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‘... the forces might become large enough to confine the quarks. That is the foremost
problem of QCD.” [1]

‘The outstanding problem in QCD is to explain long distance phenomena, in particular
why we do not see quarks and gluons as physical objects - the so called problem of

”quark confinement”’. [2]

‘It is unlikely that one will ever prove from first principles that permanent

confinement takes place...” [3]

‘Quark confinement is not yet completely solved.” [4]

‘The most essential property of QCD is confinement.’ [5]

‘Die spektakuldrste Aussage der QCD ist zweifellos das Verbot freier, nicht in
Hadronen gebundener Quarks.” [6]

‘A long standing and yet unsolved problem is to explain color confinement in QCD.’
7]

‘Over the last two decades various attempts have been aiming at a qualitative
understanding and modelling of two basic properties of QCD: quark confinement and

chiral symmetry breaking.” [8]

‘Therefore, understanding confinement, in my opinion, is one of the most exciting

challenges of modern physics.” [9]

‘Confinement is something of a mystery. It is certainly the most striking qualitative
phenomenon in QCD. Still we do not even have a satisfactory definition of what

exactly is meant by this word.” [10]



1. Introduction

1.1. The Gauge Theory of Strong Interactions

At present-day energies the Standard Model is the fundamental theory of elementary
particles and their interactions (for a recent review see [11]). Its matter content consists
of fermionic fields carrying a representation of the gauge group U(1) x SU(2) x SU(3).
The interactions are provided by gauge fields, i.e. vector fields in the Lie algebra of
this gauge symmetry!. The part containing the strong interactions is named Quantum
Chromodynamics (QCD); the Lagrangian density reads,

N .

L=> ¢*(iy"D, — mh)pk — St P, (1.1)

k=1
where {wk}kzl,m,Nf stands for the fields of quark flavours (N;=6: up, down, strange,
charm, bottom, top), m* for their masses, A4, = Zi:l AST, for the gluon fields, D, =
d, —iA, and F,, = 0,A, — 0,A, — i[A,, A, for the covariant derivative and the field
strength, respectively. {7,},=1..s are the Gell-Mann matrices, i.e. the generators of
(the fundamental representation of) the Lie algebra su(3) and {*},—o,...s are the Dirac
matrices in Minkowski space. Furthermore, the coupling constant ¢ is set to unity, so
are h and c; we suppress spinor indices and use the Einstein summation convention.

This Lagrangian is invariant under local gauge transformations with g(z) € SU(3),
=gt b =gt Ay At +igdug’, (D= gDugt P = gFLug"), (1.2)

which may be thought of as rotations in a colour space spanned by ‘red’, ‘green’ and
‘blue’. Due to the character of the matrix group SU(3), such a gauge theory is called
non-Abelian. Its quantum version exhibits very interesting features already at the per-
turbative level: the gauge fields interact among themselves via 3- and 4-vertices, they
carry colour themselves. As a consequence the perturbative S-function shows? that the
running coupling constant is small at high energies/short distances and large at low

energies/long distances, respectively.

! Although the gravitational interaction can be described as a gauge theory as well, a quantum version

of it is not well-defined yet; in our considerations gravitational effects are negligible.
2if there are not too many flavours as is realised in nature



The first fact, the so-called asymptotic freedom in the ultraviolet region, is the basis
for many confirmations of QCD in deep inelastic scattering: probing strongly interacting
particles at high energies one finds the quark constituents (‘partons’) to be essentially
free. The second fact signals the occurence of non-perturbative effects in the infrared
region of the theory. Indeed, the fundamental quarks in the Lagrangian do not appear
as asymptotically free states in nature. Instead they are bound together to mesons,
yn)-states, and baryons, 1)i1)-states. These hadrons® are all singlets under the colour
group SU(3). In other words, free coloured states have never been observed. This effect
is called colour confinement. Tt is generally believed to be a consequence of the non-
Abelian nature of the gauge group, i.e. it should occur for all SU(N), N > 2. However,
its derivation from the Lagrangian (1.1) remains an open problem of the Standard Model.

One expects a similar effect to happen in the pure glue sector of QCD: at low energies
glueballs, bound states of gluons, should appear. These objects have not been observed
in experiments yet. Nevertheless, QCD sum rules and lattice simulations predict their
masses to be around 1.5 GeV (see [12] for a review). Such a mass gap would force any
correlation function in this theory to decay exponentially thus explaining the absence of
long-ranged fields in QCD. Being one of the ‘Millenium Prize Problems’ [13] it is also
interesting from a purely mathematical point of view.

