selected IR data (cm−1): 3430 (br,

H2O), 3132 (m, NH imidazole), 2040 (s, SCN), 1646 (m, C=O), 1595 (s, -CH=N-N=C-),

1558 (s, -CH=N), 669, 640 (m, Fe–O), 560, 506 (m, Fe–O). UV/Vis (CH3OH solution,

λmax in nm (ε in 103 M−1 cm−1)): 246 (3951), 324 (5593), 511 (1054). UV/Vis (BaSO4

mixture, λmax in nm): 213, 254, 323, 538. FAB-MS (nba): m/e = 231 [H2imsalhy)-H+],

851.0 [Fe3(imsalhy)]−, 886.0 [Fe3(imsalhy)(NCS)]−, 967.0 [Fe3(imsalhy)(NCS)2]
−, 1025.0

[Fe(imsalhy)(NCS)]−3 .

[Fe(imsalhy)(NCS)]4·4CH3OH (4). This tetranuclear complex was prepared

following two procedures: i) similarly to previously described synthesis of 3 using two

equivalents of NaOH (1.0 mL of 1 N aqueous solution) for dissolution and deprotonation

of the H2imsalhy ligand and the same amount of the KSCN (97 mg, 1.0 mmol) as coligand

and ii) following the procedure described for preparation of complex 1 using additionally

KSCN (2 equiv., 97 mg, 1.0 mmol) dissolved in MeOH (5 mL). In both cases the resulting

black methanolic solutions were filtered and left to stand at room temperature. Black

needle-shape crystals were formed within two days in both cases. Yield: 35 mg (0.1

mmol, 18%) for i) method and 90 mg (0.26 mmol, 52%) for ii) method. Anal. Calc. for

C48H36N20O8S4Fe4 (1373.28): C 41.62, H 3.49, N 18.67, S 8.55. Found: C 41.28, H 3.09,

N 18.94, S 8.38. Selected IR data (cm−1): 3400 (br, MeOH), 3153 (m, NH imidazole),

2049 (s, SCN), 1600 (s, -CH=N-N=C-), 1600 (m, NO3), 672, 638 (m, Fe–O), 560 (m,

Fe–O). UV/Vis (CH3OH solution, λmax in nm (ε in 103 M−1 cm−1)): 244 (3950), 324
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(3653), 508 (1072). UV/Vis (BaSO4 mixture, λmax in nm): 241, 273, 322, 540.FAB-MS

(nba): m/e = 231 [H2imsalhy)-H+], 345 [Fe(imsalhy)(NCS)+3H+], 851.0 [Fe3(imsalhy)]−,

909.0 [Fe4(imsalhy)3]
−, 967.0 [Fe4(imsalhy)(NCS)]−, 1080.0 [Fe4(imsalhy)3(NCS)2], 1139

[Fe4(imsalhy)3(NCS)3] or [Fe(imsalhy)]4−4 .

Synthesis of [Ni(imsalhy)2]·4CH3CN (5)

To a suspension of H2imsalhy ligand (115 mg g, 0.5 mmol) suspended in MeOH/CH3CN

1:2 (15 mL) was added one equivalent of NaOH (0.5 mL of 1 N aqueous solution) which

cause a dissolution of the ligand. To this resulting solution, Ni(NO3)·6H2O (135 mg, 0.5

mmol) dissolved in MeOH (5 mL) was added stepwise under continuous stirring and the

reaction mixture stirred at room temperature for 15 minutes. The pale-yellow solution

was filtered and left at room temperature for slow evaporation of the solvent. Brown

prismatic crystals suitable for X-ray measurement were obtained within a week. Yield:

156 mg (0.28 mmol, 32%). Anal. Calc. for C22H18N8O4Ni·CH3CN (558.186): C 51.64, H

3.79, N 22.58. Found: C 51.41, H 3.77, N 22.55. Selected IR data (cm−1): 3400 (br, OH

phenolate), 3125 (s, NH imidazole), 1610 (s, -CH=N-N=C-), 670 (s, Ni–O), 550 (s, Ni–N).
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Chapter 3

Triaminoguanidine derivatives as

supports to construct magnetic

assemblies

The development of new strategies to design polynuclear metal complexes has lead to a

tremendous research activity. This has been fueled by their relevance in understanding

the biological functions of metalloenzyme115,116 as well as due to their potential appli-

cations as catalysts and magnetic117,118 materials. A large variety of metallo-clusters

have been reported with structural assemblies such as honeycomb, grids, diamantoid and

helical motifs.44–51 These have been paved the field of crystal engineering119,120 that is

close linked to supramolecular chemistry. Supramolecular chemistry defined by Lehn43as

”chemistry beyond molecule” is regarded as self-organization in solid state of predefined

molecules through non-covalent interactions, i.e hydrogen bonding, Wan der Walls and

π-π-stacking interactions. The non-covalent interactions lead not only to supramolecular

arrangement of the molecules, but are also responsible for interesting properties. The

resulting architectural edifices have been reported to function as molecular recognition

agents and/or to posses ion-exchange and transport capacity.121–126 Stacking interaction

were found able to mediate both ferro- and antiferromagnetic coupling between the metal

centers.127,128 In addition, cooperative effect of discrete molecules and non-covalent inter-

actions observed is solid state have been reported as corroborative phenomena that may
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induce thermal hysteresis which confers memory effect to a magnetic material.129,130 In-

organic supramolecular networks and coordination polymers have been isolated through

self-assembly reactions between multifunctional organic ligands and metal ions. The pro-

cess relies upon the preference of metal ion for a particular geometry and the number,

type and arrangement of the ligand binding sites.119,131,132 The careful selection of the

appropriate ligand plays the key role in self-assembly process and it determines the va-

riety of molecular architecture.32,44,126 A rational design of supramolecular assemblies

has also been developed in 1990 by Robson et all.133 This is based on so called ”node”

and ”spacer” strategy in which both, the supporting organic framework and the linker

are judicious selected. The most used bridging entity in this last synthetic pathway is

represented by 4,4’-bipyridine/ or derivates of this,134,135 capable of generating from one-

to three-dimensional networks depending on the used metal ions. This alternative made

possible the step-by-step design of extended structures. The supramolecular architectures

have been isolated predominantly from C2 symmetric organic ligands, whereas the use

of C3 symmetric organic framework has been less employed in isolation of coordination

compounds.136,137 A multitude of inorganic-organic hybrids with C3-symmetry contain

1,3,5-tricarboxylic,138–142 which presents the disadvantage of chelating capacity. This last

organic ligand occupies limited positions of the coordination sphere of d-transition metals

and hence the uncontrolled coordination polymer formation. Given the obvious impor-

tance of the supporting organic ligand, the role of tris-(N-salicylidene)-amino guanidine

hydrazide is evident. The organic framework has a planar structure, with three symmet-

ric cavities capable of stronger chelation of d-transition metals, independently on their

preferred geometry.40 Robson and Müller et al.143–148 reported the synthesis of interest-

ing discrete cage molecules with various topologies using PdII, CdII, CuII and MoVI metal

ions and triaminoguanidine-based ligand. From the magnetochemistry point of view, this

polydentate system with C3 symmetry is versatile because it may yield trinuclear metal-

complexes with a resulting non-zero spin ground state when capping ligand are employed

to complete the coordination sphere of the metal ions.33–40 In absence of capping ligands,

inorganic coordination polymers are to be obtained through µ-phenoxy bridges formed

between metal centers.149 The judicious selection of capping ligand systems may give the

opportunity to obtain interesting supramolecular assemblies by self-organization of trin-
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uclear complex unit in solid state and in addition, the possibility to construct dendritic

materials following a ”step-by-step” strategy. Therefore, 2,2’-bipyridine (bipy) and 2,4,6-

tris(2-pyridyl)-1,3,5-triazine (tptz) have been employed as co-ligands in order to avoid

the uncontrolled polymerization of polynuclear complexes. The bipy is a middle-strong

field ligand, used extensively to induce spin crossover behavior in Fe(ii)-complexes,150,151

whereas tptz ligand shows different coordination modes. The predominant chelating ca-

pacity of tptz ligand is tri-dentate terpyridine-like (I), but may also coordinate through a

combination of terpyridine and pyridine-like chelation accommodating two or three metal

ions (II and III forms in Figure 3.1).152 Both ligand systems have been reported to form

supramolecular assemblies through π-π-stacking interactions in solid state.153,154 The

π-π-stacking interaction is a non-covalent interacting force, weaker than hydrogen-bond

with a energy calculations around 10 KJ mol−1 for typical aromatic-aromatic interactions,

compared to ∼ 40 KJ mol−1 for hydrogen bonding interaction.155,156 In addition, it is

worth mentioning here that, the tptz ligand can be hydrolyzed by metal ions, especially

CuII to bis(2-pyridylcarbonyl) amine (bcpa) and its complexes.157–162
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Figure 3.1: Schematic representation of the coordination modes of 2,4,6-tris(2-pyridyl)-

1,3,5-triazine (tptz) ligand.

Another important aspect in coordination chemistry is represented by the influence

of counter-ions in the resulting network structures, primarily by acting as either coor-
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dinating or non-coordinating building blocks.44,163–165 In both cases, their implication

in hydrogen binding interactions has lead to extended assemblies. Therefore, substi-

tuted triaminoguanidine-based Schiff base ligands have been reacted with NiII and CoII

salts and the magnetic properties of the resulting complexes have been analyzed. The

importance of NiII-containing complexes in inorganic chemistry is well established and

their relevance to biological system is obvious through large number of reports containing

model complexes for nickel-containing enzymes.166 In addition, single molecular magnets

based on NiII-pyridone ligands and NiII4 -cubane complexes have also been reported.167–173

Thus, discrete trinuclear and pentanuclear NiII-containing complexes has been isolated

using 2,2’-bipyridine and 2,4,6-tris(2-pyridyl)-1,3,5-triazine as co-ligands (Figure 3.2).

On going from nickel to cobalt ions, a trinuclear CoIII complex has been isolated through

hydrolysation of the tptz coligand (Figure 3.1).
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Figure 3.2: Schematic representation of the coordination mode of triaminoguanidine-

based ligands and co-ligands used to isolate trinuclear NiII-complexes.
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3.1 Trinuclear Ni(II)-complexes based on ”triamino-

guanidine”-ligand and 2,2’-bipyridine coligand

Reactions of triaminoguanidine-based ligand - H5L
Br with various NiX2·nH2O salts yield

discrete trinuclear Ni(ii)-complexes when three equivalents of 2,2’-bipyridine40 have been

used. The starting tris-nucleating ligand has been used as chlorhydrate salt, therefore

excess of Bu4NOH (six fold) has been used for both deprotection of guanidine moi-

ety and deprotonation of the phenolic oxygen atoms in order to favor the coordina-

tion of d-transition metals.147 Using Ni(NO3)2·6H2O as metal salt, cationic trinuclear

[Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH complex could be isolated. Suit-

able crystals for X-ray diffraction with the same composition have been obtained by

reaction of Ni(ClO4)2·6H2O with H5L
Br and 2,2’-bipyridine, using the same excess of

base in presence of Gd(NO3)3·6H2O. The use of gadolinium salt was based on existing

reports that describe the possible coordination of the lanthanide ion through µ-bridged

phenolate moiety of two d-metal coordination entities (See Chapter 6). In this case, the

gadolinium ion does not interfere in the previous observed coordination scheme of d-

metals with triaminoguanidine-based ligand when 2,2’-bipyridine is used as coligand and

it played the anion exchange role. Molecular structure and labeling scheme for complex

6 is depicted in Figure 3.3. This complex crystalizes within a month from MeOH/DMF

solvents mixture as brown prismatic shaped crystals. Molecular structure determination

shows a Ni3 triad formed by Ni–N–N–Ni bridges with Ni· · ·Ni interatomic separation

of 499.01 pm and torsion angles of 168.73◦ for Ni–N–N–Ni and 175.76◦ for N–N–Ni–N

respectively. Complex 6 crystallizes in the hexagonal P63/m space group with C3 sym-

metry axis that passes through the nitrate anion and the central C1 carbon atom of

guanidine moiety. The nickel ions coordinated in the three symmetric tridentate pockets

of the tris(5-bromo-2-hydroxybenzylidene)triaminoguanidine ligand are crystallographi-

cally identical in octahedral environment. Three coordination sites of each Ni(ii) ion are

occupied by the ON2 donor atoms of the supporting ligand with the bite angles of 90.4◦

for O1–Ni–N2 and 77.5◦ for N2–Ni–N1A, respectively. Selected bond lengths and angles

in complex 6 are listed in Table 3.1. The octahedral geometry of each nickel center is

completed by water molecules which binds around 208.5 pm and bidentate bipy coligands
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Figure 3.3: Molecular structure and selected numbering scheme of complex

[Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH (6). Only the cationic core is

shown; hydrogen atoms have been omitted for clarity.

with the bit angle N3–Ni–N4 of 78.06◦ and Ni–N bond distances of 209.06 (Ni–N3) and

208.99 (Ni–N4) pm. A tetragonal plane can be defined for the three donor atoms of

the chelating ligand (O1–N1–N1A) and N4 nitrogen atom of the bipy coligand with the

nickel ion displaced out from this plane by 16 pm, whereas the other nitrogen atom N3

of bidentate coligand and the water molecule occupies the apical positions of the dis-

torted octahedron. The trans angles are 168.7◦ for N3–Ni–O1W, 173.7◦ and 167.01◦ for

O1–Ni–N1A showing slight distortions compared to an ideal octahedral geometry. The

dihedral angles between the defined tetragonal planes are two of 11.9◦ and one of 10.8◦

which shows a good planarity of the resulting trinuclear Ni(ii) complex.

Cation complex 6 crystallizes with water, DMF and MeOH molecules as solvents of crys-

tallization with the resulting formula [Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH,

whereas the nitrate anion is distorted. These lattice solvents form a strong hydrogen

bonding interactions, with Ow· · ·OM of 312.3 pm and Ow· · ·ODMF 274.5 pm (Figure

3.5). An interesting feature of the crystal packing diagram is represented by the pres-

ence of eight water molecules which form a water cluster174,175 through hydrogen bonding
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interactions along the a axis (Figure 3.4) with Ow· · ·Ow contacts that fall in the 256.0-

287.0 pm. The un-bonded nitrate anion, place in close vicinity of the trinuclear core

is involved in hydrogen bonding interactions with the coordinated water molecules of

two neighboring cation trinuclear Ni(ii) units with ON · · ·Ow hydrogen bond distances

of 264.7 pm.

Figure 3.4: Sheets of [Ni3L
Br(bipy)3(OH2)3]NO3·8H2O (6) complex linked by hydrogen

bonding interactions formed by water lattice molecules and the nitrate anion as viewed

along the a axis. Hydrogen atoms have been omitted for clarity.

An interesting arrangement has been noticed for the 2,2’-bipyridine co-ligands placed on

the same site of the triaminoguanidine-based ligand forming an hydrophobic site, whereas

the coordinated water molecules occupies the opposite site compared to the same plane

(Figure 3.4) forming the hydrophilic part of the organized aggregates. The hydrophilic

site of the assemblies are connected through hydrogen bonding interactions intermedi-

ated by water molecule (phenolate oxygen atom O1· · ·Ow 273.6 pm) and nitrate anion,

resulting in hydrogen bonding channels formed along the crystallographic a axis (Figure

3.5). On the other hand, the hydrophobic part with bipy constituents are additionally

assembled through π-π-stacking interactions between off-slipped pyridine rings placed

within interplanar distance of around 378.2 pm (Figure 3.6).
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Figure 3.5: Packing diagram showing the formation of hydrogen bonding channels in

[Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH (6) as is viewed along the crystal-

lographic a axis. No hydrogen atoms have been included.

Figure 3.6: Packing diagram showing the π-π-stacking interac-

tions as viewed along the crystallographic c axis in complex cation

[Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH (6). Hydrogen atoms have

been omitted for clarity.

Reaction of NiCl2·6H2O with H5L
Br and 2,2’-bipyridine in a ratio of 3:1:3 in MeOH-DMF-

CH3CN mixture and six folds base (Bu4NOH), yields complex of type [Ni3L
Br(bipy)3-

(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7). Conversely to previous described cationic

trinuclear Ni(ii)-complex, the three nickel ions are now crystallographically distinct.
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Table 3.1: Selected bond lengths (pm) and angles (◦) for complex 6.

Ni–O1 203.9(3) Ni–N1 208.2(3)

Ni–N2 202.1(4) Ni–O2 208.4(3)

Ni–N3 209.2(4) Ni–N4 209.3(4)

O1–Ni–N1 167.17(13) O1–Ni–N2 90.52(13)

N2–Ni–N1 77.62(14) N2–Ni–O2 94.78(13)

O1–Ni–O2 87.16(12) N1–Ni–O2 88.96(13)

O1–Ni–N4 87.25(13) O1–Ni–N3 95.16(14)

N1–Ni–N3 91.03(14) N1–Ni–N4 105.05(14)

O2–Ni–N3 168.68(14) O2–Ni–N4 91.05(13)

N2–Ni–N3 96.27(14) N2–Ni–N4 173.65(14)

N3–Ni–N4 78.02(14)

Complex 7 crystallizes in the P3 monoclinic space group. The tris(5-bromo-2-hydroxyben-

zylidene)triaminoguanidine ligand in classical mode and coordinates through pheno-

late and hydrazide nitrogen atoms accommodating one nickel ion per tridentate chelate

pocket. The Ni–O and Ni–N bond distances are similar to previous described Ni(ii)-

complexes and fall in the 201.3-203.6 pm range for nickel-to-phenolate oxygen atom bond

lengths and 200.4-210.4 pm range for nickel-to-hydrazide nitrogen bond distances. Each

Ni(ii) ion is sixth-coordinate, with N4O2 environment for Ni2 and Ni3 centers and N4OCl

coordination environment for Ni1 ion. Molecular structure and numbering scheme for

complex 7 is shown in Figure 3.7. By comparison to previous described trinuclear nickel

complex 6, in complex 7 the coordinated water molecules have been replaced by DMF

molecules that coordinate at Ni2 and Ni3 metal ions with bond lengths of 209.2 pm for

Ni2–O4 and 215.2 pm for Ni3–O5, whereas Ni1 ion has a weak bonded chloride ligand

anion (Ni1–Cl 246.2 pm) which also compensates the negative charge of the trinuclear

Ni(ii) complex.

Selected bond lengths and angles in complex 7 are listed in Table 3.2. The dihedral

angles between the tetragonal planes defined by N3O atoms (ONN from the chelate

triaminoguanidine-based ligand and one nitrogen atom of bipy coligand) are 4.0, 8.6 and
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Figure 3.7: Molecular structure and selected numbering scheme of complex

[Ni3L
Br(bipy)3(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7); thermal ellipsoids are drawn

at 50 % probability; only the trinuclear core is shown.

11.7◦, with the maximum value observed between the equatorial planes containing the

coordinated DMF molecules at nickel ions. The three nickel atoms are connected trough

diazine N–N bridges with interatomic Ni· · ·Ni separations of 501.0 (Ni1· · ·Ni2), 501.3

(Ni2· · ·Ni3) and 497.7 (Ni1· · ·Ni3) pm and torsion angles of around 179.6-179.9◦ (Ni1–N6–

N5–Ni3 and Ni1–N1–N2–Ni2) and 173.6◦ (Ni2–N3–N4–Ni3). The molecular structure of

complex 7 contains also solvent of crystallization. Hydrogen bonding interaction involve

only the lattice water that is within 286.7 pm hydrogen bonding away from the phenolate

oxygen atom (O1) and further in hydrogen bonding contact with lattice DMF (Ow· · ·O

292.4 pm). The crystal packing diagram is formed by trinuclear Ni(ii)-entities arranged

in stacking chains, with the coordinated DMF molecules oriented on the same side of

the triminoguanidine-based ligand plane with the molecules of solvent of crystallization

occupying the gaps between the metal-containing assemblies (Figure 3.8). Weak π-π

stacking interactions are formed by 2,2’-bipyridine moieties which are not ideally face-to-

face oriented (Figure 3.8) and within the interplanar distance of 368.7 pm.

68



Figure 3.8: Packing diagram viewed along the c axis for complex [Ni3L
Br(bipy)3-

(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7).

IR Spectroscopy

The formation of both trinuclear Ni(ii) complexes has also been confirmed spectroscopi-

cally. The IR spectra in both cases contain a broad band observed at ∼ 3400 cm−1 due

to the stretching vibrations of solvent molecules present in both crystal structures. In

addition, characteristic stretching vibrations for tris(5-bromo-2-hydroxybenzylidene)tri-

aminoguanidine ligand have been detected in IR spectra of both 6 and 7 complexes. The

Schiff base stretching vibration (–CH=N–) has been shifted upon Ni(ii)-coordination from

1696-1648 cm−1 in the free ligand to around 1653 cm−1 in the trinuclear Ni(ii)-complexes.

The presence of 2,2’-bipyridine ligand is not easy to be identified by IR spectroscopy, but

in the case of cationic complex 6, the stretching vibration for the free nitrate ion104 has

been observed at 1384 cm−1.
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Table 3.2: Selected bond lengths (pm) and angles (◦) for complex 7.

Ni1–O3 203.4(3) Ni1–N1 208.8(4)

Ni1–N6 200.4(4) Ni1–N7 209.9(4)

Ni1–N8 210.6(5) Ni1–Cl 246.27(16)

Ni2–O1 203.6(4) Ni2–O4 209.2(4)

Ni2–N2 202.1(4) Ni2–N3 210.4(4)

Ni2–N9 208.9(4) Ni2–N10 207.7(4)

Ni3–O2 201.3(4) Ni3–O5 215.2(4)

Ni3–N4 201.7(4) Ni3–N5 206.4(4)

Ni3–N11 210.2(5) Ni3–N12 210.2(4)

O3–Ni1–N1 168.85(16) N6–Ni1–O3 91.94(15)

N6–Ni1–N1 77.43(16) N7–Ni1–N8 77.89(18)

O3–Ni1–Cl 95.99(11) N6–Ni1–Cl 89.59(13)

N1–Ni1–Cl 87.38(13) N2–Ni2–O1 90.15(15)

N2–Ni2–O4 92.63(16) O1–Ni2–O4 90.05(15)

N2–Ni2–N3 76.70(16) O1–Ni2–N3 166.79(15)

N10–Ni2–N9 78.64(17) O2–Ni3–N4 91.48(16)

O2–Ni3–N5 168.51(16) O2–Ni3–O5 87.19(17)

N5–Ni3–O5 89.97(17) N4–Ni3–N5 77.62(16)

Magnetic properties of trinuclear Ni(II)-complexes based on ”tri-

aminoguanidine”-ligand and bipyridine coligands

Octahedral Ni(ii) ions with d8 electronic configuration are characterized by high-state S

= 1 configuration.10 Variable temperature (2 - 300 K) magnetic susceptibility data were

collected on microcrystalline samples for both complexes and are shown in Figure 3.10

and Figure 3.12 as χM = f(T) and χMT = f(T) plots. The room temperature values of

χMT values are 3.39 and cm3mol−1K for complex 6 and 4.88 cm3mol−1K for complex 7,

respectively and decrease constantly reaching a minimum of 0.06 cm3mol−1K for 6 and

1.65 cm3mol−1K for complex 7 at 2 K. The room temperature measured value for com-

plex 6 roughly corresponds to calculated value of 3.00 cm3mol−1K for three uncoupled
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Ni(ii) ions with S = 1, assuming g = 2, but is much higher in the case of complex 7 com-

pared to expected value. The gradual decrease of the χMT values observed in both cases

describes an antiferromagnetic exchange coupling between the Ni(ii) ions mediated by

diazine N–N bridges, but the low temperature values differs from complex 6 to complex

7 and namely, it goes close to zero for complex 6 and reaches a value larger than one

for complex 7. On the basis of crystallographic data, two models in terms of exchange

interaction were employed and therefore, the simulation of the magnetic data sets will be

discussed separately. The Ni3 triangular unit within the [Ni3L
Br(bipy)3(OH2)3]

+ cation

contains equal Ni–N–N–Ni bridges and Ni–N–N–Ni torsion angles. Thus, it can be ap-

proximated as equilateral triangle with three equal pairwise magnetic interactions.176–185

The magnetic exchange pathway in complex 6 is shown in Figure 3.9. The Heissenberg

spin Hamiltonian involves a single exchange parameter coupling (J) and has the following

expression:

Ĥ = −J
(

Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ1Ŝ3

)

for S1 = S2 = S3 = 1

Ni2 Ni3

Ni1

J

J J

Figure 3.9: Schematic representation of the coupling exchange pathway in

[Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH (6) complex.

The energies E(ST ) of the resultant spin states ST for the trinuclear Ni(ii) unit is calcu-

lated according to the equation:

E(ST ) = −J [ST (ST + 1) − 3S(S + 1)]

with ST = S1 + S2 + S3

For antifferomagnetically coupled system, this model predicts a ST = 0 ground state.

The χMT value for complex 6 at 2 K is very close to a zero value (0.06 cm3mol−1K)
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and thus the appropriate applicability of the chosen model. Introducing the above ST ,

E(ST ) expressions in the Van Vleck equation, the theoretical χM vs T expression for a

NiII3 equilateral triangle has the form:

χM =
2Nβ2g2

kT

18expA + 60expB + 84expC

1 + 9expA + 10expB + 7expC
(1 − ρ) +

2Nβ2g2

kT
ρ + χTIP (4)

with A = J/kT, B = 3J/kT and C = 6J/kT: ρ defines the magnetic influence of

paramagnetic impurities and χTIP represents the temperature independent paramagnetic

factor.

Figure 3.10: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH (6) complex mea-

sured with an applied magnetic field of 2000 Oe; the solid lines represent the theoretical

curves (see text).

The best fit of the χMT experimental data set led to J = − 30.99 ± 0.580 cm−1 for

g = 2.17± 0.0015 and a paramagnetic impurity ρ= 0.027± 0.0023. The reliability factor

R2 = 0.99986 for a temperature independent paramagnetic factor χTIP= 1.44 · 10−3 ±

1.3 · 10−4 cm3mol−1 shows a good agreement between calculated and experimental data

sets.

For complex 7 three different Ni–N–N–Ni bridges were crystallographically ob-

served, with two nickel ions having similar coordination environment, whereas the third

contains a different donor atom surrounding. Therefore, the exchange coupling scheme
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involves two exchange parameters and it is based on isosceles triangle topology as is

depicted in Figure 3.11. The appropriate Hamiltonian expression contains two coupling

constants and has the following form:

Ĥ = −J
(

Ŝ1Ŝ2 + Ŝ1Ŝ3

)

− J ′
(

Ŝ2Ŝ3

)

for S1 = S2 = S3 = 1

Ni2 Ni3

Ni1

J'

J J

Figure 3.11: Schematic representation of the coupling exchange pathway in

[Ni3L
Br(bipy)3(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7) complex.

Use of Kambe vector coupling method42 for the development of the exchange Hamiltonian

and the corresponding eigenvalue of energy levels, the Van Vleck equation for a triad NiII3

isosceles triangle is:

χM =
Nβ2g2

3kT

6expB + 6expC + 6expD + 30expE + 30expF + 84expG

expA + 3expB + 3expC + 3expD + 5expE + 5expF + 7expG
(1 − ρ)+

+
2Nβ2g2

kT
ρ + χTIP (5)

with A = J-J’/kT, B = 3J-2J’/kT, C = J/KT, D = J’/kT, E = 3J/kT, F = 2J’+J/kT,

G = 3J’+3J/kT.

The best fit of the experimental data has been obtained on χMT vs T plot and

led to J = − 19.88 ± 1.297 cm−1, J’ = − 12.84 ± 1.145 with a paramagnetic impurity

ρ= 0.58 ± 0.021 for g = 2 fixed value. The reliability factor R2 = 0.99742 result-

ing for a temperature independent paramagnetic factor χTIP= 1.27 · 10−3 ± 2.0 · 10−4

cm3mol−1 shows a good agreement between calculated and experimental data sets. A
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variable g value did not give satisfactory results and led to a higher Weiss constant with-

out a reliable values for the g parameter. Based on observed coupling constants that

describe an antiferromagnetic intramolecular interaction, a positive θ value is not con-

sistent. Nevertheless, the two coupling constants are similar, suggesting close magnitude

of the magnetic interaction between nickel ions, but smaller that the magnitude of the

antiferromagnetic interaction found in complex 6. This may be a consequence of higher

torsion Ni–N–N–Ni torsion angle close to 180◦ in 7, around 11◦ more obtuse than cor-

responding one in complex 6. Conversely to magnetic properties observed in the case

of cation complex 6, the antiferromagnetically coupled Ni3-core in complex 7 led to a

net ground spin state (S = 1).10 The χMT value at 2 K is around 1.65 cm3mol−1K,

value even higher than expected one for one uncoupled spin S = 1. The presence of the

non-diamagnetic spin ground state in the trinuclear complex 7 was further confirmed

by field dependence magnetization measurements performed at 2 K. The magnetization

saturates above 40000 Oe to reach a value of 2 Nβ close to expected saturation for one a

ground state ST = 1. Moreover, the experimental values fit the Brillouin function assum-

ing g = 2, resulting in a spin state S = 1.19 ± 0.013 with reliability factor R2 = 0.98296

(Figure 3.13).

Figure 3.12: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
Br(bipy)3(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7) complex mea-

sured with an applied magnetic field of 5000 Oe; the solid lines represent the theoretical

curves (see text).
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Figure 3.13: Plot of the field dependence of the magnetization for complex 7 measured

at 2 K (black filled squares represent the experimental value; the solid line shows the

theoretical curve generated using the Brillouin equation.

For both complexes 6 and 7, negative coupling constant values have been obtained

which reveal antiferomagnetic interaction between Ni(ii) high-spin. Complex 6 is an

antiferromagnetic Ni3 cation with a ST = 0, whereas the magnetic behavior of complex

7 shows a particular case of spin-frustrated antiferromagnetically coupled Ni(ii) triangle

with a ground state ST = 1. The intensity of the antiferromagnetic coupling of the

nickel ions is quite close to previous studied diazine-bridged trinuclear Ni(ii)40complexes

in agreement with Ni· · ·Ni intramolecular separation of ∼500 pm. A second parameter

determinant of the magnitude of the antiferromagnetic interaction is represented by the

Ni–N–N–Ni torsion angle. On going from complex 6 to complex 7, small variation of

this torsion angle was observed, varying from 168◦ in 6 to 173◦ and 179◦ in 7, thus a bit

stronger antiferromagnetic coupling of the Ni(ii) ions in the triangular cation complex 6.

These values compare well with reported magnetic behavior of antiferromagnetic diazine-

bridged Ni(ii)-containing complexes with Ni–N–N–Ni torsion angles larger than 90◦.186

Conversely, smaller torsion angles have been described in linear diazine-bridged trinuclear

Ni(ii) complexes where ferromagnetic interaction occurs between neighboring nickel ions

and weak antiferromagnetic coupling has found between terminal Ni(ii) ions.187 Complex

7 is a rare case of NiII-system with a net magnetic spin ground state and therefore

confirms that the tris(2-hydroxybenzylidene)triaminoguanidine derivatives ligands are
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versatile organic frameworks to generate trinuclear d-complexes with a non-diamagnetic

ground state. Similar situation with non-diamagnetic ground state has been observed

previously in trinuclear Cu(ii)-complexes based on triaminoguanidine ligands, but there

for antiferromagnetically paramagnetic coupled centers, a spin-frustrated mechanism is

occurring.40

3.2 Pentanuclear Ni(II)-complex based on ”triamino-

guanidine”-ligand and 2,2’-bipyridine coligands

Trinuclear Ni(ii) complexes based on tris(5-bromo-2-hydroxybenzylidene)triaminoguanidine

ligand system consist of diazine-bridged nickel ions with the metal center in distorted oc-

tahedral geometry. Each Ni(ii) ion has a labile coordination site filled by solvent molecules

or weak coordinating anion ligands. Such a coordination environment is believed to be

adequate to synthesize high-nuclearity metal-cyanide magnetic dendrimers. Cyanide-

bridged polynuclear complexes of Prussian Blue type are highly desirable due to their

rich chemical properties, i.e single-molecule magnets, photomagnetism and/or building

blocks to design coordination polymers with different dimensionality.111–113 Cyanide-

bridge mediates strong magnetic interaction between metal centers and bimetallic Prus-

sian Blue type solids were reported to exhibit spontaneous magnetization at tempera-

ture as high as 376 K.114 According with the proposed strategy to isolate cyano-bridged

polynuclear complexes, halide is a ”leaving group”, easy replaceable by cyanide ligand.

Therefore, complex of type 7 has been reacted with aqueous solution of [M(CN)x]
m−

(M = Cr3+, Fe3+/2+), but unfortunately no crystalline product could be isolated. In-

stead, slow diffused layers of DMF solution of complex 7 and aqueous solution of pho-

tomagnetically active188 cyanide-K4[Mo(CN)8] in 1:4 ratio lead to a pentanuclear Ni(ii)-

complex with no molybdenum cyanide moiety. A self-arrangement of the initial trinuclear

[Ni3L
Br(bipy)3(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7) complex took place, most likely

induced by molybdenum-cyanide salt to form a high-nuclearity Ni(ii) complex of type

[Ni5(L
Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O (8). The molecular structure

for complex 8 is shown in Figure 3.14 and selected bond lengths and angles are listed in
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Figure 3.14: Molecular structure and selected numbering scheme of complex

[Ni5(L
Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O (8).

Table 3.3 and 3.4.

The asymmetric unit contains five Ni(ii) ions in distorted octahedral environment.

Two trinuclear [Ni3L
BrL’] are interconnected by a common Ni(ii) ion accommodated

in two tridentate pockets of two triaminoguanidine-based ligand moieties in O2N4 en-

vironment. The bite angles of the two tridentate pockets are 90◦ (O2A–Ni–N4A) and

76◦ (N4A–Ni–N5A) for molecule A and 89◦ (O2B–Ni–N4B) and 77 ◦ (N4B–Ni–N5B)

for molecule B. Similar strength binding of the two tridentate pockets around Ni ion

was observed with nickel to phenolate oxygen atom bond distances of 208.0 and 210.5

pm for Ni–O2A and Ni–O2B bond lengths. The guanidine-hydrazide nitrogen atoms

bond distances are around 201 pm for Ni–N4A and Ni–N4B and 211.8 and 209.9 pm

nickel-to-imino nitrogen atom bond lengths (Ni–N5A and Ni–N5B). The dihedral angle

between the idealized planes formed by two Ni(ii)-containing triaminoguanidine-based

moieties is around 85◦, very close to a perpendicular orientation of the two interlocked

trinuclear Ni(ii)-subunits. The four peripheral Ni(ii) ions have similar coordination en-

vironment to previous described trinuclear Ni(ii)-complex 6. Three of them are in oc-

tahedral ON3(OH2) environment with Ni–O bond lengths in the 201.1-213.2 pm range,

with shorter bond distances for phenolate oxygen atoms and longer for Ni–O water oxygen
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Table 3.3: Selected bond lengths (pm) and angles (◦) for complex 8.

Ni–O2A 208.0(4) Ni–O2B 210.5(4)

Ni–N4A 201.0(5) Ni–N4B 201.1(5)

Ni–N5A 211.8(5) Ni–N5B 209.9(5)

Ni1A–O1A 202.3(4) Ni1A–O1WA 211.8(5)

Ni1A–N2A 201.8(5) Ni1A–N3A 204.8(5)

Ni1A–N7A 210.8(6) Ni1A–N8A 208.6(6)

Ni2A–O3A 201.1(5) Ni2A–O2WA 211.5(5)

Ni2A–N1A 206.6(5) Ni2A–N6A 201.9(5)

Ni2A–N9A 213.9(5) Ni2A–N10A 208.9(6)

Ni1B–O1WB 213.2(4) Ni1B–O1B 204.4(4)

Ni2B–O3B 206.9(4) Ni2B–O4B 209.6(4)

Ni1B–N2B 201.7(5) Ni1B–N3B 209.8(5)

Ni2B–N6B 200.9(5) Ni1B–N7B 208.9(6)

Ni1B–N8B 208.3(6) Ni2B–N9B 208.0(5)

Ni2B–N10B 206.9(6) -

atom bond distances. The remained Ni2B ion contains a coordinated DMF molecule with

a Ni–O4B bond distance of 209.6 pm. The dihedral angles between the equatorial planes

of each Ni(ii) ion within the same tris(5-bromo-2-hydroxybenzylidene)triaminoguanidine

ligand are 36.2, 11.8 and 47.5◦ for molecule A and 19.1, 48.9 and 30.9◦ for molecule B.

The interatomic Ni· · ·Ni separation is similar within the two trinuclear Ni(ii) entities as

well as the Ni–N–N–Ni torsion angles as are listed in Table 3.5. While the interatomic

Ni· · ·Ni distances are similar to interatomic nickel-nickel separation observed in previ-

ous described trinuclear complexes, the torsion angles of the diazine-bridged Ni(ii) ions

are smaller in complex 8 compared to complex 6 and 7, but still in trans orientation

compared to diazine N–N bridge.

Complex 8 crystalizes with large amounts of solvent of crystallization, i.e DMF,

MeOH and H2O which form a strong hydrogen bonding network with hydrogen bonding

contacts that fall in the 264.2 - 284.8 pm. In addition, the methanol molecules estab-
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Table 3.4: Selected bond lengths (pm) and angles (◦) for complex 8.

N4A–Ni–N4B 173.0(2) N4A–Ni–O2A 90.04(18)

N4B–Ni–O2A 88.87(18) O2A–Ni–N5B 86.34(19)

N4A–Ni–N5B 109.58(19) N4B–Ni–N5B 77.2(2)

N4A–Ni–O2B 84.04(17) N4B–Ni–O2B 89.21(18)

O2A–Ni–O2B 95.12(17) N5B–Ni–O2B 166.33(18)

N4A–Ni–N5A 76.32(19) N4B–Ni–N5A 105.5(2)

O2A–Ni–N5A 164.87(18) N5B–Ni–N5A 92.0(2)

O2B–Ni–N5A 90.00(19) N2A–Ni1A–O1A 90.38(19)

N2A–Ni1A–N3A 77.48(19) O1A–Ni1A–N3A 165.35(19)

O1A–Ni1A–O1WA 89.80(17) N2A–Ni1A–O1WA 90.3(2)

N3A–Ni1A–O1WA 82.19(19) N8A–Ni1A–N7A 78.5(2)

O3A–Ni2A–N1A 167.53(17) O3A–Ni2A–N6A 90.94(18)

O3A–Ni2A–O2WA 89.0(2) N1A–Ni2A–O2WA 87.6(2)

N6A–Ni2A–N1A 77.47(19) N6A–Ni2A–O2WA 95.76(19)

N9A–Ni2A–N10A 77.7(2) N2B–Ni1B–O1B 89.30(18)

O1B–Ni1B–N3B 165.49(18) N2B–Ni1B–N3B 77.72(19)

N2B–Ni1B–O1WB 95.41(19) O1B–Ni1B–O1WB 90.80(17)

N8B–Ni1B–N7B 78.5(2) O3B–Ni2B–N1B 165.63(17)

N6B–Ni2B–O3B 88.33(19) N6B–Ni2B–N1B 77.5(2)

O3B–Ni2B–O4B 90.40(18) N6B–Ni2B–O4B 91.72(19)

N9B–Ni2B–N10B 79.3(2) N9B–Ni2B–O4B 89.1(2)
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Table 3.5: Interatomic separation (pm) and torsion angles (◦) for pentanuclear Ni(ii)

complex 8.

Ni· · ·Ni1A 471.8 Ni· · ·Ni1B 471.3

Ni· · ·N2A 497.2 Ni· · ·Ni2B 498.4

Ni1A· · ·Ni2A 494.1 Ni1B· · ·Ni2B 494.3

Ni–N4A–N3A–Ni1A 130.1 Ni–N4B–N3B–Ni1B 127.1

Ni–N5A–N6A–Ni2A 153.4 Ni–N5B–N6B–Ni2B 168.1

Ni1A–N2A–N1A–Ni2A 1620.8 Ni1B–N2B–N1B–Ni2B 161.2

lishes hydrogen bonding contacts between the pentanuclear Ni(ii) entities of 264.2 pm

through phenolate oxygen atom (O3B) and the coordinated water molecules are in hy-

drogen bonding interactions with DMF molecules of 268.3 (O2WA· · ·O/DMF)) and 276.6

(O1WB· · ·O(DMF)) pm, respectively. Weak π-π stacking interactions, larger than 336

pm are formed between constituting 2,2’-bipyridine coligands of neighboring trinucler

Ni(ii)-entities (Figure 3.15).

Figure 3.15: Packing diagram viewed along the c axis for complex

[Ni5(L
Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O (8). Dashed lines repre-

sent hydrogen bonding interactions.
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Magnetic properties of the pentanuclear Ni(II)-containing com-

plex

Variable temperature (300 - 2 K) magnetic susceptibility measurement was obtained on

crystalline sample of complex [Ni5(L
Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O

(8) with an applied magnetic field of 2000 Oe. Plots of thermal variation of χM and

χMT are shown in Figure 3.16. The measured χMT value at room temperature is 4.86

cm3mol−1K which roughly corresponds to a calculated value of 5.00 cm3mol−1K for five

uncoupled S = 1 ions, assuming g = 2. On lowering the temperature, the χMT value

decrease constantly to reach a value of 0.04 cm3mol−1K at 2 K. This behavior suggest

the presence of antiferromagnetic interaction within the pentanuclear cluster. The low

temperature χMT value is close to ST = 0 ground state. The antiferromagnetic interac-

tions occur, most likely within the trinuclear subunits. The peripheral Ni· · ·Ni separation

is larger than 785 pm and, therefore no antiferromagnetic coupling between these ions

is expected. Unfortunately, no quantitative analysis of the magnetic data have been

performed.

Figure 3.16: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni5(L
Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O (8) complex

measured with an applied magnetic field of 2000 Oe.
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A possible hypothesis for the formation of the pentanuclear complex (8) is repre-

sented by self-rearrangement of the trinuclear Ni(ii)-entities. Such architectural assem-

blies have been proposed to be formed by Müller et al 148 but in presence of a bridging

ligand, i.e barbituric acid when the self-assembly process between two trinuclear entities

with a C3 symmetric organic framework led to a trigonal bypiramid cage. Complex 8 of

type M5L2 comprises a different architecture, with four Ni(ii) ions arranged almost in one

plane, whereas the remained Ni(ii) ion is perpendicular on this plane, but do not form a

square-pyramidal cage owing to an almost linear arrangement of three Ni(ii) centers.

3.3 Trinuclear Ni(II)-complex based on ”triaminogua-

nidine”-ligands and 2,4,6-tris(2-pyridyl)-1,3,5-tri-

azine coligands

Non-covalent interaction forces are able of aggregating the metallo-units into larger

nanoscale arrays. Hydrogen bonding interactions are known as generators of extended-

dimensionality networks when appropriate building blocks which contain multiple hydro-

gen bonding donor and acceptor are used.189–191 On the other hand, π-π-stacking interac-

tions have also been reported as capable to assemble oligomeric units into supramolecular

architectures. For example, mononuclear cation [CuI(aminopyrene)3] complex has been

led to 2-D layers through π-π stacking of the three pyrene moieties,192 whereas pairs of in-

finite chains have been aggregated through π-π stacking interactions of the aromatic com-

ponents in [AgI(trans-4,4’-azopyridine)(NO3)] complex.193 Both types of non-covalent

interactions have been reported to influence the observed interesting electrical, optical

and magnetic properties of the resulting assemblies.129,130 Therefore, 5-bromo- and 3-

methoxy-substituted triaminoguanidine-based ligands have been reacted with NiX2·nH2O

salts using 2,4,6-tris(2-pyridyl)-1,3,5-triazine as coligand. The aromatic co-system is ex-

pected to generate extended supramolecular networks through π-π-stacking interactions

as it was previously reported, whereas the presence of different anions may induce hy-

drogen bonding organization of the molecules. In addition, the triazine system used

herein is a possible candidate for inducing spin-polarization mechanism in coordination
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compounds (Figure 3.17). This last organic framework has a C3-symmetry, similarly

to triamonoguanidine-based ligands and, therefore the association of both organic lig-

ands and metal ions may led to extended structures with interesting nets topology.120

On the other hand, trinuclear d-metal complexes that contain both, triaminoguanidine-

based ligand and 2,4,6-tris(2-pyridyl)-1,3,5-triazine coligand may be used as molecular

bricks to form polynuclear clusters with alternating antiferro- and ferromagnetic coupling

interactions.137,152,194–202

N

N

N
MM

M

Figure 3.17: Schematic representation of the possible spin-polarization mechanism in-

duced by the pyrimidine moiety of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) ligand in

transition metal complexes.

3.3.1 Trinuclear Ni(II)-complexes formed with tptz coligand

and tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine

ligand

Tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine (H5L
Br) ligand has been reacted

with Ni(NO3)2·6H2O salt and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) coligand in 1:3:3

ratio in DMF-MeOH solvent mixture and excess (6 equivalents) of base (NEt3). The

molecular structure determination shows a cation trinuclear Ni(ii)-complex of type

[Ni3L
Br(tptz)3]NO3·6.75MeOH·4H2O (9) as is depicted in Figure 3.18. The structural

arrangement of complex 9 contains the nitrate anion in distorted positions, two water

lattice solvent and four methanol molecules. These lattice solvents showed also partly

distortions. The trinuclear cation is formed by Ni(ii) ions in octahedral environment
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accommodated by the threefold nucleating triaminoguanidine based ligand which coordi-

nates in the classical tris-tridentate fashion as previously described. Complex 9 crystalizes

in the rhombohedral R3 space group with a nickel ion per asymmetric unit and therefore

has C3 symmetry axis that pass trough C1 guanidine atom and the nitrate anion. Each

tridentate pocket fills three coordination sites of each nickel ion with the bite angles of

92◦ for O1–Ni–N2 and 78◦ for N2–Ni–N1. Selected bond lengths and angles for complex 9

are listed in Table 3.6. The nickel-to-phenolate oxygen atoms bond distances are around

194.2 pm and the Ni–N bond distances are around 196.0 pm (Ni–N2 imino nitrogen atom)

and 201.0 pm for nickel-to aminoguanidine nitrogen atom (N1). These bond lengths do

not differ very much from corresponding bond distances found in cationic trinuclear Ni(ii)

complex 6. Conversely to previous described complexes, no coordinated solvent molecules

are to be found due to the nature of the tptz coligand that coordinated in terpyridine-like

fashion (Figure 3.1 form I) acting as tridentate capping ligand. The bite angles of the

coligand are 72◦ (N4–Ni–N3) and 73◦ (N4–Ni–N7) with nickel-to-nitrogen atoms bond

lengths that fall in the 210-238 pm range, similar with reported bonding parameters of

terpyridine-like chelation of 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand.

Figure 3.18: Molecular structure and selected numbering scheme of cation complex

[Ni3L
Br(tptz)3]NO3·6.75MeOH·4H2O (9).
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Table 3.6: Selected bond lengths (pm) and angles (◦) for complex 8.

Ni–O1 194.2(6) Ni–N1 201.0(7)

Ni–N2 196.0(7) Ni–N3 238.1(11)

Ni–N4 210.1(7) Ni–N7 237.1(12)

O1–Ni–N1 170.4(3) O1–Ni–N2 92.0(3)

O1–Ni–N3 89.5(3) O1–Ni–N4 88.4(3)

O1–Ni–N7 90.8(3) N1–Ni–N3 92.1(3)

N1–Ni–N4 101.0(3) N1–Ni–N7 93.3(3)

N2–Ni–N1 78.6(3) N2–Ni–N3 109.8(4(

N2–Ni–N4 177.8(5) N2–Ni–N7 104.8(4)

N4–Ni–N3 72.3(4) N4–Ni–N7 73.1(4)

N7–Ni–N3 145.4(3)

The Ni· · ·Ni intermolecular separation through diazine bridge is 482 pm with Ni–N–N–Ni

torsion angles of 154◦. These values are slightly smaller than corresponding values found

in complex 6, therefore different magnitude of the magnetic coupling is to be expected.

Nevertheless, as it was expected, interesting structural features are formed through self-

organization of the molecules. The lattice solvents are in hydrogen bonding interactions

of 274.5 pm (Ow· · ·OM) and in addition in hydrogen bonding interactions with donor

atoms of the hydrogen acceptor groups of the organic frameworks (O1W· · ·O1 273.9 pm

and O1W· · ·N8 284.6 pm). The coligand moieties are face-to-faced π-π stacked with 354

pm distance between the aromatic planes (Figure 3.19) with the nitrate anions placed in

the gaps between assembled molecules in a spatial distance of 463 pm reported to the

central carbon atom C1 of the guanidine moiety.

