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1 Introduction

Classical wave optics has strongly in uenced the development of theories like relativity and

quantum mechanics. In turn, quantum mechanics lead to the description of light in terms of

photons as the fundamental excitations of the electromagnetic eld. With the advent of the

laser and the subsequent invention of a number of methods for generating and manipulating

light, a new theory of optical coherence phenomena emerged, quantum optics. Quantum-

statistical properties of radiation that cannot be described by a classical statistical model

have lead to a de nition of nonclassical light in terms of phase-space functions that cannot

be regarded as classical probability distributions.

Experiments in classical as well as quantum optics require the use of optical instruments

such as beam splitters, mirrors, cavities, or bres. Their in uence on the quantum statistics

of radiation interacting with optical elements requires careful examination. Consider, for

example, a lossless beam splitter. In classical optics, a light beam impinging on one side of

the beam splitter is simply be divided into two parts. Quantum-mechanically, the second,

unused input of the beam splitter introduces additional (vacuum) noise to the re ected and

transmitted beams. The quantum statistics of the outgoing elds may di er signi cantly

from that of the incoming elds. Mathematically, lossless four-port devices such as beam

splitters or optical bres act as an SU(2) group transformation on the amplitude operators

of monochromatic light [1, 2, 3, 4, 5, 6].

Recent advances in the rapidly developing eld of quantum information processing, in

particular the fundamental experiments on quantum key distribution [7, 8, 9, 10, 11, 12]

and quantum teleportation [13, 14, 15], have raised the interest in studying the quantum-

statistical properties of light interacting with realistic optical instruments that show absorp-

tion. Quantum information processing exploits the quantum correlations that can exist in

states of more than one subsystem. These so-called entangled states have some remark-

able properties that cannot be understood classically. For example, they can violate Bell s

inequalities [16] and show other nonlocal behaviour. Entanglement, being a quantum corre-

lation e ect, is subject to decoherence and therefore very fragile. In order to use entangled

light beams in, for example quantum teleportation, they must be transmitted through optical

channels such as bres that necessarily show absorption. The question is then to what extent

the initial entanglement can be preserved during the propagation.

These examples show, that a quantum theory of light in the presence of dielectric bodies

is necessary. In principle, the matter could be treated microscopically. However, there exists

1



CHAPTER 1. INTRODUCTION 2

a class of dielectric media whose action can be included in the quantum theory of the

electromagnetic eld exactly. This class consists of dielectrics which respond linearly and

locally to the electromagnetic eld. The advantage of such a concept is, that it uses only

very general physical properties of the dielectric material.

Quantization of the electromagnetic eld in absorbing dielectric media has been subject

of intensive study over a long period. The quantum theory of light in dielectric media with

real and frequency-independent refractive index has been considered in a number of articles

[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Dispersion has been

taken into account [35, 36, 37, 38, 39, 40, 41, 42, 43], and attempts have been made to

extend the concepts also to nonlinear media [44, 45, 46, 47].

However, all these schemes are restricted to small frequency intervals where the permit-

tivity is real and absorption can safely be disregarded. A complete quantum theory, on the

other hand, requires quantization at all frequencies. For causality reasons the permittivity

has to satisfy the Kramers Kronig relations which state that real and imaginary parts of the

permittivity are necessarily connected to each other. Hence, in general there is always some

frequency region in which absorption occurs. An immediate consequence of the existence

of an imaginary part of the permittivity (and subsequently the refractive index) is that the

mode expansion of the electromagnetic eld operators is no longer complete since it involves

non-orthogonal damped waves.

The rst attempt to quantize the phenomenological Maxwell eld in absorbing media

was made by Lifshitz [48] in the connection of van der Waals and Casimir forces between

imperfectly conducting plates. Since then, a number of works were concerned with the formu-

lation of quantum electrodynamics in media described by a complex permittivity satisfying the

Kramers Kronig relations [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

A canonical approach that is consistent with quantum theory was developed by Huttner and

Barnett [52]. It is based on the Hop eld model [66] of an isotropic, homogeneous dielectric in

which a single quantum level is perturbatively coupled to a continuum of states [67]. Then

explicit Fano-type diagonalization [68] of a Hamiltonian consisting of the electromagnetic

eld, a polarization eld representing the dielectric matter, and a continuum of harmonic os-

cillators modelling the reservoir variables has been performed. It turned out that the vector

potential could be written in terms of the Green function of the classical scattering problem

[69, 70]. This observation made it possible to formulate a quantum theory of the elec-

tromagnetic eld in linear, but otherwise arbitrary dielectric media. The advantage is that

only experimentally accessible parameters such as permittivity and magnetic susceptibility

are involved [S1, S11], without referring to speci c microscopic models.

The outline of the present work is as follows. In Chapter 2, after recalling the quan-
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tization scheme based on the microscopic Hop eld model, a consistent phenomenological

theory of the quantized electromagnetic eld in absorbing dielectric media is presented. The

source-quantity representation of the electromagnetic eld operators with the classical Green

function, in terms of a continuum of harmonic-oscillator elds, is shown to lead to the correct

(equal-time) commutation relations between the electromagnetic eld operators [S1]. The

proof relies on general properties of the Green function and is valid for all dielectric media

that respond linearly, locally, and causally to the electromagnetic eld [S1, S11].

For the interaction of quantized light with optical devices regarded as arbitrarily shaped

three-dimensional dielectric bodies of nite extent the Green function can be speci ed

to yield input-output relations. They are a convenient way of describing the transformation

of eld operators of outgoing light from a dielectric device in terms of the eld operators

of light impinging on the optical device. General expressions for arbitrarily shaped objects

are given in Chapter 3 [S13]. The input-output relations are very useful for describing, for

example low-order correlations in two-photon interference e ects [71, 72, 73]. In general,

not only the lowest moments but the full information about the quantum state of the photon

eld is needed to describe its quantum-statistical properties. Based on the operator input-

output relations, the unitary transformation that relates the output quantum state to the

input quantum state, including radiation and matter, is derived in Chapter 4 [S2]. Examples

for the transformation of coherent states and Fock states are given.

Knowing the density operator of a bipartite quantum state allows for looking for signs

of entanglement between its subsystems. Application of separability criteria for nite-

dimensional states [74, 75] and in nite-dimensional Gaussian states [76, 77], together with

the input-output relations, yields bounds on size and properties of optical devices that are

necessary to prevent an entangled state to become separable. In Chapter 5 we compute

the maximal possible length of optical bres such that a two-mode squeezed vacuum state

transmitted through them stays inseparable [S7, S8, S10].

Quanti cation of entanglement is a di cult task in general. Several proposals have been

made to de ne a unique measure, but there seems to be more than one quantity satisfying all

requirements [78, 79] on a good entanglement measure. All of them are di cult to compute,

and analytical expressions are available only for certain classes of states. In most cases it is

possible to derive upper bounds on the entanglement content which is discussed in Chapter 5

[S7, S8, S10]. In particular, we introduce an upper bound on the entanglement content of

Gaussian states by computing their distance to the set of separable Gaussian states. We show,

that a symmetric noisy quantum channel can only transmit a certain amount of entanglement

[S14]. This bound indicates the ultimate theoretical limits of continuous-variables schemes

that make use of quantum information.
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Entanglement degradation inhibits perfect quantum teleportation. In Chapter 6 we show

how the standard teleportation scheme for qubits can be extended to yield, on average,

higher teleportation delity. In particular, we concentrate on using multipartite entangled

states with subsequent projection measurements and ltering [S15].

In studying quantum-state transformation by optical devices, entanglement content, or

teleportation delity, the emphasis is put on the in uence of dielectric objects on the quantum

state of light. On the other hand, the question is how (additional) atoms are a ected by

the medium-assisted Maxwell eld. Prominent examples for such e ects are the modi ed

spontaneous decay and Lamb shift of excited atoms near dielectric surfaces. Spontaneous

decay is caused by ground-state uctuations of the electromagnetic eld. When the eld is

coupled to dielectric matter, also its vacuum state is in uenced by the medium, which can

either enhance [80] or inhibit [81, 82] spontaneous decay. The dependence on changes in the

environment surrounding the radiating atom can also be used as a tool in scanning near- eld

optical microscopy for detecting buried dielectric objects below planar surfaces [83].

The quantum electrodynamics in the presence of atoms is developed in Chapter 7 where

the Hamiltonian describing the interaction of the medium-assisted Maxwell eld with addi-

tional atomic sources in minimal coupling and multipolar coupling is derived [S9]. In many

cases the spatial extent of the atomic system is small compared to the spatial variations of

the electromagnetic potentials. Then it is su cient to treat the atom eld coupling in lowest

order of the multipole expansion of the electromagnetic eld. Moreover, if only two atomic

levels are relevant, one can restrict to frequency components that are close to the atomic

resonance frequency. Both approximations, electric-dipole and rotating-wave approximations,

are used in Chapter 8 to study the spontaneous decay of an excited two-level atom in the

presence of dielectric bodies. In particular, di erent models of spontaneous decay in absorb-

ing (bulk) dielectrics [S3], absorbing microcavities [S4], and near planar interfaces [S5] are

discussed. All models have in common that the leading contributions to the decay rate are

proportional to the cubic inverse of the distance from the atom to the surrounding dielectric.

This behaviour is due to resonant energy transfer to the absorbing dielectric material. For

non-absorbing media, the calculated spontaneous decay rates of an atom inside a dielectric

reproduce the classical local- eld correction factors.

A summary and future prospects are presented in Chapter 9. For the sake of transparency

and readability, longer derivations have been shifted to separate Appendixes.



2 Quantization of the electromagnetic eld
in causal media

The quantum theory of light in dielectric media that respond causally and linearly to an

electromagnetic eld is the basis for the considerations throughout this work. We shortly

review the canonical quantization scheme developed in [52] where an explicit diagonalization

of a semi-microscopic model Hamiltonian for the radiation eld in isotropic, homogeneous

dielectrics has been performed (Sec. 2.1). The functional form of vector potential and matter

polarization, expressed in terms of polariton-type operators, presents the starting point for

the development of a source-quantity representation of the electromagnetic eld operators in

arbitrary inhomogeneous media [S1], which is thoroughly discussed in Sec. 2.2. Extensions

to more general dielectrics such as amplifying [S1], anisotropic, and magnetic media [S11]

are presented in Sec. 2.3.

2.1 Hop eld model and Fano diagonalization

In [52] a semi-microscopic Hop eld model [66] of an isotropic, homogeneous bulk dielectric

is considered in which a harmonic-oscillator eld describing the polarization of the dielectric

matter is linearly coupled to a continuum of harmonic-oscillator elds modelling the reservoir.

In this type of coupling the energy ow is essentially only into the reservoir which is equivalent

to a loss mechanism for the material polarization.

The system consisting of the electromagnetic eld, the matter polarization, and the

reservoir variables is described by the Lagrangian

L = d3rL = d3r (Lrad + Lmat + Lint) (2.1)

where

Lrad =
0

2
A(r) + U(r)

2

c2 [ A(r)]2 (2.2)

is the free Lagrangian density of the electromagnetic eld in the Coulomb gauge, A(r)=0,

A(r) being the vector potential and U(r) the scalar potential, respectively. The Lagrangian

densities

Lmat =
2
X(r)2 2X(r)2 +

0

d
2

Y
2
(r ) 2Y2(r ) (2.3)

5



CHAPTER 2. ELECTROMAGNETIC FIELD QUANTIZATION 6

and

Lint = A(r)X(r) + U(r) X(r)

0

d v( )X(r)Y(r ) (2.4)

describe the dielectric matter with a polarization eld X(r) and reservoir oscillators Y(r ),

and the interaction between radiation and dielectric matter, respectively. The coupling con-

stant is the electric polarizability, and the function v( ) is assumed to be square-integrable.

After introducing canonical momenta (r), P(r), and Q(r ) for the elds A(r), X(r),

and Y(r ), respectively, the Legendre transform is performed to obtain the Hamiltonian

H = Hrad + Hmat + Hint of the overall system. In reciprocal space, after splitting the elds

into their respective transverse and longitudinal parts, for example

X(k) = X (k) +

2

=1

X (k)e (k) (2.5)

[with unit polarization vectors = k k , e (k) k], new variables are de ned by

a (k) =
0

2�kc
kcA (k) +

i

0

(k) (2.6)

b (k) =
2�

iX (k) +
i
P (k) (2.7)

b (k ) =
2�

i Y (k ) +
1

Q (k ) (2.8)

for the transverse elds with the renormalized wave number k and frequency

k2 = k2 +
2

0c2
2 = 2 +

0

d
v2( )

2
(2.9)

and accordingly for the longitudinal eld

b (k) =
2�

X (k) +
i
P (k) (2.10)

b (k ) =
2�

i Y (k ) +
1

Q (k ) (2.11)

[ 2 = 2 + 2 ( 0)]. Then with the variables (2.6) (2.8), (2.10), and (2.11), the Hamil-

tonian splits up into a transverse and a longitudinal part

H = H + Hmat H = Hrad + Hmat + Hint (2.12)

Canonical quantization is performed by regarding the complex amplitudes a (k), b ( )(k), and

b ( )(k ) as bosonic annihilation operators a (k), b ( )(k), and b ( )(k ). The Hamiltonian
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and

P(k) =
2

=1

X (k) = i
2

=1

e (k)
� 0

0

d 2[ ( ) 1] I( )G(k )C (k ) + H.c. + PN(k) (2.16)

PN(k) =

2

=1

e (k)
� 0

0

d i I( )C (k ) + H.c. (2.17)

In Eqs. (2.15) (2.17), the complex function ( ) is the permittivity of the model satisfy-

ing the Kramers Kronig relations, and G(k ) the Green function of the classical Maxwell

equations

G(k ) =
c2

2 ( ) k2c2
(2.18)

The (transverse) matter polarization (2.16) consists of two contributions, the induced po-

larization which is proportional to [ ( ) 1], and a uctuating component PN(k) which is

associated with absorption. Since the longitudinal part of the electric eld operator is given

by 0E (k) = X (k) , there exists an analogous relation to a longitudinal noise polar-

ization, when replacing the transverse polariton operators in Eq. (2.17) by the longitudinal

dressed-matter operators B (k ).

A major disadvantage of the explicit Fano-type diagonalization is that it is only applicable

for the simplest geometries (homogeneous bulk material) and material properties (isotropic

dielectrics). Even for the situation of a medium- lled half space with a planar interface to the

other half space lled with vacuum, this type of quantization presented severe problems [86].

There are, however, also other ways to diagonalize the Hamiltonian (2.12). For example,

path-integral quantization has been utilized in [57, 61].

2.2 Quantization of the phenomenological Maxwell eld

in absorbing, isotropic dielectrics

We have seen that the microscopic model has lead to a source-quantity representation of the

quantized electromagnetic eld operators with the Green function of the classical scattering

problem, in terms of the complex permittivity ( ) and a continuum of harmonic-oscillator

elds, which nally do not refer to the actual underlying model anymore. So far, the dielec-

tric was assumed to be homogeneous and isotropic. Because it would be natural to start

quantization at this point and to generalize the theory to arbitrary linear dielectrics, the
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question is whether the (equal-time) commutation relations between electromagnetic eld

operators can be proved to be correct in general. The properties of the Green function and

the corresponding proof of the (equal-time) commutation relations [S1, S11] are the subject

of this section.

2.2.1 Classical Maxwell theory

First we shortly recapitulate the classical Maxwell theory and bring it into a form suitable for

quantization. The phenomenological Maxwell equations in the presence of dielectric bodies

but without external sources read

B(r) = 0 (2.19)

E(r) + B(r) = 0 (2.20)

D(r) = 0 (2.21)

H(r) D(r) = 0 (2.22)

The displacement D(r) is de ned by the relation

D(r) = 0E(r) + P(r) (2.23)

where E(r) is the electric eld and P(r) the polarization eld. Assuming non-magnetic

matter, we have

H(r) =
1

0
B(r) (2.24)

In the following, we consider arbitrary inhomogeneous, isotropic, non-magnetic media whose

polarization responds linearly and (spatially) locally to the electric eld (extensions to mag-

netic matter, anisotropic, and amplifying media are given in Sec. 2.3). The most general

relation between the matter polarization and the electric eld which is consistent with causal-

ity, hence the Kramers Kronig relations, and the dissipation- uctuation theorem is [87]

P(r t) = 0

0

d (r )E(r t ) + PN(r t) (2.25)

The inclusion of the noise polarization PN(r t) is necessary to ful l the dissipation- uctuation

theorem, macroscopic electrodynamics being a statistical theory. The causal response to the

electric eld is thus a temporal convolution with the dielectric susceptibility (r ) as the

response function. Converting Maxwell s equations (2.19) (2.22) and the constitutive

relations (2.23) and (2.24) into Fourier space by setting

F (t) =

0

d F ( )e i t + c.c. (2.26)
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for any real function F (t), the constitutive relation (2.23) [together with (2.25)] turns into

D(r ) = 0 (r )E(r ) + PN(r ) (2.27)

The matter polarization is then given by

P(r ) = 0[ (r ) 1]E(r ) + PN(r ) (2.28)

where

(r ) = 1 +

0

d (r )ei (2.29)

is the relative permittivity. Being the Fourier transform of a causal response function, the

real and imaginary parts of (r ) satisfy the Kramers Kronig relations

R(r ) 1 =
P

d
I(r )

(2.30)

I(r ) =
P

d
R(r ) 1

(2.31)

[P: principal value]. As a function of complex , the permittivity obeys the relation

(r ) = (r ) (2.32)

it is holomorphic in the upper complex half-plane without zeros and poles, and in the high-

frequency limit it approaches unity, (r ) 1 for [87, 88]. Note that the func-

tional form of Eq. (2.28) is similar to the form of Eq. (2.16).

With the noise polarization PN(r ) we de ne a charge density and a current density

N
(r ) = PN(r ) j

N
(r ) = i PN(r ) (2.33)

which, by construction, obey the usual continuity equation. With these de nitions, Maxwell s

equations (2.19) (2.22) read in temporal Fourier space as

B(r ) = 0 (2.34)

E(r ) i B(r ) = 0 (2.35)

0 (r )E(r ) =
N
(r ) (2.36)

B(r ) + i
c2

(r )E(r ) = 0jN(r ) (2.37)

The source terms in Eqs. (2.36) and (2.37) can be regarded as the internal (noise) sources

associated with absorption processes in the dielectric medium which is consistent with the



CHAPTER 2. ELECTROMAGNETIC FIELD QUANTIZATION 11

dissipation- uctuation theorem. Inserting Eq. (2.35) into Eq. (2.37) yields a partial di eren-

tial equation for the electric eld

E(r )
2

c2
(r )E(r ) = i 0jN(r ) (2.38)

which can be solved by writing

E(r ) = i 0 d3r G(r r ) j
N
(r ) (2.39)

where the Green function G(r r ) (actually a second-rank tensor) obeys the partial di er-

ential equation

G(r r )
2

c2
(r )G(r r ) = (r r ) (2.40)

Together with the boundary conditions at in nity, Eq. (2.40) has a unique solution.

2.2.2 Properties of Green functions

The Green function G(r r ) has some very useful properties. Having been constructed

from the permittivity function (r ) with the property (2.32), the Green function satis es

an analogous relation,

G(r r ) = G (r r ) (2.41)

Moreover, one can show that also the reciprocity relation

G(r r ) = GT (r r ) (2.42)

holds generally [S11]. It means physically that the electric eld at point r of a (point-like)

source at point r is the same as the eld electric eld at point r produced by a (point-like)

source at r [89]. Both relations (2.41) and (2.42) are necessary to derive the integral relation

(see Appendix A with (r ) = 1)

d3s
2

c2
I(s )G(r s )G+(s r ) = ImG(r r ) (2.43)

which reads in Cartesian coordinates as

d3s
2

c2
I(s )Gik(r s )Gjk(r s ) = ImGij(r r ) (2.44)
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2.2.3 Quantization and equal-time commutation relations

As it can be read o from Eqs. (2.39) and (2.33), the noise polarization PN(r ) plays the

fundamental role in determining the electric eld. For the following it is convenient to split

o some factor and de ne the fundamental dynamical variables f(r ) by

PN(r ) = i
� 0

I(r ) f(r ) (2.45)

Upon quantization, we replace the classical elds f(r ) and f (r ) by the operator-valued

bosonic elds f(r ) and f (r ) which are associated with the elementary excitations of

the system composed of the electromagnetic eld and the absorbing dielectric matter. Their

commutation relations are

fi(r ) fj (r ) = ij (r r ) ( ) (2.46)

fi(r ) fj(r ) = 0 (2.47)

The normally-ordered Hamiltonian of the composed system is

H = d3r

0

d � f (r )f(r ) (2.48)

showing that the time-dependence of f(r ) induced by the Hamiltonian (2.48) in the Heisen-

berg picture is given by

f(r ) = (i�) 1 f(r ) H = i f(r ) (2.49)

hence they represent a continuous set of harmonic oscillators. Since the operators in the

Hamiltonian (2.48) are normally-ordered, an in nite constant term, the ground-state energy,

has been discarded.