In the chiral limit where the quark masses are neglected, QCD shows another non-
perturbative property, the chiral symmetry breaking. Left handed and right handed
quarks decouple in the Lagrangian (1.1) when m = 0. This amounts to two commuting
flavour symmetry groups which can be rewritten as a product of a vector and an axial
symmetry*. The latter would predict all hadrons to come in pairs of opposite parity,
which is not the case. Chiral symmetry is broken by the chiral condensate ({1)) which
couples left handed to right handed quarks like a mass term. The would-be Goldstone
bosons for SU(N; = 2) are the pions.

Presumably, QCD undergoes a phase transition at sufficiently high temperatures
and/or densities: hadrons start to overlap and quarks and gluons are free to travel. Be-
yond this deconfinement phase transition a new state of matter occurs, the quark gluon
plasma. Tt is assumed to be realised in the early universe and in neutron stars. Lattice

simulations [14] predict the critical temperature® to be 170 MeV, but the observation of

3To be precise: hadrons have the same quantum numbers as if they consist of the given valence quarks;
in fact, they also contain sea quarks and gluons induced by quantum fluctuations.

“4In fact, the vector symmetry is a subgroup of the flavour symmetry group, while the axial symmetry
is only a coset.

5for two flavours in the chiral limit



the quark gluon plasma in heavy ion collisions has not been achieved yet.

All these non-perturbative phenomena — as well as others we have not mentioned like
the U4 (1) problem — should follow from QCD as the fundamental theory or a proper
effective theory thereof. In many cases the effects are mainly due to the pure glue part
and it is easier to look at their remnants in pure Yang-Mills (YM) theories which are
defined by neglecting the quark term in the Lagrangian (1.1). This is tantamount to
treating the quarks as very heavy non-dynamical objects. Therefore, this approximation
is also called quenched (QCD. We will mainly adopt this point of view in due course.

To make progress in a better understanding of colour confinement is the main motiva-
tion of this work. Therefore, this phenomenon is described in detail in the next section,
followed by a discussion of lattice gauge theory and two effective theories modelling

confinement and glueball formation.

1.2. Confinement

The intuitive picture of confinement is the following (Figure 1.1): In order to separate
a quark ¢ and an anti-quark ¢ (or three quarks) one has to bring more and more energy
into the system. This energy is used to create a new quark anti-quark pair ¢’¢g’ from the
vacuum and one ends up with two hadrons instead of free quarks. In a field theoretic
description this means that the lines of the gluon field are concentrated in narrow tubes
between the quarks. The latter are the sources of the chromoelectric field. In contrast to
that, the lines of the electric field between two electric sources are spread, leading to the
well-known Coulomb potential which does not confine®. The pair production described
above is also called string breaking, because it breaks the flux tube into two pieces.
One can describe this phenomenon in pure YM theory by introducing a heavy quark

potential V,z(R) (Figure 1.1). For large separations R it rises linearly with R [16],
Vig(R) = oR for large R . (1.3)

The quarks experience a constant force, as is very intuitive, since the densitiy of field
lines is independent of R. We will refer to such a potential as confinement; the quarks
are confined because an arbitrarily large amount of energy is needed to separate them.

The factor o is called string tension. It can be estimated from the spectrum of char-
monium J/¥ (see e.g. [17]) since the charm quarks forming these hadrons are rather

heavy. In the modern literature, the value of the string tension is o ~ 1 GeV /fm.

60One can show that in electrodynamics a tube-like configuration between electric sources is unstable

and evolves in time to the Coulombic configuration [15].



confinement

s:cring breaking
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Fig.1.1.: The picture of confinement as a tube of glue flux lines between a quark-antiquark
pair gG. The quarks are invisible either because their potential energy becomes ar-
bitrarily large (without dynamical quarks, cf. (1.3)) or because a virtual quark pair

q'q becomes real (string breaking).

Some remarks are in order. At small distances the potential becomes Coulomb-like
due to one gluon-exchange. Compared to the U(1)-theory a multiplicative factor enters.
It is the second-order Casimir of the representation of the gauge group. The crossover
between these regimes takes place at a scale of about 1 fm, the typical size of a proton.
In full QCD the string breaking will lead to a flattening of the potential for large R and
to screening of charges. Then the linear behaviour is valid only in an intermediate range
between 0.3 fm and 1.5 fm [18].

The string also breaks if the quarks come in the adjoint (or an even higher) represen-
tation of the gauge group. The string tension in the intermediate range still scales with
the Casimir [1]. Furthermore, there are always contributions to the interquark poten-
tial coming from self-energies and the universal Liischer term, which we both neglected
above.