Similar trinuclear Ni(ii)-containing complexes have been isolated trough reaction of

tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine (H5L
Br) ligand with NiCl2·6H2O

and Ni(ClO4)2·6H2O salts and tptz coligand in the same conditions as described for com-

plex 9. The cationic complexes [Ni3L
Br(tptz)3]Cl·10H2O (10) and [Ni3L

Br(tptz)3]ClO4

·7H2O·DMF (11) have been spectroscopically characterized. The IR spectroscopy shows

similar features regarding the characteristic stretching vibrations of the two organic
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Figure 3.19: Packing diagram for complex [Ni3L
Br(tptz)3]NO3·6.75MeOH·4H2O (9) as

viewed along the c axis.

frameworks. The stretching vibration of the -CH=N group has been observed in the

IR spectra of all three cation complexes at around 1653 cm−1 range, a little bit shifted

compared to the free ligand. Stretching vibrations owing to the terpyridine-like coordi-

nated capping ligands have been detected at 1441-1468 cm−1 assigned to pyrimidine ring

system. In addition, strong absorption band characteristic for the NO−
3 anion has been

detected at 1384 cm−1, similarly to its vibration detected in the IR spectrum of complex

6. Stretching vibration characteristic for the perchlorate anion has been detected at 1177

cm−1 in complex 11. The elemental analyzes of the cationic structure of all these three

complexes agree well with the proposed compositions.

Magnetic properties

The magnetic measurements of all three complexes have been performed in the temper-

ature range 300-2 K and the plots of thermal variation of the magnetic susceptibility in

form of χM vs T and χMT vs T are shown in Figure 3.20 to Figure 3.22 for complex 9,

10 and 11, respectively. The experimental magnetic data sets show similar features with

the χMT values at 300 K of 2.76 cm3mol−1K for complex 9, 2.56 cm3mol−1K for complex

10 and 2.79 cm3mol−1K for complex 11. These values are a little bit lower than expected

value (3.00 cm3mol−1K) for three uncoupled Ni(ii) ions, assuming g = 2. On lowering the
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temperature, in all three cases a constant decrease of the χMT product values have been

observed until 5 K. Below this temperature a slow decline of the χMT values has been

registered, with minimum values of 0.03 cm3mol−1K for complex 9, 0.009 cm3mol−1K for

complex 10 and 0.01 cm3mol−1K for complex 11, respectively at 2 K. These lowest values

are very close to a ground state ST = 0, similarly to the previous magnetic behavior of

complex 6.

The best fit of the magnetic data sets has been obtained considering the isotropic

exchange Hamiltonian developed for complex 6 based on the exchange scheme shown in

Figure 3.9 for three equivalents Ni(ii) ions. Simulation of the experimental χMT values

according with equation 4 obtained with Heissenberg-Van Vleck-Dirac formalism yielded

the data sets listed in Table 3.7. Except for [Ni3L
Br(tptz)3]ClO4·7H2O·DMF (11) com-

plex, the quantitative analyze of the experimental magnetic data sets has been performed

with a fixed g = 2 parameter. A variable Landé factor for simulation of the magnetic be-

havior of complex [Ni3L
Br(tptz)3]NO3·6.75MeOH·4H2O (9) and [Ni3L

Br(tptz)3]Cl·10H2O

(10) yield no significant difference in J values, but the resulting g values of around 1.88

(for 10) and 1.93 (for 9) are inconsistent with EPR spectra of Ni(ii)-containing com-

plexes, i.e 2.001 measured value for complex 10.

Figure 3.20: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
Br(tptz)3]NO3·6.75MeOH·4H2O (9) complex measured with an

applied magnetic field of 2000 Oe; the solid lines represent the theoretical curves (see

text).
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Figure 3.21: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
Br(tptz)3]Cl·10H2O (10) complex measured with an applied mag-

netic field of 2000 Oe; the solid lines represent the theoretical curves (see text).

Figure 3.22: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
Br(tptz)3]ClO4·7H2O·DMF (11) complex measured with an applied

magnetic field of 2000 Oe; the solid lines represent the theoretical curves (see text).

In all three cases antiferromagnetic interactions mediated by diazine bridges occur

between the triad Ni(ii) core. The coupling constant parameter is very similar within

the cationic trinuclear Ni(ii) complexes owing to superexchange mechanism operating via

Ni–N–N–Ni linkage when the corresponding torsion angle is close to 180◦.32
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Table 3.7: Simulated magnetic data set for complex 9, 10 and 11.

9 10 11

g 2.00 2.00 2.11±0.007

J -27.06±0.31 -28.56±0.40 -30.88±0.30

ρ 0.021±2.66·10−3 0.013±3.15·10−3 0.006±1.1·10−3

χTIP 5.6·10−4±3.0·10−5 9.4·10−6 1.27·10−3±6.0·10−5

R2 0.99968 0.99847 0.99974

The interesting feature of these isolated cationic trinuclear Ni(ii) complexes of gen-

eral type [Ni3L
Br(tptz)3]

+ is represented by the presence of free coordination sites at

2,4,6-tris(2-pyridyl)-1,3,5-triazine coligands, and therefore they can be used as building

blocks to design dissimilar polynuclear complexes. While an antiferromagnetic interac-

tion is mediated by the triaminoguanidine-based ligand, the 2,4,6-tris(2-pyridyl)-1,3,5-

triazine coligand may mediate ferromagnetic interaction through spin-polarization mech-

anism (Figure 3.17) and hence an alternating ferro- antiferro-magnetic coupling may be

present.

3.4 Pentanuclear Ni(II)-complexes formed with tptz

coligand and tris(5-brom-2-hydroxy-salicylidene)-

triaminoguanidine ligand

In situ reaction of Ni(NO3)2·6H2O with H5L
Br and tptz organic ligands in MeOH/DMF/H2O

in a ratio of 3:1:3, followed by addition of three equivalents of Gd(NO3)3·6H2O produces

a dark-brown solution from which the pentanuclear [Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH

(12) complex crystallizes upon slow evaporation of the solvents mixture at room tem-

perature. The reaction has been performed in basic media by use of excess of Bu4NOH

40 % aqueous solution. Conversely to aforehand mentioned synthesis for complex 6

where the Gd(NO3)3·6H2O salt functioned as anion exchange for the isolation of the final

cation trinuclear Ni(ii) complex 6, in this case a self-assembly process took place with
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an rearrangement of the constituent trinuclear Ni(ii) units to form a final pentanuclear

nickel(ii)-containing complex. Complex 12 (Figure 3.23) crystallizes in the triclinic space

group P1 with two trinuclear Ni(ii) units, interlocked by a common Ni3 ion. The periph-

eral nickel ions are surrounded by ON5 donor atom sets arranged in distorted octahedral

geometry with trans angles in the 150-169◦ range.

Figure 3.23: Molecular structure and selected numbering scheme of complex

[Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH (12); Hydrogen atoms have been omitted for clarity.

The triaminoguanidine-based ligand acts as threefold tridendate chelate system, whereas

the 2,4,6-tris(2-pyridyl)-1,3,5-triazine coligand wraps around each peripheral Ni(ii) ion

in the terpyridine chelating fashion (Figure 3.1, form I). The bite angles of tris(5-brom-2-

hydroxy-salicylidene)triaminoguanidine ligand are a bit smaller compared to correspond-

ing angles found in complex 8 with nickel to phenolate bond distances that fall in 201.8-

203.7 pm range and the Ni–N bond distances within the 199.4-207.3 pm limits. The four

tridentate tptz coligands form two five-membered chelate rings with Ni–N bond lengths

within the 198.9-221.9 pm range and bite angles falling in the 74.3-77.5◦ range. Two

tris(5-brom-2-hydroxy-salicylidene)triaminoguanidine ligand units are hold together by

the Ni3 ion, accommodated in two tridentate pockets of A and B such molecules with

a O2N4 environment. The nickel-to-phenolate oxygen atoms bond distances are very

close within the two supporting organic ligands with Ni3–O3A and Ni3–O1B of around
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204 pm. The same binding strength within A and B moieties has been observed for

Ni3-to-imine nitrogen atoms (Ni3–N6A and Ni3–N2B) of around 203 pm. Longer bond

distances were observed for the hydrazide nitrogen atoms with Ni3–N1A of 210.5 pm and

Ni3–N5B of 207.6 pm. The dihedral angle between the idealized planes formed by two

Ni(ii)-containing triaminoguanidine-based moieties is around 87◦, very close to a perpen-

dicular orientation of the two interlocked trinuclear Ni(ii)-subunits and also very similar

to corresponding dihedral angle found in the pentanuclear complex 8.

Table 3.8: Interatomic separation (pm) and torsion angles (◦) for pentanuclear Ni(ii)

complex 12.

Ni1· · ·Ni12 497.6 Ni1· · ·Ni3 500.1

Ni2· · ·Ni3 492.1 Ni3· · ·Ni4 495.5

Ni4· · ·Ni5 495.1 Ni3· · ·Ni5 491.5

Ni1–N3A–N4A–Ni2 166.3 Ni1–N2B–N1A–Ni3 178.5

Ni2–N5A–N6A–Ni3 151.6 Ni3–N5B–N6B–Ni4 170.7

Ni4–N3B–N4B–Ni5 162.1 Ni3–N2B–N1B–Ni5 144.9

In addition, the dihedral angles between the equatorial planes of each Ni(ii) ion within

the same tris(5-bromo-2-hydroxybenzylidene)triaminoguanidine ligand are 17.9, 18.2 and

31.1◦ for molecule A and 13.7, 19.4 and 33.2◦ for molecule B. The interatomic Ni· · ·Ni

separation is similar within the two trinuclear Ni(ii) entities as well as the Ni–N–N–Ni

torsion angles as are listed in Table 3.8. These values differ from the corresponding pa-

rameters found in complex 8 and namely, there are increasing from bipyridine-containing

coligand to 2,4,6-tris(2-pyridyl)-1,3,5-triazine coligand. The torsion Ni–N–N–N torsion

angles in complex 12 are closer to 180◦ and hence maybe a stronger antiferromagnetic

interaction will take place. Complex 12 crystallizes with solvent molecules such as MeOH

and H2O, which are partly distorted. Nevertheless, strong hydrogen bonding interactions

within the lattice solvent molecules have been observed within the 250.8-263.6 pm range

for OM· · ·OM, 273.6-285.2 pm for Ow· · ·Ow and 255.9-294.6 pm for Ow· · ·OM hydro-

gen bonding contacts. In addition, the lattice water molecules also establish hydrogen

91



Table 3.9: Selected bond lengths (pm) for complex 12.

Ni1–O1A 203.7(5) Ni1–N2A 199.4(6)

Ni1–N3A 208.9(6) Ni1–N7A 200.1(6)

Ni1–N10A 217.0(6) Ni1–N12A 213.5(7)

Ni2–O2A 201.8(5) Ni2–N4A 201.1(6)

Ni2–N5A 205.7(6) Ni2–N13A 198.9(6)

Ni2–N16A 215.6(7) Ni2–N18A 217.8(6)

Ni3–O3A 204.0(5) Ni3–O1B 204.6(5)

Ni3–N1A 210.5(6) Ni3–N2B 203.3(6)

Ni3–N5B 207.6(6) Ni3–N6A 203.9(6)

Ni4–O3B 202.3(5) Ni4–N3B 207.2(6)

Ni4–N6B 200.7(6) Ni4–N13B 201.1(7)

Ni4–N16B 215.0(7) Ni4–N18B 220.2(7)

Ni5–O2B 202.8(5) Ni5–N1B 207.3(6)

Ni5–N4B 201.8(6) Ni5–N7B 201.4(6)

Ni5–N10B 221.9(6) Ni5–N12B 216.0(6)

bonding interactions with the phenolate (Ow· · ·O1B 270.1 pm, Ow· · ·O1A 269.6 pm and

Ow· · ·3A 275.9 pm) and nitrogen atoms of the pyridine ring belonging to the tptz coli-

gands (283.3-300.9 pm). This hydrogen bonding network fulfils the rectangular channel

formed along the a axis by the pentanuclear Ni(ii) units (Figure 3.24). On the other

hand, a close look on the packing diagram along the b axis reveals a zigzag π-π-stacking

interaction as a consequence of face-to-face orientation of the 2,4,6-tris(2-pyridyl)-1,3,5-

triazine moieties of two parallel layers and face-to-tail arrangement of the pyridine rings of

tptz coligands to the phenylene rings of the tris(5-brom-2-hydroxy-salicylidene)triamino-

guanidine ligands (Figure 3.25).
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Figure 3.24: Packing diagram for complex [Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH (12) viewed

along the a axis showing the hydrogen bonding channel formed by the lattice solvent

molecules; hydrogen atoms have been omitted for clarity.

Figure 3.25: Packing diagram for complex [Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH (12) viewed

along the b axis showing the π-π-stacking interaction of the tptz coligands.
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Table 3.10: Selected angles (◦) for complex 12.

O1A–Ni1–N3A 167.5(2) N2A–Ni1–O1A 90.2(2)

N2A–Ni1–N3A 78.0(2) N7A–Ni1–N10A 75.8(3)

N7A–Ni1–N12A 77.1(2) N10A–Ni1–N12A 152.9(2)

O2A– Ni2–N5A 168.6(2) N4A–Ni2–O2A 91.9(2)

N4A–Ni2–N5A 77.3(2) N13A–Ni2–N16A 76.6(2)

N13A–Ni2–N18A 76.2(2) N16A–Ni2–N18A 152.2(2)

O3A–Ni3–N1A 165.0(2) O3A–Ni3–N6A 89.4(2)

N6A–Ni3–N1A 77.0(2) O3A– Ni3–O1B 90.82(17)

O3A–Ni3–N5B 88.69(17) O1B–Ni3–N5B 162.4(2)

O1B–Ni3–N1A 94.31(17) N2B–Ni3–O1B 86.2(2)

O1B–Ni3–N1A 94.31(17) N6A–Ni3–O1B 86.20(16)

N6A–Ni3–N5B 111.34(17) N2B–Ni3–N1A 103.41(17)

N2B–Ni3–N6A 172.38(17) N2B–Ni3–O3A 90.93(16)

N2B–Ni3–N5B 76.3(2) N5B–Ni3–N1A 90.59(17)

O3B–Ni4–N3B 168.4(2) O3B–Ni4–N6B 91.0(2)

N3B–Ni4–N6B 77.5(2) N13B–Ni4–N16B 76.4(3)

N13B–Ni4–N18B 75.4(3) N16B–Ni4–N18B 151.8(3)

O2B–Ni5–N1B 166.3(2) O2B–Ni5–N7B 94.9(2)

N1B–Ni5–N7B 98.8(2) N7B–Ni5–N10B 74.3(2)

N7B–Ni5–N12B 76.6(3) N10B–Ni5–N12B 150.5(2)

Magnetic properties of pentanuclear Ni(II)-complex based on

tris(5-brom-2-hydroxy-salicylidene)triaminoguanidine ligand and

tptz coligands

Thermal variation of magnetic susceptibility for [Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH (12)

has been measured on crystalline sample in the 300 - 2 K temperature range with an

applied magnetic field of 2000 and 5000 Oe. The magnetic behavior for both magnetic

fields is very similar, hence plots of thermal variation of χM and χMT are shown in Figure

3.26 for 2000 Oe. The measured χMT value at room temperature is 5.26 cm3mol−1K
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which roughly corresponds to a calculated value of 5.00 cm3mol−1K for five uncoupled

S = 1 ions, assuming g = 2. On lowering the temperature, the χMT value decrease

constantly until 10 K (χMT = 0.16 cm3mol−1K) and then decline slowly to reach a

value of 0.39 cm3mol−1K at 2 K. This behavior suggest the presence of antiferromagnetic

interaction within the pentanuclear cluster. The low temperature χMT value is not zero,

but close to a ST = 1/2 ground state. The antiferromagnetic interactions occur, most

likely within the trinuclear subunits through the common Ni3 ion. The peripheral Ni· · ·Ni

separation is within 695 pm (Ni1· · ·Ni4) and 981 pm (Ni2· · ·Ni5) range and, therefore no

significant antiferromagnetic coupling between these ions is expected. Field dependance

of magnetization measurement performed at 2 K (Figure 3.27) shows an increase of

magnetization with heightening the magnetic field and shows a saturation of 0.75 Nβ

at 50213 Oe. The resulting curve fits the Brillouin equation for S = 0.405±0.005. This

behavior may suggest a competing magnetic interaction between the trinuclear Ni(ii)-

subunits which shares a common nickel ion resulting in an intermediate spin ground state.

Similar situation has been reported for butterfly-type compounds where the resulting spin

ground state is always an intermediate one and not completely canceled.10

Figure 3.26: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH (12) complex measured with an ap-

plied magnetic field of 2000 Oe.
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Figure 3.27: Plot of the field dependence of the magnetization for complex 12 measured

at 2 K (black filled squares represent the experimental value; the solid line shows the

theoretical curve generated using the Brillouin equation.

3.5 Trinuclear Ni(II)-complexes based on tris(3-me-

thoxy-2-hydroxy-salicylidene)-triaminoguanidine

ligand and tptz coligands

Changing from 5-bromo-substituted triaminoguanidine-based ligand to vanillin deriva-

tive, similar reaction pathways have been followed. In this case, only cationic trin-

uclear Ni(ii)-complexes have been isolated with crystallographical characterization for

[Ni3L
OMe(tptz)3]NO3·4.5H2O·1.5MeOH (13) and [Ni3L

OMe(tptz)3]Cl·2DMF (14), whereas

the corresponding [Ni3L
OMe(tptz)3]ClO4·5H2O (15) has been spectroscopically character-

ized. The molecular structures for complexes 13 and 14 are shown in Figure 3.28 and

Figure 3.29, respectively. Similarly to previous described trinuclear Ni(ii) complexes,

the triaminoguanidine-based ligand (H5L
OMe) acts as threefold tridentate system with

the topology of the Ni3 core close related to trinuclear cation complex 9. The methoxy-

substitution of the aromatic ring on the tris-nucleating supporting organic framework led

to small variations of the metal ion binding strength. The steric effect of the methoxy

group has weakened the phenolate binding strength compared to 9 with the Ni-O phe-

nolate bond lengths of around 201-202 in complex 13 and Ni–O bond lengths within
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Figure 3.28: Molecular structure and selected numbering scheme of complex

[Ni3L
OMe(tptz)3]NO3·4.5H2O·1.5MeOH (13); Hydrogen atoms have been omitted for

clarity; only the cationic structural motif is shown

200-204 pm range in complex 14.

The nickel-to-nitrogen atoms bond lengths are also lengthened compared to previous

described similar cation complex 9. Selected bond lengths and angles for complex 13

and 14 are listed in Table 3.11 and Table 3.12, respectively. The 2,4,6-tris(2-pyridyl)-

1,3,5-triazine coligands coordinate in the terpyridine-like chelate mode, with the Ni–N

bond distances within the 199.0-220.9 pm range for both complex 13 and 14, showing

that the variation of the anion system does not influence the structural feature of the

trinuclear Ni(ii) core. The main difference between these last two complexes and the

similar described complex 9 is represented by the absence of C3-symmetry axis. Complex

13 crystalizes in the hexagonal P63/m space group, whereas complex 14 crystallizes in

the triclinic space group P1 with three crystallographically distinct Ni(ii) ions, all in

distorted octahedral environment formed by ON5 donor set atoms. For complex 13, the

observed interatomic Ni· · ·Ni separations are 493.8 pm (Ni1· · ·Ni2 and Ni2· · ·Ni3) and

498.7 pm (Ni1· · ·Ni3) with the torsion angles of around 177.7◦ (Ni1–N3–N4–Ni2), 155.9◦

(Ni2–N5–N6–Ni3) and 160.5◦ (Ni1–N2–N1–Ni3). Similar Ni· · ·Ni interatomic separations
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Figure 3.29: Molecular structure and selected numbering scheme of complex

[Ni3L
OMe(tptz)3]Cl·2DMF (14); Hydrogen atoms have been omitted for clarity; only

the cationic structural motif is shown

were observed for complex 14 which are around 497.9 (Ni1· · ·Ni2), 497.2 (Ni2· · ·Ni3) and

498.2 pm (Ni1· · ·Ni3), but with larger torsion angles for diazine bridged nickel ions, i.e

173.9◦ for Ni1–N2–N1–Ni2, 177.6◦ for Ni2–N4–N3–Ni3 and 179.4◦ for Ni1–N5–N6–Ni3,

respectively. Again, if an tetragonal plane is defined around each Ni(ii) ion, described by

the ON2 donor set of the triaminoguanidine-based ligand and one nitrogen atom of the

tptz coligand, the dihedral angle between these planes are differing from complex 13 to

complex 14, for example smaller dihedral angles are to be found in complex 14 (5.5◦, 8.4◦

and 10.1◦), whereas larger are formed in complex 13 (11.8◦, 13.5◦ and 25.4◦). This can

be a consequence of the resulting packing diagram that differs among these two cation

complexes.
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Table 3.11: Selected bond lengths (pm) and angles (◦) for complex 13.

Ni1–O1 202.9(6) Ni1–N2 201.2(6)

Ni1–N3 205.6(6) Ni1–N7 200.7(6)

Ni1–N10 216.6(6) Ni1–N12 217.7(6)

Ni2–O3 201.2(5) Ni2–N4 198.7(6)

Ni2–N5 208.7(6) Ni2–N13 199.0(6)

Ni2–N16 216.5(6) Ni2–N18 219.3(5)

Ni3–O5 202.9(6) Ni3– N1 212.1(7)

Ni3–N6 201.2(6) Ni3–N19 201.3(7)

Ni3–N22 218.9(6) Ni3–N24 220.9(6)

O1–Ni1–N2 91.9(3) O1–Ni1–N3 169.6(3)

N2–Ni1–N3 77.8(3) N7–Ni1–N10 75.7(3)

N7–Ni1–N12 76.4(2) N10–Ni1–N12 151.5(3)

N4–Ni2–O3 91.9(2) N4–Ni2–N5 78.4(2)

O3–Ni2–N5 169.8(2) N13–Ni2–N16 76.2(2)

N13–Ni2–N18 76.1(2) N16–Ni2–N18 152.3(2)

O5–Ni3–N6 89.9(2) N6–Ni3–N1 76.6(3)

O5–Ni3–N1 166.4(2) N19–Ni3–N22 75.9(2)

N19–Ni3–N24 75.7(2) N22–Ni3–N24 151.6(3)

In both cases lattice solvents are present. Complex 13 crystallizes with water and DMF

as solvent of crystallization which are involved in hydrogen bonding interactions among

themselves and also with the donor atoms of the trinuclear Ni(ii) core. The nitrate anion

is unbounded and distorted and also hydrogen bonding interacting with the water lattice

molecules. In addition, the tptz coligands are involved in π-π-stacking interactions, with

the relative distance between the aromatic planes of around 320 pm. This results in a

zigzag arrangement of the Ni3 sheets along the b axis (Figure 3.30).
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Table 3.12: Selected bond lengths (pm) and angles (◦) for complex 14.

Ni1–O1 202.3(8) Ni1–N2 200.1(9)

Ni1–N5 207.5(9) Ni1–N7 202.2(9)

Ni1–N10 215.5(9) Ni1–N11 217.3(9)

Ni2–O3 199.9(9) Ni2–N16 206.6(9)

Ni2–N4 199.9(9) Ni2–N16 215.7(10)

Ni2–N13 2.013(9) Ni2–N17 220.3(11)

Ni3–O5 204.4(8) Ni3– N3 206.2(9)

Ni3–N6 199.4(9) Ni3–N19 199.8(9)

Ni3–N22 217.4(10) Ni3–N23 217.0(10)

O1–Ni1–N5 166.7(3) O1–Ni1–N2 90.1(3)

N2–Ni1–N5 77.1(3) N7–Ni1–N10 75.6(3)

N7– Ni1–N11 76.0(3) N10–Ni1–N11 150.2(3)

O3–Ni2–N1 168.4(4) N4–Ni2–O3 91.4(3)

N1–Ni2–N4 77.1(4) N13–Ni2–N16 76.1(4)

N13–Ni2–N17 76.0(4) N16–Ni2–N17 151.1(4)

O5–Ni3–N3 167.8(3) O5– Ni3–N6 90.7(3)

N6–Ni3–N3 77.8(4) N19–Ni3–N22 75.8(4)

N19–Ni3–N23 75.8(4) N22–Ni3–N23 150.7(4)

Supramolecular assemblies resulting through hydrogen bonding and π-π-stacking inter-

actions are formed by self-organization of the trinuclear Ni(ii) core and the unbounded

chloride anion in complex 14 (Figure 3.31, 3.33 and 3.34). The chloride anion is in

hydrogen bonding interaction with aromatic CH atoms of tptz coligands with CH· · ·Cl

contact of around 340 pm (Figure 3.31, resulting in a pillared arrangement of the trinu-

clear Ni(ii) entities along the c axis (Figure 3.32). These pillars are assembled along the a

axis through π-π-stacking interactions between the offset slipped pyridine moieties of the

tptz coligands which are interplanar separated by 338.1 pm distances (Figure 3.33 and

3.34). The resulting supramolecular aggregate contains a free tubular channels which is

partly occupied by DMF molecules placed in the gaps between the methoxy-substituted
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Figure 3.30: Packing diagram for complex [Ni3L
OMe(tptz)3]NO3·4.5H2O·1.5MeOH (13)

showing the hydrogen bonding interactions (dashed lines) and the zigzag π-π stacking

interactions between tptz coligands.

rings of the triaminoguanidine-based ligand. The 3-D extension of this architectural mo-

tif leads to honeycomb channels with a central void space surrounded by other six empty

void spaces (Figure 3.35). This resulting supramolecular architecture may assemble the

requirements for a nanoporous material and hence its potential application for adsorp-

tion/desorption processes. Supramolecular network assembled by π-π-stacking interac-

tions has been reported as stable at temperature up to 190◦ with possible replacement

of guest molecules without breaking down the rigidity of the aggregates.203 Therefore,

thermogravimetric analysis of complex 14 might be useful to verify the stability of the

supramolecular assemblies.

101



Figure 3.31: Packing diagram for complex [Ni3L
OMe(tptz)3]Cl·2DMF (14) showing the

hydrogen bonding interaction formed by the chloride anion and aromatic system of the

tptz coligands.

Figure 3.32: Packing diagram for complex 14 showing the pillared trinuclear Ni(ii) en-

tities formed through hydrogen bonding interactions of chloride anion with the aromatic

system of the tptz coligands.
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Figure 3.33: Packing diagram for complex 14 showing the formation of void space formed

by π-π-stacking interaction of the offset slipped triazine-constituting moieties as viewed

along the a axis. Hydrogen atoms and solvent molecules have been omitted for clarity.

Figure 3.34: Space filling representation of the void space formed by π-π-stacked triazine-

constituting moieties of complex 14.
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Figure 3.35: Representation of the honeycomb motif formed through packing of trinuclear

entities of complex 14 as viewed along the a axis.

Magnetic properties

The magnetic susceptibility measurements for all three complexes have been performed

in the temperature range of 300-2 K. The χM=f(T) and χMT=f(T) plots for an applied

magnetic field of 2000 Oe are depicted in Figure 3.36 to 3.38 for complexes 13, 14 and

15, respectively. In the high limit temperature value, the χM values are 2.65 cm3mol−1K

for complex 13, 3.24 cm3mol−1K for complex 14 and 2.79 cm3mol−1K for complex 15.

respectively. These values roughly correspond to an expected value of 3.00 cm3mol−1K

calculated for three uncoupled Ni(ii) high-spin ions, assuming g = 2. On lowering the

temperature, in all three cases a constant decrease of χMT product values have been

registered reaching minima at 2 K of 0.06 cm3mol−1K for 13, 0.05 cm3mol−1K for 14

and 0.01 for 15, respectively. These low limit temperature values are very close to zero,

therefore a resulting ground state ST = 0 spin is reached by antiferromagnetic coupling

in the Ni3 core. The magnetic data sets have been simulated for all three complexes
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using the Heissenberg-Van Vleck formalism developed for an equilateral Ni3 triangle,

in a similar manner as developed for cation complexes 6, 9, 10 and 11, considering a

single coupling parameter J. Although the structural features for complexes 13 and 14,

respectively showed crystallographically distinct Ni(ii) centers, the chemical composition

as well as the intermolecular separation are very similar within the Ni(ii)-triad.

Figure 3.36: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
OMe(tptz)3]NO3·4.5H2O·1.5MeOH (13) complex measured with an

applied magnetic field of 2000 Oe; the solid lines represent the theoretical curves (see

text).

The best fit of the experimental data sets have been obtained fixing the g = 2 value,

as previously described with the resulting fitting parameters listed in Table 3.13. The

magnetic behavior of these three complexes is overall antiferromagnetic, with the coupling

constant values very similar for cation complexes containing chloride (14) and perchlorate

(15) anions and has a value around -31 cm−1. For cation complex 13, that contains

a nitrate lattice anion, a relative higher coupling constant has been obtained (J =-

33 cm−1), owing to smaller interatomic Ni· · ·Ni separation and smaller torsion angles for

diazine-bridged Ni(ii) ions as compared to structurally characterized trinuclear Ni(ii)-

complex 14. On the other hand, a variable g value led to inconsistent fitting parameters,

similarly to previous described situation for corresponding trinuclear Ni(ii) complexes

based on tris(5-brom-2-hydroxy-salicylidene)triaminoguanidine ligand. It is also worth

mentioning that no improvement of the quantitative simulation of the magnetic data sets
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Figure 3.37: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
OMe(tptz)3]Cl·2DMF (14) complex measured with an applied mag-

netic field of 2000 Oe; the solid lines represent the theoretical curves (see text).

Figure 3.38: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Ni3L
OMe(tptz)3]CLO4·5H2O (15) complex measured with an applied

magnetic field of 2000 Oe; the solid lines represent the theoretical curves (see text).

have been observed using the isosceles triangle model (Figure 3.11), by contrary the fit

of the χM=f(T) plots became very problematic using this last exchange model pathway.
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Table 3.13: Simulated magnetic data set for complex 13, 14 and 15.

13 14 15

J (cm−1) -33.55±0.72 -31.17±0.63 -31.45±0.45

ρ 0.04±4.65·10−3 0.05±4.28·10−3 0.01±2.87·10−3

χTIP (cm3mol−1) 2.9·10−4±5.0·10−5 1.9·10−3±6.0·10−5 9.6·10−4±4.0·10−5

R2 0.99879 0.998889 0.99969

493.8 497.9 -

Ni· · ·Ni (pm) 493.8 497.2 -

498.7 498.2 -

torsion angles (◦) 177.7 173.8 -

Ni–N–N–Ni 155.9 177.6 -

160.5 179.4 -

3.6 Conclusions

Threefold chelating ligands of type 5-bromo- and 3-methoxy- tris(salicylidene)triamino-

guanidine ligands have been successfully use to isolated trinuclear Ni(ii) complexes, using

2,2’-bipyridine and 2,4,6-tris(2-pyridyl)-1,3,5-triazine as coligands. The topology of the

NiII3 triad is very similar among these series of complexes and it consists of octahedral

nickel ions linked by three diazine (N–N) bridges with Ni–N–N–Ni torsion angles in the

150-178◦ range, responsible for the observed antiferromagnetic coupling within the Ni(ii)

triangles. The magnitude of the exchange coupling within the trinuclear Ni(ii) complexes

is determined by Ni· · ·Ni interatomic separation which is close to 500 pm in complexes

described herein. Moreover, rearrangement of the trinuclear Ni(ii)-complexes took place

in presence of Gd(NO3)3·6H2O or K4[Mo(CN)8] to form pentanuclear Ni(ii) complexes.

The structural feature of these high-nuclearity Ni(ii) complexes is better described as

two triangular units hold together by a common nickel ion. In addition, interesting

packing diagram have been obtained by variation of the counter ions with the highlight

self-organization resulting in formation of nanochannels through hydrogen bonding and

π-π-stacking interactions.
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3.7 Trinuclear Co(III)-complexes with tris(3-methoxy-

2-hydroxy-salicylidene)triaminoguanidine ligand

Following the previous synthetic pathway, tris(3-methoxy-2-hydroxy-salicylidene)triamino-

guanidine ligand has been reacted with Co(ClO4)2·6H2O and tptz coligand in MeOH/DMF

solution. The solution turned immediately black when base (NEt3) has been added and

faded dark-brown in presence of acetone solution of Gd(NO3)3·6H2O. Co(ii) ion has a

peculiar role in magnetochemistry, being the d-metal with highest magnetic anisotropy,

one of the important property that one should consider when magnetic materials are to be

designed. Molecular structure determination shows a cation trinuclear Co(iii) complex

[Co3L
OMe(bcpa)3]NO3·6DMF (16) which contains the triaminoguanidine-based ligand

and the hydrolyzed 2,4,6-tris(2-pyridyl)-1,3,5-triazine coligand (Figure 3.39). The hy-

drolysation of the triazine-type ligand has been previously reported to occur in presence

of Cu(ii) salts accompanied by in situ copper complex formation.157–162 The cobalt per-

chlorate salt behaved similarly with the resulting trinuclear Co(iii) complex containing

bis(2-pyridylcarbonyl)amine as new coligand system (see also Figure 3.1).

Figure 3.39: Molecular structure and selected numbering scheme of complex

[Co3L
OMe(bcpa)3]NO3·6DMF (16); Hydrogen atoms have been omitted for clarity; only

the cationic structural motif is shown
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The reaction is also accompanied by aerial oxidation of the initial cobalt(ii) ion to Co(iii)

metal ions owing to no efforts to exclude air or moisture during the reaction. The

triaminoguanidine-based ligand coordinates in the classical fashion as threefold tridentate

system, accommodating three Co(iii) ions. The Co-to-phenolate oxygen bond lengths are

smaller compared to corresponding bond distances in trinucler Ni(ii) complexes, due to

the closed-shell electronic structure of the diamagnetic cobalt ions. The same effect has

been observed for cobalt-to-nitrogen atoms bond lengths that fall in the 192.2-196.1 pm

range. The bis(2-pyridylcarbonyl)amine (Hbcpa) wraps around each Co(iii) ion in triden-

tate chelation fashion through a pair of pyridyl-nitrogen atoms and deprotonated amide

nitrogen atom with the bite angles of 83.7◦ for N3–Co–N4 and 83.8◦ for N4–Co–N5. The

Co–N bond lengths are 192.5 pm (Co–N5) and 193.7 pm (Co–N3) for cobalt-to pyridine

nitrogen atoms and 189.2 pm for cobalt-to-amide nitrogen atom (N4). These bond dis-

tances are close to reported similar bond lengths in mononuclear d-complexes of type

[M(bcpa)2].

The resulting ON5 environment describes a distorted octahedral geometry for each

Co(iii) ion with the trans angles of 175.6◦ (O1–Co–N1) and 177.0◦ (N4–Co–N2). The

positive charge of the CoIII
3 core is compensated by the unbounded nitrate anion placed

Table 3.14: Selected bond lengths (pm) and angles (◦) for complex 16.

Co–O1 188.8(3) Co–N1 196.1(3)

Co–N2 192.2(3) Co–N3 193.7(5)

Co–N4 189.2(3) Co–N5 192.5(5)

O1–Co–N1 175.62(12) O1–Co–N2 94.67(12)

O1–Co–N3 89.82(17) O1–Co–N4 82.62(13)

O1–Co–N5 88.31(17) N2–Co–N1 81.01(13)

N2–Co–N3 95.07(16) N2–Co–N5 97.32(18)

N3–Co–N1 91.28(19) N4–Co–N1 101.71(13)

N4–Co–N2 177.04(14) N4–Co–N3 83.75(17)

N4–Co–N5 83.84(19) N5–Co–N3 167.58(19)

N5–Co–N1 91.51(18)
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in close vicinity of the trimetallic core. Again, as previously observed for crystallization

procedure adopted for complex 6, the lanthanide ion played the role of anion exchanger

and/or most likely helps the crystallization process. It is worth mentioning that neither

crystals of complex 16, nor with an intact triazine-coligand could be isolated in absence of

the lanthanide salt. Complex 16 crystallizes in the monoclinic P63 space group, with a C3

symmetry that passes through the guanidine carbon atom C1 and the nitrate anion. The

Co· · ·Co intermolecular separation through diazine linkers is 477.4 pm with the Co–N–N–

Co torsion angle is 177.9◦, value very close to a linear arrangement of the diazine-bridged

cobalt ions. If a tetragonal plane is defined, as previously described, the dihedral angles

between these planes are 9.2◦ which confirms the planarity of the structure.

The trinuclear Co(iii)-complex 16 contains lattice solvents, such as DMF with the final

formula [Co3L
OMe(bcpa)3]NO3·6DMF. The packing diagram viewed along the crystallo-

graphic c axis shows π-π stacking interaction between the pyridine rings of the bis(2-

pyridylcarbonyl)amine coligand molecules with the interplanar separation of 337.8 pm

(Figure 3.40). The resulting extended two-dimensional network presents a close alternat-

ing arrangement of the π-stacked moieties as observed for complex 14. However, con-

versely to organization observed for cation trinuclear Ni(ii) complex 14, the hydrolyzed

tptz ligand do not assemble to form nano-channels owing to a smaller volume occupied by

bcpa coligands. Complex 16 is diamagnetic also according with SQUID measurements

where a specific diamagnetic answer has been registered.

Nevertheless, interesting magnetostructural features of this trinuclear Co(iii)-complex

are represented by electrochemical investigations that might result in corresponding re-

duced Co(ii) complex. On the other hand, the diamagnetic Co(iii) complex may also

be used as molecular brick to construct interesting photomagnetic materials. Exiting

reports of [M(bcpa)2] complexes showed that this simple unit can be successfully used

as ”complex-ligand” owing to their bidentate chelating capacity via the carbonyl sites

leading to extended structural assemblies in controlled manner.159,204,205 For example

association of cobalt(iii) complex with iron(ii) species (known to be well accommodated

by bcpa coligands) may represent a very beautiful example of intramolecular electron-

transfer system. Lanthanide complexes are well documented as light-emitting diodes.

Therefore, association of the diamagnetic trinuclear Co(iii) complex with lanthanides
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Figure 3.40: Packing diagram for complex 16 showing π-π-stacking interactions of the

bcpa-coligands; the nitrate anion are also shown.

salts (i.e. hexafluoroacetyacetonate lanthanide derivatives) can result in interesting as-

semblies with optical properties.

3.8 Future perspectives

Triazine-type organic framework has been extensively used to generate interesting ex-

tended network architectures. The topologies of the 3-D nets have been described to

vary according to used metal ions as well as the anions that influence the organization

of the oligomeric constituent units. For example, CuI- complexes based on 2,4,6-tri(4-

pyridyl)-1,3,5-triazine (tpt) ligand has been reported as octahedral-like cages,206 whereas

the zinc-containing complexes have been assembled in 3-D nets with (10,3) topology207

and/or interpenetrating cubing-like networks with large sealed-off chambers,208 these

last two supramolecular architectures been determined by the used anions. In addition,

[Ni(tpt)(NO3)2]·solvent complex polymerize to form a rare 3-D net with (12,3) topology

formed by alternation of T- and trigonal nodes.209 Hence, the importance of the isolated

trinuclear Ni(ii)-complexes with triazine-type coligands as molecular bricks to construct

interesting architectural assemblies trough a controlled process. Slight modification of

the triazine coligand210 (Figure 3.41) may also be used to follow the ”node” and ”spacer”
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Figure 3.41: Proposed new triazine-like coligand with linking capacity similar to 4,4’-

bipyridine (up) and schematic representation of possible high-nuclear clusters assembled

by extended terpyridine-like coligands.

strategy developed by Robson et al, theory applied very well for 4,4’-bipyridine linker.

The new proposed triazine linker can coordinated in the known terpyridine-like

fashion as coligand to the trinuclear d-metal complexes of triminoguanidine-based lig-

ands, whereas the terminal pyridine nitrogen atom may be successfully used to link

another metal-complex entity. The variation of the triazine-derivatives to more extended
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terpyridine-like ligand may show interesting feature, giving the possibility to design high-

nuclearity clusters (Figure 3.41 bottom picture).

3.9 Experimental Part

Triaminoguanidine and the corresponding Schiff base ligands have been prepared accord-

ing with the existing reports.40,147

Synthesis of polynuclear Ni(II)-complexes with tris(5-bromo-2-

hydroxy-salicylidene)triaminoguanidine ligand and 2,2’-bipyridine

coligand

[Ni3L
Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH (6)

To a DMF solution (15 mL) of tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine lig-

and (H5L
Br) (57.0 mg, 0.0893 mmol) was added a methanol (5 mL) solution of Ni(ClO4)2

·6H2O (92.5 mg, 0.25 mmol) and the resulting solution has been stirred for around 15

minutes at room temperature. A methanol (5 mL) solution of 2,2’-bipyridine (bipy)

(40.0 mg, 0.25 mmol) was added stepwise, followed by addition of tetrabutylammoni-

umhydroxyde (0.33 mL, 0.5 mmol) and the resulting solution has been allowed to react

for additional 10 minutes. Gd(NO3)3·6H2O (110.0 mg, 0.25 mmol) dissolved in MeOH

(5 mL) was added stepwise under continuing stirring. The reaction has been contin-

ued for other 10 minutes, filtered and allowed to stand at room temperature. Crystal

suitable for X-ray measurement have appeared within a month. Yield: 42.0 mg (0.026

mmol, 32.6%). Anal. Calc. for C55H59N14Br3O15Ni3 ([Ni3L
Br(bipy)3(OH2)3]NO3·5H2O)

(1571.04): C 42.02, H 3.78, N 12.48. Found: C 42.14, H 3.58, N 12.46. Selected IR data

(cm−1): 3400 (br, H2O), 1653 (s, -CH=N), 1384 (s, NO−
3 ). Additionally, the trinuclear

Ni(ii) complex 6 can be obtained following the above conditions, but without gadolinium

salt. In this case a precipitate is formed by allowing the resulting solution to stand at

r.t. for slow evaporation.
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[Ni3L
Br(bipy)3(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O (7)

Tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine ligand (H5L
Br) (57.0 mg, 0.0893

mmol) has been dissolved in a mixture DMF/CH3CN (1:1) (10 mL). To this resulting

pale yellow solution NiCl6·H2O (60.0 mg, 0.25 mmol) dissolved in methanol (5 mL), fol-

lowed by addition of a methanolic (5 mL) solution of 2,2’-bipyridine (bipy) (40.0 mg, 0.25

mmol) and tetrabutylammoniumhydroxyde (0.33 mL, 0.5 mmol). The resulting solution

has been allowed to react for 15 minutes, filtered and allowed to stand at room tem-

perature. Crystal suitable for X-ray measurement have appeared approximately within

a month. Yield: 73.0 mg (0.044 mmol, 52.6%). Anal. Calc. for C66H68N17Br3ClO7Ni3

([Ni3L
Br(bipy)3(DMF)2Cl]·2DMF·CH3CN) (1662.64): C 47.68, H 4.12, N 14.32. Found:

C 48.18, H 5.46, N 13.10. Selected IR data (cm−1): 3400 (br, solvent), 1653 (s, -CH=N).

[Ni5(L
Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O (8)

Complex 7 (73.0 mg, 0.44 mmol) dissolved in DMF (5 mL) was layered in a test-tube

with a layer of 2 mL MeOH/H2O (1:1) mixture. At the end a third layer of an aqueous

solution (2 mL) of K4[Mo(CN)8] (21.0 mg, 0.041 mmol). Crystals suitable for X-ray

measurements are formed within two days and in general fall on the bottom of the test-

tube. Yield: 25.8 mg (0.009 mmol, 39.0%). Anal. Calc. for C105H128N27Br6O24Ni5

([Ni5L
Br
2 (bipy)4(OH2)4]·1.5MeOH·6DMF·4.75H2O) (2916.26): C 43.86, H 4.46, N 12.97.

Found: C 43.67, H 4.41, N 12.93. Selected IR data (cm−1): 3400 (br, solvent), 1653

(s, -CH=N). EPR (r.t): g = 2.0048.

Synthesis of polynuclear Ni(II)-complexes with tris(5-bromo-2-

hydroxy-salicylidene)triaminoguanidine ligand and 2,4,6-tris(2-

pyridyl)-1,3,5-triazine coligands

[Ni3L
Br(tptz)3]NO3·4H2O·6.75MeOH (9)

To a DMF solution (15 mL) of tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine lig-

and (H5L
Br) (57.0 mg, 0.0893 mmol) was added a methanol (5 mL) solution of Ni(NO3)2

·6H2O (70.0 mg, 0.25 mmol), followed by addition of triethyl amine (1 mL 1N solution
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in methanol) and the resulting solution has been stirred for around 15 minutes while

a precipitate is formed. A methanol (5 mL) solution of 2,4,6-tris(2-pyridyl)-1,3,5-tri-

azine (tptz) (78.0 mg, 0.25 mmol) was added stepwise. This cause a dissolution of the

mixture and the reaction has been continued for 15 minutes at r.t. The resulting solution

has been filtered and allowed to stand at room temperature. Crystal suitable for X-

ray measurement have been obtained by slow diffusion of diethyl ether in the reaction

solution. Yield: 88.0 mg (0.040 mmol, 52.2%). Anal. Calc. for C80H72N25Br3O14Ni3

([Ni3L
Br(tptz)3]NO3·4H2O·6.75MeOH) (2077.90): C 47.40, H 3.27, N 17.19. Found: C

47.41, H 3.46, N 17.53. Selected IR data (cm−1): 3420 (br, solvent), 1653 (s, -CH=N),

1468, 1441 (-triazine CH=N), 1384 (s, NO−
3 ). EPR (r.t): g = 2.001.

[Ni3L
Br(tptz)3]Cl·10H2O (10)

Complex 10 has been obtained following the same reaction pathway as above, replacing

the nickel nitrate salt with NiCl2·6H2O (70.0, 0.25 mmol). Yield: 88.0 mg (0.040 mmol,

52.2%). Anal. Calc. for C76H63N24Br3O13ClNi3 ([Ni3L
Br(tptz)3]Cl·10H2O) (1971.74): C

46.30, H 3.22, N 17.05. Found: C 46.10, H 4.15, N 17.19. Selected IR data (cm−1): 3401

(br, solvent), 1653 (s, -CH=N), 1468, 1441 (-triazine CH=N). EPR (r.t): g = 2.002.

[Ni3L
Br(tptz)3]ClO4·7H2O·DMF (11)

Complex 11 has been synthesized following the same strategy as described for 9 but with

Ni(ClO4)2·6H2O (92.5 mg, 0.25 mmol). Yield: 77.0 mg (0.038 mmol, 46.6%). Anal. Calc.

for C79H64N25Br3O14ClNi3 ([Ni3L
Br(tptz)3]ClO4·7H2O·DMF) (2054.78): C 46.18, H 3.14,

N 17.04. Found: C 46.10, H 3.82, N 17.04. Selected IR data (cm−1): 3420 (br, solvent),

1653 (s, -CH=N), 1468, 1441 (-triazine CH=N), 1177 (s, Cl−4 ). EPR (r.t): g = 2.001.

[Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH (12)

To a methanol solution (15 mL) of tris(5-bromo-2-hydroxy-salicylidene)triaminoguanidine

ligand (H5L
Br) (57.0 mg, 0.0893 mmol) was added a mixture of aqueous solution of

Ni(NO3)2·6H2O (70.0 mg, 0.25 mmol) and methanol solution of 2,4,6-tris(2-pyridyl)-

1,3,5-triazine (tptz) (78.0 mg, 0.25 mmol), followed by addition of tetrabutylammonium

hydroxide (0.30 mL 40% aqueous solution) and the resulting solution has been stirred for
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around 5 minutes while a precipitate is formed. This has been redissolved in DMF and

the reaction has been continued for another 15 minutes. The resulting solution has been

filtered and allowed to stand at room temperature. Crystal suitable for X-ray measure-

ment have been obtained upon slow evaporation within two days. Yield: 58.0 mg (0.036

mmol, 55.0%). Anal. Calc. for C116H90N36Br6O15Ni5 ([Ni5L
Br
2 (tptz)4]·9H2O) (3001.14):

C 46.42, H 3.02, N 16.80. Found: C 46.53, H 3.09, N 16.60. Selected IR data (cm−1):

3434 (br, solvent), 1666 (s, -CH=N), 1468, 1433 (-triazine CH=N).

Synthesis of polynuclear Ni(II)-complexes with tris(3-methoxy-

2-hydroxy-salicylidene)triaminoguanidine ligand and 2,4,6-tris(2-

pyridyl)-1,3,5-triazine coligands

The synthesis of trinuclear Ni(ii) complexes with tris(3-methoxy-2-hydroxy-salicylidene)tri-

aminoguanidine ligand (46.0 mg, 0.0893 mmol) have been prepared as described above for

analogous nickel complexes synthesized with tris(5-bromo-2-hydroxy-salicylidene)triamino-

guanidine ligand.

[Ni3L
OMe(tptz)3]NO3·4.5H2O·1.5MeOH (13)

Crystal suitable for X-ray measurement have been obtained by slow diffusion of diethyl

ether into the reaction solution. Yield: 90.0 mg (0.048 mmol, 58.4%). Anal. Calc.

for C79H70N25O15Ni3 ([Ni3L
OMe(tptz)3]NO3·6H2O) (1785.67): C 53.14, H 3.95, N 19.61.

Found: C 53.27, H 4.07, N 19.16. Selected IR data (cm−1): 3420 (br, solvent), 1669

(s, -CH=N), 1472, 1447 (-triazine CH=N), 1384 (s, NO−
3 ).