The operator-valued equivalents of the elds E(r ), B(r ), and D(r ) are obtained

by rewriting Eq. (2.39) as

E(r ) = i
�

0

2

c2
d3r I(r )G(r r ) f(r ) (2.50)

and using Maxwell s equation (2.35) to obtain the magnetic induction

B(r ) = (i ) 1 E(r ) (2.51)

Finally, the displacement eld reads, by Eq. (2.27), as

D(r ) = 0 (r )E(r ) + PN(r )

= ( 0
2) 1 E(r ) (2.52)



CHAPTER 2. ELECTROMAGNETIC FIELD QUANTIZATION 13

The electromagnetic eld operators in the Schrodinger picture are obtained by integration

over :

E(r) =

0

d E(r ) + H.c. (2.53)

and all other elds analogously.

The representation of the electric- eld operator (2.53) [together with Eq. (2.50)] gen-

eralizes the usual mode expansion, which fails when losses are taken into account. In the

limit of vanishing absorption and dispersion, (r ) 1 + i0+, the source-quantity repre-

sentation with the Green function in terms of the fundamental basic elds (2.50) reduces to

the familiar mode expansion with (linear combinations of) the basic elds f(r ) becoming

annihilation operators of the electromagnetic eld. This becomes clear when reminding the

Lagrangian formalism in Sec. 2.1. The couplings between the electromagnetic eld and the

harmonic oscillators modelling dielectric matter and reservoir vanish in that limit, leaving

behind vacuum quantum electrodynamics.

In view of the general solution to the inhomogeneous Helmholtz equation (2.38), Eq. (2.50)

would represent the (particular) inhomogeneous solution, and a general solution should be

constructed by Eq. (2.50) and a solution of the homogeneous Helmholtz equation. The

physical interpretation of the latter is usually done in terms of radiation that propagates

freely in the vacuum region. So far nothing has been said where this radiation was created.

The integration region in (2.50) extends over the whole space. Thus, every possible source

of radiation is already included in that particular solution, that is, also those sources which

are located in the far distance giving rise to an (approximately) homogeneous solution. In

the case when no dielectric is present, that is (r ) 1 + i0+, by the discussion above,

the (homogeneous) free-space solution is recovered. There cannot be any additional sources

which are not included in (2.50). We therefore conclude that an additional homogeneous

solution does not exist physically.

In order to prove the consistency of the quantization scheme with standard quantum elec-

trodynamics, we compute the equal-time commutation relations between the eld operators

and show their equivalence with standard QED commutation relations. From the integral

representation of the Fourier components of the electric eld (2.50) and the magnetic induc-

tion (2.51), one derives, using the properties (2.41) and (2.42) of the Green function as well

as the integral relation (2.43) [or equivalently Eq. (2.44)],

Ei(r) Ek(r ) = Bi(r) Bk(r ) = 0 (2.54)
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and

Ei(r) Bk(r ) =
�

0
kmj

r
m d

c2
Gij(r r ) (2.55)

Equation (2.55) has to be shown to lead to the standard QED relation

Ei(r) Bk(r ) =
i�

0
ikm

r
m (r r ) (2.56)

which is ful lled only if in Eq. (2.55) the integral yields

kmj
r
m d

c2
Gij(r r ) = i kmj

r
m ij (r r ) (2.57)

Apart from scalar electrodynamics for slab-like systems [54, 56, 71], Eq. (2.57) has proved

to be correct for bulk material [70] and for two in nite half-spaces with a common planar

interface [60] by direct computation using the explicit form of the Green function. For arbi-

trary inhomogeneous dielectrics for which the Green function is not explicitly known, we now

prove the validity of Eq. (2.57) by converting the partial di erential equation (2.44), satis ed

by the Green function, into an integral equation and performing a suitable decomposition of

the Green function [S1].

Proof of the commutation relation for inhomogeneous dielectrics

From the theory of partial di erential equations it is known (see, e.g., [90]) that there exists

an equivalent formulation of the problem in terms of an integral equation. Rewriting the

partial di erential equation satis ed by the Green function (2.40) which reads in Cartesian

components as

r
i

r
k ik

r +
2

c2
(r ) Gkj(r s ) = ij (r s) (2.58)

with the formal de nition (r ) = (r ) + 0( ) 0( ), where 0( ) (r )
r
is an

appropriately space-averaged reference permittivity, we obtain

r + q20( ) Gij(r s ) = q20( ) q2(r ) Gij(r s ) + r
i

r
kGkj(r s ) ij (r s)

(2.59)

Here, the abbreviations

q2(r ) =
2

c2
(r ) q20( ) =

2

c2
0( ) (2.60)

have been used. Now we introduce the scalar Green function

g( r ) =
eiq0( ) r

4 r
=

d3k

(2 )3
eik r

k2 q20( )
(2.61)
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which satis es the di erential equation

r + q20( ) g( r ) = (r) (2.62)

The Green function g( r ) enables us to convert Eq. (2.59) into the integral equation

Gij(r s ) = G
(0)
ij (r s ) + d3vKik(r v )Gkj(v s ) (2.63)

where

G
(0)
ij (r s ) = ij

r
i

s
j q

2(s ) g( r s ) (2.64)

and

Kik(r v ) = v
k ln q2(v ) [ r

i g( r v )]+ q2(v ) q20( ) g( r v ) ik (2.65)

Obviously, G
(0)
ij (r s ) is the Green function for a homogeneous medium with permittivity

(r ) 0( ). The second term on the right-hand side in Eq. (2.63) essentially arises from

the inhomogeneities. Note that, according to the Fredholm alternative, the solution of the

integral equation (2.63) is unique, because of the non-existence of non-trivial solutions of

the homogeneous problem. From Eqs. (2.61), (2.62), and the analyticity properties of the

Green function it follows that the integral kernel Kik(r v ), Eq. (2.65), is a holomorphic

function of in the upper complex half-plane, with Kik(r v ) 0 for , where

Kik(r v ) decreases as does (r ) 1.

Let us write the integral equation (2.63) in the compact form

G = G(0) +KG (2.66)

where

KG (KG)ij(r s ) = d3vKik(r v )Gkj(v s ) (2.67)

Assuming that G can be found by iteration, we may write

G = G(0) +
n=1

Kn G(0) (2.68)

From Eq. (2.64) it is seen that G
(0)
ij (r s ) has a cubic singularity r s 3 for r s,

and Eq. (2.65) reveals that the kernel Kik(r v ) is only weakly singular (the singularity is

weaker than the spatial dimension). Hence, at least after the third iteration step the result

is perfectly regular at r = s.

In order to compute the integral (2.57), we rst decompose the Green function into

two parts,

Gij(r s ) = (G1)ij(r s ) + (G2)ij(r s ) (2.69)
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where (G1)ij(r s ) and (G2)ij(r s ) satisfy the integral equations

G = G(0) +KG ( = 1 2) (2.70)

with

(G1)
(0)
ij (r s ) = ij g( r s ) (2.71)

and

(G2)
(0)
ij (r s ) = s

j
r
i q 2(s )g( r s ) (2.72)

Now, (G2)ij(r s ) can be given by

(G2)ij (r s ) = s
j i(r s ) (2.73)

where is the solution of the integral equation

= (0) +K (2.74)

with
(0)
i (r s ) = r

i q 2(s )g( r s ) (2.75)

Both (G1)ij(r s ) and (G2)ij(r s ) are holomorphic functions of in the upper com-

plex half-plane, with (G )ij(r s ) 0 if . Note that (G2)ij(r s ) may be

singular at = 0. Nevertheless, when substituting Gij(r s ) from Eq. (2.69) [together

with Eq. (2.73)] back into the expression of the electric eld in terms of the Green function

(2.50), we can integrate by parts and use the equation of continuity to obtain

E i(r ) = i 0 d3s (G1)ik(r s )j
k
(s ) + 0 d3s 2

i(r s ) (s ) (2.76)

Hence, i 0 (G1)ik(r s ) and 0
2

i(r s ) are the Fourier transforms of the response

functions relating the electric- eld strength to the (noise) current density j
k
(s ) and the

(noise) charge density (s ) separately. Obviously, 2
i(r s ) is not singular at =0.

Combining Eqs. (2.69) and (2.73), we easily see that the integral over the Green

function (2.57) can be rewritten as, on recalling that kmj
r
m

r
j ( )= 0,

kmj
r
m

+

d
c2

Gij(r r ) = kmj
r
m

+

d
c2
(G1)ij(r r ) (2.77)

Thus, only the noise-current response function (G1)ij(r r ) contributes to the com-

mutator. We now substitute in Eq. (2.77) for (G1)ij(r r ) the integral equation (2.70)

( =1) to obtain

+

d
c2
(G1)ij(r r ) = i ij (r r ) +

+

d d3v
c2

Kik(r v )(G1)kj(v r )

(2.78)
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where the (bulk-material) relation [70]

+

d
c2

(G1)
(0)
ij (r r ) = i ij (r r ) (2.79)

has been used. Hence it remains to prove that the second term on the right-hand side in

Eq. (2.78) vanishes.

Since Kik(r v ) and (G1)kj(v s ) are holomorphic functions of in the upper

complex half-plane, the integral can be calculated by contour integration along a large

half-circle (with = R, R ). To calculate this integral, we recall that for

both Kik(r v ) and (G1)kj(v s ) approach zero at least as 1, and Kik(r v )

(G1)kj(v s ) approaches zero at least as 2. Hence, for R the contour integral

vanishes at least as R 1, and the second term on the right-hand side in Eq. (2.78) indeed

equals zero, i.e.,
+

d
c2

(G1)ij(r r ) = i ij (r r ) (2.80)

This completes the proof of the correct (equal-time) commutation relations between electric

eld and magnetic induction. Other commutation relations can be derived accordingly. For

example, because the polarization P(r) is related to the matter degrees of freedom, we

immediately get

Pi(r) Ej(r ) = 0 (2.81)

An equivalent, but conceptually di erent proof of the commutation relations based on the

Feshbach formula [91] can be found in [S11].

The representation of the electric- eld operator (2.50) also implies that the ground-state

expectation value of E(r ) is zero whereas the uctuation of E(r ) is not. The ground state

0 for the basic- eld operators f(r ) is de ned as the ground state of the electromagnetic

eld and the ground state of matter and reservoir, and will henceforth be called the vacuum

state. Using the commutation relations (2.46) and (2.47) of the basic elds f(r ) and the

integral relation (2.43) yields

0 Ei(r )Ej(r ) 0 =
�

2

0c2
ImGij(r r ) ( ) (2.82)

Thus, the uctuation of the electromagnetic eld is determined by the imaginary part of the

Green function. This result is consistent with the dissipation- uctuation theorem [92], noting

that the Green function plays the role of the response function of the electromagnetic eld

to an external perturbation.



CHAPTER 2. ELECTROMAGNETIC FIELD QUANTIZATION 18

Instead of using the electromagnetic eld strengths, scalar and vector potentials can be

introduced and expressed in terms of the basic elds f(r ). For example, in the Coulomb

gauge the potentials are de ned as

(r) = E (r) (2.83)

and

A(r) =

0

d A(r ) + H.c. (2.84)

where

A(r ) = (i ) 1E (r ) (2.85)

For bulk material, this representation of the vector potential, together with Eq. (2.50), exactly

corresponds to Eq. (2.15) in the canonical quantization of a Hop eld dielectric.

An equivalent formalism developed in [58, 59] also starts o from the phenomenological

Maxwell equations. Here, a set of auxiliary elds, instead of the noise current, is introduced.

The auxiliary elds allow for replacing Maxwell s equations, which feature a time convolution

relating the polarization to the electric eld [Eq. (2.25) without the noise polarization], by

a new set of equations for the combined electromagnetic and auxiliary elds. Although this

method looks quite di erent from our approach, both methods are equivalent since we have

shown [S12] that one can construct the operator noise current from the auxiliary elds.

2.3 Extensions to other media

The quantization scheme has so far been restricted to absorbing, isotropic, nonmagnetic,

linear media. Once the outline is clear, we can extend the scheme to more general situ-

ations [S1, S11]. Starting point is always the representation of the electric eld strength

operator (2.50) in terms of the fundamental dynamical variables of the system composed of

electromagnetic eld and the medium. Recalling Eqs. (2.33) and (2.45), we can write

E(r ) = i 0 d3sG(r s ) j
N
(s ) (2.86)

with

j
N
(r ) =

� 0
I(r )f(r ) (2.87)

In the following possible extensions are brie y described.
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Amplifying media

As the rst example we consider a dielectric medium which is amplifying in some nite

region of space and frequency, and absorbing in all other regions. Ampli cation can also be

described by a complex permittivity function (r ) which still satis es the Kramers Kronig

relations but has a negative imaginary part. Quantization is performed by setting [S1]

j
N
(r ) =

� 0
I(r ) ( I)f(r ) + ( I)f (r ) (2.88)

[ (x): Heaviside step function], which re ects the fact that ampli cation requires the roles

of (noise) creation and annihilation operators to be exchanged [93, 94, 95, 96, 97]. Inserting

(2.88) into (2.86), one can prove the correctness of the fundamental QED commutation

relations if the spatial and frequency region in which ampli cation occurs, extends only over

a nite region. Especially, we require lim r [ (r ) 1] i0+.

Anisotropic media

In anisotropic media the scalar permittivity function (r ) has to be replaced by a second-

rank tensor (r ). The Green function has to be determined from the equation

G(r s )
2

c2
(r )G(r s ) = (r s) (2.89)

The reciprocity relation (2.42) for the Green function is ensured if (r ) is a symmetric

tensor. In analogy to the integral relation derived in Appendix A [cf. Eq. (2.44)] we obtain

[S11]

d3r
2

c2
I kl(r )Gik(r s )Gjl(r s ) = ImGij(s s ) (2.90)

The operator noise current density is now de ned as

j
N
(r ) =

� 0 1 2
I (r )f(r ) (2.91)

where the square-root of the imaginary part of the permittivity tensor is given by the eigen-

value problem
1 2
I (r ) = O(r ) I

1 2(r )O 1(r ) (2.92)

with the (positive) diagonal matrix I
1 2(r ) and an orthogonal matrix O(r ).

Magnetic media

In all previous cases the response of the matter was solely of electric type giving rise to an

(electric) polarization. We now include also a magnetic response into the theory, restricted
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to isotropic media with a scalar magnetic susceptibility (r ) [S11]. From the preceding

section it is clear that anisotropy presents no additional di culty but lengthens notation. We

start from constitutive relations in non-standard form,

D(r ) = 0E(r ) + P(r ) (2.93)

H(r ) = 0B(r ) +M(r ) (2.94)

which can be justi ed from a relativistic point of view [98]. They have the advantage of

preserving the interpretation of the elds E and B as the fundamental electromagnetic elds.

As before, the (electric) polarization is de ned as

P(r ) = 0 [ (r ) 1]E(r ) + PN(r ) (2.95)

whereas the equivalent expression for the magnetization reads [ 0=
1

0 , (r )= 1(r )]

M(r ) = 0 [ (r ) 1]B(r ) +MN(r ) (2.96)

The magnetic susceptibility (r ) [as well as (r )] satis es analogous causality relations

as the dielectric permittivity. The Green function obeys the partial di erential equation

(r ) G(r s )
2

c2
(r )G(r s ) = (r s) (2.97)

The generalization of the integral relation (2.44) reads now

d3s I(s ) s
kGin(r s ) s

nGjk(r s ) s
kGjn(r s )

+ d3s
2

c2
I(s )Gin(r s )Gjn(r s ) = ImGij(r r ) (2.98)

which is proved in Appendix A.

Since, by Eq. (2.96), there exists also a noise contribution from the magnetization, we

have to de ne the operator noise current as

j
N
(r ) = i PN(r ) MN(r )

=
� 0

I(r ) f(r ) i
� 0

I(r ) f(r ) (2.99)

In Eq. (2.99) we have assumed an absorbing medium for which I(r ) > 0 [87] such that

I(r ) = I(r ) (r ) 2 < 0. The ( -components of the) electric eld strength is

obtained by substituting Eq. (2.99) into Eq. (2.86), all other elds accordingly. Note that,

although electric and magnetic noise contributions are present, Maxwell s equations have

only (for each frequency and each spatial component) three degrees of freedom. Thus, it is

su cient to introduce a single bosonic vector eld f(r ).

The above examples show that the quantization scheme is valid in all situations in which

the matter responds linearly and locally to an externally applied electric or magnetic eld.



3 Quantum-optical input-output relations at
dielectric plates

Input-output relations for the mode operators of the electromagnetic eld at dielectric objects,

relating the photonic operators of the incoming elds to those of the outgoing elds, represent

a powerful tool for describing the in uence of material bodies on light impinging on some

dielectric device such as a beam splitter, a mirror, or an optical bre. The general theory

of quantizing the electromagnetic eld developed in Sec. 2.2 can directly be applied to

input-output coupling at arbitrary three-dimensional dielectric objects. Based on the source-

quantity representation with the Green function, the theory presented in Sec. 3.1 [S13] is

rather general and not restricted to special geometries. The question is only whether one is

able to derive some analytical expression for the Green function. Certainly, this can be done

only in some special (usually highly symmetric) cases, an example being a planar multilayer

structure which is treated in Sec. 3.2. In all other situations, there is the possibility to apply

Dyson expansion around some explicitly known function, as it is done in the case of scattering

at rough surfaces [83, 99, 100, 101].

Let us shortly review the input-output theory for propagation of linearly polarized light in

the z direction [69, 70]. Starting from the Green-function representation (2.50) of the electric-

eld operator and correspondingly the operator of the vector potential (2.84) [together with

Eq. (2.85)], quasi-mode operators a (z ) associated with the amplitudes of damped plane

waves propagating to the left (-) and right (+) are introduced by writing

A(z) =
�

0A
0

d c+(z )a+(z ) + c (z )a (z ) + H.c. (3.1)

where

c+(z )a+(z ) =

z

dz
c2

I(z )G(z z )f(z ) (3.2)

c (z )a (z ) =

z

dz
c2

I(z )G(z z )f(z ) (3.3)

The (scalar) Green function of a medium with piecewise constant permittivity j( ) can

always be decomposed into [89, 102]

G(z z ) = j(z z )G
(0)
j (z z ) + R(z z ) (3.4)

21
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where the symbol j(z z ) is one if both z and z are in the region j and zero otherwise. The

function G
(0)
j (z z ) is the Green function of a bulk material with permittivity j( ), and

R(x x ) is a solution to homogeneous wave equation that ensures the correct boundary

conditions at the interfaces between the di erent regions. Assuming a dielectric plate sur-
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Figure 3.1: Scheme of a four-port device. The incoming elds described by operators ai( )
produce outgoing elds described by operators bi( ), the gi( ) being operators of device
excitations.

rounded by vacuum (Fig. 3.1), the input-output relations between the amplitude operators

of the incoming light ai( ) and the outgoing light bi( ) at the surfaces of the slab have been

derived as [71]

b( ) = T( )a( ) + A( )g( ) (3.5)

with the notation

a( ) =

 
a1( )

a2( )
b( ) =

 
b1( )

b2( )
g( ) =

 
g1( )

g2( )
(3.6)

Transmission and re ection coe cients are scalar functions of which have been combined

to the characteristic transmission matrix T( ). The operators of device excitations gi( )

have been normalized to be bosonic, with the associated prefactors being collected in the

characteristic absorption matrix A( ). Additionally, the characteristic transmission and ab-

sorption matrices satisfy

T( )T+( ) + A( )A+( ) = I (3.7)

For single- and multilayer dielectric slabs these matrices have been computed explicitly in [71],

the only ingredients being the scalar Green function of the associated scattering problem that

depends on the dielectric permittivity of the material and the slab thickness.