How to relate the behaviour of the quark anti-quark potential (1.3) to the fundamental
objects of pure YM theories? The answer is the well-known Wilson criterion [19]: the
expectation values of large Wilson loops decay exponentially with an area law. First
of all, for the influence of gauge fields on test charges the loop space picture of gauge
theories [20, 21] is appropriate. It states that the wavefunction of a particle moving on
a worldline ~ is multiplied by the path ordered exponential of the gauge field along this

contour,

b PLsle, Pl = Pespli [ Adst) (1.4)

Y



In other words, the effect of the gauge field is such that ¢ is parallel transported along
v with the holonomy P[A;~].

Now we consider the following process: the creation of a quark anti-quark pair in the
past —7'/2, its separation to a distance R, its propagation over a long time period and
finally its annihilation in the future 7'/2, respectively. Such a worldline is approximated
by a rectangle C' with spatial extension R and time extension 7. Following the loop
space formulation, the quark anti-quark wave function is multiplied by the Wilson loop
22, 19], W[T x R| = P[A; T x R]. Its trace is gauge invariant. In Euclidean space and
in the limit of small temperatures (large § = T'), the expectation value of the Wilson
loop gives the ground state energy in the presence of the quark-antiquark pair, hence

the heavy quark potential. Thus, if the latter is of the confining form (1.3), one has,
(tr W[B x R]) — exp(—V,4(R)) = exp(—0SR) . (1.5)

Because of rotational invariance this behaviour is valid then for all large Wilson loops
with SR replaced by the area enclosed by the loop. In contrary a non-confining potential
would give a perimeter law.

The holonomy is a basic ingredient for lattice gauge theory we (briefly) sketch now.

1.3. Lattice Gauge Theory

When quantising non-Abelian gauge theories one encounters unavoidable singularities
which call for regularisation and renormalisation. One of the most useful UV-regulators
for quantum field theories is the space-time lattice. As in the derivation of the path
integral the space-time continuum is discretised, i.e. replaced by a finite lattice of spacing
a. The fields of the theory live on lattice points or bonds; by definition their momenta
are cut off at a scale 1/a in momentum space. Usually periodic boundary conditions are
imposed, that is, a torus is used as an IR-regulator. This leads to a finite number of
degrees of freedom and allows to define the system on a computer.

Lattice gauge theories were established by Wilson in his pioneering work [19]. The
fundamental degrees of freedom are group valued fields U,(x) (see the texts [23, 24]).
They are defined on oriented bonds connecting lattice points and are therefore labelled
by two discrete indices, = for the position of the starting point and yu for the direction.
The relation to the gauge fields is provided by the holonomy from the point x to the
point x + fia, being its neighbour in the p-direction,

T+fia
Uu(z) = ’Pexp(igg/ A, (y)dy”) — exp(igoA,u(z)a) for small a . (1.6)

X



go is the bare coupling of the theory. The inverse of U is attached to the bond with
inverse orientation. Since the field strength in the continuum is related to the parallel
transport along a small closed loop, it is translated into the group element obtained by
multiplying the group elements of bonds enclosing a plaquette, an elementary square of
the lattice,

U(x) = Up(2)Uy (2 + fra)U, ' (x 4+ va)U, ' (2) — exp(igoFy (x)a®) for small a.(1.7)

The Wilson action [19],

1 1
S== > (1— S trReUw). (1.8)

plaquettes

is built out of these plaquette variables and turns into the YM action in the continuum
limit if 3 = 2N/g3. When considered in Euclidean space (and equipped with the Haar
measure for the gauge group) the quantum gauge theory can be identified in the usual
way with a statistical system at temperature 1//5. From the renormalisation group
equation it is clear that the continuum limit is a — 0, gy — 0, § — oo. The correlation
length becomes infinite cancelling all discretisation effects. In the language of statistical
physics the system is at a critical point. Physical quantities must fulfil an asymptotic
scaling in this limit.

The feature that makes lattice gauge theory so attractive in our context is that it does
not refer to perturbation theory, i.e. it is capable to describe non-perturbative effects. The
most prominent example of an analytic result on the lattice is confinement in the strong
coupling regime of the theory (by virtue of diagrams in a high temperature expansion
[19]). Since this is just the opposite corner to the continuum limit, it has to be checked
that there is no phase transition inbetween. In fact, compact quantum electrodynamics
shows confinement in the strong coupling regime, too, but there is a phase transition to
a Coulomb phase at weak coupling [25, 26].

