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Zusammenfassung

Das wesentliche Thema in der allgemeinen Theorie der Funktionenraume der ver-
gangenen Jahrzehnte ist die Untersuchung der Zusammenhédnge zwischen Funk-
tionenrdumen, Fourieranalysis und Spektraltheorie von Differentialoperatoren und
in letzter Zeit auch zur Fraktalen Geometie. Wir benutzen in unserer Arbeit sowohl
fundamentale Ideen aus der Theorie der Funktionenraume als auch Methoden der
Fraktalen Geometrie, um die Zusammenhéange zwischen Fraktalen und gewichteten
Funktionenrdumen vom Besov- und Triebel-Lizorkin-Typ, bezeichnet mit B;q (R™, w)
bzw. F, (R" w), zu studieren. In der gesamten Arbeit werden wir Gewichtsfunk-
tionen betrachten, welche zu einer Muckenhoupt Klasse A, mit 1 < p < oo gehoren.
Eine positive Funktion w € LP¢(R™) heifit .A,-Gewicht, falls eine positive Konstante

A > 0 existiert, so dass

(o) " G forena)

wobei B eine beliebige Kugel in R” und | B| ihr Lebesgue-Ma8 ist. Die Klasse A, von
Gewichten wurde von B. MUCKENHOUPT in [Muc72a] eingefiihrt. Er zeigte, dass
die Ap,-Gewichte w genau diejenigen Gewichte sind, fiir die der Hardy-Littlewood-

Maximaloperator

M) = sup ﬁ /B FWldy, @eR?

von L,(R™ w) nach L,(R",w) beschrankt ist. Eine umfassende Darstellung der
Muckenhoupt-Gewichte kann man in dem Buch von J. GARCIA-CUERVA und J.
L. RuBio DE FraNcIA [GR85] finden. Ein systematisches Studium der Besov- und
Triebel-Lizorkin-Raume mit Muckenhoupt-Gewichten wurde in den Arbeiten von H.

Q. But begonnen. Um die Beziehung zwischen Fraktaler Geometrie und der The-
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orie der Funktionenrdume besser zu verstehen, filhren wir die spezielle Gewichts-
r

r

z € R™ und der fraktalen Menge I' ist. Mogliche Kandidaten fiir fraktale Men-
gen I' sind dabei d-Mengen und ihre Verallgemeinerungen, die (d, ¥)-Mengen. Ein

funktion w;, ein, die ein Maf fir den Abstand zwischen einem gegebenen Punkt

Ziel unserer Arbeit ist es, die Interaktion zwischen der Struktur der Fraktale und
der Glattheit der Grundfunktionen mittels geeigneter Gewichtsfunktion w!, zu un-
tersuchen. Ein weiteres Ziel ist, eine atomare Zerlegung fiir gewichtete Funktio-
nenrdume mit Muckenhoupt-Gewichten anzugeben, die fiir den allgemeinen Fall be-
wiesen werden.

In der Theorie der Funktionenrdume sind viele andere Klassen von Gewichtsfunk-
tionen betrachtet worden. Eine der interessantesten Klassen bilden z.B. die soge-
nannten ”zuléssigen Gewichte” (admissible weights). Wir verweisen auf [Tri78] und
[SchT87] fiir weitere Informationen.

In Kapitel 2 wiederholen wir grundlegende Definitionen, legen die Notation fest und
stellen die Konzepte vor. Insbesondere definieren wir die klassischen Besov- und
Triebel-Lizorkin-Réume und stellen einige Ergebnisse bereit. Abschnitt 2.3 dient
der Einfiilhrung und dem Studium der Muckenhoupt-Gewichte. Auflierdem fiihren
wir die Gewichtsfunktion w! (x) = dist(z,')* in der Umgebung von I ein, wobei T’
eine d-Menge mit 0 < d < n ist und studieren ihre Eigenschaften. Das Hauptergebnis
dieses Kapitels besagt, dass eine Funktion w!, genau dann zur Muckenhoupt-Klasse
A, gehort, wenn —(n —d) < »x < (n —d)(r — 1) gilt.

Das dritte Kapitel widmet sich dem atomaren Zerlegungstheorem fiir gewichtete
Besov- und Triebel-Lizorkin-Raume. Wir zeigen, dass jede Distribution f € S&’(R™),
die Element eines Besov-Raumes B, (R", w!)) oder eines entsprechenden Triebel-Li-

zorkin-Raumes Fj, (R™,w},) ist, sich als

)
f(x) = Z Z Avm@um (), Konvergenz in  S'(R"),
v=0mezZ"
darstellen lésst, wobei a,,(x) sogenannte Atome und A,,, Koeffizienten sind. Des-
weiteren zeigen wir, dass eine Funktion f zu einem Funktionenraum genau dann
gehort, wenn die Folge der komplexen Zahlen (\,,,) zum entsprechenden Folgen-
raum gehort. Die Ergebnisse des zweiten und dritten Kapitels basieren auf einer

Zusammenarbeit mit D. D. HAROSKE und sind zur Veroffentlichung angenommen
(siche [HP]).
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In Kapitel 4 wenden wir das atomare Zerlegungstheorem an, um die Spur von
gewichteten Besov- und Triebel-Lizorkin-Raumen auf d-Mengen zu berechnen. Das
Spurproblem fiir klassische Besov- und Triebel-Lizorkin-Raume ist in der Literatur
ausfiihrlich diskutiert worden. Wir verweisen besonderes auf die Arbeiten von H.
TRIEBEL [Tri78] und B. JAWERTH [Jaw77]. Das Problem der Spurcharakterisierung
auf Fraktalen ist erst in der letzten Zeit interessant geworden. Die bisher wichtigsten
Ergebnisse dieser Entwicklung sind in [Tri97, Kapitel 18] zusammengefasst. Unser
Hauptergebnis ist das Folgende. Sei trr der Spuroperator, wie iiblich definiert tiber
punktweise Einschriankung glatter Funktionen auf I' und deren Vervollsténdigung.
Dann gilt fiir 5 > —(n — d)

»x | n—d

trp Bp?miﬂp) (R™, wh) = L, (), 0<p< oo,

wobei wir die Elemente von L,(I") als temperierte Distributionen auf R™ verstehen.
Dieses Ergebnis wurde von einem Resultat von H. TRIEBEL fiir den nicht gewichteten
Fall ( siehe [Tri97, Kapitel 18]) inspiriert. Wir beweisen folgendes Resultat fiir F-
Réume (siche Theorem 4.11):

_x _n=—d_x —d
trp FS (R™, wl) = trr By * (R™) =By, 7 7(T), s> ”T + g, 0<p< oo,

wobei der Spur-Raum Bj (T") in Definition 4.6 gegeben ist. Insbesondere gilt fiir
O<p<lund0<qg<o0

»x | n—d

z4
tr Fyy 7 (R",wh) = L(D).

Am Ende des Kapitels betrachten wir gewichtete Sobolev-Réaume mit der speziellen
Gewichtsfunktion w,(x) = |z, |*. Wir charakterisieren die Spuren dieser Raume auf

(n — 1)-dimensionalen Hyperebenen

k—atl 1
trpa—1 Wj(R”,wa) =B, " (I'), keN, k> a;_ )

Die Ergebnisse des vierten Kapitels sind in der Arbeit [Pio] zussamengestellt und
zur Veroffentlichung angenomen. In Kapitel 5 verallgemeinern wir die Resultate des
vorherigen Kapitels, indem wir die Spuren gewichteter Rdume auf (d, ¥)-Mengen

berechnen.
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Im letzten Kapitel werden wir mit Hilfe der zuvor bewiesenen Ergebnisse, das Ver-
halten der Entropiezahlen der kompakten Einbettung

Byl (R™, wi) — By, (R, wi)

untersuchen. Hier ist I' wieder eine d-Menge oder eine (d, ¥)-Menge. SchlieBlich
geben wir fiir d-Mengen I' noch eine Abschétzung der Approximationszahlen des

Spuroperators der mit w! gewichteten Besov-Riume an, d.h.

1

s n I %(m*f")*_ s n I
er, (trr : By, (R™,w;,) — Ly(T)) ~ ka\ 7 P ~ag(trr s By, (R, w,,) — Ly(I)).



Chapter 1

INTRODUCTION

It is a central topic in the general theory of function spaces during the last decades
to investigate the connection between fractal geometry and function spaces, Fourier
analysis and spectral theory of differential operators. In this thesis we follow a
basic idea to study the interplay between fractal geometry and weighted function
spaces of Besov and Triebel-Lizorkin type denoted by B, (R",w) and Fj, (R",w),
respectively with 0 < p < 00, 0 < ¢ < 0o and s € R. Throughout what follows, we
shall only work with weight functions w that belong to some Muckenhoupt class A,
with 1 < p < oo. Recall that a weight w is said to be an 4, weight, if there exists
a positive constant A > 0 such that

()" G f o)

where B is an arbitrary ball in R” with Lebesgue measure |B|. The class of A,
weights was introduced by B. MUCKENHOUPT in [Muc72a], where he showed that the
A, weights are precisely those weights w for which the Hardy-Littlewood maximal

operator

M(e) = sup ﬁ /B F)ldy, eR®

is bounded from L,(R",w) to L,(R™, w). A comprehensive treatment of Mucken-
houpt weights may be found in the monograph by J. GARCIA-CUERVA and J. L.
RuB1O DE FRrRANCIA [GR85]. A systematic study of Besov and Triebel-Lizorkin
spaces with Muckenhoupt weights was initiated in the works of H. Q. BUI ET AL.
[Bui82, Bui84, BPT96, BPT97|. To investigate the interplay between fractal geom-
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etry and function spaces with Muckenhoupt weights we introduce the special weight
function w!, that measures the distance of a given point 2 € R™ to a certain fractal
set I'. Possible candidates for fractal sets to consider are d-sets and their gener-
alizations (d, ¥)-sets. Our main purpose in this thesis is to study the interaction
between the structure of fractals and the smoothness of the underlying functions
by means of the corresponding weight function wl. Another aim of this work is
to develop atomic decomposition techniques for function spaces with Muckenhoupt
weights, which are proved in the greatest generality.

In the theory of function spaces several other classes of weight functions are consid-
ered. As a class of particular interest we mention the so-called admissible weights.
The interested reader is referred to [Tri78] and [SchT87] for further details.

Let us now present the contents of this thesis in some detail. Chapter 2 collects
fundamental notation and concepts. In particular we define the classical Besov and
Triebel-Lizorkin spaces and present a few aspects of their theory. Section 2.3 is

devoted to a general study of Muckenhoupt weights. Moreover we introduce the
r

S(x) = dist(z,T")* in a neighbourhood of I', where I is some d-set,

weight function w
0 < d < n and study its important properties. The main result in this chapter
states that the function w! belongs to the Muckenhoupt class A, if, and only if,
—(n—d) <x<(n—d)(r—1).

In the third Chapter we will be concerned with an atomic decomposition theorem
for weighted Besov and Triebel-Lizorkin spaces. It is shown that the element f €
S'(R™) in the Besov space B, (R™,w), or in the corresponding Triebel-Lizorkin space

Fj,(R™,w) can be represented as

0o

fz) = Z Z Avmum (T), convergence in  S'(R"), (1.1)
v=0mezZn

where a,,(x)’s are the so-called atoms and the sequence of complex numbers (Ay,)

belongs to an appropriate sequence space. Moreover, based on these sequence spaces

equivalent quasi-—norms for corresponding function spaces are derived. The results

obtained in the second and third chapter are accepted for publication in the joint

paper with D. D. HAROSKE [HP].

In Chapter 4 we apply the atomic decomposition theorem to compute the trace on

the d-set I' of weighted Besov and Triebel-Lizorkin spaces. There is quite an ex-

tensive literature concerning trace problems for classical Besov and Triebel-Lizorkin
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spaces, beginning with the work of H. TRIEBEL [Iri78| as well as of B. JAWERTH
[Jaw77]. The problem of characterizing traces on fractals attracted great attention
rather recently, and important progress had been made in [Tri97, Chapter 18]. Our
main result here is the following. Let trp be the trace operator understood as the
usual extension of the pointwise restriction operator on I'. Then for » > —(n — d)
we have

x n—d

60 B) pintipy R wh) = Lp(D), 0 <p < oo,

where we interpret elements of L,(I') in the usual way as a tempered distribution
on R™. This result has been inspired by the unweighted results due to H. TRIEBEL
[Tri97, Section 18]. We obtain also the following result for F-spaces (Theorem 4.11)

z s—n=d_z n—d

trp F5,(R™ wh) = trp By ” (R") =B, 7 *(T), s>

”
+—, 0<p<oo,
p

where IB%f,q(F) is a trace space according to Definition 4.6. In particular, for 0 < p <1
and 0 < ¢ < oo we have

»x | n—d

tr By 7 (R, ) = Ly(T).
We conclude this chapter by characterizing traces on n — 1 dimensional hyperplanes
of Sobolev spaces with the special weight function given by wq(x) = |2, |*

f—otl 1
trgoos WH(R®,we) = By * (), K€EN, k>0‘; .

The results obtained in this chapter are contained in [Pio].

In Chapter 5 we generalize the results from the previous chapter, computing traces
of weighted spaces on (d, ¥)-sets instead of d-sets.

In the final chapter, based on the result obtained so far, we investigate the asymptotic
behavior of the entropy numbers of the compact embedding

B;im (Rn’ wl;) - ngqz (Rn’ wl;)

Here I' denotes a d-set or (d,V)-set. Finally, we give estimates on approximation

numbers of a trace operator of weighted Besov spaces, e.g.

s n I %(M—%_‘S)_l s n I
er, (trr By,(R™, w;,) — Ly(T)) ~ K4\ » P ~ag(trr s By, (R, w,,) — Ly(I)).



Chapter 2

PRELIMINARIES

2.1 Notation and conventions

In this section we collect some needed notation, which remain fixed throughout this
work. Moreover, we briefly recall the classical notions and definitions that will be
needed in subsequent chapters.

In the sequel, the symbol K stands as a synonym for the scalar field of real numbers
R or complex numbers C. Furthermore, we put Ny for the non-negative integers.
For a real number ¢ let [t| represent the greatest integer less than or equal to ¢,
ie [t] = max{a € Z : a < t}. The positive part of a real function f is given
by fi(x) = max(f(x),0). For two positive real sequences (ay)xez and (by)kez we
mean by ap ~ b that there exist constants c1,co > 0 such that ciap < by < coay
for all k € Z. For two positive functions on general domains or two positive Borel
measures, the notation is defined analogously.

We will denote by R™ the real n-dimensional Euclidean space. The Euclidean scalar
product of z = (z1,...,2,) and y = (y1,...,yn) is given by z-y = z1y1 +. .. + TpYn.
We denote by || the n-dimensional Lebesgue measure of 2 C R™. The characteristic
function of a measurable set € is denoted by xq. For any measurable subset (2 C R"

the Lebesgue space L,(£2), 0 < p < oo consists of all measurable functions for which

I 1261 = ( [ 1) a) N (2.1)

is finite. In the limiting case p = oo the usual modification with the essential supre-
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mum is required. Taking @ = N,Z or Q = {1,...,n} and replacing the Lebesgue
measure by the counting measure produces Lebesgue sequence spaces denoted as
usual by ¢, and £}, respectively. It is known that for 1 < p < oo the space Ly ()
is isometrically isomorphic to the dual space L,(£2)'. Here p’ denotes the conjugate

exponent of p given by 1/p+1/p’ = 1.

Let us now discuss some basic facts from the theory of distributions. Let C'(R™)
be the space of all complex-valued bounded uniformly continuous functions on R",
equipped with the sup-norm as usual. For m € N, C"(R") is the collection of all K-
valued functions f having bounded continuous derivatives D* f with |a] < m on R",
ie C"R") ={f: D*f e CR") forall |a| <m}. Here a = (ov,..., ) € Ny

stands for some multi-index, whose length is denoted by |a| = a1 + ... + ay, and

olal

D
(0% (6% 7
0z - D"

a € Ni;

C™(R") is endowed with the norm ||f|C™(R")|| = Y |D®f|Lo(®™)]. In ad-
la]<m

dition, we denote by C°°(R") the class of all infinitely differentiable functions f :
R" — K.