3.1 General Green function approach

Let us start from the representation of the electric- eld operator in terms of the classical

Green function (2.50). We now assume that the space �3 can be subdivided into three
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spatially separated regions I, II, and III, where region II represents an arbitrarily shaped

dielectric body (Fig. 3.2). Regions I and III are assumed to contain vacuum.

Figure 3.2: Dielectric object in region II surrounded by vacuum in regions I and III.

The electric- eld operator in region I is given by

E
(I)
(r ) = i 0

�3

d3sG(I)(r s ) j
N
(s ) (3.8)

where the Green function can be split into four parts [89, 102, 103]:

G(I)(r s ) = G(10)(r s ) (s I)

+G(11)(r s ) (s I)

+G(12)(r s ) (s II)

+G(13)(r s ) (s III) (3.9)

Here, G(10)(r s ) is the solution of the inhomogeneous Helmholtz equation for the case

in which region I would extend over the whole space to in nity, and the G(1i)(r s ) are

solutions of the homogeneous Helmholtz equation that ensure the correct boundary conditions

at the surfaces of discontinuity. The electric- eld operator in III is given accordingly by

E
(III)

(r ) = i 0

�3

d3sG(III)(r s ) j
N
(s ) (3.10)

with the Green function

G(III)(r s ) = G(30)(r s ) (s III)

+G(31)(r s ) (s III)

+G(32)(r s ) (s II)

+G(33)(r s ) (s I) (3.11)
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Consider now the eld at the interface between regions I and II. The identi cation of the

contributions of incoming and outgoing elds in Eq. (3.8) with the Green function (3.9) is

unique. The contribution determined by the (free) Green function G(10)(r s ) represents the

input eld, since it describes free propagation from a point s in region I to the point r in region

I (which we take to be at the surface). The term associated with G(11)(r s ) describes

the part of the eld which is re ected at the left surface, whereas the term associated with

G(13)(r s ) is the transmitted eld through the dielectric from the right (region III). The

remaining term is the contribution of noise inside the dielectric. We now divide the eld at

the left surface (with the notation r left r ) into input and output elds as

E(r ) = E
(in)
I (r ) + E 

(out)
I (r ) (3.12)

with

E
(in)
I (r ) = i 0

I

d3sG(10)(r s ) j
N
(s ) (3.13)

E 
(out)
I (r ) = i 0

I

d3sG(11)(r s ) j
N
(s )

+i 0

II

d3sG(12)(r s ) j
N
(s )

+i 0

III

d3sG(13)(r s ) j
N
(s ) (3.14)

Analogously, for the eld at the interface between regions II and III (r right r+) we have

E(r+ ) = E 
(in)
III (r

+ ) + E
(out)
III (r+ ) (3.15)

with

E 
(in)
III (r

+ ) = i 0

III

d3sG(30)(r+ s ) j
N
(s ) (3.16)

E
(out)
III (r+ ) = i 0

III

d3sG(31)(r+ s ) j
N
(s )

+i 0

II

d3sG(32)(r+ s ) j
N
(s )

+i 0

I

d3sG(33)(r+ s ) j
N
(s ) (3.17)

The arrows indicate the direction of propagation in Fig. 3.2. The rst terms in Eqs. (3.14)

and (3.17) are the re ected elds in the respective regions, the last terms are the transmitted
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elds from the respective other sides of the dielectric body, whereas the second terms arise

from noise contributions inside the device.

Input-output relations are derived by rewriting Eqs. (3.14) and (3.17) in terms of the

input elds (3.13) and (3.16). In a linear theory, which we are considering here, this is

always possible since the superposition principle holds. Thus, we write (formally)

E 
(out)
I (r ) = d2s RI(r s )E

(in)
I (s )

+ d2s+ T I,III(r s+ )E 
(in)
III (s

+ )

+GI 1(r ) + GI 2(r ) (3.18)

E
(out)
III (r+ ) = d2s+ RIII(r

+ s+ )E 
(in)
I (s+ )

+ d2s T III,I(r
+ s )E

(in)
I (s )

+GIII 1(r
+ ) + GIII 2(r

+ ) (3.19)

with the re ection coe cients R and transmission coe cients T which are actually second-

rank tensors. The integrations run over the respective surfaces of the body. For example,

the eld at a point r at the left surface is created by the input eld from the left impinging

at the surface at points s leading to the rst term in Eq. (3.18), and by the input eld from

the right at points s+ producing the second term in Eq. (3.18). The operators G(I,III) (1 2)

are related to left and right propagating noise excitations inside the body.

Comparing Eqs. (3.14) and (3.18), we obtain, for example for the re ection coe cient

RI(r s ), the Fredholm integral equation of the rst kind

d2s RI(r s )G(10)(s s ) = G(11)(r s ) (3.20)

which has to be inverted to nd the re ection coe cient RI(r s ). This can be done

by using the relation

I

d3sG(10)(r s ) G(10)(s s )
1

= (r s ) (3.21)

Thus, we obtain the re ection coe cient by changing the order of integration as

RI(r s ) =

I

d3sG(11)(r s ) G(10)(s s )
1

(3.22)

Similarly, the transmission coe cient reads

T I,III(r s+ ) =

III

d3sG(13)(r s ) G(10)(s+ s )
1

(3.23)
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Re ection and transmission coe cients for region III are derived analogously as

RIII(r
+ s+ ) =

III

d3sG(33)(r+ s ) G(30)(s+ s )
1

(3.24)

T III,I(r
+ s ) =

I

d3sG(31)(r+ s ) G(30)(s s )
1

(3.25)

Note that the re ection and transmission coe cients depend on the polarization. The re-

maining task is to invert the free Green functions G(10)(s s ) and G(30)(s s ). This

can be done by expanding them in terms of a complete set of orthogonal solutions of the

Helmholtz equation and using their respective orthogonality relations.

3.2 Planar multilayer structures

An important application of the general description developed above is a planar multilayer

structure (Fig. 3.3). Beam splitters and other passive optical devices consist of layers with

di erent dielectric properties, for example anti-re ection coatings. The input-output relations

of light at such a device can be given e ectively by specifying the Green function and using

the general theory described above. The Green function for a planar multilayer structure can

be found in the literature [89, 102, 103, 104] and is presented in Appendix C.1. Since it is

given in terms of TE and TM vector potentials the distinction between di erent polarizations

is rather straightforward.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��
��

����
�

��
��

�����
�

��
��

����
���

��
��

�����
���

Figure 3.3: Dielectric slab located in region II ( L 2 z L 2) surrounded by vacuum
in regions I and III.

Let us suppose the plate of thickness L would consist of N dielectric layers. Thus, region

II is subdivided into N subregions IIi, i = 1 N . The input elds are given by Eqs. (3.13)
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and (3.16) where we identify the contributions from the plate with

II

d3sG(12)(r s )
N

i=1 IIi

d3sG(12i)(r s ) (3.26)

II

d3sG(32)(r+ s )
N

i=1 IIi

d3sG(32i)(r+ s ) (3.27)

This leads to the re ection and transmission coe cients according to Eqs. (3.22) (3.25),

with the representation of the Green function as described in Appendix C.1. A special feature

for planar structures is that di erent polarizations do not mix. That is, an incident eld with

polarization solely described by TE vector wave functions (s-polarization) does not contain

contribution from elds described by TM vector wave functions (p-polarization) and vice

versa. The reason for this behaviour is that the Green function consists only of dyadic

products of vector wave functions of one type. For roughened surfaces this need not be the

case [99, 100, 101].

The identi cation of the noise terms in Eqs. (3.18) and (3.19) is not di cult remembering

the Green function representation in Appendix C.1. We subdivide it into contributions of

waves with positive and negative (real parts of the) wave vectors in z-direction h, hence

GI 1(r ) =
0

4

N

i=1 IIi

d3s

0

d
n=0

2 0n

h2i

A12i
M M e

o
n (r h1) M e

o
n (s h2i) + A12i

N N e

o
n (r h1) N e

o
n (s h2i) j

N
(s )

(3.28)

GI 2(r ) =
0

4

N

i=1 IIi

d3s

0

d
n=0

2 0n

h2i

B12i
M M e

o
n (r h1) M e

o
n (s h2i) + B12i

N N e

o
n (r h1) N e

o
n (s h2i) j

N
(s )

(3.29)

GIII 1(r
+ ) =

0

4

N

i=1 IIi

d3s

0

d
n=0

2 0n

h2i

C12i
M M e

o
n (r+ h1) M e

o
n (s h2i) + C12i

N N e

o
n (r+ h1) N e

o
n (s h2i) jN(s )

(3.30)
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GIII 2(r
+ ) =

0

4

N

i=1 IIi

d3s

0

d
n=0

2 0n

h2i

D12i
M M e

o
n (r+ h1) M e

o
n (s h2i) + D12i

N N e

o
n (r+ h1) N e

o
n (s h2i) j

N
(s )

(3.31)

Equations (3.18) and (3.19), together with the re ection and transmission coe cients (3.22)

(3.25) and the noise contributions from the multilayer (3.28) (3.31) constitute the three-

dimensional input-output relations at planar multilayer dielectric devices. They allow for

computing the outgoing eld from a dielectric object that is characterized by measurable

quantities such as dielectric permittivity and geometrical dimensions.

Analogously, we can rewrite the frequency components of the electric- eld operators with

amplitude operators ai( ) and bi( ) (i = 1 2) of photonic modes with polarization ,

E
(in)
I (r ) = i

�

4 0cAeik1r e (k1) a1( ) (3.32)

E 
(out)
I (r ) = i

�

4 0cAe ik1r e (k1) b1( ) (3.33)

E 
(in)
III (r

+ ) = i
�

4 0cAe ik2r
+

e (k2) a2( ) (3.34)

E
(out)
III (r+ ) = i

�

4 0cAeik2r
+

e (k2) b2( ) (3.35)

with ki = ki = c. The amplitude operators are superpositions of basic- eld operators

with the corresponding Green function [cf. Eqs. (3.2) and (3.3)]. An analogous decomposi-

tion can be done for the operators of device excitations, G(I,III) (1 2). Then for each frequency

, the amplitude operators ai( ) and bi( ) are related by an input-output relations of the

type (3.5), with re ection and transmission coe cients that must be derived from the general

coe cients (3.22) (3.25).



4 Quantum-state transformation by passive
optical devices

The formalism of input-output coupling developed in Chapter 3 is best suited to study

moments and (low-order) correlations of eld operators [71, 72, 73, 105]. In many situations,

knowledge about the whole quantum state in terms of its density matrix is desired. For

example, measures of entanglement are usually functions of the density matrix and cannot

be expressed in terms of moments in a simple way. The input-output relations enable us

to construct a unitary operator [S2] that allows us to study the transformation of quantum

states by passive optical elements such as beam splitters or optical bres. Because all these

devices have, for each polarization and each frequency, two input channels and two output

channels, they are usually called four-ports in order to abstract from their speci c physical

realization. In Sec. 4.1 the general theory of quantum-state transformation by absorbing

four-ports is developed and applied to the transformation of coherent states and Fock states

in Sec. 4.2. The extension to amplifying devices is discussed in Sec. 4.3.

4.1 Transformation by absorbing four-port devices

Consider linearly polarized light of polarization impinging on a multilayer dielectric plate

surrounded by vacuum (Sec. 3.2). For each frequency , the amplitude operators of incoming

and outgoing light at the surface of the plate are related to each other by an input-output

relation of the type (3.5). In what follows, we restrict our attention to one-dimensional light

propagation along the z direction (as in Fig. 3.1). We look for an operator U that transforms

the amplitude operators of the incoming elds ai( ) to those of the outgoing elds bi( ).

That is, we seek a relation of the type

bi( ) = U ai( )U (4.1)

Requiring the photonic operators to be bosonic, U must be unitary. Because of the coupling

to the noisy environment, we will not be able to construct a unitary transformation that

acts on the electromagnetic eld operators alone. Recalling, that the original formulation

of electromagnetic- eld quantization in absorbing dielectrics was based on a Lagrangian

formalism (Sec. 2.1) that introduces a unitary time evolution with the associated Hamiltonian

(2.48), we have to look for a unitary operator acting in a larger Hilbert space corresponding

to eld operators and device operators.

29
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4.1.1 Unitary matrix transformation

We supply the input-output relations (3.5), which are written for the electromagnetic- eld

operators, by equivalent relations for the device operators

h( ) = F( )a( ) + G( )g( ) (4.2)

with h( ) being the corresponding output device operators and F( ) and G( ) (2 2)-

matrices which are to be determined. Introducing four-dimensional vectors

( ) =

 
a( )

g( )
=

a1( )

a2( )

g1( )

g2( )

( ) =

 
b( )

h( )
=

b1( )

b2( )

h1( )

h2( )

(4.3)

we de ne a unitary (4 4)-matrix ( ) as [S2, S11]

( ) = ( ) ( ) (4.4)

hence, ( ) +( ) = I. We show in Appendix D that ( ) can be written in terms of the

characteristic transmission and absorption matrices T( ) and A( ), respectively, as

( ) =

 
T( ) A( )

S( )C 1( )T( ) C( )S 1( )A( )
(4.5)

with the positive commuting Hermitian matrices

C( ) = T( )T+( ) S( ) = A( )A+( ) (4.6)

Analogously to Eq. (3.7), the relation C2( ) + S2( ) = I is valid. After inclusion of common

phase factors into the input operators, ( ) can be regarded, for each frequency , as an

element of the group SU(4). To the unitary matrix transformation (4.4) corresponds a unitary

operator transformation

( ) = U ( )U (4.7)

where the operator U is given by

U = exp i

0

d ( )
T

( ) ( ) (4.8)

The Hermitian (4 4)-matrix ( ) is related to ( ) by exp [ i ( )] = ( ), noting that

the exponential is uniquely de ned for all linear groups [106]. By Eq. (4.8), the operator U

realizing the unitary transformation between the input and output operators solely depends

on material and geometrical properties of the device, that is, on experimentally accessible

data.
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Lossless devices

For narrow-bandwidth radiation in a frequency region where absorption can be disre-

garded, A( ) 0, the integral in Eq. (4.8) can be restricted to a small interval with

( )

 
T( ) 0

0 I
(4.9)

hence

( )

 
V( ) 0

0 0
exp [ iV( )] = T( ) (4.10)

The unitary operator U from Eq. (4.8) now simpli es to

U = exp i d a ( )
T

V( )a( ) (4.11)

As expected, it does not depend on the device operators since the electromagnetic eld does

not couple to the reservoir variables anymore. Hence, quantum-state transformation occurs

in the subspace of electromagnetic eld operators only. In that way we recover the well-known

SU(2) group transformation for lossless devices [1, 2, 3, 4, 5, 6]. Since the characteristic

absorption matrix was assumed to vanish, the matrix transformation (4.4) as well as the

input-output relations (3.5) reduce to

b( ) = T( )a( ) (4.12)

with T( )T+( ) = I, hence the characteristic transmission matrix T( ) becomes, after

inclusion of an overall phase factor into the input operators, an element of the group SU(2).

4.1.2 Decomposition into products of U(2) matrices

As it is well-known from linear algebra, every U(N)-matrix can be decomposed into products

of matrices with exponential phases on the main diagonal and all other entries being zero,

and (2 2)-matrices of the form  
cos sin

sin cos
(4.13)

In view of the matrix transformation (4.4) it means to split up the matrix ( ) into products

of several modular matrices i( ), i = 1 n. An experimental proposal realizing a U(N)

transformation with n = N(N 1) 2 lossless beam splitters as well as mirrors and phase
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shifters has been made in [107]. To each of the i( ) corresponds, according to Eq. (4.8),

a unitary operator Ui. The input-output relation (4.4) can then be written as

( ) = n( ) 2( ) 1( ) ( )

= U1U2 Un ( )Un U2U1

= U ( )U (4.14)

where Ui = U [ i ]. Since each of the matrices i( ) is, by Eq. (4.13), a U(2) group

element, it can be realized physically by a lossless beam splitter. The action of arbitrary

U(N) [or SU(N)] transformations, like for example the SU(4) of an absorbing beam splitter,

can therefore be visualized by a network of lossless beam splitters with properly adjusted

re ection and transmission coe cients.

According to the results presented in Appendix E, the matrix ( ) can be factorized

into a product of eight U(2)-matrices, leading to the network of ideal four-ports depicted

in Fig. 4.1. The U(2) beam splitters are labeled by their respective U(2)-matrices, with Y
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Figure 4.1: Lossless beam splitter network building up a single absorbing beam splitter.

being a symmetric beam splitter matrix of the form

Y =
1

2

 
1 i

i 1
(4.15)

It should be stressed that this picture is to be understood as a visualization only, and has

little to do with an experimental modelling . Any realistic beam splitter realizes all eight

U(2) transformations at once.

In practical situations, it is often useful to describe the losses caused by optical elements

(mirrors or optical bres) by introducing auxiliary beam splitters that take away some portion

of the electromagnetic eld. The decomposition of ( ) into products of U(2)-matrices and

the construction of the corresponding network allows to determine the parameters of these

auxiliary beam splitters.
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4.1.3 Transformation of density operators

The e ect of the device cannot only be described by transforming the photonic operators

ai( ), but equivalently by transforming the density operator in. Suppose the operators of

the incoming photon elds and the device operators transform according to Eq. (4.7). Then

the input-state density operator in transforms into the output-state density operator out as

out = U inU (4.16)

Since the input-state density operator can be written as a functional of the input operators,

in in[ ( ) ( )], Eq. (4.16) reads

out = in U ( )U U ( )U (4.17)

Observing, that

U ( )U = +( ) ( ) (4.18)

U ( )U = T ( ) ( ) (4.19)

the output state is obtained by transforming the input state with the inverse matrix 1( )

= +( ),

out = in
+( ) ( ) T ( ) ( ) (4.20)

Finally, tracing over the device variables leads to the quantum state of the outgoing eld

(F)
out = Tr(D)

in
+( ) ( ) T ( ) ( ) (4.21)

From the theory described in Sec. 3 and [71], the characteristic transmission and absorption

matrices T( ) and A( ) of a dielectric four-port device are explicitly known for any frequency,

given the (complex) refractive-index pro le n( ). Knowledge of T( ) and A( ) then enables

us to construct the unitary operator U (4.8) and the matrix ( ) (4.5). They enable

us to derive closed formulas for the output quantum state given arbitrarily chosen input

quantum states of electromagnetic eld and dielectric device. Our approach to quantum-

state transformation is similar to the usual open-systems approach to dissipation [108]. In

both cases, unitary transformations in an extended Hilbert space are constructed, and then

the device variables are traced out. Mathematically, the partial trace is an example of a

(global) completely positive (CP) map [109]. However, master equations, to which an open-

systems theory would lead, are not required here because the action of the environment is

explicitly known from the underlying quantization scheme and the input-output relations.

The transformation formula (4.21) is in general di cult to handle. Practically, a descrip-

tion of the incoming and outgoing radiation in terms of discrete quasi-monochromatic modes
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is desired. For this, the frequency axis is subdivided into small intervals with mid-frequencies

m and widths m, over which the transmission and absorption matrices T( ) and A( )

are approximately constants, and de ne the discrete photonic input and output operators

m =
1

m
m

d ( ) m =
1

m
m

d ( ) (4.22)

To each pair of operators m, m, we assign an input-output relation (4.4) with a (4 4)-

matrix m ( m). With this, we de ne unitary operators Um with

Um = exp i m

T
m m (4.23)

such that the unitary operator U in Eq. (4.8) can be written as a product U = m Um.

4.1.4 Phase-space functions

In quantum optics it is often useful to describe quantum states in terms of phase-space

functions [110, 111, 112], prominent examples being the Glauber-Sudarshan P representation

[113, 114], the Husimi Q function [115, 116] or the Wigner function W introduced by Wigner

as early as 1932 [117].

Phase-space functions of that type are de ned as expectation values of the operator delta

function in a given operator order, for example normal, anti-normal, or symmetrical order,

P ( ) = : ( a) : (4.24)

Q( ) = ( a) (4.25)

W ( ) = ( a) (4.26)

where the symbols :: and denote normal and anti-normal operator ordering, respectively.