[Ni3L
OMe(tptz)3]Cl·2DMF (14)

Crystal suitable for X-ray measurement have been obtained upon slow evaporation of the

reaction solution within two days. Yield: 54.0 mg (0.027 mmol, 32.45%). Anal. Calc.

for C88H93N27O16Ni3 ([Ni3L
OMe(tptz)3]Cl·3DMF·7H2O) (1996.42): C 52.94, H 4.70, N

18.94. Found: C 53.04, H 4.09, N 18.65. Selected IR data (cm−1): 3422 (br, solvent),

1669 (s, -CH=N), 1472, 1447 (-triazine CH=N).
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[Ni3L
OMe(tptz)3]CLO4·4H2O·4MeOH (15)

Yield: 105.0 mg (0.058 mmol, 69.8%). Anal. Calc. for C79H68N24O15Ni3 ([Ni3L
OMe(tptz)3]

ClO4·5H2O) (1805.11): C 52.57, H 3.80, N 18.62. Found: C 52.59, H 4.37, N 18.70.

Selected IR data (cm−1): 3420 (br, solvent), 1662 (s, -CH=N), 1472, 1447 (-triazine

CH=N), 1208 (s, Cl−4 ). EPR (r.t): g = 1.998. EPR (r.t in MeOH): g = 2.184. EPR

(77 K): g = 2.003.

[Synthesis of trinuclear Co(III) complex

Co3L
OMe(bcpa)3]NO3·6DMF (16)

To a DMF (5 mL) of tris(3-methoxy-2-hydroxy-salicylidene)triaminoguanidine ligand

(46.0 mg, 0.0893 mmol) was added a methanolic solution of Co(ClO4)2 (92.0 mg, 0.25

mol), followed by addition of triethyl amine (0.5 mL 1 N solution). The reaction mix-

ture was stirred for around five minutes and then 2,4,6-tris(2-pyridyl)-1,3,5-triazine (78.0

mg, 0.25 mmol) dissolved in MeOH (5 mL) was added to the first solution, followed

by addition of Gd(NO3)3·6H2O (110.0 mg, 0.25 mmol) dissolved in acetone (5 mL).

The reaction was continued for 15 minutes, filtered and left at room temperature for

slow evaporation. Crystal suitable for X-ray measurement have been obtained within

two weeks. Yield: 72.0 mg (0.046 mmol, 55.0%). Anal. Calc. for C67H60N18O17Co3

([Co3L
OMe(bcpa)3]NO3·2DMF) (1566.14): C 51.38, H 3.86, N 16.10. Found: C 51.26,

H 3.97, N 15.47. Selected IR data (cm−1): 3435 (br, solvent), 1723 (s, C=O), 1669

(s, -CH=N), 1329 (s, NO−
3 ).
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Chapter 4

Polynuclear oxo-bridged d-metal

complexes

Magnetic molecular clusters formed by small number of metallic centers are active re-

search area which involves both magnetochemistry and biochemistry. A reason for this

intensive research is based on possibility to use simple molecular clusters that exhibit

unusual magnetic properties as academic tool to understand the properties of multinu-

clear assemblies. In addition such small molecules may be used as building blocks for

the assembly of high-spin dendritic magnetic materials211 and/or molecular-based mag-

nets.9,26,212,213 Oxo-bridged transition metal ion complexes are a class of compounds of

general interest due to their molecular structure, magnetic properties and intramolecular

electron transfer features.214 Dinuclear and trinuclear [M(µ2-O)n] (n = 1, 2) contain-

ing compounds have been intensively studied especially due to their intriguing magnetic

behavior215–217 that vary from anti- to ferromagnetic interaction mediated by oxygen-

containing bridges. A particular attention has been paid to dinuclear iron(iii) complexes

bridged by carboxylate residues and/or water-derived ligands (i.e. oxo or hydroxy)

designed as synthetic analogues for the active site of iron-containing enzymes such as

hemerytin,218,219 ribonucleotide reductase,220 methane monooxygenase221,222 and purple

acid phosphatase.223 The functions performed by these metalloproteins led to a broad

range of biomimetic catalytic reactions with the Fe(iii) metal complexes reported as cat-

alysts for various oxidation reactions.224,225 Moreover, iron(iii) is an interesting metal ion

in magnetochemistry due to the large number (five) of unpaired electrons (S = 5/2), a
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property which for certain topologies, offers the potential to form high-spin clusters with

ground state spin reaching a value of S = 33/2.211 On the other hand copper-containing

complexes are also relevant for both magnetochemistry and biochemistry. Polynuclear

Cu(ii) complexes have been reported in large numbers as models for metalloenzymes226

and in addition used as molecular bricks to generate different magnetic materials.227

In biological systems, triangular copper oxo-centered structure has been reported in a

subunit of methane mono-oxygenase with ferromagnetic coupling between the paramag-

netic centers.228 Even though the magnetic interaction in oxo-bridged Cu(ii) complexes

has mainly been found to be antiferromagnetic, spin-frustration in limited number of

trinuclear copper complexes has also been observed.34 The self-organization of inorganic-

organic hybrid led to unpredicted ferromagnetic interaction between the paramagnetic

centers induced by accidental orthogonality of the magnetic orbitals.10 Moreover, in

d-transition metal ion complexes competing spin interactions that led to unpredictable

ground state spins has been often observed.229 Therefore, magneto-structural character-

ization of simple molecular cluster is worth investigating. The feasibility of salen-type

ligands to generate d-metal complexes is well established.230 Hence dinuclear oxo-bridged

Fe(iii) complexes based on N,N’-ethylene-bis(pyridoxylideneiminato) Schiff base ligand

(H2pyren) has been isolated. This salen-type organic frameworks present a hydroxy-

methylene arm which builded up a 1-D polymeric architectures through hydrogen bond-

ing interactions. The topology of the iron(iii) centers in this homodinuclear oxo-bridged

complex comprises pentacoordinated iron ions that sometimes may show intriguing mag-

netic properties.10 Further on, magneto-structural characterization of a dinuclear Fe(iii)

complex based on N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine (H2sabhea) will

be also discussed. This organic ligand has been used by our group to generate bioinspired

d-metal complexes231–234 and to establish magneto-structural relationships for V(iv)-oxo

complexes.235,236 In addition lanthanide-containing H2sabhea compounds have also been

reported and magnetostructural properties have been discussed.237 Last, but not least

a partial cubane-like structural motif in trinuclear oxo-bridged Cu(ii) complex will be

presented. This last complex contains phenoxy- and hydroxy-bridged Cu(ii) centers and

has been isolated using [2-(2-dimethylamino-ethylimino)-methyl]-phenol ligand. Instead,

the methoxy-derivative of the same supporting ligand made possible the isolation of a
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dinuclear Cu(ii) complex with a Cu–O(Ph)–Cu unit. By comparison to the trinuclear

Cu(ii) complex, an antiferromagnetic interaction between the metal ions occurs.

4.1 Dinuclear oxo-bridged Fe(III)-complex with N,N’-

ethylene-bis(pyridoxylideneiminato) ligand

Salen-type ligands represent a class of organic ligands extensively used to generate co-

ordination compounds.230 These ligands are in general based on N-salicylidene- and

derivatives of salicylaldehyde components, and the reports of pyridoxal Schiff base deriva-

tives is rather scarce. Pyridoxal hydrochloride-vitamin B6, has been reacted with ethy-

lene diamine to form a salen-like ligand of type bis(N,N’-pyridoxal-ethylene)diamine

(H2pyren).238 Although this organic ligand presents several coordination sites, only the

phenol and imine nitrogen atoms have been found to be involved in iron coordination.

The phenol oxygen atoms are deprotonated upon reaction with iron perchlorate in the

presence of NaOH base, in methanol solution. The molecular structure of the homod-

inuclear [Fe(pyren)]2O·3H2O (17) complex is depicted in Figure 4.1 with selected bond

lengths and angles listed in Table 4.1. The structure comprises two FeO2N2 coordination

cores linked by an oxo-group, resulting in two pentadentate Fe(iii) centers. Each organic

ligand chelates in salen-type fashion acting as tetradentate coordinating system through

six- and five-membered rings. The two mononuclear iron(iii) constituting units are very

similar with iron to phenolate bond distances of around 192 pm and iron to imine ni-

trogen atoms bond distances with 210.3-211.7 pm range. The two ”salen”-type ligand

units bind Fe(iii) ion very similarly, with bite angles of around 85.6◦ for O–Fe–N binding

angles and 76.8◦ for N–Fe–N binding angles, respectively. The resulting coordination

environment of Fe(iii) centers can be described as distorted square-pyramidal geometries

with distortions from an ideal square pyramidal geometry of τ = 0.167 for FeA center

and τ = 0.08 for FeB ion, respectively. The distortion of the coordination geometry from

the square pyramid to the trigonal bipyramid have been calculated by the τ parameter

as an index of the degree of trigonality. This τ value is defined as the difference be-

tween the two largest donor-metal-donor angles divided by 60 and has a τ = 0 value
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for an ideal square pyramid and τ = 1 for the trigonal bipyramid.239 This structural

data indicates that the FeB center has a more regular square-pyramidal geometry, being

displaced out from the ligand plane by 57.66 pm, whereas FeA ion in a more distorted

square-pyramidal environment is displaced out from the ligand plane by 56.24 pm, both

towards the bridged oxygen atom O1.

The apical position of the defined geometry for both ions is occupied by µ2-O ligand

which holds together the two Fe(iii) entities, with bond distance FeA–O1 of 179.3 pm

and FeB–O1 bond length of 178.8 pm forming a FeA–O1—FeB angle of 143.1◦. The

Fe–O–Fe angle value is similar to corresponding reported value for pentacoordinated

[(Fesalen)2O] complexes for which the oxo-bridge has been reported to mediate strong

antiferromagnetic interaction when bridges close to linearity and within the 116-180◦

range reported for other oxo-bridged complexes.240–242

Complex 17 crystallizes with three water molecules per unit cell as solvent of crys-

tallization. These lattice water molecules are in hydrogen bonding interactions of 280.5

pm and further in hydrogen bonding interactions with the hydroxy-methylene functional-

ities of the salen-type supporting ligand (Ow· · ·O2A 296.8 pm and Ow· · ·O2B 277.7 pm).

Figure 4.1: Molecular structure for [Fe(pyren)]2O·3H2O (17) complex. Thermal ellipsoids

are drawn at 50% probability. Hydrogen atoms have omitted for clarity.
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Table 4.1: Selected bond lengths (pm) and angles (◦) for complex 17.

FeA–O1 179.28(17) FeA–O1A 192.05(17)

FeA–O3A 194.65(17) FeA–N1A 211.7(2)

FeA–N2A 210.3(2) FeB–O1 178.86(17)

FeB–O3B 192.41(16) FeB–O1B 194.77(15)

FeB–N1B 210.79(19) FeB–N2B 211.50(18)

O1–FeA–O1A 112.24(8) O1–FeA–O3A 108.19(7)

O1–FeA–N1A 98.63(9) O1–FeA–N2A 104.48(8)

O1–FeB–O1B 108.33(7) O1A–FeA–O3A 93.11(7)

O1A–FeA–N1A 85.83(8) O1A–FeA–N2A 141.29(8)

O3A–FeA–N1A 151.31(9) O3A–FeA–N2A 86.61(8)

N2A–FeA–N1A 76.80(9) FeA–O1–FeB 143.11(10)

O1–FeB–O3B 111.79(8) O1–FeB– N1B 103.57(8)

O1–FeB–N2B 101.69(8) O1B–FeB–N1B 86.28(7)

O1B–FeB–N2B 148.29(8) O3B–FeB–O1B 92.43(7)

O3B–FeB–N1B 143.04(8) O3B–FeB–N2B 85.64(7)

N1B–FeB–N2B 76.84(7) -

An interesting feature of the crystal packing diagram is represented by direct hydrogen

bonding interaction between the hydroxy-methylene arms of 290.4 pm (O2A· · ·O3A) and

292.0 pm (O1B· · ·O4B) resulting in infinite zigzag chains as viewed along the crystallo-

graphic b axis (Figure 4.2).

The molecular composition of complex 17 has been also confirmed by IR spec-

troscopy. The IR spectra shows the characteristic features of the ligand stretching vi-

brations which are shifted compared to the their characteristic vibration bands in the

IR spectrum of the free N,N’-ethylene-bis(pyridoxylideneiminato) ligand. Asymmetric

stretching vibration of the Fe–O–Fe mode has been detected at around 821 cm−1.240 In

addition, broad band at 3420 cm−1 has been attributed to hydrogen bonded hydroxy-

methylene groups confirming thus, the 1-D arrangement build up by hydrogen bonding

interactions.
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Figure 4.2: Zigzag 1-D polymer formed by hydrogen bonding interaction between units

of [Fe(pyren)]2O; view along the b axis.

4.1.1 Magnetic properties of homodinuclear µ2-oxo bridged Fe(III)

complex

Thermal variation of magnetic susceptibility have been performed in the temperature

range of 300-2 K and is depicted in Figure 4.3 as χM vs T and χMT vs T plots for an

applied magnetic field of 2000 Oe. At room temperature the experimental χM value is

1.03 cm3mol−1K, value much lower than expected for two uncoupled Fe(iii) high-spin ions,

assuming g = 2. On lowering the temperature a constant decrease of χMT product values

have been registered until 45 K with a 0.076 cm3mol−1K value. Below this temperature

the decrease of the χMT value is very slow and reaches a minimum of 0.015 cm3mol−1K

at 2 K. The shape of the curve suggests an antiferromagnetic interaction between the

Fe(iii) centers with a resultant ground state zero owing to antiferromagnetic coupling of

spins at very low temperature.

Simulation of the magnetic data set has been achieved using the isotropic spin

exchange Hamiltonian:

Ĥ = −JFeFeSFe1SFe2

with S1=S2=5/2.

Considering the energies of the low-lying states and taking into account paramag-

netic impurities, the magnetic susceptibility was calculated using the following formula:10
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Figure 4.3: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Fe2(pyren)2O]·3H2O (17) complex measured with an applied magnetic

field of 2000 Oe; the solid lines represent the theoretical curves (see text).

χM =
2Nβ2g2

kT

A

B
(1 − ρ) + 2

Nβ222ρ

3kT
S(S + 1) (6)

A = exp(x) + 5exp(3x) + 14exp(6x) + 30exp(10x) + 55exp(15x)

B = 1 + 3exp(x) + 5exp(3x) + 7exp(6x) + 9exp(10x) + 11exp(15x)

with x = J/kT

A good fit of the magnetic data set through the above equation could be obtained

only for χMT vs. T data points with g = 2 as fixed value, resulting a coupling con-

stant J = −232.88 ± 9.01 for a paramagnetic impurity ρ = 0.003 ± 4.0 · 10−4 and

a reliability factor R2 = 0.99892 for temperature independent paramagnetism factor

χTIP = 1.0·10−3±1.3·10−4 cm3mol−1. The calculated data curve (solid line in Figure 4.3)

matches well the experimental magnetic data and the magnitude of the antiferromagnetic

interaction mediated by µ2-O bridge is a bit higher than reported value (-178 cm−1) for

[Fe(salen)]2O complex.243 All the µ-oxo bridged Fe(iii) complexes display an antiferro-

magnetic interaction from -170 to -230 cm−1 with the Fe–O–Fe bridging angle taking
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values between 135◦ and 175◦.240–242 In according with these reports is also the magnetic

behavior of complex 17 for which the magnitude of the antiferromagnetic interaction is

close to the upper limit. Problematic fit of the χM vs. T data set for low temperature

values has been observed. The fit over entire temperature range led to very small value

of g parameter. Attempts to fix g = 2 did not improve the fitting process leading to

a very bad reliability factor. Therefore the accuracy of the fitting χMT vs. T data set

can have large errors. It has been reported that pentacoordinate Fe(iii) ions in a square-

pyramidal geometry may exists in intermediate spin state and/or spin-admixed states,

mainly for porphyrin- and phtalocyanine-iron(iii) complexes.244–248 No better fit of the

experimental χM vs. T data set could be obtained considering a spin state S = 3/2 for

Fe (iii) ions.10 Although such a situation has not been previously confirmed in similar

salen-type oxo-bridged dinuclear iron(iii) complex,243 the problematic fitting of the χM

vs T can not be fully explained. In this sense, Mössbauer spectra are expected to clarify

the spin state of the Fe(iii) ion in homodinuclear complex 17.

4.2 Dinuclear oxygen-bridged Fe(III)-complex with

N-salicylidene-2-bis(2-hydroxyethyl)amino)ethyl-

amine ligand

The N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine (H3sabhea) ligand formed by

Schiff base condensation between salicylaldehyde and 2-bis(2-hydroxyethyl)amino)ethyl-

amine (Figure 4.4) posses a rigid and nearly planar backbone formed by three donor

atoms of the Schiff base linkage with a preferred meridional coordination mode.231–234 The

polydentate nature of the ligand can vary according with the accommodated metal ion

and was found as pentadentate chelate system in the case of vanadium(v) and copper(ii)

complexes,233,234 whereas a tetradentate chelating fashion was observed in the case of

molybdenum(vi) and lanthanide(iii) complexes.231,237

In the homonuclear Fe(iii) of type [{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2 (18) com-

plex that will be described herein, this Schiff base organic framework acts as pentaden-

tate chelating system, accommodating the iron ion through its O3N2 donor atom set.
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Figure 4.4: Schematic representation of the synthesis pathway for the N-salicylidene-2-

bis(2-hydroxyethyl)amino)ethylamine (H3sabhea) ligand.

The crystal structure determination shows a pair of two hexacoordinated iron(iii) ions

surrounded by the donor atoms of two pairs of Schiff base ligand units (Figure 4.6).

Each N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine ligand binds an iron(iii) ion

through phenolate, imine and tertiary amine nitrogen atoms, as well as pair of hydroxy-

ethylene oxygen atoms resulting in one six- and two five-membered chelating rings.

The asymmetric unit cell is composed by one [Fe(Hsabhea)]+ and [Fe(sabhea)] entities

with different chemical composition and also crystallographically distinct (Figure 4.5).

The cationic [Fe(Hsabhea)]+ asymmetric subunit B contains a doubly deprotonated N-

salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine ligand with a protonated hydroxyl-

ethylene side-arm resulting in FeB–O2B bond distance of 198.9 pm. The second iron(iii)-

subunit A of the asymmetric unit contains a fully deprotonated N-salicylidene-2-bis(2-

hydroxyethyl)amino)ethylamine ligand with the corresponding FeA–O2A of 195.5 pm,

approximatively 3.4 pm shorter than in B subunit.

The iron ion is in the 3+ oxidation state and the positive charge is compensated by

an unbounded perchlorate anion with three from four oxygen atoms in distorted positions

over two sets of tetrahedral sites with a common Cl–O side. The two subunits A and B

are strong hydrogen bonded with O· · ·O distance of 241.6 pm, resulting in a 1-D chain

(Figure 4.7). The other iron-to-oxygen and iron-to-nitrogen atom bond distances are

similar within the two constituting molecules of the asymmetric unit cell and close to

similar bond lengths of reported vanadium(v) complex. The iron-to-imine nitrogen atom

bond length fall in the 215.1-216.3 pm, whereas the Fe(iii)-to-tertiary amine nitrogen

atom bond lengths are 7-8 pm longer, owing to their trans position to strongly bonded

(Fe–O1 around 190 pm) phenolate oxygen atoms. Each Schiff base ligand function as

bridge between the iron centers through one of its hydroxy-ethylene arm, resulting in
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Figure 4.5: Asymmetric unit cell representation of

[{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·2DMF (18) complex. Thermal ellipsoids

are drawn at 50% probability. Dashed line represent hydrogen bonding interaction.

Figure 4.6: Molecular structure and labelling scheme of

[{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·2DMF (18) complex. Hydrogen atoms have

omitted for clarity.

Fe2O2 core formed by two Fe–O–Fe entities. The Fe–O bond lengths within the oxygen-

bridged iron ions are 196.0 in molecule A and 196.2 pm in molecule B, respectively with

a Fe–O–Fe angle of 105.1◦. Selected bond lengths and angles in complex 18 are listed in

Table 4.2.

127



Table 4.2: Selected bond lengths (pm) and angles (◦) for complex 18.

FeA–O1A 189.9(3) FeA–O2A 195.5(4)

FeA–O3A 196.0(4) FeA–O3A 206.5(4)

FeA–N1A 216.3(5) FeA–N2A 223.3(4)

FeB–O1B 190.8(3) FeB–O2B 198.9(4)

FeB–O3B 196.2(3) FeB–O3B 205.9(3)

FeB–N1B 215.1(4) FeB–N2B 223.0(4)

O1A–FeA–O2A 100.10(16) O1A–FeA–O3A 109.43(16)

O1A–FeA–O3A 88.89(15) O1A–FeA–N1A 84.66(17)

O1A–FeA–N2A 160.70(17) O2A–FeA–O3A 146.70(15)

O2A–FeA–O3A 91.03(17) O2A–FeA–N1A 99.31(19)

O2A–FeA–N2A 77.29(17) O3A–FeA–O3A 74.89(16)

O3A–FeA–N1A 98.43(18) O3A–FeA–N1A 168.62(18)

O3A–FeA N2A 79.57(16) O3A–FeA–N2A 110.17(16)

N1A–FeA–N2A 77.01(18) FeA–O3A–FeA 105.11(16)

O1B–FeB–O2B 104.00(15) O1B–FeB–O3B 107.12(15)

O1B–FeB–O3B 90.58(13) O1B–FeB–N1B 85.89(14)

O1B–FeB–N2B 162.11(15) O2B–FeB–O3B 87.18(15)

O2B–FeB–N1B 97.23(16) O2B—FeB–N2B 76.93(15)

O3B–FeB–O2B 143.94(14) O3B–FeB–O3B 74.83(14)

O3B–FeB–N1B 102.69(15) O3B–FeB–N1B 174.91(15)

O3B–FeB–N2B 78.98(14) O3B–FeB–N2B 107.30(14)

N1B–FeB–N2B 76.31(15) FeB–O3B–FeB 105.17(14)

Complex 18 crystallizes in the triclinic space group P1 with an inversion cen-

ter that passes through the center of the Fe2O2 plane. The resulting dimeric cation

[{Fe(sabhea)}2{Fe(Hsabhea)}2]
2+ units are organized in hydrogen bonded dimers that

assembly in 1-D sheets along the b crystallographic axis (Figure 4.7). The perchlorate

anions separate the chains (Figure 4.8) with interchain Fe· · ·Fe distance larger than 1014

pm. The interatomic Fe· · ·Fe separation within the homodinuclear cation complex is

319.5 pm, and 550.9 pm within the hydrogen bonded 1-D chain.
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Figure 4.7: Hydrogen bonding interaction between molecules of

[{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·2DMF (18) as viewed along the b crystal-

lographic axis. Hydrogen atoms have omitted for clarity.

Figure 4.8: Packing diagram showing the separation of the 1-D hydrogen bonded

[{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2 units of complex 18 by the distorted perchlorate

anions. View along the b crystallographic axis. Hydrogen atoms have omitted for clarity.

The spectroscopic characterization of the [{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·DMF

(18) complex is consistent with the proposed structures. The IR spectra contain strong

stretching vibration at 3435 cm−1 assigned to the hydrogen bonded hydroxyl-ethylene

constituents (ν(OH) vibration). Similarly to reported d-metal complexes,231–233 stretch-

ing vibration characteristic for the Schiff base ligand coordination mode were detected
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at 1631 cm−1, owing to Schiff base bond vibration. This stretching mode is very simi-

lar compared to its vibrations in the free ligand, due to weak coordination of the imine

nitrogen atoms. Strong bands have been observed at 905 cm −1 most likely owing to

ν(Fe–O–Fe) stretching mode.249 The cationic nature of the dinuclear Fe(iii)-core is in

agreement with the specific stretching vibrations of the ClO−
4 anion observed at 1097

cm−1 (ν3 mode) and 623 cm−1 (ν4 mode).104

4.2.1 Magnetic properties

The magnetic behavior of homodinuclear Fe(iii)-complex has been studied trough mag-

netic susceptibility measurements on powdered crystals of [{Fe(sabhea)}2{Fe(Hsabhea)}2]

(ClO4)2·DMF (18) in the temperature range 300 - 2 K. The thermal variation of χM and

χMT are plotted in Figure 4.9 as have been measured with a fixed 2000 Oe magnetic

field. The χMT value is 6.62 cm3mol−1K at 300 K which is much lower than calculated

value for two uncoupled high spin Fe(iii) ions, assuming g = 2. The χMT values are

decreasing steadily on lowering the temperature reaching a value of 0.15 cm3mol−1K

at 10 K. Below this temperature the decrease of the χMT product is very slow with a

minimum of 0.03 cm3mol−1K at 2 K. The nature of the curve obtained by plotting the

χMT against temperature indicates an antiferromagnetic coupling interaction between

the iron(iii) centers consistent with S = 0 ground state.

The data were fitting using the isotropic Hamiltonian expression previously dis-

cussed for a dinuclear Fe(iii) complex with two equivalent metal centers with spin state

S1 = S2 = 5/2. The best fit was obtained on χMT vs T data set with g = 2.08±1.2 ·10−3

and J = −21.64 ± 0.008 cm−1 for a paramagnetic impurity ρ = 0.005 ± 4.5 · 10−4.

The reliability factor R2 = 0.99999 shows a very good agreement between experimen-

tal and calculated values through equation 6, with a Weiss constant θ = −3.02 ±

0.310 K. This parameter accounts for intermolecular antiferromagnetic Fe· · ·Fe inter-

actions and the value is consistent with 550.9 pm intermetallic separation along the

1-D sheets formed by hydrogen bonding interaction between two neighboring cation

[{Fe(sabhea)}2{Fe(Hsabhea)}2]
2+ entities. The fit of the χMT vs T data set, excluding

the Weiss parameter (θ) from the χM equation led to g = 2.08± 2.3 · 10−3 and a similar
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Figure 4.9: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·2DMF (18) complex measured

with an applied magnetic field of 2000 Oe; the solid lines represent the theoretical curves

(see text).

magnitude of the intradimer antiferromagnetic coupling interaction J = −22.33 ± 0.089

cm−1 with a reliability factor R2 = 0.99995. But, nonetheless considering the small

interchain Fe· · ·Fe separation, the Weiss parameter that accounts for intermolecular in-

teractions can not be simply ignored.

Gorun and Lippard have established an empirical correlation between the coupling

parameter, J (cm−1) and average metal-oxygen distance, P, or the metal-oxygen-metal

angle, α.250 This empirical approach has been verified on large number of oxo-bridged

iron(iii) pairs and its validity has been said to exist only in the case of weak antiferro-

magnetic interactions.26,251 In dinuclear Fe(iii) complexes of type 17, described in the

first part of this chapter, such an empirical equation can not be applied. The coupling

constant is largely insensitive to the Fe-O-Fe angle for α> 120◦, therefore this empirical

approach can not be used to describe the strong antiferromagnetic interaction observed

in dinuclear salen-type-Fe(iii) complex.

Nevertheless, magnetic data recorded on a large series of oxo-bridged iron complexes

suggest that the P-dependence of the exchange coupling constant, J, is well represented

by the following equation:
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−J = −1.753 · 1012 exp (−12.663 P) (7)

where J is expressed in cm−1 and P in Å for the exchange Hamiltonian in the form

Ĥ = −JS1S2

According to this empirical approach, the magnitude of the antiferromagnetic cou-

pling between the Fe(iii) ions in cationic [Fe2(Hsabhea)(sabhea)]+ complex is -17.6 cm−1

(Fe–O distance 2.0 Å). For metal–oxygen–metal angles (α) smaller than 120◦, the magni-

tude of the magnetic interaction between Fe(iii) centers was reported to be affect on the

Fe–O–Fe bending, i.e. J becomes smaller as the angle α is reduced.26 A systematic study

has been performed in a series of binuclear complexes with alkoxo-bridges and similar

Fe–O distances with α values within the 102 to 106◦ range with J varying between ca.

15 and 21 cm−1. The simplest correlation was found to be of the type:

−J = 1.48 α − 135 (8)

Applying this final equation in order to describe the magnitude of the antiferro-

magnetic interaction in complex 18 as a function of Fe–O–Fe angle (105◦), a coupling

constant of -20.4 cm−1 was resulting. This J value is very close to the magnitude of the

antiferromagnetic interaction resulted by fitting the χMT vs T data following the Van

Vleck formalism.

It can be concluded that, following both theoretical pathways to describe the mag-

netic behavior of cation complex [{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·2DMF (18) an

antiferromagnetic interaction occurs between the metal centers within the dimer unit.

The Weiss constant value obtained following the Van Vleck equation for two S = 5/2

iron ions shows that an intermolecular antiferromagnetic interaction occurs between the

dimer units along the 1-D chains.
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4.3 Trinuclear copper complex with partial cubane-

like core

Schiff base ligands with flexible backbones are versatile organic ligands to design polynu-

clear complexes with interesting magnetic properties. ”Serendipity” as a tool to generate

high-nuclearity coordination compounds has led to interesting assemblies that sometimes

exhibit unpredictable magnetic behavior.164 Copper(ii) ion is a peculiar paramagnetic

center with a high degree of flexibility of its geometry with varied distortions owing

to Jahn-Teller effect.10 The coordination number of Cu(ii) ions can be easily varied

from four- to five-coordination environment with easy uptake of oxygen-ligation to form

Cu–O(H)–Cu linkage.252 A peculiar attention from the magnetic point of view has

been attributed to copper(ii) cubane complexes based on Cu4O4-core.229,253–255 Such

species have been reported to posses ferromagnetic exchange interaction between the

paramagnetic center and hence, their versatility as building blocks for designing high-

nuclearity assemblies. The Schiff base ligand derived from salicylaldehyde and N,N-

dimethylethylenediamine has been successfully used to generate trinuclear copper(ii)

complexes with partial cubane motif formed by Cu3O4 core (Figure 4.11). The trinu-

clear copper complex crystallizes in the P21/c space group, with no threefold symmetry

and presents a cationic Cu3O4 core formed by [Cu3L3(µ3-OH)]2+ (Figure 4.10).

The positive charge of the core is compensated by two unbounded perchlorate an-

ions. One ClO−
4 anion is distorted with three of the four oxygen atoms distributed over

two sets of tetrahedral sites around the chlorine atom, whereas the second perchlorate

anion is ordered. In addition, the molecular structure determination shows water lat-

tice with the final formulation of the structure as [(CuL)3(µ3-OH)](ClO4)2·H2O. The

trinuclear cationic part is formed by three Cu(ii)-ligand subunits in which each cop-

per(ii) ion is coordinated to a deprotonated tridentate monoanionic [2-(2-dimethylamino-

ethylimino)-methyl]-phenol ligand. This tridentate chelate ligand coordinates copper(ii)

ions through N,N,O-donor atoms forming six- and five-membered chelating rings with

bite angles around 92◦ (O1N–CuN–N1N) and 84◦ (N1N–CuN–N2N). The copper-to-

phenolate bond distances within this mononuclear Cu(ii)-constituting subunits are very

close among themselves and fall in the 191.6-192.9 pm range, whereas the Cu–N bond
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Figure 4.10: Molecular structure and labeling scheme of [(CuL)3(µ3-OH)](ClO4)2·H2O

(19) complex. Only the cationic [Cu3L3(µ3-OH)]2+ core is shown. Hydrogen atoms have

omitted for clarity.

distances depend on the provenance of the nitrogen atoms and are shorter for copper-

to-imine nitrogen atom bonds (around 194 pm) and longer for the coordinated tertiary

nitrogen atoms (N2) which fall in the 203.5-205.0 pm range. These three subunits are

held together by two distinct bridging systems: one is represented by µ2-phenolate oxygen

atoms and secondly by the µ3-bridging-hydroxo group (O1D) that binds asymmetrically

to the three copper centers within 201.7-207.5 pm range.

In each Cu(ii)-[2-(2-dimethylamino-ethylimino)-methyl]-phenol subunit the pheno-

late oxygen atoms act as µ2-bridge between two copper centers with unequal Cu–O dis-

tances owing to steric effects induced in the molecular structure by dimethyl-amine con-

stituents of the organic framework. Selected bond lengths and angles in complex 19

are listed in Table 4.3. The O–Cu–O connecting angles are within 91.1-97.2◦ range and

Cu–O–Cu bond angles within 96.4 -100.3◦ limits for phenolate-bridged copper atoms and

100.7-102.5◦ for hydroxy-bridged copper ions. The copper atoms are five-coordinated in

a distorted trigonal bipyramidal geometry with the donor atoms of the supporting triden-

tate ligand forming the basal isosceles triangular plane, whereas the common hydroxy-
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Table 4.3: Selected bond lengths (pm) and angles (◦) for complex 19.

CuA–O1A 192.9(2) CuA–N1A 193.4(3)

CuA–O1D 201.7(2) CuA–N2A 205.0(3)

CuA–O1B 230.4(2) O1A–CuC 2239.(2)

CuB–O1B 191.9(2) CuB–N1B 194.0(3)

CuB–N2B 204.8(3) CuB–O1D 207.5(2)

CuB–O1C 219.1(2) CuC–O1C 191.6(2)

CuC–N1C 194.7(3) CuC–O1D 203.2(2)

CuC–N2C 203.5(3)

O1A–CuA–O1D 83.47(9) O1A–CuA–O1B 97.20(10)

O1A–CuA–N1A 92.85(11) O1A–CuA–N2A 167.77(11)

O1D–CuA–O1B 77.10(9) O1D–CuA–N2A 97.93(11)

N1A–CuA–O1B 110.59(11) N1A–CuA–O1D 171.91(11)

N1A–CuA–N2A 84.15(12) N2A–CuA–O1B 94.95(10)

O1B–CuB–O1C 91.13(10) O1B–CuB–O1D 85.06(10)

O1D–CuB–O1C 75.28(9) O1B–CuB–N1B 92.94(11)

O1B–CuB–N2B 174.22(11) N1B–CuB–N2B 83.48(12)

N1B–CuB–O1D 159.81(12) N1B–CuB–O1C 124.89(11)

N2B–CuB–O1D 96.74(11) N2B–CuB–O1C 94.64(11)

O1C–CuC–O1A 93.37(10) O1C–CuC–O1D 82.62(10)

O1C–CuC–N1C 92.60(11) O1C–CuC–N2C 169.95(11)

N1C–CuC–O1A 115.49(11) N1C–CuC–O1D 168.13(11)

N1C–CuC–N2C 84.19(12) N2C–CuC–O1A 96.61(10)

O1D–CuC–O1A 75.77(9) O1D–CuC–N2C 98.66(11)

and the bridging phenolate oxygen atoms are placed on the apex positions of the pyra-

mid. The phenolate oxygen atom is in turn part of the equatorial plane of a second

copper center, resulting in three bipyramid geometries with common apex represented

by the central hydroxy ligand (O1DH). The Cu3O4-core is arranged in partial cub motif

with angles around 90◦ (Figure 4.11). Complex 19 crystallizes with a water molecule as

solvent of crystallization which is involved in bifurcated hydrogen bonding interactions
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Figure 4.11: Partial-cubane core motif of [(CuL)3(µ3-OH)](ClO4)2·H2O complex.

with the phenolate oxygen atoms of two neighboring trimeric units within bond distances

of 292.2 pm (O1w· · ·O14) and 275.4 pm (O1w· · ·O21).

The molecular structure determined by X-ray crystallography is also confirmed by

spectroscopic characterizations of complex 19. The noncoordinating water molecule has

been detected in IR spectrum of the complex as broad band at 3523 cm−1, attributable

to hydrogen interacting water lattice,104 while the µ3-hydoxyl group show strong band at

3055 cm−1. The Schiff base bond stretching vibration has been observed at around 1632

cm−1, just a bit shifted compared to its stretching vibrations in the free ligand owing to

a weak coordination of the imine nitrogen atom to copper(ii) ion. Concerning the ClO−
4

anions, the ν3 mode at 1098 cm−1 is broadening but the ν4 mode at 623 cm−1 is consistent

with the IR-active mode of tetrahedral symmetry of perchlorate anions, suggesting that

these anions are not coordinated to the copper ions as it has been seen in the crystal

structure determination.104

4.3.1 Magnetic properties

Magnetic susceptibility measurements for complex 19 have been performed over the 300-

2 K temperature range. Plots of χM vs T and χMT vs T are shown in Figure 4.12 as

have been measured with an applied field of 5000 Oe. The room temperature measured

χmT value is 1.43 cm3mol−1K which is a little bit higher than the calculated spin-only

value for three non-interacting S = 1/2 spins with g = 2. As the temperature is decrease,

the χMT values increase to reach a maximum value of 1.79 cm3mol−1K at 4 K. Below
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Figure 4.12: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [(CuL)3(µ3-OH)](ClO4)2·H2O (19) complex measured with an applied

magnetic field of 5000 Oe; the solid lines represent the theoretical curves (see text).

this temperature, the χMT value is decreasing again to 1.61 cm3mol−1K at 2 K. This

suggests overall a ferromagnetic interaction in the Cu3O4-core, with a weak intercluster

antiferromagnetic coupling described by the observed decrease of the χMT product below

4 K.

The magnetic-exchange interaction in a triangular S = 1/2 system results in three

electronic states: a quartet state (S = 3/2, 4A2) and two doublets states (S = 1/2, 2E).

Within the simple model of the isotropic Heissenberg-Dirac-van Vleck (HDVV) Hamil-

tonian formalism

Ĥ = −J12S1S2 − J13S1S3 − J23S2S3

with J12 = J13 = J23 = J and S1 = S2 = S3 = 1/2.

The magnetic susceptibility for a triangular Cu(ii) complex in which all the metal ions

are equivalent has the following expression:

χM =
Nβ2g2

k(T − θ)

[1 + 5exp(3J/2kT )]

[1 + exp(3J/2kT )]
(1 − ρ) + 3

Nβ222ρ

3kT
S(S + 1) + χTIPT (9)

The best fit set has been obtained for χMT vs T experimental data set for g =

2.11±0.01 and J = 8.50±0.64 cm−1 for a Weiss constant θ= −0.68±0.05 K. The reliability

factor R2 = 0.95516 shows a very good agreement between experimental and calculated
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values for a temperature independent paramagnetism parameter χTIP = 4.8·10−4±7·10−5

cm3mol−1. The Weiss constant counts for antiferromagnetic interaction which may take

place between [Cu3L3(µ3-OH)]2+ units at low temperature and it is described by the

observed decrease of χMT value below 4 K. A very similar trinuclear Cu(ii)-complex

with similar structural motif has been reported253 while complex 19 has been isolated.

The magnitude of the ferromagnetic interaction is very close to one described herein,

owing to structural similarities. The ferromagnetic interaction in the trimeric [Cu3L3(µ3-

OH)]2+ cation is due to accidental orthogonality arrangement of the magnetic orbitals of

copper(ii) centers, for which the Cu–O–Cu angles are in the 96.4 - 100.7◦ range.

4.4 Dinuclear phenoxo-bridged copper complex

On going from salicylaldehyde to its 3-methoxy derivative, the new 2-((2-dimethylamino-

ethylimino)-methyl]-6-methoxy-phenol ligand has been reacted with copper perchlorate

salt in presence of gadolinium salt in methanol solution. A different organization of the

ligand and metal ions occurred yielding a cationic dinuclear Cu(ii) complex 20 with only

one phenoxo-bridge. The molecular structure determination of [(CuLOMe)2)](ClO4)2·0.5H2O

(20) complex is shown in Figure 4.4 with selected bond lengths and angles listed in Table

4.4. Each copper(ii) ion is coordinated in the tridentate pocket of 2-[(2-dimethylamino-

ethylimino)-methyl]-6-methoxy-phenol as previously observed for complex 19. The copper-

to-nitrogen bond lengths are longer for the binding strength of the tertiary nitrogen atom

(Cu1–N2B 206.1 pm and Cu2–N2A 203.4 pm) and shorter for the copper-to-imine ni-

trogen atom bond lengths of around 193.2 pm (Cu1–N1B and Cu2–N1A). These bond

lengths are very similar to corresponding bond distances in complex 19 in line with a

similar coordination mode of the tridentate core of the supporting organic ligand. The

difference among the two homonuclear copper(ii) complexes appears for the two phe-

nolate binding strength. The phenolate oxygen atom O1A that establishes the bridge

between the metal centers and binds quite similar to Cu1 (Cu1–O1A 198.9 pm) and Cu2

centers (Cu2–O1A 197.1 pm) resulting in a relative symmetric Cu–O(Ph)–Cu bridge

with the bridging angle of 111.2◦. Conversely in complex 19, these phenoxo-bridges were

quite unequal most likely due to the additional hydroxy-bridged unit which may also be
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Figure 4.13: Molecular structure and labeling scheme of [(CuLOMe)2)](ClO4)2·0.5H2O

(20) complex. Only the cationic [(CuLOMe)2)]
2+ core is shown. Hydrogen atoms have

omitted for clarity. Dashed line represent intramolecular hydrogen bonding interactions.

responsible for the observed cubane-like core.

The non-bridging phenolate oxygen coordinates only to Cu1 center with Cu1–O1B

bond length of 192.6 pm. The coordination sphere of the copper ion centers is com-

pleted by coordinated methoxy-oxygen atom in the case of Cu1 ion (Cu1–O2A 234.2 pm)

and water and DMF molecules for Cu2 ion with bond distances of 24.8 pm (Cu2–O1W)

and 197.7 pm (Cu2–O1D). Both copper(ii) ions are in slight distorted square-pyramidal

environment with the distortion parameter239 τ = 0.01 for Cu1 ion and τ = 0.05 for

Cu2 ion, respectively. The uncoordinated methoxy-group of the first ligand moiety is

instead involved in intramolecular hydrogen bonding interaction with the coordinated

water molecule (O2B· · ·O1W 299.6 pm) which in turn is hydrogen bonded to the non-

bridged phenolate oxygen atom (O1W· · ·O1B 288.3 pm) (see Figure 4.4). Complex 20

crystallizes in the monoclinic space group C2c with two perchlorate anions and water lat-

tice with the final formula [(CuLOMe)2)](ClO4)2·H2O. One perchlorate anion is distorted

with the oxygen atoms occupying two tetrahedral sites with a common chlorine atom

whereas the other ClO−
4 is ordered. Both of them are in hydrogen bonding interaction

with the lattice water molecule of 290.2 pm for Ow· · ·OClO4 (ordered anion) and 270.3

pm for distorted oxygen atom of perchlorate anion (Figure 4.14).
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Figure 4.14: Hydrogen bonding interaction between water lattice molecules and perchlo-

rate anions in the crystal packing of [(CuLOMe)2)](ClO4)2·0.5H2O (20) complex as viewed

along the b crystallographic axis. Hydrogen atoms have omitted for clarity.

Table 4.4: Selected bond lengths (pm) and angles (◦) for complex 20.

Cu1–O1A 198.9(2) Cu1–O1B 192.6(3)

Cu1–N1B 193.2(3) Cu1–O2A 234.2(3)

Cu1–N2B 206.1(3) Cu2–O1A 197.1(2)

Cu2–N1A 193.3(3) Cu2–N2A 203.4(3)

Cu2–O1D 197.7(3) Cu2–O1W 224.8(4)

O1A–Cu1–N2B 92.82(11) O1A–Cu1–O1B 88.78(11)

O1A–Cu1–O2A 74.06(9) O1A–Cu2–O1D 88.58(10)

O1B–Cu1–N1B 92.86(12) O1B–Cu1–N2B 173.93(12)

O1B–Cu1–O2A 89.69(10) N1B–Cu1–O1A 174.68(12)

N1B–Cu1–O2A 111.00(11) N1B–Cu1–N2B 85.04(13)

N2B–Cu1–O2A 96.38(11) O1A–Cu2–N2A 164.46(13)

O1A–Cu2–O1W 84.52(13) N1A–Cu2–O1A 91.73(11)

N1A–Cu2–N2A 85.24(13) N1A–Cu2–O1D 167.55(13)

N1A–Cu2–O1W 97.67(15) O1D–Cu2–N2A 91.14(12)

O1D–Cu2–O1W 94.75(13) N2A–Cu2–O1W 110.98(15)
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4.4.1 Magnetic properties

Magnetic susceptibility measurements for complex 20 have been performed in the 300-

2 K temperature range with χM vs T and χMT vs T plots depicted in Figure 4.15

for an applied magnetic field of 2000 Oe. The room temperature measured χmT value is

0.767 cm3mol−1K which corresponds to calculated spin-only value for two non-interacting

S = 1/2 spins, assuming g = 2. As the temperature is decreased, the χMT values

decrease smoothly until 25 K with a value of χMT product of 0.18 cm3mol−1K. Below

this temperature, the decrease is more constant with a minimum of 0.17 cm3mol−1K

at 2 K. This suggests overall antiferromagnetic interaction within the Cu–O(Ph)–Cu

unit, according with 111.2◦ bridging angle, which is higher than corresponding angles in

complex 19.

Figure 4.15: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [(CuLOMe)2)](ClO4)2·0.5H2O (20) complex measured with an applied

magnetic field of 2000 Oe; the solid lines represent the theoretical curves (see text).

The magnetic-exchange interaction pathway in dinuclear S = 1/2 system has been

interpreted in terms of isotropic Hamiltonian:

Ĥ = −JS1S2

with S1 = S2 = 1/2.
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based on Bleanery-Bowers equation (13) for a pair of copper ions.256 The best fit of the

magnetic susceptibility was obtained using χMT vs T plot and led to: g = 2.11 ± 0.008

and J = −119.76±0.51 cm−1 for a paramagnetic impurity ρ= 0.23±0.001, resulting in a

reliability factor R2 = 0.99993 that shows a very good agreement between experimental

and calculated values for a temperature independent paramagnetism parameter χTIP =

1.9 ·10−4±2 ·10−5 cm3mol−1. Conversely to magnetism phenomenon observed in complex

19, an obtuse phenolate-bridging unit mediates an antiferromagnetic exchange interac-

tion. The magnitude of the antiferromagnetic coupling of the copper(ii) ions in complex

20 is much lower than reported antiferromagnetic coupling reported for bis(phenoxide)

Cu(ii)-complexes.252,257 Thompson et al.257 establishes a magneto-structural correlation

for bis(phenoxide)-bridged dinuclear copper(ii) complexes in which the magnitude of the

antiferromagnetic interaction is linear dependent of the Cu–O(Ph)–Cu bridging angle

(α):

−J = 31.95 α − 2462 cm−1

The J value calculated using this empirical approach is not consistent with the value

obtained using Bleanery-Bowers equation in the case of magnetic behavior of complex

20. This inconsistence of the empirical approach may be a consequence of different

structural motif present in complex 20, namely only one phenoxy-bridge by comparison

to double-phenoxide bridged copper(ii) complexes for which the linear correlation has

been established.

4.5 Conclusions

In conclusion two homodinuclear Fe(iii) complexes based on salen-type N,N’-ethylene-

bis(pyridoxylideneiminato) ligand and N-salicylidene-2-bis(2-hydroxyethyl)amino)ethyl-

amine ligand have been isolated. The salen-type ligand yield a neutral oxo-bridged ho-

modinuclear Fe(iii) complex, whereas the N-salicylidene-2-bis(2-hydroxyethyl)amino)ethyl-

amine ligand yielded an hydroxy-bridge cationic dinuclear iron(iii) complex. The mag-

netic coupling of the iron(iii) ions has been found to be antiferromagnetic, stronger

in the case of oxo-bridged dinuclear Fe(iii) complex, whereas a weak antiferromagnetic
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interaction has been mediated by N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine

ligand. In both cases 1-D coordination polymers have been formed through hydrogen

bonding interaction between the donor atoms of the supporting ligands. In addition

self-assembly reaction between [2-(2-dimethylamino-ethylimino)-methyl]-phenol and its

methoxy-derivative ligands with Cu(ClO4)2 salt in presence of different outer metal salts

has yielded to tri- and dinuclear Cu(ii) complexes. The homotrinuclear copper(ii) com-

plex present a partial cubane-like structural core formed by cationic [Cu3L3(µ3-OH)]2+

cation which can be simply formulated as Cu3O4-motif. The organic framework enforced,

in this case an orthogonal orientation of the magnetic orbital of the three copper(ii)

ions, resulting in a ferromagnetic interaction between the metal centers of J = 8.50

cm−1 magnitude. Instead, the homodinuclear copper(ii) complex comprises only one

phenoxo-bridged Cu–O(Ph)–Cu moiety with an obtuse bridging angle, most likely re-

sponsible for the antiferromagnetic exchange pathway between the copper(ii) ions. All

these simple molecular clusters can be used as precursors to build-up high-nuclear coordi-

nation compounds. For example, d-transition metal complexes based on N-salicylidene-2-

bis(2-hydroxyethyl)amino)ethylamine (H2sabhea) ligand (Figure 4.16, inset a) may form

alkoxy-bridges between two different metal ions, most likely lanthanide ions. The most

appropriate organic framework based on 2-bis(2-hydroxyethyl)amino)ethylamine side-

arms will be the Schiff base derivative formed with 3-methoxy-2-hydroxy-benzaldehyde

(o-vanillin). The resulting d-complex may be used as precursor to design d-f metal com-

plexes (Figure 4.16, inset b).