In the last decades numerical simulations in lattice gauge theory have become a branch
of research in its own right. Modern computer simulations are based on the Monte Carlo
method. Both confinement and asymptotic freedom have been shown beyond doubt
[27]. The heavy quark potential including string breaking excellently coincides with the
intuitive picture in Figure 1.1 (see e.g. [9] and references therein). We note that, due to
the finite number of degrees of freedom, lattice gauge theories need not be gauge fixed”.
Many ideas especially concerning the explanation of confinement by Abelian projections

have been tested on the lattice, as we will see later.

Tas long as gauge invariant operators are studied



However, since numerical simulations are not as transparent as physical models, we

now come to the dual superconductor picture of confinement.

1.4. The Dual Superconductor and the Dual Abelian Higgs Model

What kind of physical system admits flux tubes? It is the superconductor of type II. The
Meissner effect states that the superconductor repels weak magnetic fields, while strong
magnetic fields penetrate the superconductor in flux tubes. These normalconducting
tubes are shielded by supercurrents. In solid states physics these tubes or strings go
under the name of Abrikosov. An Aharonov-Bohm gedanken experiment shows that the
magnetic flux is quantised in 1/¢ where ¢ = 2e is the electric charge of the Cooper pairs.

If there were magnetic monopoles inside the superconductor, they would certainly be
connected by such flux tubes, too. Now for the dual superconductor picture of (QCD
(28, 29, 30, 31] one simply replaces ‘electric’ by ‘chromomagnetic’ and ‘magnetic’ by
‘chromoelectric’, respectively. Then chromomagnetic monopoles (as the dual of the
Cooper pairs) condense and force the flux between chromoelectric sources into flux tubes
thereby confining the quarks. But there are no magnetic monopoles in a pure unbroken
Yang-Mills theory! The reason is purely topological (see e.g. [32, FB3]): the magnetic
charge characterises the second homotopy group of the moduli space (the coset), when
the gauge group is spontaneously broken in a particular manner. 't Hooft proposed the
Abelian projections [33], the generic defects of which are magnetic monopoles. We will
discuss this topic in the body of this work.

To be more precise, the relativistic generalisation of the Ginzburg-Landau theory [34],
D,=0,—-iA,, F,=0,A, —0,A,, (1.9)

s vy s

L= (D6)" (D) ~ V(6) — 3 F*F,

describes a superconductor near its critical temperature. ¢ is the complex many-particle
wave function® for the Bose-Einstein condensed Cooper pairs coupled to an Abelian
gauge field A,. ¢ serves as an order parameter which develops a vacuum expectation
value in the superconducting phase below the critical temperature. Therefore the poten-
tial V(¢) is of the well-known Mexican-hat shape in this phase. The London equation,
i.e. superconductivity, follows easily from the conserved electromagnetic current. The
field equations of this theory reflect the penetration depth of the magnetic field and the

coherence length of the order parameter. They describe the decrease of the magnetic

8The underlying microscopic theory was given later by Bardeen, Cooper and Schrieffer. It explains
the attractive force between electrons by means of interactions with phonons and also the energy

gap in the quasi-particle spectrum near the Fermi energy.



field and the increase of the order parameter away from the surface or the position of the
Nielsen-Olesen vortex [35]. Their ratio indicates repulsion or attraction of the vortices
and thus distinguishes type I and type II supercondutors. In the language of sponta-
neous symmetry breaking these lengths are nothing but the inverse masses of the photon
and the Higgs particle, respectively.

Accepting the dual superconductor picture the dual Abelian Higgs model (DAHM) is
supposed to be an effective theory for YM [4, 36]. Now A, is the dual photon and ¢
describes magnetic objects which have to condense. As already mentioned the latter are
obtained from the original theory by the method of Abelian projection. The Nielsen-
Olesen vortex is now an electric object connecting external quarks. It has finite energy
per unit length, i.e. finite string tension. First evidence for such electric flux tubes on the
lattice was reported in [37] followed by a high precision study in [38], where the authors
found the energy density and action density to be well concentrated on a string between
the external charges. The masses have been fitted to be about 1 GeV (depending on the
gauge group), which suggests the superconductor to be at the border between the two
types (Bogomol'nyi limit) [9, 39, 40, 41, 42, 43]. We will come back to the monopole
interpretation after a proper definition of monopoles.