More generally, s-ordering of operators can be de ned [110, 111, 118], special cases being

s = +1 (normal ordering), s = 1 (anti-normal ordering), and s = 0 (symmetrical ordering).

Given an operator O(a a ) in s-order, the associated c-number function O( ; s) is introduced

by replacing the operators a and a by the c numbers and , respectively. The expectation

value of the operator O(a a ) is obtained by integrating O( ; s) over the phase space with

a weight function, the s-parametrized phase-space function, P ( ; s),

O(a a ) = d2 P ( ; s)O( ; s) (4.27)

The quantum-state transformation by absorbing devices does not change a previously

xed operator ordering. Hence, by Eq. (4.20), the s-parametrized phase-space function



CHAPTER 4. QUANTUM-STATE TRANSFORMATION 35

Pout[ ( ); s] (since is continuous, it is actually a functional rather than an ordinary func-

tion) corresponding to the density operator out is

Pout[ ( ); s] = Pin[
+( ) ( ); s] (4.28)

Comparing this result with the unitary operator transformation (4.4), we see that phase-

space functions are transformed with the corresponding inverse matrix 1( ) = +( ) [6].

The phase-space functional of the outgoing radiation is then derived by integration over the

complex phase-space variables g1( ) and g2( ) of the dielectric device,

P
(F)
out [a( ); s] = DgPout[ ( ); s] = DgPin[

+( ) ( ); s] (4.29)

For discrete quasi-monochromatic modes de ned in frequency intervals with mid-frequen-

cies m and widths m, the functional integral (4.29) reduces to an ordinary multiple

integral. Especially, for single-mode elds the phase-space function of the outgoing radiation

eld reads

P
(F)
out (a; s) = d2gPout( ; s) = d2gPin(

+ ; s) (4.30)

Changing the integration variables from g to g , g = S 1 Ca C 1g , and correspondingly

the integration measure d2g = det(CS) 1 2 d2g , Eq. (4.30) can be rewritten as

P
(F)
out (a; s) =

d2g

detT detA 2
Pin

T 1g

A 1(a g )
; s (4.31)

which is the most general relation for phase-space functions of quasi-monochromatic light

at linear, absorbing four-port devices. Usually, the incoming radiation and the device are not

entangled. Then the phase-space function Pin factorizes as Pin( ; s) = P
(F)
in (a; s) P

(D)
in (g; s),

and Eq. (4.31) reduces to

P
(F)
out (a; s) =

d2g

detTdetA 2
P

(F)
in (T 1g ; s)P

(D)
in [A 1(a g ); s] (4.32)

The phase-space function of the outgoing radiation is thus a convolution of the phase-space

functions of incoming radiation and the device.

4.2 Applications to coherent states and Fock states

In the following examples we restrict ourselves to (quasi-)monochromatic radiation with the

single frequency component .
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4.2.1 Coherent states

Suppose the incoming eld and the device are prepared in a pure coherent state with complex

amplitudes = c

d
,

 in = = exp[ T + ] 0000 (4.33)

Application of Eq. (4.20) shows that the quantum state after the transformation by a dielec-

tric device is again a pure coherent state with

out =  out  out = (4.34)

Tracing over the device variables leads to

(F)
out = Tc+ Ad Tc+ Ad (4.35)

which shows explicitly that the resulting coherent amplitude depends both on the character-

istic transmission and absorption matrices and on the quantum state the device was initially

prepared in. The Wigner function that corresponds to the density operator (4.35) is

W
(F)
out (a) =

2
2

exp 2 a Tc Ad 2 (4.36)

The result is easily generalized to superpositions of coherent states, for example

 in = 2[1 + e 2 2

]
1

( + ) 000 (4.37)

The Wigner function of the Schrodinger cat in the rst mode is

Win(a1) = 2 1 + e 2 2
1

e 2 a1 2

+ e 2 +a1 2

+ 2e 2 a1 2

cos [4( a1)] (4.38)

The rst two terms in Eq. (4.38) correspond to the two peaks at a1 = , whereas the

last term describes the interference pattern due to the coherent superposition. Applying the

quantum-state transformation formula (4.20), the density matrix of the quantum state in

the ith output channel is

(F)
outi = 2[1 + exp( 2 2)]

1
Ti1 Ti1 + Ti1 Ti1

+ ( Ti1 Ti1 + Ti1 Ti1 ) exp 2 2 1 Ti1
2 (4.39)

The two peaks at Ti1 decay as Ti1
2, whereas the quantum interference terms [second

line in Eq. (4.39)] decay exponentially fast as Ti1
2 exp[ 2 2(1 Ti1

2)]. That is, the

larger the mean number of photons n = 2 tanh 2 becomes, the faster the decay of the
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interferences will be. Let us turn to the transmitted Schrodinger cat (i = 2). By the cur-

rent conservation formula (3.7) we have the relation 1 T21
2 = T11

2 + A11
2 + A21

2.

That is, the exponential decay of the interference terms after transmission through a di-

electric four-port device is both due to re ection exp[ 2 2 T11
2] and due to absorption

exp[ 2 2( A11
2 + A21

2)]. In beam splitter replacement schemes that model absorption

it is therefore not correct to specify the re ectivity T11 of the beam splitter because that

would only account for the destruction of the interference pattern due to re ection. Instead,

the value of 1 T21
2 has to be used.
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Figure 4.2: Wigner function of a Schrodinger cat with = 3 before (left gure) and after
transmission through a beam splitter with T21 = 0 95 (right gure).

From the density operator (4.39), we calculate the Wigner function of the transmitted

state as

W
(F)
out (a2) = 2 1 + e 2 2

1

e 2 T21 a2 2

+ e 2 T21 +a2 2

+2e 2 2(1 T21 2) 2 a2 2

cos [4(T21 a2)] (4.40)

The rst two terms in Eq. (4.40) are the two peaks of the coherent states at a2 = T21 ,

and the last term are the remains of the interference pattern. In order to illustrate this e ect,

in Fig. 4.2 we have plotted the Wigner function of the Schrodinger cat (4.38) and compared

it with the Wigner function (4.40) of the Schrodinger cat after transmission through a beam

splitter with T21 = 0 95. The interference pattern which are clearly visible in the left gure are

due to the quantum coherence in the superposition (4.37). This pattern dies out very rapidly

(right gure) leaving behind a statistical mixture of two coherent states that are shifted

towards the origin. Neglecting re ection losses from the beam splitter, the exponential decay

of the interference pattern is solely due to absorption, hence due to interaction with the noisy

environment. This is the well-known phenomenon of decoherence [108].
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4.2.2 Fock states

Suppose one of the modes of the impinging photon eld is prepared in a Fock state containing

n quanta, all other modes are left in their respective ground states,

 in = n 0 0 0 (4.41)

The Wigner function of the input state (4.41) reads (see for example [119])

Win( ) = ( 1)n
2

4

Ln(4 a1
2) exp( 2 2) (4.42)

[Ln(x): Laguerre polynomial]. Integrating over the device variables and the unused output

channel, we obtain the Wigner function of the mode in the ith output channel as

W
(F)
outi(ai) =

n

k=0

n

k
Ti1

2k 1 Ti1
2 n k

Wk(ai) (4.43)

Wk(x) being the Wigner function of a k-photon Fock state. Since transformation by absorb-

ing devices does not change a previously xed operator ordering, Eq. (4.43) holds for any

phase-space function. Equivalently, we obtain for the density matrix of the ith output

(F)
outi =

n

k=0

n

k
Ti1

2k 1 Ti1
2 n k

k k (4.44)

that is, a binomial distribution of Fock states up to photon number n. This is a rather general

result. Since the quantum-state transformation (4.21) is described by a matrix ( ) which

is an element of the compact group SU(4), the total photon number in all output channels

(here the single channel i) must not exceed the total number of initially existing quanta.

Finally, we consider the situation where both incoming eld modes are excited with a

single quantum. The input state then has the form

 in = 1 1 0 0 (4.45)

Tracing over the device and one output channel we arrive at

outi = 1 Ti1
2(1 Ti2

2) Ti2
2(1 Ti1

2) 0 0

+( Ti1
2 + Ti2

2 4 Ti1
2 Ti2

2) 1 1 + 2 Ti1
2 Ti2

2 2 2 (4.46)

In the special case of a lossless 50%:50% beam splitter Eq. (4.46) reduces to outi=
1
2
( 0 0 +

2 2 ) and the e ect of photon correlation is observed.

To illustrate the theory, we consider a single dielectric plate in its ground state and assume

a single-resonance medium with the model permittivity

( ) = 1 +
s 1

1 ( 0)2 2i 2
0

(4.47)
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From the formulas given in [71] one can calculate the re ection coe cient T11
2, the trans-

mission coe cient T21
2, and the absorption coe cient (1 T11

2 T21
2), whose depen-

dencies on frequency are shown in Fig. 4.3 [ s = 1 5, 0 = 0 01, plate thickness 2c 0].

With these data, the (radial-symmetric) Wigner function W
(F)
out (a1) of the quantum state in

����

jT��j
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�� �� � jT��j
� � jT��j

��

Figure 4.3: Re ection coe cient (solid line), transmission coe cient (dashed line), and
absorption coe cient (dotted line) of a dielectric plate as a function of frequency .

the rst output channel is shown in Fig. 4.4 for an input state 1 0 0 0 , and for an input

state 1 1 0 0 , respectively. Su ciently far o resonance, 0 1, the plate acts as a
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Figure 4.4: (Radial-symmetric) Wigner function of the quantum state in the rst output
channel for an input state 1 0 0 0 (left gure) and for 1 1 0 0 (right gure).

lossless beam splitter with T11
2 0 and T21

2 1. That is, the re ected eld is found to

be in a quantum state close to the vacuum (left gure in Fig. 4.4) or in a single-photon Fock

state (right gure in Fig. 4.4). Just below the resonance frequency, � 0, where absorption

is strongest, in both cases the resulting quantum state is almost the vacuum state.
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4.3 Extension to amplifying devices

The situation is di erent if there exists a frequency region in which the dielectric four-

port device under consideration is linearly amplifying. As we have seen in Sec. 2.3 we can

quantize the electromagnetic eld accordingly, replacing the annihilation operators f(r ) by

their corresponding creation operators f (r ) in the frequency region where ampli cation

occurs. Introducing a parameter which takes values of +1 in case absorption is present

and 1 whenever there is ampli cation, the input-output relations can be generalized to

b( ) = T( )a( ) + A( )d( ) (4.48)

with d( ) = g( ) for = +1 and d( ) = g ( ) for = 1. The characteristic matrices

T( ) and A( ) satisfy the relation

T( )T+( ) + A( )A+( ) = I (4.49)

In case of ampli cation the matrix A( ) must be considered as a gain matrix instead of an

absorption matrix. As in Sec. 4.1.3 we de ne four-dimensional operators

( ) =
a( )

d( )
( ) =

b( )

f( )
(4.50)

[f( ) = h( ) for = +1 and f( ) = h ( ) for = 1] which are related to each other by

( ) = ( ) ( ) (4.51)

with

( )J +( ) = J J =

 
I 0

0 I
(4.52)

Depending on the value of , the (4 4)-matrix ( ) is either an element of SU(4) ( = +1)

or, for = 1, an element of the non-compact group SU(2,2) (once an overall phase factor

has been included in the input operators) which has important consequences. Introducing

again the positive Hermitian matrices C( ) and S( ) as in Eq. (4.6) which now, by Eq. (4.49),

obey the relation C2( ) + S2( ) = I, the unitary matrix ( ) can be represented as

( ) =

 
T( ) A( )

S( )C 1( )T( ) C( )S 1( )A( )
(4.53)

It is generated by a matrix ( ) with

( ) = e i ( ) +( ) = J ( )J (4.54)
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from which the unitary operator transformation analogous to Eq. (4.8) can be constructed,

where

U = exp i

0

d ( )
T

J ( ) ( ) (4.55)

Following the line given in Sec. 4.1.3 the density operator of the outgoing elds is given by

(F)
out = Tr(D) U inU = Tr(D)

in J +( )J ( ) J T ( )J ( ) (4.56)

Since the SU(2,2) group transformation for amplifying devices mixes creation and annihi-

lation operators, an arbitrarily given operator order is not preserved by the transformation.

That means, that an equation for the transformation of phase-space functions of the type

(4.28) cannot be valid for amplifying four-port devices. An exception is the Wigner function

corresponding to symmetrical operator ordering before and after the transformation,

Wout[ ( )] = Win[J ( )J ( )] (4.57)

Formulas for Fock-state transformation based on Eq. (4.57) are presented in Appendix F.

Here the non-compactness of the SU(2,2) group transformation shows up explicitly. In

contrast to the case of absorbing four-port devices with compact group transformation where

the total photon number in the output channels does not exceed the total photon number

of the input states, in the case of ampli cation arbitrarily high photon-number states are

excited.

Equations (4.53) and (4.56) represent the general form of a quantum-state transformation

by absorbing and amplifying four-port devices. They enable us to compute the density

operator of the outgoing radiation from the density operator of incoming radiation and

dielectric device.



5 Entanglement degradation

Quantum information processing such as quantum cryptography [7] and quantum telepor-

tation [120, 121] is based on entanglement or quantum correlations. As entanglement is a

quantum-mechanical property, we expect it to be very fragile. The theory of quantum-state

transformation allows us to discuss decoherence e ects and entanglement degradation of

bipartite quantum states where each part is transmitted through an optical device.

After shortly reviewing the basic notations and results on separability and entanglement

measures in Sec. 5.1, we apply the theory of quantum-state transformation developed in

Chapter 4 to the entanglement degradation of Bell-type states in Sec. 5.2 [S7, S8, S11]. In

Sec. 5.3 the separability criterion for Gaussian quantum states, together with the input-output

relations, is used to derive bounds on the length of optical bres for which entanglement of a

two-mode squeezed vacuum state transmitted through them can be retained [S7, S10, S11].

Moreover, a measure for entanglement degradation of Gaussian quantum states based on

the distance to the set of separable Gaussian states is de ned [S14] and applied to the

transmission of a two-mode squeezed vacuum state through optical bres.

5.1 Separability and entanglement

Given an arbitrary bipartite quantum state that shows correlations between its subsystems,

one is interested whether these correlations are of classical or quantum nature. If quantum

correlations exist, the state is called entangled. A rigorous de nition of an entangled state

is the following: A bipartite state is called separable if it can be written in the form

=
i

pi
i
1

i
2 0 pi 1

i

pi = 1 (5.1)

where the indices 1 2 label its subsystems. Otherwise it is said to be entangled. For example,

the pure bipartite state

 =
1

2
0112 1102 (5.2)

cannot be written in the form (5.1) and therefore represents an entangled state. In order to

distinguish between separable and entangled states, a necessary criterion has been developed

[74]. It says that if a state is separable, the partial transpose (P.T.) of its density operator

in any given basis is again a well-de ned density operator, hence positive semi-de nite:

separable P T 0 (5.3)

42
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The converse is true only in certain low dimensions of the Hilbert spaces of the subsystems

(2 2 and 2 3) [75]. Note that one can establish a whole class of such criteria by applying

any positive partial operator, partial transposition being just one example.

Let us turn to quanti cation of entanglement, and consider rst the pure state (5.2).

The amount of correlations, both quantum and classical, in a quantum state are measured

by the correlation index (or mutual information) [122]

Ic = S1 + S2 S12 (5.4)

The quantity S12 is the von Neumann entropy of , S12 = Tr ln , and S1 and S2 are the

von Neumann entropies of its subsystems, S2(1) = Tr 2(1) ln 2(1), where 2(1) = Tr1(2) .

By the Araki Lieb inequality [123]

S1 S2 S S1 + S2 (5.5)

the correlation index is positive semi-de nite, Ic 0. For the pure state (5.2) the von

Neumann entropy S12 vanishes, but its mutual information does not. Since from the Araki

Lieb inequality (5.5) it follows that S1 = S2, we have

Ic = S1 + S2 = 2S1 = 2S2 (5.6)

Hence, both subsystems are correlated, and a measurement on one subsystem yields informa-

tion about the other. These correlations solely have their origin in the coherent superposition

(5.2). Therefore, they are of quantum nature and can be associated with entanglement. Ne-

glecting the numerical factor 2, the amount of entanglement in a pure state is de ned as the

von Neumann entropy of one subsystem, E(  ) = S1 = S2.

The quanti cation of entanglement for mixed quantum states has been subject of long

discussions in the literature [78, 124, 125, 126, 127, 128, 129], and so far no unique measure

has been found. However, one has agreed that there are some properties an entanglement

measure E for bipartite quantum states should ful l [78, 79]:

1. E( ) 0, and E( ) = 0 if and only if is separable.

2. E( ) does not change under local unitary transformations on the subsystems, i.e.

E( ) = E(U1 U2 U1 U2).

3. E( ) does not increase by applying local operations Ai Bi, and classical communica-

tion, i.e. i Tr iE( i Tr i) E( ), where i = Ai Bi Ai Bi and i AiAiBi Bi

= �.

4. E( ) reduces to the von Neumann entropy of one subsystem for pure states.
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What does these requirements mean physically? The rst is obvious saying that the entan-

glement measure should be zero for states that are not entangled. The second means that a

local change of basis does not change the correlations between the subsystems. The third re-

quirement means that it is impossible to increase entanglement by local measurements aided

by classical communication. Local manipulations of this type are described mathematically

by local completely positive (CP) maps. The last property is a normalization in order to

establish the contact to the pure-state entanglement described above.

Apart from other measures it has been shown [78] that the distance to the set of separable

states S, measured by the relative entropy [109, 130, 131],

E( ) = min
S

S( ) = min
S
Tr [ (ln ln )] (5.7)

ful ls all the requirements. It is, however, di cult to compute. So far there is no analytical

expression known for an arbitrary given quantum state. There are few exceptions. Some

examples for binary systems, the dimensions of the corresponding Hilbert spaces being just

2, have been given [78]. An important property of the relative entropy of entanglement (5.7)

is convexity, that is,

E [p 1 + (1 p) 2] pE( 1) + (1 p)E( 2) (5.8)

which follows directly from the joint convexity of the relative entropy [132],

S[p 1 + (1 p) 2 p 1 + (1 p) 2] pS( 1 1) + (1 p)S( 1 1) (5.9)

Note that the relative entropy of entanglement, the quantum analog of the classical Kullback

Leibler distance frequently used in information theory [133], is not a proper metric.

5.2 Entanglement degradation of Bell-type states

We now apply the theory of quantum-state transformation developed in Chapter 4 and the

preliminaries about entanglement measures in Sec. 5.1 to degradation of entanglement at

dielectric four-port devices [S7, S8]. It is clear from Eqs. (4.17) (4.21) that the transmission

of a bipartite state through separate dielectric devices (Fig. 5.1), each representing a unitary

operation in an extended Hilbert space, corresponds to the action of local CP maps [109, 134].

The entanglement content of a bipartite quantum state interacting with two dielectric four-

port devices is therefore decreased in general.

Since we are now dealing with two-mode (bipartite) quantum states where each mode is

transmitted through its respective dielectric system, we have to consider the quantum-state
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Figure 5.1: A two-mode input eld prepared in the bipartite quantum state  is transmitted
through two dielectric four-port devices.

transformation developed in Chapter 4 for both devices separately. That is, to each dielec-

tric device acting on the amplitude operators of (quasi-) monochromatic modes ai a( i)

(i = 1 3) of the bipartite quantum state there exists a unitary (4 4)-matrix i ( i).