N N

O

O M O
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H3CO

N N

O

O M O
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a) b)

Figure 4.16: Schematic representation of potential pathway reaction for d-transition metal

complexes with N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine (H2sabhea) ligand

(inset a) and its 3-methoxyderivative (inset b).
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4.6 Experimental Part

The Schiff base ligands have been prepared following reported procedures233,238,253

Synthesis of [Fe(pyren)]2O·3H2O (17) complex

To a suspension of bis(N,N’-pyridoxalidene)ethylenediamine ligand (90 mg, 0.25 mmol)

in MeOH (10 mL) was added stepwise a methanolic solution (5 mL) of Fe(ClO4)3·nH2O

(88.5 mg, 0.25 mmol) followed by addition of NaOH (0.5 mL 1 N aqueous solution). The

resulting clear solution was stirred at room temperature for 20 minutes, than filtered and

the black filtrate was allowed to stand at room temperature for slow evaporation of the

solvent. Yield: 65.0 mg (0.07 mmol, 59.0%). Anal. Calc. for C36H44N8O11Fe2 (876.46)

([Fe(pyren)]2O·2H2O): C 49.33, H 5.06, N 12.78. Found: C 48.89, H 4.84, N 12.66.

Selected IR data (cm−1): 3420 (br s, H2O and OH intermolecular hydrogen bonded),

1627 (s, -CH=N), 1390 (s, -CH=Npyridine), 821 (s, Fe–O–Fe).

Synthesis of [{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·2DMF (18) complex

To a solution of N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine ligand (63 mg,

0.25 mmol) in acetone (10 mL) was added stepwise a methanolic solution (5 mL) of

Fe(ClO4)3·nH2O (177 mg, 0.50 mmol) followed by addition of NEt3 (1.5 mL 1 N methanol

solution). The resulting clear solution was stirred at room temperature for 10 minutes,

while a precipitate is forming. This was redissolved by addition of DMF (5 mL) and

the reaction was continued for other 10 minutes. Than was filtered and the reddish

filtrate was allowed to stand at room temperature for slow evaporation of the solvent

mixture. Yield: 72.0 mg (0.09 mmol, 36.7%). Anal. Calc. for C29H42N5ClO11Fe2

(783.80) ([Fe2(Hsabhea)(sabhea)]ClO4·DMF): C 44.44, H 5.40, N 8.94. Found: C 44.31,

H 5.20, N 8.92. Selected IR data (cm−1): 3435 (br, OH intermolecular hydrogen bonded),

1695 (s, DMF), 1631 (s, -CH=N), 1097 (s, ClO4), 905 (s, Fe–O–Fe) and 623 (s, ClO4).

Synthesis of [(CuL)3(µ3-OH)](ClO4)2·H2O (19) complex

To a solution of [2-(2-dimethylamino-ethylimino)-methyl]-phenol ligand (192 mg, 1.0

mmol) in methanol (10 mL) was added stepwise a methanol solution (5 mL) of Cu(ClO4)2
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·6H2O (365 mg, 1.0 mmol) followed by addition of aqueous solution (10 mL) of Na4[Cu2(m-

phenyleneoxamide)2]
258 (200 mg, 0.25 mmol). A precipitate is formed in the first few

minutes of reaction and the reaction was continued for 10 minutes in the suspension

form. This was filtered and the filtrate was allowed to stand at room temperature for

slow evaporation of the solvent mixture. Yield: 100.0 mg (0.10 mmol, 10.0%). Anal.

Calc. for C33H47N6Cl2O13Cu2 (997.28) ([(CuL)3(µ3-OH)](ClO4)2·H2O): C 39.74, H 4.75,

N 8.43. Found: C 39.73, H 4.66, N 8.30. Selected IR data (cm−1): 3523 (br, OH), 3055

(br, H2O), 1632 (s, -CH=N), 1098 (s, ClO4) and 623 (s, ClO4).

Synthesis of [(CuLOMe)2)](ClO4)2·0.5H2O (20) complex

To a solution of 2-((2-dimethylamino-ethylimino)-methyl]-6-methoxy-phenol ligand (222

mg, 1.0 mmol) in methanol (10 mL) was added stepwise a methanol solution (10 mL) of

Cu(ClO4)2·6H2O (365 mg, 1.0 mmol) followed by addition of NaOH (1 mL aqueous 1 N

solution) and than a methanol solution (5 mL) of Gd(NO3)3·6H2O (220 mg, 0.50 mmol).

A precipitate is formed in the first few minutes of reaction which was redissolved by

addition of DMF (5 mL). The reaction was continued for 10 minutes at room temperature

and allowed to stand at room temperature for slow evaporation of the solvent mixture.

Yield: 243.0 mg (0.30 mmol, 30.0%). Anal. Calc. for C27H44N5Cl2O14.5Cu2 (868.67)

([(CuLOMe)2)](ClO4)2·0.5H2O): C 37.33, H 5.11, N 8.06. Found: C 30.41, H 4.36, N 9.26.

Selected IR data (cm−1): 3502 and 3428 (br, H2O), 1652 (s, -CH=N), 1085 (s, ClO4) and

624 (s, ClO4).
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Chapter 5

Polynuclear oxamato-bridged

d-metal complexes

Polynuclear metal-complexes with homo- and hetero-constituency are of general interest

in the field of molecular magnetism. This is fueled by their challenging magnetic behavior

and in addition the efforts to design molecular ferromagnets with possible applications

in material science. The self-assembly process led to a great variety of interesting molec-

ular assemblies,164 but a rational pathway to approach high-nuclearity compounds is

more desirable.11 One of the most powerful synthetic pathway used to isolate predefined

inorganic-organic hybrids is based on ”complex-as-ligand” strategy.11,259,260 In this case

the chosen organic framework plays the key-role and has to posses two or more coordi-

nation sites that will permit accommodation of more than one metal ion. One of such

polynucleating organic systems is based upon oxalic-acid derivatives, e.g. oxamate-261–265

and bis-oxamide266–270 class organic ligands (Figure 5.1) that yielded a great variety of

polynuclear complexes with interesting structural topologies.265,266,271,272 Besides the

beauty of these structural assemblies, an important aspect is played by their magnetic

behavior that vary from antiferromagnetic coupling of the constituting metal ions to rare

examples of one-dimensional ferrimagnetic compounds.10,273–281

A plethora of oxalate- and oxamidate-bridged transition-metal complexes has been

reported and magnetically investigated.10,282–284 This tremendous research activity has

been fueled by initial reports concerning an oxalato-bridged dinuclear copper(ii) com-

plex in which the relatively well-separated metal ions (514 pm) have been found to
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Figure 5.1: Schematic representation of the oxalic acid (a) and its derivatives: oxamate

(b) and oxamide (c).

be strongly antiferromagnetically coupled (- 384.5 cm−1).10 While the oxalate dianion

can yield uncontrolled polymerization of the d-transition metal complexes, the oxamate-

and bis-oxamide derivatives yield more stable metal-complexes.275–281,285 The last men-

tioned organic ligand systems can accommodate metal ions in both cis and trans isomeric

forms yielding mono- and dinuclear d-metal complexes.265,266,286,287 The oxamate related

bridging ligand framework has been successfully used to isolated hetero-trinuclear metal-

complexes, generally abbreviated as ABA systems.10,261,283,288 These last d-transition

metal complexes are rare examples of ferromagnetic-like behavior with large spin ground

state, even though the interaction between near-neighboring metal ions is antiferromag-

netic. Such a magnetic behavior has been explained by Kahn et al. as a consequence

of polarization by the small central spin of the two terminal spins in ferromagnetic-like

fashion and the mechanism is known as irregular spin state structure and was found

manly in trinuclear Mn–Cu–Mn and Ni–Cu–Ni oxamate-bridged complexes.10,289,290 It

has to be emphasized that ferromagnetic coupling of the metal ions appears in strictly

orthogonal oriented magnetic orbitals (VIV-CuII, NiII-CrIII and FeIII-CuII combination)

and/or d-transition metals with accidental orthogonal orientation of their magnetic or-

bitals.10,291,292 The oxamato-bridged metal-complexes are a particular case of molecular

ferromagnets which comprise both irregular spin state and/or ferrimagnetic chains. Based

on these consideration, a novel mononuclear Cu(ii) anion complex has been isolated.

The anionic copper(ii)-core is assembled in one-dimensional polymer via coordination

surroundings of potassium cations. Moreover, this Cu(ii)-precursor posses additional

coordination sites, namely two carbonyl-like oxygen atoms that allowed coordination of

cobalt(ii) ion to yield a hetero-trinuclear [Cu2Co]-complex. This last polynuclear complex
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is also self-assembled through hydrogen bonding interaction into layered sheets of trinu-

clear entities. In addition, a possible combination between cyanide-bridged and oxamate-

ligands will be briefly presented. The cyanide-bridges represent another important class

of appropriate linkers to generate polynuclear complexes. Such bridges are mediating

very well the magnetic interaction between the paramagnetic centers and polynuclear

complexes of Prussian Blue type have been reported as single-molecule magnets with

spontaneous magnetization at temperature as high as 376 K.114

5.1 Mononuclear Cu(II)-complex based on oxamate-

derivative ligand

Oxamide ligands behave as most amide functional groups which are neutral through-

out the pH range and relatively instable towards hydrolysation reaction. The N-(2-

dimethylamino-ethyl)-oxalamide ligand is easy accessible by reaction of commercially

available ethyl oxamate with N,N-dimethylethane-1,2-diamine compound. The resulting

dissymmetric N-(2-dimethylamino-ethyl)-oxalamide ligand has been reacted with cooper

nitrate salt in presence of potassium thiocyanate yielding an anionic mononuclear Cu(ii)

complex 21. The starting oxamide-based ligand is hydrolyzed to N-(2-dimethylamino-

ethyl)-oxalamic acid upon copper(ii) coordination due to strong alkaline reaction condi-

tions (Figure 5.2).
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Figure 5.2: Schematic representation of the reaction pathways involved in synthesis of

[Cu(dmae-oximate)(OH2)(NCS)]− complex.

The copper(ii) ion is five-coordinated, accommodated by the N-(2-dimethylamino-

ethyl)-oxalamic acid ligand through NNO-donor set through a pair of five-membered
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Figure 5.3: Molecular structure and numbering scheme of ([Cu(dmae-

oximate)(OH2)(NCS)]K·H2O)n (21) complex. Thermal ellipsoids are drawn at

50% probability. Only the [Cu(dmae-oximate)(OH2)(NCS)]− anion core is shown.

Hydrogen atoms have omitted for clarity.

chelate rings. The coordination sphere of the metal ion is completed by coordinated

water molecule and monodentate iso-thiocyanate ligand. The molecular structure de-

termination of compound 21 is shown in Figure 5.3, whereas selected bond lengths and

angles for ([Cu(dmae-oximate)(OH2)(NCS)]K·H2O)n complex are listed in Table 5.1. The

resulting geometry around the Cu(ii) ion can be described as distorted square-pyramid

with τ =0.05 as a characteristic parameter for the trigonality distortions.239 The coor-

dinating donor atoms of the tridentate organic ligand defines the equatorial plane with

the copper ion displaced out from this plane by 16.8 pm, towards the coordinated water

molecule placed on the apex of the defined geometry. The equatorial plane of the coor-

dination geometry of the Cu(ii) ions is completed by isothiocyanate monodentate anion,

that coordinates in bent fashion with a torsion angle Cu–N–C–S of 67.7 ◦, bonded at

around 194.4 pm on the metal ion. The amine-nitrogen-to copper bond length of 204.8

pm is significantly longer than that involving the deprotonated amide nitrogen atom

(190.7 pm) consistent with a stronger coordination mode of the last functionality. These

bond lengths are very close to corresponding bond distances reported for similar copper
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oxamato-bridged complexes.293,294 The ligand acts as tridentate system with bite angles

of the two five-membered chelate rings of 82.6 ◦ (O1–Cu–N1) and 83.3◦ (N1–Cu–N2).

The negative charge of the copper(ii)-core is compensated by potassium cation,

which is [5+1] coordinated, first weakly by the isothiocyanate nitrogen atom N3 (267 pm)

and more tightly by the oxamate carbonyl-like oxygen atoms in η2-fashion, and addition-

ally by carboxylate-oxygen atoms and coordinated water molecules with potassium-to-

oxygen bond distances that fall in the 236.0-244.9 pm range (Figure 5.4). These potas-

sium cations are placed between layers of anionic copper units resulting in µ2-oxygen

bridges between K+ ions via carboxylate oxygen (O1) and oxamate oxygen (O2) atoms,

resulting in alternating rhombic and octahedron geometric arrangement along the b crys-

tallographic axis (Figure 5.5). Complex 21 crystallizes in P2/c space group with a water

molecule as solvent of crystallization. These lattice water molecules are placed in the

octahedron cavities of the one-dimensional polymer and are involved in bifurcated hy-

drogen bonding interaction with the coordinated water molecules of the copper(ii) ions

(OW· · ·O1OH 281.0 pm) (Figure 5.4).

Figure 5.4: Molecular structure and selected numbering scheme for ([Cu(dmae-

oximate)(OH2)(NCS)]K·H2O)n (21) complex showing the formation of the coordination

sphere of potassium cation. Hydrogen atoms have omitted for clarity. Dashed lines

represent hydrogen bonding interactions.
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Figure 5.5: Representation of crystal packing in ([Cu(dmae-

oximate)(OH2)(NCS)]K·H2O)n (21) complex showing the formation of polymeric

structure. Hydrogen atoms have omitted for clarity. Only the heteroatoms which

are relevant for the coordination mode of potassium cation are labeled. Water lattice

molecules have been also omitted.

The IR spectrum of the complex is also in agreement with molecular structure

determination. Strong band corresponding to stretching vibration of the isothiocyanate-

coordination mode of the SCN− anion has been observed at 2061 cm−1, around 10 pm

shifted compared to its vibration band in iron-azametallacrown complexes described in

Chapter 2, but very close to established vibration band for N-coordinating mode.104 The

oxamate-based ligand showed strong band at 1636 and 1617 cm−1, owing to νCO vibra-

tions in acid and amide functionalities, respectively. These are shifted to lower frequencies

Table 5.1: Selected bond lengths (pm) and angles (◦) for complex 21.

Cu–O1 203.5(9) Cu–N1 190.7(11)

Cu–N2 204.8(10) Cu–N3 194.4(11)

Cu–O1W 235.1(9)

O1–Cu–N1 82.6(4) O1–Cu–N2 163.7(4)

O1–Cu–N3 93.9(4) O1–Cu–O1W 84.6(4)

N1–Cu–N2 83.3(4) N1–Cu–N3 168.8(5)

N1–Cu–O1W 100.8(4) N2–Cu–N3 98.3(5)

N2–Cu–O1W 106.2(4) N3–Cu–O1W 89.4(4)
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compared to their stretching vibrations in N-(2-dimethylamino-ethyl)-oxalamide acid lig-

and (1696 and 1660 cm−1) in accordance with ”in situ” hydrolysation of the oxamide-like

ligand upon copper(ii) ion coordination. Medium-to-strong intense bands centered at

1335-1317 and 802 cm−1 have been also detected owing to νsym(NCO) stretching and

δ(CO) deformation modes of the amide group. In addition, broad band of medium inten-

sity has been detected at 3392 cm−1 which was attributed to water stretching vibration

modes.

5.2 Oxamate-bridged trinuclear [Cu2Co]-complex

The anionic Cu(ii) precursor 21 reacts with divalent transition metal ions, e.g. Co(ii)

perchlorate under reflux in methanol solution to afford a trinuclear [(Cu(dmae-oximate)-

(MeOH)(NCS))2Co(MeOH)2] (22) complex (Figure 5.6). Cobalt(ii) ion plays a very im-

portant role in molecular magnetism due to its highest magnetic anisotropy as compared

to other d-transition metals. Taking into consideration the strong magnetic interaction

mediated by oxalate-derivatives compounds, the association of Cu(ii) metal ions with

Co(ii) might led to interesting magnetic behavior of the resulting polynuclear complex.

Molecular structure determination shows a centrosymmetric [Cu2Co]-complex which crys-

tallizes in the C2/c space group with an inversion center that passes through the cobalt

ion.

Figure 5.6: Molecular structure and numbering scheme of [(Cu(dmae-

oximate)(MeOH)(NCS))2Co(MeOH)2] (22) complex. Thermal ellipsoids are drawn

at 50% probability. Hydrogen atoms have omitted for clarity.
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The copper(ii) ions maintain their classical position in the tridentate pocket of

the N-(2-dimethylamino-ethyl)-oxalamic acid ligand with Cu–N and Cu–O bond lengths

very close to corresponding bond distances in the mononuclear precursor 21 complex.

A net difference in the coordination sphere of the copper(ii) ion has been observed for

the isothiocyanate-monodentate ligand which binds in linear fashion (Cu–N–C–S torsion

angle is equal 177.9 ◦) with a Cu–N3 bond length of 192.6 pm. The cobalt(ii) ion is

surrounded by two copper oxamate-like anionic units, and completes its slightly distorted

octahedral geometry with two methanol molecules. The Co–OM bond distances are 221.6

pm, only 5 pm longer than cobalt-to-oxygen atoms bond lengths formed with the bridging

oxamate-ligand. Selected bond lengths and angles in complex 22 are listed in Table 5.2.

The cobalt-to-oxamate bridging oxygen atoms are very similar and within the error

of measurement (Co–O2 216.2 pm and Co–O3 216.9 pm), resulting in a planar structural

arrangement with the dihedral angle between the bridging entities of 3.9◦. This implies

that Cu–O–C–O–Co and Cu–N–C–O–Co fragments are delocalized units as a result of

Table 5.2: Selected bond lengths (pm) and angles (◦) for complex 22.

Cu–O1 204.8(2) Cu–N1 207.6(3)

Cu–N2 191.6(2) Cu–N3 192.6(3)

Cu–O1M 226.6(2) Co–O2 216.2(2)

Co–O3 216.9(2) Co–O2M 221.6(3)

O1–Cu–N1 164.52(10) O1–Cu–N2 81.92(9)

O1–Cu–N3 95.53(10) O1–Cu–O1M 92.49(9)

N1–Cu–N2 83.28(10) N1–Cu–N3 97.82(11)

N1–Cu–O1M 94.29(10) N2–Cu–N3 166.57(12)

N2–Cu–O1M 99.04(10) N3–Cu–O1M 94.23(11)

O2–Co–O2A 180.00(10) O2–Co–O3A 101.87(8)

O2–Co–O3 78.13(8) O3–Co–O3A 180.00

O2–Co–O2M 89.28(9) O3–Co–O2M 83.39(9)

O3–Co–O2MA 96.61(9) O2A–Co–O2M 90.72(9)

O3A–Co–O2M 96.61(9) O2M–Co–O2MA 180.00(12)

153



conjugation of electrons from from the oxygen atoms and lone pairs on the nitrogen

atoms. This is further supported by the average C–O (C4–O3 124.8 pm, C4–O1 126.7

pm and C3–O2 127.4 pm) and C–N (C3–N2 128.6 pm) bond distances, which are shorter

than expected single C–O and C–N bonds of 148.1 and 146.2 pm, respectively. The

intramolecular Cu· · ·Co separation is around 543.7 pm, similarly to intrametallic separa-

tion in reported similar oxamate-bridged polynuclear complexes.270,285,295 The trinuclear

units are pillared via hydrogen bonding interactions forming polymeric structures along

the ab planes (Figure 5.8) with OM· · ·O contacts of 273.1 pm (O2· · ·O1M) and 276.2 pm

(O1· · ·O2M) (Figure 5.7). Within these hydrogen bonded one-dimensional polymers, the

Cu· · ·Co intercahin separation is even smaller than the intramolecular Cu· · ·Co separa-

tion, namely 522.7 pm. In addition equal intrachains Cu· · ·Cu and Co· · ·Co separations

have been observed of around 689.4 pm, much shorter than Cu· · ·Cu intra-trimer sepa-

ration of 1087.4 pm.

Figure 5.7: Hydrogen bonding interaction in [(Cu(dmae-

oximate)(MeOH)(NCS))2Co(MeOH)2] (22) complex as viewed along the c crystal-

lographic axis.

The IR spectrum of complex 22 is also in line with the molecular structure de-

termination. Characteristic IR features of the Cu(ii)-precursor have been detected, e.g.

the medium-to-strong intense bands centered at 1336-1316 and 810 cm−1 have been also

detected owing to νsym(NCO) stretching and δ(CO) deformation modes of the amide

group. The νCO vibrations mode have been observed at 1653 and 1610 cm−1, slightly
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Figure 5.8: Packing diagram in [(Cu(dmae-oximate)(MeOH)(NCS))2Co(MeOH)2] (22)

complex showing the formation of polymeric structure formed by hydrogen bonding in-

teractions as is viewed along the c crystallographic axis.

shifted compared to their IR features in complex 21, owing to an extended bridging mode

of the N-(2-dimethylamino-ethyl)-oxalamic acid supporting-ligand. Very broad bands of

medium intensity have been detected at 3420 and 3254 cm−1 which were attributed

to νOH stretching vibration of the coordinated methanol molecules. By comparison to

mononuclear Cu(ii)-precursor, the isothiocyanate stretching vibration has been observed

at 2094 cm−1, owing to a linear coordination mode of the isothiocyanate monodentate

anion in trinuclear complex 22.

5.2.1 Magnetic properties

Variable temperature (300 - 2 K) magnetic susceptibility measurements were performed

on powered crystals of complex [(Cu(dmae-oximate)(MeOH)(NCS))2Co(MeOH)2] (22)

complex. The χM vs T and χMT vs T plots are depicted in Figure 5.9 as have been

measured with a fixed 2000 Oe magnetic field. The χMT value is 5.05 cm3mol−1K at 300 K

which is much higher than expected value for uncoupled spin carriers. The χMT value

at 300 K for Co(ii) ion in octahedral environment is about 2.5 cm3mol−1K, value which

takes into account the orbital contribution in addition to the SCo = 3/2 local spin.10 The

experimental χMT values are decreasing steadily on lowering the temperature reaching

a rounded minimum of 2.10 cm3mol−1K at 15 K and than increase again to reach a
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Figure 5.9: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [(Cu(dmae-oximate)(MeOH)(NCS))2Co(MeOH)2] (22) complex mea-

sured with an applied magnetic field of 2000 Oe.

maximum of 2.71 cm3mol−1K at 2 K. The χMT vs T profile curve reveals a ferrimagnetic

behavior and has been mainly found in [CuCo]-chain and ABA systems described by

Kahn.10

The decrease of the χMT values in the 300-15 K temperature regime may be a con-

sequence of antiparallel alinement of the local Co(ii) and Cu(ii) spins. On lowering the

temperature an increase of the χMT values may be correlated to possible ferrimagnetic

interaction that occurs in the bulk material. The magnetic behavior of Co(ii) ion in octa-

hedral environment is governed by strong magnetic anisotropy and orbital contribution,

with last feature arising from 4T1g ground state, therefore a detailed interpretation of

the magnetic data has to take into account the orbital contribution of the cobalt(ii) ion.

Nevertheless, owing to the planarity of the bridging organic ligand, known as one of the

best mediators of magnetic interaction between the paramagnetic centers, a strong mag-

nitude of the magnetic interaction is to be expected. This is based on well established

system for which the extended conjugated π-system of the oxalate-derivatives bridges

assure a good overlap of the d-magnetic orbitals.296

An important feature of this polynuclear [Cu2Co]-complex 22 consists of its possible

function as ”magnetic molecular sponges”. This will be to be found if the coordinated
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methanol molecules are totally or partly removed and therefore, a new arrangement of

the structural motif to form coordination polymers is to be expected. This hypothesis

is sustained by short interchain Cu· · ·Co separation of 522.7 pm, in which two possible

coordination modes are plausible: I) the carboxylate oxygen atom of the oxamate-based

ligand may function as µ2 bridges or II) the isothiocyanate ligand change the coordination

mode from end-off to end-to-end bridges between the metal centers.268 This will be a

similar situation with one reported by Kahn for hydrated [CuMn] and [CuCo]-containing

complexes for which the dehydratation process has led to ferrimagnetic ordering due to

the polymerization of the bimetallic units.28,29

5.3 Conclusions and future perspectives

The ”complex-as-ligand” approach allows synthesis of polynuclear metal complexes with

predefined structural motif. A novel mononuclear Cu(ii) complex with oxamate-based

ligand (N-(2-dimethylamino-ethyl)-oxalamic acid) has been isolated and successfully used

to synthesize trinuclear [Cu2Co]-complex. Co2+ ion is an appropriate paramagnetic cen-

ter for designing magnetic materials due to its very anisotropic spin carrier property.

Besides the additional coordination sites of the supporting oxamate-ligand in Cu(ii)-

precursor complex 21 that allows the coordination of the outer metal ions, an interesting

feature of this molecular ”brick” is represented by labile coordination positions existent

at the copper center. The isothiocyanate monodentate end-off ligand may be replace

with other pseudohalides like, i.e azide which can better bridge end-to-end metal ions.

Another interesting bridging entity, known to mediate very well the magnetic interaction

between the paramagnetic centers is the cyanide ligand. On this basis, the ”in situ”

formed CuII-complex precursor has been reacted with KCN, under reflux in presence

of FeCl3·6H2O in basic aqueous solution. A tetranuclear mixed-valence copper complex

[(CuII(dmae-oximate)(µ2-CN)3)CuI(Cl)0.5]K3(NO3)0.5·xH2O (23) has been obtained for

which the molecular structural motif is shown in Figure 5.10.

The quality of the isolated crystals was not good enough for an accurate determi-

nation of the molecular structure. It is most likely that no iron(iii) ion is present in the

structural motif, but instead the ”copper-oxamate” entities are cyanide bridged through a
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Figure 5.10: Representation of molecular structure fragment and the corresponding num-

bering scheme for [(CuII(dmae-oximate)(µ2-CN)3)CuI(Cl)0.5]K3(NO3)0.5·xH2O (23) com-

plex.

diamagnetic CuI center. The overall synthetic scheme to generate mixed-valence homonu-

clear copper-cyanide bridged complexes may be explained as partial reduction of Cu(ii)

ions in the used reaction conditions: reflux and excess of KCN reagent. It has been

reported that copper(ii) cyanide complexes are not stable but are reduced by cyanide to

a copper(i) ion under release of cyanogen.297 The Cu(i) cyanide complexes have been

reported to be very stable towards oxygen, i.e [Cu(CN)3]
2− is known to be very stable to-

wards oxygen streams. Any attempt to isolate crystals of complex 23 in absence of FeCl3

salt was unsuccessful, therefore the iron(iii) ion might be interfering in the crystalliza-

tion process. The structural motif consists of three copper-N-(2-dimethylamino-ethyl)-

oxalamic acid ligand moieties linked presumably by a CuI center and three µ2-cyanide

bridging anions with CuI-N(≡C) bond lengths of 194.5-195.9 pm, a little bit shorter com-

pared to corresponding bond distances of 200.3 pm found in discrete K3[CuI(CN)4].
298

Selected bond lengths and angles of complex 23 are listed in Table 5.3. The CuA, CuB,

CuC centers presumably CuII ions have square-planar (CuA and CuC centers) and square

pyramidal geometries (τ =0.03)239 with the cyanide and the donor set atoms of the tri-
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Table 5.3: Selected bond lengths (pm) and angles (◦) for complex 22.

Cu–N1 194.8(17) Cu–N2 195.9(17)

Cu–N3 194.5(19) O1A–CuA 202.3(11)

N1A–CuA 191.9(13) N2A–CuA 207.9(15)

CuA–C1 195.9(13) O1B–CuB 200.6(14)

N1B–CuB 188.3(15) N2B–CuB 205.7(17)

CuB–Cl 245.2(2) CuB–C2 193.0(17)

O1C–CuC 198.9(12) N1C–CuC 193.8(13)

N2C–CuC 207.2(14) CuC–C3 195.7(14)

N1–Cu–N2 121.5(7) N1–Cu–N3 127.6(7)

N3–Cu–N2 110.5(8) O1A–CuA–N1A 82.6(5)

O1A–CuA–N2A 164.0(5) N1A–CuA–N2A 82.8(6)

O1B–CuB–N1B 81.7(6) O1B–CuB–N2B 165.8(6)

N1B–CuB–N2B 84.1(7) O1C–CuC–N1C 81.9(5)

O1C–CuC–N2C 162.2(6) N1C–CuC–N2C 82.2(6)

dentate supporting-ligand forming the equatorial planes. The distance between CuI and

CuII cyanide-bridged centers range from 493.8 to 499.2 pm, distances that compare well

with 454.4-467.2 pm reported for CuI - CuII separation found in mixed-valence homonu-

clear copper complexes.299 The CuI-center is three-coordinated with bridging cyanide

angles in the 110.6-127.6◦ range.

A possible overcome of the reduction-process that occurred in the synthetic pathway

used to isolate complex 23, may be the replacement of KCN reagent with hexacyanide

metal complexes, e.g. K3[M(CN)6] (M = Fe, Cr) and octacyanide complexes of 4 d-block

metals. Moreover, the existing reports showed that d-metal precursor complexes based

on oxalate-derivative ligands are suitable ”bricks” to ”construct” ferromagnetic d-f mixed

polynuclear complexes. Hence, a proposed reaction pathway shown in Figure 5.11 may

be followed.
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Figure 5.11: Proposed reaction pathway involving the Cu-oxamide precursor as build-

ing brick to to approach polynuclear metal-complexes with d-f topology and high-spin

ground state due to a rational chosen ferromagnetic interaction between the paramagnetic

centers.

5.4 Experimental Part

Synthesis of N-(2-dimethylamino-ethyl)-oxalamide acid ligand

To a suspension of ethyl oxamate (1.17 g, 0.01 mol) in iso-propanol (50 mL) was stepwise

a isopropanol solution (30 mL) of N,N-dimethylethane-1,2-diamine (0.88 g, 0.01 mol).

The resulting solution was refluxed for one hour and than cooled down on ice-bath when

a colorless precipitate is formed. The precipitate was filtered, washed with a minimum

amount of isopropanol and dried in air. Yield: 1.44 g (9.00 mmol, 90.0%). Anal. Calc.

for C6H13N3O2 (159.18): C 45.27, H 8.23, N 26.40. Found: C 45.33, H 7.99, N 26.06. 1H

NMR (400 MHz, DMSO-d6): δ = 2.14 (s, 6H, CH3), 2.33 (t, 2H, CH2N, J = 6.6 Hz),

3.17-3.22 (q, 2H, CH2NH, J = 6.36 Hz), 7.74, 8.01 (br, total 2H, NH2, ν1/2 = 6.91 Hz),

8.42 (t. NH, J = 6.28 Hz) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 36.7 (CH2NH),

45.0 (CH3), 57.5 (CH2N), 160.1 (C=O–NH), 162.2 (C=O–NH2) ppm. Selected IR data

(cm−1): 3376, 3319 (s, NH, NH2), 1696, 1661 (s, CO), 1322, 1311 (m, sym NCO), 858

(m, δCO).
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Synthesis of ([Cu(dmae-oximate)(OH2)(NCS)]K·H2O)n (21) complex

To a solution of N-(2-dimethylamino-ethyl)-oxalamide acid ligand (1.56 g, 0.01 mol) in

MeOH-H2O mixture (1/3) (60 mL) was added stepwise an aqueous solution (15 mL)

of Cu(NO3)2·3H2O (2.61 g, 0.01 mol) followed by addition of KOH (0.03 mol) aqueous

solution (1.68 g in 30 mL H2O). To the resulting solution, KSCN (1.125 g, 0.011 mol)

was added as aqueous solution (10 mL) and the final solution mixture refluxed for around

one hour with continuous stirring. By cooling at room temperature a black precipitate

was formed which was removed by filtration. The water solvent of the clear filtrate was

removed to dryness. The solid material was extracted twice with MeOH and redissolved at

the end in minimum amount of the same solvent. Yield: 1.64 g (4.60 mmol, 46.0%). Anal.

Calc. for C7H16N3O6SCuK (372.92) ([Cu(dmae-oximate)(OH2)(iso-NCS)]K·2H2O): C

22.55, H 4.32, N 11.27. Found: C 22.39, H 4.39, N 10.01. Selected IR data (cm−1): 3392

(br m, H2O), 2061 (s, NCS), 1636, 1617 (s, CO), 1335, 1317 (m, sym NCO), 802 (m,

δCO).

Synthesis of [(Cu(dmae-oximate)(MeOH)(NCS))2Co(MeOH)2] (22) complex

To a solution of precursor complex 21 (88.5 mg, 0.25 mmol) in methanol/water mixture

(5/1) (12 mL) was added stepwise a methanol solution (5 mL) of Co(ClO4)2·6H2O (45.5

mg, 0.125 mmol). The resulting clear solution was refluxed for one hour. The solution

was cooled down when a precipitate is forming. This was filtered off and the resulting

solution is allowed to stand at room temperature in a closed vessel. Yield: 20.0 mg (0.03

mmol, 21.5%). Yield: 1.64 g (4.60 mmol, 46.0%). Anal. Calc. for C18H42N6O13S2Cu2Co

(800.72) ([(Cu(dmae-oximate)(MeOH)(NCS))2Co(MeOH)2]·3H2O): C 27.00, H 5.29, N

10.50. Found: C 27.14, H 3.80, N 10.87. Selected IR data (cm−1): 3420, 3254 (br m, OH,

MeOH), 2094 (s, NCS), 1653, 1610 (s, CO), 1336, 1316 (m, sym NCO), 810 (m, δCO).
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Synthesis of [(CuII(dmae-oximate)(µ2-CN)3)CuI(Cl)0.5]K3(NO3)0.5·xH2O (23)

complex

To a suspension of N-(2-dimethylamino-ethyl)-oxalamide acid ligand (78.0 mg, 0.5 mmol)

in water (5 mL) was added stepwise an aqueous solution (5 mL) of Cu(NO3)2·3H2O

(120.0 mg, 0.5 mmol) followed by addition of NaOH (1 mL of 1 N aqueous solution).

The resulting clear solution was stirred at room temperature for five minutes, followed

by addition of KCN (65.0 mg, 1.0 mmol) dissolved in H2O (2 mL). The resulting solution

was stirred at room temperature for around two hours leading to a blue precipitate. This

precipitate was redissolved using additional NaOH (1 mL 1N aqueous solution), followed

by addition of a methanol solution of FeCl3·6H2O (33.75 mg, 0.17 mmol). The clear

formed solution was refluxed for one hour, filtered hot and left at room temperature

for slow evaporation of the solvents mixture. Blue crystals, accompanied by a colorless

material were collected from the solution within one months. Selected IR data (cm−1):

3397 (br, OH2), 2136 (s, CN), 1653, 1610 (s, CO), 1335, 1311 (m, sym NCO), 800 (m,

δCO).
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Chapter 6

Novel heterometallic 3d-4f

complexes

The synthesis of heteronuclear metal complexes has started at the end of the 1960s when

interesting physicochemical proprieties have been reported for dissimilar d-metals ions

placed in the close proximity.300 According to the chosen metal ions and their geome-

try the exchange interaction pathway can vary from ferromagnetic to antiferromagnetic

coupling.10 The design of heteronuclear complexes has also been extended to d-f compo-

sition in 1985 when Gatteschi et al. reported unique magnetic properties for a trinuclear

CuII
2 -GdIII complex.301 A very important role in the strategy of synthesis of such dis-

similar metal complexes is played by the starting tectonic compound that is used in fact

as ”complex-ligand”. Salen-type ligands are versatile organic supports for synthesizing a

broad range of metal complexes.302 These tetradentate Schiff base ligands are extensively

used to isolate d-metal complexes (manganese, iron, vanadium, molybdenum, titanium,

etc.) which are one of the best catalysts for various organic reaction.303 In addition,

these complexes are also reported as versatile building blocks for interesting magnetic

materials.302,304 A peculiar role is attributed to copper-salen and analogous polydentate

Schiff base complexes that provide di-(µ-phenoxo)-CuII-LnIII complexes.305–309 Dinuclear

[Cu(salen)Ln(NO3] and trinuclear [(Cu(salen))2Ln(NO3)3] were prepared by reaction of

the [Cu(salen)]-complex with Ln(NO3)3·6H2O salts.310–314 Similarly NiII-LnIII complexes

have been isolated and according to the existing reports it seems that heavier lanthanide

ions with smaller ionic radius (Eu–Lu) preferrers the formation of heterodinuclear com-
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plexes, whereas the other lanthanide metals yield trinuclear d-f complexes.314–316 In all

these complexes the nitrate groups functions as chelating end-cap ligand to the lan-

thanide ion. Discrete dinuclear d-f complexes have also been isolated by replacing the ni-

trate capping ligand with hexafluoroacetylacetonate,317tetramethylheptadione318 and/or

trifluoracetic acid.319,320

The initial work in this area showed that CuII and GdIII brought in close vicinity

are coupling ferromagnetically.301 This was surprising since the GdIII ion posses all seven

unpaired electrons in 4f-orbitals and it might be expected that at least one of these

orbitals would overlap with the semi-occupied orbital of CuII ion and hence such an

interaction would be anti-ferromagnetic. Instead, it has been demonstrated that the

real countable interaction takes place between the semi-occupied dx2−y2 orbital of CuII

center and an empty orbital of the GdIII ion, most likely the d-orbital.321 In this case

there are two possible orientations for the electron transferred from CuII to GdIII. If an

anti-parallel alignment is present this would lead to an S = 3 spin state and counts for

an antiferromagnetic exchange. If the alignment of the d-electron is parallel to the 4f-

electrons, the resulting state S = 4 is equivalent to a ferromagnetic exchange. According

to Hund’s rule the later is lower in energy and, therefore the excited state of the system

favors the ferromagnetic exchange306,321,322 (Figure 6.1).

Figure 6.1: Scheme of the ground and charge transfer configuration relevant to the ex-

change mechanism in Cu-Gd species taken from reference.321
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The ferromagnetic interaction reported initially in 1985 by Gatteschi et al in the

trinuclear CuII
2 -GdIII complex301 was weak with a coupling constant J ' 5 cm−1. This

rises two important questions: i) can the interaction CuII-GdIII be conducted to a stronger

coupling and therefore the design of new heterodinuclear d-f complexes will be more than

an academic interest? and ii) if a larger nuclearity or polymeric complexes will bring high-

spin molecules or even molecular ferromagnets with immediate application. Taking into

account these two considerations compartmental salen-type Schiff bases have used exten-

sively to synthesize the starting ”d-metalloligand”. Such ligands are based on dissymmet-

ric 3-carboxy-2-hydroxy benzaldehyde323,324 and more recently 3-alkoxy substituted sali-

cylaldehydes developed by Costes et al 325–327 With these two organic frameworks a large

number of discrete d-f heterodinuclear complexes have been isolated.313,314,318,319,325–334

The majority of the heterodinuclear complexes are based on CuII-GdIII composition and

the magnitude of the magnetic interaction is larger or even smaller than the initial report.

Moreover, according with the starting organic framework antiferromagnetic interaction

between CuII-GdIII has also been reported.312,335 This led to an tremendous research

activity focused on understanding and tuning the d-f magnetic interaction.

Following Costes’s strategy and keeping in mind the two concerns regarding the de-

sign of new heteronuclear d-f complexes, a known Cu-salen-type complex has been isolated

according to literature data.326,335 In instance, 1.3-propane diamine and/or 2,2-dimethyl-

1,3-propane diamine have been reacted with 3-methoxy-2-hydroxy benzaldehyde (triv-

ially known as ortho-vanillin) in a 1:2 ratio to yield the compartmental N,N’-bis(3-

methoxy salicylidene)-R-1,3-diamino propane ligands. These Schiff base ligands reacts

stoichiometrically with copper(ii) acetate in methanol solution to form the mononuclear

[Cu(OMesalen)H2O] (24) precursor. The molecular structure determination is depicted

in Figure 6.2. The copper ion is five coordinated in an almost ideal square-pyramidal

geometry formed by N2O2 donor atoms in the equatorial plane and a coordinated water

molecule in the apical position (Cu–O1w 237.8 pm). This tectonic complex crystalize in

Pnma orthorhombic space group with the copper atom displaced out from the equatorial

plane only by 15.08 pm, towards the apical oxygen atom with O1–Cu–O1A angle of 83.7◦.

Selected bond lengths and angles in complex [Cu(OMesalen)H2O] are given in Table 6.1.
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Figure 6.2: Molecular structure and numbering scheme atoms in complex

[Cu(OMesalen)H2O] (24) complex. Thermal ellipsoids are drawn at 50 % probability.

The coordinated water molecule is in hydrogen bonding interactions with the methoxy

groups of neighboring molecules forming a 1D-chain through O–O hydrogen contacts

(Ow–OCH3 272.1 pm) (Figure 6.3).

Figure 6.3: Hydrogen bonding interaction in complex [Cu(OMesalen)H2O] (24) showing

the formation of the 1-D polymer. Dashed lines represent hydrogen bonding interactions.

Hydrogen atoms have been omitted for clarity.

Such a salen-type copper complex is an appropriate framework for accommodation

of lanthanide ions. As can be seen, the copper ion is accommodated in the inner O2N2

pocket of the supporting organic ligand, whereas the outer site formed by phenoxy and

methoxy oxygen atoms of the salen-type ligand form the appropriate pocket for oxophilic

lanthanide ions.336
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Table 6.1: Selected bond lengths (pm) and angles (◦) for complex 24.

Cu–O1 195.4(2) Cu–O1 1.954(2)

Cu–N1 201.1(3) Cu–N1 201.1(3)

Cu–O1W 237.8(3) - -

O1–Cu–O1A 83.74(12) O1–Cu–N1A 90.36(10)

O1–Cu–N1 90.36(10) N1–Cu–N1A 94.22(16)

O1–Cu–O1W 99.70(9) N1–Cu–O1W 89.45(9)

By changing the diamine ”spacer” to 2,2-dimethyl-1,3-propane diamine similar re-

action pathway can be followed. This last N,N’-bis(3-methoxysalicyliden)-2,2-dimethyl

1,3-diamino propane ligand was reacted with copper(ii) acetate to form a similar copper-

salen complex. In presence of NaNO3, an cationic [Cu(OMesalen)Na(H2O)]NO3 (25)

complex was isolated337 (Figure 6.4).

Figure 6.4: Molecular structure and numbering scheme atoms in complex

[Cu(OMesalen)Na(H2O)]NO3 (25). Thermal ellipsoids are drawn at 50% probability.

The unbounded nitrate anion is also shown.

The copper atom is placed in the classical dianionic N2O2 inner coordination site in

a square-planar environment. The Cu–O (191.6 and 192.8 pm) and Cu–N (197.5 and

167



198.0 pm) are slightly shorter than in [Cu(OMesalen)OH2] complex due to different co-

ordination number of the copper ion. The sodium ion has been inserted in the outer

O2(OCH3)2 coordination site of the compartmental hexadendate Schiff base ligand in a

pentacoordinated environment with a H2O occupying the apical position of the s-metal

in a bond distance of 244.1 pm. The Na–O bond lengths depend on the provenance of

the oxygen atoms and are shorter as expected for µ-phenoxy bridged oxygen atom (Na–

O1 232.8 and Na–O1 238.0 pm) and longer for the methoxy oxygen atoms that fall in

the 242.5 (Na–O3) and 262.8 (Na–O4) pm range. Selected bond lengths and angles in

complex [Cu(OMesalen)Na(H2O)]NO3 (25) are given in Table 6.2. The compensation of

the positive charge of the alkaline ion is accomplished by the nitrate anion (Figure 6.4).

Table 6.2: Selected bond lengths (pm) and angles (◦) for complex 25.

Cu–O1 191.6(2) Cu–O2 192.8(2)

Cu–N1 197.5(33) Cu–N2 198.0(2)

Na–O1 232.8(2) Na–O2 237.9(2)

Na–O3 242.5(2) Na–O4 262.8(2)

Na–O1W 244.1(3)

O1–Cu–O2 81.66(9) O1–Cu–N1 91.90(10)

O1–Cu–N2 161.92(10) O2–Cu–N1 167.63(10)

O2–Cu–N2 92.48(10) N1–Cu–N2 96.71(10)

O1–Na–O2 64.54(8) O1–Na–O3 66.66(8)

O1–Na–O4 127.06(9) O1–Na–O1W 103.34(9)

O2–Na–O3 131.20(9) O2–Na–O4 62.87(8)

O2–Na–O1W 86.96(9) O3–Na–O4 164.99(9)

O3–Na–O1W 104.22(9) O1W–Na–O4 68.51(8)

The formation of the d-s complex proves once again the versatility of the organic

framework to accommodate dissimilar metal ions. The sodium ion can be replaced

by lanthanide metals by reacting the copper(ii)-salen complex with lanthanide nitrate

salts. In instance, equimolecular reaction of the Cu-precursor 23 with Gd(NO3)3·6H2O

in methanol solution yields the dinuclear Cu-Gd complex of type [Cu(MeOH)(OMesalen)
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Gd(NO3)3] (26). The molecular structure is depicted in Figure 6.5, whereas selected

bond lengths and angles in complex (26) are listed in Table 6.3. As it was expected,

the gadolinium ion coordinates in the outer site of the compartmental salen ligand sim-

ilarly to sodium ion in complex [Cu(OMesalen)Na(H2O)]NO3. These O2O2 pocket fills

partly the coordination environment of the gadolinium ion, whereas three nitrate ions

complete the ten-coordination sphere of the lanthanide ion and also compensate its 3+

charge. Each nitrate ligand coordinates in η2-bidentate fashion with the bond distances

in the 245.3-256.6 pm range. The copper ion, accommodated in the inner pocket is

five-coordinated in a square pyramidal geometry with a methanol molecule coordinated

on apical position in a bond distance of 235.4 pm. A similar Cu-Gd complex has been

reported in literature,325 with a small difference in the coordination environment of the

d-metal, namely a coordinated acetone molecule instead of methanol that has been found

in molecular structure of [Cu(MeOH)(OMesalen)Gd(NO3)3] complex described herein.

Figure 6.5: Molecular structure and numbering scheme of complex

[Cu(MeOH)(OMesalen)Gd(NO3)3] (26) with thermal ellipsoids drawn at 50% probability.

The Cu–O and Cu–N bond lengths are closed to corresponding bond distances in the

similar reported complex, as well as the Cu–Gd intermolecular separation of around

353.6 pm. The longest Gd–O bond lengths involves the methoxy-oxygen atoms of the

side arm of the vanillin-based ligand (250.6 pm for Gd–O2 and 254.7 pm for Gd–O4,
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Table 6.3: Selected bond lengths (pm) and angles (◦) for complex 26.

Gd–O1 236.3(2) Gd–O2 250.6(2)

Gd–O3 240.5(2) Gd–O4 254.7(2)

Gd–O5 245.3(2) Gd–O6 249.5(2)

Gd–O8 246.4(2) Gd–O9 253.8(2)

Gd–O11 254.1(2) Gd–O12 256.6(2)

Cu–O1 196.0(2) Cu–O3 196.4(2)

Cu–N1 199.9(3) Cu–N2 197.2(3)

Cu–O1M 235.4(3) Cu–Gd 353.5(6)

O1–Gd–O2 64.22(7) O1–Gd–O3 62.39(7)

O1–Gd–O4 124.90(7) O1–Gd–O5 130.22(8)

O1–Gd–O6 87.50(8) O1–Gd–O8 148.67(8)

O1–Gd–O9 121.85(7) O1–Gd–O11 78.94(8)

O1–Gd–O12 72.92(8) O2–Gd–O4 148.91(7)

O2–Gd–O9 68.35(7) O2–Gd–O11 122.76(8)

O2–Gd–O12 77.24(7) O3–Gd–O2 121.74(7)

O3–Gd–O4 63.28(7) O3–Gd–O5 121.17(8)

O3–Gd–O6 77.24(8) O3–Gd–O8 118.06(8)

O3–Gd–O9 166.90(7) O3–Gd–O11 66.62(8)

O3–Gd–O12 107.05(7) O4–Gd–O12 132.92(7)

O5–Gd–O2 79.13(8) O5–Gd–O4 73.86(8)

O6–Gd–O2 78.89(8) O6–Gd–O4 72.42(8)

O8–Gd–O2 119.48(7) O8–Gd–O4 69.83(8)

O9–Gd–O4 113.15(7) O11–Gd–O4 88.02(8)

O1–Cu–O3 78.03(9) O1–Cu–N1 90.90(10)

O1–Cu–N2 168.61(10) O1–Cu–O1M 98.35(9)

O3–Cu–N1 165.48(10) O3—Cu–N2 92.74(10)

O3–Cu–O1M 96.71(9) N1–Cu–O1M 94.16(10)

N2–Cu–N1 97.01(11) N2–Cu–O1M 89.27(10)

170



respectively), while the Gd–O bond distances formed with the bridging phenoxy oxygen

atoms are shorter and fall in the 236.3-240.5 pm range. The O1–Cu–O3 is around 78.0◦

and the O1–Gd–O3 angle of around 62.4◦ with the dihedral angle (c) between these two

halves of around 14.5◦. This dihedral angle is around 2◦ smaller than in similar reported

complex,325 therefore a very small difference in the ferromagnetic coupling between CuII-

GdIII is to be expected. This is due to an established and well verified rule according with,

a decrease of the above mentioned dihedral angle leads to an increase of the magnetic

interaction between the CuII and LnIII metal centers.334,338

| J | = 11.5 exp (− 0.054 c) (10)

The magnetic properties of rare-earth metals are dominated by the internal nature

of the f-orbitals that rise a strong orbital angular momentum and spin-orbit coupling. In

addition lanthanide ions present high magnetic anisotropy and therefore the interpreta-

tion of the magnetic behavior is more complicated compared to d-block metals.10,321,338,339

The ground state of GdIII is 8S7/2 and the lowest excited energy level is very high. Thus,

the contribution of the orbital angular momentum and the anisotropic effect do not need

to be taken into consideration when the properties of its complexes are discussed on the

basis of electronic configuration. This is the reason why gadolinium complexes are better

studied compared to other lanthanide-containing compounds. From the magnetic point

of view the magnetic data of gadolinium-containing complexes can be interpreted using

the isotropic Heissenberg Hamiltonian. The magnetic behavior of CuII-GdIII complex

(26) described here is depicted in Figure 6.6 in form of thermal variation of χM and χMT

product, where χM represents the molar susceptibility corrected for diamagnetism. At

300 K, the χMT product is 8.98 cm3mol−1K which is very close to a calculated value

of 8.25 cm3mol−1K for uncoupled CuII and GdIII ions. On lowering the temperature

the χMT values increase, reaching a maximum of 10.67 cm3mol−1K at 7 K. This last

value roughly corresponds to a calculated one (10.00 cm3mol−1K) for S = 4 spin ground

state which results from ferromagnetic coupling of CuII (S = 1/2) and GdIII (S = 7/2),

assuming gGd = gCu = 2.
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Figure 6.6: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Cu(MeOH)(OMesalen)Gd(NO3)3] (26) measured with an applied mag-

netic field of 2000 Oe; the solid lines represent the theoretical curves (see text).