A weak point of this model is that it is not clear whether these mass parameters are
attached to physical quantities like masses or decay constants. If so, one would expect
the glueballs to arise here [10]. But the dual gluon has JF¢ = 17~ while the lightest
glueballs are 07+ and 2%* states. Recent studies suggest that glueballs could emerge
in this model as fluz tube rings [41]. Another criticism concerns fields which are not
charged w.r.t. the Abelian theory: they are not confined within the DAHM.

From this Higgs model one can further derive effective string theories for QCD (for a
review see e.g. [44]). We will follow a different path and present an alternative effective

model which is more adapted to glueballs.

1.5. The Faddeev-Niemi Action

In the 70’s Faddeev proposed a model for a unit vector in three dimensions [45, 46]. Its

Hamiltonian is derived from the action,
S = /d4x (m®(0un, dun) + AH?,) | H,, = (n,0,n x 0,n). (1.10)

The field n fulfils (n,n) = 1, where we have used the scalar product and vector product
in internal space. This action is a generalisation of the Heisenberg model of three-

dimensional spins of unit length, called non-linear ¢ model. It can also be obtained



by U(1)-gauging the Skyrme model [47]. The coupling m? of the o model term has
dimension mass squared, while the coupling A of the Skyrme term is dimensionless.

This model is claimed to have numerous physical applications, since it possesses stable
solitons, i.e. static solutions minimising the Hamiltonian. Their existence is supported
by the Hobart-Derrick scaling argument [48, 49]. The stationary point has kinetic energy
equal to potential energy and obeys the virial theorem [50]. In other words, the Skyrme
term is necessary to support solitons in 3+1 dimensions. These solitons where proposed
to be closed vortices stabilised by twist against shrinkage.

Finite energy solutions must have a definite limit at spatial infinity; they effectively
live on the three-sphere S® 2 R3. Accordingly, the field n is a mapping from S? to S2.
Such mappings are characterised by the Hopf invariant H (cf. Section 4.2.1). The lower

bound estimate is quite exotic,
E>cV|HP, (1.11)

with a numerical constant ¢ as derived in [51, 52, 53] for SU(2)°.

The model regained interest recently due to advances in computer performance. Notice
that, compared to the Skyrme model, exact solutions are harder to find since solitons
with non-trivial Hopf invariant can at most be axially symmetric'’. Faddeev and Niemi
could prove the existence of closed solitons numerically [54, 50]. More elaborated com-
putations revealed a rich variety of such solitons among them linked (H > 6) and knotted
(H > 7) ones [55, 56, 57, 58, 59].

Moreover and most interesting in our context, the model serves as a possible low
energy effective action for pure YM theory [60]. The main goal in this program is the
identification of the solitons with glueballs. To make contact with YM, the following

parametrisation was proposed to be valid on-shell,
Ay, =Cun+nx0on+pon+onxad,n, (1.12)

The full SU(2) gauge field A is decomposed into an Abelian gauge field C, a unit vector
n in isospace and a complex scalar field ® = p+io. The counting of degrees of freedom is
correct on-shell since 6 = 2+ 2+ 2. This parametrisation is verified in the sense that one
obtains the same equations of motion either by first plugging in the parametrisation and
varying the action w.r.t. those fields or by first varying w.r.t. the full field A and then

using the parametrisation [60]. We will see that a normalised field n is a natural object

%and later generalised to SU(N) by Shabanov [15].
10The axial symmetry of the standard mapping of this type is shown in Section 4.3.1.



in Abelian projections; therefore we will discuss possible off-shell parametrisations later
(Section 3.5).

How does the Faddeev-Niemi action arise from pure Yang Mills theory by virtue of the
above parametrisation? The Skyrme term is just the square of the (full non-Abelian)

field strength of the pure n term,
F(n x 0yn) = 0yn x dyn, tr 2, = H},. (1.13)

Although the o model term is the most natural one in a gradient expansion, its derivation
from pure YM is highly non-trivial. The gauge coupling in four dimensions is dimension-
less, thus any mass parameter m can only emerge via regularising and renormalising the
quantum theory. The effect that a mass enters a massless theory via radiative corrections
is called dimensional transmutation [61]. In the case at hand, m is expected to arise
upon integrating out all degrees of freedom but n [60]. This has been done using various
approximation schemes [62, 63, 64, 65, 66]. All these approaches support the existence of
a positive parameter m?, but question the uniqueness of the action (1.10). This action
is ‘unique in the sense that it contains all such infrared relevant and marginal, local
Lorentz invariant operators of n which are at most quadratic in time derivatives, as is
necessary for a Hamiltonian interpretation’ [60]. The above considerations render the
last property artificial and one is left with three independent terms of fourth order in

derivatives,
(9,m)*, (8un, dn)?, (On)?. (1.14)

The first two of them enter wa in a special combination.