For example, let the incoming radiation eld (described by the amplitude operators a1

and a3 in Fig. 5.1) be prepared in a Bell-type state

n =
1

2
0n n0 (5.10)

Setting n = 1 in Eq. (5.10), the ordinary Bell-basis states are recovered. The state

(5.10) is to be transmitted through dielectric four-port devices with transmission coe cients

Ti T
(i)
21 and re ection coe cients Ri T

(i)
11 . We assume that both devices are left in their

respective ground states 0
(D)
i , and the input ports corresponding to the photonic operators

a2 and a4 are unused. The total input state we are considering is therefore

 in = n 0204 0
(D)
1 0

(D)
2 (5.11)

Then we apply the quantum-state transformation formula (4.21) to both sets of input

operators a1 a2 and a3 a4 together with their corresponding device operators. After

tracing out the degrees of freedom of the devices as well as the modes described by a1 and

a3, we obtain the density operator of the transmitted modes a2 and a4, which we again

denote by
(F)
out, as

(F)
out =

1

2

n 1

k=0

n

k
T1

2k 1 T1
2 n k

k0 k0 + T2
2k 1 T2

2 n k
0k 0k

+
1

2
T1

2n + T2
2n

n n (5.12)

with

n = T1
2n + T2

2n 1 2
(T n

1 n0 T n
2 0n ) (5.13)

Note that, although only the transmission coe cients Ti appear explicitly in Eqs. (5.12)

and (5.13), by the matrix relation (3.7) for the characteristic transmission and absorption
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matrices, re ection and absorption coe cients are implicitly present in the terms (1 Ti
2)

in Eq. (5.12).

The density operator (5.12) has been written as a convex sum of separable states and a

single pure state n for which we can apply the convexity property of the relative entropy

(5.8) to derive an upper bound on the entanglement content. By de nition, a separable state

contains no entanglement at all, and the entanglement content of a pure state is uniquely

measured by the von Neumann entropy of one of its subsystems. Thus, by convexity,

E
(F)
out

1

2
T1

2n + T2
2n ln T1

2n + T2
2n T1

2n ln T1
2n T2

2n ln T2
2n

(5.14)

In particular, when the transmission coe cients of the devices are equal, T1 = T2 = T ,

Eq. (5.14) reduces to

E
(F)
out T 2n ln 2 (5.15)

Assuming perfect input coupling, hence R1 = R2 = 0, each four-port device essentially

reduces to a two-port. In that case the transmission coe cients can be assumed to follow

the Lambert Beer law of extinction, T = e l lA , lA being the absorption length. Then we

have

E
(F)
out e 2nl lA ln 2 (5.16)

showing that the characteristic length of entanglement degradation decreases at least as

1 (2n). That is, with increasing number of photons the quantum correlations of a bipartite

quantum state decrease faster than exponentially. This behaviour is typical for quantum

decoherence phenomena and not restricted to Fock states. It should be noted that for

bipartite states in Hilbert spaces of dimension 2 2 the decomposition of the density operator

into a sum of separable states sep and a single pure state

= p sep + (1 p) (5.17)

is always possible [129]. Moreover, there exists a unique maximal p in the convex sum (5.17)

such that the inequality (5.8) reduces to an equality and thus de nes an entanglement

measure. That is, once pmax is found, E( ) = (1 pmax)S( ) [S( ) being the reduced

von Neumann entropy of the state ] is the amount of entanglement in .

Another class of Bell-type states is de ned by

n =
1

2
00 nn (5.18)

which can be obtained from a more general class of states

q
n =

1

1 + q 2
00 + q nn (5.19)
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with q = 1. For n = 1 and small values of q, q
n is the rst-order approximation of

the two-mode squeezed vacuum state that is considered in Sec. 5.3. If the state q
n is

transmitted through dielectric devices, the quantum-state transformation (4.21) results in an

output density operator

(F)
out =

q 2

1 + q 2

n

k1 k2=0

n

k1

n

k2
T1

2k1 T2
2k2 1 T1

2 n k1 1 T2
2 n k2 k1k2 k1k2

T1
2n T2

2n nn nn +
1

1 + q 2
00 + qT1T2 nn 00 + (qT1T2) nn (5.20)

Again, using the convexity property (5.8), an upper bound of the entanglement can be derived

as

E
(F)
out

1

1 + q2
(1 + q 2) ln(1 + q 2) q 2 ln q 2 (5.21)

[q = qT n
1 T n

2 ]. For small values of q we nd by Taylor expansion that the entanglement

decreases roughly as q 2.

����
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Figure 5.2: Entanglement degradation of Bell-type states 1 (full curve) and 1 (dashed
curve) transmitted through equal optical bres with absorption length lA.

Comparison between entanglement degradation of the states n and the states n

[obtained from Eq. (5.21) setting q= 1] shows that the n -states are more robust against

decoherence than the n -states. This behaviour can be understood by observing that

the probability of nding n photons in one output channel decreases as Ti
n for n but

decreases as T1T2
n for n . In fact, since for states of the type n0 or 0n only one mode

feels the e ect of decoherence, in states of the type nn both modes interact simultaneously

with the environment. Numerical calculations for n=1 support this result [see Fig. (5.2)].
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Note that the states 1 and 1 are inseparable whenever T > 0 which is easily checked

by applying the criterion (5.3).

5.3 Entanglement degradation of Gaussian states

In contrast to the nite-dimensional Fock states above, here we consider Gaussian states

living in in nite-dimensional Hilbert spaces. A quantum state is called Gaussian if its density

operator, or equivalently its characteristic function, can be written in exponential quadratic

form. Since phase-space functions, such as the Wigner function, are de ned by Fourier

transforms of characteristic functions, they are also exponential quadratic forms. A typical

example is the two-mode squeezed vacuum (TMSV) state

TMSV = e a1a2 a1a2 00 = 1 q 2

n=0

( q)n nn (5.22)

[ = ei , q = tanh ei ]. The second equality follows from general exponential-operator

disentangling theorems [135, 136]. The TMSV is of wide theoretical interest and has been

used in the rst experimental demonstration of teleportation of continuous quantum variables

[137].

5.3.1 Application of the separability criterion

For Gaussian states there exists a necessary and su cient criterion for separability [76, 77].

The Wigner function of a Gaussian quantum state with zero mean can be written in expo-

nential quadratic form

W ( ) =
1

4 2 detV
exp

1

2
TV 1 (5.23)

with the symmetric (4 4) variance matrix V and the vector of the quadrature components

= (x1 p1 x2 p2). Writing the variance matrix in block matrix form

V =

 
X Z

ZT Y
(5.24)

the bipartite Gaussian quantum state de ned by this variance matrix is separable if and only

if the following inequality holds [76, 77]:

detX detY+
1

4
detZ

2

Tr XJZJYJZTJ
1

4
(detX+ detY) (5.25)
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where J is the symplectic matrix

J =

 
0 1

1 0
(5.26)

Any variance matrix can be brought to the generic form, diagonalizing the matrices X, Y,

and Z,

V0 =

x 0 z1 0

0 x 0 z2

z1 0 y 0

0 z2 0 y

(5.27)

by local operations, i.e. by the action of an element of the symplectic group Sp(2,�) Sp(2,�),

which leaves the separability criterion (5.25) unaltered [77]. Then, if the inequality

4(xy z21)(xy z22) y2 + z2 + 2 z1z2
1

4
(5.28)

is satis ed, the Gaussian state is separable. Once the variance matrix is in the form (5.27),

there are only four real parameters determining whether a Gaussian state is separable or

entangled.

Now we apply the separability criterion for Gaussian quantum states [Eq. (5.25)] to the

state (5.22). The variance matrix of the TMSV reads

V =

c 2 0 s1 2 s2 2

0 c 2 s2 2 s1 2

s1 2 s2 2 c 2 0

s2 2 s1 2 0 c 2

(5.29)

[c = cosh 2 , s1 = sinh 2 cos , s2 = sinh 2 sin ]. We assume that the input ports

corresponding to the photonic operators a2 and a4 in Fig. 5.1 are unused, and the devices,

say optical bres, are prepared in thermal states with mean thermal photon numbers nthi.

Applying the input-output relations for absorbing and amplifying devices [Eq. (4.48) to-

gether with Eq. (4.49)], we transform the second-order moments in the variance matrix into

[s = sinh 2 ]:

X11 = X22 =
c

2
T1

2 +
1

2
R1

2 + nth1 +
1

2
1 T1

2 R1
2 (5.30)

Y11 = Y22 =
c

2
T2

2 +
1

2
R2

2 + nth2 +
1

2
1 T2

2 R2
2 (5.31)

Z11 = Z22 =
s

2
Re T1T2 ei (5.32)

Z12 = Z21 =
s

2
Im T1T2 ei (5.33)
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where = +( )1 for absorbing (amplifying) devices, and Ti and Ri are their respective trans-

mission and re ection coe cients. Inserting the output variance matrix into the separability

criterion (5.25), we obtain (for equal devices) the inequality [S10, S11]

nth
(1 )(1 R 2) + T 2( e 2 )

2 (1 R 2 T 2)
(5.34)

Thus, there exists for each squeezing parameter and given material properties of the bres

a maximal excitation number of thermal photons in the bres such that the initial TMSV

state is still inseparable.

In case of absorbing bres ( = +1) without re ection losses (R = 0) we nd, using the

Lambert Beer law of extinction T = e l lA , that separability occurs when

l lS =
lA
2
ln 1 +

1

2nth
1 e 2 (5.35)

This result agrees with that in [76, 138] obtained by solving Fokker Planck equations for

the Wigner function of the photon eld. The equivalence is established by replacing the

renormalized time in [138] by 1 T 2.

In the case of a linearly amplifying bre ( = 1), in the limit of zero temperature

(nth = 0) and zero re ection (R = 0), the upper limit for the excess gain g = T 2 1 0

for which inseparability changes to separability is given by the squeezing parameter itself [S7],

g = q = tanh (5.36)

In particular, this means that entanglement cannot be created by amplifying the vacuum

state. Moreover, there exists an overall upper bound on the gain for which inseparability can

be retained. Since q is bounded from above by one, Eq. (5.36) says that for devices which

more than double the intensity of an incoming signal, hence g 1, or T 2 2, respectively,

any TMSV state with arbitrarily high squeezing becomes separable.

It is worth noting that for a TMSV state the separability length lS derived in Eq. (5.35)

for absorbing bres coincides with the transmission length after which all squeezing is lost

[S14]. Indeed, applying the input-output relations (3.5), we obtain for the normally-ordered

variance : ( F )2 : of the phase-sensitive quantity F = F1 ei 1a1 + F2 ei 2a2+ H.c.,

: ( F )2 : out = 2 F1
2 T1

2 sinh2 + nth1 1 R1
2 T1

2

+2 F2
2 T2

2 sinh2 + nth2 1 R2
2 T2

2

2 F1F2T1T2 sinh 2 cos ( 1 + 2 + T1 + T2 + ) (5.37)

[Ti = Ti ei Ti ]. For equal amplitudes F1 = F2 = F and equal bres the phase-dependent

minimum is reached for cos( 1 + 2 + T1 + T2 + ) = 1 such that

: ( F )2 : out
min

= 4 F 2 nth 1 R 2 T 2 1

2
T 2(1 e 2 ) (5.38)
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from which we obtain that

: ( F )2 : out
min

0 nth
T 2(1 e 2 )

2(1 R 2 T 2)
(5.39)

The conditions for the TMSV losing all its squeezing [inequality (5.39)] and becoming sep-

arable [inequality (5.34)] after transmission through absorbing optical bres ( = +1) are

therefore equivalent.

5.3.2 Distance to the set of separable Gaussian states

If a TMSV state has been transmitted through absorbing optical bres and one has checked

for inseparability, the question arises how much entanglement is contained in the resulting

mixed quantum state. The relative entropy (5.7) can be computed easily if we restrict

ourselves to Gaussian states, both for the given density operator for which we want to

compute its entanglement content, and for the separable states we compare the state with

[S14]. If we denote the set of separable Gaussian states by G, we de ne the distance to the

set of separable Gaussian states as

EG( ) = min
G
Tr [ (ln ln )] (5.40)

With the de nition of the entropy (5.4) and the representation of a Gaussian density operator

= exp
1

2

a

a

+

M
a

a
(5.41)

we can write Eq. (5.40) as

EG( ) = S ( ) +
1

2
min

G
Tr M

a

a

+
a

a
(5.42)

and furthermore, using the representation of the characteristic function corresponding to the

density operator

( ) = exp
1

2 +

+

V + (5.43)

it follows that

EG( ) = S ( ) +
1

2
min

G
Tr [M V ] (5.44)

The Gaussian separable states needed for the minimization are obtained by constructing

their Wigner function according to the separability criterion for Gaussian quantum states

[76, 77] described in Sec. 5.3.1. After transforming the variance matrix associated with
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into the canonical form (5.27), minimization is done with respect to three real parameters.

For example, given a triple of real numbers (y z1 z2) we can compute the fourth parameter

x by using (5.28) as an equality.

The distance of a Gaussian state to the set of separable Gaussian states need not be an

entanglement measure according to all requirements described in Sec. 5.1. In particular, it is

not known whether the separable Gaussian states really provide the minimum distance over

all quantum states. Although obviously being zero for separable states and being invariant

under local unitary transformations, yet little is known about the behaviour of EG( ) under

local CP maps. Despite this, we believe that it is at least a good upper bound on the

entanglement content of a Gaussian quantum state.

Let us apply this idea to the state (5.22). To this end, we need the variance matrix of

the outgoing quantum state (5.30) (5.33) and bring it to the generic form (5.27). This is

done simply by neglecting the phases of the bre transmission coe cients and the squeezing

parameter, hence setting Ti � and = 0, respectively. These operations are local and

unitary, and do not change the entanglement content. Then, by Eq. (5.33), Z12 = Z21 = 0.
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Figure 5.3: Entanglement content of a TMSV state transmitted through optical bres with
temperature zero as a function of the transmission length l measured in units of the absorption
length lA. The curves correspond to mean photon numbers in one mode of 1 (topmost curve),
10, 100, and 1000 (lowest curve) and are normalized with respect to the initial entanglement.

The result of the numerical calculation is depicted in Fig. 5.3. It shows the entangle-

ment degradation of a TMSV transmitted through absorbing optical bres with transmission

coe cients satisfying T = e l lA . Degradation becomes faster the higher the mean num-

ber of photons in the initial squeezed state was [the mean photon number in one mode is

n = sinh2 ]. In the context of decoherence of n qubits during a quantum computation it

has been noted that the decoherence time scales roughly exponentially with n [139]. This is



CHAPTER 5. ENTANGLEMENT DEGRADATION 53

supported by our calculation, too.

Besides the degradation of entanglement with increasing bre length one can ask the

question how much entanglement can be transmitted through bres of given length. This

question becomes important when setting up real quantum communication systems based on

continuous variables. It will eventually provide us with an answer about the ultimate limits

for the performance of schemes that make use of quantum information. Figure 5.4 shows
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Figure 5.4: Entanglement content of a TMSV state transmitted through optical bres with
temperature zero as a function of the initial squeezing strength . The curves correspond
to lossless bres (upper curve), and lossy bres with lengths l = 0 01lA (middle curve) and
l = 0 1lA (lower curve), respectively.

the result of the numerical calculation. As expected, for lossless bres (upper curve) the

transmitted entanglement is identical with the initial entanglement of the TMSV state

E( TMSV ) = cosh2 ln cosh2 sinh2 ln sinh2
1
2 (5.45)

For absorbing bres, however, we observe a saturation e ect. Optical bres of given length

are only capable for transmitting a nite amount of entanglement even in the limit of in nite

initial squeezing. The reason for this remarkable saturation e ect can be understood in terms

of the width of the Wigner function of two quadratures, say x1 and x2. For simplicity, we

choose = 0. From the de nition of the Wigner function (5.23) in terms of the variance

matrix V for the original TMSV state it follows that

W (x1 x2) = dp1 dp2 W ( ) =
1
exp

1

2
(x1 + x2)

2e2
1

2
(x1 x2)

2e 2

(5.46)

For large squeezing, this Wigner function narrows and eventually turns into a sharply peaked

line along the diagonal x1 + x2 = 0 with a width e 2 that is zero for in nite squeezing.
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Thus, x1 and x2 are perfectly correlated. After transmission through equal optical bres,

choosing R = nth = 0 and T � for simplicity, in the limit of in nite squeezing ,

the width of the Wigner function along the diagonal x1 + x2 = 0 becomes 1 T 2. That

is, for T < 1 the width does not vanish and is determined by the bre material. In Fig. 5.5

we have plotted the Wigner function of two quadratures x1 and x2 of a TMSV state with

= 3. On the left, the initial Wigner function is shown, which broadens after transmission

through the optical bres (right gure).
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Figure 5.5: Wigner function W (x1 x2) for the quadratures x1 and x2 of a TMSV state with
= 2 and = 0 before (left gure) and after transmission through equal optical bres with

transmission coe cients T1 = T2 = 0 9 (right gure).

We compare this saturation e ect with result of calculations of error probabilities in

quantum dense coding. The scheme considered in [140] encodes a classical bit in a coherent

displacement D( ) that is applied to one mode of a TMSV state. As in our case a

symmetric noisy quantum channel is considered. In the limit of large mean photon numbers

in the TMSV and the displacement their conclusion is that a quantum dense coding scheme

is superior to a classical communication system only if the transmission coe cients do not

drop below T 2 = 0 75, that is, l lA 0 14. From Fig. 5.4 we can estimate that the amount

of transmitted entanglement is then just E 0 7. This is just the information that is needed

to encode the classical bit. Smaller transmission coe cients only allow for transmitting less

quantum information, and subsequently a classical coding scheme could perform better.

Concluding, the theory of quantum-state transformation developed in Chapter 4 is best

suited to study entanglement degradation of bipartite quantum states in noisy environments.

Based on the convexity of the relative entropy, upper bounds on the entanglement content

after transmission through noisy quantum channels have been derived. For Gaussian states

the distance to the set of separable Gaussian states (Sec. 5.3) provides a new tool to estimate

their entanglement content. In particular, it has been shown that optical bres are only

capable to transmit a nite amount of quantum information.



6 Quantum teleportation in noisy environ-
ments

The theory of quantum-state transformation developed in Sec. 4 and its consequences for

entanglement transmission described in Sec. 5 is now applied to quantum teleportation which

is a fundamental issue in quantum information processing. The idea behind it is to communi-

cate an arbitrary quantum state between two spatially separated locations. In a classical setup

one would measure all relevant parameters of the state and transmit them. In quantum me-

chanics, measuring the state would destroy it. However, quantum mechanics also provides us

with a useful tool, the entangled states, for which communicating the information becomes

possible without even fully knowing the state [120, 121]. The rst experimental demon-

stration has been performed with polarization-entangled single-photon states [13, 14, 15].

Besides single-photon schemes teleportation of continuous quantum variables has been exper-

imentally demonstrated [137], at least in principle. The basic idea of quantum teleportation

is shortly summarized in Sec. 6.1. Entanglement degradation due to the interaction with

a noisy environment spoils perfect teleportation which is discussed in Sec. 6.2. We then

propose in Sec. 6.3 how to prepare an entangled state conditionally to increase the average

teleportation delity [S15].

6.1 General scheme with Bell-basis states

Suppose a sender wants to communicate an arbitrary superposition of states 0 and 1 ,

 in = a 0 + b 1 a b � a 2 + b 2 = 1 (6.1)

which is also called a qubit, to a receiver without completely measuring it. The sender needs

to create an additional entangled state (Fig. 6.1). The input state  in is mixed with one

part of the entangled state. Then a single measurement in the Bell basis , [see

Eqs. (5.10) and (5.18) with n = 1 for their de nition] is performed at the input state and the

rst part of the entangled state. Ideally, the second part of the entangled state now contains

all information about the input state. The resulting two bits of classical information about the

measurement outcome are communicated to the receiver who then performs, conditionally

55
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Figure 6.1: Standard scheme for quantum teleportation of qubits. One part of an entangled
state (ENT) and the input state  in are subject to a Bell measurement (BM). The result
is classically communicated to the receiver who perform a conditional single-qubit rotation
on the second part of the entangled state.

on the measurement result, one of the following rotations:

�= 0 0 + 1 1 measurement result + (6.2)

x = 0 1 + 1 0 measurement result + (6.3)

i y = 0 1 1 0 measurement result (6.4)

z = 1 1 0 0 measurement result (6.5)

where the i are the usual spin-1 2-Pauli operators with the commutation rules

[ i j ] = 2i ijk k i j k = x y z (6.6)

written in the qubit basis. The resulting state  out is then exactly the input state  in .

A measure of successful teleportation is the delity which is de ned as the overlap between

the output state after the teleportation and the input state, F =  in  out
2. Choosing a

maximally entangled state as the entanglement resource, i.e. one of the four Bell states, the

delity is always unity. For non-maximally entangled states it is less.