A quantitative analysis of the experimental data has been performed on the basis

of spin-only Hamiltonian:10,321

Ĥ = −JCuGdSCuSGd

Taking into consideration the g values associated to the low lying levels301 E(4) = 0

g4 =
7gGd + gCu

8

and E(3)=4J

g3 =
9gGd − gCu

8

the following expression was obtained:

χMT =
Nβ2T

3k(T − θ)

180g2
4 + 84g2

3exp(−4J/kT )

9 + 7exp(−4J/kT )
(11)

The best fit of the magnetic data lead to J CuGd = 5.27± 0.12 cm−1 for g4 = 2.08± 0.002

and g3 = 2.06± 0.0005 which correspond to a gGd '2.07 and gCu ' 2.12. The reliability

factor R2 = 0.9983 for θ = −0.11± 0.008 K shows a good agreement between calculated

and experimental data sets. The negative Weiss constant θ counts for weak antiferro-

magnetic exchange interaction that occurs between neighboring molecules at very low
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temperature and it is illustrated by the decrease of χMT values below 7 K. The cou-

pling constant between CuII-GdIII centers of around 5.27 cm−1 is only a little bit higher

than reported 4.8 cm−1 found in the similar reported heterodinuclear CuII-GdIII com-

plex.325 This is in agreement with observed small difference for the dihedral angle formed

between O1–Cu–O3 and O1–Gd–O3 planes which led according to empirical equation

aforehand mentioned to JCuGd = 5.25 cm−1. It is worth mentioning that the steric

effect induced by the two methyl groups of the used diamine-spacer led to a larger di-

hedral angle between the two halves (namely O1–Cu–O3 and O1–Gd–O3 angles) which

plays a very important role in transmitting the magnetic interaction between the metal

centers. In agreement with this argument are the reported higher coupling constant

values determined in non-substituted diamine spacers of compartmental Schiff base lig-

ands. In instance, the heterodinuclear Cu–Gd complex formed with Schiff base ligands

derived from o-vanillin and 1,3-diamino propane display a coupling constant of around

8.63 cm−1.332 Therefore, the following results described in this chapter will be focused on

non-methyl derivatives of the diamine spacer involved in formation of the compartmental

Schiff base ligands. The ferromagnetic interaction between CuII-GdIII centers in complex

26 was also confirmed by field dependance magnetization measurements performed at

2 K. The experimental data set is fitting well the Brillouin equation for and ground state

S = 4.07± 0.007 with a reliability factor R2 = 0.99935 assuming gav = 2.00 (Figure 6.7).

Figure 6.7: Plot of the field dependence of the magnetization for complex (26) measured

at 2 K (black filled squares represent the experimental value; the solid line shows the

theoretical curve generated using the Brillouin equation.
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6.1 1-D chains based on copper-lanthanide topology

The last decade of chemistry research has witnessed a great interest of the scientific

community towards design of coordination polymers that contain transition metals in

the main chain.153,340,341 This is due to the observed application of such architectures in

organic synthesis where these polymers posses high catalytic activity due to possible recy-

cling of the catalysts and in addition easy separation of the reaction components.121,342,343

Moreover, coordination polymers have been reported to posses chemical sensor func-

tions,121,344 fluorescence345,346 and/or to function as magnetic materials.16,347,348 Among

the variety of bridging units, cyanate,112,349–359 thiocyanate,360 dicyanamide,332,361 ox-

imate,348,362 amidato328 oxamoato227,363 and diverse carboxylic acids174,346,364–385 have

been received particular attention. From the magnetic properties point of view, these ma-

terials are expect to function as good transmitters of the magnetic interaction between

the constituent oligomers of the polymeric structure. More recently, particular atten-

tion has been devoted to heterometallic polymeric structures that contain d-f topologies

which are expected to posses interesting magnetic properties and therefore their possi-

ble use as nanometer scale magnets. New class of single molecular SMM318,386–390,390–394

or SMC16 magnets have been prepared using lanthanide ions alone and as d-f associa-

tion. The lanthanide chemistry based on dysprosium and terbium complexes provided

d-f clusters which have fairly large ground state values as well as slow relaxation of mag-

netization in relation with significant magnetic anisotropy. These are two compulsory

properties of single molecular magnets which are associated with ferromagnetic coupling

exchange of the paramagnetic centers. In instance, discrete CuII-TbIII complex based on

compartmental-Schiff base ligand has been recently reported as single molecular magnet

behavior with the blocking temperature of the slow time relaxation of the magnetization

in the very low temperature range.318 It is worth mentioning here that single molecu-

lar magnets (SMM) discovered firstly in 199324 and well magnetically documented later

by Sessolli et al.395,396 showed a slow relaxation time of magnetization and hysteresis

effect. This compound formed by acetate- and oxo-bridged Mn12 core posses a ground

state S = 10 and high anisotropy barrier between the degenerate ±Ms energy levels.

The topic has an academic fundament that will permit to fully understand the mag-
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netic interaction between paramagnetic centers and, in addition immediate application

as storage of magnetic information at molecular scale. Oligodinuclear 3d-4f complexes

are particularly attractive as building blocks332,336,349,360 in constructing extended ar-

chitectures, especially when gadolinium to dysprosium ions are part of the assemblies.

These heterometallic units exhibit ferromagnetic intermetallic coupling and therefore the

resulting polymeric architectures are expecting to show interesting magnetic properties.

The selection of bridging functionalities able to mediate the magnetic interaction be-

tween the constituent entities is an opened and challenging topic. A judicious choice

of the bridging linkers allows in principle the synthesis of predetermined coordination

compounds through recognition of donor atoms by metal ions. For example, both copper

and lanthanide centers in complexes of type [Cu(MeOH)(OMesalen)Gd(NO3)3] (26) (see

Figure 6.5) present labile coordination sites. Firstly, the copper ion has a square pyra-

midal geometry with an apical coordinated solvent molecule that can be easily replaced

by an appropriate linker. Such linker, i.e. 4,4’-dipyridine will allow building of extended

structures without alteration of the lanthanide coordination environment.349 Secondly,

the bidentate nitrate ligands of the lanthanide ion (Figure 6.5) can also be substituted by

oxygen and/or nitrogen bearing organic linkers and a limited number of 1-D structures

have been reported.332,333,336,349,350,360 The purpose of these polymeric architectures is

to scrutinize the effectivity of ligand systems for the extend of interchain communica-

tion between the oligomeric units and possibly to enhance the magnetic exchange in-

teraction between the constituent paramagnetic ions along the chain architecture. The

recognition of donor atoms by metal ions represent a potential approach to synthesize

coordination polymers with dissimilar ions. It is well known that lanthanide ions bind

preferentially to hard oxygen-donor atoms, whereas the copper ion prefers more soft

donor atoms. To combine lanthanide and copper atoms in polymeric architectures, poly-

dentate 2,3-pyrazine dicarboxylic acid has been used as bridging linker of the oligomeric

CuII-LnIII units. This type of linker posses a mixed N- O- constituency that allows

various modes of coordination through the pyrazine-ring and also through the two car-

boxylate functionalities.373,381,397 The -COOH functional group can accommodate metal

ions in η1-, η2-fashion and therefore can connect metal centers in different directions,

whereas the pyrazine nitrogen atoms will impose a rigidity of the resulting coordination
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architecture. Using the ”in situ” approach synthesis, one-dimensional CuII-LnIII chains

have been isolated. The Cu-salen precursor - [Cu(OMesalen)H2O] (24) (Figure 6.2) re-

acts stoichiometrically with Ln(NO3)3·6H2O salts, followed by addition of equimolecular

amount of 2,3-pyrazine dicarboxylic acid to form 1-D polymers in which the dinuclear

CuII-LnIII units are linked by the pyrazine 2,3-dicarboxylic polydentate bridge. Following

this strategy 1-D chains containing lanthanides from La to Tb has been isolated, with

the exception of Ce- and Nd-containing ions. The molecular structures of this series of

compounds are shown in Figure 6.9 to Figure 6.14. From crystallographical point of

view the molecular structure determination show isostructural constituency with very

small differences in bond length distances (Table 6.4 to Table 6.9) according to small

variation in the ion radius in the lanthanide series and namely, it decrease from La to Ho

with around 1 % for each lanthanide atom. Although structurally there is no difference

between the 1-D [LCuLn] chains which will be described herein, the magnetic behavior

differs very much within lanthanide-containing compounds. Kahn et al.323,339 and Costes

et al.338 reported that for f1 to f6 electronic configurations, an antiferromagnetic inter-

action is to be expected, whereas from f7 to f10 electronic configuration a ferromagnetic

exchange interaction takes place between 3d-4f paramagnetic centers. Nevertheless, the

type of magnetic exchange coupling is very much influenced by the environment of the d

and f ions and therefore magnetic measurements will be discussed for the whole series of

[Cu(OMesalen)Ln(NO3)(Pyr(COO)2)]n·(DMF)n compounds.

The molecular structure determination will be discussed for copper-gadolinium com-

pound (27). The first 1-D chain of this type is depicted in Figure 6.9 and consist of CuII-

GdIII bridged entities (Figure 6.8). The asymmetric entity is formed by Cu(ii)-Gd(iii)

dinuclear entity with the copper(ii) ion preserving the O2N2 inner coordination compart-

ment of the compartmental N,N’-bis(3-methoxysalicylidene)-1,3-diamino propane ligand

and gadolinium ion coordinated in the O2O2 outer cavity of the salen-type ligand (two

oxygen atoms from phenol groups and two other oxygen atoms from the methoxy groups).

The copper-ion preserves the square-pyramidal geometry with a deviation from the N2O2

ligand plane of around 14.2 pm, below the plane. The CuO2Gd segment is not planar

and the dihedral angle between O1–Cu–O3 and O1–Gd–O3 is around 20◦ with the Gd

ion out of O4-ligand plane by around 61.0 pm on the same side with the Cu(ii) ion.
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Figure 6.8: Asymmetric structural unit and numbering scheme atoms for

[Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n 1-D complex 27.

Figure 6.9: One-dimensional polymer structure of complex 27 with the pyrazin 2.3-

dicarboxylic acid as bridging ligand between two heterobimetallic entities.

The 2,3-pyrazine dicarboxylic acid bridges two different [Cu(OMesalen)Gd(NO3)]

entities coordinating through one nitrogen atom and a η2-carboxylate to one Gd atom,

whereas the other carboxylic moieties bridges in a µ2-fashion the copper and gadolinium

atoms of two different [Cu(OMesalen)Gd(NO3)] units. This coordination mode lead

to a five coordinated copper center with an apical carboxylate oxygen atom and a 10-
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coordinated gadolinium ion with the η2-nitrate ligand completing the above mentioned

coordination environment of the lanthanide ion. The µ2-bridged carboxylate functionality

of the linker coordinates the lanthanide ion with a Gd–O6 bond distance of around 234

pm of one dinuclear entity and it also occupies the apical position of the square pyramidal

geometry of the Cu atom from a neighboring unit with a Cu–O5 bond distance of 229

pm. Selected bond lengths and angles in compound 26 are listed in Table 6.4. The two

carboxylate and the nitrate ligand compensate also the 3+ charge of the gadolinium ion

yielding a neutral 1-D chain. The Cu–Gd separation within the constructing units of the

chain is around 353.2 pm. The bis-chelating linker binds gadolinium atom within 234-246

pm range for Gd–O bond lengths and around 273 pm for Gd–N3 bond distance with a

Gd–Gd interchain separation of around 830.7 pm. So, each dicarboxylate functionality

of the bridging ligand functions as bidentate anion and coordinates simultaneously to

three metal centers: one copper and two gadolinium ions leading to a zigzag alternation

along the chain of the [Cu(OMesalen)Gd(NO3)] units. The interchain distances between

the copper atom and two Gd ions bridged by the dianionic linker are slightly different

and alternates between 637.3 pm for µ1-carboxy-bridged Cu–Gd segment and around

1043.27 for non-bridged Cu-Gd fragments along the polymeric chain. This 1-D chain

results from alternating pairs of Cu–Gd and Gd–Gd interactions through the pyrazine

2,3-dicarboxylic acid, yielding an infinite zigzag chain. The compound crystalize with

DMF molecules as solvent of crystallization and the resulting polymer can be formulated

as [Cu(OMesalen)Gd(NO3)3(Pyr(COO)2)]n·(DMF)n.

Similar structural 1-D zigzag chain have been observed in [Cu(OMesalen)Dy(NO3)

(Pyr(COO)2)]n·(DMF)n (28) (Figure 6.10) and [Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n

·(DMF)n (29) (Figure 6.11) for f>7 and [Cu(OMesalen)Eu(NO3)(Pyr(COO)2)]n·(DMF)n

(30), [Cu(OMesalen)Sm(NO3)(Pyr(COO)2)]n·(DMF)n (31) and [Cu(OMesalen)Pr(NO3)

(Pyr(COO)2)]n·(DMF)n (32) (Figure 6.12 to Figure 6.14) for f<7 lanthanide electronic

configurations. It has to be emphasize that only small changes occur in the ionic radius

of Ln(iii) on going from La(iii) to Lu(iii). This fact means that the lanthanide-to-donor

atoms bond distances are regulated by the [Cu(OMesalen)] core. In accordance with this

the Cu–Ln and Ln–Ln interchain separation show no distinct change within lanthanide

ions. Selected bond lengths and angles in these complexes [Cu(OMesalen)Ln(NO3)

178



Table 6.4: Selected bond lengths (pm) and angles (◦) for complex 27.

Gd–O1 243.7(4) Gd–O2 255.2(4)

Gd–O3 238.2(4) Gd–O4 251.0(4)

Gd–O6 234.1(4) Gd–O7 249.9(4)

Gd–O8 246.9(4) Gd–O9 253.1(4)

Gd–O10 263.1(4) Gd–N3 273.3(5)

Cu–O1 195.6(4) Cu–O3 196.1(4)

Cu–N1 199.1(5) Cu–N2 196.1(5)

Cu–O5 229.3(4) Gd–Cu 353.15(8)

O1–Gd–O2 63.28(13) O1–Gd–O3 61.79(13)

O1–Gd–O4 121.94(13) O1–Gd–O7 67.37(13)

O1–Gd–O9 125.00(13) O1–Gd–O10 166.66(14)

O1–Gd–N3 74.28(14) O2–Gd–O10 119.14(13)

O2–Gd–N3 82.65(14) O3–Gd–O2 123.51(13)

O3–Gd–O4 63.76(13) O3–Gd–O7 98.54(13)

O3–Gd–O8 78.29(13) O3–Gd–O9 154.82(14)

O3–Gd–O10 117.35(13) O3–Gd–N3 71.14(14)

O4–Gd–O9 112.80(13) O4–Gd–N3 70.62(14)

O6–Gd–O1 120.41(14) O6–Gd–O2 72.04(14)

O6–Gd–O3 128.57(14) O6–Gd–O4 80.54(14)

O6–Gd–O9 71.80(14) O6–Gd–O10 71.30(14)

O6–Gd–N3 62.40(14) O8–Gd–O7 52.85(13)

O9–Gd–O2 73.54(13) O9–Gd–O10 49.60(13)

O9–Gd–N3 132.99(14) O10–Gd–N3 118.66(14)

O1–Cu–O3 78.38(16) O1–Cu–O5 100.25(16)

O1–Cu–N1 92.98(19) O3–Cu–O5 89.87(16)

O3–Cu–N1 170.78(19) N1–Cu–O5 88.49(18)

N2–Cu–O1 159.0(2) N2–Cu–O3 92.0(2)

N2–Cu–O5 98.4(2) N2–Cu–N1 97.3(2)
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Figure 6.10: One-dimensional polymer structure of complex

[Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n (28) with the pyrazin 2,3-dicarboxylic

acid as bridging ligand between two heterobimetallic entities.

(Pyr(COO)2)]n·(DMF)n (Ln is the lanthanide ion in general) are given in Table 6.5 to

Table 6.9.

Figure 6.11: One-dimensional polymer structure of

[Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n·(DMF)n complex (29) with the pyrazin

2,3-dicarboxylic acid as bridging ligand between two heterobimetallic entities.
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Table 6.5: Selected bond lengths (pm) and angles (◦) for complex 28.

Dy–O1 241.3(3) Dy–O2 253.2(3)

Dy–O3 236.5(3) Dy–O4 249.6(3)

Dy–O6 231.3(4) Dy–O7 247.2(3)

Dy–O8 244.9(3) Dy–O9 250.3(3)

Dy–O10 262.6(3) Dy–N3 269.8(4)

Cu–O1 196.0(3) Cu–O3 195.3(6)

Cu–N1 197.7(4) Cu–N2 196.1(4)

Cu–O5 229.8(3) Dy–Cu 351.35(6)

O1–Dy–O2 63.35(10) O1–Dy–O3 62.05(10)

O1–Dy–O4 122.41(10) O1–Dy–O7 67.35(10)

O1–Dy–O9 125.05(11) O1–Dy–O10 166.78(11)

O1–Dy–N3 73.87(10) O2–Dy–O10 119.10(10)

O2–Dy–N3 82.58(11) O3–Dy–O2 123.92(10)

O3–Dy–O4 64.23(10) O3–Dy–O7 98.31(10)

O3–Dy–O8 77.72(10) O3–Dy–O9 154.20(11)

O3–Dy–O10 116.97(11) O3–Dy–N3 71.28(11)

O4–Dy–O2 147.99(11) O4–Dy–N3 70.82(11)

O6–Dy–O1 120.54(11) O6–Dy–O2 72.05(11)

O6–Dy–O3 128.92(11) O6–Dy–O4 79.98(11)

O6–Dy–O9 71.83(11) O6–Dy–O10 71.08(11)

O6–Dy–N3 62.89(11) O8–Dy–O7 53.29(10)

O9–Dy–O2 73.63(11) O9–Dy–O10 49.59(11)

O9–Dy–N3 133.46(11) O10–Dy–N3 118.93(11)

O1–Cu–O3 78.02(12) O1–Cu–O5 101.05(13)

O1–Cu–N1 93.47(15) O3–Cu–O5 90.13(13)

O3–Cu–N1 170.67(15) N1–Cu–O5 87.75(15)

N2–Cu–O1 158.69(15) N2–Cu–O3 92.03(15)

N2–Cu–O5 97.74(15) N2–Cu–N1 97.25(17)
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Table 6.6: Selected bond lengths (pm) and angles (◦) for complex 29.

Tb–O1 241.7(4) Tb–O2 254.1(4)

Tb–O3 237.0(3) Tb–O4 250.4(4)

Tb–O6 232.1(3) Tb–O7 248.4(4)

Tb–O8 245.4(4) Tb–O9 251.4(4)

Tb–O10 261.7(4) Tb–N3 271.3(4)

Cu–O1 195.7(3) Cu–O3 195.3(4)

Cu–N1 197.8(5) Cu–N2 196.0(4)

Cu–O5 230.1(4) Gd–Cu 353.15(8)

O1–Tb–O2 63.31(11) O1–Tb–O3 61.83(12)

O1–Tb–O4 121.98(11) O1–Tb–O7 67.21(12)

O1–Tb–O9 125.05(12) O1–Tb–O10 166.74(12)

O1–Tb–N3 74.10(12) O2–Tb–O10 119.14(12)

O2–Tb–N3 82.78(12) O3–Tb–O2 123.65(12)

O3–Tb–O4 63.94(12) O3–Tb–O7 98.19(11)

O3–Tb–O8 77.79(12) O3–Tb–O9 154.50(12)

O3–Tb–O10 117.20(12) O3–Tb–N3 71.14(12)

O4–Tb–O9 112.72(13) O4–Tb–N3 70.46(13)

O6–Tb–O1 120.64(13) O6–Tb–O2 72.39(13)

O6–Tb–O3 128.59(12) O6–Tb–O4 79.97(13)

O6–Tb–O9 71.96(12) O6–Tb–O10 71.05(12)

O6–Tb–N3 62.62(12) O8–Tb–O7 52.96(12)

O9–Tb–O2 73.58(12) O9–Tb–O10 49.62(12)

O9–Tb–N3 133.32(12) O10–Tb–N3 118.74(12)

O1–Cu–O3 77.94(14) O1–Cu–O5 100.81(14)

O1–Cu–N1 93.45(17) O3–Cu–O5 90.18(14)

O3–Cu–N1 170.63(16) N1–Cu–O5 87.81(17)

N2–Cu–O1 158.72(17) N2–Cu–O3 91.93(18)

N2–Cu–O5 97.86(17) N2–Cu–N1 97.4(2)
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Table 6.7: Selected bond lengths (pm) and angles (◦) for complex 30.

Eu–O1 244.9(4) Eu–O2 257.0(4)

Eu–O3 240.0(4) Eu–O4 252.2(4)

Eu–O6 236.0(4) Eu–O7 250.6(4)

Eu–O8 249.2(4) Eu–O9 254.1(4)

Eu–O10 263.3(4) Eu–N3 273.4(4)

Cu–O1 196.7(4) Cu–O3 196.5(4)

Cu–N1 199.0(5) Cu–N2 196.2(5)

Cu–O5 229.7(4) Eu–Cu 354.43(0)

O1–Eu–O2 62.71(12) O1–Eu–O3 61.91(12

O1–Eu–O4 121.88(12) O1–Eu–O7 67.33(12)

O1–Eu–O9 124.89(12) O1–Eu–O10 166.63(12)

O1–Eu–N3 74.42(13) O2–Eu–O10 119.44(12)

O2–Eu–N3 82.61(13) O3–Eu–O2 123.05(12)

O3–Eu–O4 63.56(12) O3–Eu–O7 98.59(12)

O3–Eu–O8 78.47(13) O3–Eu–O9 155.16(13)

O3–Eu–O10 117.52(13) O3–Eu–N3 71.05(13)

O4–Eu–O9 112.99(13) O4–Eu–N3 70.46(13)

O6–Eu–O1 120.35(13) O6–Eu–O2 72.39(14)

O6–Eu–O3 128.46(13) O6–Eu–O4 80.64(14)

O6–Eu–O9 71.59(13) O6–Eu–O10 71.27(13)

O6–Eu–N3 62.33(13) O8–Eu–O7 52.66(12)

O9–Eu–O2 73.77(12) O9–Eu–O10 49.52(13)

O9–Eu–N3 132.72(13) O10–Eu–N3 118.62(13)

O1–Cu–O3 78.77(15) O1–Cu–O5 100.18(15)

O1–Cu–N1 93.01(17) O3–Cu–O5 89.68(15)

O3–Cu–N1 170.99(17) N1–Cu–O5 88.15(18)

N2–Cu–O1 158.76(19) N2–Cu–O3 91.72(19)

N2–Cu–O5 98.70(19) N2–Cu–N1 97.3(2)
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Table 6.8: Selected bond lengths (pm) and angles (◦) for complex 31.

Sm–O1 249.1(3) Sm–O2 259.5(4)

Sm–O3 244.8(3) Sm–O4 255.8(3)

Sm–O6 241.4(3) Sm–O7 254.5(3)

Sm–O8 253.7(3) Sm–O9 259.6(4)

Sm–O10 265.6(4) Sm–N3 280.2(4)

Cu–O1 197.2(3) Cu–O3 196.9(3)

Cu–N1 198.7(5) Cu–N2 196.9(4)

Cu–O5 230.1(4) Eu–Cu 354.43(0)

O1–Sm–O2 61.81(11) O1–Sm–O3 61.11(11)

O1–Sm–O4 120.75(11) O1–Sm–O7 67.85(11)

O1–Sm–O9 125.51(11) O1–Sm–O10 166.83(11)

O1–Sm–N3 74.65(11) O2–Sm–O10 119.91(11)

O2–Sm–N3 82.29(11) O3–Sm–O2 121.24(11)

O3–Sm–O4 62.76(11) O3–Sm–O7 98.95(11)

O3–Sm–O8 79.75(11) O3–Sm–O9 156.03(12)

O3–Sm–O10 118.85(11) O3–Sm–N3 70.66(11)

O4–Sm–O9 113.43(12) O4–Sm–N3 70.51(12)

O6–Sm–O1 119.48(12) O6–Sm–O2 72.90(12)

O6–Sm–O3 127.20(12) O6–Sm–O4 81.70(13)

O6–Sm–O9 72.33(12) O6–Sm–O10 71.85(12)

O6–Sm–N3 60.88(11) O8–Sm–O7 51.70(11)

O9–Sm–O2 74.95(12) O9–Sm–O10 48.66(12)

O9–Sm–N3 132.19(12) O10–Sm–N3 118.28(11)

O1–Cu–O3 79.18(13) O1–Cu–O5 98.74(14)

O1–Cu–N1 93.06(16) O3–Cu–O5 89.29(14)

O3–Cu–N1 171.59(16) N1–Cu–O5 88.70(16)

N2–Cu–O1 159.15(17) N2–Cu–O3 91.76(17)

N2–Cu–O5 99.90(17) N2–Cu–N1 96.63(19)
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Table 6.9: Selected bond lengths (pm) and angles (◦) for complex 32.

Pr–O1 249.5(2) Pr–O2 259.9(2)

Pr–O3 244.8(3) Pr–O4 257.7(2)

Pr–O6 241.1(2) Pr–O7 254.9(2)

Pr–O8 253.3(2) Pr–O9 259.3(2)

Pr–O10 265.7(2) Pr–N3 280.1(3)

Cu–O1 196.7(2) Cu–O3 196.9(2)

Cu–N1 199.1(3) Cu–N2 196.3(3)

Cu–O5 229.4(2) Pr–Cu 358.62(4)

O1–Pr–O2 61.93(7) O1–Pr–O3 61.02(7)

O1–Pr–O4 120.71(7) O1–Pr–O7 67.93(7)

O1–Pr–O9 125.56(7) O1–Pr–O10 166.53(8)

O1–Pr–N3 74.77(7) O2–Pr–O10 120.01(7)

O2–Pr–N3 82.32(8) O3–Pr–O2 121.22(7)

O3–Pr–O4 62.75(7) O3–Pr–O7 99.20(7)

O3–Pr–O8 79.84(7) O3–Pr–O9 156.15(8)

O3–Pr–O10 118.76(8) O3–Pr–N3 70.55(7)

O4–Pr–O9 113.42(8) O4–Pr–N3 70.42(8)

O6–Pr–O1 119.67(8) O6–Pr–O2 72.89(8)

O6–Pr–O3 127.19(8) O6–Pr–O4 81.68(8)

O6–Pr–O9 72.20(8) O6–Pr–O10 72.00(8)

O6–Pr–N3 60.96(8) O8–Pr–O7 51.82(7)

O9–Pr–O2 74.94(7) O9–Pr–O10 48.67(8)

O9–Pr–N3 132.15(8) O10–Pr–N3 118.41(8)

O1–Cu–O3 79.27(9) O1–Cu–O5 98.55(9)

O1–Cu–N1 92.82(11) O3–Cu–O5 89.46(9)

O3–Cu–N1 171.53(10) N1–Cu–O5 88.74(11)

N2–Cu–O1 159.24(11) N2–Cu–O3 91.46(11)

N2–Cu–O5 99.91(11) N2–Cu–N1 97.00(12)
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Figure 6.12: One-dimensional polymer structure of complex

[Cu(OMesalen)Eu(NO3)(Pyr(COO)2)]n·(DMF)n (30) with the pyrazin 2,3-dicarboxylic

acid as bridging ligand between two heterobimetallic entities.

Figure 6.13: One-dimensional polymer structure of complex

[Cu(OMesalen)Sm(NO3)(Pyr(COO)2)]n·(DMF)n (31) with the pyrazin 2,3-dicarboxylic

acid as bridging ligand between two heterobimetallic entities.

The similar lanthanum-containing 1-D chain has been spectroscopically characterized

and by analogy with the crystallographically characterized lanthanide-containing com-

plexes its formulation is [Cu(OMesalen)La(NO3)(Pyr(COO)2)]n·(DMF)n (33). The co-

ordination modes of the supporting compartmental salen-type ligand and of pyrazine

2,3-dicarboxylic acid-bridging ligand as has been described by molecular structure de-

terminations for these [Cu(OMesalen)Ln(NO3)(Pyr(COO)2)]n·(DMF)n polymeric chains

have been also confirmed by IR spectroscopy. Stretching vibrations characteristic for ni-

trate bidentate ion has been detected at 1384 cm−1 in all series of complexes. In addition

pyrazine 2,3-dicarboxylic acid shows strong stretching vibrations at 1750 and 1734 cm−1
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Figure 6.14: One-dimensional polymer structure of complex

[Cu(OMesalen)Pr(NO3)(Pyr(COO)2)]n·(DMF)n (32) with the pyrazin 2,3-dicarboxylic

acid as bridging ligand between two heterobimetallic entities.

characteristic for -COOH vibration modes. These are shifted to around 1671 cm−1, re-

spectively upon Cu and Ln coordination. In addition, the strong broad vibration observed

at 3520 cm−1 in the IR spectra of pyrazine 2,3-dicarboxylic acid assigned to -COOH

groups was absent in the IR spectrum of [Cu(OMesalen)Ln(NO3)(Pyr(COO)2)]n·(DMF)n

compounds. This is in agreement with observed deprotonation of the two carboxylate

functional groups that compensate partly the positive charge of the lanthanide centers.

Characteristic stretching vibration of the N,N’-bis(3-methoxysalicylidene)-1,3-diamino

propane supporting ligand has been detected at 1634 cm−1 owing to imine bond vi-

bration.

6.1.1 Magnetic properties of the CuII-LnIII 1-D chains

Lanthanide(iii) ions are characterized by large unquenched orbital momentum associated

with the internal nature of the valence of f-orbitals. Except Gd(iii) which posses a 4f7 elec-

tron configuration, all the other rare-earth ions have orbitally degenerate ground states

that are split by spin-orbit coupling and therefore the orbital component of the mag-

netic moment can not be ignored. This makes the interpretation of magnetic data very

complicated and the isotropic Hamiltonian approach can no longer be used.10,321,338,398

The trivalent lanthanide ion characterized by 4fn give 2S+1L multiplets split by spin-orbit

coupling to J states
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E(2S+1LJ) =
λ

2
[J(J + 1) − L(l + 1) − S(S + 1)]

where λ is the spin-orbit coupling parameter, L is the orbital quantum number and J is

the angular momentum calculated as:

J = L + S for n > 7

J = L − S for n < 7

The free-ion states of the same J arising from different 2S+1L terms may mix through the

spin-orbit coupling. The resulting states are split further and mixed by the ligand field

such that the spectrum of lying states and the magnetic properties are rather complicated.

The energy separation between low lying states and excited states are well separated

except for Eu(iii) and Sm(iii). The exited state 7F1 is at 350 cm−1 from the ground

state 2F0 for Eu(iii), whereas for Sm(iii) the ground state is 6H5/2 with the excited state

6H7/2 at around 700 cm−1. For weak energy separation, the first excited state may be

thermally populated and when the energy separation is large only the ground state is

thermally populated. Taking into account the Zeeman Hamiltonian with:

gJ =
3

2
+

S(S + 1) − L(L + 1)

2J(J + 1)

the magnetic susceptibility obeys Curie law according to the following equation:

χM =
Nβ2g2

J

3kT
J(J + 1) (12)

When the excited state is close in energy to the ground state (i.e Eu(iii) and Sm(iii)

ions) there is a significant temperature-independent contribution (χ′) to the magnetic

susceptibility found to be:

χ′ =
2Nβ2(gJ − 1)(gJ − 2)

3λ

where λ is the spin-orbit coupling parameter.

Due to this impediment the magnetic behavior will be discussed in detail for

[Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n·(DMF)n 1-D chain compound (27) for which the
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plot of thermal variation of the χM and χMT are depicted in Figure 6.15, where the χM

is the molar magnetic susceptibility corrected for diamagnetism.

At 300 K, χMT is equal to 8.59 cm3mol−1K, which roughly corresponds with the

expected value for the two uncoupled metal ions. Lowering the temperature causes an

increase of the χMT value reaching a maximum of 9.82 cm3mol−1K at 6 K. This last

value is very close to 10.00 cm3mol−1K value, calculated for S = 4 spin ground state

resulting from ferromagnetic coupling within the same unit of copper(ii) (S = 1/2) and

gadolinium(iii) (S = 7/2) assuming gCu = gGd = 2. A quantitative analysis has been

performed using the spin-only Hamiltonian:

Ĥ = −JCuGdSCuSGd

according with equation 11 including an additional term that describes the tempera-

ture independent paramagnetism (χTIP ). The best fit of the experimental data leads

to a coupling constant JCuGd = 4.72 ± 0.04 cm−1 for g4 = 1.99 ± 8.0 · 10−4 and

Figure 6.15: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n·(DMF)n (27) 1-D chain complex

measured with an applied magnetic field of 2000 Oe; solid lines represent the theoretical

curve (see text).
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g3 = 1.97 ± 0.002 which correspond to a gGd ' 1.98 and gCu ' 2.03. The reliability

factor R2 = 0.9998 for θ=-0.08±0.003 K show a good agreement between calculated and

experimental data sets. The small negative value for the Weiss constant (θ) describes

a very weak antiferromagnetic exchange interaction that occurs between neighboring

molecules at very low temperature and it is illustrated by the decrease of χMT value

from 9.82 cm3mol−1K at 6 K to around 9.60 cm3mol−1K at 2 K. This weak antiferromag-

netic interaction occurs most likely between two gadolinium(iii) ions of two neighboring

[Cu(OMesalen)Gd(NO3)] entities of the infinite 1-D chain. The Gd–Gd interchain separa-

tion of around 830.7 pm is slightly smaller than Cu–Cu interchain separation (938.8 pm).

Therefore, the Weiss constant is most likely a consequence of Gd· · ·Gd interchain mag-

netic coupling. This is also in agreement with the magnetic behavior of the corresponding

[Cu(OMesalen)La(NO3)3(Pyr(COO)2)]n·(DMF)n (33), which has been spectroscopically

characterized.

Figure 6.16: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Cu(OMesalen)La(NO3)(Pyr(COO)2)]n·(DMF)n (33) 1-D chain complex

measured with an applied magnetic field of 5000 Oe; solid lines represent the theoretical

curve derived from Bleanery-Bowers equation (see text).

The thermal variation of magnetic susceptibility as χM and χMT vs. T plots are

shown in Figure 6.16. Using the Bleanery-Bowers equation (13) for a pair of copper
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ions,256 the interchain coupling constant between two constituting [CuLa]-units led to

JCuCu <-0.0001 cm−1 for gCu = 2.18 ± 0.003 and χTIP=1.6·10−6 ± 2 · 10−4 cm3mol−1.

χM =
2Nβ2g2

k(T − θ)

1

[3 + exp(−J/kT )]
(1 − ρ) +

Nβ222ρ

2kT
S(S + 1) + χTIP T (13)

On the other hand the gadolinium-gadolinium coupling interaction has been reported as

being antiferromagnetic237,399 with small exceptions reported for polymeric gadolinium

compounds with malonic and salicylic acid as supporting organic ligands.377,378,380,400

The simulation of the magnetic data set shows that the countable ferromagnetic interac-

tion takes place between Cu(ii)-Gd(iii) metal ions of the same [Cu(OMesalen)Gd(NO3)]

unit and it is not transmitted trough the pyrazine 2,3-dicarboxylic acid linker. Use of a

magnetic model332,349 that takes into account the [Cu-Gd] 1-D chain indicates that the

intradimer interaction (zJ’ �- 0.01 cm−1, where z represents the number of neighbor-

ing molecules and J’ is the interdimer coupling interaction) is almost nonexisting. The

[Cu(OMesalen)Gd(NO3)] units are connected through the pyrazine 2,3-dicarboxylic acid

with a µ2-carboxylate coordinating simultaneously the Cu(ii) and Gd(iii) metal ions.

Since one carboxylate oxygen atom occupies the axial position of the square-pyramidal

Cu(ii) atom, its dx2−y2 magnetic orbital is localized in the basal plane leading to a very

weak spin density in the axial position, thus the intradimer Cu(ii)-Gd(iii) ferromagnetic

interaction is negligible. This is also caused by a large µ2-carboxylate bridged Cu–Gd

intradimer separation of around 637.3 pm. The ferromagnetic interaction between the

copper and gadolinium ions has been also confirmed by field dependance of the magneti-

zation performed at 2 K. The experimental values fit the Brillouin function assuming g av

= 2, resulting in a spin ground state S = 3.91 ± 0.009 with reliability factor R2 = 0.9986

(Figure 6.17). The magnetization reach a saturation level of 7.8 Nβ at around 4830 Oe,

maximum very close to expected one for a [CuGd]-couple.

The magnetic properties of this 1-D chain are comparable with similar reported

Cu-Gd 1-D chain compounds where dicyanamide and/or thiocyanate have been used

to link the heterodinuclear entities.332,360 The magnetic properties of these complexes

have shown that in all cases the limited number of existing 1-D chain compounds be-

have as isolated heterodinuclear compounds. Additional lader-chain [CuGd]-complexes

have been reported more recently349 and the magnetic behavior is consistent with pre-
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Figure 6.17: Plot of the field dependence of the magnetization for complex 27 measured

at 2 K (black filled squares represent the experimental value; the solid line shows the

theoretical curve generated using the Brillouin equation.

vious observations. The range of the coupling constant within the constituent [CuGd]-

entities of the polymeric chain compounds range from 3.53 cm−1 to a maximum of 9.20

cm−1 and it is close correlated with the dihedral angle formed between CuO2 and GdO2

planes.349,360 The dihedral angle formed between O1–Cu–O3 and O1–Gd–O3 planes in

compound [Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n·(DMF)n (27) is around 20.2◦ and it

is relatively larger than 17.1◦ value reported for the corresponding dihedral angle when

thiocyanate is the linker of the [CuGd]-units of the 1-D chain.360 Nevertheless, the W-

band EPR measurements performed at different temperatures show interesting features

for the [Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n compound. As is depicted in Figure 6.18,

no big difference has been observed when the EPR spectrum is recorded at 55 and 95 K.

Instead, the low temperature W-band EPR spectrum exhibit many features with appar-

ent fine structure progressions at high fields due to the zero field splitting of the S = 4

state. This will lead to a large number of permitted transitions between mS levels (∆mS=

±1) and therefore a complicated EPR spectrum that contains overlapping of bands.357,401

In addition, magnetic dipolar interaction between unpaired electrons combined with zero

field splitting contribute to further complicate interpretation of the spectra and for the

moment, no final simulation has been performed.
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Figure 6.18: W-band EPR spectrum for [Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n (27)

1-D chain complex measured at different temperature values.

All other paramagnetic 4f-ion are anisotropic and this will introduce anisotropy into

the magnetic ground state. The magnetic data sets measured in the 2-300 K temperature

range are depicted in Figure 6.19 to Figure 6.21 for [Cu(OMesalen)Eu(NO3)(Pyr(COO)2)]n

·(DMF)n (30), [Cu(OMesalen)Sm(NO3)(Pyr(COO)2)]n·(DMF)n (31) and [Cu(OMesalen)

Pr(NO3)(Pyr(COO)2)]n·(DMF)n (32), respectively as χm vs T and χmT vs T plots. The

room temperature χmT value of around 0.83 cm3mol−1K measured for [Cu(OMesalen)Sm

(NO3)(Pyr(COO)2)]n·(DMF)n (31) is much higher than theoretical value 0.65 cm3mol−1K

expected for noninteracting Cu(ii) - Sm(iii)ions (Figure 6.20). This is because the first ex-

cited state 6H7/2 of Sm(iii) ion can be populated at room temperature. The same situation

has been observed in the case of europium containing 1-D chain - [Cu(OMesalen)Eu(NO3)

(Pyr(COO)2)]n·(DMF)n (30) compound (Figure 6.19) where the energetic separation

between the ground state and first excited state is much smaller than in Sm(iii) ion case.

The measured χMT value is around 2.04 cm3mol−1K 300 K. For [Cu(OMesalen)Pr(NO3)

(Pyr(COO)2)]n·(DMF)n (32) (Figure 6.21), the room temperature measured χmT value

of 2.02 cm3mol−1K is a little bit higher than calculated value of 1.78 cm3mol−1K for

Cu(ii)-Pr(iii) noninteracting ions calculated according with the following equation:

χMT =
Nβ2g2

Cu

3k
SCu(SCu + 1) +

Nβ2g2
J

3k
JLn(JLn + 1) (14)
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In this case the ground state is well separated in energy from the first excited state. For

all these three complexes the χmT product decrease on lowering the temperature from

300 K to 15 K, except for [Cu(OMesalen)Eu(NO3)(Pyr(COO)2)]n·(DMF)n (30) for which

the χMT product decrease constantly on lowering the temperature, reaching a value of

0.51 cm3mol−1K at 2 K (Figure 6.19). For Sm(iii)-containing 1-D chain, the decrease

is constant in the 300-25 K with a value of 0.46 cm3mol−1K which corresponds actually

to the calculated value for uncoupled Cu(ii)-Sm(iii) ions (Figure 6.20). Below 25 K,

the decrease of χMT value is more abrupt being around 0.14 cm3mol−1K at 2 K. These

profiles indicate an antiferromagnetic coupling operates in the CuIISmIII and CuIIPrIII

complexes. For Eu(iii) and Sm(iii) ion the energy separation between the ground state

and excited state is very small, whereas for Pr(iii) ion the ground state 3H4 is separated

by 2100 cm−1 to the first excited state 5H5. In this case the two phenomena are possible,

the thermal depopulation of Stark levels and the d-f exchange interaction, therefore a

quantitative analyze using the isotropic Hamiltonian is not accurate for Eu(iii) (29) and

Sm(iii) (31) complexes.

Figure 6.19: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Cu(OMesalen)Eu(NO3(Pyr(COO)2)]n·(DMF)n (30) 1-D chain complex

measured with an applied magnetic field of 2000 Oe.
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Figure 6.20: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Cu(OMesalen)Sm(NO3)(Pyr(COO)2)]n·(DMF)n (31) 1-D chain com-

plexes measured with an applied magnetic field of 2000 Oe.

Figure 6.21: Plot of thermal dependence of χM (empty squares) and χMT product (black

filled circles) for [Cu(OMesalen)Pr(NO3)(Pyr(COO)2)]n·(DMF)n (32) 1-D chain complex

measured with an applied magnetic field of 2000 Oe.
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Kahn et al.323,339 proposed that for 4f1 to 4f6 electronic configuration of Ln(iii)

ions, the orbital and spin momenta are antiparallel and the ferromagnetic spin coupling

will give rise to an overall antiferromagnetic interaction between the angular momenta.402

Conversely, the orbital and spin momenta for 4f8 to 4f13 configurations are parallel and the

ferromagnetic spin coupling will result in an overall ferromagnetic interaction. Regarding

the interaction between Cu(ii) - Ln(iii) centers, Kahn et al.323,339 and Costes et al.338

reported antiferromagnetic interaction for lanthanides with less than half filled f-orbitals

with the exception of Pr(iii) and Eu(iii) that were reported as noninteracting with the

Cu(ii) center. In agreement with these reports are the shape of the thermal variation

of the magnetic susceptibility observed for CuIILnIII complexes with 4f orbital less than

half-filled with electrons.

For the second series of CuIILnIII complexes with Ln(iii) ion configuration 4f>7 the

thermal variation of the χmT product are shown in Figure 6.22 for [Cu(OMesalen)Tb(NO3)

(Pyr(COO)2)]n·(DMF)n (29) and Figure 6.23 and Figure 6.24 for [Cu(OMesalen)Dy(NO3)

(Pyr(COO)2)]n·(DMF)n (28) complex. The [Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n·(DMF)n

(29) complex exhibits room temperature value of χmT of 13.75 cm3mol−1K, much higher

than expected 12.22 cm3mol−1K value for noninteracting Cu(ii)-Tb(iii) metal ions. The

χmT value increases gradually on lowering the temperature presenting a maximum of

16.53 cm3mol−1K at 8 K. Below 8 K a slight decrease of the χmT value has been ob-

served having a value of 11.28 cm3mol−1K at 2 K (Figure 6.22). The reciprocal magnetic

susceptibility follows the Curie-Weiss equation:

1

χ
=

T − θ

C
(15)

with the Curie constant C = 13.71 ±0.03 and the Weiss constant θ = + 3.95 ±0.35 K

(Figure 6.22 - left plot). The increase of the χmT value on decreasing the temperature

and positive Weiss constant indicate the ferromagnetic exchange coupling between Cu(ii)

and Tb(iii) ions. On the other hand, the magnetization measurement performed at 2

K show an increase of the magnetization upon increasing the applied external magnetic

field. The magnetization reaches a maxima of 4.5 Nβ at 50211 Oe, but does not reach the

expected saturation value (9 Nβ for TbIII and 1 Nβ for CuII). This might be due to crystal

field effect on TbIII ion (4f8, J = 6, S = 3, L = 3, 7F6) that removes the degeneracy of the
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Figure 6.22: Plots of thermal dependence of χMT product (black filled circles) and 1/χM

(empty rhombus) for [Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n·(DMF)n (29); the solid line

represents the theoretical curve derived from Curie-Weiss law. The right picture (B inset)

shows the field dependence of the magnetization expressed in Nβ units for complex 29

measured at 2 K.

7F6 ground state. According to temperature-dependent magnetic susceptibility and field-

dependent magnetization, the [Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n·(DMF)n compound

(29) exhibits ferromagnetic interaction. This is also sustained by existing reports in which

the CuII-TbIII exchange interaction has been reported to be always ferromagnetic.318 In

general, TbIII ion induce high magnetic anisotropy due to its orbital-angular momentum

and alternating current susceptibility measurements are expected to bring more informa-

tion.

For [Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n compound (28) a big differ-

ence has been observed for the thermal variation of χmT values measured at different

magnetic fields, especially at low temperature values. At 300 K the χmT value is around

15.56 cm3mol−1K using a magnetic field of 2000 Oe and around 16.30 cm3mol−1K when a

5000 Oe magnetic field has been applied (Figure 6.23). Both values are much higher than

theoretical 14.50 cm3mol−1K value expected for noninteracting Cu(ii)-Dy(iii) metal ions,

assuming gCu = 2 and gDy = 1.33.10,321 On lowering the temperature, the χMT values

increase for both applied magnetic fields and reaches maximum of 19.03 cm3mol−1K at 9

K for 2000 Oe magnetic field and 23.37 cm3mol−1K at 4 K when 5000 Oe magnetic field

has been used.
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Figure 6.23: Plots of thermal dependence of χMT product at 2000 Oe (black filled circles)

and 5000 Oe (empty circles) for [Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n (28).

The reciprocal magnetic susceptibility follows the Curie-Weiss law, resulting in a θ =

4.03 ± 0.54 K. The positive sign of Weiss constant and the shape of the temperature

- dependent susceptibility measurements count for a ferromagnetic interaction between

CuII-DyIII metal ions. For Dy(iii) as for Tb(iii) ion, the anisotropy effect play a major

role in determination of the CuII-LnIII coupling constant. The Dy(iii) has an 6H15/2

ground state that is split in zero field by crystal field effects. The energy gaps induced

by ligand - field effects are larger than kT at low temperatures, therefore the simulation

of the magnetic data set must include ligand field effects, such as selective depopulation

of the low - lying levels.

The 6H15/2 ground state of Dy(iii) atom is split into a set of Krammer doublets

|±MJ〉, thus an anisotropic exchange model that involves both the orbital contribution

and ligand field effect is required to interpret the magnetic behavior of [Cu(OMesalen)

Dy(NO3)(Pyr(COO)2)]n·(DMF)n (28) compound. The field dependence of magnetiza-

tion for [Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n is shown in Figure 6.24 (right

picture) as plot of the experimental values of M(Nβ) versus H. On increasing the applied

external magnetic field, the magnetization of 27 increases to 8.10 Nβ at 50000 Oe but

does not reach an expected saturation value (10 Nβ for Dy(iii) ion and 1 Nβ for Cu(ii)

ion).
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Figure 6.24: Plots of thermal dependence of χMT product (black filled circles at 5000 Oe)

and 1/χM (empty rhombus) for [Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n (28);

the solid line represents the theoretical curve generated using the Curie-Weiss law (left

picture). The right picture shows the field dependence of the magnetization expressed in

Nβ units for complex 28 measured at 2 K.