Furthermore D(Q2) stands for the subset of functions from C*°(R™) with compact
support in 2. The Schwartz space of all complex-valued, rapidly decreasing C°°-
functions on R™ is denoted by S(R™). The space of continuous linear functionals on
D and S will be denoted by D’ and &', respectively.

We define the Fourier transform of a function f € S(R™) by

~

Ff(€) = F(&) = (2m) 72 - fx)e "¢ da.

Here dx denotes n-dimensional Lebesgue measure. The Fourier transform is a one

to one mapping from S(R™) onto S(R™). Moreover,
FUFN =1 feS®Y,

where

FUHEO =@ =0m™" | f@)dde.

Both F and F~! are extended to S’ in the standard way.
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Given two (quasi-) Banach spaces X and Y, we write X — Y if X C Y and the

natural embedding of X in Y is continuous.

We are now in a position to introduce an important tool that will be often used in this
work. For any locally integrable function f on R", we define the Hardy-Littlewood

maximal operator M to be

1
M) =sup [ 1) dy, (22)
B |BlJB
where the supremum is taken over all balls with the center at the point x € B;
B(z,r) = {yeR": ly — x| <7°}, zeR™ r>0.

Moreover, we denote by @, a cube in R™ with sides parallel to the axes, centered

at 27¥m, and with side length 27, where m € Z" and v € Nj.

2.2 Classical function spaces

This section gives an introduction to the main topic of this work: Function spaces
of Besov and Triebel-Lizorkin type. They may be defined in a variety of ways, e.g.
by derivatives, differences of functions, interpolation methods, Fourier-analytical
representations, local means, atomic decomposition, etc.. We restrict ourselves to
those one, which play a pivotal role in our later consideration. Let us begin with
the most common Fourier analytic approach. We first need the concept of a smooth

dyadic resolution of unity.
DEFINITION 2.1. Let ¢ € S(R™) with
supp ¢ C {y € R" : |y| < 2} and plx)y=1 if |z| <1.
Furthermore, we let ¢y = ¢ and for each j € N we put
#1(@) = (27T2) — (27T 1a). (2.3)
Then

o0
> pj(w) =1 forall xecR"
j=0

The system of functions {¢p; };";0 is called a smooth dyadic resolution of unity.
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~

By virtue of the Paley-Wiener-Schwartz theorem, (¢;f)¥ is an entire analytic func-
tion on R™ for any f € S'(R™). In particular (gpjf)v makes sense pointwise. More-
over

oo

j=0
with convergence in 8'(R™). The classical Besov and Triebel-Lizorkin spaces are

defined in the following way.

DEFINITION 2.2. (i) Let 0 < p <00, 0 < g <00, s € R and let {‘Pj}?io be
a smooth dyadic resolution of unity. We define the Besov spaces B, (R") to
be the collection of all distributions f € S'(R™) such that

1/q

17 1By R = | 27| F (o5 FNILpRY)|
j=0

is finite. In the limiting case ¢ = oo the usual modification is required.

ii) Let 0 < p < o0, 0 < qg <00, s€ R and let 1224 be a smooth dyadic

(ii) p q ; ®i}i2o y
resolution of unity. We define the Triebel-Lizorkin spaces Fj (R") to be the
collection of all distributions f € S'(R™) such that

1
~ /q

|1 1@ = || [ Do2NF e FHC | ILp(R™)

=0
is finite. In the limiting case ¢ = oo the usual modification is required.

Let us continue by giving some important comments and remarks.

Remark 2.3. The spaces B, (R") and Fj;, (R") are independent of the particular
choice of the smooth dyadic resolution of unity {¢; };";0 appearing in their definitions.
The proof of this fact may be found in [Tri92]. In particular, both B, (R") and
szq(R”) are quasi-Banach spaces and if p > 1 and ¢ > 1, then both are Banach
spaces. The Fourier-analytic definition of Besov spaces given here is inspired by the
monograph of J. PEETRE [Pee76]. The full treatment of both scales of spaces can
be found in monographs [Tri83], [Tri92] and [Tri06].
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Next, we present the characterization of Besov and Triebel-Lizorkin spaces in terms
of local means. Let ko, k% € C°°(R") with compact support in the unit ball {y €
R™, |y| < 1}, such that ko(0) # 0 and k9(0) # 0. We put

N 1.0 S 82 N 0
kn(y) = A k(;,):(Za—yz) K(y) for NeN.
j=1 "3

Let t >0, M € Ny, and f € S'(R™). We define the corresponding local means by

km(t, f)(x) = / kax () f(z + ty)dy, z € R™ (2.4)

n

We introduce the abbreviations

1 1
o, =n|—-—-1 and op,y=n|——-—1 . 2.5
p <p >+ rq (mln(p, q) >+ ( )

THEOREM 2.4. (i) Let0<p<o0,0<q<o00, and s € R. Let N € N with
2N > max(s, op) then

1/q
[oe)

ko (L, PILpR™) + (D27 lkn (277, )| Lp(R™)]? (2.6)
j=1

(modification if ¢ = o) is an equivalent quasi-norm in By, (R™).

(ii) Let 0 <p<o0,0<qg<o0, ands € R. Let N € N with 2N > max(s,0,) then
o 1/q
ko (L, ) Lp R+ ||| D2 Ukn (279, £)C) | [Lp(R) (2.7)
j=1
(modification if ¢ = 00) is an equivalent quasi-norm in F, (R").

For proof and more details on local means we refer the reader to the monograph
[Tri92, 2.4.6, 2.5.3] and references given there. Note that if we look at [Tri06, (1.42),

Theorem 1.10] we may sufficiently assume above that 2N > s.

2.3 Muckenhoupt weights

The purpose of this section is to review some known facts and definitions on A,
Muckenhoupt classes. Recall that this notion is closely related to the characteriza-

tion of those non-negative measures dp on R™ that satisfy maximal inequalities of
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the form
/ (M f(z))Pdu(z) < A/ | f(@)[Pdpu(z), (2.8)
n ]Rn

for 1 < p < oo, and all f € L,(R", ). Here M is the Hardy-Littlewood maximal
operator given by (2.2). It turned out that (2.8) holds exactly in the case when
dp(z) = w(xz)de and w belongs to the so-called Muckenhoupt A,-class.

In the sequel, let w denote a positive, locally integrable function, i.e. w € Llf’c(R").

DEFINITION 2.5. We say that w belongs to the Muckenhoupt class A, with
1 < p < oo if there exists a constant 0 < A < oo such that for all balls B the
following inequality holds

()" (i frorens)<x o

where p’ is the dual exponent to p given by 1/p’ +1/p = 1 and |B| stands for the
Lebesgue measure of the ball B.

For p = 1 we modify the above stated definition in the following way.

DEFINITION 2.6. A weight w belongs to the Muckenhoupt class A; if there
exists a constant 0 < A < oo such that the inequality

Muw(z) < Aw(x)

holds for almost all x € R™. We also consider the Muckenhoupt class A, defined
by
Ase = | Ap. (2.10)

p=1
Since the pioneering work of B. MUCKENHOUPT [Muc72b], [Muc72a], [Muc73], these
classes of weight functions have been studied in great detail, we refer, in particular,
to the monographs [GR85], [ST89], and [Ste93, Chapter V] for a complete account
on the theory of Muckenhoupt weights.

For convenience, we recall a few basic properties only; in particular, the class A, is

stable with respect to translation, dilation and multiplication by a positive scalar.

We use the abbreviation

where 2 C R" is some bounded, measurable set.
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LEMMA 2.7. Let 1< p < o0.

(i) Ifw € A,, then we have w™? /P € Ay, where 1/p+1/p’ = 1.
(i) w(-) € Ay if, and only if, w(a -) € Ay for a > 0.

(i) w(-) € A, if, and only if, w(- — h) € A, for h € R™.

(iv) w € A, possesses the doubling property, i.e. there exists a constant ¢ > 0 such
that

w(Bg) < cw(B) (2.11)
holds for arbitrary balls By = B(x,r) and By = B(x,2r) with x € R", r > 0.
(v) Let1l<p; <ps <oo. Then we have A, C Ap,.
(vi) If we Ay, then there exists some number r <p such that w € A,.

The proof of (i)-(v) is straightforward, cf. [Ste93, Chapter V]. The extension of
(i)-(iv) to p = oo is clear by (2.10), but there are also counterparts for p = 1.
However, as we are mainly interested in the case p = oo later on, we shall not
discuss it here. We only want to point out that the somehow surprising property
(vi) is closely connected with the so-called ‘reverse Holder inequality’, a fundamental
feature of A, weights, see [Ste93, Chapter V, Proposition 3|. In our case this fact

will re-emerge in the number
ro :=1inf{r :we A} <oo, we Ay, (2.12)

that plays an essential role later on.

Remark 2.8. Obviously, one of the most prominent examples of a Muckenhoupt
weight w € A,, 1 < p < o0, is given by w(z) = |z]¢ with —n < ¢ < n(p —1).
We are, however, more interested in other examples which will be collected below
in 2.11.

Let us recall an important concept from fractal geometry.
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DEFINITION 2.9. A set I' € R" is called d-set, 0 < d < n, if there exists a Borel

measure g in R™ such that supp u = I' and there are constants c1,ca > 0 such that

for arbitrary v € I' and all 0 < r < 1 holds
crd < p(B(y,r)NT) < eprt.

Note that some self-similar fractals are outstanding examples of d-sets. For instance,
the usual (middle-third) Cantor set in R! is a d-set for d = In2/1In 3, and the Koch
curve in R? is a d-set for d = In4/In3. It is well-known that u ~ H9, the d-

dimensional Hausdorff measure, see [Tri97, Chapter 1].

Remark 2.10. The notion of a d-set appears in fractal geometry as well as in the
theory of function spaces. We rely here on the version introduced in [Tri97, Definition
3.1] and [JW84], which is different from [Fal85], see also [Mat95]. Furthermore, this
concept was extended and generalized to (d, ¥)-sets in [ET98], [ET99], [Mou01],
h-sets in [Bri04], anisotropic d-sets in [FT99], [Tri97].

Example 2.11. As promised above, we discuss some examples now, starting from
the trivial (unweighted) case, up to some more interesting ones related to fractal
geometry. We shall allude to these functions (keeping also their special labelling) in

connection with our results below.
(a) wo=1,
(b) Let @ € R and = € R™ We consider the weight

ol |z <1
wo () = loal® lowl < (2.13)

1 otherwise,

(c) Let I" denote a d-set with 0 < d < n introduced in Definition 2.9 and let > € R.
We consider the weight
dist(z,I)*  dist(z,T") <1

wh(z) = - (2.14)
1 otherwise.

Plainly, wy = 1 belongs to all A, classes. Moreover, our intention is to use suitably

weighted spaces and their atomic representations in order to study trace problems
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afterwards. This should contain, in particular, weight functions of type (b) and (c).
Hence, it is reasonable and for our purpose sufficient to consider only weights that
are "locally” (near hyper-planes, fractal d-sets etc.) of a certain A,-type. We now

study the criteria for w, and wl to belong to A,.

PROPOSITION 2.12. Let 1 <p<oo.
(i) Then wq € A, if, and only if, -1 < a <p—1.
(ii) LetT be a d-set in R", 0<d<n. Then w. € A, if, and only if,

—(n—d) <x<(n—d)(p-—1). (2.15)
Proof. Observe that the first part of our proposition is a direct consequence of
part (ii). It follows easily from the second statement by putting d = n — 1 and
I'~{zeR" :xz, =0}
To prove part (i), we first remark that by the definition of wl it is sufficient to
verify the Aj,-condition for balls in a neighbourhood of I'. Furthermore, recall that
weights w € A, possess the doubling property, see (2.11). Hence, instead of dealing
with arbitrary such balls B = B(y, ) in the A,-condition we may restrict ourselves

to cubes Qum, ¥ € Ng, m € Z" only. In order to check the .4,-condition in this case

we estimate the following integral

1
Qum

For k € N we define sets
Sk = {x e R": dist(z,I') ~ 2_k} N Qum
= {x eR™: 27F 1 < dist(z,T) < 27’“} N Qum.

Moreover, for | = 1,..., Ni, let K; denote balls with radius approximately 2% that
cover the set Si; this is indicated in Figure 2.1.
It turns out that Q,,, can be covered by Ji—, Sk. Then we obtain

1 o0
o] / wh(z)dr = 2" / wh(z)dr  ~ 2””2 /wi(w)dm
vm k=v Sk

vm Qum
Nk,y

o0 o0
~ 2”"22*’“‘ /dx ~ 2””22*’“2 /dx.
k=v k=v

Sy =1 g,
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](l

27Vm Sk

Figure 2.1: Definition of Sj

Using the fact that |K;| ~ 27 [ =1,... Ny, we get

1
dCC ~ 21/n 9= %Jrn
| >

vm

Taking into account that I' is a d-set, we conclude that Ny, ~ 2(k=1)d " and this

yields

] |
d.%' ~ QYT 92— %Jrn —v)d
|Quml Z

vm

— gvn— v(setn) 22 (k—v)(se+n—d) —V%ZQ (se4n— d)
k=v

Obviously, the last series converges if, and only if, > > —(n — d). Consequently, we

obtain
1

|Quml

/ wh(z)dz ~ 27VF (2.16)

with equivalence constants independent of v € Ny. On the other hand, with v :=

—p'/p = —3(p' — 1), (2.16) also implies

ﬁ /(wl;(x))_p//p de = |Q1 | /w,l;(x) de ~ 2777 (2.17)

vm Qum
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if, and only if, v > —(n —d), which is equivalent to 2 < L (n —d) = (p—1)(n —d).
Consequently, by (2.16) and (2.17),

p/p’

1 / r 1 / T —p'/p vty 5)
w, (x)dx w, (z dx ~ 2 o~ L
Gl ) O G [ )

vm vm

This shows that w,, € A, 1 < p < o0, if, and only if, —(n—d) < » < (p—1)(n—d),
which finishes the proof.
O

Remark 2.13. In view of Remark 2.8, i.e. [z|? € A, if, and only if, —n < p <
n(p — 1), part (i) coincides with this result for n = 1, and it would also amount to
the ‘limiting’ case I' = {0} (and hence, d = 0) of (ii). However, this case is not ad-
mitted for the d-set I'. Moreover, as already mentioned above, we have wg =1 € A,

1 < p < o0, such that we conclude for the corresponding numbers rg given by (2.12),

(a) ro(wo) =1, wp=1

(b) 79 (wg) = max(a+ 1,1) = , we(x) = |zs|®
a+1 a>0
locally
1 ,—(n—d)<x<0
(c) 7o (wh) = max (n—fd +1, 1) = ,
241, %> 0

wh (x) = dist(z,T)* near a d-set I, 0 < d <n

By (2.10) and Proposition 2.12 we immediately obtain the following result.
COROLLARY 2.14.
(i) wa € Ax if, and only if, « > —1.

(i) Let T be a d-set in R™ with 0 < d < n. Then w., € Ay if, and only if,
x> —(n—d).



Chapter 3

WEIGHTED FUNCTION SPACES

In this chapter we deal with weighted function spaces of type B, (R",w) and
Fy (R", w), where w is a weight function from the Muckenhoupt class A. Our

goal here is to study atomic decompositions of spaces under consideration.

3.1 Introduction

In this section we define the weighted function spaces and recall their basic prop-
erties. In the following, let the weight w > 0 belong to the class A, according to
(2.10) and let {p;}32, be a dyadic resolution of unity according to Definition 2.1.
We define the weighted Lebesgue spaces L,(R™, w) with 0 < p < oo as the collection

of all measurable functions such that

1/p
12 0l = ([ 1@ruts) (3.1)
is finite. Note that for p = oo one obtains the classical (unweighted) Lebesgue space
Lo (R™); we thus restrict ourselves to p < oo in what follows.
Our later argument essentially relies on the weighted vector-valued Fefferman-Stein

inequality for the Hardy-Littlewood maximal operator, recall its definition (2.2).