6.2 Absorbing optical bres

From the general description of quantum teleportation one recognizes that maximal telepor-

tation delity of unity is achieved only if the auxiliary quantum state is maximal entangled

with respect to the Hilbert space of the input state. The situation described above is ideal-

ized in the sense that losses during the transmission of the entangled state from its source

to sender and receiver have not been taken into account. The loss mechanism we are con-

sidering is such that it causes transitions from the state 1 to 0 . Physical examples of
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such transitions are spontaneous decay of two-level atoms (the qubit being encoded in the

energy levels) or photon loss in optical bres (the qubit space is spanned by photon-number

states). For de niteness we consider the latter case of optical qubits. As we have seen in

Chapter 4, absorbing optical devices turn pure states into mixed states and, by the results

in Chapter 5, decrease entanglement. Therefore, since the resulting auxiliary quantum state

is not maximally entangled anymore, the teleportation delity is expected to decrease as

well. We assume that the sender owns the source of the maximally entangled state and

the communication line to the receiver can be modelled by an absorbing optical bre with

transmission coe cient T3. Then, before the Bell measurement, the tripartite object shared

by sender and receiver is described by the mixed density operator

123 =
1

2
1 T3

2  in  in 12 03 12 03

+
1

2
 in  in ( 02 03 + T3 12 13 ) ( 02 03 + T3 12 13 ) (6.7)

which follows immediately from the general quantum-state transformation formula (4.21)

and the example (5.20). Performing the Bell measurement with the density matrix (6.7), the

density matrix on the receiver s side is then one of the following:

measurement outcome density operator at the receiver
+ (1 T3

2) b 2 03 03 + [a 03 + bT3 13 ][a 03 +b T3 13 ]
+ (1 T3

2) a 2 03 03 + [aT3 13 + b 03 ][a T3 13 +b 03 ]

(1 T3
2) a 2 03 03 + [aT3 13 b 03 ][a T3 13 b 03 ]

(1 T3
2) b 2 03 03 + [a 03 bT3 13 ][a 03 b T3 13 ]

The outcomes are equally likely with probabilities pi = 1 4, the index i labelling the four

possible results. According to the standard teleportation scheme, the receiver now has to

perform one of the single-qubit rotations �, x, i y , z, leading to an output density

operator outi. For a single teleportation event i, a delity

Fi =  in outi  in (6.8)

can be de ned. The Fi di er for di erent measurement outcomes in general. Therefore, we

use a delity that is averaged over all possible results,

F =
i

piFi =
i

pi  in outi  in

=
1

2
a 4 + 1 a 2 2

1 + T3
2 + 2 a 2 1 a 2 1 T3

2 + 2ReT3 (6.9)

where we have used that a 2 + b 2 = 1. In contrast to perfect teleportation, the delity

also depends on the input state. A state-independent average delity may thus be de ned
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by integrating Eq. (6.9) over a 2 giving

F =

1

0

d a 2 F =
1

2
1 +

1

3
T3

2 + 2ReT3 (6.10)

The maximal (average) delity of one is achieved only if T3 1, that is, when the communica-

tion line to the receiver is lossless. For all realistic systems that show absorption, the average

teleportation delity (6.10) lies below 1. Moreover, the delity becomes phase-dependent,

indicating that the standard teleportation scheme is not optimal for noisy channels, a fact

that has also been noted in continuous-variable schemes [141, 142]. Optimization can be

done by placing a phase shifter (a local unitary operation) on the receivers side that reverts

the phase introduced by the bre so that we can assume from now on that T3 � .

6.3 Conditional preparation of the entangled state

The average teleportation delity can be enhanced by modifying the standard teleportation

scheme. We present two possible modi cations based on conditional measurements, using a

tripartite entangled state as the entanglement resource, and ltering.

Since Bell states, being maximally entangled bipartite states in the 2 2-dimensional

qubit Hilbert space, are optimal only for ideal transmission (T3 = 1) the question arises which

states should be used for noisy communication instead. In the following we concentrate on

the Greenberger Horne Zeilinger (GHZ) state [143]

GHZ =
1

2
02 03 04 + 12 13 14 (6.11)

We assume that modes 2 and 3 are used for the teleportation process, whereas mode 4 is

subject to a projection measurement. The situation is depicted in Fig. 6.2. The entangled

state after transmission through the absorbing device is described by the density operator

234 =
1

2
1 T3

2 12 03 14 12 03 14

+
1

2
02 03 04 + T3 12 13 14 02 03 04 + T3 12 13 14 (6.12)

We now apply the projection operator

P4 = 04 + 1 2 14 04 + 1 2 14 (6.13)

to the density operator (6.12) and obtain with a success probability 1 2 the state

23 = 1 T3
2 1 2 12 03 12 03

+ 02 03 + T3 1 2 12 13 02 03 + T3 1 2 12 13 (6.14)
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Again for absorbing devices the average teleportation delity is always less than unity.
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Figure 6.3: Average teleportation delity using Bell states (lowest curve), using the GHZ
state (middle curve), and using a lter (topmost curve).

Figure 6.3 depicts the dependence of the average teleportation delities on the transmis-

sion length using T3 = e l lA . The lowest curve corresponds to the standard teleportation

scheme (Fig. 6.1) with the delity (6.10). The middle curve depicts the result of the scheme

using GHZ states, Eq. (6.18). Even higher lies result obtained by ltering, Eq. (6.20). Com-

bining both methods, using the GHZ state and subsequent ltering, may then su ce to

achieve an average delity close to unity. The drawback is the success probability which is

expected to decrease very fast with stronger ltering.

The increased delity in the modi ed schemes are due to the conditional process that

selects a highly entangled state from the ensemble 23 shared between sender and receiver. By

that, indeed more quantum information is transmitted compared to the standard scheme. On

the other hand, the increased classical teleportation delity, which is obtained for T3 0, can

be understood as follows. In the standard scheme the outcomes of the Bell measurement were

all equally likely with probabilities pi = 1 4. The modi cations change these probabilities

such that it becomes more likely that is measured. In turn, the receiver would more

often perform x and i y that ip 03 and 13 .

To conclude, we have shown that the average teleportation delity, which drops below

unity when using noisy communication channels, can be increased by choosing GHZ states

as the entanglement source and ltering. These modi cations conditionally, with a certain

probability, select higher entangled states from the ensemble shared between sender and

receiver and therefore, on average, increase the delity.



7 Quantization of the electromagnetic eld
in the presence of atoms

So far we were interested in the properties of the electromagnetic eld and the statistical

implications on the quantum state of light coupled to a dielectric material with the emphasis

on the electromagnetic eld only. In this chapter a general theory of the interaction of the

quantized electromagnetic eld with additional atomic sources in the presence of dielectric

bodies is developed [S9, S11]. The theory, which is a natural extension of the standard

concept of mode decomposition, gives a uni ed approach to the atom- eld interaction with-

out restricting to a particular frequency range. In Sec. 7.1 minimal and multipolar coupling

are discussed in the framework of source-quantity representation, and electric-dipole and

rotating-wave approximations are described in Sec. 7.2.

7.1 Minimal coupling (vs. multipolar coupling)

There are essentially two di erent ways to describe the coupling of atoms to the electromag-

netic eld. In the minimal coupling scheme the atoms are described by point-like charged

particles coupled to the potentials of the Maxwell eld. On the other hand, the multipo-

lar coupling scheme introduces atomic polarizations and magnetizations whose interactions

with the electromagnetic eld is described in terms of the eld strengths. Both schemes are

equivalent since they are related to each other by a unitary transformation.

7.1.1 Minimal coupling

Given an ensemble of point-like particles, where the th particle having mass m and charge

q is described by its position operator r and canonical momentum operator p , their charge

density

A(r) = q (r r ) (7.1)

leads to a scalar potential

A(r) = d3r
A(r)

4 0 r r
(7.2)

Therefore, the free Hamiltonian describing the motion of the particles reads as (the factor

1 2 removes double counting)

HA =
p2

2m
+

1

2
d3r A(r) A(r) (7.3)
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Together with the Hamiltonian of the dielectric medium-assisted electromagnetic eld (2.48)

HF = d3r

0

� f (r )f(r ) (7.4)

and the interaction Hamiltonian of the charged particles with the electromagnetic eld

Hint =
q

m
p

1

2
q A(r ) A(r ) + d3r A(r) F(r) (7.5)

the total Hamiltonian of the system can be written in the form

H = HF + HA + Hint

= d3r

0

� f (r )f(r ) +
1

2m
p q A(r )

2

+
1

2
d3r A(r) A(r) + d3r A(r) F(r) (7.6)

The scalar potential F and the vector potential A associated with the medium-assisted eld

have to be thought of as being expressed in terms of the basic elds f(r ) as in Eqs. (2.83)

(2.85) [together with Eq. (2.50)].

The operators of the electric and displacement elds now contain contributions from the

medium-assisted elds and contributions from the additional charges,

E(r) = EF(r) A(r) =

0

d E(r ) + H.c. A(r) (7.7)

D(r) = DF(r) 0 A(r) =

0

d D(r ) + H.c. 0 A(r) (7.8)

where E(r ) and D(r ) are the (frequency components of the) medium-assisted electric

and displacement elds. Recall that the polarization P(r), which is related to the degrees of

freedom of the matter, commutes with the radiation- eld operators. Furthermode, quanti-

ties of the medium-assisted electromagnetic eld commute with quantities of the additional

charged particles. Thus, one can verify both the correct (equal-time) commutation relations

between the electromagnetic eld operators and the operator-valued Maxwell equations [S11]

B(r) = 0 (7.9)

E(r) + B(r) = 0 (7.10)

D(r) = A(r) (7.11)

H(r) D(r) = jA(r) (7.12)
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where the atomic current density is de ned by

jA(r) =
1

2
q r (r r ) + (r r )r (7.13)

Here the velocity operator (actually the equation of motion of the atomic position operator)

is given by the expression

r =
1

m
p q A(r ) (7.14)

and the operator-valued Newtonian equations of motions read

m r = q E(r ) +
1

2
r B(r ) B(r ) r (7.15)

7.1.2 Multipolar coupling

In the minimal-coupling scheme the interaction between the atomic system and the medium-

assisted Maxwell eld is expressed in terms of the potentials of the electromagnetic eld.

In most cases it is desirable to describe the interaction in terms of the electromagnetic

eld strengths and the polarization and magnetization of the atomic system. This can be

achieved by a unitary transformation of the Hamiltonian (7.6) which is called the Power

Zienau Woolley transformation [147, 148, 149, 150, 151].

The polarization of an atomic system at position rA is introduced as [151]

PA(r) = q (r rA)

1

0

d [r rA (r rA)] (7.16)

leading to a charge density

A(r) = qA (r rA) PA(r) (7.17)

with qA = q being the total charge of the atomic system. The unitary operator that

performs the transformation from minimal coupling to multipolar coupling is

U = exp
i

�
d3r PA(r)A(r) (7.18)

As U depends on the position operators r [via the polarization PA(r)] and the vector

potential A(r) only, the position operators are left unchanged,

r = Ur U = r (7.19)
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whereas momentum operators p and basic elds are transformed by the rules:

p = Up U

= p q AF(r ) q

1

0

d (r rA) B[rA + (r rA)] (7.20)

f (r ) = U f(r )U

= f(r )
i

�

�

0
I(r )

c2
d3r PA(r )G (r r ) (7.21)

Expressing the Hamiltonian H in Eq. (7.6) in terms of the new variables (7.19) (7.21) one

obtains the multipolar Hamiltonian [S9]

H = d3r

0

d � f (r ) f (r ) +
1

2m
p + d3r n (r) B(r)

2

+
1

2 0

d3rPA(r) PA(r)
1

0

d3r PA(r) D (r) +
1

0

d3rPA(r) PF(r)

(7.22)

where D (r) = D (r)+ PA(r) and

n (r) = q (r rA)

1

0

d [r rA (r rA)] (7.23)

7.2 Dipole and rotating-wave approximation

Let us assume that the (localized) atomic system is globally neutral, hence q = 0. If in

addition the spatial extent of the atomic systems is small compared to the spatial variations of

the electromagnetic potentials, one can expand the latter in powers of the position operators

r giving rise to multipole moments of the atomic system. Keeping only the lowest-order

term in the expansion yields the electric-dipole approximation which can be expressed in

terms of the atomic dipole operator

dA = q r (7.24)

The interaction Hamiltonian (7.5) between medium-assisted electromagnetic eld and atomic

system in minimal coupling can then be written, on neglecting the A
2
term for optical elds

that are weak compared to intra-atomic electric elds [152], as

Hint =
q

m
p A(r ) + d3r A(r) F(r)

=
1

i�
dA HA A(rA) + d3r A(r) F(r) (7.25)



CHAPTER 7. FIELD QUANTIZATION IN THE PRESENCE OF ATOMS 65

with the atomic Hamiltonian HA from Eq. (7.3). In electric-dipole approximation the

function in the polarization (7.16) can be expanded in powers of (r rA). Keeping only

the lowest-order term and integrating over gives

PA(r) = dA (r rA) (7.26)

Recalling that A(r) = PA(r) for globally neutral systems [Eq. (7.17)] and F(r) =

EF(r) [Eq. (2.83)], partial integration in the second term on the rhs of Eq. (7.25) yields

Hint =
1

i�
dA HA A(rA) dAEF(rA) (7.27)

We may specify the atomic Hamiltonian HA further by restricting to the case of a two-level

atom with lower level l and upper level u . Thus,

HA = � u u u + � l l l =
1

2
� A z + const. (7.28)

where the operator z = u u l l and the atomic transition frequency A = u l

have been introduced. The additive constant is dropped. In the rotating-wave approxima-

tion, only those electromagnetic eld components with frequency A are taken into

account. Thus, we have i AA
(+)

(rA) E
(+)

(rA) for the positive-frequency components of

the transverse electric- eld operator. Finally we obtain for the interaction Hamiltonian

Hint =
1

i�
dA HA A(rA) dAEF(rA)

E
(+)

F (rA)d E
(+)

F (rA)d+ H.c.

= E
(+)

F (rA)d+ H.c. (7.29)

with the lowering operator de ned by = l u and the dipole operator dA = d x with real

dipole moment d. The operators x = + , y = i( ), and z form the well-known

spin-1 2-algebra with the commutation rule (6.6). It is worth noting that the interaction

Hamiltonian having the structure dAE
( )

F in electric-dipole approximation (7.29) contains

the positive (respectively negative) frequency components of the full electric eld strength

operator E
( )

F (rA), not only its transverse part. From Eqs. (7.25) and (7.27) it is clear that

the longitudinal contribution is due to the scalar potential F(r) of the medium-assisted

electromagnetic eld which induces a Coulomb interaction with the charged particles.

Generally, equations of motion for atomic operators can be derived that are expressed in

terms of the Green function and the fundamental basic elds. Besides spontaneous decay

near dielectric bodies which is discussed in the following chapter, cavity QED provides a

number of applications that can be treated with this general theory of the interaction of

electromagnetic eld and atoms in the presence of dielectric bodies [153, 154, 155].



8 Spontaneous decay of excited atoms in the
presence of absorbing dielectrics

An important application of the quantization of the electromagnetic eld interacting with

atoms in the presence of dielectric bodies is the process of spontaneous decay. It repre-

sents the prime example of the action of ground-state uctuations on physically measur-

able processes. It is well known since the work of Einstein [156] that, in order to obtain

the correct Planck law of black-body radiation, a process as spontaneous emission must

be included in the theory of atomic decay. Later it has been realized both theoretically

[86, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170] and experimen-

tally [171, 172, 173, 174, 175, 176] that the ground state felt by an atom surrounded by

dielectric matter changes, and the rate of spontaneous decay changes accordingly. Besides

enhancement [80], the environment can be made such that spontaneous decay is inhibited

[81, 82]. In the following chapter, we derive equations of motion of the atomic operators

(Sec. 8.1) [S4] and apply the theory in Secs. 8.2 and 8.3 to spontaneous decay in absorbing

media [S3, S4] as well as near planar interfaces [S5].

8.1 Equations of motions of atomic operators

Starting point is the interaction Hamiltonian (7.29) for a two-level atom in electric-dipole

and rotating-wave approximations. The Heisenberg equations of motion for the basic elds

f(r ) describing the medium-assisted electromagnetic eld and the Pauli spin operators

i for the atom follow from the general rule O = (i�) 1 O H . From the commutation

relations (6.6) of the Pauli spin operators, and Eqs. (2.46) and (2.47), respectively, the

Heisenberg equations of motion read

z =
2i

�
E
(+)

F (rA)d+ H.c. (8.1)

= i A +
i

�
E
( )

F (rA)d z (8.2)

f(r ) = i f(r ) +
2

c2
I(r )

� 0

G (r rA )d (8.3)

Equation (8.3) can be formally integrated and substituted into the expression for the electric-

eld operator (2.50) which yields, on using the integral relation (2.43) for the Green function,

66
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for the positive frequency component of the electric eld

E
(+)

F (r t) = E
(+)

F free(r t) +
i

0
0

d
2

c2
ImG(r rA )d

t

t

d e i (t ) ( ) (8.4)

Substituting the formal solution (8.4) into the Heisenberg equations for the atomic quantities

(8.1) and (8.2) leads to integro-di erential equations for them. The solution to these integro-

di erential equations can be obtained numerically. However, there is a special case for

which an analytical solution is known. When we assume that the time integral in Eq. (8.4)

e ectively runs only over a small correlation time interval c, the lower limit in the integral

can be extended to minus in nity. Moreover, if c is small compared to the time scale on

which the atomic operators evolve, the slowly varying quantity ( )ei A can be taken at

the time t and put in front of the integral. Thus, we have

t

t

d e i (t ) ( )

t

d e i (t ) ( )

(t)

t

d e i( A)(t ) = (t) ( A ) (8.5)

[ (x) = (x) + iPx 1; P: principal value]. This is called the Markovian approximation

saying that the atomic variables at time t have no memory about the variables at earlier

times. Eq. (8.4) reads now

E
(+)

F (r t) = E
(+)

F free(r t) +
i

0
0

d
2

c2
ImG(r rA )d (t) ( A ) (8.6)

Substituting Eq. (8.6) into Eqs. (8.1) and (8.2) yields

z = (1 + z) +
2i

�
E
(+)

F free(rA)d+ H.c. (8.7)

= i( A )
1

2
+

i

�
E
( )

F free(rA)d z (8.8)

where

=
2 2

Adidj

� oc2
ImGij(rA rA A) (8.9)

is the rate of spontaneous decay of the upper state and

=
didj

� 0
P

0

d
2

c2
ImGij(rA rA )

A
(8.10)
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is the contribution to the Lamb shift. It is worth noting that the rate formula (8.9) can

equivalently be derived using expression (2.82) for the ground-state uctuations of the elec-

tromagnetic eld. Applying Fermi s Golden Rule (see for example [177]) then yields

=
2

�2
didj

0

d 0 Ei(rA )Ej(rA A) 0 (8.11)

Equations (8.9) and (8.10) for the spontaneous decay rate and the Lamb shift are most

suitable for complicated geometries since only the Green function of the classical scattering

problem is involved. It should be stressed, that the representation of the spontaneous de-

cay rate in terms of the imaginary part of the Green function follows from the quantization

scheme in absorbing media which is consistent with standard QED requirements and statisti-

cal physics. In particular, the dissipation- uctuation theorem does not have to be invoked by

hand [36, 159]. Moreover, usage of the imaginary part of the Green function is not restricted

to real values of the permittivity [178], but it is valid for all frequencies and hence all possible

complex values for the permittivity.

8.2 Spontaneous decay of an excited atom in absorbing

dielectric media

Let us consider the situation where a single two-level atom with transition frequency A is

located inside an absorbing dielectric medium. The question arises how the spontaneous

decay rate changes compared to its vacuum value

0 =
3
Ad2

3 � 0c3
(8.12)

where d is the dipole matrix element of the atomic transition. Arguments based on the

change of the mode density due to the surrounding material suggested that the decay rate

should be modi ed according to [179, 180, 181, 182]

= n 0 (8.13)

where n is the real refractive index of the medium. Here it is assumed that the local eld

the atom interacts with is exactly the same as the electromagnetic eld in the continuous

medium. In reality the atom is in a small region of free space, and the local eld is di erent

from the eld in the continuous medium. This has lead to the introduction of the so-called

local- eld correction factor , and the decay rate is expected to be modi ed as

= n 0 (8.14)
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Figure 8.1: Virtual-cavity model (left gure) and real-cavity model (right gure).