The outline of this work is the following: Chapter 2 summarises the main facts about
the mathematical setting and solitons of gauge theories. Both will play an important
role in Abelian projections. The latter are the main topic of this work. The definitions
of Abelian gauges as well as their basic properties and problems are given in Chapter
3, while Chapter 4 is devoted to the discussion of defects. Our focus lies on topological
properties of defects enforced by instantons. The authors main results are contained in
Sections 3.2.1, 3.2.2, 3.3.1, 3.4.1 and 4.3, outlooks are given at the end of these chapters.

We conclude with a summary.
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2. Preliminaries

2.1. Fibre Bundles

In this section we sketch the mathematical formalism for gauge theories, namely the
theory of fibre bundles (see e.g. [67, 68, 69, 70, 71, 72]). It is the natural setting when
dealing with global properties of non-trivial configurations, and in addition it is also very
elegant. For the same reason we pass over to the language of differential forms now.

Fibre bundles may be seen as to implement the concept of gauge invariance. Gauge
variant objects cannot be measured, they may even not be defined globally, but vary
invisibly over the space-time. To be precise, the gauge fields A; and A5 might be defined
only on some open sets U; and U,, but must give the same gauge invariant objects on
the overlap U; N Uy, i.e. are related by a gauge transformation, A, = ‘A;.

The definition of a fibre bundle consists of a base (space-time) manifold M and a fibre
manifold F', in which a field takes its values, subject to the action of a Lie group G
called structure group. The total space manifold F is locally M x F', but not globally in
the sense that there exists
— a projection from E to M the inverse image of which is the fibre,

— a set of local trivialisations ¢; on open sets/charts U; providing an identification of
parts of E with the direct product U; x F' and

— a set of transition functions t;; from the overlaps U; N U; to G gluing together the
local trivialisations. Sections s; from M to E invert the projection, ms = id,;, but may
only be defined locally.

Given M, F and G the bundle can fully be reconstructed from the transition functions.
The latter measure the deviation from the trivial bundle M x F', where all transition
functions can be chosen to be the identity. If the base space is contractible to a point,
any fibre bundle is trivial. In gauge theories non-trivial base manifolds and non-trivial
bundles occur either by boundary conditions (e.g. the torus as infrared cut-off) or by
demanding finite action/finite energy (then fields typically approach a constant value at
infinity, like for instantons/solitons) or by excluding points from the space-time (where

singularities are located, like for the Dirac monopole).
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2.1.1. Principal Bundles and Associated Bundles

To arrive at the gauge field one has to consider principal bundles. Within these bundles,
the fibre F' is identical with the structure group GG — acting on itself by left multiplication
—and the total space is usually denoted by P. The need for local sections is expressed by
the theorem that a principal bundle is trivial if and only if a global section exists. The
connection one-form A is a one-form on the total space with values in the Lie algebra
of the structure group. It provides a separation of the tangent space into a vertical part
(along the fibre) and a horizontal part, respectively. The curvature two-form F is defined
as the covariant derivative D of the connection one-form A.

Both quantities are defined globally on the total space. With the help of local sections

one can pull them back onto the base space and define the gauge field 4; = sf(A) and the

field strength F; = s7(F) as local Lie algebra valued forms. Cartan’s structure equation

translates into the well-known relation (cf. B.2),
F=DA=dA—iAAA, (2.1)

from which the homogeneous YM equation DF' = 0 follows as a Bianchi identity.
Apart from the transition functions there are two notions of gauge transformations in

the bundle approach. The active one is related to a change of the connection by virtue

of vertical automorphisms of the principle bundle, compatible with the action of the

structure group. In the passive sense this amounts to a change of local sections,

sa(z) = g(@)sa(w),  As(2) = g(2)Ai(2)g" () +ig(w)dg' (). (2:2)

Matter fields in a gauge theory are described by associated bundles. The structure
group G is assumed to have an action p on a manifold F'. Then the associated bundle to
a principal bundle P(M, G) has the total space E = P x F//G and the same base space
M, respectively. It inherits a set of local trivialisations from the principal bundle, which
identifies it locally with U; x F. In other words, the fibre of E is F' and the structure
group is GG, as expected. Another important point is that it has the same transition
functions up to representation, tfg = p(tf-;). With the help of a connection, a covariant
derivative can be defined on the associated bundle as well. It acts on differential forms!
with values in sections in E and is the ingredient in building gauge invariant objects.