THEOREM 3.1. Suppose that 1 <p < 00,1 <q <00 and w € Ay,. Then there is
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a constant C > 0 such that

1/q

00 1/q 00
(ZiMmq) LR w)|| < © (qu) |Ly(R", w)
k=1 k=1

holds for any (fi) C Ly(R™, w).

A proof of this crucial result may be found in [Kok78, Theorem 1], [AJ80, Theorem
3.1], see also [Bui82, Lemma 1.1], [GR85].
We are now in a position to state the definitions of weighted Besov and Triebel -

Lizorkin spaces.

DEFINITION 3.2. Let 0 < ¢ < o0, s € R and let {¢;} be a smooth dyadic

resolution of unity according to Definition 2.1. Assume w € Ax..

(i) For 0 < p < oo we define weighted Besov spaces B, (R",w) to be the set of
all distributions f € S'(R™) such that

1/q

£ 1By @™ w)|| = | Y 2| F~ (0, F ) Lp(R", w) | (3.2)
=0

is finite. In the limiting case ¢ = oo the usual modification is required.

(ii) For 0 < p < oo we define weighted Triebel - Lizorkin spaces F (R",w) to be
the set of all distributions f € S§’'(R™) such that

1
~ /q

1 1R w)[| = ||| D2 UF e FHOI | ILp(R" w) (3-3)
j=0

is finite. In the limiting case ¢ = oo the usual modification is required.

Remark 3.3. The spaces B, (R",w) and F}, (R",w) are independent of the par-
ticular choice of the smooth dyadic resolution of unity {¢;} appearing in their defi-
nitions. They are quasi-Banach spaces (Banach spaces for p,qg > 1), and S(R") —
By (R", w) — S'(R"), similarly for the F-case, where the first embedding is dense
if ¢ < oo; cf. [Bui82]. Moreover, for wy = 1 € A, we re-obtain the usual (un-

weighted) Besov and Triebel-Lizorkin spaces; we refer, in particular, to the series
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of monographs by H. TRIEBEL, [Tri78], [Tri83], [Tri92], [Tri97] and [Tri0l] for a

comprehensive treatment of the unweighted spaces.

The above spaces with weights of type w € Ay have been first studied systematically
by H. Q. Bul in [Bui82], [Bui84], with subsequent papers [BPT96], [BPT97]. It
turned out that many of the results from the unweighted situation have weighted
counterparts : e.g. we have ng(R",w) = hp(R",w), 0 < p < oo, where the
latter are Hardy spaces, see [Bui82, Theorem 1.4], and, in particular, h,(R", w) =
L,(R", w) = FIQQ(R",U}), 1 <p<oo, we Ay, see [ST89, Chapter VI, Theorem
1]. Concerning (classical) Sobolev spaces Wlﬂ“(R”,w) (built upon L,(R", w) in the
usual way) it holds W} (R",w) = FIﬁQ(R”,w), E € Ng, 1 <p<oo,we A,
cf. [Bui82, Theorem 2.8]. Further results, concerning, for instance, embeddings,
(real) interpolation, extrapolation, lift operators, duality assertions can be found in
[Bui82], [Bui84], [GR85], [Rou04b].

Later this topic was revived and extended by V. S. RYCHKOV in [Ryc01], including
also approaches for locally regular weights. The latter underwent some renaissance
recently in connection with compact embeddings which will be discuss in Chapter 6.
In particular, starting from the series of papers [HT94a|, [HT94b], [Har95], closely
connected with the proto-type w(z) = (1+|z|?)*/2, a € R, new contributions were
achieved in [HT05], [KLSS06a], [KLSS06b], [Skr], [KLSS], all related to such locally
regular weights. Moreover, T'. SCHOTT obtained some results for exponential weights
[Sch98a], [Sch98b]. In some sense V. S. RYCHKOV introduced a new weight class
.A},OC that contains both Muckenhoupt as well as such locally regular weights. Recent
works, devoted to matrix A, weights in Besov spaces are due to S. ROUDENKO
[Rou04a], [Rou04b], [FR04], see also [NT] and [Vol97] (for some F-cases). We shall

return to this approach in connection with atomic decompositions below.

We recall the definition of Peetre’s maximal function as it plays an essential role in

the proof of the atomic decomposition.

DEFINITION 3.4. Let 7 > 0 and f € S'(R"). For a sequence {¢;} C S(R")

given by (2.3) we define Peetre’s maximal function by

L, T —2z
(63 Prta) = sup LD 2 2)

. f c R™.
e (L4202 ot
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We now present a fundamental characterization of weighted spaces under consider-
ation. The following result is due to H. Q. Bui [Bui82].

THEOREM 3.5. Let {¢;} be a smooth dyadic resolution of unity and let 0 < p <
00,0 < g < o0, s €R and w € Ax with ro given by (2.12). Let (Fp)(0) # 0.

(i) If, in addition, r > %, then

1/q
o0

1F 1B (R w)l|™ = | D2 2715 £)r Lp(R", w)|*
j=0

(with usual modification for ¢ = 00) is an equivalent quasi-norm in B;q(R”, w).
(ii) If, in addition, r > max <%, %), then

1/q

1F 1B B w) |7 = | 2275 O | [Lp(R™ w)
5=0

(with usual modification for ¢ = o) is an equivalent quasi-norm in Fj (R, w).

For a proof see [Bui82, Theorem 2.4] and also the discussion in [Ryc01, Proposition
2.1]. Note that by our remarks in Example 2.11 we have g = 1 in the unweighted
case wy = 1, such that the above setting coincides with the results of J. PEETRE
[Pee75] and H. TRIEBEL [Tri92, Theorem 2.3.2].

We recall some characterization of the above spaces in terms of local means. Let
kn (279, f) be given by (2.4) with ¢t =277, Then H. Q. Bui, M. PALUSZYNSKI and
M. H. TAIBLESON proved in [BPT96], [BPT97] the following result.

THEOREM 3.6. Let 0 < p< o0, 0<g<o0,s€eR, we Ay, and N € N
sufficiently large. Then

£ 1By (R, w)|, = (34)
1/q

ko (L, £) [Lp(R™ w)|| + | D275 ||kn (277, f) | Lp(R™, w)||
j=1
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(with the usual modification for ¢ = o) is an equivalent quasi-norm in By (R, w),
and
1 1Fp (R, w)|, = (3.5)
o 1/q
||k0(1af) |LP(Rn’w)H + Zstq‘kN(2_]af)()‘q ‘Lp(Rn’w)

j=1
(with the usual modification for q¢ = oc) is an equivalent quasi-norm in F; (R™, w).

Remark 3.7. Note that we have actually stated a reformulation of the original
result of H. Q. BUI ET AL. in terms of local means. The same argument as in
[Tri92, Theorems 2.4.6, 2.5.1] may be applied to our case for clarifying the use
of local means instead of convolution. Similar to the unweighted case [Tri92] the
number N has to be chosen sufficiently large depending on s, p, ¢ and - in our case
- g, see also Theorem 3.5 or Theorem 3.11 below.

Note that for F'-spaces one also has the so-called ‘localization principle’ : let w € Ao,
0<p<oo,0<gqg<oo, s€R, and v € S(R"), compactly supported, with

Z v(x —k) =1, z € R". Then
keZn

1/p
15 @ )| ~ (Z Hw-—k)fw;qm",w)up) ,

keZm

see [Ryc01, Theorem 2.21].

Recall that for any m € Z" and v € Ng, let ()., denote an n-dimensional cube with
sides parallel to the axes of coordinates, centered at 27%m and with side length 277,
The main goal of this section is to prove an atomic decomposition result for spaces
of type B, (R", w), F;Q(R", w), w € Ay. For that reason we introduce these special

building blocks, i.e. atoms.

DEFINITION 3.8.

(a) Suppose that K € Ny and d > 1. The complex-valued function a € CK(R") is
said to be an 1x-atom (or simply an l-atom) if the following assumptions are
satisfied

(i) supp a C dQqy, for some m € Z",
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(ii) D%(x)| <1 for |a| <K, xe€R™

(b) Suppose that s e R, 0 <p < oo, K € Ny, L+ 1€ Np and d > 1. The complex-
valued function a € CF(R") is said to be an (s, p) g, -atom (or simply an (s, p)

-atom) if for some v € Ny the following assumptions are satisfied

(i) supp a C dQ,, for some m € Z",
(i) [D%(x)| < g V(s Flel gy la| < K,z e R,

(iii) / Pa(x)de =0 for |8 <L.

When L = —1, we shall mean in (b) that there is no moment condition (iii). In
the sequel, we will write a,,, instead of a, to indicate the localization and size of
an (s,p)k,r-atom a. In order to obtain an atomic decomposition for the weighted
function spaces we still need appropriately weighted sequence spaces byq(w) and
fpg(w). For this purpose we adapt the (matrix-weighted) Besov sequence spaces
used by S. ROUDENKO in [Rou04a] (there are also f-versions in [NT], [Vol97] for
instance). These are weighted counterparts of the original ones by M. FRAZIER
and B. JAWERTH [FJ85], [FJ90], [FJW91]. Note that S. ROUDENKO deals with so-
called molecules to obtain a corresponding decomposition of matrix-weighted Besov
spaces, see [Rou04a, Theorems 11.3, 11.4], whereas we concentrate on very special
molecules, that is, atoms. Moreover, we prefer a slightly different normalization as
already given in Definition 3.8, part (ii) : Following the notation from [Rou04a] let
us write mg,,, = Mum (With compactly supported molecules in obvious notation).

According to condition [Rou04a, (M3), p. 282], we arrive at

(D1, ()| < 203410 (3.6)

v(s—%)—vi
(s=3) 2 My and

compared with (ii) in Definition 3.8(b). Thus we put ay,;, = 2~
have to compensate this in the coefficients by A, = 2V(S_%)+V%X,,m, where Xym
are the coefficients in the corresponding molecular decomposition in [Rou04a]. For

a function f € B, (R", w) we thus get

f= Z Z Xymmym(x) = Z Z )\umaum(x)a

v=0meZ" v=0meZ"
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assuming the first decomposition to hold. In other words, due to this re-normalization
we have to modify the sequence A = {\,, },,,» compared with X from [Rou04a), and
are thus led to an adapted sequence space version for by, (w) accordingly.

For 0 < p < o0, ¥ € Ny and m € Z" we denote by Xl(f;% the p-normalized character-
istic function of the cube @, defined by

vn

wn 2P for x€Qumn
0 for  x¢ Qum.

Simple computation shows that \|X,(,1;2L|LP(R")|| =1.

DEFINITION 3.9. Let 0 < p < 00, 0 < ¢ < 00, w € As, and put A = {\,, €
C : ve Ny, meZ"}. We define

bpg(w) = (3.8)
. 1/q
A= {Dumd A [bpg(w (ZH S X |L n,w)H ) <
mezZ™
and
fpa(w) = (3.9)
1/q
A= D < [|A fpg0)]| = (Z S Pomx @ \) |Ep(®" )| < o0
v=0meZ"

(usual modification for ¢ = 00).
We now discuss our Examples 2.11 from Chapter 2.

Example 3.10. (1) Let us first consider the weight wy(z) = 1. Then we obtain

. 1/q
H)‘ |bpq Wo H = <ZH Z )‘I/mem wO)H )

v=0 mezZ"
1/q

> ( )3 wmip)m = A ol

v=0 \meZ"

Consequently, these spaces coincide with the unweighted spaces b, introduced
in [Tri97, (13.27)]. A similar argument works for f,,(wo) = fpq-
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(2) We consider w!, introduced in Example 2.11(c),

dist(z,I')* dist(z, ') <1
1 otherwise ,

where I' is a d-set, 0 < d < n. We restrict ourselves to the b-case only.

According to Corollary 2.14 (ii), w!, belongs to A if, and only if, » > —(n—d).
Next we compute the norm HX |L,(R", wl)||. From what has been proved

in Proposition 2.12(ii), in particular in (2.16), we conclude that

1/p
w2 1z wb| = |2 [ wbiw) o
Qum
1/p
= ! /wr(x) dz 27 %
|Quml g

rvm
We thus can summarize the above considerations as follows:

— For Q,,, NT = () we obtain that

— For Qum NT # 0 choose ™ in a neighbourhood of T' almost at the
centers 27¥m of a cube Q. It follows that dist(z”™,T") ~ 27" and

for all v € Ng and m € Z".

p
X ILp(R", wo)||” ~ 1.

@ D) ~ |

xh IEp R W) ~ 27 ~ wlganm)

The controlled overlapping of @,,, and Definition 3.9 thus lead to

1A [Byq(wh)]| = (ZH > Amx) 1R wh)| )

v=0 mez"
1/q

[e'e) q/p
5 ( 3 Mumrpwiwm))
v=0 \mezZn
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(3) Replacing w?, in (2) by we from Example 2.11(b), a > —1, we obtain
1/p

XE) [ Lp(R™, wg) || = | 2" / wa(z) dz ~ 27~ w, (2¥™) (3.10)
with "™ ~ 27%m, v € Ny, m € Z", with |m,| < §, and ¢ > 0 small.

Qum

Likewise we arrive at

00 q/p
I [bpg (wa) | ~ | > < > Mum\pwa(w”’m)>

v=0 \mezZ"

1/q

3.2 An atomic decomposition

In recent years it turned out that atomic and sub-atomic (quarkonial), as well as
wavelet decompositions of such spaces are extremely useful in many aspects. This
concerns, for instance, the investigation of (compact) embeddings between function
spaces of the above type, where arguments can be equivalently transferred to the
sequence space setting, which is often more convenient to handle. But this applies
equally to questions of mapping properties of pseudo-differential operators, to trace
problems, and — last but not least — gives a powerful method when dealing with
spaces defined on fractals. The idea of atomic decompositions in the above sense
leads back to M. FRAZIER and B. JAWERTH in their series of papers [FJ85], [FJ90],
[FJWO1], see also [Tri97, Section 13].

Recall our notation

<1 1) ( ! 1) (3.11)
o,=n|—-— , Opg=n|——"—— , .
P p N e min(p, q) N

where 0 < p < 00, 0 < ¢ < o0o. Our main result is the following.

THEOREM 3.11. Let 0 < p < o0, 0 < g<o00, s € R, and w € Ay be a weight
with ro given by (2.12).

(i) Let K,L +1 € Ng with

K> (1+[s])+ and L > max (=1, [0y, — 5]). (3.12)
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A tempered distribution f € S'(R™) belongs to By, (R",w) if, and only if, it can

be written as a series

f= Z Z Avm@um (), converging in  S'(R™), (3.13)

v=0 mezZn
where aym () are 1x-atoms (v = 0) or (s,p)k,r-atoms (v € N) and A € bpg(w).

Furthermore
[ flle = inf [|A[bpg(w)]| (3.14)

is an equivalent quasi-norm in B, (R™, w), where the infimum ranges over all

admissible representations (3.13).
Let K, L +1 € Ny with
K> (1+[s])+ and L > max (=1, [0,/,4 — 5])- (3.15)

A tempered distribution f € S'(R™) belongs to Fy, (R™, w) if, and only if, it can
be written as a series (3.13), where aym(x) are 1x-atoms (v = 0) or (s,p)k, -
atoms (v € N) and X € fpq(w). Furthermore

[£lle = inf [[A] fpq (w)] (3.16)

n

is an equivalent quasi-norm in F;Q(R ,w), where the infimum ranges over all

admissible representations (3.13).

As preparation for the proof of our atomic decomposition theorem we need the

following result by M. FRAZIER and B. JAWERTH [FJ85].