Di erent models have been proposed to calculate . The virtual-cavity model regards to

the classical picture of an ensemble of dipoles in a ( ctitious) ball of radius R in which

depolarization e ects change the electric- eld strength of the continuous medium. On the

other hand, the real-cavity model assumes that the radiating atom is sitting in an empty

cavity of radius R surrounded by all other atoms (Fig. 8.1).

In the virtual-cavity model the local- eld correction factor is given by [183]

VC =
n2 + 2

3

2

(8.15)

whereas in the real-cavity model it is derived to be [28]

RC =
3n2

2n2 + 1

2

(8.16)

Experiments suggest that the latter model is a good candidate for describing substitutional

guest atoms di erent from the host atoms [184, 185, 186], whereas the virtual-cavity model

seems appropriate for describing interstitial guest atoms of the same kind as the host atoms

[186]. For absorbing media, however, arguments based on real refractive index do not apply.

8.2.1 Virtual-cavity model

In the (Clausius Mosotti) virtual-cavity model it is assumed that the eld outside the ( c-

titious) sphere is not modi ed by the small region inside the sphere, and the local electric

eld inside is [187]

E (r ) = E(r ) +
1

3 0

P(r ) (8.17)

where E(r ) and P(r ) are the electric eld and the polarization in the unperturbed

medium. The factor (3 0)
1 is the depolarization factor for an isotropic sphere (for more

complicated inclusions, see for example [188, 189]). The polarization contains according to
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the general theory also the noise contribution PN(r ) which must not be omitted because

it is part of the quantum vacuum.

The ad hoc introduction of the local electric eld according to Eq. (8.17) is reminiscent of

classical Maxwell theory and may not be fully consistent with quantum theory. For example,

the correct (equal-time) commutation relations for the operators of local electric eld and

magnetic induction are only satis ed approximately. Indeed, the correct commutation rule

is only recovered providing that the static permittivity is not too large [ (r 0) 10] (for

details, see [S3]). Moreover, it is not clear from rst sight what kind of Green function

should be applied. Instead of using the Green function, one proceeds with the de nition of

the local elds (8.17) and uses Fermi s Golden Rule (8.11) which in turn, by comparing with

Eq. (8.9), allows in principle the de nition of a local Green function.

Inserting Eq. (8.17) into Fermi s Golden Rule (8.11) and using the Green function

GM(r r ) of the (mean) eld in the undisturbed medium with permittivity ( A), we

obtain [S3]

=
2 2

Adidj

� 0c2
( A) + 2

3

2

ImGM
ij (r r A)

+
4 2

Adidj

3� 0c2
I( A)Re

( A) + 2

3
GM

ij (r r A) +
2didj

9� 0
I( A) ij (r r ) (8.18)

For r r rA a singular behaviour in the terms on the second line of Eq. (8.18) is observed,

hence regularization is required, for example averaging over the sphere. This singularity is

associated with a diverging (Coulomb) energy of the radiating atom with the underlying

continuous medium. Assuming a homogeneous background medium, the Green function

GM(r r ) may be identi ed with that for bulk material (see Appendix B). Averaging with

respect to r and r separately over the sphere, one obtains the decay rates associated with

longitudinal and transverse elds, respectively, as

= 0
4 I( A)

27 ( A) 2

c

R A

3

(8.19)

= 0 ( A)
( A) + 2

3

2
2 I( A)

2

9
+

25 I( A)

54

c

R A

3

+ I( A) [ R( A) + 2]
8

15

c

R A

2

9
( A) +O(R) (8.20)

[ R ( A) A c 1], with 0 being the free-space spontaneous emission rate (8.12). In-

spection of Eqs. (8.19) and (8.20) reveals that, when absorption may be safely disregarded,

i.e. I( A) = 0, then = 0, and exactly reproduces the spontaneous emission rate
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(8.14) with the Lorenz Lorentz local- eld correction factor (8.15). For absorbing media

both longitudinal and transverse decay rates show a strong dependence on the cavity radius

R. In the near- eld zone the dominant terms are proportional to R 3 and correspond to

nonradiative energy transfer. However, calculations of resonant energy transfer in a lattice of

absorbing molecules [166] have shown that the total decay rate is purely transverse. The ap-

pearance of the longitudinal rate may therefore be attributed to the quantum-mechanical

inconsistency in de ning the local eld operators.

It should also be noted that di erent regularization methods can be applied leading to

di erent numerical factors in Eqs. (8.19) and (8.20). Our results have been con rmed within

a semi-microscopic approach [170] using a Schwinger Keldysh Green-function technique.

8.2.2 Real-cavity model

In contrast to the virtual-cavity model, in the (Glauber Lewenstein) real-cavity model the

atom is placed in an empty (real) cavity of radius R, and the exact Green function for this

geometry is used for computing the decay rate (8.9). That is, Maxwell s equations are solved

inside and outside the cavity imposing appropriate boundary conditions at the cavity walls.

By the general quantization scheme in Sec. 2.2, the fundamental (equal-time) commutation

relations are satis ed exactly. Moreover, the Green function does not lead to a singular decay

rate as in the virtual-cavity model.

According to Eq. (8.9) the decay rate is proportional to the imaginary part of the Green

function in the coincidence limit, i.e. both spatial arguments taken at the position of the

radiating atom. The Green function for an inhomogeneous problem of this type can always

be written as the sum of the Green function GV(r r ) for a homogeneous problem of an

atom located in vacuum and a Green function R(r r ) that ensures the correct boundary

conditions at the cavity walls [89, 102] (see also the discussion on input-output coupling in

Chapter 3). In fact, this decomposition of the Green function is valid in all situations in which

the radiating atom is located in free space. By construction, the re ection term R(r r ) is

purely transverse. Moreover, the imaginary part of the vacuum Green function GV(r r )

[Eq. (B.6)] does not contain a longitudinal part. Hence, we may write the rate formula (8.9)

as

=
2 2

Adidj

� 0c2
ImGij(rA rA A) (8.21)

That is, for atoms located in vacuum only transverse elds contribute to the decay rate. The

longitudinal decay rate that appeared in the virtual-cavity model is therefore an artifact.

The Green function for a spherical cavity, with the centre of the cavity as origin of



CHAPTER 8. SPONTANEOUS DECAY OF EXCITED ATOMS 72

coordinates, and both spatial arguments inside the cavity, is therefore

G(r r ) = GV(r r ) + R(r r ) (8.22)

where GV(r r ) is the vacuum Green function given in Appendix B with ( ) = 1, and

R(r r ) is the re ection term given in Appendix C.2. Since we are interested in the

coincidence limit r r 0, we look at the asymptotics of the vector wave functions (C.6)

and (C.7) for small r which is given by the corresponding asymptotics of the Bessel function

jn(kr) in (C.8) [190]. We get

M e

o
nm(r k)

kr 0
(kr)n (8.23)

N e

o
nm(r k)

kr 0
(kr)n 1 (8.24)

and thus, only the TM vector wave functions N e

o
1m(r k) contribute to R(r r ) for which

we nd that

Rij(r r ) r=0 =
i

6 c
CN
1 ij (8.25)

with the generalized re ection coe cient

CN
1 ( ) =

[i + (n + 1) i 2n 3n2 (n + 1)]ei

sin (cos + in sin ) + i 2n cos 3(cos in sin )n2 (n2 1)
(8.26)

[n = ( ); = R c].

Inserting Eq. (8.25) and the imaginary part of the vacuum Green function (B.6) into

Eq. (8.21) we obtain nally

= 0 1 + ReCN
1 ( A) (8.27)

with the free-space decay rate 0 from Eq. (8.12). The result (8.27) is exact if the surrounding

medium can be treated as a continuum, and it is valid for all transition frequencies A. If

the cavity radius R is small compared to the atomic transition wavelength, we can expand

the generalized re ection coe cient CN
1 ( A) in powers of = R A c as [191, S4]

= 0
9 I( A)

2 ( A) + 1 2

c

AR

3

+
9 I( A)[28 ( A)

2 + 16 R( A) + 1]

5 2 ( A) + 1 4

c

AR

+
9nR( A)

2 ( A) + 1 4
4 ( A)

4 + 4 R( A) ( A)
2 + 2

R( A)
2
I( A)

9nI( A) I( A)

2 ( A) + 1 4
4 ( A)

2 + 2 R( A) +O R A

c
(8.28)

In frequency regions where absorption may be completely disregarded, i.e. I( A) = 0, only

the term on the second line in Eq. (8.28) survives and reproduces exactly the spontaneous
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emission rate including the familiar Glauber Lewenstein local- eld correction factor (8.16).

For absorbing media terms with strong dependence on the cavity radius R appear. In partic-

ular, the R 3 term in Eq. (8.28) can be regarded as the dipole-dipole energy transfer term

associated with nonradiative decay [162, 166]. The coupling between the decaying atom and

the surrounding dielectric is mediated exclusively by transverse photons.
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Figure 8.2: = 0 05 T, R = 0 02 A.
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Figure 8.3: = 0 2 T, R = 0 02 A.
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Figure 8.4: = 0 05 T, R = 0 1 A.
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Figure 8.5: = 0 2 T, R = 0 1 A.

Spontaneous decay rates in the real-cavity model (solid lines) and in the virtual-cavity model
(dotted lines, the dashed-dotted lines correspond to only) for a single-resonance medium
with permittivity (8.29).

In Figs. 8.2 8.5 the behaviour of the spontaneous decay of an atom in a spherical cavity

with radius R surrounded by a dielectric medium with the single-resonance permittivity of

Drude Lorentz type

( ) = 1 +
2
P

2
T

2 i
(8.29)

[ P: Plasma frequency; T: transverse resonance frequency] is shown. The solid lines corre-

spond to the real-cavity model [Eq. (8.28)] and the dotted lines to the virtual-cavity model

[Eqs. (8.19) and (8.20)], the dash-dotted lines indicating the transverse decay rate (8.20)

alone. Around the absorption band, that is in the frequency region between the medium reso-
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nance T and the longitudinal frequency L = 2
T + 2

P (here we have taken P = 0 46 T

giving L = 1 1 T) the two models di er considerably. In that region the permittivity (8.29)

shows a gap, and the imaginary part I( A) is large. Thus, the leading contributions to the

decay rate are the terms proportional to R 3 which appear with di erent weights. Compar-

ing Fig. 8.2 with Fig. 8.4 (and Fig. 8.3 with Fig. 8.5), the e ect of di erent values of R on

the spontaneous decay rate is clearly seen. The smaller the cavity radius R gets, the larger

becomes the contributions from dipole-dipole energy transfer to the surrounding dielectric.

In both models the value of R is undetermined from the outset. The virtual-cavity model

assumes a smearing of the local electromagnetic eld over a sphere with radius R. In

the real-cavity model R is associated with a distance from the radiating atom at which the

surrounding dielectric can be treated as a continuum. The continuum assumption is certainly

not true when we consider the nearest neighbours to the radiating atom. Subsequent studies

of microcavities lled with additional atoms are therefore necessary. Experiments measuring

the decay rate of a single atom at di erent frequency could, in connection with Figs 8.2

8.5, provide a value of R that should be used in the models.

8.3 Spontaneous decay near planar interfaces

Finally we consider the spontaneous decay of an excited atom close to a planar dielectric

surface. This con guration has been studied extensively in connection with Casimir and van

der Waals forces (see, for example, [160, 163]). It may also serve as the basic con guration

in scanning near- eld optical microscopy [83].

Suppose the atom is located at a distance z from the surface of the absorbing dielectric.

For a planar interface the Green function can again be decomposed into a sum of the vacuum

Green function and the re ection term R(r r ) (see the discussion in Sec. 8.2.2). The

re ection term can be expanded in terms of vector wave functions (see Appendix C.1) and

in the coincidence limit can be given in the form [60, 103, 104, S5]

Rxx(z z ) = Ryy(z z ) =
i

8
0

dk k3 e
2i z

rs(k)
i

8 q2
0

dk k e2i zrp(k) (8.30)

Rzz(z z ) =
i

4 q2
0

dk k3 e
2i z

rp(k) (8.31)

[q = c, = q2 k2], where rp(k) and rs(k) are the usual Fresnel re ection coe cients

for p- and s-polarized waves [187]. For a distance z of the atom to the dielectric interface

that is much smaller than the transition wavelength qz 1, one can evaluate the integrals
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in Eqs. (8.30) and (8.31) asymptotically to

2Rxx = 2Ryy = Rzz =
1

16 q2z3
( ) 1

( ) + 1
+O(z 1) (8.32)

which gives rise, after inserting into Eq. (8.9), to a leading term in the decay rate as [ = A]

= 0
3

8
1 +

d2z
d2

c

AR

3
I( A)

( A) + 1 2
+O(z 1) (8.33)

It is worth noting that this result agrees with the one obtained in an involved microscopic ap-

proach [86] using explicitly the Huttner Barnett quantization procedure described in Sec. 2.1

for this speci c inhomogeneous problem.

From the examples in Secs 8.2 and 8.3 it is clear that the inverse cubic dependence on

the distance to the surface of an absorbing material is a general result for nonradiative decay

associated with resonant energy transfer, with the numerical prefactors being of geometri-

cal origin. For atoms in the extreme near- eld of an arbitrarily shaped dielectric surface,

Eq. (8.33) represents the dominant contribution to the decay rate, because then the atom

only feels the e ect of a planar surface.

To conclude, the theory of the interaction of the electromagnetic eld with atoms in

the presence of dielectric bodies enables us to calculate the rate of spontaneous decay of

excited atoms in the near absorbing dielectric bodies. The rate formula (8.9), which expresses

the dissipation- uctuation theorem, follows from the underlying quantization scheme and is

not introduced by hand. When absorption is present, the decay rates are strongly distance-

dependent and are dominated by a term R 3 that depends on the imaginary part I( )

of the permittivity function.



9 Summary and Outlook

In this work it has been shown how the phenomenological Maxwell equations can be con-

sistently quantized in the presence of causally and linearly responding dielectric media. The

source-quantity representation of the electric- eld operator with the Green function in terms

of a bosonic vector eld has been proved to be consistent with both the standard QED

requirements as well as statistical physics (Chapter 2). An immediate consequence is that,

specifying the Green function for a bounded dielectric object, three-dimensional input-output

relations can be derived (Chapter 3), thereby generalizing the known one-dimensional result.

Based on the simpler one-dimensional input-output relations neglecting dependencies

on polarization and incident angle the theory of quantum-state transformation by ab-

sorbing and amplifying dielectric four-port devices has been developed (Chapter 4). From

there it was possible to derive closed formulas for the full density operator of the outgoing

eld leaving a dielectric device from the quantum state of the impinging eld and the device

properties. Applications to the transformation of coherent states and Fock states have been

presented. Knowing the full density operator of the outgoing eld, one can study deco-

herence and entanglement degradation of entangled states interacting with a noisy optical

system such as a bre. Upper bounds on the entanglement content have been derived using

the convexity property of the relative entropy (Chapter 5). Moreover, for the rst time an

upper bound for Gaussian states has been derived that explicitly uses a particular separa-

bility criterion. The example of entanglement degradation of a two-mode squeezed vacuum

state shows that decoherence becomes exponentially faster the more nonclassical the state

becomes. Additionally, it could be shown that there exists an absolute upper limit on the

amount of entanglement that can be transmitted through an optical bre of given length.

Entanglement degradation inhibits perfect teleportation for which maximally entangled

states would be necessary. Possible extensions of the standard teleportation scheme have

been presented for qubits, i.e. two-level systems (Chapter 6). In particular, choosing mul-

tipartite entangled states and appropriate ltering has been shown to increase the average

teleportation delity. The loss mechanism has been chosen such that it does not leave the

Hilbert space within which teleportation is going to be performed. That means, the same

mechanism is responsible for entanglement degradation in continuous-variable teleportation,

too. It has been realized that even the choice of displacement and the location of the en-

tanglement source play an important role in optimizing the delity of noisy teleportation

[138, 141, 142].
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Having developed the general theory of quantized light interacting with a dielectric sur-

rounding, additional atomic sources were coupled to the medium-assisted Maxwell eld

(Chapter 7). The dielectric surroundings have been shown to change the atomic dynamics.

In particular, the equations of motion in the Heisenberg picture and Markovian approximation

have been derived, and the important problem of modi ed spontaneous decay in absorbing

dielectrics and near dielectric surfaces has been discussed (Chapter 8). For absorbing media

the spontaneous decay rate strongly depends on the distance of the atom to the dielectric.

The leading term which depends on the inverse cube distance can be regarded as correspond-

ing to nonradiative decay. In principle, also the Schrodinger picture can be treated which

leads to (integro-) di erential equations of c-number wave functions. This was successfully

done in [153, 154, S11], where also the emitted radiation from the decaying atom near a

dielectric microsphere and inside a spherical microcavity have been computed. Placing an

excited atom and an atom in its ground state on opposite sides close to the surface of a di-

electric microsphere, the spontaneous decay of the excited atom can generate entanglement

by reabsorption of the emitted photon by the other atom [155].

The input-output coupling formalism is suitable not only for slab-like systems but also

for more general geometries such as cavities. General group-theoretical considerations may

help in the search for decoherence-free subspaces in dielectric systems [192]. They principally

allow for entangling atoms in dissipative environments. This surprising e ect has its origin in

monitoring the environment. Usually, the environment is not measured, but instead is traced

over. This leads to the familiar phenomenon of entanglement degradation (Chapter 5).

Because quantum states in identical Hilbert spaces can have very di erent decoherence

properties, a detailed study of the operators associated with the generalized measurements

will help classifying entangled states that are robust against decoherence.

In this work the emphasis is mostly on numerical calculation and derivation of upper

bounds on the entanglement content measured by the quantum relative entropy. For quan-

tum states in in nite-dimensional Hilbert spaces it is not even known how any entanglement

measure could be computed at all. Moreover, quantifying entanglement is an even more con-

ceptual problem since no unique measure has been found so far. It means that requirements

on the measure [78, 79] are to be strengthened to narrow the class of candidate measures.

So far, the quantization of the electromagnetic eld in dielectrics primarily has been

done in linear media at rest. In view of recent proposals for observing relativistic quantum

e ects such as Hawking radiation in optical systems [193, 194], based on the existence of

horizon-like singularities for light in moving media (for discussions on the horizon problem,

see for example [195, 196]), a quantum theory of light in moving dielectric and magnetic

media is desired. Relativistic quantum electrodynamics in dielectrics with real and frequency-
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independent refractive index have already been discussed in [17, 18], and dispersion in the

dielectric permittivity was into account in [35], but a fully causal response theory that neces-

sarily includes absorption is still missing. Moreover, a consistent quantum theory of radiation

in moving dielectrics may help to better understand the phenomenon of sonoluminescence

[197, 198, 199].

Both Hawking radiation and sonoluminescence are particle (photon) production processes

that can e ectively be described by input-output coupling connected with non-compact

groups comparable to the quantum-state transformation by amplifying four-port devices de-

rived in Sec. 4.3. Therefore, the input-output relations have to be extended to moving media

as well. The input-output relations at arbitrarily shaped objects, for example air bubbles

in water responsible for sonoluminescence, even for dielectric media at rest have not yet

been fully understood. The general theory should hence be explored further, especially in

connection with polarization e ects.