Locally it reads,

D¢; = de; + p(A;) i , (2.3)

with the corresponding representation p of the Lie algebra.

Lor functions, in the simplest case
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2.1.2. Characteristic Classes

Characteristic classes serve as a tool to classify bundles. They all rest upon invariant
polynomials. We will only consider the Chern characters ch,, which are (wedge) powers
of the field strength,
1 1 1
tr F hi(F)=—trF ho(F)=—=tr FAF. (24

They play a very important role in index theorems and anomalies, too. With the help of

ch,(F) =

the Chern-Weil theorem, the Chern characters are related to elements of the de Rham
cohomology group of the base manifold. In this way they describe topological properties
— in particular the nontriviality — of the bundle.

The Chern characters belong to integer cohomology classes. That is, combinations of
Chern characters integrated over M yield integers, the Chern numbers. In practice, only
the lowest Chern numbers occur; they vanish for 2n > dim M anyhow. As demonstrated
in the next chapter, the Chern numbers for n = 1 and n = 2 are the magnetic charge
and the instanton number, respectively.

Since d ch,, = 0, the Chern-Simons forms of the Chern characters can be defined by,

ch,(F)=dcsg—1(A), csi(4) = % tr A, cs3(A4) = # tr (AANdA — %A‘g) , (2.5)

at least locally. These are not gauge invariant.

2.1.3. Reducibility and Bundle Reduction

We report on this particular subject, since it will become important at several points
below.

The holonomy group H, of a point p in a principal bundle is obtained by horizontal
lifts? of all closed curves v starting and ending in the corresponding point z = 7(p) of the
base space®. H is a Lie subgroup of the structure group G. Moreover, it is independent
of p in the sense that the holonomy groups at different points are G-conjugate to each
other, hence isomorphic. The elements h of H are solutions of an ordinary differential
equation and can locally be expressed by path ordered exponentials of the gauge field,
halv] = P[A4;9].

The idea of bundle reductions is to relate a principal bundle to a subbundle with
the same base M, but a subgroup H of GG as structure group. The reduction theorem

guarantees that P* can be reduced to a bundle with the holonomy group H as structure

Zgiven a connection one-form
3which we assume here to be connected and paracompact
“better that part of P reachable from p by horizontal lifts

13



group. Furthermore the connection one-form is also valid on that reduced bundle. The
possibility of such a reduction is in one-to-one correspondence with the existence of
transition functions taking their values in H and with a global section in the associated
bundle with fibre G/H.

The subgroup H can be characterised by its centraliser C', the subgroup of elements

of G ‘commuting’ with all elements of H,
C={keG|k"hk=h Vhe H}. (2.6)

The bigger the holonomy group the smaller its centraliser. The reducibility of a gauge
field A is defined accordingly. Gauge fields with no restriction on the holonomy group,
H = @G, are called irreducible. The centraliser is as small as possible, it consists of the
center only, C' = Z(G). The opposite extreme are gauge fields with trivial holonomy
H ={e}, C = G, which we call extremely reducible. The vacuum A = 0 belongs to this
type.

Now we further assume M to be simply connected (like the sphere). Then the holon-
omy group is connected. In other cases (like for the torus) the appropriate tool is the
restricted holonomy group, the identity component of H. For G = SU(2) and M = S*
there is only one intermediate type [73], Abelian gauge fields with H = U(1) (for a
detailed analysis of other groups and other base spaces see [74]). Since this type is im-
portant for Abelian projections of SU(2) we elaborate on it in detail. We parametrise

the holonomy group H by one (normalised) Lie algebra generator n,
H > h(x) = exp(in(zx)), (n(x),n(x)) =1 Vz. (2.7)

The centraliser has to commute with all A and — upon expanding in A — with n, too.

Therefore its elements are of the same form,
C 3 k(z) = exp(iAn(x)), (2.8)

containing the center Z(SU(2)) = £1, for A € {0,7}. The centraliser is again a U(1)
subgroup®, which is embedded in SU(2) by n(z) in the same way as H.