LEMMA 3.12. There exist functions 0,0, po, ¢ € S(R™) with the following prop-

erties
00(&)] >0 for ¢ <2 (3.17)
0(6)] >0 for 1/2<¢l <2, (3.18)
supppo C {£ € R" : [{] <2} and |po(§)| >0 for [€] <6, (3.19)

and

suppp C {€ € R":1/2 <[] <2} and |p(&)| >0 for 3/5 <[] <2 (3.20)

Bo(€)00(€) + > 0(277€)p(277€) =1 for all € € R™. (3.21)
v=1
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A proof is given in [FJW91, Lemma 5.12]. Moreover, according to [FJ85, p. 783], it

is even possible to assume, in addition, that
supp 0 C {z € R" : |z| < 1}, (3.22)
/ 2P0(x)dz =0, |8 <L (3.23)

for a given number L € Ng.

Proof of Theorem 3.11. We divide the proof into three steps. The first two steps
closely follow the argument in [Far00, Section 5.1] (related to anisotropic, un-
weighted spaces), the third step is very similar to [Tri97, Theorem 13.8] (in the
unweighted setting).

Step 1. Assume that f € B, (R",w) or f € F; (R" w), respectively, and let
0o, 0,09 and ¢ be the functions introduced in Lemma 3.12. Short computation
together with (3.21) give

fx) = (60 F HpoF ) (x) + D27 (8(27) x FH(p(27)Ff)) (x)
v=1

= / Oo(x — y)F (o F f)(y)dy
mEZ"Qym
+Z2”” > / - ) F @ IFHW) Ay (3:24)
me "Q Y

with convergence in S'(R™). We define the coefficients and atoms in formula (3.13)

as follows: for each v € N and m € Z™ put

Aom = 2"072)C sup | FH (27 F ()| (3.25)
YEQum
with
C' = max sup |D%0(z)]
lo| <K |z|<1
and

aym(z) = XL 2vm / 0(2" (z —y))F (277 )Ff)y) dy. (3.26)
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Hence by (3.24) the decomposition (3.13) is satisfied. Let us now check that such
a,m are atoms in the sense of Definition 3.8 (b). Note that the support and moment

conditions are clear by (3.22) and (3.23), respectively. It thus remains to check (ii)
in Definition 3.8 (b):

Doam@] = D[k 27 [ 0 — ) F e IEN) dy
Qum
< Ak 2 [0 @ — ) F e IEN) d
Qum
<

—1
Q—V(S—%HW'QV"( sup If‘l(s0(2_”-)ff)(y)|> '

yEQum

[ 1 e EN W) 4y
Qum

< 2—u(s—%)+u\a|’

as desired. The modifications for the terms with v = 0 are obvious.

Step 2. Next we show that there is a constant ¢ > 0 such that
[Abpg (W)l < cl|.f [Bpg(R™, w)],

similarly for the F-case. For that reason we exploit the equivalent quasi-norms
given in Theorem 3.5 involving Peetre’s maximal function, see Definition 3.4. Let
us fix v € N. Taking into account that ) ;. Xum(z) = 1 and |z — y| < 27 for
z,y € Qum we obtain

ST umxBi@) = 276700 YT sup |FTH 0@ FN )] 277 Xuml(®)

mezn mezn YEQum
F U@ )Ff) = 2)]
< (728 sup ‘ 1+2%|2])"
! ( vy TR
< G2 27(p) f)r(@) (3.27)

for arbitrary r > 0, with ¢, = ¢(277-). Hence, combining the monotonicity of the

quasi-norm with the summation over v € N yields
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o9 q 0
ST A xBUL R, w) || < D27 |93 )| Lp(R, w) |
v=1 ||lmezn v=1

Finally, choosing r > % sufficiently large, the last inequality (which is by the same

argument also true for v = 0) jointly with Theorem 3.5 (i) gives

e}

1/q
[A|bpg(w)]| < ¢ <Z 2+ H(‘PZJC)T’LP(anw)Hq> < | f |Bpg(R™, w)]l.

v=1
This finishes the proof of the inequality in the B-case. Concerning the F-case, (3.27)

and the monotonicity of the quasi-norm imply

1/q

fe'e) 1/‘1 00
<Z > |Aumx9;z<->|q> Ly (R™,w)| < c <Z2”q<sozf>r<->q> |Lp(R™, w)
v=1

v=1meZ"

Consequently, the desired inequality follows from Theorem 3.5 (ii) applied in the

same way as before, now with r > max %, % . Indeed, we have
[ee] 1/q
AL fpg(w)]| < ¢ <Z 2”Sq(¢$f)r(')q> |1 Lp(R™, w)|| < c[If [Fpy(R™, w)],
v=1

which establishes the inequality in the F'-case.

Step 3. To prove the converse we assume that f € §’'(R™) possesses the represen-

tation

oo
=3 Amtm(@)
v=0 mezZn
with K and L satisfying conditions (3.12), where a,,,(x) are corresponding atoms
according to Definition 3.8. We first consider the F-case and show that
1f [Fpy(R™ w)|| < el[Alfpq(w)]], i-e. the ‘if’-part in the F-case. Our argument essen-
tially relies on the characterization of function spaces by local means in Theorem 3.6.
In view of (3.4), (3.5) we thus have to deal with terms of type ky (277, aym). Let
us fix v,j € Ng, m € Z" and x € R". We shall first assume that j > v. According
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to the definition of local means (2.4), we obtain

V(27 avm) (@) = 2° / k() Gy (2 + 279y) dy

= s ANEC () aym(x + 277y) dy. (3.28)
]Rn

Let us temporarily write the atoms a,.,(x) as

aym(x) = 2_V(8_%)a”m(2”x —m) (3.29)

such that a”(z) are 1x-atoms with respect to the unit cube centered at the origin.
To simplify our proof we consider only the case K even, say K = 2M, and leave it
to the reader to find the necessary modifications otherwise. Let us choose N > M.
Combining (3.28) with (3.29) and integrating by parts leads to

2N (277, aym) (x) = 2575 [ AN (y)at™ (2% + 29Ty — m) dy
Rn

— 9~ (K=9)T=)+5 . AN=ME0 ) (AMa”m) (2Vz + 2Ty —m) dy.

The support properties of k¥ and AMa*™ imply that
25 kn (277, apm) ()] < ¢ 27 E=80=I5P) (1) for j>w. (3.30)

Here S(Vl(,%(x) stands for the p-normalized characteristic function given by (3.7) with

cQum instead of Q.

We now consider the case j < v. Observe that in this case we may restrict the

integration in (3.28),
25kn (277 aym)(z) = 2js/ En(Y) aym(z +277y) dy
21 (s+n) / kn (2jy) aym(z+y)dy  (3.31)
ly|<c2-7

to the set {y : |y| < 277} for appropriate ¢ > 0. We write the Taylor expansion of
kn(27-) at 27¥m — x up to order L as
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kv (@) = 3 esl@)(y — 27 m +2)° + V0w +y - 27 m). (3.32)
|BI<L

We insert (3.32) into (3.31) and observe that by the assumed moment conditions
in Definition 3.8 (iii) the terms with |3| < L vanish. On the other hand, Defini-
tion 3.8 (i), (ii) yields that |aym(z+y)| < 271/(57%)521,”1(1' +y), where Xum(z) is the
characteristic function of the cube dQ,,, such that

2Js ‘k:N(2_j,an)(x)‘

< 2/(stn) / 2UHDO(|z 4y — 27m| ") |aym (= + y)| dy

ly| <277
I e (3.33)
ly| <277
Additionally, we have
/ Xom(z +7) dy < e 27" x (2" Qum) (), (3.34)

ly|<c2—J

where x(c2"77Q,m)(x) denotes the characteristic function of the cube 2 ~7Q,, =:
Qo. The last part of the proof is based on estimates for the Hardy-Littlewood
maximal function given by (2.2), essentially using Theorem 3.1. We obtain for any
z € Qo,

(MXym)(x) ~sup Q| / o ()] dy = [Qo| 127" > 2~ I, (3.35)
Q

where the supremum is taken over all cubes ) with x € (). Consequently, with
0 < 0 < min <1, 7%, q) we obtain from (3.34) and (3.35) that

/ Xom(@ +y) dy < ¢ 2772 D% (Mye, )2 (). (3.36)
ly|<c2—J
(p)

We now insert the last estimate into the formula (3.33) and replace xum by xvm to

conclude

2 kn (27, aym) (2)] < 27 CTDEHAETD (A BDoye (1) for @ € R
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We observe that by (3.15) and (3.11) the number ¢ may be chosen in such a way

that s + L +1+n — 2 is positive, as L > max (—1,[o

p/T0,q 5]) implies that

1
5+L+1+n>nmax<1 — @> >2.
¢ p 0

Thus for 7 > 0 we obtain

295 |k (277, aym ) (2)] < ¢ 27T (MNP e () for j<v, zeR".  (3.37)

Let us first finish the proof for the F-case. Putting together the estimates (3.30)
and (3.37) yields for ¢ <1,

q

2759 | ey <2j,2)\yma,,m> ()
<e¢ ZZ’)\ |12 PG) )+ ¢ ZZ’)\ |27 T J)q(MX(p)Q)%( )
v<jg m v>j m

for some appropriate p, 7 > 0. Observe that the same conclusion can also be drawn
for 1 < ¢ < co. Summing over j, taking the 1/¢g-power and afterwards the L,(R", w)-

quasi-norm we obtain

[oe)
E 2Jsq
Jj=1

1/q

| Lp(R", w)

q

ij <2j’ Z Aumaum> ()

1/q

1/q
(ZIA M) >5<->> Lp(R", w)

~(p) (p)

Since we may replace Xym by Xim, the first summand on the right-hand side can
be estimated from above by ||A|fpe(w)||. To deal with the second summand on the

right-hand side, we observe that it may be written as

Qo
LS}

Lp(R™, w)||

(Z (Mg2,,) <->%>

v,m

2
4
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with g,m(z) = )\VmX(VI;?)I- Finally, we apply Theorem 3.1 with p’ = ’—Q’ > rg > 1,

¢ =%>1and we Ay (as p’ > ro, recall (2.12) and Lemma 2.7 (v)), which estab-
lishes the desired inequality.

Concerning the B-case, the above argument can be immediately transferred, now
assuming 0 < ¢ < min <1, 7%). Again, we combine estimates (3.30) and (3.37) and
use the monotonicity of the L,(R", w)-quasi-norm and triangle inequality to obtain

for arbitrary 0 < ¢ < oo,

kn <2—J‘ >y )\,,ma,,m> |L,(R™, w)
<c Z

q
27sq

q
5 dun2 ) 1,

v<jll m
L q
+ e S {> Mn2 D (B e | Ly (R, w)
v>j il m

for some p and 7 positive. Summing over j € N and applying the (scalar) Hardy-
Littlewood maximal theorem to the second summand on the right hand side results

in the desired inequality. The same conclusion can be drawn for » = 0 and/or j = 0.

O

Remark 3.13. The unweighted version of the above decomposition result may
be found in [Tri97, Theorem 13.8]. As already mentioned, first results on atomic
decompositions of that type go back to M. FRAZIER and B. JAWERTH [FJ85], [FJ90],
[FJWO1]. In [FJ90, Proposition 10.14] there is even an atomic decomposition result
for homogeneous weighted F-spaces, whereas in [Rou04a, Section 11] we find results
for (matrix-valued) weighted Besov spaces, 1 < p < oo, as already mentioned. In
the same context an extension to 0 < p < 1, w € Aj, can be found in [FR04]. For
recent results in this direction we also refer to [Bow05] and [BHO06].

Finally, related wavelet results are given (in different situations) in [NT, Sections 9,
11], [Vol97] (concerning Haar and bi-orthogonal wavelets), and [Lem94] for L,(R,w),
w € Ap, 1 <p < oo, with compactly supported wavelets.

For later use we formulate a special case of Theorem 3.11 where w = w!, from
Example 2.11 (c); recall Remark 2.13 (c).
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COROLLARY 3.14. Let 0 < d < n and let T be a d-set in R™ in the sense of
Definition 2.9. Moreover let wk, be the weight introduced in Ezample 2.11 (c) with
x> —(n—d), androzmax<n—’_‘d+1,1). Assume 0 < p < oo, 0 < g<oo, seR.
Let K, L +1 € Ny with

K> 1+[s])+, and L >max (1,0, —s]). (3.38)

Then f € S'(R™) belongs to ng(R",wE) if, and only if, it can be represented as

f= Z Z AvmGum (), converging in  S'(R™), (3.39)

v=0 meZm

where aym () are 1x-atoms (v = 0) or (s,p)k.-atoms (v € N) and X\ € bpy(wl)).

Furthermore, taking the infimum over all admissible representations (3.39) of

1/q

00 q/p
I\ lbpg (Wil ~ D < > \Aum\pWE(x”’m)> ) (3.40)

v=0 \meZ"

we obtain an equivalent quasi-norm in B;q(]R",wE), where x¥"™ ~ 27Vm, v € Ny,
m € Z". In particular, for —(n—d) < » <0 we can replace (3.38) by its unweighted
counterparts,

K> ({1+]s])+, and L >max(—1,[op—s]), (3.41)

such that for s > o, no moment conditions are necessary for the corresponding
atoms in (3.39).

Remark 3.15. Plainly, when dealing with w = w, from Example 2.11 (b), we
have a similar result, now with rg = max(a +1,1), « > —1; cf. Remark 2.13 (b).
Likewise, we regain the unweighted conditions (3.41) for —1 < a < 0, and need

consequently no moment conditions if, in addition, s > o,



Chapter 4

TRACES ON FRACTALS

The main purpose of this chapter is to present a solution of the trace problem
r

i

for the weighted Besov spaces B, (R",w ) and weighted Triebel-Lizorkin spaces

F;q(R”,wE), where the underlying weight w!, is a function given by (2.14). The
treatment of the fractal trace problem for weighted function spaces has been inspired
by the unweighted results due to H. TRIEBEL [Tri97, Chapter 18]. The correspond-
ing trace operator trr shall map weighted function spaces of type ng(R”, wi) and
Py (R™, wl)) into suitable function spaces on I'. The basic idea is to investigate the
interaction between the structure of fractals and the smoothness of the underlying
functions by means of the corresponding weight function. The essential tool in prov-
ing our results will be atomic decomposition of function spaces with Muckenhoupt

weights, see Chapter 3. The results obtain in this chapter are contained in [Pio].

4.1 Traces

There is a variety of literature on traces on R™ both for Besov and Triebel-Lizorkin
spaces, but the systematic study of trace problems in the framework of fractal sets
started rather recently in [Tri97] only. This section contains results on traces of
classical Besov spaces on fractals. Let us start by summarizing unweighted results
in this direction. Recall that for x = (', z,) € R” with 2/ € R"~! the mapping

trgn—1 @ f(x) — f(2',0) (4.1)
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is called the trace of f on R"~!. In other words, trgs—1 restricts functions on R” to
the hyperplane H = {z € R" : z,, = 0}. Given a function space X C D'(R"), the
trace problem consists in finding a space Y C D'(R"~1) such that trgn—1 is a bounded
linear surjection from X to Y. There is quite an extensive literature concerning trace
problems for classical Besov and Triebel-Lizorkin spaces, beginning with the work of
H. Triebel [Tri78] as well as of B. Jawerth [Jaw77]. The interested reader is referred
to [Tri92, Chapter 4.4] for a new approach to this topic using atomic decompositions
and local means techniques. The following theorem gives the complete answers to

the trace problem in the case of a hyperplane R"~1.

THEOREM 4.1.