The experimental data sets for both complexes indicate a ferromagnetic interaction

between Cu(ii) and Ln(iii) center, where Ln(iii) is Tb(iii) and Dy(iii) ions. A quantita-

tive fitting of the experimental data is not trivial due to the high anisotropy and spin -

coupling interaction and it is an undergoing research. As anisotropy appears to be vital

for synthesizing ”single molecule magnets”, the 1-D chains containing Dy(iii) and Tb(iii)

ions are potentially exciting. Kahn et al reported a series of oxamido-bridged polymers of

type Ln2[CuL]3 (L is ortho - phenylene-bis oxamato ligand) and for Tb and Dy-containing

polymers a divergence in χMT product at low temperature was indicative of magnetic

ordering interpreted as possible one - dimensional ferro- and ferrimagnets. Therefore the

herein described [Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n and [Cu(OMesalen)

Tb(NO3)(Pyr(COO)2)]n·(DMF)n (29) one -dimensional chain compounds may show sim-

ilar features and hence may represent rare examples of single chain magnets. The

interchain separation is quite large and most likely no interchain interaction occurs

(Figure 6.25). The Cu-Ln interchain separation range from around 810 pm to 1194

pm, whereas the Ln–Ln interchain separation falls within 1054-1082 pm limits. There-

fore the countable magnetic interaction is the result of Cu–Ln ferromagnetic coupling

within the constituent units of the chain and maybe antiferromagnetic intrachain Ln–
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Ln interactions. Thus, the [Cu(OMesalen)Dy(NO3)3(Pyr(COO)2)]n · (DMF )n (28) and

[Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n·(DMF)n (29) one-dimensional chain compounds

are potential candidates as single chain magnets.

Figure 6.25: Packing diagram of [Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n (28)

compound viewed along the b axis showing the separation of the constituent 1-D chains.

6.2 Trinuclear CuII
2 -LnIII complexes

The design of new heteropolynuclear complexes has received considerable attention in

the field of molecular magnetism.10,403 This has been stimulated by the search for

molecular-based magnets and development of new models for investigations of the ex-

change interaction between the paramagnetic centers. The constituting metal centers

have been found capable of interacting through extended bridging ligands, even if they

are relatively well separated.10 The molecule-based magnetic materials are, in general

formed by paramagnetic metal ions linked by organic framework. While the metal ions

are the source of magnetic moments, the organic ligands are responsible for the exchange

pathways between the magnetic centers. Changes in the exchange pathways produce

modifications of the structural arrangement which in turn may affect the magnetic in-

teraction.32,227,321,396,404 Lanthanide-containing exchanged-coupled system are versatile

building blocks for molecule-based magnets due to large anisotropy associated with most

lanthanide ions.227,321,405 Since the pioneering work started in 1985 by Gatteschi et

al.,301 a large number of polynuclear Cu-Ln complexes have been reported. However,
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most of the studies have been focused on CuII-GdIII couple where both ferromagnetic

and antiferromagnetic interactions were observed, although the first is commonly ob-

served.321,335 This illustrates the complexity of the system and the requirement to design

more examples in order to investigate the magnetic mechanism. On the other hand,

polynuclear complexes comprising other lanthanide ions have been purely investigated

due to the vital role of their angular momentum in the interpretation of the magnetic

properties.10,338 Clusters of higher nuclearity formed between d-transition metals and lan-

thanide ions363,386,388,389,391,392,394,406,407 have been also reported, and the magnetic be-

havior vary from weak antiferomagnetic/or ferromagnetic interaction to single molecular

magnets behavior.386,392,394,407 The development of new complexes with d-f topology has

been extended not only because of their interesting magnetic properties227,310,405,408 and

potential application to luminescence materials,409 nonlinear optical materials410 near in-

frared chiroptical sensors411 and MOCVD (single source precursor for metal organic vapor

deposition).315 The formation of oligo-dinuclear or trinuclear CuII-LnIII complexes can be

conducted by varying the ratio between Cu-salen precursor and the lanthanide salts, but

the resulting magnetic exchange interaction is still difficult to be predicted.301,312,319,412

The reported approaches to synthesize trinuclear Cu2Ln complexes is based on blocking

the coordination sites of the lanthanide ion by the anions of the starting LnX3·6H2O salts,

where X = NO−
3 , Cl−, ClO−

4 , trifluoroacetylacetonate and/or trifluoroacetate. In these

complexes, the lanthanide ion is wrapped around by two Cu-salen moieties, whereas

the anion establishes the connection between the d-metal ions and lanthanide center.

The main magnetic interaction is described as ferromagnetic when gadolinium has been

used as lanthanoid ion, whereas the Cu–Cu magnetic coupling range from antiferromag-

netic, ferromagnetic to non-interacting d-d couple.301,319 While the Cu–Gd exchange

interaction is ferromagnetic when salen-type ligands have been used as metallo-ligand,

it has been reported that oxime-derivatives ligands led to an antiferromagnetic coupling

between Cu(ii) and Gd(iii) paramagnetic centers.312 The intensity of the coupling con-

stants is very much dependent upon used organic ligand and the bridging linker between

Cu and Ln ions. Therefore, we purpose to scrutinize the influence of the d-f linker in

trinuclear [Cu2Ln] complexes by choosing salicylic acid as a bridge. This is based upon

reports of ferromagnetic interaction between gadolinium(iii) ions mediated by salicylic
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acid in oligo- and coordination polymeric compounds.380,400 It is worth mentioning here,

that the Gd–Gd magnetic exchange interaction is antiferromagnetic399,413 with few excep-

tions when the used ligand implies a weak ferromagnetic coupling among the lanthanoid

ions.377,414 Thus, trinuclear [Cu2Ln] complexes have been isolated using salicylic acid as

capping and bridging ligand. The [Cu(OMesalen)H2O] precursor complex (24) (Figure

6.2) has been reacted in a 2:1 ratio with Ln(NO3)3·6H2O salts, followed by addition of

deprotonated salicylic acid solution. On going from pyrazine 2,3-dicarboxylic acid to

salicylic acid, the polydentate nature of the ligand is reduced, and therefore the synthe-

sis of oligotrinuclear complexes of type [(Cu(OMesalen))2Ln(salCOO)2]NO3·S (S = sol-

vent) has been possible. The molecular structure have been determined for Gd(iii) (34),

Sm(iii) (35), Pr(iii) (36) and La(iii) (37) - containing complexes and are depicted in

Figure 6.26 to Figure 6.29. Additionally, the corresponding Eu(iii)-containing trinuclear

[(Cu(OMesalen))2Eu(salCOO)2]NO3·3MeOH·H2O (38) have been spectroscopically char-

acterized. Again the molecular structures within this series of compounds show isostruc-

tural features of crystallographically characterized complexes. Scrutinizing the structural

data shows, that the most pertinent difference compared to previous herein described d-f

complexes, concerns not only the nuclearity of the resulting complexes, but also the re-

activity of the lanthanide (iii) ions towards complex formation. In instance, by contrast

to pyrazine 2,3-dicarboxylic acid bridge, the salicylic acid made possible the isolation of

heterotrinuclear compounds only for lanthanide ions comprising lanthanum to gadolin-

ium ions. Every attempt to synthesize the similar complexes with heavier lanthanide

ions failed. This might be a consequence of smaller atomic radius for the last mentioned

lanthanide ions and therefore their tendency to assume smaller coordination numbers.

Another distinctive feature of these oligotrinuclear d-f complexes is that the trinuclear

[Cu2Ln] entity is cationic with unbound distorted nitrate anion that compensate the pos-

itive charge of the triad [Cu2Ln] core. In addition, methanol and water lattice solvents

have been found capable of establishing hydrogen bonding interactions between the trin-

uclear entities. The salicylic acid co-ligand coordinated to both copper and lanthanide

centers only through carboxylate functionality, whereas the phenolate group is distorted

and not involved in metal coordination, but instead establishes hydrogen bonding con-

tacts intermediated by solvent molecules between the trinuclear entities.
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The lanthanide atom is 10-coordinated and enclosed by two [Cu(OMesalen)H2O] moi-

eties. While the copper atoms conserve their classical positions in the inner N2O2 com-

partment of the salen-type ligand, the lanthanide atom is fixed in the molecule by two

pairs of O2O2 donor sets of the compartmental methoxy-derivative salen-ligand. The lan-

thanide to oxygen atom bond lengths differ from previously described one-dimensional

chain compounds and fall in the 236.3 - 288.2 pm region. Selected bond lengths and

angles in complexes are listed in Table 6.10 to 6.13. The strength of the lanthanide

to oxygen bond lengths differ among the two Cu-salen moieties and, namely is tighter

embedded by Cu(2)-salen entity (Gd–O bond distances within 235.4-285.4 pm range)

and weaker enclosed by Cu(1)-salen entity (Gd–O bond lengths within 236.3-288.2 pm

range). The coordination sphere of the lanthanide ions is completed by the two sal-

icylic acid molecules which function as capping and bridging ligands establishing two

η1, η1, µ2-connections with copper atoms and the lanthanoid center.

The resulting structural motif consists of two copper atoms in square-pyramidal

Figure 6.26: Molecular structure and numbering scheme atoms in

[(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·0.25H2O (34) complex. Thermal el-

lipsoids are drawn at 50% probability. Hydrogen atoms have been excluded for

clarity.
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Table 6.10: Selected bond lengths (pm) and angles (◦) for complex 34.

Gd–O11 242.8(3) Gd–O12 236.3(4)

Gd–O13 288.2(3) Gd–O14 264.4(4)

Gd–O21 240.9(4) Gd–O22 235.4(3)

Gd–O23 285.4(4) Gd–O24 263.7(4)

Gd–O33 237.4(4) Gd–O43 237.9(4)

Gd–Cu1 342.9(6) Gd–Cu2 345.0(6)

Cu1–O11 198.1(4) Cu1–O12 196.7(4)

Cu1–N11 196.8(5) Cu1–N12 197.8(4)

Cu1–O32 219.9(4) Cu2–O21 197.1(3)

Cu2–O22 197.8(4) Cu2–N21 197.8(5)

Cu2–N22 199.2(4) Cu2–O42 230.3(4)

O11–Gd–O12 64.71(12) O11–Gd–O13 58.27(11)

O11–Gd–O14 118.93(12) O11–Gd–O33 73.30(13)

O12–Gd–O13 113.95(12) O12–Gd–O14 62.15(12)

O12–Gd–O33 82.33(13) O13–Gd–O13 123.43(12)

O13–Gd–O33 108.86(13) O14–Gd–O33 124.73(13)

O21–Gd–O22 63.46(12) O21–Gd–O23 58.24(11)

O21–Gd–O24 120.26(12) O21–Gd–O43 74.21(13)

O22–Gd–O23 112.99(12) O22–Gd–O24 63.05(12)

O22–Gd–O43 83.47(13) O23–Gd–O24 126.57(12)

O23–Gd–O43 108.41(13) O24–Gd–O43 122.79(13)

O33–Gd–O43 68.97(14) O11–Cu1–O12 81.01(15)

O11–Cu1–N11 91.94(17) O11–Cu1–N12 162.17(18)

O11–Cu1–O32 99.22(15) O12–Cu1–N11 170.01(18)

O12–Cu1–N12 90.14(17) O12–Cu1–O32 96.05(15)

N11–Cu1–N12 94.68(19) N11–Cu1–O32 92.04(17)

N12–Cu1–O32 97.08(18) O21–Cu2–O22 78.77(14)

O21–Cu2–N21 92.18(17) O21–Cu2–N22 164.74(19)

O21–Cu2–O42 100.25(15) O22–Cu2–N21 170.61(16)

O22–Cu2– N22 91.67(17) O22–Cu2–O42 92.11(15)

N21–Cu2–N22 97.70(19) N21–Cu2–O42 87.03(17)
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Table 6.11: Selected bond lengths (pm) and angles (◦) for complex 35.

Sm–O11 244.6(4) Sm–O12 238.8(5)

Sm–O13 285.4(5) Sm–O14 266.7(6)

Sm–O21 243.7(5) Sm–O22 238.8(4)

Sm–O23 282.3(5) Sm–O24 266.1(5)

Sm–O33 239.7(5) Sm–O43 239.2(6)

Sm–Cu1 345.9(8) Sm–Cu2 347.2(9)

Cu1–O11 197.7(5) Cu1–O12 198.0(5)

Cu1–N11 196.0(6) Cu1–N12 198.3(6)

Cu1–O32 220.6(5) Cu2–O21 195.8(5)

Cu2–O22 196.5(5) Cu2–N21 196.8(6)

Cu2–N22 198.5(6) Cu2–O42 230.9(6)

O11–Sm–O12 64.20(16) O11–Sm–O13 58.62(14)

O11–Sm–O14 118.02(17) O11–Sm–O33 72.36(16)

O12–Sm–O13 114.15(15) O12–Sm–O14 61.44(16)

O12–Sm–O33 81.91(18) O13–Sm–O14 124.23(16)

O13–Sm–O33 107.84(17) O14–Sm–O33 124.48(19)

O21–Sm–O22 62.36(15) O21–Sm–O23 58.41(15)

O21–Sm–O24 118.79(16) O21–Sm–O43 73.09(18)

O22–Sm–O23 112.47(15) O22–Sm–O24 62.40(16)

O22–Sm–O43 83.58(18) O23–Sm–O24 127.19(18)

O23–Sm–O43 106.57(18) O24–Sm–O43 123.47(18)

O33–Sm–O43 69.03(19) O11–Cu1–O12 81.0(2)

O11–Cu1–N11 91.8(2) O11–Cu1–N12 162.6(2)

O11–Cu1–O32 98.85(19) O12–Cu1–N11 169.4(2)

O12–Cu1–N12 89.9(2) O12–Cu1–O32 95.9(2)

N11–Cu1–N12 95.0(3) N11–Cu1–O32 92.9(2)

N12–Cu1–O32 96.8(2) O21–Cu2–O22 79.11(19)

O21–Cu2–N21 92.0(2) O21–Cu2–N22 163.8(3)

O21–Cu2–O42 100.3(2) O22–Cu2–N21 171.0(2)

O22–Cu2– N22 92.2(2) O22–Cu2–O42 93.0(2)

N21–Cu2–N22 96.8(3) N21–Cu2–O42 87.3(2)
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Figure 6.27: Molecular structure and numbering scheme atoms in

[(Cu(OMesalen))2Sm(salCOO)2]NO3·2.5MeOH·H2O (35) complex. Thermal ellip-

soids are drawn at 50% probability. Hydrogen atoms have been excluded for clarity.

environment with the carboxylate oxygen atoms of the co-ligand occupying the api-

cal position and binds around 219.9 pm for Cu1–O32 bond length and 230.3 pm for

Cu2–O42 bond distance, respectively. The remained carboxylate oxygen atom of each

salicylic acid binds to the lanthanide center, with Ln–O bond distance of around 237.4-

237.9 pm in the case of gadolinium(iii)-containing complex 34. A slight increase in

the bond lengths have been observed on going from Gd(iii) to La(iii)-ion containing

trinuclear [(Cu(OMesalen))2Ln(salCOO)2]NO3·S compounds. Both copper(ii) ions are

five coordinated in a distorted square pyramidal geometries. The distortions from an

ideal square pyramidal geometry239 is τ = 0.13 for Cu1 center and τ = 0.09 for Cu2

ion in [(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·0.25H2O (33) complex. The dis-

tortion of the coordination geometry from the square pyramid remains similar for the

series of [(Cu(OMesalen))2Ln(salCOO)2]NO3·S complexes described herein, except for

[(Cu(OMesalen))2La(salCOO)2]NO3·3.75MeOH·0.25H2O (37) complex for which the τ

parameter is around 0.10 for Cu1 ion and 0.07 for Cu2 ion. This τ value is defined

as the difference between the two largest donor-metal-donor angles divided by 60 and
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has a τ = 0 value for an ideal square pyramid and τ = 1 for the trigonal bipyramid.239

The copper ions form with the lanthanide ion an angle of 179.3◦, very close to an linear

Cu· · ·Gd· · ·Cu arrangement with Cu· · ·Cu separation of around 687.95 pm. The O11–

Cu1–O12 and O11–Gd–O12 angles of 81.0 and 64.7◦ forms a dihedral angle of around

26.8◦, whereas the O21–Cu2–O22 and O21–Gd–O22 angles are 63.4 and 78.7◦, respec-

tively that lead to a dihedral angle of 27.6◦. The intramolecular Cu–Gd separation is

around 345.0 pm for Cu1· · ·Gd and 342.9 pm for Cu2· · ·Gd separation. These dihedral

angles specific for µ2-bridging mode of the phenoxy oxygen atoms of the compartmental

salen-ligands showed no big difference from 1-D chain compounds to oligomeric trinuclear

species. The Cu· · ·Gd separation within the [Cu2Ln]-triad is smaller than corresponding

intramolecular separation found in previous described one-dimensional [CuLn] complexes,

but very close to corresponding intramolecular separation reported for trinuclear [Cu2Ln]-

complexes bridged by trifluoroacetate or amide-based Schiff base ligands.301,319

The compounds crystalize in the P21/c monoclinic space group and have no crys-

Figure 6.28: Molecular structure and numbering scheme atoms in

[(Cu(OMesalen))2Pr(salCOO)2]NO3·3MeOH·0.25H2O (36) complex. Thermal el-

lipsoids are drawn at 50% probability. Hydrogen atoms have been excluded for

clarity.
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Table 6.12: Selected bond lengths (pm) and angles (◦) for complex 36.

Pr–O11 248.9(4) Pr–O12 248.0(4)

Pr–O13 285.4(4) Pr–O14 270.0(5)

Pr–O21 243.9(4) Pr–O22 243.4(4)

Pr–O23 280.0(6) Pr–O24 268.4(5)

Pr–O33 243.9(5) Pr–O43 244.6(5)

Pr–Cu1 349.8(8) Pr–Cu2 352.0(8)

Cu1–O11 197.1(4) Cu1–O12 197.2(5)

Cu1–N11 197.4(5) Cu1–N12 197.1(6)

Cu1–O32 221.7(5) Cu2–O21 194.9(4)

Cu2–O22 199.2(4) Cu2–N21 198.2(6)

Cu2–N22 198.3(6) Cu2–O42 232.8(5)

O11–Pr–O12 62.84(15) O11–Pr–O13 57.95(13)

O11–Pr–O14 115.94(14) O11–Pr–O33 71.41(16)

O12–Pr–O13 112.54(14) O12–Pr–O14 60.54(14)

O12–Pr–O33 82.06(16) O13–Pr–O14 124.32(14)

O13–Pr–O33 105.90(15) O14–Pr–O33 125.10(16)

O21–Pr–O22 61.47(14) O21–Pr–O23 58.53(13)

O21–Pr–O24 116.53(14) O21–Pr–O43 73.23(15)

O22–Pr–O23 112.28(14) O22–Pr–O24 61.05(14)

O22–Pr–O43 83.89(16) O23–Pr–O24 127.52(15)

O23–Pr–O43 105.58(15) O24–Pr–O43 123.52(16)

O33–Pr–O43 68.85(17) O11–Cu1–O12 81.33(18)

O11–Cu1–N11 91.6(2) O11–Cu1–N12 162.7(2)

O11–Cu1–O32 99.41(19) O12–Cu1–N11 170.0(2)

O12–Cu1–N12 90.2(2) O12–Cu1–O32 96.09(18)

N11–Cu1–N12 94.7(2) N11–Cu1–O32 92.0(2)

N12–Cu1–O32 96.5(2) O21–Cu2–O22 79.18(18)

O21–Cu2–N21 92.1(2) O21–Cu2–N22 165.1(2)

O21–Cu2–O42 91.91(18) O22–Cu2–N21 170.8(2)

O22–Cu2– N22 91.3(2) O22–Cu2–O42 91.91(18)

N21–Cu2–N22 97.8(2) N21–Cu2–O42 86.8(2)
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Table 6.13: Selected bond lengths (pm) and angles (◦) for complex 37.

La–O11 253.3(3) La–O12 249.3(4)

La–O13 284.1(4) La–O14 273.6(4)

La–O21 252.6(4) La–O22 248.3(4)

La–O23 280.0(4) La–O24 271.1(4)

La–O33 248.2(4) La–O43 248.0(4)

La–Cu1 354.9(7) La–Cu2 356.8(7)

Cu1–O11 196.9(4) Cu1–O12 197.7(4)

Cu1–N11 197.4(5) Cu1–N12 197.3(5)

Cu1–O32 221.4(4) Cu2–O21 196.2(4)

Cu2–O22 198.7(4) Cu2–N21 198.4(5)

Cu2–N22 198.2(5) Cu2–O42 237.2(4)

O11–La–O12 61.61(12) O11–La–O13 57.70(11)

O11–La–O14 114.10(12) O11–La–O33 70.98(12)

O12–La–O13 111.91(11) O12–La–O14 59.91(12)

O12–La–O33 81.24(13) O13–La–O14 125.05(12)

O13–La–O33 104.67(12) O14–La–O33 124.54(13)

O21–La–O22 60.64(12) O21–La–O23 57.94(11)

O21–La–O24 115.19(12) O21–La–O43 72.47(13)

O22–La–O23 111.53(11) O22–La–O24 60.42(12)

O22–La–O43 83.62(13) O23–La–O24 128.42(12)

O23–La–O43 103.68(13) O24–La–O43 123.66(13)

O33–La–O43 69.03(14) O11–Cu1–O12 81.43(15)

O11–Cu1–N11 91.62(17) O11–Cu1–N12 163.18(19)

O11–Cu1–O32 99.27(16) O12–Cu1–N11 169.33(18)

O12–Cu1–N12 89.84(18) O12–Cu1–O32 96.49(15)

N11–Cu1–N12 94.76(19) N11–Cu1–O32 92.61(18)

N12–Cu1–O32 95.96(19) O21–Cu2–O22 79.62(15)

O21–Cu2–N21 91.96(17) O21–Cu2–N22 166.52(22)

O21–Cu2–O42 99.44(15) O22–Cu2–N21 170.93(17)

O22–Cu2– N22 91.43(18) O22–Cu2–O42 91.85(15)

N21–Cu2–N22 97.40(22) N21–Cu2–O42 86.17(18)
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Figure 6.29: Molecular structure and numbering scheme atoms in

[(Cu(OMesalen))2La(salCOO)2]NO3·3.75MeOH·0.25H2O (37) complex. Thermal

ellipsoids are drawn at 50% probability. Hydrogen atoms have been excluded for clarity.

tallographic symmetry. The Cu(O)2Ln bridge is asymmetric and the bond lengths and

angles of the two [Cu(OMesalen)Gd(salCOO)]+ moieties show small differences. Never-

theless, each[Cu(OMesalen)H2O] entity coordinates the central lanthanide ion in the same

fashion, similarly to previously described one-dimensional chains. The major difference

between the two bridging ligands, e.g. pyrazine 2,3-dicarboxylic acid and salicylic acid,

resides from their coordination mode. In 1-D chain compounds, the polydentate ligand

substitutes only two bidentate nitrate ligands of the classical [Cu(OMesalen)Gd(NO3)3]

dinuclear complexes (Figure 6.5), whereas the salicylic acid co-ligand leads to a total

replacement of the nitrate anion ligands but maintaining the dodecahedron arrangement

of the lanthanoid center.

The formation of trinuclear complexes of type [(Cu(OMesalen))2Ln(salCOO)2]NO3

·3MeOH·H2O is also confirmed by IR spectroscopy. Specific ligand stretching vibrations

have been observed around 1626 cm−1 assigned to ν(CH=N) bond. All the IR spectra ex-

hibit broad band at 3420 cm−1 due to phenolic and methanol ν(OH) stretching vibrations.

Strong adsorption band has been detected at 1473 cm−1 assigned to symmetric stretching
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vibrations of the carboxylate group of salicylic acid co-ligands. In addition, characteristic

stretching vibration of the nitrate anion has been observed at 1384 cm−1 similarly to its

stretching vibration in [Cu(OMesalen)Ln(NO3)(Pyr(COO)2)]n·(DMF)n complexes when

functions as bi-dentate ligand anion. The [(Cu(OMesalen))2Eu(salCOO)2]NO3·3MeOH·H2O

(37) complex showed similar IR features.

6.2.1 Magnetic properties of [CuII
2 -LnIII] trinuclear complexes

Owing to the difficulties in analyzing the magnetic properties of (CuLn) complexes in-

volving a Ln3+ ion, which possesses a first-order orbital moment, the interpretation of the

magnetic studies will concern the [(Cu(OMesalen))2La(salCOO)2]NO3 and [(Cu(OMesalen))2

Gd(salCOO)2]NO3 complexes, for which a spin-only formalism can be applied. The

La(iii) ion has a 1S0 ground state and is diamagnetic, while Gd(iii) ion with a ground state

8S7/2 is devoid of first-order angular momentum (see references for 1-D chain compounds

described previously).

The thermal dependence of the χMT product for [(Cu(OMesalen))2La(salCOO)2]NO3

·3.75MeOH·0.25H2O (37) complex is plotted in Figure 6.30 (χM is the magnetic suscep-

tibility corrected for diamagnetism).

Figure 6.30: Plots of thermal dependence of χMT product (black filled circles) and

χM (empty rhombus) for [(Cu(OMesalen))2La(salCOO)2]NO3·3.75MeOH·0.25H2O (37)

complex measured with an applied magnetic field of 2000 Oe; the solid line represents

the theoretical curve derived from Bleanery Bowers equation for a pair of copper atoms.
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The temperature dependence of χMT vs T is characteristic for a weak antiferromagnetic

interaction between the two copper ions since no maximum was observed in the thermal

variation of χMT over 300-2 K temperature range. A simulation of the magnetic data

can be performed on the basis of a spin-only expression developed by Bleaney-Bowers for

a pair of copper ions256 based on the spin Hamiltonian:

Ĥ = −JCuCuSCu1SCu2

χMT =
2Nβ2g2

kT

1

3 + exp(−J/kT )
+ χTIP (13a)

where, χTIP is the temperature independent paramagnetism.

The resulting values of the parameters are: J CuCu = −0.50 ± 0.01cm−1 for gCu =

2.31 ± 0.001 with χTIP=2.7·10−4 ± 6.4 · 10−6 cm3mol−1 with a reliability factor R2 =

0.99369. The small negative value of the coupling constant (J CuCu) describes a very

weak antiferromagnetic exchange interaction that occurs between the terminal copper

ions at low temperature and it is illustrated by the decrease of χMT value from 1.08

cm3mol−1K at 300 K to around 0.91 cm3mol−1K at 2 K. This weak antiferromagnetic

coupling is a consequence of large copper-copper interatomic separation of around 687.9

pm and, therefore the predominant magnetic interaction in trinuclear complexes of type

[(Cu(OMesalen))2Ln(salCOO)2]NO3·MeOH·H2O is determined by magnetic coupling of

the lanthanide ion with the two copper ions.

In the case of [(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·0.25H2O (34) complex,

the temperature dependence of the χMT product is depicted in Figure 6.31 (χM is the

magnetic susceptibility corrected for diamagnetism). The χMT value at 300 K is 9.72

cm3mol−1K, which is higher than calculated value (8.63 cm3mol−1K) for three uncoupled

ions (2 CuII with S = 1/2 and GdIII with S = 7/2). On lowering the temperature,

the χMT values increase constantly reaching a maximum of 13.05 cm3mol−1K at 5 K

and drops to around 12.59 cm3mol−1K at 2 K. The maximum value observed at 5 K is

indicative of ferromagnetic interaction between copper and gadolinium metal centers and

it also confirms the ground state S = 9/2 of the [Cu2Gd] triad, in which the local spins

are aligned parallel (calculated χMT is 12.40 cm3mol−1K).
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Figure 6.31: Plots of thermal dependence of χMT product (black filled circles) and χM

(empty rhombus) for [(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·0.25H2O (34) com-

plex measured with an applied magnetic field of 2000 Oe; the solid line represents the

theoretical curve derived from equation.

The analysis of the magnetic properties of [(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·

0.25H2O complex is based on the spin-only hamiltonian which takes into account the

intramolecular interaction in the [Cu2Gd] triad and assuming that the two copper ions

are equivalent for the sake of simplicity.

Ĥ = −2JCuGdSCuSGd − J ′
CuCuSCuSCu

JCuGd and JCuCu describe the magnitude of the magnetic interaction between CuII-

GdIII and Cu1II-Cu2II. The energies E(S,S’) of low-lying spin states are expressed as:

E(9/2, 1) = 0; E(7/2, 1) = 4.5JCuGd, E(7/2, 0) = 3.5JCuGd + J ′CuCu and E(5/2, 1) =

8JCuGd; where (7/2,1) and (7/2,0) refer to the states resulting from the coupling of SGd

with S’ = 1 and 0 as the intermediate spin obtaining by coupling of two SCu.

The resulting equation for the magnetic susceptibility as a function of T, the two J

parameters, g and including a paramagnetic impurity (ρ) is the following:

χMT =
Nβ2g2T

k(T − θ)

A

B
+

63Nβ2g2

4kT
+ χTIP (16)
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A = 165 + 84exp(−4.5J/kT ) + 84exp(−3.5J + J ′/kT ) + 35exp(−8J/kT )

B = 5 + 4exp(−4.5J/kT ) + 4exp(−3.5J + J ′/kT ) + 3exp(−8J/kT )

J is JCuGd and J’ is JCuCu coupling constants, g is the average of gCu and gGd value in

order to avoid overparametrization and θ represents the Weiss constant which accounts

for intermolecular coupling. The best fit of the experimental data has been obtained

considering the JCuCu = 0 cm−1, resulting the following values: JCuGd = 4.12 ± 0.02

cm−1 for gav = 2.12±0.0009 with χTIP =2.0·10−6 cm3mol−1 for a paramagnetic impurity

ρ = 0.06 ±0.003 and a Weiss constant θ = -0.15 ±0.002 K. The reliability factor R2 =

0.99996 shows a good agreement between experimental and calculated values. If the data

set is fitted varying also the JCuCu parameter, the JCuGd coupling constant varied little

(JCuGd = 4.18 ± 0.04 cm−1) for a JCuCu = −0.58 ± 0.33 cm−1, value close to one found

for the [(Cu(OMesalen))2La(salCOO)2]NO3·3.75MeOH·0.25H2O (37) complex with the

other parameters having the following values: gav = 2.11 ± 0.002, χTIP =62.0·10−5

cm3mol−1 for a paramagnetic impurity ρ = 0.05 ±0.006 and a Weiss constant θ = -0.15

±0.003 K (R2 = 0.99996). The two sets of values do not differ very much, and owing

to large Cu· · ·Cu separation, the JCuCu is very small and can be ignored. This is also

in agreement with a Cu–Gd–Cu angle close to 180◦, which is a structural parameter

indicative of low magnitude magnetic interaction between the terminal copper centers.

Additional information may be gained from the magnetization measurements per-

formed as field dependance at 2 K (Figure 6.32). The field dependence (H) of the magne-

tization (M) is similar to reported trinuclear CuII
2 GdIII complexes with the [CuGd] pairs

of the triad core coupled ferromagnetically. The best fit has been obtained using the

Brillouin function for gav = 2, resulting in aground state S T =4.61± 0.002, very close to

expected S T = 9/2.

The magnitude of the Cu-Gd magnetic interaction is close to magnetic interactions

reported for similar trinuclear [Cu2Gd] complexes when, the two copper ions are non-

magnetically or weakly antiferromagnetically coupled.301,319 This may be a consequence

of relatively large dihedral angle formed by two µ2-phenoxy bridged halves (i.e O–Cu–O
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Figure 6.32: Field dependence of the magnetization of complex

[(Cu(OMesalen))2Gd(salCOO)2]NO3·MeOH·H2O (34) complex measured at 2 K

(black filled squares represent the experimental value; the solid line shows the theoretical

curve generated using the Brillouin equation for gav = 2.00 and S= 4.614 ± 0.002).

and O–Gd–O) of around 27.6 and 26.8◦. The bending of the CuO2Gd core is similar to one

found in the one-dimensional [CuGd] chain and, it can be concluded that both bridging

organic ligands cause a similar bending effect of the magnetic interacting core. The

important role of this dihedral angle, as determinant of the magnitude of the magnetic

interaction is well documented and it has been established that values larger than 40◦

change the Cu-Gd interaction from ferromagnetic to antiferromagnetic.312

The cases of complexes [(Cu(OMesalen))2Eu(salCOO)2]NO3·MeOH·H2O (38) complex,

[(Cu(OMesalen))2Sm(salCOO)2]NO3·2.5MeOH·H2O (35) complex and [(Cu(OMesalen))2

Pr(salCOO)2]NO3·3MeOH·0.25H2O (36) complexes are more complicated from a mag-

netic point of view. The magnetic properties of 3d-4f compounds, in which the lanthanide

ion possesses first-order angular momentum are based on two phenomena: the thermal

depopulation of the Stark sublevels of 4f ion and the exchange interaction between the

constituent paramagnetic centers. For Pr(iii) ion, the ground state is well separated

from the first excited state and its contribution to the magnetic susceptibility in trinu-

clear [(Cu(OMesalen))2Pr(salCOO)2]NO3·3MeOH·0.25H2O complex is 1.60 cm3mol−1K

for gJ = 4/5.10,321 The thermal dependence of magnetic susceptibility in form of χM

and χMT vs T plots are shown in Figure 6.33. At 300 K, the χMT value is around 2.70
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Figure 6.33: Plots of thermal dependence of χMT product (black filled circles) and χM

(empty rhombus) for [(Cu(OMesalen))2Pr(salCOO)2]NO3·3MeOH·0.25H2O (36) complex

measured with an applied magnetic field of 2000 Oe.

cm3mol−1K, which is a little bit higher than calculated value (2.35 cm3mol−1K). On low-

ering the temperature, the χMT decreases constantly reaching a value of 0.90 cm3mol−1K

at 2 K (Fig. 6.33).

In the case of Eu(iii) and Sm(iii) ions, the energy separation between the ground

state and first excited state is very small (300 cm−1 for Eu(iii) and 200 cm−1 for Sm(iii))

and therefore, the first excited state is populated at room temperature. For EuIII ion,

the ground state 7FJ is split by spin-orbit coupling into seven excited states and, thus

the magnetic susceptibility of the ground state is a sum of orbital and spin contribution.

the high-temperature limit (χmT)HT would be according with the equation:

χMT =
Nβ2g2

3k
(g2

LL(L + 1) + g2
SS(S + 1)) (gL = 1, gS = 2) (17)

around 4.50 cm3mol−1K.10 The measured χMT value for [(Cu(OMesalen))2Eu(salCOO)2]

NO3·MeOH·H2O (38) complex is around 2.81 cm3mol−1K at 300 K (Figure 6.34, top

plot), much higher than expected one. Indeed, Kahn et al reported that high limit

value of magnetic susceptibility is not to be reached in europium-containing complexes

due to population of the three low-lying states at high temperature. The decrease of

temperature values cause an almost linear decrease of the χMT values reaching a value

of 1.14 cm3mol−1K at 3 K.
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Similar situation was observed for magnetic data sets for [(Cu(OMesalen))2Sm(salCOO)2]

NO3·2.5MeOH·H2O (35) complex (Figure 6.34, bottom plot). The χT values are de-

creasing constantly on lowering the temperature from 1.45 cm3mol−1K at 300 K to 0.69

cm3mol−1K at 2 K. Sm(iii) ion with a 6H5/2 ground state has a magnetic susceptibil-

ity contribution of around 0.09 cm3mol−1K (gJ = 2/7) and this value is reached only

at very low temperatures. This peculiarity is observed for the magnetic behavior of

[(Cu(OMesalen))2Sm(salCOO)2]NO3·2.5MeOH·H2O (35) complex for which a linear de-

crease of χMT value is observed from 300 K to 20 K (χMT = 1.02 cm3mol−1K at 20 K)

and abruptly below this temperature.

Figure 6.34: Plots of thermal dependence of χMT product (black filled circles) and

χM (empty rhombus) for [(Cu(OMesalen))2Eu(salCOO)2]NO3·MeOH·H2O (38) complex

(top plot) and [(Cu(OMesalen))2Sm(salCOO)2]NO3·2.5MeOH·H2O (35) complex (bot-

tom plot) measured with an applied magnetic field of 2000 Oe.
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6.3 Conclusions and future perspectives

In conclusion, one-dimensional chains and oligo-trinuclear heterometallic complexes could

be isolated using Cu-salen type precursor as ”complex-ligand”. The structural studies

show that µ2-phenoxo bridged [CuLn] core is successful building block for synthesizing

polymeric coordination compounds. Due to high anisotropy associated with the majority

of the lanthanide ions, such d-f topologies are most appealing for constructing extended

architectures with interesting magnetic properties. Trinuclear [Cu2Ln] complexes have

been isolated using salicylic acid as capping and bridging ligand, whereas 1-D chains were

isolated in the case of pyrazine 2,3-dicarboxylic acid co-ligand. The major difference be-

tween the two bridging ligands, e.g. pyrazine 2,3-dicarboxylic acid and salicylic acid,

resides from their coordination mode. In 1-D chain compounds, the polydentate ligand

substitutes only two bidentate nitrate ligands of the classical [Cu(OMesalen)Gd(NO3)3]

dinuclear complexes, whereas the salicylic acid co-ligand leads to a total replacement of

the nitrate anion ligands but maintaining the decahedron arrangement of the lanthanoid

center. Polymeric 1-D chains have been isolated for lanthanide ions placed before and

after gadolinium ion in the periodical table and by contrast, the salicylic acid made

possible the isolation of heterotrinuclear compounds only for lanthanide ions compris-

ing lanthanum to gadolinium ions. For both types of d-f coordination compounds, the

magnetic behavior was found to be very similar, owing to close value of the dihedral

angle formed by the phenoxy-bridged copper(ii)-lanthanide(iii) planes. One-dimensional

[CuLn] chains formed with polydentate pyrazine 2,3-dicarboxylic acid as bridging ligand

represent rare examples of such extended architectures with d-f topology. The resulting

polymers of type [Cu(OMesalen)Ln(NO3)(Pyr(COO)2)]n·(DMF)n are formed by alter-

nating pairs of Cu· · ·Ln and Ln· · ·Ln through polydentate bridging ligand yielding an

infinite zigzag chain. The magnetic properties of these 1-D chains are determined by

the Cu–Ln magnetic coupling of the constituting heterodinuclear entities. On the other

hand, the magnitude of the magnetic interaction is strong dependent upon the bending

of the CuO2Gd core (see equation 10), namely the dihedral angle formed by O–Cu–O

and O–Gd–O halves. Therefore, the spacer of the starting compartmental salen-type

ligand plays a key role in inducing a stronger magnetic coupling between the param-
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Figure 6.35: Molecular structure and numbering scheme atoms in [Cu(o-

OEtPhsalph)]·H2O·MeOH (39) complex. Thermal ellipsoids are drawn at 50% proba-

bility. Dashed lines represent hydrogen bonding interactions.

agnetic centers. Aromatic frameworks are known as best mediators of the magnetic

interaction and magnetic exchange interaction through extended π-conjugated aromatic

system is well documented. Organic frameworks that contain a π-conjugated spacers

have been reported able of mediating the magnetic interaction between the paramagnetic

centers, even when the constituting metal ions are very well separated. Therefore, the

Cu-salen type precursor [Cu(o-OEtPhsalph)]·H2O·MeOH (39) (Figure 6.35) might be a

good starting material for designing 1-D polymeric chains with d-f topology. The copper

ions maintain the classical O2N2 position in the inner compartment of the bis(2-hydroxy-

3-ethoxy-benzylidene)-o-phenylene diamine ligand in a square-planar environment. The

mean deviation of the copper atom from the ligand plane is only 10 pm, which shows

a good planarity. The complex crystalize with a water molecule as solvent of crystal-

lization that is hosted in the outer compartment of the salen-type ligand by hydrogen

bonding interaction with both pairs of phenoxy and ethoxy oxygen atoms (O1w· · ·O1

279.8 pm and O1w· · ·O2 287.5 pm). In addition, methanol as cocrystalized solvent com-

pletes the hydrogen bonding network establishing hydrogen bonding contacts with the

water molecule through the hydroxyl group (O1w· · ·O1M 278.2 pm).
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Table 6.14: Selected bond lengths (pm) and angles (◦) for complex 39.

Cu–O1 192.72(16) Cu–N1 195.3(2)

O1–Cu–O1A 90.89(10) O1–Cu–N1 93.04(8)

O1–Cu–N1A 175.91(7) O1A–Cu–N1 175.91(7)

O1–Cu–N1 93.04(8) N1–Cu–N1 83.04(12)

The relevance of this Cu-salen type precursor in constructing extended architec-

tures with d-f topology is supported by reports of discrete heterodinuclear [CuGd] com-

plex which confirm this supposition.329 The dihedral angle formed by the two halves is

around 4.1◦, one of the smallest bending of CuO2Gd core reported up to now in het-

erometallic [CuLn] complexes. Kahn et al. proposed that the exchange coupling reaches

a maximum value for the Cu(ii)-Gd(iii) exchange interaction in co-planar arrangement

of the O–Cu–O and O–Gd–O planes.317 Therefore, the magnetic interaction within the

constituting entities of the polymeric chains are expected to be increased when such an

organic framework is used.

Owing to the difficulties in analyzing the magnetic properties of heterometallic d-f

complexes that involve Ln(iii) ions, other than gadolinium ion, an empirical approach

has been developed.415 This is based on comparison of the magnetic susceptibilities of

[CuIILnIII] complexes with isostructural [NiIILnIII] complexes which involves diamagnetic

NiII ions and assuming the LnIII-LnIII negligible. Therefore, the isostructural NiII-salen

type precursor -[Ni(o-OEtPhsalph)]·H2O (40) has also been isolated. The molecular

structure determination is shown in Figure 6.36 and shows a square-planar environment

for NiII ion, accommodated in the inner pocket of the salen-type ligand, similarly to

copper ion in [Cu(o-OEtPhsalph)] (39) complex. Selected bond lengths and angles for

complex 40 are listed in Table 6.15.

The mean deviation of the NiII from the ligand plane is around 9 pm, similarly to

corresponding copper(ii) ion in isostructural copper complex 39. Complex 40 crystal-

izes with a water molecule as solvent of crystallization, which as previously described

is hosted by hydrogen bonding interactions in the outer O2O2 shell of the compart-
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Figure 6.36: Molecular structure and numbering scheme atoms in [Ni(o-

OEtPhsalph)]·H2O (40) complex. Thermal ellipsoids are drawn at 50% probability.

Dashed lines represent hydrogen bonding interactions.

mental bis(2-hydroxy-3-ethoxy-benzylidene)-o-phenylene diamine (O1w· · ·O1 300.2 pm,

O1w· · ·O4 292 pm). Nevertheless, when polydentate bridging ligands are used to con-

struct coordination polymers, the ZnII-containing precursor is more appropriate. This is

because, according to the nature of the bridging units, modification of the coordination

geometry of NiII ion in the precursor changes its magnetic properties.

Table 6.15: Selected bond lengths (pm) and angles (◦) for complex 40.

Ni–O1 185.78(14) Ni–O2 184.87(14)

Ni–N1 186.11(18) Ni–N2 185.74(17)

O2–Ni–O1 85.13(6) O2–Ni–N1 174.75(7)

O2–Ni–N2 94.96(7) O1–Ni–N1 94.95(7)

N2–Ni–O1 172.87(7) N2–Ni–N1 85.61(8)
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The design of polynuclear complexes with predictable magnetic interaction is still

a challenging area for inorganic chemists. Ferromagnetic interaction, caused by a par-

allel alignment of the electrons, has been rationalized to be created by orthogonal ori-

entation of the magnetic orbitals and/or by spin-polarization effects.10,416,417 The spin

polarization mechanism appears when the metal ions are linked by a meta-substituted

aromatic system. In this case, the intramolecular ferromagnetic interaction can be prop-

agated throughout molecule due to topologically networked dπ spins to the ligand pπ

orbitals.416,417,417 Thus, substituted m-phenylene ligands have been reported as fer-

rocouplers between first-raw transition metals. Therefore, salen-type ligand based on

m-phenylene diamine spacer might show interesting features. On going from ortho-

phenylene diamine spacer to meta-phenylene derivatives, the bis(2-hydroxy-3-methoxy-

benzylidene)-m-phenylene diamine salen-type ligand yield a dinuclear copper(ii) complex

41 (Figure 6.37). The salen-type ligand bridges and accommodates two CuII ions, re-

sulting in a centrosymmetric [Cu(m-OMePhsalph)]2·2H2O complex. Each CuII ion has

an N2O2 environment in a square-planar geometry (N1–Cu–O1 94.34◦ and O1–Cu–O3

90.09◦). The intramolecular Cu· · ·Cu separation is around 741.63 pm, similar with cor-

responding separation reported for dinuclear Cu(ii) complexes bridged by m-phenylene

derivatives. The two m-phenylene rings are ideally parallel to each other with the average

interplanar separation 294.6 pm.

An important role is determining the nature of ferro- or antiferro-magnetic inter-

action between the two copper(ii) ions is played by the orientation of the copper basal

planes to the benzene rings of the m-phenylene diamine spacer.416 In complex 41, the

dihedral angle between this two planes is around 47.66◦ with the two m-phenylene rings

in anti-orientation with no π-π interaction (Figure 6.39). Selected bond lengths and

angles in complex 41 are listed in Table 6.16. Complex 41 crystallizes with two water

molecules as solvents of crystallization which are again hosted through hydrogen bonding

interactions in the outer compartment of the bis(2-hydroxy-3-methoxy-benzylidene)-m-

phenylene diamine salen-type ligand (O1w· · ·O1 289.0 pm, O1w· · ·O3A 290.4, O1w· · ·O2

307.9 pm and O1w· · ·O4A 296.8 pm). This hydrogen bonding network is completed by

co-crystalized methanol molecules (O1M· · ·O1w 111 pm), resulting in a one-dimensional

polymer constructed throughout the direction in which the shortest Cu· · ·Cu intermolec-
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Figure 6.37: Molecular structure and numbering scheme atoms of [Cu(m-

OMePhsalph)]2·2H2O (41) complex. Thermal ellipsoids are drawn at 50% probability

level. Dashed lines represent hydrogen bonding interactions.

Figure 6.38: Hydrogen bonding interaction in complex 41 showing the formation of

the 2-D polymer build up by hydrogen bonding contacts among the solvent molecules.

Dashed lines represent hydrogen bonding interactions. Only the heteroatoms of the

solvent molecules are numbered.

ular separation is larger than 700 pm (Figure 6.38).

Such a dinuclear copper-precursor may be use to design one-dimensional chains with

a [Cu2Ln2] topology. The magnetic interaction within the constituent entities will take

place between the [CuLn] dimers and, in addition between the copper centers. According

with the existing reports for similar dinuclear copper complexes, it seems that such an

anti -orientation of the two m-phenylene rings will mediate an weak antiferromagnetic
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Figure 6.39: Perspective view of molecular structure of complex [Cu2(m-OMe-

Phsalen)]2·2H2O showing the anti-orientation of the m-phenylene rings. Only the num-

bering scheme for m-phenylene carbon atoms is shown.

interaction between the copper ions. The orientation of the magnetic orbitals on each

metal center relative to the m-phenylene rings plays the crucial role in establishing the

final exchange interaction.418 The ferromagnetic coupling of the copper centers will be

favored by a syn orientation of the m-phenylene rings which are parallel to each other

and π-π stacked (Figure 6.40). Such orientation of the phenylene rings has been found in

oxamide-type m-phenylene derivatives with the copper ions coupled ferromagnetically in

the 14.56 cm−1 to 16.8 cm−1 range.416,417 An anti -orientation of the phenylene rings (Fig-

ure 6.39) shadows the spin-polarization effect and leads to an atiferromagnetic coupling

of the copper centers.416,418

N N
CuCu

N

N

N

N

Cu

Cu

a)

b)

Figure 6.40: Schematic representation of spin polarization effect (inset a) and syn-

orientation of the m-phenylene rings (inset b) in m-phenylene diamine derivatives copper

complexes as sum of effects responsible for ferromagnetic coupling of copper sites.
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Table 6.16: Selected bond lengths (pm) and angles (◦) for complex 41.