A Integral relation for Green functions

The partial di erential equation satis ed by the Green function of a medium which responds

to both electric and magnetic elds reads

(s ) G(s r )
2

c2
(s )G(s r ) = (s r) (A.1)

where we restrict ourselves to isotropic media for simplicity. In cartesian coordinates, Eq. (A.1)

reads (we drop the dependence to save notation)

s
k (s) s

nGki(s r)
s
k (s) s

kGni(s r)
2

c2
(s)Gni(s r) = ni (s r) (A.2)

If we multiply Eq. (A.2) from the right by Gnj(s r ) and integrate over s, we obtain after

partial integration

d3s
2

c2
(s)Gni(s r)Gnj(s r ) + Gij(r r ) =

d3s (s) [ s
kGni(s r)]

s
kGnj(s r ) d3s (s) [ s

nGki(s r)]
s
kGnj(s r ) (A.3)

Taking the complex conjugate of Eq. (A.3), and interchanging j i and r r , we arrive

at an analogous equation

d3s
2

c2
(s)Gni(s r)Gnj(s r ) + Gji(r r) =

d3s (s) [ s
kGni(s r)]

s
kGnj(s r ) d3s (s) [ s

kGni(s r)]
s
nGkj(s r ) (A.4)

Subtracting Eq. (A.4) from Eq. (A.3) yields, using Eq. (2.42),

d3s
2

c2
I(s)Gin(r s)Gjn(r s) ImGij(r r ) =

d3s I(s) [
s
kGin(r s)]

s
kGjn(r s) s

nGjk(r s) (A.5)

For nonmagnetic matter, i.e. for (r ) = 1, the integral relation (2.44) is recovered.
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B Green function for isotropic bulk material

An important example is the dyadic Green function for a (homogeneous) bulk material of

given permittivity ( ). The solution of the wave equation of the eld of a point-like source

G(r r ) q2( )G(r r ) = (r r ) (B.1)

where

q( ) =
c

( ) =
c
[nR( ) + inI( )] (B.2)

reads (see for example [89, 102])

G(r r ) = r r + Iq2( )
eiq( ) r r

4 q2( ) r r
(B.3)

It can be split up into a longitudinal and a transverse part ( = r r ) as [164]

G (r r ) =
1

4 q2( )

4

3
( )I + I

3
2

1
3

(B.4)

and

G (r r ) =
1

4 q2( )
I

3
2

1
3

+q3( )
1

q( )
+

i

[q( ) ]2
1

[q( ) ]3
I

1

q( )
+

3i

[q( ) ]2
3

[q( ) ]3 2
eiq( ) (B.5)

From Eq. (B.5) is follows that the imaginary part of the transverse part of the Green function

in the coincidence limit is given by

ImG (r r ) = lim
r r

ImG (r r ) =
6 c

nR( )I (B.6)

For the longitudinal part we have

ImG (r r ) =
I( )

( ) 2

c2

4 2

4

3
( )I + I

3
2

1
3

(B.7)

which vanishes if I( ) = 0, for example in vacuum where ( ) 1.
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C Green function for planar and spherical
multilayers

C.1 Planar multilayers

In the notation of Sec. 3 the Green function for the electric eld in region (layer) X in a

planar multilayer dielectric is decomposed as

G(X)(r s ) = G(X0)(r s ) Xs + G(Xs)(r s ) (C.1)

where the subscript s denotes the spatial region (layer) in which the source point s is located.

The rst term describes the Green function for unbounded homogeneous space and the

second term the scattering Green function accounting for the correct boundary conditions

at the surfaces of discontinuity. The standard representation of the free Green function is

presented in Appendix B. The scattering Green function can always be expanded in terms

of its eigenfunctions [89, 102]. In particular, in cylindrical coordinates (r z) the even and

odd vector wave functions of angular momentum n are [103]

M e

o
n (r h) =

nJn( r)

r

sin

cos
n er

dJn( r)

dr

cos

sin
n e eihz (C.2)

N e

o
n (r h) =

1

k
ih

dJn( r)

dr

cos

sin
n er

ihnJn( r)

r

sin

cos
n e

+ 2Jn( r)
cos

sin
n ez eihz (C.3)

[Jn( r): Bessel function; h2 + 2 = k2]. The scattering Green function G(Xs)(r s ) can

then be written in the form [103]

G(Xs)(r s ) =
i

4 0

d
n=0

2 0n

hs

(1 X3)M e

o
n (r hX) (1 s1)A

Xs
M M e

o
n (s hs) + (1 s3)B

Xs
M M e

o
n (s hs)

+ (1 X3)N e

o
n (r hX) (1 s1)A

Xs
N N e

o
n (s hs) + (1 s3)B

Xs
N N e

o
n (s hs)

+ (1 X1)M e

o
n (r hX) (1 s1)C

Xs
M M e

o
n (s hs) + (1 s3)D

Xs
M M e

o
n (s hs)

+ (1 X1)N e

o
n (r hX) (1 s1)C

Xs
N N e

o
n (s hs) + (1 s3)D

Xs
N N e

o
n (s hs)

(C.4)
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where the scattering coe cients AXs
M N , BXs

M N , CXs
M N , and DXs

M N are determined by the

boundary conditions at the interfaces between the layers and can be found in the literature

[102, 103]. Note that the expansion (C.4) only involves vector wave functions of the same

type. The TE(TM) vector wave functions are associated with s(p)-polarized waves. It means

that di erent polarizations do not mix during the scattering process at a planar multilayer.

C.2 Spherical multilayers

Analogously, in the case of a spherical multilayer (here we need only two layers) we expand

the re ection term R(r r ) in the full Green function (8.22) as [200, 201]

R(r r ) =
i

4 c
e o n=1

n

m=0

2n + 1

n(n + 1)

(n m)!

(n + m)!
(2 0m)

CM
n ( )M e

o
nm r

c
M e

o
nm r

c

+CN
n ( )N e

o
nm r

c
N e

o
nm r

c
(C.5)

The functions M e

o
nm(r k) and N e

o
nm(r k) in Eq. (C.5) are the (even and odd) TE and TM

vector wave functions de ned by

M e

o
nm(r k) =  e

o
nm(r k)r (C.6)

N e

o
nm(r k) =

1

k
 e

o
nm(r k)r (C.7)

with the generating function in spherical coordinates (r )

 e

o
nm(r k) = jn(kr)P m

n (cos )
cos

sin
(m ) (C.8)

[jn(kr): spherical Bessel function of the rst kind; P m
n (cos ): associated Legendre polyno-

mial]. The functions C
M(N)
n in Eqs. (C.6) and (C.7) are the generalized re ection coe cients

whose lengthy expressions can be read o from [200, 201].



D Derivation of the unitary matrix

With the de nition (4.4) of ( ) and the relations (3.5) and (4.2) we write the sought

(4 4)-matrix as

( ) =

 
T( ) A( )

F( ) G( )
(D.1)

where the transmission and absorption matrices T( ) and A( ) satisfy the relation (3.7).

Accordingly, since we require also the operators hi( ) to be bosonic, we must also have

F( )F+( ) + G( )G+( ) = I (D.2)

Unitarity of ( ) leads to the additional constraint

F( )T+( ) + G( )A+( ) = 0 (D.3)

From Eq. (D.3) we nd that

F( ) = G( )A+( ) T+( )
1

(D.4)

Substitution of Eq. (D.4) into Eq. (D.2) leads to

G( ) I+ A+( ) T( )T+( )
1
A( ) G+( ) = I (D.5)

from which we obtain

I+ A+( ) T( )T+( )
1
A( ) = G+( )G( )

1
(D.6)

Using the relation T( )T+( )+A( )A+( )= I [Eq. (3.7)], we nd that

G+( )G( ) = I A( )A+( ) (D.7)

the general solution of which is

G( ) = D( )C( )S 1( )A( ) (D.8)

with the matrices C( ) and S( ) de ned as [Eq. (4.6)]

C( ) = T( )T+( ) S( ) = A( )A+( ) (D.9)
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and D( ) being a unitary, but otherwise arbitrary, (2 2)-matrix. Inserting the solution for

G( ) into Eq. (D.4), we obtain the general solution

F( ) = D( )S( )C 1( )T( ) (D.10)

Combining Eqs. (D.1), (D.9), and (D.10), we derive the general form of the unitary matrix

( ) as

( ) =

 
T( ) A( )

D( )S( )C 1( )T( ) D( )C( )S 1( )A( )
(D.11)

Absorbing the matrix D( ) into the additional device operators hi( ), and absorbing a

common phase ei ( ) into the input operators ai( ) and gi( ), the matrix ( ) represents

an element of the special unitary group SU(4).



E Factorization of the U(4)-matrix

The matrix (4.5) [hence the general matrix (D.11) with D( ) = I] can be decomposed into

the product

( ) = 2( ) 1( ) (E.1)

where

1( ) =

 
C 1( )T( ) 0

0 S 1( )A( )
and 2( ) =

 
C( ) S( )

S( ) C( )
(E.2)

Whereas the matrix 1( ) is already in Jordan form, thus representing two lossless beam

splitters acting on ai( ) and gi( ) alone, matrix 2( ) can be brought into quasidiagonal

form 2( ) by the unitary transformation

2( ) = +
2( ) (E.3)

with

2( ) =

 
C( ) iS( ) 0

0 C( ) + iS( )
and =

1

2

 
I iI

iI I
(E.4)

The decomposition (E.1), together with Eq. (E.3), corresponds to a decomposition into eight

U(2) group transformations. Each of the matrices describes two U(2) transformations

which can be seen as follows. Denoting by Y the (2 2)-matrix

Y =
1

2

 
1 i

i 1
(E.5)

we can bring into Jordan form by formally exchanging the second and third row and the

second and third column giving

=

 
Y 0

0 Y
(E.6)

Putting all matrices together and interchanging the correct rows and columns (input and

output variables, respectively), the beam splitter network is readily obtained.
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F Fock-state transformation by amplifying
four-port devices

When the input eld is prepared in a Fock state p q and the device in the ground state

0 0 , so that the overall input state is p q 0 0 , then the input Wigner function reads as

Win( ) =
2

4

( 1)p+q e 2( g1 2+ g2 2)Lp(4 a1
2)Lq(4 a2

2) e 2( a1 2+ a2 2) (F.1)

with Ln(x) being the Laguerre polynomial. We now apply Eq. (4.57), making the substitu-

tions according

a T+a T+C 1Sg (F.2)

a TTa TT CT 1
STg (F.3)

g ATa + AT ST 1
CTg (F.4)

g A+a+ A+S 1Cg (F.5)

Finally, we integrate over the device variables gi to obtain the Wigner function of the outgoing

eld. Introducing the matrix Kii = ii ki and employing the formula

4 a 2e 2 a 2

=
k

e 2 a 2+4k a 2

k=0
(F.6)

we derive

W
(F )
out (a a ) =

2
2 p

h=0

q

l=0

( 1)h+p

h!

p

h

( 1)l+q

l!

q

l

h

kh
1

l

kl
2

exp 2(a )T [N BT (DT ) 1B ]a

detD
k1=k2=0

(F.7)

where the abbreviations

N = 2TT+ I 2TKT+ (F.8)

B = 2STCT 2S C 1TKTT (F.9)

D = 2T TT I 2S C 1T KTTCT 1ST (F.10)

have been used. In order to calculate from the Wigner function the density operator, we

make use of the relation [110]

(F )
out =

2 d2aW
(F )
out (a a ) (a a) (F.11)
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where

(a a) =
1
4

d2bD(b) ea
T b bT a (F.12)

with D(b) being the two-mode coherent displacement operator. For notational convenience

we introduce the abbreviation notation

D =

p

h=0

q

l=0

( 1)h+p

h!

p

h

( 1)l+q

l!

q

l

h

kh
1

l

kl
2

k1=k2=0

(F.13)

Substitution of Eq. (F.7) into Eq. (F.11) yields

(F )
out = D 4

4 detD
d2a d2bD(b)exp 2a+Ma+ aTb bTa (F.14)

where M N BT (DT ) 1B+. Using the Fock-state representation of the (single-mode)

coherent displacement operator [110],

m D(b) n =
n!

m!
bm ne b 2 2L(m n)

n ( b 2) (F.15)

[Lm
n (x), associated Laguerre polynomial], we can calculate the density matrix in the Fock

basis. Performing the a integrals in Eq. (F.14), we derive

m1 m2
(F )
out n1 n2 = D 1

2 detDM
n1 n2 m1 m2

n1!n2!

m1!m2!
r1dr1 r2dr2 d 1 d 2

exp
1

2
r21 1 +

M22

detM

1

2
r22 1 +

M11

detM
+

M12

detM
r1r2 cos( + 2 1)

rm1 n1
1 rm2 n2

2 ei 1(m1 n1)+i 2(m2 n2) L(m1 n1)
n1

(r21)L
(m2 n2)
n2

(r22) (F.16)

where we have used the notation bi = rie
i i , and M12= M12 ei . Recalling the de nition of

the modi ed Bessel functions, we perform the angular integrals to obtain

m1 m2
(F )
out n1 n2 =

D 1

detDM
n1 n2 m1 m2

n1!n2!

m1!m2!
e i (m2 n2)

m1 n1+m2 n2 0

0

dx1 dx2 exp
1
2
x1 1 +

M22

detM
1
2
x2 1 +

M11

detM

Im2 n2

M12

detM
x1x2 x

(m1 n1) 2
1 x

(m2 n2) 2
2 L(m1 n1)

n1 (x1)L(m2 n2)
n2 (x2) (F.17)
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(xi = r2i ). The x2 integral is performed by means of the formula (2.19.12.6) in [202], which

gives (for m2 n2)

m1 m2
(F )
out n1 n2 =

D 2

detD
n1 n2 m1 m2

n1!n2!

m1!m2!
(M12)

m2 n2
m1 n1+m2 n2 0

(M11 detM)n2

(M11 + detM)m2+1

0

dx1 exp
x1

2
1 +

1 + M22

M11 + detM
L(m1 n1)

n1 (x1)L(m2 n2)
n2

M12
2

M2
11 (detM)2

x1

(F.18)

Finally, the x1 integral is performed by expanding the associated Laguerre polynomials into

power series [190]. The result is

m1 m2
(F )
out n1 n2 =

D 2

detD
n1 n2 m1 m2

n1!n2!

m1!m2!
m1 n1+m2 n2 0

(M11 detM)n2

(M11 + detM)m2+1
(M12)

m2 n2 m1

n1

n2

k=0

ck

ak+1

m2

n2 k
2F1 k + 1 n1;m1 n1 + 1

1

a
(F.19)

where

a =
1 + M11 + M22 + detM

2(M11 + detM)
c =

M12
2

(detM)2 M2
11

(F.20)

Integrating Eq. (F.7) over the phase space of one mode of the outgoing eld yields the

Wigner function of the quantum state of the other mode

W
(F )
out (ai ai ) =

2
p

h=0

q

l=0

( 1)h+p

h!

p

h

( 1)l+q

l!

q

l

h

kh
1

l

kl
2

detE

Eii detD
e 2 ai

2 Eii

k1=k2=0

(F.21)

(E=M 1). This Wigner function is equivalent to the density matrix in the Fock basis

(F )
out i =

n=0

p

h=0

q

l=0

( 1)h+l+p+q

h!l!

p

h

q

l

h+l

kh
1 kl

2

detE

detD

2

Eii + 1

Eii 1

Eii + 1

n

k1=k2=0

n n

(F.22)
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Zusammenfassung

In der vorliegenden Arbeit wurde gezeigt, wie das elektromagnetische Feld in Anwesenheit

kausaler und linearer dielektrischer Materialien konsistent quantisiert werden kann. Es wurde

bewiesen, da die quellenma ige Darstellung der elektromagnetischen Feldoperatoren mit

Hilfe der klassischen Greenschen Funktion und eines Kontinuums von bosonischen Feldoper-

atoren, welche die gemeinsamen Anregungen von Strahlungsfeld, Dielektrikum und Reservoir

beschreiben, im Einklang mit Forderungen der Quantentheorie und der statistischen Physik

ist (Kapitel 2). Die Tatsache, da die Schwankungen des elektrischen Feldes aus dem Ima-

ginarteil der klassischen Greenschen Funktion gewonnen werden konnen, zeigt au erdem,

da das Quantisierungsverfahren die klassische Kubo-Formel, Ausdruck des Fluktuations-

Dissipations-Theorems, reproduziert. Eine direkte Anwendung des Quantisierungsverfahrens

ist die Ableitung von Input-Output-Relationen an beliebig geformten dreidimensionalen Ob-

jekten. Die einlaufenden Felder wurden dort mit den auslaufenden Feldern uber Re exions-,

Transmissions- und Absorptionskoe zienten (tatsachlich sind das Tensoren zweiter Stufe),

die sich wiederum aus der klassischen Greenschen Funktion ergaben, verknupft (Kapitel 3).

Fur den Fall der eindimensionalen Ausbreitung linear polarisierten Lichts wurde die Theo-

rie der Quantenzustandstransformation an absorbierenden bzw. verstarkenden dielektrischen

Vierpolen, wie etwa Strahlteilern oder optischen Fasern, entwickelt (Kapitel 4). Dabei

zeigte sich, da ein unitarer Operator, der die Operatoren einlaufender und auslaufender

monochromatischer Felder miteinander verknupft, konstruiert werden konnte. Dieser Oper-

ator beschreibt eine unitare Transformation im Raum der Strahlungsfeld- und Geratopera-

toren. Fur absorbierende Vierpole gehort zu jeder Frequenzkomponente der elektromagneti-

schen Strahlung eine SU(4)-Gruppentransformation, fur verstarkende Vierpole eine SU(2,2)-

Transformation. Ausgehend von der unitaren Transformation der Operatoren wurde eine

Transformationsvorschrift fur die Quantenzustande abgeleitet. Explizite Formeln fur trans-

formierte Dichteoperatoren wurden fur ausgewahlte Beispiele wie Fockzustande und koharente

Zustande angegeben.

Durch Anwendung der Quantenzustandstransformation steht der vollstandige Dichte-

operator des auslaufenden Strahlungsfeldes an dielektrischen Vierpolen zur Verfugung, mit

dem Dekoharenz und Verschrankungsdegradation studiert werden konnen. Verschrankte

Mehrmoden-Quantenzustande des Strahlungsfeldes, dessen einzelne Moden durch separate

Vierpole z.B. durch optische Fasern laufen, verlieren ihre Verschrankung aufgrund ihrer Wech-



selwirkung mit der verrauschten Umgebung. Die Quantenkorrelationen, die nach dem Durch-

gang durch optische Fasern noch vorhanden sind, lie en sich aus der Konvexitatseigenschaft

der relativen Entropie nach oben abschatzen (Kapitel 5). Zum ersten Mal konnte auch ein

Ma fur die Verschrankungsdegradation Gau scher Zweimodenzustande, das auf einem Sepa-

rabilitatskriterium fur diese Klasse von Zustanden basiert, angegeben werden. Speziell fur

das gequetschte Zweimodenvakuum wurden numerische Untersuchungen durchgefuhrt, die

zeigten, da die Verschrankung umso schneller abklingt, je mehr davon anfanglich vorhan-

den war. Zudem existiert eine obere Schranke fur die Verschrankung, die durch optische

Fasern gegebener Lange transportiert werden kann. Diese Schranke zeigt die ultimativen

theoretischen Grenzen fur Quanteninformationsverarbeitung mit kontinuierlichen Variablen

auf.

Verschrankungsdegradation ist auch die Ursache fur die Abnahme der Ubertragungsgute

bei Quantenteleportation. Es wurden zwei Modi zierungen des Standardschemas vorgestellt,

die die mittlere Teleportationsgute erhohen (Kapitel 6). Zum einen wurde die Verwen-

dung eines verschrankten Dreimodenzustandes als Verschrankungsresource mit anschlie en-

der geeigneter Messung an der ungenutzten Feldmode untersucht, zum anderen wurde eine

konditionale Filteroperation eingefuhrt.

Das eingangs erwahnte Quantisierungsverfahren wurde auf zusatzliche atomare Quellen

ausgedehnt (Kapitel 7). Dabei wurden sowohl minimale als auch multipolare Kopplung be-

trachtet und elektrische Dipol- und rotating-wave-Naherung durchgefuhrt. Die Anwesenheit

dielektrischer Materie beein u t die Zeitentwicklung der Atomoperatoren. Insbesondere die

Modi kationen der spontanen Zerfallsrate eines einzelnen Zweiniveauatoms in einem ab-

sorbierenden Medium bzw. nahe einer dielektrischen Ober ache wurden eingehender unter-

sucht (Kapitel 8). Aufgrund des konsistenten Quantisierungsverfahrens konnte nunmehr der

spontane Zerfall fur alle atomaren Ubergangsfrequenzen, speziell auch in der Nahe von Res-

onanzen des dielektrischen Mediums, behandelt werden. Dabei zeigte sich, da die Anwesen-

heit absorbierender Materie zu einer starken Abhangigkeit der Zerfallsrate mit der inversen

dritten Potenz des Abstand des Atoms zum Dielektrikum fuhrt, was auf nichtstrahlenden

Zerfall uber resonanten Energietransfer hindeutet.
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