(i) Let0<p,qg<oo ands— % > (n— 1)(% —1)4. Then we get

S

_1
trga-1 Bi,(R™) = Byg " (R ). (4.2)
(ii) Letn>2,0<p<oo and 0 < ¢ <min(l,p). Then we get
1
trgn—1 Bpy(R™) = L,(R™1). (4.3)

Classical references for trace problems in that case are [Tri92, 4.4.1 and 4.4.2]. We
shall now extend assertions of type (4.3) to the case of suitable compact d-sets
instead of hyperplanes in R”~!. In the sequel any function f € L,T),1<p< o0,
will be interpreted as a tempered distribution f € §’'(R™) given by

f(tp)=/Ffr(v)(<p\r)(7)u(dv)7 p € S(R™),

where the restriction ¢|T" of ¢ is understood pointwise and u is a Radon measure on
I'. We explain the fractal counterpart of (4.1) now.

Let us temporarily consider a closed set I' C R"” with |I'| = 0 and assume that
there exists a Radon measure p on R™ with supp(u) = I'. Therefore the restriction
trp ¢ = @|I" understood pointwise is well-defined for any ¢ € S(R™). Moreover let
us suppose that for s > 0 and 0 < p,q < oo there is a constant ¢ > 0 such that for
all ¢ € S(R™),

r

ltrr ol Lp (D] < cllp| Bpg (R, wi, ). (4.4)
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Since the Schwartz class S(R") is dense in Bj, (R™,wl,), the inequality (4.4) may
be extended by completion to all f € B;q(R",wg). The resulting limit of trr ¢
will be denoted by trr f. Note that it is independent of the approximation of f €
Bs,(R", wh) by S(R™)-functions due to (4.4).

We first recall what is known on traces of unweighted Besov spaces on a d-set I'.

THEOREM 4.2. Let T’ be a d-set with 0 < d < n. Moreover let 0 < p < 0o and
0 < ¢ <min(1,p). Then

n—d

trr By (R™) = Ly(T). (4.5)

n—d

The interpretation of the equality (4.5) is that trr f € Ly(I") for any f € Bpy (R™),
n—d
and that any f¥' € L,(T') is a trace of a suitable g € B,y (R™) on T in the above
described sense with oy
IFILp(T))| ~ inf [lg | Bpd (R™)]),
n—d

where the infimum is taken over all g € Byl (R™) such that trr g = fT.

For a complete discussion and proof we refer to [Tri97, Theorem 18.6, Corollary
18.12] in connection with [Tri01, Remark 9.19]. The interested reader will find there

also further references.

4.2 'Traces of Besov spaces on fractals: a heuristic ap-

proach

From now on let 0 < p < 00, 0 < ¢ < 00, 0 € R. We will work in the framework of
a d-set T' as introduced in Definition 2.9 with 0 < d < n . Moreover let w, be the
weight according to Example 2.11(c) and » > —(n—d). Recall that by Theorem 3.14
the question whether a tempered distribution f € S’(R™) belongs to the weighted
Besov space ng(R”, wg) can be equivalently expressed in terms of sequence spaces,

A€ bpq(wg), where we use the appropriate atomic decomposition in the form

F=Y2)" Mmtum(@) (4.6)

v=0 meZm
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with suitable coefficients A, and (o, p)-atoms a,,,. In the sequel we shall divide

the summation over m € Z" in (4.6) with respect to the following "remainder” set

Ir, = {m € Z" : dist(T',supp avm) > 27"}, v €Ny, (4.7

i.e. for m € Ir, the supports of the corresponding atoms have an empty intersection
with I". To shorten the notation we utilize the following abbreviations for respective

sums,

)ORED DR D DD S (45)

mGZ”\Ip’V meZ" meIF v mezZm"

I
such that Z collects all atoms with a support near to I', and Z the remaining
ones, that are less important for trace problems on I'. This notatlon allows us to
write (4.6) as

F=> ZF’VAymaym +Z Yo Avmtum(@). (4.9)

v=0 meZn v=0 meZn

Subsequently, we simplify the writing by denoting by f!" and fr the first and second

sum, respectively, i.e.

Z Z Aom@um  and fr—z Z Ao Gum.- (4.10)

v=0 mezZn v=0 mEZ"

A careful look at (4.7) shows that fr has no influence on the trace problem on I'". It
implies that trr aym,(z) = 0 for m € Ir,. Consequently, f and fT possess the same

trace on T,
trp f = trp fF.

Assume for the moment that f € S(R™) and the trace is taken pointwise; recall
that S(R™) is dense in B;q(]R",wi) for ¢ < co. Let us now consider the following

reformulation of fF,

=3 Y () (2 aml@) =3 X Mm@, (411)

v=0 meZ" v=0 mezZn
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where X,,m = )\,,mQﬂ'% are new coefficients and a,,, = 2V%a,,m are (o — f,P)K,L-
atoms, accordingly. Let fU be given by (4.11) with \,,,, =0, m € Ir ., v € Np.
Note that for m € Iy, we have wg(x”’m) ~ 1 and for m € Z"\Ir, we obtain that

wl (z¥™) ~ 27>, Applying Theorem 3.14 jointly with its unweighted counterpart
for w = 1, see also, [Tri97, Theorem 3.8 p.75], to (4.11) yields

a/p\ Y4
o—Z ~ >0 v
2w < [ = 32 37 =)
v=0 \mezn"
S cl H)\‘ bPQ(wE)H S CI/ Hf’ B]()Tq(RnawEH ) (412)
for suitably chosen {\,,}, i.e. f € ng(R"’wE) implies ! € B;;;(R"),
Assume for the moment that o — £ = ”T?d, ie. o= —”Jr;*d >0, and tip f = fI' =

»x+n—d

trp f. Then f € BS (R, w}) leads to trp f € Ly(T), that is trp By © (R™, w}) C
L,(T'), see Theorem 4.4 below.

4.3 Traces on fractals of weighted Besov spaces

Before we get on to the main point of this section we recall a definition which plays

an important role in our later consideration.

DEFINITION 4.3. Let I" be a non-empty Borel set in R” with |T'| = 0. We say
that T' satisfies the ball condition if there is a number 0 < 1 < 1 such that for any
ball B(z,r) centered at z € T' and of radius 0 < r < 1 there is a ball B(y,nr)

centered at some y € R™, depending on «x, and of radius nr with
B(y,nr) C B(z,r) and B(y,nr)NT = 0. (4.13)

Note that any d-set possesses this feature, see [Tri01, Proposition 9.18].
We can formulate the first main result of this chapter, which extends Theorem 4.2

to the weighted case.

THEOREM 4.4. Let0 <d <mn, x> —-(n—d), 0 <p < oo, 0<qg < min(l,p)
and let " be a d-set. Then we have

x4 n—d

trp Bppq ! (Rn7 wF) = Lp(r)a (414)

i
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»x | n—d

in the sense, that trp f € Ly(I") for any f € Bp;quT(R”,wE) and any fr € Ly(T)

x| n—d

is a trace of a suitable g € Bg, * (R™,wl) on T and

n—d

X x4 h-a
£ [ Lp(D)| ~ inf (|g |Bgg 7 (R, wl,)

9

»x | n—d

where the infimum is taken over all g € By 7 (R™,wL) such that trr g = fT.

i

Remark 4.5. The discussion on weighted Triebel-Lizorkin spaces Fj, (R",w) with
0<g<o0,0<p<oo, s€Rand we Ay will be postponed to the end of this
chapter.

Proof. Our proof is based upon ideas found in [Tri97, Theorem 18.6]. We essentially
make use of the atomic decomposition techniques from Chapter 3.

Step 1. Let us assume that 0 < p < o0, 0 < d < n and 0 < ¢ < min(1,p).

We first prove that

x| n—d

trr B, 7 (R™,wh) ¢ Ly(T). (4.15)

We start with ¢ € S(R™). This causes no loss of generality, since the Schwartz class
»x | n—d
S(R™) is dense in B» T 7 (R",wl), see [Bui82]. We recall that for ¢ € S(R™) the

»

restriction operator trp ¢ = @|I" is meant pointwise. We consider an optimal atomic

»x | n—d

_+_
decomposition according to Theorem 3.14 of ¢ € S(R") in B, * (R*,wl),

»

Y= Z Z )\Vman(x)7 (416)

v=0 meZm

such that

n—d

1+_
Hsol BT @, ol ~ A b (4.17)

Here the coefficients \,,, and the (%ﬂ p> -atoms a,,, have the same meaning as
explained in Definitions 3.8 and (3.8). In particular, according to Definition 3.8 we

have that supp aym C bQ.m and



TRACES ON FRACTALS

(@) <277 CF=E) 2057 ez e, (4.18)
Proceeding exactly as in Section 4.2 let us consider a decomposition ¢ = ¢! + or,
such that ! collects all atoms with a non-empty intersection of their support with
I', and ¢r being the rest.
Assume first that 0 < p < 1. In view of (4.17), to prove (4.15) we have to find an

estimate from above of the quasi-norm

x| (D))" = / (P (dy) + / lor (1) Pu(d) (4.19)

by the quasi-norm H)\\ bpg(wh) H Taking into account that a,,, NT' = () for all atoms
belonging to the representation of ¢r, we immediately get that the last integral in

(4.19) does vanish, since then [;. [¢r(y)[Pu(dy) = 0. Hence we have

[trr o] Lp(D)[I” < Z/ ZFW)‘Vmavm(’Y) n(dy)
v=0 r mezZmn
< e X Wl [ lam)Put@). (420)

v=0 mezn
Recall that
Z _ ZF,V’
meZ™\Ip,, mez"
i.e. we consider only atoms with a support near I'. The rest of the atoms play no
role for a trace problem on I'.
Let us turn our attention to the last integral in (4.20). Since u(T' N Qym) ~ 27 by
Definition 2.9 and (4.18) we obtain

/p (NP () < 2" (T A Q) ~ €277,

Plugging the above estimate into the last term in (4.20) yields

ltre ol L) < ¢ 30 S PumlP2 % <& A byl (421)

v=0 mezZn
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where the last inequality holds by virtue of ¢ < p and (3.40). Consequently, by
(4.17) for 0 < p <1 and ¢ < p we have

n—d

x4 n—a
ltrr ¢ |Lp(D)| < ¢ H)‘ | bpq(wg)H <|l¢|Bgg T R w,) (4.22)

For p > 1 we use the triangle inequality to get

o] 1/p
T U
ltrr | Ly(D)|] < ¢ (Z > Puml’2 ) <A fopr(wl)]] < A [bpg (wh)]]-

v=0 meZ"
(4.23)
Again, the last inequality holds by virtue of ¢ < 1. Finally, we arrive at
x4 n—d r
[trr o] Ly(D)|| < ¢ i@l Bpg * (R, w,) (4.24)

with 0 < p < 0o, 0 < ¢ < min(p, 1), which proves the inclusion (4.15).

Step 2. Let 0 < ¢ < min(p,1) and max (d;",()) = (d;”)Jr < p < oco. We give a

n n
proof of the reverse inclusion

»x_ n—d

Ly,(T) C trr By 7 (R™, wh). (4.25)
We shall adapt the arguments used in Step 2 of the proof of Theorem 18.2 of [Tri97].
It is known that D|r is dense in L,(I"). Thus, we may work without loss of generality
with ¢ € D(R™). Moreover assume that ¢|r # 0 and consider the neighborhood of
I" given by

Ty = {CE e R": dist(z,T") < 24{“‘} .

By compactness of I' together with properties of the Hausdorff measure, there are
open balls B(zj,r) with j = 1,..., N centered at I' with the same radius r» > 0
depending on the covering that cover I'. Note that I';, C Ujvzl B(xj,r), where k

depends on the given covering.
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Now, let {¢; };VZI be a smooth resolution of unity in a neighborhood I'y, of I'N'supp ¢

adapted to (B(zj,1))Y

j=1- In particular, we have Zjvzl @j(x) =1 for € supp ¢

and supp p; C B(zj,r). Let us now put A\; = maxX,ep(e;,r) l¢(x)]. Then, by the

properties of the above defined resolution of unity we get

N
o(@) =D e@es@) =D A [N @ @), (4.26)
j=1

where terms with \; = 0 are omitted. Let us define

M= A and ai@) = A e(2)e; ().

We obtain that supp a; C B(xj,r). Furthermore, choosing r > 0 small enough, we

get

d—s n—d_ »x_n
jaj(@)l = P57 gy ) < 05455
J

and analogous estimates for all D*a;. We thus can consider a; as ("‘ﬁ‘“‘,p) -
KL

atoms according to Definition 3.8. It follows from the assumption p > (d*T”) n

that %‘ >n <% - 1) . Therefore, moment conditions as needed in (3.41) may
Jr
be omitted. Once again, using the atomic decomposition method together with

properties of the weight w!, we may estimate the quasi-norm of (4.26) as follows,

n—d+sx

lo 1Bpg 7 (R, w5

1A [bpq (w3

IN

1/p

IN

N

o | SO 1R )|

j=1

Let us again choose r > 0 arbitrarily small. A straightforward computation shows

that ng()m " |Lp,(R™, wh)|| ~ 7. Moreover we have u(B(zj,7)) ~ r? by Definition
7

2.9. Proceeding further as in the Riemann integral construction we arrive at

1/p
N
ST 8, iEn e[| <clureln @l @)
j=1
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Hence, we have proved that
n—d+x
o |Bpg " (R™ wl)|l < elltrr ¢ [Lp(D)]l, ¢ € DR™). (4.28)
The rest of the proof goes through as for [Tri97, Theorem 18.6], with hardly any
changes: for convenience, we include the argument here. It follows from density of
D|r in Ly(I") that any f € L,(I') can be represented in the form

f)=Y_1i(y), ve€T, feDR") (4.29)
j=1
with
0 < | trr f5 [Ly(D)| < ¢ 277\ f| Ly(D)|l, j €N, (4.30)

Thus by (4.28) we have
n—d+x r
/
1£5 1Bpg * (R™ w3 )| < &l trr f5 [Lp(D)]]- (4.31)
Now we may define an extension operator in the following way,

o n—d+sx
extf =Y fj €Bp” (R™wl), trrextf=f. (4.32)
j=1

By virtue of (4.29) and (4.30) we obtain

n—d+x

lextf [Bpg 7 (R™ w3 )l < €|If |Lp(D)]- (4.33)

This finishes the proof of (4.25).
Step 3. To complete our proof we have to extend the result of Step 2 to p > 0,
i.e. for x < d. Let us assume now that 0 < g < p < d%” Analysis similar to that

in the proof of [Tri97, Corollary, 18.12] shows that for <%‘ , p)K s atoms we do
not have moment conditions for ¢y, in (4.26) by property (3.38). Let B(y;,nr) be

a ball with the condition (4.13) which can be written, after easy reformulation, in

the following form
dist(B(y;,nr),T) > 1r-. (4.34)
We follow the argument in Step 2 replacing ¢p; by the function

Yi(z) = (pp))(®) + x;(2),
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where supp x; C B(y;j,nr) and 1; is an <%‘,p) -atom with moment conditions
according to Definition 3.8 with L > max(—1,0,/,, —s) . This is a somewhat tricky
construction and can be found in the proof of [TW96, Theorem 3.6]. The atoms
¢p; and 1; coincide in a neighbourhood of I due to (4.34). Now we can use the
argument of Step 2 again. The proof of Theorem 4.4 is thus complete.

O

In the concluding part of this section we shall work with Besov spaces introduced in

terms of traces on fractals, and recall their definition first.

DEFINITION 4.6. Let I' be a d-set in R” according to Definition 2.9 with 0 <
d<n.Let s>0,0<p<o0,and 0 < g < oco. Let us define

s4n=d

BS,(T) = trp Byy 7 (R"). (4.35)

We equip this space with the quasi-norm

—d

If 1B, (D) = inf |lg] Boa 7 (R, (4.36)

n—d
where the infimum ranges over all g € B;q P (R™) with trp g = f.

In a natural way we extend this notation to weighted spaces B;q(R",wl;): by
trr B, (R™, w) we mean the collection of all f € L,(T") such that there exists some
9 € Bjy(R", w,) with trp g = f, and |[f |trr By, (R™, wl)|| = infllg | By, (R™, w)],

where the infimum is taken over all g € B;Q(R", w!) such that trpr g = f. Concerning

the fractal trace problem we get the following statement.