Cu–O1 189.7(3) Cu–O3 190.5(2)

Cu–N1 196.1(3) Cu–N2 197.2(3)

O1–Cu–O3 90.09(11) O1–Cu–N1 94.34(11)

O1–Cu–N2 144.56(11) O3–Cu–N1 150.17(12)

O3–Cu–N2 93.14(11) N1–Cu–N2 99.98(12)

The ”complex as ligand” approach is so far the best strategy to design heteronu-

clear compounds. The precursor-complex should contain potential donor groups able of

binding another metal ion. Besides, salen-type ligands, bis(2-pyridylcarbonyl)amine lig-

and (Hbpca) is a versatile organic framework for isolation of heteronuclear species and/or

supramolecular assemblies.159,204,205 The Cu-precursor complex is isolated by hydrolysis

of 2,4,6-tris-2-pyridin s-triazine ligand157–162 by Cu(NO3)2·3H2O when through one-pot

reaction, mononuclear Cu-complex of type [Cu(bcpa)(OH2)2]NO3·MeOH is obtained (see

Figure 6.41). This anionic copper complex has been used to design a large variety of

molecular assemblies that range from oligo-heteronuclear species to one-dimensional co-

ordination polymers with d-d topology.159,204,205 The copper ion is five-coordinated in

a distorted trigonal bipyramidal geometry. The N1–Cu–N2 and N1–Cu–O2w angles are

around 163.9 and 157.5◦ with the Cu–N bond distances within the 193.9-199.7 pm range

(see table 6.17).

Figure 6.41: Molecular structure and numbering scheme atoms in anionic complex

[Cu(bcpa)(OH2)2]NO3·MeOH (42).
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Table 6.17: Selected bond lengths (pm) and angles (◦) for complex 42.

Cu–N1 199.73(18) Cu–N2 199.49(18)

Cu–N3 193.96(17) Cu–O1W 224.05(17)

Cu–O2W 196.79(17) - -

N1–Cu–N2 163.89(7) N1–Cu–N3 81.87(7)

N1–Cu–O1W 90.63(7) N1–Cu–O2W 98.56(7)

N3–Cu–N2 82.04(7) N3–Cu–O1W 110.48(7)

N3–Cu–O2W 157.53(8) N2–Cu–O1W 95.64(7)

N2–Cu–O2W 96.04(7) O1W–Cu–O2W 91.99(8)

The interesting feature of this complex is represented by labile coordination po-

sitions of the copper centers which are occupied by solvent molecules and may be used

towards isolation of new molecular assemblies. In instance, salicylic acid co-ligand substi-

tutes one of the solvent molecule yielding the copper-precursor [Cu(bcpa)(salCOO)H2O]

(43) (Figure 6.42). The copper ion maintains the N3O2 environment with Cu–N and

Cu–O bond lengths that range from 193.2 to 231.7 pm, comparable to bond distances re-

ported in analogous Cu-bpca complexes. Selected bond lengths and angles in complex 43

are given in Table 6.18. The salicylic acid is involved in intra- and inter-molecular hydro-

gen bonding interaction, whereas the enolized amide and carbonyl functionalities create

a hydrogen bonded dimeric structure (Figure 6.43). This new precursor has two dissim-

ilar cavities, resulting in a rich oxygen-donor environment appropriate to accommodate

lanthanide ions due to their known oxophilicity. Lanthanide ions can be accommodate

by the salicylic acid and the two carbonyl-type groups resulting, most likely in polymeric

assemblies. On the other hand, taking advantage of the presence of dissimilar cavities,

complex 43 may be used as molecular brick in design of coordination polymers containing

two or three different metal ions. In addition, the magnetic interaction between Cu(ii)-

Ln(iii) ions is expected to be stronger if the lanthanide ion is coordinated via bidentate

chelating carbonyl sites, due to the magnetic orbital of the copper ion placed on its basal

plane.
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Figure 6.42: Molecular structure and numbering scheme atoms in complex 43. Dashed

lines represent intramolecular hydrogen bonding interactions.

Figure 6.43: Hydrogen bonding interaction in complex 43 as viewed along the b axis.

Dashed lines represent hydrogen bonding interactions.

Replacement of the diamine spacer of the compartmental salen-type ligands with

inexpensive hydrazine affords diazine ligands with an =N–N= bridging fragment. Due

to the twisting around the single N–N bond, metalohelicates can be isolated as models
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Table 6.18: Selected bond lengths (pm) and angles (◦) for complex 43.

Cu–N1 201.2(2) Cu–N2 201.6(2)

Cu–N3 193.2(2) Cu–O4 195.11(18)

Cu–O1W 231.7(2) O5–C13 125.7(3)

N1–Cu–N2 1623.68(9) N1–Cu–N3 81.41(9)

N1–Cu–O4 98.90(9) N1–Cu–O1W 87.77(9)

N3–Cu–N2 81.97(9) N3–Cu–O4 171.77(9)

N3–Cu–O1W 96.37(9) N2–Cu–O1W 98.90(9)

O4–Cu–N2 96.84(9) O4–Cu–O1W 91.85(8)

to understand the helical self-organization processes that occur in nature. The compart-

mental diazine ligand - N,N’-bis (3-methyoxysalicylidene) hydrazine - has been reacted

with Fe(NO3)3·H2O salt in methanol solution, using NEt3 as base yielding the dinuclear

iron complex [Fe2(µ-valhy)3]·4DMF (44).419 The molecular structure, shown in Figure

6.44 contains two octahedral Fe(iii) centers connected by three diazine =N–N= bridges.

Each of the three ligands coordinates the metal center through two phenolate-O and two

imine-N atoms, resulting in an N3O3 coordination environment for each iron ion. The

Fe· · ·Fe separation is around 399.05 pm, value that compares well with intramolecular

Fe· · ·Fe separation in analogous complexes.419 The dinuclear complex is neutral with

Fe–O bond distances in the 191.3-193.1 pm range consistent with the 3+ oxidation state

of the iron metal. Selected bond lengths and angles in complex 44 are listed in Table

6.19. The complex crystallizes in the triclinic P-1 space group with the asymmetric unit

containing one full complex molecule with a triple-helicate motif. The helical twist along

the N–N bond differs in three ligand moieties with dihedral angles of 50.7, 66.1 and 40.4◦

and, therefore not identical, hence not an ideal D3h symmetry characteristic for a perfect

triple helicate. The complex crystallizes with four DMF molecules which are involved

in hydrogen bonding interaction with the donor atoms of the diazine ligands. Complex

44 may be a potential candidate as precursor to synthesize FeIII
2 -LnIII complexes, due to

additional free sites able of accommodating lanthanide ions, namely the -OCH3 arms of

the aromatic supporting ligand.
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Table 6.19: Selected bond lengths (pm) and angles (◦) for complex 44.

FeA–O1A 191.4(3) FeA–O1B 191.7(3)

FeA–O1C 192.3(3) FeA–N1A 219.5(3)

FeA–N1B 217.6(4) FeA–N1C 219.0(4)

FeB–O2A 193.1(3) FeB–O2B 191.3(3)

FeB–O2C 192.5(3) FeB–N2A 219.9(4)

FeB–N2C 217.6(4) FeB–N2B 2179.(4)

O1A–FeA–O1B 97.44(13) O1A–FeA–O1C 95.25(14)

O1A–FeA–N1A 84.00(13) O1A–FeA–N1B 97.25(14)

O1A–FeA–N1C 168.30(13) O1B–FeA–O1C 97.18(13)

O1B–FeA–N1B 83.98(13) O1B–FeA–N1A 169.00(13)

O1B–FeA–N1C 94.21(13) O1C–FeA–N1A 93.53(13)

O1C–FeA–N1B 167.19(13) O1C–FeA–N1C 84.27(13)

N1B–FeA–N1A 85.03(13) N1B–FeA–N1C 82.93(14)

N1C–FeA–N1A 84.36(13) O2A–FeB–N2A 84.07(13)

O2A–FeB–N2B 166.26(14) O2A–FeB–N2C 90.85(14)

O2B–FeB–O2A 100.20(13) O2B–FeB–O2C 96.23(13)

O2B–FeB–N2A 92.91(13) O2B–FeB–N2B 84.41(13)

O2B–FeB–N2C 168.67(14) O2C–FeB–O2A 100.26(13)

O2C–FeB–N2A 169.00(13) O2C–FeB–N2B 92.03(13)

O2C–FeB–N2C 84.14(13) N2B–FeB–N2A 82.76(13)

N2C–FeB–N2A 85.70(13) N2C–FeB–N2B 84.26(13)
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Figure 6.44: Molecular structure and numbering scheme atoms in complex [Fe2(µ-

valhy)3]·4DMF (44) (up) with hydrogen atoms omitted for clarity and all atoms rep-

resented using 50% thermal ellipsoids. The bottom picture shows the space-filling repre-

sentation of the triple helical structure.

The magnetic behavior of dinuclear iron complex 44 in the 300-2 K temperature

range is shown in Figure 6.45 as χM and χMT vs. T plots. The high temperature χMT is

around 6.80 cm3mol−1K, value higher than expected for two uncoupled high-spin Fe(iii)

ions. On lowering the temperature, the χMT product decreases gradually reaching a value

close to zero at 2 K. The shape of the thermal variation of the χMT product indicates an
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antiferromagnetic between the iron ions. Simulation of the magnetic data set has been

achieved using the isotropic spin exchange hamiltonian:

Ĥ = −JFeFeSFe1SFe2

with S1=S2=5/2.

Considering the energies of the low-lying states and taking into account paramag-

netic impurities, the magnetic susceptibility was calculated using equation 6, previously

discussed in Chapter 4.

Figure 6.45: Plots of thermal dependence of χMT product (black filled circles) and χM

(empty squares) for [Fe2(µ-valhy)3]·4DMF (44) measured with an applied magnetic field

of 2000 Oe. Solid lines represent the simulation of the data set using equation for a pair

of iron atoms.

The best fit was obtained for χMT vs T experimental data points and led to g =

1.93 ± 0.001, J = −7.59 ± 0.04 cm−1 for a paramagnetic impurity ρ = 0.002 ± 0.001

with reliability factor R2 = 0.99988. The calculated data curve (solid line in Figure 6.45)

matches well the experimental magnetic data. The magnitude of the antiferromagnetic

interaction is smaller than previous described dinuclear Fe(iii) complexes (Chapter 4),

but of the same range order with similar homodinuclear iron(iii) complexes.419

It can be concluded that all d-transition metal complexes briefly described herein

can be used as precursors to isolate one-dimensional polymers and or oligo-heteropolynuclear
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complexes with d-f topology. The most interesting complexes are the Cu(ii)-complexes

based on bis(2-hydroxy-3-OR-benzylidene)-(o/m)-phenylene diamine ligands, where a

small bending of the CuO2Gd fragment has been reported. Such a polymeric chains are

expected to contain a higher magnitude of the magnetic coupling between the copper(ii)-

lanthanide(iii) constituting units. On the other hand, other bridging organic linkers

(Figure 6.46) may be successful candidates to replace the pyrazine 2,3-dicarboxylic acid

used herein to design coordination polymers.

N

O

OO

O N N

OO

O O

OO

O O

Figure 6.46: Proposed new organic linker compounds able to generate one-dimensional

chain with d-f topology.

6.4 Experimental Part

Synthesis of [[Cu(OMesalen)H2O] precursor (24)

The salen-type precursor 23 have been prepared following similar reported procedures:

to the in situ formed Schiff base ligands (prepared following typical synthesis procedures

by condensation of o-vanillin (3.04 g, 0.02 mol) with alkyl-diamine derivatives (0.01 mol)

in 2:1 ratio) in methanol solution was added M(ii) acetate salt (0.01 mol), followed by

addition of water. The resulting solution was stirred at room temperature overnight.?

Yield: 3.2 g (7.0 mmol, 76.0%). Anal. Calc. for C19H22N2O5Cu (421.93): C 56.49, H

4.99, N 6.94. Found: C 56.22, H 5.02, N 6.78. Selected IR data (cm−1): 3435 (br, H2O),

1629 (s, -CH=N).
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Synthesis of [Cu(OMesalen)Na(H2O)]NO3 (25) complex

To [Cu(OMesalen)H2O](105 mg, 0.25 mmol) precursor suspended in MeOH (5 mL) was

added an aqueous solution (5 mL) of NaNO3 (21.0 mg, 0.25 mmol), followed by addition

of DMF (5 mL) for a total dissolution of reaction components. The resulting solution

was stirred at room temperature for 15 minutes, filtered and let standing for slow evap-

oration of the solvent mixture. Yield: 70.0 mg (0.13 mmol, 52.0%). Anal. Calc. for

C21H26N3O8CuNa (534.98): C 47.15, H 4.90, N 7.85. Found: C 46.66, H 4.27, N 9.10.

Selected IR data (cm−1): 3420 (br, H2O), 1630, 1613 (s, -CH=N), 1384 (s, NO3).

[Cu(MeOH)(OMesalen)Gd(NO3)3] (26) complex

To [Cu(OMesalen)H2O](210 mg, 0.50 mmol) precursor suspended in MeOH (10 mL) was

added a methanol solution of Gd(NO3)3·6H2O (110 mg, 0.25 mmol) followed by addition

of a methanol (10 mL) solution formed by salicylic acid (75 mg, 0.50 mmol) and NEt3

(1.0 mL 1 N methanol solution). The resulting solution was stirred at room temperature

for 15 minutes and allowed to stand undisturbed for slow evaporation of the solvent.

Crystals suitable for X-ray analyze are obtain within four hours. Yield: 145.0 mg (0.18

mmol, 72.0%). Anal. Calc. for C22H28N5O14CuGd (807.27): C 32.73, H 3.50, N 8.68.

Found: C 32.72, H 3.20, N 8.61.

General synthesis pathway used to isolate [Cu(OMesalen)Ln(NO3)-

(Pyr(COO)2)]n·(DMF)n complexes

To a suspension of [Cu(OMesalen)H2O] precursor complex (105 mg, 0.25 mmol) in MeOH

(10 mL) was added stepwise a methanolic solution (5 mL) of Ln(NO3)3·6H2O (0.25 mmol)

followed by addition of a methanol (10 mL) solution formed by pyrazine 2,3-dicarboxylic

(42 mg, 0.25 mmol) and NEt3 (0.5 mL 1 N methanol solution). The resulting solution

was stirred at room temperature with a precipitate formed within the first 5 minutes of

reaction. This was redissolved by addition of DMF (5 mL) and the reaction has been

continued for other 10 minutes. After filtration the light green filtrate was allowed to

stand at room temperature for slow evaporation of the solvent. Suitable crystals for X-

Ray measurement were obtained within a week. Selected IR data (cm−1): 1671 (s, -C=O),
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1633 (s, -CH=N), 1569 (s, -CH=Npyrazine), 1384 (s, NO3).

[Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n·(DMF)n (27)

Yield: 137.0 mg (0.16 mmol, 63.4%). Anal. Calc. for C28H30N6O12CuGd (863.36):

C 38.95, H 3.50, N 9.73. Found: C 38.69, H 3.52, N 9.85.

[Cu(OMesalen)Dy(NO3)(Pyr(COO)2)]n·(DMF)n (28)

Yield: 127.0 mg (0.14 mmol, 58.0%). Anal. Calc. for C28H30N6O12CuDy (868.61):

C 38.72, H 3.48, N 9.68. Found: C 38.30, H 3.13, N 9.67.

[Cu(OMesalen)Tb(NO3)(Pyr(COO)2)]n·(DMF)n (29)

Yield: 105.0 mg (0.12 mmol, 48.0%). Anal. Calc. for C28H30N6O12CuTb (865.03):

C 38.88, H 3.50, N 9.72. Found: C 38.52, H 3.22, N 9.79.

[Cu(OMesalen)Eu(NO3)(Pyr(COO)2)]n·(DMF)n (30)

Yield: 109.0 mg (0.13 mmol, 50.8%). Anal. Calc. for C28H30N6O12CuEu (858.07):

C 38.19, H 3.52, N 9.79. Found: C 39.09, H 3.47, N 9.95.

[Cu(OMesalen)Sm(NO3)(Pyr(COO)2)]n·(DMF)n (31)

Yield: 110.0 mg (0.13 mmol, 51.0%). Anal. Calc. for C28H30N6O12CuSm (856.46):

C 39.27, H 3.53, N 9.81. Found: C 39.25, H 3.50, N 9.89.

[Cu(OMesalen)Pr(NO3)(Pyr(COO)2)]n·(DMF)n (32)

Yield: 96.0 mg (0.11 mmol, 45.0%). Anal. Calc. for C28H30N6O12CuPr (847.02):

C 39.70, H 3.57, N 9.92. Found: C 39.65, H 3.53, N 10.05.

[Cu(OMesalen)La(NO3)(Pyr(COO)2)]n·(DMF)n (33)

Yield: 117.0 mg (0.14 mmol, 55.3%). Anal. Calc. for C28H30N6O12CuLa (845.02): C

39.80, H 3.58, N 9.95. Found: C 39.08, H 3.55, N 9.83. Selected IR data (cm−1): 1671

(s, -C=O), 1633 (s, -CH=N), 1569 (s, -CH=Npyrazine), 1384 (s, NO3).
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General synthesis pathway used to isolate trinuclear [(Cu(OMesalen))2-

Ln(salCOO)2]NO3·3MeOH·H2O complexes

To a suspension of [Cu(OMesalen)H2O] precursor complex (105 mg, 0.25 mmol) in MeOH

(10 mL) was added stepwise a methanolic solution (5 mL) of Ln(NO3)3·6H2O (0.125

mmol) followed by addition of a methanol (10 mL) solution formed by salicylic acid (34.5

mg, 0.25 mmol) and NEt3 (0.5 mL 1 N methanol solution). The resulting solution was

stirred at room temperature for 10 minutes. After filtration the green filtrate was allowed

to stand at room temperature for slow evaporation of the solvent. Suitable crystals for

X-Ray measurement were obtained within a week. Selected IR data (cm−1): 3420 (br,

OHass), 1627 (s, -CH=N), 1473 (s, COO), 1384 (s, NO3).

[(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·0.25H2O (34)

Yield: 120.0 mg (0.08 mmol, 68.0%). Anal. Calc. for C54H63N5O21Cu2Gd (1402.43):

C 46.25, H 4.53, N 4.99. Found: C 46.56, H 3.89, N 5.14 ([(Cu(OMesalen))2Gd(salCOO)2]

NO3·3MeOH·H2O).

[(Cu(OMesalen))2Sm(salCOO)2]NO3·2.5MeOH·H2O (35)

Yield: 100.0 mg (0.07 mmol, 57.0%). Anal. Calc. for C53H57N5O19Cu2Sm (1345.52)

([(Cu(OMesalen))2Sm(salCOO)2]NO3·2MeOH): C 46.48, H 4.55, N 5.02. Found: C 47.15,

H 4.00, N 5.01.

[(Cu(OMesalen))2Pr(salCOO)2]NO3·3MeOH·0.25H2O (36)

Yield: 110.0 mg (0.08 mmol, 63.0%). Anal. Calc. for C54H63.5N5O21.25Cu2Pr (1390.63):

C 46.64, H 4.60, N 5.04. Found: C 46.51, H 4.00, N 5.07.

[(Cu(OMesalen))2La(salCOO)2]NO3·3.75MeOH·0.25H2O (37)

Yield: 114.0 mg (0.08 mmol, 64.0%). Anal. Calc. for C54H63N5O21Cu2La ([(Cu(OMesalen))2

La(salCOO)2]NO3·3MeOH·H2O) (1384.09): C 46.86, H 4.59, N 5.05. Found: C 46.40, H

4.38, N 4.87.
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[(Cu(OMesalen))2Eu(salCOO)2]NO3·3MeOH·H2O (38)

Yield: 112.0 mg (0.08 mmol, 62.0%). Anal. Calc. for C54H63N5O21Cu2Eu (1397.14):

C 46.42, H 4.54, N 5.01. Found: C 46.05, H 4.25, N 5.10.

Synthesis of d-transition metal precursor complexes

To a solution of 3-alkoxy-2-hydroxy-benzaldehyde (0.01 mol) and the corresponding

phenylene-diamine (350 mg, 5.0 mmol) in methanol (10 mL) was added stepwise a

methanolic solution (5 mL) of M(OAc)2·nH2O (5.0 mmol) followed by addition of DMF (5

mL). The resulting clear solution was stirred overnight at room temperature, than filtered

and let to stand at room temperature for slow evaporation of the solvents mixture.

[Cu(o-OEtPhsalph)]·H2O·MeOH (39) complex

This complex has been prepared in situ by reaction between 2-hydroxy-3-ethoxy-benzalde-

hyde (166 mg, 0.01 mol) with o-phenylene diamine copper acetate (1 g, 5 mmol) in

methanol, followed by addition of DMF (5 mL)when a clear dark-blue solution is formed.

Yield: 1.8 g (4.44 mmol, 88.8%). Anal. Calc. for C18H20N2O5Cu (407.90): C 53.00, H

4.94, N 6.87. Found: C 54.99, H 5.61, N 6.34. Selected IR data (cm−1): 3509 (s, H2O,

MeOH), 1606 (s, -CH=N).

[Ni(o-OEtPhsalph)]·H2O (40) complex

This complex has been prepared similarly to copper precursor 38, using nickel acetate

(5.0 mmol) in methanol/DMF solution and it has been isolated as red crystals. Yield:

1.4 g (2.92 mmol, 58.4%). Anal. Calc. for C24H24N2O5Ni (479.16): C 60.16, H 5.05, N

5.85. Found: C 60.05, H 5.13, N 5.76. Selected IR data (cm−1): 3552, 3508 (s, H2O),

1606 (s, -CH=N).

[Cu(m-OMePhsalph)]2·2H2O (41) complex

Complex 40 has been prepared following the reaction pathway described for complex 38

using -m-phenylene diamine A precipitate relative impure is obtained, whereas 100 mg

(0.09 mmol) are isolated as pure material. Anal. Calc. for C48H56N4O14Cu2 (1040.06):

236



C 55.43, H 5.43, N 5.39. Found: C 55.67, H 4.61, N 5.86. Selected IR data (cm−1): 3447

(br, H2O), 1610 (s, -CH=N).

[Cu(bcpa)(OH2)2]NO3·MeOH (42) complex

This complex has been prepared by one-pot hydrolysation and complexation of 2,4,6-

tris(2-pyridyl)-1,3,5-triazine (78.0 mg, 0.25 mmol) dissolved in MeOH (10 mL) and Cu(NO3)2-

·6H2O (0.25 mmol), followed by addition of methanol-water solution formed by salicylic

acid (34 mg, 0.25 mmol) and NaOH (0.5 mL aqueous solution) when there were obtained

70.0 mg (0.18 mmol, 72.0%).

[Cu(bcpa)(Hsal-COO)(OH2)]NO3·MeOH (43) complex

To a methanol solution of complex 41 (96 mg, 0.25 mol) was added Gd(NO3)3·6H2O (110

mg, 0.25 mmol) and the resulting mixture was reflux for 30 minutes, than filtered and

allowed to stand at room temperature for slow evaporation. Yield: 45.0 mg (0.10 mmol,

40.0%). Anal. Calc. for C19H17N3O7Cu (462.89): C 49.30, H 3.70, N 9.08. Found: C

50.07, H 3.66, N 9.36. Selected IR data (cm−1): 3418 (br, OH hydrogen bonded), 1715

(s, -C=0), 1635, 1604 (s, C=N, amide and pyridine rings), 1384 (s, NO3).

[Fe2(µ-valhy)3]4·DMF (44) complex

To a suspension of bis(2-hydroxy-3-methoxy-benzylidene)-hydrazide ligand (75 mg, 0.25

mmol) in MeOH (10 mL) was added FeCl3·6H2O (78 mg, 0.16 mmol) dissolved in MeOH

(5 mL), followed by addition of NEt3 (0.5 mL 1N methanol solution). A precipitate is

formed in the first minutes of reaction which was partly redissolved by addition of DMF

(5 mL) and the reaction mixture has been stirred for 15 minutes. The precipitate was

filtered and the clear filtrate solution allowed to stand at room temperature. Yield: 40.0

mg pure compound (0.03 mmol). Anal. Calc. for C48H42N6O12Fe2·4DMF (1056.48): C

55.48, H 5.43, N 10.78. Found: C 55.06, H 4.88, N 9.52. Selected IR data (cm−1): 1695

(s, DMF), 1615 (s, -CH=N).
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Chapter 7

Conclusions

In summary, a small contribution to the field of molecular magnetism has been achieved.

The thesis comprises a collection of molecular assemblies with various nuclearity and mag-

netic behaviors, going from d-block metal complexes to mixed d-f molecular compounds.

Easy accessible organic ligands have been employed as supporting organic framework,

which according with their polydentate character determined the topology of the result-

ing polynuclear complexes.

Chapter 2 describes a series of self-assembled azametalla crown iron(iii) complexes

with the structural topology enabled by the N-imidazol-2-yl salicyloyl-hydrazide Schiff

base ligand. This organic framework made possible isolation of three neutral trinuclear

iron complexes with mixed ligand composition. Each iron atom is six-coordinated with

the dianionic pentadentate ligand fulfilling five of the coordination sites of the metal

center, whereas monodentate chelate coligands such as chloride, azide and isothiocyanate

occupy the remained vacant position of the metal center. The structural core is based on

[Fe–N–N]3 linkage which led to a 9-membered aza-ring motif. These complexes represent

rare example of azametallacrown compounds based on Fe(iii) metal ion and in addition

the first examples of trinuclear iron(iii) complexes in which the presence of µ3-bridged

mode of oxygen atom is not present. Interesting structural feature have been found for

the isothiocyanate derivative of type [Fe(imsalhy)(NCS)]3 which presupposes the host-

guest concept, encapsulating nitrate anion in the cavity of the Fe3-ring. Moreover, this

compound supports an ring expansion leading to a tetranuclear Fe(iii) complex with the

structural core based on 12-membered aza-ring motif which can be regarded as [2+2] grid
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compound. Changing from iron to nickel metal ion, a different coordination mode of the

hydrazide Schiff base ligand has been observed. While for iron(iii) ion coordination, the

organic ligand functioned as bis-nucleating pentadentate system, in the case of nickel ion,

two ligand moieties wrap around the same metal center, resulting in monuclear nickel(ii)

complex formation. It can be concluded, based on the results described herein and also

according with existing reports that, azametalla-crown topology is characteristic for d-

metal ions in 3+ oxidation state. The magnetic behavior of the Fe(iii) series of complexes

is antiferromagnetic, with the magnitude of interaction determined by Fe· · ·Fe interatomic

separation and Fe–N–N–Fe torsion angles (see Table 7.1).

Table 7.1: Magnetostructural parameters for iron(iii) aza-crown complexes.

Fe· · ·Fe interatomic Fe–N–N–Fe angles J (cm−1

separation (pm) torsion angles (◦)

[Fe(imsalhy)(Cl)]3 ·3CH3OH (1) 509.8 150.0 -9.28±0.06

[Fe(imsalhy)(N3)]3·3.5DMF (2) 506.5-510.9 148.1-152.7 -7.68±0.03

[Fe(imsalhy)(NCS)]3·(H3imsalhy)

·(NO3)·0.5H2O·4.25CH3OH (3) 502.2-507.1 149.7-151.2 -8.95±0.03

[Fe(imsalhy)(NCS)]4·4CH3OH (4) 512.3 165 -6.15±0.14

Chapter 3 makes the change from self-assembly process to a rational strategy to

design polynuclear complexes. This is sustained by use of threefold chelating organic

framework of type 5-bromo- and 3-methoxy- tris(salicylidene)triaminoguanidine ligands.

With these organic ligands, trinuclear Ni(ii) complexes have been isolate using 2,2’-

bipyridine and 2,4,6-tris(2-pyridyl)-1,3,5-triazine as coligands. The topology of the NiII3

triad is very similar among these series of complexes and it consists of octahedral nickel

ions linked by three diazine bridges. The aromatic co-ligand systems are involved in

π-π-stacking interaction which completes various supramolecular arrangements in addi-

tion to hydrogen bonding interactions formed by lattice anions and solvent molecules.

The influence of anions in the self-organization of the oligomeric trinuclear Ni(ii) units

have been also studied. Using 5-bromo-substituted triaminoguanidine-based Schiff lig-

ands and 2,2’-bipyridine coligand, the presence of anion vary from coordinated chloride
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ligand to lattice nitrate anion which contributes to hydrogen bonding channels formed

between sheets of trinuclear Ni(ii)-entities. Changing the co-ligand system to 2,4,6-tris(2-

pyridyl)-1,3,5-triazine coligand, the terpyridine-coordination mode of this capping ligand

made possible the isolation of cationic trinuclear nickel(ii) complexes. Nevertheless, in

both coligand systems case, the trinuclear Ni(ii) complexes are reorganized to yield a

pentanuclear Ni(ii)-complex. The structural feature of these high-nuclearity Ni(ii) com-

plexes is described as two triangular units hold together by a common nickel(ii) center.

On the other hand, the 3-methoxy- tris(salicylidene)triaminoguanidine derivative ligand

was involved in isolation of cationic trinuclear Ni(ii) complexes using 2,4,6-tris(2-pyridyl)-

1,3,5-triazine as coligand. The influence of the lattice anion, i.e nitrate and chloride have

been also investigating. Different crystal packing diagram are formed in these two cases,

with hydrogen bonding interactions observed in both cases. The interesting feature of

the self-organization of trinuclear Ni(ii) units was observed in presence of chloride anion.

This unbounded anion forms pillared chains via Cl· · ·HC (aromatic ring from co-ligand)

hydrogen bonding interactions. These supramolecular interactions are complementary

to π-π stacking interactions between molecules of 2,4,6-tris(2-pyridyl)-1,3,5-triazine col-

igand to yield a honeycomb two-dimensional architectures with void channels along the

crystallographic a axis.

The magnetism of these series of Ni(ii) complexes is described as antiferromagnetic

coupled metal ions. Again, the magnitude of the exchange coupling within the Ni3-triad

is determined by interatomic Ni· · ·Ni separation and Ni–N–N–Ni torsion bridging angles

(Table 7.2). From the magnetic behavior point of view, this polydentate system with

C3 symmetry was expected to yield trinuclear metal-complexes with a resulting non-

zero spin ground state. A non-diamagnetic ground-state has been found in the case of

[Ni3L
Br(bipy)3(DMF)2Cl]·2DMF·4CH3CN·2MeOH·0.5H2O (7) where the magnetization

vs field measurement fits the Brillouin function for S = 1. In this case, the magnitude

of the antiferromagnetic interaction is instead smaller than in the other trinuclear Ni(ii)

complexes, due to a more obtuse torsion Ni–N–N–Ni bridging angle (see Table7.2).

It has been established that the ground state is determined not by the absolute

values of J and J’ but by their ratio, ρ = J’/J. For ρ = 1/2, the ground state is E(1,2), and

for ρ = 2, the ground state is E(1,0). On the other hand for 1/2≤ ρ ≤2, the ground state
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is E(0,1). As a whole, the situation may be described as follows : the antiferromagnetic

interaction between Ni1· · ·Ni2 and Ni1· · ·Ni3 polarizes the spins around Ni2 and Ni3

in a ferromagnetic fashion. Any antiferromagnetic interaction along Ni2· · ·Ni3 opposes

this effect. When |J’ | is small enough (ρ ≤ 1/2), the ferromagnetic polarization takes

over. When |J’ | is large enough (ρ ≥ 2), the antiferromagnetic interaction takes over.

When the ferromagnetic polarization and the antiferromagnetic interaction are of the

same order of magnitude, the system looks for a compromise. The spin vectors around

Ni2 and Ni3 are neither parallel nor antiparallel and the spin takes an intermediate value

S’ = 1.

Table 7.2: Magnetostructural parameters for iron(iii) aza-crown complexes.

Ni· · ·Ni interatomic Ni–N–N–Ni angles J (cm−1)

separation (pm) torsion angles (◦)

[Ni3L
Br(bipy)3(OH2)3]NO3·S (6) 499.0 168.7 -30.99±0.58

[Ni3L
Br(bipy)3(DMF)2Cl]·S (7) 497.7-501.3 173.6-179.9 -19.88±1.30

-12.84±1.14

[Ni3L
Br(tptz)3]NO3·S (9) 482.0 154.0 -27.06±0.31

[Ni3L
Br(tptz)3]Cl·S (10) - - -28.55±0.39

[Ni3L
Br(tptz)3]ClO4·S (11) - - -30.88±0.29

[Ni3L
OMe(tptz)3]NO3·S (13) 493.8-493.7 160.5-177.7 -33.55±0.72

[Ni3L
OMe(tptz)3]Cl·S (14) 497.2-498.2 173.9-179.4 -31.17±0.62

[Ni3L
OMe(tptz)3]ClO4·S (15) - - -31.45±0.45

S = solvent molecules

A diamagnetic Co(iii) complex has been also isolated using tris(3-methoxy-salicylide-

ne)triaminoguanidine ligand via in situ oxidation of cobalt(ii) starting material. In

addition, the 2,4,6-tris(2-pyridyl)-1,3,5-triazine coligand was also hydrolyzed to bis(2-

pyridylcarbonyl)amine capping ligand. The capability of this hydrolyzed co-ligand sys-

tem to function as bis-nucleating bridge is well documented and, hence the ability of

this trinuclear Co(iii) complex to function as molecular brick to construct magnetic den-

drimers when is beforehand reduced to anisotropic cobalt(ii) ions.

Chapter 4 describes the magnetostructural characterization of homonuclear Fe(iii)

and Cu(ii) complexes. Homodinuclear iron(iii) complexes have been isolated using salen-
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type-N,N’-ethylene-bis(pyridoxylideneiminato) ligand and N-salicylidene-2-bis(2-hydroxy-

ethyl)amino)ethylamine ligand. The salen-type ligand yields a neutral oxo-bridged dinu-

clear Fe(iii) complex, whereas the N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine

ligand yielded an hydroxy-bridge cationic dinuclear iron(iii) complex. Both these com-

plexes are organized through hydrogen bonding interaction between donor groups of the

supporting ligands into one-dimensional polymers. The magnetic coupling of the iron(iii)

ions has been found to be antiferromagnetic, stronger in the case of oxo-bridged dinu-

clear Fe(iii) complex, whereas a weak antiferromagnetic interaction has been mediated

by N-salicylidene-2-bis(2-hydroxyethyl)amino)ethylamine ligand.

The second part of this chapter describes different nuclearity of copper(ii) complexes

resulting from self-assembly reaction between [2-(2-dimethylamino-ethylimino)-methyl]-

phenol and its methoxy-derivative ligands with Cu(ClO4)2 salt in presence of different

outer metal salts. The homotrinuclear copper(ii) complex present a partial cubane-like

structural core formed by [Cu3L3(µ3-OH)]2+ cation which can be simply formulated as

Cu3O4-motif. The organic framework enforced, in this case an accidental orthogonality

orientation of the magnetic orbital of the three copper(ii) ions, resulting in a ferromag-

netic interaction between the metal centers of J = 8.50 cm−1 magnitude. Instead, the

homodinuclear copper(ii) complex comprises only one phenoxo-bridged Cu–O(Ph)–Cu

moiety with an obtuse bridging angle, most likely responsible for the antiferromagnetic

exchange pathway between the copper(ii) ions.

Chapter 5 is focused on dinucleating oximate-type ligand that was successfully used

to isolate heteropolynuclear complexes following the ”complex as ligand” strategy. The

easy accessible N-(2-dimethylamino-ethyl)-oxalamide ligand has been employed to isolate

a mononuclear anionic Cu(ii) complex. The ligand undergoes ”template” hydrolysation

to N-(2-dimethylamino-ethyl)-oxalamic acid organic framework upon copper(ii) coordi-

nation. This coordination compound is capable of bridging Co(ii) ion via oxamate oxygen

atoms, yielding a trinuclear [Cu2Co]-complex. Due to the presence of high anisotropic

Co(ii) ion, for which the spin-orbit coupling has to be considered in the magnetic behavior

interpretation, a quantitative analysis of the magnetic data is not available. Nevertheless,

the thermal variation of the magnetic susceptibility in χMT vs T plot is characteristic of

an overall ferrimagnetic behavior.
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Chapter 6 is focused on copper(ii)-lanthanide(iii) heteronuclear complexes with

topologies ongoing from one-dimensional chain compounds to oligomeric trinuclear het-

erometallic d-f complexes. These coordination compounds have been isolated using Cu-

salen type precursor following ”complex as ligand” strategy. The structural studies show

that µ2-phenoxo bridged [CuLn] core is successful building block for synthesizing poly-

meric coordination compounds. Due to high anisotropy associated with the majority of

the lanthanide ions, such d-f topologies are most appealing for constructing extended

architectures with interesting magnetic properties. Trinuclear [Cu2Ln] complexes have

been isolated using salicylic acid as capping and bridging ligand, whereas 1-D chains were

isolated in the case of pyrazine 2,3-dicarboxylic acid co-ligand. The major difference be-

tween the two bridging ligands, e.g. pyrazine 2,3-dicarboxylic acid and salicylic acid,

resides from their coordination mode. In 1-D chain compounds, the polydentate ligand

substitutes only two bidentate nitrate ligands of the classical [Cu(OMesalen)Gd(NO3)3]

dinuclear complexes, whereas the salicylic acid co-ligand leads to a total replacement of

the nitrate anion ligands but maintaining the decahedron arrangement of the lanthanoid

center. Polymeric 1-D chains have been isolated for lanthanide ions placed before and

after gadolinium ion in the periodical table and by contrast, the salicylic acid made pos-

sible the isolation of heterotrinuclear compounds only for lanthanide ions comprising lan-

thanum to gadolinium ions. For both types of d-f coordination compounds, the magnetic

behavior was found to be very similar, owing to close values of the dihedral angle formed

by the phenoxy-bridged copper(ii)-lanthanide(iii) planes. One-dimensional [CuLn] chains

formed with polydentate pyrazine 2,3-dicarboxylic acid as bridging ligand represent rare

examples of such extended architectures with d-f topology. The resulting polymers of

type [Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n·(DMF)n are formed by alternating pairs of

Cu· · ·Ln and Ln· · ·Ln through polydentate bridging ligand yielding an infinite zigzag

chain. The magnetic properties of [Cu(OMesalen)Gd(NO3)(Pyr(COO)2)]n·(DMF)n (27)

compound, showed that the ferromagnetism of these 1-D chains is determined by the

Cu–Gd magnetic coupling (J = 4.72 cm−1) of the constituting heterodinuclear entities.

For the heterotrinuclear [(Cu(OMesalen))2Gd(salCOO)2]NO3·3MeOH·H2O (34), the fer-

romagnetic [Cu–Gd] interaction in the [Cu2Gd]-triad was found to be J = 4.12 cm−1, with

similar order of magnitude as in the 1-D chain compounds. This is caused by the well
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established dependance of the ferromagnetic interaction upon dihedral Cu–µ2phenoxy–

Gd angle, which was found to be very similar within the two series of d-f coordination

compounds.

It can be summarized that various exchange-coupled systems have been described on

traversing the periodic table of elements from pure d-block transition metals to combined

d-f topologies. The conclusion and future perspective section of each chapter demonstrate

that this thesis is the ”small-step” for constructing high-nuclear high-spin molecular

magnetic materials.

244



Bibliography

[1] W. Plass. Chem. unserer Zeit 1998. 32 , 323.

[2] G. L. Verschuur. Oxford University Press, Oxford 1993.

[3] W. Gillbert. In De Magnete. Dover Publications Inc., New York 1958 .

[4] A. H. Murrish. In The physical principles of Magnetism. Jhon Wiley and Sons, New York
1980 .

[5] R. L. Carlin. In Magnetochemystry . Spring Verlag, New York 1986 .

[6] J. S. Miller. Inorg. Chem. 2000. 39 , 4392.

[7] B. Pilawa. Ann. Phys. 1999. 8 , 191.

[8] J. S. Miller, A. J. Epstein. Ang. Chem. Int. Ed. 1994. 33 , 385.

[9] D. Gatteschi, R. Sessoli. Angew. Chem., Int. Ed. 2003. 42 , 268 and references therein.

[10] O. Kahn. In Molecular Magnetism. Wiley-WCH Inc., Weinheim 1993 211.

[11] O. Kahn. Adv. Inorg. Chem. 1996. 179.

[12] J. S. Miller. Adv. Mater. 1992. 4 , 298.

[13] J. M. Rawson, F. Palacio. In Structure and Bonding; π-Electron Magnetism: From
Molecules to Magnetic Materiales. Springer-Verlag, Heidelberg 2001 94.

[14] J. J. Novoa, M. Deumal. In Structure and Bonding; π-Electron Magnetism: From
Molecules to Magnetic Materiales. Springer-Verlag, Heidelberg 2001 33.

[15] A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni,
A. Rettori, M. G. Pini, M. A. Novak. Angew. Chem. 2001. 113 , 1810.

[16] L. Bogani, C. Sengregorio, R. Sessoli, D. Gatteschi. Angew. Chem. 2005. 117 , 5967.

[17] J. Manriquez, J. T. Yee, R. S. McLean, A. J. Epstein, J. S. Miller. Science 1991. 252 ,
1415.

[18] G. A. Candela, L. J. Swartzendruber, J. S. Miller, M. J. J. Rice. J. Am. Chem. Soc.
1979. 101 , 2755.

[19] S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, M. Verdaguer. Nature 1995. 378 , 701.

[20] H. U. Guedel, H. Stucki, A. Ludi. Inorg. Chim. Acta 1973. 7 , 121.

245



[21] M. Verdaguer, G. S. Girolami. In Magnetism: Molecules and materiales IV . Wiley-WCH
Inc., Weinheim 2005 283.
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[40] A. Zharkouskaya. Merkernige Übergangsmetallkomplexe als Basis für neue Klassen mag-
netischer Materialien. Ph.D. thesis, Fridrich-Schiller Universität Jena, Jena, Germany
2006.

[41] O. Kahn. Chem. Phys. Lett. 1997. 265 , 109.

[42] K. Kambe. J. Phys. Soc., Jpn. 1950. 48 , 15.

246



[43] J. M. Lehn. In Supramolecular Chemistry: Concepts and Perspectives. VCH, Weinheim
1995 .

[44] M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Upadine, J. M. Lehn. Angew. Chem.
2004. 116 , 3728.

[45] S. Leininger, B. Olenyuk, P. J. Stang. Chem. Rev. 2000. 100 , 853.

[46] C. Piguet, G. Bernardinelli, G. Hopfgartner. Chem. Rev. 1997. 97 , 2005.

[47] P. N. W. Baxter, J. M. Lehn, G. Baum, D. Fenske. Chem. Eur. J. 1989. 5 , 102.

[48] P. N. W. Baxter, J. M. Lehn, B. O. Kaasel, G. Baum, D. Fenske. Chem. Eur. J. 1999.
5 , 113.

[49] W. Huang, S. Gou, D. Hu, S. Chantrapromma, H. K. Fun, Q. Meng. Inorg. Chem. 2001.
40 , 1712.

[50] P. N. W. Baxter, G. S. Hanan, J. M. Lehn. Chem. Commun. 1996. 2019.

[51] P. Ceroni, A. Credi, V. Balzani, S. Campagna, G. S. Hanan, C. R. Arana, J. M. Lehn.
Eur. J. Inorg. Chem 1999. 1409.

[52] L. Zhao, Z. Xu, L. K. Thompson, S. L. Heath, D. O. Miller, M. Ohba. Angew. Chem.
2000. 39 , 3114.

[53] O. Waldmann, J. Hassmann, P. Müller, G. S. Hanan, D. Volkmer, U. S. Schubert, J. M.
Lehn. Phys. Rev. Lett. 1997. 78 , 3390.

[54] L. K. Thompson, L. Zhao, Z. Xu, D. O. Miller, W. M. Reiff. Inorg. Chem. 2003. 42 , 128.

[55] M. Ruben, E. Breuning, M. Barboiu, J. P. Gisselbrecht, J. M. Lehn. Chem. Eur. J. 2003.
9 , 291.

[56] R. V. Slone, K. D. Benkstein, S. Bélanger, J. T. Hupp, I. A. Guzei, A. L. Rheingold.
Coord. Chem. Rev. 1998. 171 , 221.

[57] M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura. J. Am. Chem. Soc. 1994. 116 , 1151.

[58] Y. Bai, D. Dang, C. Duan, Y. Song, Q. Meng. Inorg. Chem. 2005. 44 , 5972.

[59] H. Chen, M. F. Maestre, R. H.Fish, Y. Song, Q. Meng. J. Am. Chem. Soc. 1995. 117 ,
3631.

[60] H. Chen, S. Ogo, R. H. Fish. J. Am. Chem. Soc. 1996. 118 , 4993.

[61] J. J. Bodwin, V. L. Pecoraro. Inorg. Chem. 2000. 39 , 3434.

[62] M. Moon, I. Kim, M. S. Lah. Inorg. Chem. 2000. 39 , 2710.

[63] A. C. C.-V. Hood, J. W. Kampf, V. L. Pecoraro. Angew. Chem. Int. Ed. 2002. 41 , 4668.

[64] V. L. Pecoraro. Inorg. Chim. Acta 1989. 155 , 171.

[65] M. S. Lah, V. L. Pecoraro. Polyhedron 1989. 111 , 7258.

[66] M. Fujita. Chem. Rev. 1998. 27 , 417.

247



[67] R. Koch, O. Waldmann, P. Müller, U. Reimann, R. W. Saalfrank. Phys. Rev. B 2003.
67 , 0944407.

[68] R. Frank, S. Trummer, U. Reimann, M. M. Chowdhri, F. Hampel, O. Waldmann. Angew.
Chem. 2000. 112 , 3634.

[69] J. A. Johnson, J. W. Kampf, V. L. Pecoraro. Angew. Chem. Int. Ed. 2003. 42 , 546.

[70] C. J. Matthews, S. T. Onions, G. Morata, L. J. Davis, S. L. Heath, D. J. Price. Angew.
Chem. Int. Ed. 2003. 42 , 3166.

[71] R. W. Saalfrank, A. Dresel, V. Seitz, S. Trummer, F. Hampel, M. Teichert, D. Stalke,
C. Stadler, J. Daub, V. Schunemann, A. X. Trautwein. Chem. Eur. J. 1997. 3 , 2058.

[72] R. W. Saalfrank, V. Seitz, D. L. Caulder, K. N. Raymond, M. Teichert, D. Stalke. Eur.
J. Inorg. Chem. 1998. 1313.

[73] V. J. Catalano, M. A. Malwitz. Inorg. Chem. 2002. 41 , 6553.

[74] P. D. Beer, A. G. Cheetham, M. G. B. Drew, O. D. Fox, E. J. Hayes, T. D. Rolls. Dalton
Trans. 2003. 603.

[75] H. Rauter, E. C. Hillgeris, A. Erxleben, B. Lippert. J. Am. Chem. Soc. 1994. 116 , 616.

[76] M. J. Rauterkus, B. Krebs. Angew. Chem. Int. Ed. 2004. 43 , 1300.

[77] C. Dendrinou-Samara, C. M. Zaleski, A. Evagorou, J. W. Kampf, V. L. Pecoraro. Chem.
Commun. 2003. 2668.

[78] C. Dendrinou-Samara, M. Alexoiu, C. M. Zaleski, J. W. Kampf, M. L. Kirk, D. P. Kessis-
soglou, V. L. Pecoraro. Angew. Chem. 2003. 115 , 3893.

[79] G. Psomas, A. J. Stemmler, C. Dendrinou-Samara, J. J. Bodwin, M. Scheider, M. Alexoiu,
J. W. Kampf, D. P. Kessissoglou, V. L. Pecoraro. Inorg. Chem. 2001. 40 , 1562.

[80] M. S. Lah, M. L. Kirk, W. Hatfield, V. L. Pecoraro. Chem. Commun. 1989. 1606.

[81] B. R. Gibney, A. J. Stemmler, S. Pilotek, J. W. Kampf, V. L. Pecoraro. Inorg. Chem.
1993. 32 , 6008.

[82] B. R. Gibney, D. P. Kessissoglou, J. W. Kampf, V. L. Pecoraro. Inorg. Chem. 1994. 33 ,
4840.

[83] D. Gaynor, Z. A. Starikova, S. Ostrovsky, W. Haase, K. B. Nolan. Chem. Commun. 2002.
506.

[84] A. J. Stemmler, J. W. Kampf, M. L. Kirk, B. H. Atasi, V. L. Pecoraro. Inorg. Chem.
1999. 38 , 2807.

[85] M. S. Lah, V. L. Pecoraro. J. Amer. Chem. Soc. 1989. 111 , 7258.

[86] Y. Agnus, R. Louis, B. Metz, C. Boudon, J. P. Gisselbrecht, M. Gross. Inorg. Chem.
1991. 30 , 3155.

[87] B. R. Gibney, H. Wang, J. W. Kampf, V. L. Pecoraro. Inorg. Chem. 1996. 35 , 6184.

[88] S. Koizumi, M. Nihei, M. Nakano, H. Oshio. Inorg. Chem. 2005. 44 , 1208.

248



[89] S. X. Liu, S. Lin, B. Z. Lin, C. C. Lin, J. Q. Huang. Angew. Chem. 2001. 113 , 1118.

[90] S. Liu, S. X. Liu, Z. Chen, B. Z. Lin, S. Gao. Inorg. Chem. 2004. 43 , 2222.

[91] D. Moon, J. Song, B. J. Kim, B. J. Suh, M. S. Lah. Inorg. Chem. 2004. 43 , 4320.

[92] R. P. John, K. Lee, M. S. Lah. Chem. Commun. 2004. 2660.

[93] L. K. Thompson, O. Waldmann, Z. Xu. In Magnetism: Molecular to Materials 3 . Wiley-
WCH, Weinheim 2000 173.

[94] L. K. Thompson. Coord. Chem. Rev. 2002. 233-234 , 193.