THEOREM 4.7. Let 0 <d<n,s>0,0<p<o00,0< qg<o00 and —(n—d) <
x < sp—(n—d). Then
_n—d

trr B, (R™, wk,) = Byg 7 (D).

Proof. The idea of the proof is to use Definition 4.6 together with the observation
that

z
P

trr B3, (R™, wh) = trr Byq ” (R™), (4.37)
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with the parameters given above. Afterwards we apply (4.35) to s’ = s—Z— n—d -,

PP
i.e. such that s’ + "%d =5 — %‘. This leads to
trp BS, (R™,wl,) = BS, (),

that is, the desired result. Moreover, as will be clear from the argument below, it is

sufficient to deal with the inclusion
trr B3, (R, wh) < trr Bpg * (R™) (4.38)

only, the converse assertion follows by parallel observations.

We consider some f € trpB;q(R",wF). Let € > 0. By the definition of this space

i

there is some g € B, (R", wl) such that trrg = f and

lgl Bpo(R™,wh)|| < [1£] tre Bpy(R” wh)|| + 5. (4.39)

We take the atomic decomposition of g in B, (R", wh),

g = Z Z )\Vmaum(x)y (440)

v=0mezZn

where A\, € C are coefficients and a,,(x) are (s, p)k, r-atoms in the sense of Defini-
tion 3.8. In view of Theorem 3.14 we have to choose K > s, L > max(—1, [0}/, —$])

with ro = max (%5 + 1,1); so let us assume

K > max(s,s — f)
p

and (4.41)
>
L > max <—1, [ap/m — s] , [ap —s+ ;}) .

Thus Theorem 3.14 implies that we find a corresponding atomic decomposition (4.40)
with (4.41) and

M Bpa (L] < gl Bpg®",wl)]| + 5. (4.42)
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We now proceed similar to Section 4.2. Recall our notation
Ir, = {m e 7" : dist(I', suppaym,) > b2_”} , veN,

and

> o= 2. =2 p,

meZ™\Ip,, mez" melr,  mpmezn

We decompose

g = Z ZFJ/ )\Vmaym(l') + Z ZF,I/ )\Vmaym(x) = gF + gr

v=0 meZ" v=0 ypeczn

with trr g = trp g~ , trp gr = 0. We extend ¢! by 0 outside,

j= i S (Aymr”%) (2”%aym(x)> + i >0 <2”%aym(x)) (4.43)

v=0 mezZn v=0 yczn
0

= § § Aumaum(x),
v=0meZ"

obtaining an atomic decomposition of g with
~ )\,,mQﬂ'% for m € Z™\Ir ,,

Aum = (4.44)
0 otherwise .

~ v= .
Moreover a,., = 2" » a,,, are (S — ;7‘ , p) -atoms. We benefit from our assumption
K,L

(4.41) and can apply the unweighted version of Theorem 3.14 (3 = 0,179 = 1), see
[Tri92, Theorem 3.10], to obtain

715 ) <o

Ao \bqu . (4.45)

On the other hand, trp g = trr gF =trrg = f, and

|

by (4.44) and (3.8), recall HXI(/I;)’L |LP(R",ME)H ~2"5,m e Z™\Ir,, v € Ny. Com-
bining (4.39), (4.42), (4.45) and (4.46) we obtain

N Wy | < ¢ [ [y ()] (4.46)
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H?j IBE%(R")H < ||/ trrBg, (R wh)|| + &,

that is, we have found some g € B;; ;(R") with trrg = f and the above norm
estimate. Hence, f € trp B;; v (R™), and for & \ 0,

Hf | trp B;;%(R") < c||f [trr B, (R wh)| -

This proves (4.38). O

In view of (2.9) it is clear that the theory of Besov spaces with Muckenhoupt weights
covers only weights wl from (2.11)(c) with s > —(n — d). Theorem 4.4 above
concerns weights wl, with » < sp—(n—d), s > 0,0 < p < oo, where f € By, (R", wl)

>
n—d_ x

possesses a trace trp f € Bf,q P,

Similarly for » = sp — (n — d), 0 < ¢ < min(1,p), see Theorem 4.4. A natural

question to ask is what happens for stronger weights, that is, > > sp — (n — d) or

» = sp— (n—d) with ¢ > min(1, p), respectively? The final answer to this question

in the unweighted case is due to H. TRIEBEL [Tri06, Theorem 1.174], see also [Tri06,

Corollary 7.21]. Roughly speaking, the result given there states that for s < "%d,
n

0<p,g<oo,ors= %d, q > min(p, 1), the trace space trr By (R") does not exist.

Below we show how to transfer this observation to our situation.

COROLLARY 48. Let 0 < d <n, s >0,1 < p<oo, 0<q< 00 and
s> —(n—d). Then trp Bs,(R™,wl) exists if, and only if,

>

x < sp—(n—d)
or

w=sp—(n—d) and 0<q<1.
Moreover, if > sp — (n —d), then D(R™\I') is dense in B, (R", wh).

Proof. The sufficiency follows from Theorems 4.4 and 4.7, concerning the necessity
we refer to [Tri06, Corollary 7.21] for the unweighted case and (4.37). Note that the
additional assumption 3 < sp— (n —d) or 0 < ¢ < min(p, 1) when s = sp — (n — d)

are needed only later on to determine the trace space explicitly.
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It remains to show the density of D(R™\I') in B}, (R", wl) when » > sp — (n — d).
Clearly, by the embeddings

Bite(R™,w},) — B, (R",w}) — B <(R", w})

for all 0 < ¢ < oo, and € > 0 small, it is enough to deal with spaces B;p(]R",wF)

2

only, where 3 > sp — (n — d) and 1 < p < co. Then S(R") is dense in BS (R™,w})
and we can restrict ourselves to show that for all ¢ > 0 and all » € S(R™) there is

some ¢ € D(R™TI'), i.e. ¢ € C§°(R™) with supp(¢) C R™\I', such that
v — ¢ | B, (R",wl)|| <e. (4.47)

We continue by assuming that supp ¢ N T" # (). Otherwise, dist(I', supp ¢) = § > 0
and we can take ¢ = 9, appropriately modified, if supp % is not compact. Let 'y be
some neighbourhood of I' N supp . For j € N| consider a covering of I'y, with balls
centered at I' and with radius 277, Since I is a compact d-set one needs M; ~ 27d
balls to cover it. Let {cpr} 1 be an associated smooth partlmon of unity such that
or € CF°(R™), supp ¢, C Br,j = B(¥,277), v € T and zrzl or(z) = 1 with
x € I'. Recall that X(é?,j |LP(R",ME)H ~ 2797 Let v € D(R") with vy =1 on I'y
and supp v C I'g. Taking into account Definition 3.8 and Theorem 3.14 we obtain

v = Z (or)( Z? =297 (o) (@), €Ty (4.48)

The sum on the right-hand side of (4.48) may be viewed as an atomic decomposition
of v in Bs,(R™,wl,) with atoms given by 277" (5= )(cp v)(z) and coefficients A, =
2/=%) . For convenience let us assume once more that we do not need moment

conditions, otherwise (4.48) has to be modified. Then Theorem 3.14 and (3.8) imply

Iy 185, &, wl)|| < Z?ﬂ | | L H
1/p
< 2= 21 _ ),

It follows from the assumption s < %l that

7 1By (R, wl)|| < e
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choosing in our construction j sufficiently large. For ¢ € S(R™) we thus arrive at

[ 1By R wy)|| = |Joy + (1 - )¢| wl,)|
<y 1B, @ H+H1— o By, (& wl)|
< Jeicten Hv! H+H1— v 1By, R wl)|
< d+|A=y|B; ( F) ;

where k € N is chosen large enough. On the other hand, we obtain (1—7)y € S(R™)
and dist (supp((1 — v)¥),T") > 0. Hence, there exists some ¢ € D(R"\I") with

11 =% = ¢ By, (R", w3 || <
This concludes the proof of (4.47). O

Remark 4.9. Corollary 4.8 explains, at least in some cases, the impossibility to
have a trace of f € B, (R", w L), ¢ > sp—(n—d) in the sense of L,(I"). We only get
the trivial Counterpart of (4.4), i.e. for the dense subset D(R™\I') in B3, (R",w,)
the left-hand side in (4.4) always vanishes unlike the right-hand side. But then it is
not possible to explain trr f in a reasonable (standard) way, as the independence of
the approximating sequence fails. One would like to have a real alternative in the

sense that either trp B (R™,wl,) exists or D(R™\I') is dense in B, (R™,w},). But

Ve

this remains open so far - as in the unweighted case.

4.4 Traces on fractals of weighted Triebel-Lizorkin spa-

ces and applications

In this section we discuss traces on fractals of weighted Triebel-Lizorkin spaces.
Our main aim here is to extend known results on traces of unweighted Triebel-
Lizorkin spaces to the weighted case. The last part of this section is devoted to give
an application of our results for F-spaces to traces of weighted Sobolev spaces on
(n — 1)-dimensional hyperplanes. Let us start by recalling needed definitions. The
best references here are [Bui82] and [HP].

Let 0<p<oo,0<qg<o0,s€Rand we Ayx. Moreover let {ij};?';o be a smooth
partition of unity as introduced in Section 2.2. Recall that the weighted Triebel -



TRACES ON FRACTALS

Lizorkin space F, (R™,w) is the collection of all tempered distributions f € S'(R")
such that

1/q
o0

17 1EpgR™ w)[| = |[| D2 NF oy FHOI | [Lp(R™ w)
=0

is finite, see (3.3). In the limiting case ¢ = oo the usual modification is required.
Taking in (3.3) 1 < p < o0, s € Ny, ¢ = 2 and w = 1 we obtain classical Sobolev
spaces, i.e.

5 (RY) = Wy (RY)
see [Tri83, Section 2|, [Tri92, Section 1.2.5] and [Tri97, Section 10.5].
The unweighted trace result due to H. TRIEBEL [Tri97, Corollary 18.12] reads as

follows.

THEOREM 4.10. Let T be a d-set, 0 <d <n. Lt 0 <p <1 and 0 < qg < oc0.
Then we get

n—d

trr Fp (R") = Ly(T)
with the usual interpretation.

We also recall the definition of the corresponding Triebel-Lizorkin sequence spaces.
Let 0 < p < 00,0 < g < o0and w € Ay. Furthermore let X(VI;)@ denote the p-
normalized characteristic function of the cube Q,,, defined by (3.7). Then fpq(w) is

the collection of all sequences A = {\,,,} € C such that

A pnlw)]] = (f; 3

v=0mezZ"

1/q
Aymx%(-)\q> |, (@, w) (4.49)

is finite (usual modification for ¢ = 00).
In the sequel, we again consider the weight w! as introduced in Example 2.11(c).

We now present a generalization of Theorem 4.10 to the weighted case.

THEOREM 4.11. LetT be ad-set, 0 <d<n. Let 0 < p<o0,0< g<o0,s>0,
—n—d)y<x<sp—(n—d), orsxx=sp—(n—d)if 0<p<1. Then

trp F5,(R™, wh) = trr By, ” (R™), (4.50)
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In particular,

»x | n—d

trr By 7 (R™wh) = Ly(T) (4.51)

»

for0<p<1,0<qg<o00, and

g—n=d_ x

trp B3 (R™ wl) =By, * 7 (D), (4.52)
provided that » < sp—(n—d), 0 < p < oo and 0 < g < 0.

Proof. The proof is based on the argument given in the proof of Theorem 4.7 com-
bined with [Tri06, Proposition 9.22]. We only outline the main ideas of the proof

for
trr F5,(R™, wh) C trr By, ” (R™), (4.53)

The proof of the converse inclusion is done analogously. Let f € trp Flfq(R",wE).

Following the same consideration as in Step 1 of the proof of Theorem 4.7 we arrive
r

at the atomic decomposition of g in F,, (R", w;,

(4.43). We conclude that g € B;; ? (R™), since

) and its reformulation for g as in

Hm Bl &) < e

] < e

]X| quH < es ||A] fpg(wh)]

, (4.54)

where the equation HX| bppH ~ HX| quH follows from [Tri06, Proposition 9.22 (ii)],
since d-sets satisfy the ball condition what means that they are porous in the notation

used in [Tri06]. Consequently, we have for g with trpg = f,

Hm By ¥ (RY)

<cllgl g wl)| + 5 < e[ fl o Epy (R wl)| +2 (4.55)
which completes the proof. O

Remark 4.12. It turns out that the index ¢ plays no role in the consideration of

traces on d-sets of F; (R", wL). More precisely, for 0 < gg < q1 < 0o we get

trpFIqu (R™, wl;) = trpFIfql (R™, wl;),

as in the unweighted case, see [Tri01, Theorem 9.21].
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We have the following counterpart of Corollary 4.8.

COROLLARY 4.13. Let 0 < d <n, s > 0,1 <p < o0, 0 < q < o0 and
»x > —(n—d). Then trr F5,(R",w}) exists if, and only if, > < sp — (n — d).
Moreover, if x > sp— (n —d), and 1 < p,q < oo, then D(R"\I') is dense in
Es (R™ wh).

We conclude this section with a well-known example of Sobolev spaces and a d-set
I'withd =n—-1,ie. I' ~ {z € R" 2, = 0}. We characterize traces on (n — 1)-
dimensional hyperplanes of Sobolev spaces. We first discuss a special case of the

weight function w!, for d =n — 1.

Example 4.14. Let a € R and = € R™. Note that for d = n — 1 and taking » = «

the weight w!, transforms into

Tn|* T, <1
Wwo () = | | (4.56)

1 otherwise .

As shown in Proposition 2.12(i), ws(x) belongs to the Muckenhoupt class A, if, and
only if, -1 < a<r—1.

We recall briefly the definition of Sobolev spaces.

DEFINITION 4.15. Let k € N, 1 < p < o0 and w € Ay. The Sobolev space
Wf(R", w) is the collection of all f € L,(R"™, w) such that the norm

1/p
[rwhe )| = [ 32 [P Ly, w)
18I<k

is finite.

It is well-known that for k € Ny, 1 < p < 00, and wy € A, ie. =1 <a<p-—1, we

have

F;?,2(Rna wa) = W;(Rna wa)- (4.57)

This can be found, for instance in [Ryc01, Proposition 1.9]. We are now in a position

to state the last result of this section.
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PROPOSITION 4.16. Let 1l <p<oo and -1 <a <p—1. Then for any k € N

k—atl
P

trgn—1 W (R™, wa) = Byp

().

Proof. Using (4.57) and Remark 4.12 combined with Theorems 4.7 and 4.11, we

obtain

f—&
trpa 1t WH(R™ wa) = trge-1Fo(R", we) = trgn-1Bp, 7 (R™)

o 1 _ o+l

= Bppp_;(r):Bpp " (D).

Note that our assumption for a to imply w, € A,, i.e. o < p — 1, already ensures
a < kp—1, k € N, needed in Theorem 4.11. O

Remark 4.17. This result was first proved in [Tri78, Section 3.6] using tricky

interpolation techniques.



Chapter 5

WEIGHTED FUNCTION SPACES OF
GENERALIZED SMOOTHNESS AND
TRACES ON RELATED (d, V)-SETS

In this chapter we present a generalization of the setting described in Chapter 4.
Our main purpose is to prove results concerning traces on fractals replacing classical
d-sets by so-called (d, ¥)-sets.

5.1 Function spaces B;;"(R") and (d, ¥)-sets

This section covers definitions and results on spaces of generalized smoothness and
related (d, ¥)-sets that will be of importance in the subsequent sections. We start

by recalling needed definitions.

DEFINITION 5.1. A positive monotone function ¥ on the interval (0, 1] is called

admissible if

W(27F) ~ w272, k € No. (5.1)
Example 5.2. We check at once that for b € R

Wy(x) = (1 +logal)’, =€ (0,1],

where log is taken with respect to base 2, is an admissible function according to the

above definition.
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Below we list some simple but useful properties of an admissible function W.

PROPOSITION 5.3. Let ¥ be an admissible function on the interval (0,1].
(i) Let 6 € R. Then ¥ is also admissible.

(i) Leta € RT. Then
lim z¥(z) = 0.

z—0t

(iii) There are positive numbers c1, ca, b and ¢, with ¢ € (0,1) such that

c1llog(ex)| ™8 < W(x) < eollog(ex)|’, = € (0,1].

(iv) There is a positive constant ¢ such that

U(2x) < c¥(z), ze€(0,1/2].

(v) Ifa € RT, then there exists jo € Ny such that for any j € Ny with j > jo

T(a277) ~U(277) and W(27%) ~ T (277).

For a proof and more details we refer the reader to [Mou01] and [ET99].

Let {p;}32o be a smooth resolution of unity introduced in Definition 2.1.

DEFINITION 5.4. Let 0 < p,q < 0o and s € R. Moreover let ¥ be an admissible
function according to the Definition 5.1. Then BS’q\P(R") is the collection of all
tempered distributions f € S§'(R™) for which

1/q
q

I£ 183 @) = | Yo 21w @) (/) IL,(®R")
j=0

(with the usual modification for ¢ = co) is finite.

Remark 5.5. The spaces Bjy' (R™) were introduced by D. E. EDMUNDS and H.
TRIEBEL in [ET98]. For a complete treatment of these spaces we refer the reader
the work of S. D. MOURA, [Mou01], see also [ET96], [Tri97] and [Tri01] for more
details. One may also consider the Triebel-Lizorkin spaces of generalized smoothness
sz(}\p(R"), 0 <p<oo,0<q<oo,s € R by interchanging the order of ¢,- and
L,- quasi-norms in (5.2). We shift this case to the end of the present chapter. The
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spaces B;;;IJ(R") are quasi-Banach spaces (Banach spaces if p > 1 and ¢ > 1). It is
known that the space B;’q\P(R") does not depend on the chosen smooth resolution
of unity {¢; 20 (in the sense of equivalent quasi-norms). In particular, if ¥ =1 we
obtain classical Besov spaces B, (R") , studied in detail in [Tri83] and [Tri92], see

also Section 2.2.
We need the following counterpart of Definition 3.8.

DEFINITION 5.6.
(a) Let K € Ng and d > 1. The complex-valued function a € C*(R") is said to be

an lx-atom (or simply an 1-atom) if the following assumptions are satisfied

(i) supp a C dQqy, for some m € Z",
(ii)) |ID%(z)| <1 for |o| < K, ze€R™
(b) Let se R, 0<p< o0, K€ Ny, L+1€Nyand d > 1. The complex-valued

function a € CK(R") is said to be an (s, p, ¥)k -atom if for some v € Ny the

following assumptions are satisfied

(i) supp a C dQ,, for some m € Z",
(i) |D%(z)| < 277 p el g 2)7l for |o| < K, z € R,
(iii) / Pa(z)dz=0 for |B|<L.
Analogously to the case of (s,p)x, r-atoms from Definition 3.8, we will write a,n,
instead of a, to indicate the localization and size of an (s, p, ¥)x r-atom a. Below we

state the atomic decomposition of weighted Besov spaces of generalized smoothness
B;’q\P(R"). This was proved by S. D. MOURA [Mou01, Theorem 1.3.5].

THEOREM 5.7. Let0 < p<o0,0< g< 00, s €R and ¥ an admissible function.
Let K € Ng and L + 1 € Ny with

K> (1+[s]), and L > max (-1, [0, — s])

be fized. Then f € S'(R™) belongs to B;’q\P(R") if, and only if, it can be represented

as

f= Z Z AvmGums convergence being in S’ (R™), (5.3)

v=0mezZn"
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where ayy, are 1g-atoms (v = 0) or (s,p, V)k, r-atoms (v € N) and X € bpy. Fur-

thermore
infl|A by | (5.4)

where the infimum is taken over all admissible representations (5.3), is an equivalent

quasi-norm in By’ (R™).
DEFINITION 5.8. Let I' be a non-empty closed subset of R™.

(i) Let 0 < d < n and let ¥ be an admissible function according to Definition 5.1.
Then I is called a (d, ¥)-set , if there exist a Radon measure p on R™ with

supp 1 = I' and two positive constants ¢; and ¢y such that
crrdU(r) < w(B(y,r)) < cord®(r) (5.5)
for any ball B(~,r) in R™ centered at v € I' and of radius r € (0, 1).

(ii) Let ¥ be a decreasing admissible function according to Definition 5.1 with
U(zx) — oo, if © — 0. Then I' is called a (n,¥)-set , if there is a Radon

measure £ in R” with the above properties and d = n in (5.5).

Remark 5.9. Note that for ¥ = 1 we obtain d-sets with 0 < d < n as introduced in
Definition 2.9. Let 0 < d < n and let ¥ an admissible function, then for any couple
(d, W) there exists a (d, ¥)-set in R", see [ET99, Proposition 2.8]. Furthermore
any (d,¥)-set in R™ with d < n satisfies the ball condition, see (4.13) and [Tri01,
Proposition 22.6(iv)].

Example 5.10. Let U}, be as in Example 5.2, then I'y is a (d, ¥p)-set, for 0 < d < n,

if there exist two positive constants ¢; and co such that
d b d b
ar®(1+ [logr|)” < u(B(v,7)) < car®(1 + [logr|)”,

where 4 is a Radon measure in R™ with supp pu = I'y and B(+y, ) is a ball centered
at v € I' and of radius r, 0 < r < 1.

We consider the following example of a weight function which is a generalization of
Example 2.11 to (d, ¥)-sets.
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Example 5.11. Let T" be a (d, ¥)-set, 0 < d < n, ¥ an admissible function, s € R

dist(z,T))” ¥ (dist(z,T")), for dist(z,T') <1
oy o | st D) i ) (@) 56
U(1), otherwise.
In particular, for ¥ = W, given by Example 5.2, and I'y defined in Example 5.10, we

obtain

(dist(x, Tp))” Wy (dist(z,Tp)), for dist(x, ) <1

vlb(z) =
U(1), otherwise.

(dist(z,T)) (1 + Jlog(dist(z, Tp)))?, for dist(z,T}) <1 (5.7)
U(1), otherwise. .

PROPOSITION 5.12. Let 1 < p < oo and let ' be a (d,V)-set with 0 < d < n
and U an admissible function. Then v, € A, if, and only if,

—(n—d) <x<(n—d)p-1). (5.8)

Proof. The proof is similar to that given for Proposition 2.12. Again we restrict
ourselves to cubes Q,m,, v € Ng, m € Z" only . To verify condition (2.9) we estimate

the first integral
1

o] / vE(m) dz.
Qum

We consider a covering of the cube @, with sets

Sk = {:U eR™: 2771 < dist(x,T) < 2_k} N Qum

ie. Qum C Up, Sk, see Figure 2.1. Furthermore, let K;, | = 1,..., N, denote

balls with radius r ~ 2% that cover the set S;. Hence we obtain

1 I v I v = I
v, (z) de = 2"" v, (z) doe ~ 2" g v, (z) dz

k:l/Sk

vm

Nk,u

~ 2V i 2—’”\1/(2—’“)/ dz ~ 2" i 2 w(2h) Y / dz.
k=v k=

Sk =v =1 K,
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The Lebesgue measure of a ball K; in R” is approximately equal to 27%". Moreover

carefully looking at the condition (5.5) we infer that

27ud\p(27u)
N, ~ —————.
k, 2R (2-F)

This provides that

d.%' ~ OV 9= %Jrn —k Nk
IQumI Z s

27ud\p(2711)
~ VT 92— %—l—n 2 F\= 7
Z )Q—kd\p@—k)
~ QYT § :2 (3c+n 2d(l<: 1/)\:[/(271/)

N2—V%\I, 22 (k—v)(se4n— d)

Certainly, the last series converges if, and only if, 5 > —(n — d), and thus

1
e / vl (z) dz ~ 2770 (27Y). (5.9)
|Quml
Qum
Furthermore, looking at the second integral in (2.9) with (5.9) we have that

L Ty P /P 1 ~r
v,,(x) dz = vy (z) dz (5.10)

|Ql/m| |Ql/m| v

Ql’m QVTYL

where ¥ = —sp'/p = —»(p— 1) and
o5 (2) = [dist(z, T)]7*%"/P U(dist(z, ) 7/7.

We put U(dist(z, ")) = U(dist(z,T))#/P. As U is admissible according to Proposi-
tion 5.3(i) we obtain in the same way that [ [ (WL(2)) /P 4z is finite if, and

»

vm

only if, J > —(n—d), ie. x < L(n—d) = ( d)(p—1). Consequently, we get that

|Ql/m| / ) dx ~ 27 uﬂ\p( V) = 9—vi (\11(2* )) -p'/p _ [2 Vg (9~ )}*p//p

and by (5.9) that v satisfies the A,- condition (2.9) if, and only if, —(n —d) < » <
(p —1)(n — d) for all admissible V. O
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5.2 Traces on (d, V)-sets of weighted Besov spaces

We consider weighted Besov spaces with weights vl introduced in Example 5.11.

(p)

Let xum be the p-normalized characteristic function on the cube @, according to
Definition 3.7. It follows from (5.9) that

1/p
[ L@ ohy = |27 [ ohie) do
Qum
1/p
1 T —vx _y 1
= v,,(x) dz ~2 7 U27")r. (5.11)
|Quml|
Qum
A straightforward calculation shows that
[e%s} q 1/‘1
Ao a5 ~ (ZH S Mm@ 1L, (" o) )
v=0 mezZ"
00 q/p 1/a
~ X ( S Dol X2 er<R“,v£>H”>
v=0 \mezZ"
o) q/p 1/a
~ Z ( Z ‘)\Vm’vam> ;
v=0 \mezZ"
(5.12)

where
27 (27, if dist(27m,T) < 1
U(1), otherwise .

In the sequel we will consider the following extension of the notion of trace spaces on
d-sets, as introduced in Definition 4.6, to (d, ¥)-sets. We consider Definition 2.2.7
in [Mou01] with a = 0.

DEFINITION 5.13. Let 0 < p,q < 00, s > 0, ¥ be an admissible function and
let T be a (d, ¥)-set in R™ with 0 < d < n. We define

S+ul7\111/17
B3, (T) = trr By ” (R™). (5.13)
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We equip this space with the quasi-norm

n=d yl/p
s+ > U

If B2, (T)] = inf \g B

(R™)

: (5.14)

n—d \y1/p
s+ > W

where the infimum is taken over all g € By, (R™) with trprg = f.

Note that for ¥ = 1, I' is a d-set according to Definition 2.9, and then the above
definition covers the Definition 4.6.
Let vl be the Muckenhoupt weight introduced in Example 5.11. We have the fol-

lowing generalization of Theorem 4.7.

THEOREM 5.14. Let0<d<n,se€R, —(n—d) <, 0<p<o0,0<q< o0,
U be an admissible function and let I be a (d, ¥)-set according to Definition 5.8(1).
Then we have
s—= yl/p
trp BS,(R™,v)) =trr By 7 (R™), (5.15)
whenever these spaces exist.

We compare this theorem with Definition 5.13 and we have

COROLLARY 5.15. Let0<d<n,0<p<oo,0<qg<o0, ¥ be an admissible
function and let T be a (d, V)-set according to the Definition 5.8(i). Let —(n—d) <
% < sp—(n—d) then

trp Bi,(R™,vL) =Bpe 7 7 (D). (5.16)

of Theorem 5.14. The proof follows analogous ideas to that of Theorem 4.7. We

present only one inclusion

= yl/p

trp B3y (R™,0L) < trp Bpg 7 (R™). (5.17)

Y Vo

The second one is proved in a similar way. Let us start with a function f €
trp B;q(R",UE). Let € > 0, then there exists some g € B, (R" vl) such that

Y Yo

trrg = f and

lg B3, R, eL)] < [1f Vorr Byy(R™, 05| + <. (5.18)
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We consider an atomic decomposition of g in B, (R", vl) as in (3.13)
[o.¢]
g = Z Z Aumaum(x),
v=0meZ"
where a,n,(x) are (s,p)r,r-atoms according to Definition 3.8 and A,,, € C are

coefficients. Furthermore, carefully looking at Theorem 3.11 with K and L according
to (4.41) yields

X b0 L] < ellg 1By 02| + 5, (5.19)

for a suitably chosen atomic decomposition. Let

Iy, = {m € 72" . dist(T', supp aym) > b27"}, vreNy, b>0.
Once again as in the proof of Theorem 4.7, we arrive at the following decomposition
o T o
1= 3 T )+ 3 T Aomtont@) ="
v=0 mezZn" v=0 pczn ’

where the first term collects all atoms with a support near to I', and the second one
the rest, see (4.8) and (4.10). Moreover we have that trr g = trr g* and trp gr = 0.
We extend now ¢g' by 0 outside

o i Zr,u ()\,,m2_V%\I](2_V)1/p) <2V%\I,(2—y)—l/paym(x)) (5.20)

v=0 mezZ"
(o] B 0o N

+ Z ZF’VO (QVE\IJ(Q—V)—l/pan(x)> = Z Z Aomum (2),
v=0 mez™ v=0 meZn

where a,,, = Ve w(27v)"VYPa,,, are (5 — g,p,\yl/p)KL—atoms according to Def-

inition 5.6 with K, L sufficiently large as in (4.41) and the coefficients are given
by

- Aom2 VP W(2)YP for m € ZM\ I,
Mo = ) . (5.21)

0 otherwise .

From the unweighted atomic decomposition Theorem 5.7 for (d, ¥)-sets , (see [Mou01,
Theorem 1.3.5(ii)]) we obtain

P \Ifl/p

718y " (R <l

Mo \bqu . (5.22)
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It is easy to see that (5.12) and the definition of the b,,-norm yield

Furthermore, trrg = trr ¢! = trrg = f. Combining the inequality (5.23) with
(5.18), (5.19) and (5.22) gives

Xom [bpa| < ¢ [Aum [epge3)] (5.23)

o s==wl/p
g |Bpg " (R™)

<c||f|trr B;q(R",UE)H +e,

1/p

_ﬁ7\Ij . -
i.e. we have found g € B;q p (R™) with trpr g = f. Consequently, for ¢ \ 0,

|1 1o 57 )
I' Ppg

<cl|f trp B;q(R",vF)

»

)
which proves our claim. O

The next example ties together the concepts of Theorem 5.14 and Corollary 5.15
with the example of the special admissible function ¥y(z) = (1 + [log(x)])® with
z € (0,1].

Example 5.16. Let b € R. Let ¥y, be an admissible function introduced in Example
5.2, and let T’y be a (d, ¥})-set according to Example 5.10, 0 < d < n. For the weight

function vl given by (5.7) we have

s—= yl/p s—%,b/p _x_n=d

, U s
terB;q(Rn’UEb) = trr, Bpg © (R™) = trp, Bpg R") =By, * 7 (),

Zb/p

where B;;; (R™) is the space used by H. G. LEOPOLD in [Leo00].

COROLLARY 5.17. (i) Let0<p<oo, —(n—d) < s and letT' be a (d,V)-set
with 0 < d < mn. Then for 0 < ¢ < min(p,1) we have

»x | n—d

trr By ” (R™,0h) = L, (D), (5.24)

» Yot

£+L*d
in the sense, that trr f € Ly(T') for any f € By * (R™,0L) and any f'' €
2 n—d

+
L,(T) is a trace of a suitable g € By * (R™,vL) on T and

Y Vot

n—d

1+_
g|Bijq ? (Rn’vg) )

/7 [Lp(D)|| ~ int

x| n—d

where the infimum is taken over all g € By * (R™,vL) such that trr g = f1.