[95] L. K. Thompson, C. J. Matthews, L. Zhao, C. Wilson, M. A. Leech, A. Michael, J. A. K.
Howard. Dalton Trans. 2001. 2258.

[96] Z. Xu, L. K. Thompson, D. O. Miller. Chem. Commun. 2001. 1170.

[97] Z. Xu, S. White, L. K. Thompson, D. O. Miller. Dalton Trans. 2000. 1751.

[98] B. Kwak, H. Rhee, S. Park, M. S. Lah. Inorg. Chem. 1998. 35 , 3599.

[99] B. Kwak, H. Rhee, M. S. Lah. Polyhedron 2000. 1985.

[100] S. Lin, S. X. Liu, B. Z. Lin. Inorg. Chim. Acta 2002. 328.

[101] S. Liu, S. X. Liu, J. Q. Huang, C. C. Lin. Dalton Trans. 2002. 1595.

[102] S. S. Tandon, L. K. Thompson, M. E. M. andd J. N. Bridson. Inorg. Chem. 1994. 33 ,
5555.

[103] A. W. Addison, R. J. Butcher, Z. Homonnay, V. V. Pavlishchuk, M. J. Prushan, L. K.
Thompson. Eur. J. Inorg. Chem. 2005. 2404.

[104] G. Spocrates. In Infrared and Raman Characteristic Group Frequencies. John Wiley and
Sons Ltd., Weinheim 2001 .

[105] R. P. John, K. Lee, B. J. Kim, B. J. Suh, H. Rhee, M. S. Lah. Inorg. Chem. 2005. 44 ,
7109.

[106] Y. Zhang, W. A. Hallows, W. J. Ryan, J. C. Jones, G. B. Carpenter, D. A. Sweigart.
Inorg. Chem. 1994. 33 , 3306.

[107] K. R. Reddy, M. W. Rajasekharan, J. P. Tuchagues. Inorg. Chem. 1998. 37 , 5978.

[108] A. Ozarowski, Y. Shunzhong, B. McGarvey, A. Mislankar, J. E. Drake. Inorg. Chem.
1991. 30 , 3167.

[109] A. Mukherjee, M. Nethaji, A. R. Chakravarty. Chem. Commun. 2003. 2978.

[110] B. Kwak, H. Rhee, S. Park, M. S. Lah. Inorg. Chem. 1998. 37 , 3599.

[111] K. Dunbar, R. Heintz. Prog. Inorg. Chem. 1997. 45 , 283.

[112] V. Marvard, C. Decroix, A. Scuiller, F. T. C. Guyard-Duhayon, J. Vaissermann, J. Marrot,
F. Gonnet, M. Verdaguer. Chem. Eur. J. 2003. 9 , 1692.

249



[113] V. Marvaud, J. M. Herrera, T. Barilero, F. Tuyeras, R. Garde, A. Scuiller, C. Decroix,
M. Cantuel, C. Depsplanches. Monatsh. Chem. 2003. 134 , 149.

[114] S. M. Holmes, G. S. Girolami. J. Am. Chem. Soc. 1999. 121 , 5593.

[115] R. H. Holm, E. I. Solomon. Chem. Rev. 1996. 96 .

[116] A. L. Feig, S. J. Lippard. Chem, Rev. 1994. 94 , 759.

[117] A. Ardzzoia, M. A. Angarconi, G. LaMonica, F. Cariati, S. Cenini, M. Moret, N. Mas-
ciocci. Inorg. Chem. 91. 30 , 43.

[118] S. Parsons, J. M. Rawson, D. Reed, R. E. P. Winpennny. J. Chem. Soc. Dalton Trans.
1995. 63.

[119] B. Moulton, M. Zaworotko. Chem. Rev. 2001. 101 , 1629.

[120] R. Robson. J.Chem. Soc. Dalton Trans. 2000. 3735.

[121] C. Janiak. Dalton Trans. 2003. 2781.

[122] D. Braga, F. Grepioni. Acc. Chem. Rev. 2000. 601.

[123] S. L. James. Chem. Soc. Rev. 2003. 32 , 276.

[124] N. Rosi, J. Kim, M. Edaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi. J. Am. Chem. Soc.
2005. 1504.

[125] T. D. Hamilton, L. R. MacGilliverray. Crystal Growth Design 2004. 4 , 419.

[126] S. Kitagawa, R. Kitaura, S. Noro. Angew. Chem. 2004. 116 , 2388.

[127] M. Wesolek, D. Meyer, J. A. Osborn, A. D. Cian, J. Fisher, A. Derory, P. Logoll,
M. Drillon. Angew. Chem. Int. Ed. Engl. 1994. 33 , 1592.

[128] A. J. Amoroso, J. C. Jefferey, P. L. Jones, J. A. McCleverty, P. Thornton, M. D. Ward.
Angew. Chem. Int. Ed. Engl. 1995. 34 , 1443.

[129] J. E. Létard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O. Kahn.
J. Am. Chem. Soc. 1997. 119 , 10861.

[130] J. E. Létard, P. Guionneau, L. Rabardel, J. A. K. Howard, A. E. Goeta, D. Chasseau,
O. Kahn. Inorg. Chem. 1998. 37 , 4432.

[131] F. A. Cotton, C. Lin, C. A. Murillo. PNAS 2002. 99 , 4810.

[132] S. L. James. Chem. Soc. Rev. 2003. 32 , 276.

[133] G. R.W, B. H. R. Robson. J. Chem. Soc. Chem. Commun. 1990. 1677.

[134] H. Roesky, M. Andruh. Coord. Chem. Rev. 2003. 236 , 91.

[135] D. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schöder. Chem. Eur. J. 2002.
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[136] T. Glaser, M. Gerenkamp, R. Fröhlich. Angew. Chem. 2002. 114 , 3984.

[137] T. Glaser, M. Heidemeier, S. Grimme, E. Bill. Inorg. Chem 2004. 43 , 5192.

250



[138] Z. Wang, V. C. Kravtsos, M. J. Zaworotko. Angew. Chem. 2005. 117 , 2937.

[139] M. Pascu, F. Lloret, N. Avarvari, M. Julve, M. Andruh. Inorg. Chem. 2004. 43 , 5189.

[140] W. Zhang, S. B. andC. P. Landee, J. L. Parent, M. M. Turnbull. Inorg. Chim. Acta 2003.
342 , 193.

[141] M. J. Plater, M. R. S. J. Foreman, E. Coronado, C. J. Gomez-Garcia, A. M. Z. J. Slawin.
J. Chem. Soc. Dalton Trans. 1999. 4209.

[142] S. O. H. Gutschke, M. Molinier, A. K. Powell, R. Winpenny, P. T. Wood. Chem. Commun.
1996. 823.
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B. delley, M. Bonnet, J. X. Boucherle. J. Am. Chem. Soc. 1997. 119 , 3500.

[281] O. Cador, C. Mathoniere, O. Khan. Inorg. Chem. 2000. 39 , 3799.

[282] R. Ruiz, J. Faus, F. Lloret, M. Julve, Y. Journaux. Coord. Chem. Rev. 1999. 193-195 ,
1069.

[283] J. Rrocero, c. Diaz, J. Ribas, M. Maestro, J. Mahia, H.S.-Evans. Inorg. Chem. 2003. 42 ,
3366.

[284] L. Zhang, S.-B. Wang, G.-M. Yang, J. k Tang, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, P.Cheng.
Inorg. Chem. 2003. 42 , 1462 and references therein.

[285] E.-Q. Gao, Q.-H. Zhao, J.-K. Tang, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan. J. Chem. Soc.
Dalton Trans 2001. 1537.

[286] F. Lloret, M. Julve, J. A. Real, J. Faus, R. Ruiz, M. Mollar, I. Castro, C. Bois. Inorg.
Chem. 1992. 31 , 2956.

[287] F. Lloret, M. Julve, J. Faus, R. Ruiz, I. Castro, M. Mollar, M. Philoche-Levisalles. In-
org.Chem. 1992. 31 , 784.

[288] E. Q. Gao, J.-K. Tang, D.-Z. Liao, Z.-H. J. S.-P. Yan, G.-L. Wang. Inorg. Chem. 2001.
40 , 3134.

[289] Y. Pei, Y. Journaux, O. Khan. Inorg. Chem. 1988. 27 , 399.

[290] O. Gouillou, O. Khan, R. L. Oushoorn, K. Boubekeur, P. Batail. Inorg. Chim. Acta 1992.
198-200 , 119.

[291] O. Kahn, J. Galy, Y. Journaux, J. Jaud, I. Morgenstern-Badarau. J. Am. Chem. Soc.
1982. 104 , 2165.

[292] Y. Journaux, O. Kahn, J. Zarembowitch, J. Galy, J. Jaud. J. Am. Chem. Soc. 1983.
105 , 7585.

[293] R. Ruiz, C. Surville-Barland, A. Aukauloo, E. Anxolabehere-Mallart, Y. Journaux,
J. Cano, M. C. Munoz. Dalton Trans. 1997. 745.

257



[294] B. Cervera, J. L. Sanz, M. J. I. nez, G. Vila, F. Lloret, M. Julve, R. Ruiz, X. Ottenwaelder,
A. Aukauloo, S. Poussereau, Y. Journaux, M. C. M. noz. Dalton Trans. 1998. 781.

[295] J. A. Real, R. Ruis, J. Faus, F. Lloret, M. Julve, Y. Journaux, M. Philoche-Levisalles,
C. Bois. Dalton Trans. 1994. 3769.

[296] C. Mathonière, J. P. Sutter, J. V. Yakhmi. In Magnetism: Molecules and materiales IV .
Wiley-WCH Inc., Weinheim 2005 1.

[297] D. Cooper, R. A. Plane. Inorg. Chem. 1966. 5 , 1677.

[298] E. G. Cox, W. Wardlaw, K. C. Webster. J. Chem. Soc. 1936. 775.

[299] D.-H. Kim, J.-e, C. S. Oh, Y. Do. Inorg. Chem. 2005. 44 , 4383.

[300] E. Sinn, C. M. Harris. Coord. Chem. Rev. 1969. 391.

[301] A. Bencini, C. Benelli, A. Caneschi, R. L. Carlin, A. Dei, D. Gatteschi. J. Am. Chem.
Soc. 1985. 107 , 8128.

[302] P. A. Vigato, S. Tamburini. Coord. Chem. Rev. 2004. 248 , 1717.

[303] P. G. Cozzi. Chem. Soc. Rev. 2004. 33 , 410.

[304] J. A. McCleverty, M. D. Ward. Acc. Chem. Res. 1998. 31 , 842.

[305] A. Bencini, C. Benelli, A. Caneschi, A. Dei, D. Gatteschi. Inorg. Chem. 1986. 25 , 572.

[306] C. Benelli, A. Caneschi, D. G. abd O. Guillou, L. Pardi. Inorg. Chem. 1990. 29 , 1750.

[307] U. Casellato, P. Guerriero, S. Tamburini, S. Sitran, P. A. Vigato. Dalton Trans. 1991.
2145.

[308] I. Ramade, O. K. Y. Jeannini, F. Robert. Inorg. Chem. 1997. 26 , 930.

[309] M. Sasaki, K. Manseki, H. Horiuchi, M. Kumagai, M. Sakamoto, H. Sakiyama, Y. Nishida,
M. Sakai, Y. Sadaoka, M. Ohba, H. Okawa. Dalton Trans. 2000. 259.
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Characterization techniques

Carbon, hydrogen and nitrogen contents were determined at the ”Institut für Organiche

und Makromolekulare Chemie”, Friedrich-Schiller University, Jena using LECO CHN/932

and VARIO EL III elemental analyzers.

Spectrophotometric measurements in solution - Varian Cary 5000 UV/Vis/NIR spec-

trophotometer equipped with dual cell peltier accessory. Additionally, spectrophotomet-

ric measurements in solid state on BaSO4 diluted samples were performed using Varian

Cary 5E UV/Vis/NIR spectrophotometer.

IR spectra were recorded on Bruker IFS55/Equinox spectrometer on samples prepared

as KBr pellets.

Thermogravimetric analysis were carried out using NETZSCH STA 409PC/PG instru-

ment. The samples were placed in a heating block, with a heating rate of 20 K/min,

under nitrogen atmosphere

1H, 13C, NMR, 1H{1H} COSY and 1H{13C} heteronuclear correlation NMR spectra were

recorded on Bruker Avance 200 and 400 MHz spectrometers.

Mass spectroscopy analysis were conducted on a MATSSQ-710 Bruker instrument as FAB

measurements.

Electronic paramagnetic resonance measurements were performed on a Bruker ESP 300E

using X-Band (9 GHz).

Variable temperature magnetic data were obtained using Quantum Design MPMSR-55-

SQUID Magnetometer with a magnet of 5 Tesla in the temperature range 2-300 K. Fitting

of the experimental magnetic data sets were performed using ORIGIN Programm based
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on non-linear described equations.

The crystallographic data were collected on a Nonius KappaCCD difractometer, using

graphite-monochromated Mo-Kα radiation of 71.073 pm. A summary of crystallographic

data and data collection for all complexes is given in the last part of the thesis. The

structures were solved by direct methods (SHELXL-97, G. Sheldrick, Göttingen Univer-

sity, 1997) and subsequent least square refinement. All non-hydrogen atoms were refined

by using anisotropic displacement parameters, while the hydrogen atoms were fixed and

refined including their isotropic displacement parameters. Additionally, small sized crys-

tals were measured using synchrotron-radiation at the European Synchrotron Radiation

Facility, Grenoble, France.

265



Summary of crystallographic data for complex 1 [Fe(imsalhy)(Cl)]3·3CH3OH.

Formula C36H36N12Cl3O9Fe3

Formula weight 1054.67
Crystal size (mm) 0.03 x 0.03 x 0.02
Crystal system rhombohedral
Space group R3c
Lattice parameters

a (pm) 1511.04(2), α 90.00
b(pm) 1511.04(2)), β 90.00
c (pm) 4104.54(6), γ 120.00

Cell volume (106pm3) 8116.09(19)
Z 6
Temperature (K) 183(2)
∆calc(g cm−3) 1.295
F(000) 3222
µ(Mo Kα)(mm−1) 0.996
Data collection range (◦) 3.08≤ Θ ≤27.87
Index range -17 ≤ h ≤ 19

19 ≤ k≤ -53
-53 ≤ l ≤ 52

Reflection measured
total 4282
unique 4012 (Rint= 0.0332 )

Goodness-of-fit 1.100
R1 0.0456
wR2 0.1352
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Summary of crystallographic data for complex 1·3EtOH [Fe(imsalhy)(Cl)]3·3EtOH.

Formula C40H36N12Cl3O10Fe3

Formula weight 1124.04
Crystal size (mm) 0.02 x 0.02 x 0.02
Crystal system rhombohedral
Space group R3c
Lattice parameters

a (pm) 14.6253(2), α 90.00
b(pm) 14.6253(2), β 90.00
c (pm) 80.1913(13), γ 120.00

Cell volume (106pm3) 14854.8(4)
Z 12
Temperature (K) 293(2)
∆calc(g cm−3) 1.508
F(000) 6860
µ(Mo Kα)(mm−1) 1.095
Data collection range (◦) 2.89≤ Θ ≤27.48
Index range -13 ≤ h ≤ 18

-18 ≤ k≤ 14
-81 ≤ l ≤ 103

Reflection measured
total 15062
unique 2856 (Rint= 0.0338 )

Goodness-of-fit 1.029
R1 0.0387
wR2 0.1031
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Summary of crystallographic data for complex 2 [Fe(imsalhy)(N3)]3·3.5DMF

Formula C43.50H48.50N24.50O9.50Fe3

Formula weight 1234.12
Crystal size (mm) 0.03 x 0.03 x 0.02
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 13.2723(3), α 114.065
b(pm) 13.8547(3), β 93.6130
c (pm) 16.3576(13), γ 90.4740

Cell volume (106pm3) 2739.10
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.496
F(000) 1270
µ(Mo Kα)(mm−1) 0.861
Data collection range (◦) 2.50≤ Θ ≤27.49
Index range -17 ≤ h ≤ 15

-17 ≤ k≤ 17
-18 ≤ l ≤ 21

Reflection measured
total 18219
unique 9250 (Rint= 0.0356 )

Goodness-of-fit 1.055
R1 0.0650
wR2 0.1634
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Summary of crystallographic data for complex 3
[[Fe(imsalhy)(NCS)]3·(H3imsalhy)·(NO3)·0.5H2O·4.25CH3OH

Formula C47H35.50N20O11S3Fe3·0.5H2O·4.25CH3OH
Formula weight 1465.37
Crystal size (mm) 0.03 x 0.03 x 0.02
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 11.7463(6), α 97.764
b(pm) 16.0107(7), β 96.029
c (pm) 18.6462(9), γ 96.910

Cell volume (106pm3) 2739.10
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.422
F(000) 1506
µ(Mo Kα)(mm−1) 0.794
Data collection range (◦) 2.22≤ Θ ≤27.50
Index range -15 ≤ h ≤ 12

-20 ≤ k≤ 19
-20 ≤ l ≤ 24

Reflection measured
total 22248
unique 8171 (Rint= 0.0587 )

Goodness-of-fit 1.075
R1 0.0981
wR2 0.2149
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Summary of crystallographic data for complex 1a [Fe(imsalhy)(Cl)]3·CH3OH·3DMF

Formula C43H49N15O10Cl3Fe3

Formula weight 1209.87
Crystal size (mm) 0.04 x 0.03 x 0.03
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 13.8168(2), α 63.4410(10)
b(pm) 15.0960(3), β 73.4850(10)
c (pm) 15.1955(3), γ 69.6010(10)

Cell volume (106pm3) 2625.85(8)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.530
F(000) 1242
µ(Mo Kα)(mm−1) 1.040
Data collection range (◦) 2.02≤ Θ ≤27.46
Index range -17 ≤ h ≤ 17

-19 ≤ k≤ 19
-19 ≤ l ≤ 19

Reflection measured
total 18958
unique 8858 (Rint= 0.0277 )

Goodness-of-fit 1.013
R1 0.0411
wR2 0.0919
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Summary of crystallographic data for complex 4 [Fe(imsalhy)(NCS)]4·4CH3OH

Formula C52H48N20O12S4Fe4

Formula weight 1496.74
Crystal size (mm) 0.03 x 0.03 x 0.02
Crystal system tetragonalic
Space group P4(2)/n
Lattice parameters

a (pm) 15.3263(3), α 90
b(pm) 15.3263(3), β 90
c (pm) 13.5603(3), γ 90

Cell volume (106pm3) 3185.4(1)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.561
F(000) 1828
µ(Mo Kα)(mm−1) 1.099
Data collection range (◦) 2.01≤ Θ ≤27.48
Index range -19 ≤ h ≤ 19

-19 ≤ k≤ 19
-17 ≤ l ≤ 16

Reflection measured
total 22313
unique 2756(Rint= 0.0549 )

Goodness-of-fit 1.014
R1 0.0409
wR2 0.1063
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Summary of crystallographic data for complex 5 [Ni(imsalhy)2]·4CH3CN

Formula C26H24N10O4Ni
Formula weight 599.26
Crystal size (mm) 0.03 x 0.03 x 0.02
Crystal system monoclinic
Space group C2/c
Lattice parameters

a (pm) 18.9168(5), α 90
b(pm) 9.3221(2), β 101.642(1)
c (pm) 15.1112(5), γ 90

Cell volume (106pm3) 2609.9(1)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.525
F(000) 1240
µ(Mo Kα)(mm−1) 0.798
Data collection range (◦) 2.20≤ Θ ≤27.47
Index range -20 ≤ h ≤ 24

-11 ≤ k≤ 12
-17 ≤ l ≤ 19

Reflection measured
total 8167
unique 2501(Rint= 0.0352 )

Goodness-of-fit 1.030
R1 0.0477
wR2 0.1344
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Summary of crystallographic data for complex 6
[Ni3L

Br(bipy)3(OH2)3]NO3·8H2O·1.5DMF·2.25MeOH

Formula C58.50H42.25N13.50O21.50Br3 Ni3
Formula weight 1694.17
Crystal size (mm) 0.06 x 0.06 x 0.04
Crystal system hexagonal
Space group P6(3)/m
Lattice parameters

a (pm) 21.9299(4), α 90.00
b(pm) 21.9299(4), β 90.00
c (pm) 21.9961(4), γ 120.00

Cell volume (106pm3) 9161.1(3)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.250
F(000) 3510
µ(Mo Kα)(mm−1) 1.982
Data collection range (◦) 2.62≤ Θ ≤27.47
Index range -22 ≤ h ≤ 28

-28 ≤ k≤ 27
-26 ≤ l ≤ 23

Reflection measured
total 7092
unique 5088 (Rint= 0.0524 )

Goodness-of-fit 1.063
R1 0.0700
wR2 0.2088
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Summary of crystallographic data for complex 7
[Ni3L

Br(bipy)3(DMF)2Cl]·DMF·2CH3CN·MeOH·H2O

Formula C71H79N19O9Br3 Ni3
Formula weight 1793.84
Crystal size (mm) 0.06 x 0.06 x 0.04
Crystal system Triclinic
Space group P-1
Lattice parameters

a (pm) 12.5258(4), α 70.691(2)
b(pm) 18.0165(7), β 73.096(2)
c (pm) 20.8704(9), γ 84.678(2)

Cell volume (106pm3) 4252(3)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.401
F(000) 1832
µ(Mo Kα)(mm−1) 2.159
Data collection range (◦) 2.10≤ Θ ≤27.45
Index range -16 ≤ h ≤ 15

-23 ≤ k≤ 22
-22 ≤ l ≤ 27

Reflection measured
total 27941
unique 10975Rint= 0.0479 )

Goodness-of-fit 1.012
R1 0.0699
wR2 0.1643
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Summary of crystallographic data for complex 8
[Ni5(L

Br)2(bipy)4(OH2)4(DMF)]·1.5MeOH·6DMF·4.75H2O

Formula C106.50H129N27O22.25Br6 Ni5
Formula weight 2916
Crystal size (mm) 0.04 x 0.04 x 0.03
Crystal system monoclinic
Space group P2(1)/n
Lattice parameters

a (pm) 16.1787(4), α 90.00
b(pm) 28.8422(8), β 92.335
c (pm) 26.7712(5), γ 90.00

Cell volume (106pm3) 4252(3)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.552
F(000) 5940
µ(Mo Kα)(mm−1) 2.737
Data collection range (◦) 1.89≤ Θ ≤27.54
Index range -18 ≤ h ≤ 20

-25 ≤ k≤ 37
-34 ≤ l ≤ 32

Reflection measured
total 70758
unique 13375Rint= 0.1063 )

Goodness-of-fit 0.995
R1 0.0724
wR2 0.1462
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Summary of crystallographic data for complex 9 [Ni3L
Br(tptz)3]NO3·6.75MeOH·4H2O

Formula C82H67.50N25.50O15.75Br3 Ni3
Formula weight 2077.98
Crystal size (mm) 0.05 x 0.05 x 0.05
Crystal system rhombohedral
Space group R-3c
Lattice parameters

a (pm) 22.2156(10), α 90.00
b(pm) 22.2156(10), β 90.00)
c (pm) 66.798(3), γ 120.00

Cell volume (106pm3) 28550(2)
Z 12
Temperature (K) 183(2)
∆calc(g cm−3) 1.450
F(000) 12636
µ(Mo Kα)(mm−1) 1.921
Data collection range (◦) 1.93≤ Θ ≤27.44
Index range -26 ≤ h ≤ 26

-25 ≤ k≤ 28
-80 ≤ l ≤86

Reflection measured
total 7831
unique 2002Rint= 0.0301 )

Goodness-of-fit 1.048
R1 0.0642
wR2 0.1934
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Summary of crystallographic data for complex 12 [Ni5(L
Br)2(tptz)4]·7.5H2O·6MeOH

Formula C122H62N36O19.50Br6 Ni5
Formula weight 3117.09
Crystal size (mm) 0.05 x 0.05 x 0.05
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 16.5193(4), α 101.4240(10)
b(pm) 16.7116(3), β 98.0740(10)
c (pm) 27.7661(7), γ 110.4630(10)

Cell volume (106pm3) 6853.3(2)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.511
F(000) 3104
µ(Mo Kα)(mm−1) 2.499
Data collection range (◦) 1.72≤ Θ ≤27.49
Index range -20 ≤ h ≤ 21

-21 ≤ k≤ 18
-36 ≤ l ≤31

Reflection measured
total 43988
unique 15819Rint= 0.0410 )

Goodness-of-fit 1.022
R1 0.0888
wR2 0.2165
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Summary of crystallographic data for complex 13
[Ni3L

OMe(tptz)3]NO3·4.5H2O·1.5MeOH

Formula C80H71N24O12.50 Ni3
Formula weight 1735.72
Crystal size (mm) 0.04 x 0.04 x 0.04
Crystal system monoclinic
Space group C2/c
Lattice parameters

a (pm) 36.2147(12), α 90.00
b(pm) 21.9674(10), β 116.964(3)
c (pm) 23.6433(7), γ 90.00

Cell volume (106pm3) 16764.5(11)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.375
F(000) 7180
µ(Mo Kα)(mm−1) 0.741
Data collection range (◦) 2.24≤ Θ ≤27.47
Index range -44 ≤ h ≤ 46

-27 ≤ k≤ 28
-29 ≤ l ≤30

Reflection measured
total 19106
unique 8997 (Rint= 0.1154)

Goodness-of-fit 1.034
R1 0.0995
wR2 0.2642
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Summary of crystallographic data for complex 14 [Ni3L
OMe(tptz)3]Cl·2DMF

Formula C85H71N26O8ClNi3
Formula weight 1796.26
Crystal size (mm) 0.06 x 0.06 x 0.05
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 13.3675(12), α 61.939(2)
b(pm) 21.1969(10), β 80.478(3)
c (pm) 21.2212(7), γ 82.461(2)

Cell volume (106pm3) 5223.2(3)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.142
F(000) 1856
µ(Mo Kα)(mm−1) 0.620
Data collection range (◦) 1.95≤ Θ ≤27.47
Index range -17 ≤ h ≤ 15

-24 ≤ k≤ 27
-26 ≤ l ≤27

Reflection measured
total 33741
unique 16873 (Rint= 0.1783 )

Goodness-of-fit 1.130
R1 0.1783
wR2 0.4491
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Summary of crystallographic data for complex 16 [Co3L
OMe(bcpa)3]NO3·6DMF

Formula C79H87N22O21 Co3

Formula weight 1857.50
Crystal size (mm) 0.05 x 0.05 x 0.04
Crystal system hexagonal
Space group P6(3)
Lattice parameters

a (pm) 13.3675(6), α 90.00
b(pm) 21.1969(6), β 90.00
c (pm) 21.2212(4), γ 12.00

Cell volume (106pm3) 5223.2(3)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.411
F(000) 1928
µ(Mo Kα)(mm−1) 0.645
Data collection range (◦) 1.94≤ Θ ≤27.49
Index range -25 ≤ h ≤ 21

-25 ≤ k≤ 25
-16 ≤ l ≤17

Reflection measured
total 26903
unique 5081 (Rint= 0.1047)

Goodness-of-fit 1.067
R1 0.0592
wR2 0.1469
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Summary of crystallographic data for complex 17 [Fe(pyren)]2O·3H2O

Formula C20H26N2O6 Fe
Formula weight 446.28
Crystal size (mm) 0.03 x 0.03 x 0.02
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 11.4913(3), α 82.753(1)
b(pm) 13.5531(4), β 70.651(1)
c (pm) 13.7025(3), γ 75.181(1)

Cell volume (106pm3) 1944.56(9)
Z 4
Temperature (K) 120(2)
∆calc(g cm−3) 1.524
F(000) 936
µ(Mo Kα)(mm−1) 0.431
Data collection range (◦) 2.45≤ Θ ≤21.33
Index range -16≤ h ≤ 16

-19 ≤ k≤ 19
-19 ≤ l ≤19

Reflection measured
total 89199
unique 9655Rint= 0.0497 )

Goodness-of-fit 1.064
R1 0.0494
wR2 0.1399
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Summary of crystallographic data for complex 18
[{Fe(sabhea)}2{Fe(Hsabhea)}2](ClO4)2·DMF
Formula C29H42N5O11 Cl Fe
Formula weight 783.83
Crystal size (mm) 0.10 x 0.09 x 0.07
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 10.1527(10), α 99.800(7)
b(pm) 10.8739(13), β96.303(8)
c (pm) 16.131(2), γ97.142(9)

Cell volume (106pm3) 1725.6(3)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.509
F(000) 816
µ(Mo Kα)(mm−1) 0.982
Data collection range (◦) 4.04≤ Θ ≤27.58
Index range -12 ≤ h ≤ 13

-14 ≤ k≤ 13
-19 ≤ l ≤20

Reflection measured
total 9488
unique 4613Rint= 0.0407 )

Goodness-of-fit 1.076
R1 0.0712
wR2 0.1794
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Summary of crystallographic data for complex 19 [(CuL)3(µ3-OH)](ClO4)2·H2O
Formula C33H47N6O13Cl2Cu3

Formula weight 997.29
Crystal size (mm) 0.35 x 0.30 x 0.30
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 10.9180(3), α 90.00
b(pm) 29.3790(7), β 106.459(1)
c (pm) 13.0608(3), γ 90.00

Cell volume (106pm3) 4017.71(17)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.649
F(000) 2048
µ(Mo Kα)(mm−1) 1.777
Data collection range (◦) 1.39≤ Θ ≤27.44
Index range -14 ≤ h ≤ 14

-33 ≤ k≤ 38
-13 ≤ l ≤16

Reflection measured
total 26943
unique 6288 (Rint= 0.0545)

Goodness-of-fit 1.019
R1 0.0476
wR2 0.1002
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Summary of crystallographic data for complex 20 [(CuL)2)(ClO4)2·0.5H2O

Formula C27H44N5Cl2O14.50Cu2

Formula weight 868.65
Crystal size (mm) 0.04 x 0.04 x 0.03
Crystal system monoclinic
Space group C2/c
Lattice parameters

a (pm) 13.8570(2), α 90.00
b(pm) 16.0675(3)), β 95.3050(10)
c (pm) 32.4670(6), γ 90.00

Cell volume (106pm3) 7197.7(2)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.603
F(000) 3592
µ(Mo Kα)(mm−1) 1.403
Data collection range (◦) 2.61≤ Θ ≤27.49
Index range -17 ≤ h ≤ 17

-20≤ k≤ 20
-42 ≤ l ≤ 25

Reflection measured
total 21120
unique 5625 (Rint= 0.0418)

Goodness-of-fit 1.014
R1 0.0508
wR2 0.1274
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Summary of crystallographic data for complex 21 ([Cu(dmae-
oximate)(OH2)(NCS)]K·H2O)n

Formula C7H14N4O3SCuK
Formula weight 344.92
Crystal size (mm) 0.03 x 0.02 x 0.02
Crystal system monoclinic
Space group P2/c
Lattice parameters

a (pm) 14.5388(10), α 90.00
b(pm) 6.5248(4), β 101.723(4)
c (pm) 13.4028(6), γ 90.00

Cell volume (106pm3) 1244.91
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.840
F(000) 704
µ(Mo Kα)(mm−1) 2.263
Data collection range (◦) 2.86≤ Θ ≤27.47
Index range -18 ≤ h ≤ 18

-8 ≤ k≤ 8
-17 ≤ l ≤ 17

Reflection measured
total 8430
unique 2482 (Rint= 0.0488)

Goodness-of-fit 1.113
R1 0.1261
wR2 0.3756
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Summary of crystallographic data for complex 22 [(Cu(dmae-
oximate)(MeOH)(NCS))2Co(MeOH)2]

Formula C18H36N6O10S2Cu2Co
Formula weight 746.66
Crystal size (mm) 0.05 x 0.05 x 0.04
Crystal system monoclinic
Space group C2/c
Lattice parameters

a (pm) 33.8518(11), α 90.00
b(pm) 6.8944(3), β 114.469(3)
c (pm) 14.3780(7), γ 90.00

Cell volume (106pm3) 3054.3(2)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.624
F(000) 1532
µ(Mo Kα)(mm−1) 2.109
Data collection range (◦) 4.20≤ Θ ≤27.47
Index range -42 ≤ h ≤ 43

-8 ≤ k≤ 8
-18≤ l ≤ 18

Reflection measured
total 10164
unique 2988 (Rint= 0.0519)

Goodness-of-fit 0.821
R1 0.0436
wR2 0.1245
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Summary of crystallographic data for complex 24 [Cu(OMesalen)H2O]

Formula C19H21N2O5Cu
Formula weight 420.19
Crystal size (mm) 0.03 x 0.03 x 0.03
Crystal system orthorhombic
Space group Pnma
Lattice parameters

a (pm) 10.6368(5), α 90.00
b(pm) 22.5964(6), β 90.00
c (pm) 7.4372(4), γ 90.00

Cell volume (106pm3) 2625.85(8)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.564
F(000) 872
µ(Mo Kα)(mm−1) 1.256
Data collection range (◦) 3.46≤ Θ ≤27.47
Index range -13 ≤ h ≤ 13

-29 ≤ k≤ 25
-9 ≤ l ≤ 8

Reflection measured
total 11556
unique 1653 (Rint= 0.0590)

Goodness-of-fit 1.073
R1 0.0447
wR2 0.1129
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Summary of crystallographic data for complex 25 [Cu(OMesalen)Na(H2O)]NO3

Formula C21H26N3O8CuNa
Formula weight 534.98
Crystal size (mm) 0.04 x 0.04 x 0.04
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 12.8067(9), α 90.00
b(pm) 11.7256(8), β 109.283(4)
c (pm) 15.9778(8), γ 90.00

Cell volume (106pm3) 2264.7(2)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.569
F(000) 110
µ(Mo Kα)(mm−1) 1.037
Data collection range (◦) 2.20≤ Θ ≤27.46
Index range -16 ≤ h ≤ 16

-15 ≤ k≤ 13
-20≤ l ≤ 18

Reflection measured
total 14558
unique 3678(Rint= 0.0965)

Goodness-of-fit 1.030
R1 0.0526
wR2 0.1269
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Summary of crystallographic data for complex 26 [Cu(MeOH)(OMesalen)Gd(NO3)3]

Formula C22H28N5O14CuGd
Formula weight 807.28
Crystal size (mm) 0.09x 0.09 x 0.06
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 8.6555(3), α 79.769(2)
b(pm) 12.9676(4), β 77.109(2)
c (pm) 13.4356(3), γ 71.385(7)

Cell volume (106pm3) 1383.84(7)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.937
F(000) 800
µ(Mo Kα)(mm−1) 3.223
Data collection range (◦) 2.42≤ Θ ≤27.43
Index range -11 ≤ h ≤ 11

-15 ≤ k≤ 16
-17≤ l ≤ 17

Reflection measured
total 9784
unique 5574(Rint= 0.0240)

Goodness-of-fit 0.842
R1 0.0281
wR2 0.0670
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Summary of crystallographic data for complex 27
[Cu(OMesalen)Gd(NO3)3(Pyr(COO)2)]n·(DMF)n

Formula C29H27N5O12CuGd
Formula weight 858.38
Crystal size (mm) 0.03x 0.03 x 0.02
Crystal system orthorhombic
Space group Pbcn
Lattice parameters

a (pm) 16.4218(5), α 90.00
b(pm) 19.0802(6), β 90.00
c (pm) 19.0423(6), γ 90.00

Cell volume (106pm3) 5966.5(3)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.911
F(000) 3400
µ(Mo Kα)(mm−1) 2.992
Data collection range (◦) 1.95≤ Θ ≤27.54
Index range -21 ≤ h ≤ 18

-24 ≤ k≤ 24
-22≤ l ≤ 24

Reflection measured
total 38827
unique 4462(Rint= 0.1171)

Goodness-of-fit 0.993
R1 0.460
wR2 0.0877

290



Summary of crystallographic data for complex 28
[Cu(OMesalen)Dy(NO3)3(Pyr(COO)2)]n·(DMF)n

Formula C29H27N5O12CuDy
Formula weight 863.60
Crystal size (mm) 0.03x 0.03 x 0.02
Crystal system orthorhombic
Space group Pbcn
Lattice parameters

a (pm) 16.3723(4), α 90.00
b(pm) 19.0764(4), β 90.00
c (pm) 19.0394(4), γ 90.00

Cell volume (106pm3) 5946.5(2)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.929
F(000) 3416
µ(Mo Kα)(mm−1) 3.285
Data collection range (◦) 1.96≤ Θ ≤27.49
Index range -20≤ h ≤ 21

-24 ≤ k≤ 24
-24≤ l ≤ 24

Reflection measured
total 40430
unique 4905(Rint= 0.0887)

Goodness-of-fit 1.005
R1 0.0375
wR2 0.0826
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Summary of crystallographic data for complex 29
[Cu(OMesalen)Tb(NO3)3(Pyr(COO)2)]n·(DMF)n

Formula C29H27N5O12CuTb
Formula weight 863.02
Crystal size (mm) 0.03x 0.03 x 0.02
Crystal system orthorhombic
Space group Pbcn
Lattice parameters

a (pm) 16.3859(3), α 90.00
b(pm) 19.0320(3), β 90.00
c (pm) 19.0368(3), γ 90.00

Cell volume (106pm3) 5936.75(17)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.924
F(000) 3408
µ(Mo Kα)(mm−1) 3.156
Data collection range (◦) 1.96≤ Θ ≤27.48
Index range -21≤ h ≤ 20

-24 ≤ k≤ 20
-24≤ l ≤ 24

Reflection measured
total 40974
unique 4497(Rint= 0.1179)

Goodness-of-fit 1.004
R1 0.0423
wR2 0.0864
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Summary of crystallographic data for complex 30
[Cu(OMesalen)Eu(NO3)3(Pyr(COO)2)]n·(DMF)n

Formula C29H27N5O12CuEu
Formula weight 853.06
Crystal size (mm) 0.06x 0.05 x 0.04
Crystal system orthorhombic
Space group Pbcn
Lattice parameters

a (pm) 16.4654(4), α 90.00
b(pm) 19.0767(5), β 90.00
c (pm) 19.0704(4), γ 90.00

Cell volume (106pm3) 5990.1(2)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.892
F(000) 3392
µ(Mo Kα)(mm−1) 2.860
Data collection range (◦) 1.95≤ Θ ≤27.47
Index range -18≤ h ≤ 21

-24 ≤ k≤ 24
-21≤ l ≤ 24

Reflection measured
total 38817
unique 5281(Rint= 0.0843)

Goodness-of-fit 1.110
R1 0.0489
wR2 0.1063
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Summary of crystallographic data for complex 31
[Cu(OMesalen)Sm(NO3)3(Pyr(COO)2)]n·(DMF)n

Formula C29H27N5O12CuSm
Formula weight 851.45
Crystal size (mm) 0.05x 0.05 x 0.04
Crystal system orthorhombic
Space group Pbcn
Lattice parameters

a (pm) 16.5885(5), α 90.00
b(pm) 19.0857(5), β 90.00
c (pm) 19.1195(5), γ 90.00

Cell volume (106pm3) 6053.3(3)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.869
F(000) 3384
µ(Mo Kα)(mm−1) 2.698
Data collection range (◦) 1.63≤ Θ ≤27.54
Index range -21≤ h ≤ 21

-19 ≤ k≤ 24
-24≤ l ≤ 24

Reflection measured
total 39513
unique 4632(Rint= 0.1047)

Goodness-of-fit 1.015
R1 0.0434
wR2 0.1015
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Summary of crystallographic data for complex 32
[Cu(OMesalen)Pr(NO3)3(Pyr(COO)2)]n·(DMF)n

Formula C29H27N5O12CuPr
Formula weight 842.01
Crystal size (mm) 0.04x 0.04 x 0.04
Crystal system orthorhombic
Space group Pbcn
Lattice parameters

a (pm) 16.5811(4), α 90.00
b(pm) 19.1032(3), β 90.00
c (pm) 19.1237(3), γ 90.00

Cell volume (106pm3) 6057.5(2)
Z 8
Temperature (K) 183(2)
∆calc(g cm−3) 1.847
F(000) 3360
µ(Mo Kα)(mm−1) 2.336
Data collection range (◦) 1.94≤ Θ ≤27.48
Index range -21≤ h ≤ 21

-22 ≤ k≤ 24
-23≤ l ≤ 24

Reflection measured
total 39477
unique 5436(Rint= 0.0524)

Goodness-of-fit 1.000
R1 0.0311
wR2 0.0758
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Summary of crystallographic data for complex 34
[(Cu(OMesalen))2Gd(salCOO)2]NO3·2MeOH·0.25H2O

Formula C54H55N5O19.25Cu2Gd
Formula weight 1366.36
Crystal size (mm) 0.06x 0.05 x 0.05
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 13.3094(2), α 90.00
b(pm) 24.9063(3), β 101.2200(10)
c (pm) 18.4808(2), γ 90.00

Cell volume (106pm3) 6009.07(13)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.510
F(000) 2760
µ(Mo Kα)(mm−1) 1.866
Data collection range (◦) 1.98≤ Θ ≤27.49
Index range -17≤ h ≤ 17

-32 ≤ k≤ 27
-22≤ l ≤ 23

Reflection measured
total 42535
unique 10069(Rint= 0.0459)

Goodness-of-fit 1.072
R1 0.0529
wR2 0.1464
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Summary of crystallographic data for complex 35
[(Cu(OMesalen))2Sm(salCOO)2]NO3·2.5MeOH·H2O

Formula C54.50H60N4.50O19Cu2Sm
Formula weight 1359.50
Crystal size (mm) 0.05x 0.05 x 0.04
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 13.3826(3), α 90.00
b(pm) 25.0093(5), β 101.5740(10)
c (pm) 18.4583(3), γ 90.00

Cell volume (106pm3) 6052.2(2)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.492
F(000) 2762
µ(Mo Kα)(mm−1) 1.727
Data collection range (◦) 1.91≤ Θ ≤27.40
Index range -17≤ h ≤ 16

-32 ≤ k≤ 31
-23≤ l ≤ 23

Reflection measured
total 41784
unique 8763(Rint= 0.0614)

Goodness-of-fit 1.040
R1 0.0671
wR2 0.1904
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Summary of crystallographic data for complex 36
[(Cu(OMesalen))2Pr(salCOO)2]NO3·3MeOH·0.25H2O

Formula C55H62N5O20.25Cu2Pr
Formula weight 1385.09
Crystal size (mm) 0.04x 0.04 x 0.04
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 13.2615(3), α 90.00
b(pm) 24.9953(7), β 101.252(2)
c (pm) 18.4631(4), γ 90.00

Cell volume (106pm3) 6003.0(3)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.533
F(000) 2824
µ(Mo Kα)(mm−1) 1.578
Data collection range (◦) 1.92≤ Θ ≤27.48
Index range -14≤ h ≤ 17

-32 ≤ k≤ 28
-23≤ l ≤ 23

Reflection measured
total 35308
unique 8497(Rint= 0.0684)

Goodness-of-fit 1.023
R1 0.0664
wR2 0.1653
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Summary of crystallographic data for complex 37
[(Cu(OMesalen))2Sm(salCOO)2]NO3·3.75MeOH·0.25H2O

Formula C55.75H65N5O21Cu2La
Formula weight 1407.12
Crystal size (mm) 0.06x 0.04 x 0.04
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 13.33138(2), α 90.00
b(pm) 25.1553(4), β 101.3860(10)
c (pm) 18.5120(3), γ 90.00

Cell volume (106pm3) 6077.88(17)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.538
F(000) 2870
µ(Mo Kα)(mm−1) 1.462
Data collection range (◦) 2.25≤ Θ ≤27.48
Index range -17≤ h ≤ 15

-32 ≤ k≤ 27
-21≤ l ≤ 24

Reflection measured
total 39919
unique 8800(Rint= 0.0662)

Goodness-of-fit 1.032
R1 0.0577
wR2 0.1421
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Summary of crystallographic data for complex 39 [Cu(o-OEtPhsalph)]·H2O·MeOH

Formula C26H32N2O7Cu
Formula weight 548.08
Crystal size (mm) 0.08x 0.06x 0.05
Crystal system monoclinic
Space group I2/a
Lattice parameters

a (pm) 12.1967(8), α 90.00
b(pm) 14.3541(9), β 97.869(10)
c (pm) 14.5512(9), γ 90.00

Cell volume (106pm3) 2523.5(3)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.443
F(000) 1148
µ(Mo Kα)(mm−1) 0.914
Data collection range (◦) 2.84≤ Θ ≤27.49
Index range -14≤ h ≤ 15

-18 ≤ k≤ 17
-18≤ l ≤18

Reflection measured
total 8834
unique 2201(Rint= 0.0540)

Goodness-of-fit 1.016
R1 0.0460
wR2 0.1029
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Summary of crystallographic data for complex 40 [Ni(o-OEtPhsalph)]·H2O

Formula C24H24N2O5Ni
Formula weight 479.16
Crystal size (mm) 0.06x 0.06x 0.04
Crystal system monoclinic
Space group P2(1)/c
Lattice parameters

a (pm) 9.8384(4), α 90.00
b(pm) 12.1761(5), β 91.643(3)
c (pm) 17.2134(6), γ 90.00

Cell volume (106pm3) 2061.20
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.544
F(000) 1000
µ(Mo Kα)(mm−1) 0.982
Data collection range (◦) 2.94≤ Θ ≤27.48
Index range -12≤ h ≤ 12

-15 ≤ k≤ 15
-22≤ l ≤22

Reflection measured
total 14438
unique 3462(Rint= 0.0539)

Goodness-of-fit 1.017
R1 0.0384
wR2 0.0841
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Summary of crystallographic data for complex 41 [Cu(m-OMePhsalph)]2·2H2O

Formula C48H56N4O14Cu2

Formula weight 1040.05
Crystal size (mm) 0.10x 0.10x 0.03
Crystal system rhombohedral
Space group R-3
Lattice parameters

a (pm) 34.6690(12), α 90.00
b(pm) 34.6690(12), β 90.00
c (pm) 10.6742(6), γ 120.00

Cell volume (106pm3) 11110.9(8)
Z 9
Temperature (K) 183(2)
∆calc(g cm−3) 1.399
F(000) 4878
µ(Mo Kα)(mm−1) 0.930
Data collection range (◦) 3.10≤ Θ ≤27.55
Index range -37≤ h ≤ 45

-42 ≤ k≤ 45
-13≤ l ≤13

Reflection measured
total 14490
unique 3321(Rint= 0.1059)

Goodness-of-fit 1.023
R1 0.0520
wR2 0.1125
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Summary of crystallographic data for complex 42 [Cu(bcpa)(OH2)2]NO3·MeOH

Formula C12H16N4O9Cu
Formula weight 423.83
Crystal size (mm) 0.03x 0.03x 0.02
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 6.7180(2), α 88.9740(10)
b(pm) 10.1788(3), β 82.8450(10)
c (pm) 11.9929(4), γ 89.9160(10)

Cell volume (106pm3) 11110.9(8)
Z 2
Temperature (K) 183(2)
∆calc(g cm−3) 1.730
F(000) 434
µ(Mo Kα)(mm−1) 1.401
Data collection range (◦) 2.66≤ Θ ≤27.47
Index range -8≤ h ≤ 8

-13 ≤ k≤ 13
-14≤ l ≤15

Reflection measured
total 5521
unique 3121(Rint= 0.0232)

Goodness-of-fit 1.050
R1 0.0335
wR2 0.0707
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Summary of crystallographic data for complex 43 [Cu(bcpa)(salCOO)H2O]

Formula C19H17N3O7Cu
Formula weight 462.90
Crystal size (mm) 0.03x 0.03x 0.02
Crystal system monoclinic
Space group P2(1)/n
Lattice parameters

a (pm) 15.0150(4), α 90.00
b(pm) 7.0474(2), β 112.055(2)
c (pm) 19.7873(7), γ 90.00

Cell volume (106pm3) 1940.61(10)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.584
F(000) 984
µ(Mo Kα)(mm−1) 1.174
Data collection range (◦) 2.14≤ Θ ≤27.48
Index range -18≤ h ≤ 19

-9 ≤ k≤ 8
-24≤ l ≤25

Reflection measured
total 11363
unique 2979(Rint= 0.0514)

Goodness-of-fit 1.019
R1 0.0440
wR2 0.0902
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Summary of crystallographic data for complex 44 [Fe2(µ-valhy)3]·4DMF

Formula C30H35N5O8Fe2

Formula weight 649.48
Crystal size (mm) 0.12x 0.12x 0.09
Crystal system triclinic
Space group P-1
Lattice parameters

a (pm) 12.7581(6), α 77.475(3)
b(pm) 13.5769(5), β 77.473(3)
c (pm) 19.9528(9), γ 66.753(3)

Cell volume (106pm3) 3066.6(2)
Z 4
Temperature (K) 183(2)
∆calc(g cm−3) 1.407
F(000) 1360
µ(Mo Kα)(mm−1) 0.550
Data collection range (◦) 1.06≤ Θ ≤27.48
Index range -16≤ h ≤ 15

-17 ≤ k≤ 17
-25≤ l ≤24

Reflection measured
total 13278
unique 8208(Rint= 0.0518)

Goodness-of-fit 1.045
R1 0.0767
wR2 0.1773
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