» Yot
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(ii) Let 1 <p < oo and let T be an (n,¥)-set according to Definition 5.8(ii). Let
e .
S w1r(2) < oc.
=0

Then

trp B (R, vL) = Ly(T). (5.25)

»

Proof. The proof of both parts is an easy consequence of Theorem 5.14 above and
[Tri01, Theorem 22.18]. See also [Mou01, Proposition 2.2.4, Remark 2.2.5]. O

5.3 Traces on (d,V)-sets of weighted Triebel-Lizorkin

spaces

This section treats the trace problem on the perturbed d-sets for the weighted
Triebel-Lizorkin spaces. In what follows, let vl be the weight function introduced in
Example 5.11. Recall that I, (R", vl) is the collection of all tempered distributions
f € 8'(R") such that the quasi-norm || f |F5 (R, vL)|| given by (3.3), with w = v,
is finite. Furthermore, By (I') is the trace space according to Definition 5.13. The
following theorem gives the answer for the question about the trace problem on

(d, ¥)-sets for the weighted F-spaces.

THEOREM 5.18. Let 0 < d <n, 0 < p<o0o,0< qg< 00, —(n—d) < %<
sp— (n—d), ¥ be an admissible function and let T' be a (d, ¥)-set according to
Definition 5.8(i). Then

s—% wl/p

trp F5 (R, vL) = trp By 77 (R™). (5.26)

In particular, for0 <p<1,0<qg<o00, —(n—d) < »

»x | n—d

trp Fplzl ! (Rna UF) = Lp(r)a (527)

and
trr Fpy (R, 0}) =By, * 7 (D), (5.28)

provided that 3 < sp—(n—d), 0 < p < oo and 0 < ¢ < oco.
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Proof. The proof is similar to that given in Chapter 4 for the case of d-sets, see The-
orem 4.11 and the proof of Theorem 5.14. Thus we show only crucial modifications.

We start by showing the first inclusion

FS (R™ o0 B ge 5.29
trp pq( v )CtrF PP ( ) ( : )

Y Yo

Let f € trp Fj,(R™,v}) and € > 0. Then there exists some g € Fj (R",vL) such

) Ve ) el

that trrg = f and
€
g [Fpg R, V)| < |1 f ltrr Fpg(R™, w3 )[| + 7

Further, it follows as in the proof of Theorem 5.14, that

5
M Fpa(W)| < ¢ llg 1Fpy (R, 03[ + 2 (5.30)
if we choose the atomic decomposition of g in F; (R", vl) appropriately, see (3.13).

Moreover we obtain g as in (5.20). At this stage we appeal to [Tri06, Proposition
—z yl/p
9.22(i)] to deduce that g € B;p P (R™), see (4.54) and arguments given there.

Furthermore we have that trrg = f. As a conclusion we have

1/p

R
Hf ]trpB;p v RM)|| <c||f |trp £, (R™ vh)

)’ Yot

)

which proves (5.29). The proof of the converse direction follows similarly. O

We end this section with an example for Sobolev spaces and a (d, ¥)-set T' with
d = n—1, parallel to Example 4.14. We treat the special case of the weight function

vl introduced in Example 5.11 with » = a.

Example 5.19. Let I" be an (n — 1, U)-set, ¥ an admissible function. Let o € R

and x € R". We put s = «. Then, we consider

v (CC) L |Cl7n|0‘\11(|$n|)a for |xn| <1 (5 31)
i (1), otherwise.

An obvious consequence of Proposition 5.12 is the following.
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PROPOSITION 5.20. Let 1 < p < oo and let T be a (d, V)-set with d =n—1 and
U an admissible function. Then v, according to (5.31) belongs to the Muckenhoupt
class Ay if, and only if,

~l<a<p-1. (5.32)

Let v, be the weight function given by (5.31). Recall that the weighted Sobolev
space Wlf (R™, vq) is the collection of all f € L,(R", v,) such that DPf e Ly(R™, vq)
for all multi-indices |3] < k. Moreover, B, (T') is the trace space introduced in
Definition 5.13. We have, for the weight v,

WFR" va) = Fp(R",v,), 1<p<oo, —l<a<p-1, (5.33)

see [Ryc01, Proposition 1.19] and also [Bui82, Theorem 1.4]. We can now formulate

the last result of this section.

PROPOSITION 5.21. Let 1 <p<oo, -1 <a<p—1andletT be a (d,V)-set
according to Definition 5.8(i) with d =n — 1. Then for any k € N

f—atl

trgn—1 W;(Rn,va) =By, ” (I).

Proof. We first apply (5.33), then we take Theorem 5.18 with Definition 5.13 and
we obtain
—a gl/p k—atl

k
trgn—1 Wy (R, va) = trga—1 Flp(R", vq) = trgn1Bpp ¥ (R") =By, * (I),

what is just what we want. Note that —1 < o <p — 1 implies —1 < a < kp — 1, as
required in Theorem 5.18. U



Chapter 6

ENTROPY AND APPROXIMATION
NUMBERS OF EMBEDDINGS
BETWEEN WEIGHTED BESOV
SPACES

The aim of this chapter is to study the compactness of the trace operator. More
precisely, we use known results on entropy numbers to investigate the behavior of
those numbers of compact embeddings between weighted Besov spaces B;q(R", wl;),

where w! is given by (2.14). In particular, we consider the trace operator from
r

>.) into Lebesgue spaces L,(I'), where I' is a d-set according to

spaces By (R", w
Definition 2.9. Furthermore, we generalize the result to the (d, ¥)-set according to
Definition 5.8. Moreover we compute approximation numbers of the embeddings

between function spaces of the above type.

6.1 Entropy numbers

Let X and Y be quasi-Banach spaces and let 7' : X — Y be a bounded linear

operator. Let
Ux ={reX: |z|X|| <1}
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be the unit ball in the quasi-Banach space X. An operator T is called compact if
for any given € > 0 we can cover the image of the unit ball Ux with finitely many

balls in Y of radius e.

DEFINITION 6.1. Let X, Y be quasi-Banach spaces and let T' € L(X,Y"). Then
for all k € N, the kth dyadic entropy number ey (T) of T is defined by

ok—1

ex(T)=inf¢ e >0: T(Ux) C U (yj +¢eUy) for some yi,...,Ys—1 €Y 5,
j=1

where Ux und Uy denote the unit balls in X and Y, respectively.

These numbers have various elementary properties summarized in the following

lemma.

LEMMA 6.2. Let X,Y and Z be quasi-Banach spaces, let S, T € L(X,Y) and
Re L(Y,Z).

(i) (Monotonicity): |T|| > ei(T) > ex(T) > --- > 0. Moreover ||T| = ei(T),
provided that Y is a Banach space.

(11) (Additivity): IfY is a p-Banach space (0 < p < 1), then for all j,k € N
e§+k71(5 +T) < e5(S) + e (T).
(i4i) (Multiplicativity): For all j,k € N

j+i1(RT) < ej(R)es(T).

(iv) (Compactness): T is compact if, and only if, limy_,~ ex(T) = 0.

Proofs of the above properties may be found for instance in [ET96, Lemma 1.3.1/1].

For more information, we recommend the monographs [ET96] and [CS90].

Remark 6.3. Let us briefly discuss the connection between eigenvalues of a compact
linear map and its entropy numbers, though applications of that kind are out of the
scope of this thesis. Let T': X — X be a compact linear operator in a quasi-Banach

space X and let (A,(T")) be the sequence of all nonzero eigenvalues of T, repeated
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according to algebraic multiplicity and ordered so that [\ (T")| > [A2(T)| > ... > 0.
Then the Carl’s inequality states

An(T)] < V2en(T).

A general reference here is again [ET96] and [CS90]. Based on this inequality, and
having in mind application to spectral theory of certain pseudo-differential opera-
tors, D. D. HAROSKE, D. E. EDMUNDS, and H. TRIEBEL initiated a program to
investigate the behavior of the entropy numbers in the context of weighted function
spaces of Besov and Triebel-Lizorkin type, see [ET96] and [HT94a, HT94b|. For
a recent account we refer to the series of papers by T. KUHN ET AL. [KLSS06a,
KLSS06b, KLSS].

Let us recall a result for entropy numbers which is due to H. TRIEBEL , see [Tri97,
Theorem 20.6].

THEOREM 6.4. Let I' be a compact d-set in R™ with 0 < d < n according to
Definition 2.9. Let BZQ(I’) be the spaces introduced in Definition 4.6, notationally
complemented by ng(F) = L,(T") for any 0 <p < oo and 0 < g < co. Let

0§82<81<OO, O<p17p2§007 O<Qh‘]2§007

1 1
81—82—d<———> > 0.
b1 P2/ 4

id: B, (') — B2, (T)

pP1q1 P2q2

and

Then the embedding

is compact and for the related entropy numbers holds

51752
d

erp(id) ~ k™ , kel (6.1)
Remark 6.5. Recall that equivalence ~ in (6.1) means that there exist two positive

numbers ¢; and ¢y such that for all £ € N,

51—952 5152

Clk_ a < ek(id) < CQ/{?_ d

Assume that 0 < g < oo and
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1 1
s—d(———) > 0.
b1 P2/ 4

Then (6.1) with s; = 0 can be rewritten in the form
3+n__d s
ek <trp : Bpg™t (R") — LPQ(F)> ~k~d, keN. (6.2)

For more details, see [Tri97, Chapter IV, p.172].

We are now in a position to present results on entropy numbers for weighted Besov

spaces.
THEOREM 6.6. Let I' be a d-set in R™ with 0 < d < n according to Definition
2.9. Let %‘ <s9 <81 <00, 0<pr,p2 <00, 0<qr,q <00, and

—(n —d) < » < min(s1p1, sap2) — (n — d). (6.3)

Let
51—52>(%+n—d)<i—i>+d<i—i>+. (6.4)

b1 b2 b1 P2

Then for the weight w, introduced in Example 2.11(c) the embedding

id: trpByl, (R", wl) — trr B2, (R, w),) (6.5)

1s compact and for the related entropy numbers holds

_31552 +(%+2L—d)(i_$

1 m), ke N. (6.6)

er(id) ~ k

Proof. The proof is a simple consequence of Theorem 4.7 and Theorem 6.4. We

have the following

ex (id trr By, (R", wh) — trr B2, (R"7w£)) =
_x _n=d _x _n—d
e (id: By (D) — Bl ™ (D). (6.7)

By virtue of (6.1) with 51 — 83 —d (L — i) > 0 we obtain
p1 p2 +

51—32

€k <id : B;;F_T(F) - IB3;2(12]02 " (F)> ~k~7da , keN,
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where J
§i:si—z—n_ for i=1,2.
Di Di
One immediately checks the compatibility (6.3) and (6.4). This finishes the proof.

g

Remark 6.7. Let s = 6§ + "p—_ld + ﬁ- From Theorem 4.7 we conclude that

trr By, (R", wh) =By ,(T), >0,

Furthermore, by Definition 4.6 we get
n—d

+_
Bgm(r) = trrBpg ' (RY).

Comparing this with (6.2) and the above theorem we obtain the following result.

PROPOSITION 6.8. Let T be a d-set in R™ with 0 < d < n according to Definition
2.9. Let 0 < p1,p2 < 00, 0 < ¢ <00, —(n—d) < %< sp; — (n—d), and let w., be a
weight function given by (2.14). Moreover let

1 1 1
s——(%—i—n—d)—d(———) > 0.
n b1 P2/ 4

s

The trace operator trr of B, (R™,wk) into Ly, (T) is compact and the related entropy

P1g
numbers satisfy
r l(m,s),;
e (trr = By ((R™,w;,) — Ly, (T)) ~ k¢l 7 PL, (6.8)

One can extend this result to the (d, ¥)-sets, where ¥ is an admissible function
according to Definition 5.8. In [ET99, Theorem 2.24] we get desired generalization
but only for 1 < p1,p2 < 0o and with the target space L,. The case 0 < p <1 has
been considered by S. D. MOURA in [Mou0O1, Theorem 3.3.2]. She deals with target
spaces of Besov type. Let ¥ be an admissible function according to Definition 5.1
and let T' be a (d, ¥)-set according to Definition 5.8. Let now B; (T') be the trace
spaces introduced in Definition 5.13. By assumption we have 0 < pi,ps < oo,

0 < q1,92 < o0, and s1,s9 > 0 such that

1 1
s1—8y—d|— — — > 0,
P P2/
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that the embedding
id: B, () — B2 ()
is compact. Furthermore, for the related entropy numbers holds
__51—52

er(id) ~ [k¥ (k™)) "7, keN. (6.9)

Recall, that we take a; = ags = 0 in the original version of Theorem 3.3.2 in [Mou01],
such that Definition 2.2.7 in [Mou01] of B-spaces covers Definition 5.13. The best
general reference here is [Mou01, Chapter 3] and also [ET98] and [ET99].

We can now give an extension of Theorem 6.6 to the (d, ¥)-set.

PROPOSITION 6.9. Let U be an admissible function, and let T' be a (d,V)-set
according to Definition 5.8. Let 0 < p1,p2 < 00, 0 < q1,q2 < 00, and

—(n —d) < » < min(s1p1, sap2) — (n — d).

Moreover let s1, s2 be as in (6.4) with sy > %‘. Then for the weight v%, introduced
in (5.11) the embedding

id : trpBS, (R™,v}) — trp B2, (R™,vh) (6.10)

p1q1 )T Pp2q2 » Vo

is compact and for the related entropy numbers holds
$1=52 _(z4n—d\( 1 _ 1
enlid) ~ Rk CFNGR) | pen. (6.11)

Proof. We follow the proof of Theorem 6.6. We consider Theorem 5.14 and Defini-

tion 5.13 and arrive at

ek (id : tITB;iql (R",vi) — tTFB;qu (R",vi)) =

x n—d

2 n—d
o (i Bpa D) — B R (D).

Combining this with (6.9) completes the proof. O
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6.2 Approximation numbers
In this section we recall the basic definitions and properties concerning approxima-

tion numbers and apply it in weighted Besov spaces.

DEFINITION 6.10. Let T' € L(X,Y), k € N. The kth approximation number ay,
of T is defined by

ap(T) =inf {||T — L|| : L € L(X,Y), rankL < k}, (6.12)
where rankL is the dimension of the range of L.

We have also for approximation numbers analogous properties as for entropy num-

bers. We present them in the following lemma.

LEMMA 6.11. Let X,Y and Z be quasi-Banach spaces, let S,T € L(X,Y) and
Re LY, Z).
(i) (Monotonicity): ||| = a1(T) > a2(T) > --- > 0.
(i7) (Additivity): If Y is a p-Banach space (0 < p < 1), then for all j,k € N
af 1 (S +T) < aj(S) + af(T).
(i7i) (Multiplicativity): For all j,k € N

ajyr—1(RT) < a;j(R)ar(T).
(iv) (Rank property):

an(T) = 0 if, and only if, rankT < n.

The best general references here are [CS90] and [ET96]. In the sequel, we restrict
r

ourselves to d-sets and formulate our result. Recall that the function w;,

is a weight
given by (2.14). We now state the main result for approximation numbers.

THEOREM 6.12. Let 0 <d <n, 1 <p<oo, 141 =1, t=dix < g < 1bx gpg
—(n—d) < s. Let T be a d-set according to Definition 2.9. Then the trace operator

trp © B,(R™, w},) — Ly(T) (6.13)
is compact and for the related approximation numbers ay holds

1(n+z

ax(trr s Bi,(R™,wh) — L) ~ k1557975 pe N (6.14)

P
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Proof. As a consequence of Theorem 4.7 and the Definition 4.6, from embedding
(6.13) we get
trr @ By, (R™) — Ly(T).

Combining this with Theorem 2 and Remark 9 (Example) in [Tri04] we obtain
the desired estimate (6.14). The compactness is covered by Proposition 6.8 with

p1=p2 =g O

Remark 6.13. Note that (6.8) coincides with (6.14) for p; = po = ¢ = p. One
should expect a different behaviour of e (trr) and ag(trr) for p; # pe. This study
is postponed to later occasion, as well as the counterpart of Proposition 6.9 for

approximation numbers.
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