There are three equivalent characterisations of reducibility; we shall explain them for
the Abelian gauge fields. First, the Ambrose-Singer theorem states that the Lie algebra
of the holonomy group H is spanned by the field strength F' [77]. This follows easily

from the picture that the field strength measures the non-closure of infinitesimal parallel

SFor higher groups, this coincidence holds only for the maximal Abelian subgroup! [75, 73, 76]
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transports. Now it is obvious that all flat connections are extremely reducible. For the
Abelian fields the field strength must be parallel to n(x) in colour space.
The second property is that elements k& of the centraliser build up the stabiliser of A,

FA=A. (2.9)

The reason behind this correspondence is that the holonomy transforms covariantly,
P[FA] = k~'P[A]k. Again, the more reducible A, the bigger its stabiliser. For the
vacuum, for instance, it consists of all constant SU(2) gauge transformations®.

A third completely equivalent characterisation is by demanding n(x) to be covariantly

constant (in the adjoint representation),
0=Dan=dn —i[A,n]. (2.10)

The scalar product of n with this equation, 0 = d(n,n)/2, shows again that n is nor-

malised. The solution of this set of differential equations is
n(z) = P[A, y]n(wo)P[A,4]7". (2.11)

Here 7 is a path connecting the point x with some reference point x3. The independence
of n of the choice of this path translates exactly into the centraliser description above.
The equivalence to the stabiliser picture is seen when expanding equation (2.9) in powers
of A\. Now the field strength picture emerges as an integrability condition using the
commutator of two covariant derivatives, 0 = [F, n], which is equivalent to F' || n.

Equation (2.10) (via its commutator with n) fixes the part of A which is perpendicular
to n. Thus, the most general ansatz for a U(1)-reducible gauge field is the one written
down by Cho [78],

~

A=Cn+in,dn]. (2.12)

2.2. Configuration Space of Yang-Mills Theories

Gauge fixing is necessary in YM theories both in the Hamiltonian approach — in order
to quantise systems with constraints like Gauss’ law (cf. [79]) — and in the path integral
approach — where one a priori expects any observable to come with an infinite volume
factor stemming from integration over the gauge group — respectively. In this section,
we will define the physical configuration space of YM theories as the quotient of the
space of connections and the gauge group. The main aspects can be studied by means

of the Christ-Lee model [80] which is our starting point.

®Notice that by the fixed space dependence of k(z) coming from n(z) in (2.8), the stabiliser group

Y

becomes isomorphic to a subgroup of the structure group, not of the gauge group we define later.
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2.2.1. Christ-Lee Model

The path integral becomes an ordinary one in the degenerate case of a ‘zero-dimensional
field theory’. That is, the ‘field” ¢ ‘depends on nothing’, and I = [d¢exp(—S(¢)). For
simplicity we consider a two-dimensional internal space, ¢ = (z,y)". By assumption,
the action S = S(r) is invariant under rotations ¢ — R(\)¢, i.e. under the action of the
gauge group SO(2). The orbits of this action are concentric circles plus the origin of
R?. They have different dimensions since the stabiliser of the origin is the whole group
SO(2). In analogy to the last section, the origin is (extremely) reducible.

Polar coordinates obviously provide a splitting of the field variable ¢ into its gauge
variant and invariant part, respectively. The polar angle ¢ is the coordinate along each
orbit (but the origin), and r € [0, 0c) labels the set of orbits. The latter is the physical
configuration space, MM = R?/SO(2) = R}. Accordingly, the -integration factors out

from the integral,

T:/Ooodrrexp(—S(r))/O%dgo, (2.13)

giving the volume of the gauge group, vol(SO(2)) = OQWdcp = 27. (In zero dimensions
the volume of the gauge group is finite. Hence, the overcounting is also finite, and a
gauge fixing is not necessary.)

The Faddeev-Popov trick is an alternative procedure to split off the volume of the

gauge group. It is based on the well-known formula for the §-distribution of a function,

1= [DSEODN O, x(a) =0, (2.14)
which we insert into the integral,
I= [ dy dhexp(=S(z5)8 ) X (). (2.15)
Since we can reach any point on a fixed orbit by a rotation, we can write
X(A\) =y =rsin\, Ao € {0, 7}, X'(Xo) =1z (2.16)

Then the integral becomes

= %/Oodxxexp(—S(x))/:ﬂd)\. (2.17)

o0

which provides a splitting of variables just like (2.13). Notice that the non-triviality

of the measure x dzx comes from the derivative of the condition y in (2.16). We have
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circles=orbits orbits

x<0mx>0 =0 U\k/%éé//xm)o

Gribov gauge Gribov region  gauge
copies slice Gribov '
copies /// slice

origin=reducible zero mode of FP (inf. Gribov copy)

Fig.2.1.: Left: The Christ-Lee model as a toy model for gauge fixing. Right: A typical fraction
of the configuration space with a zero mode of the FP operator, where the normal
vector N to the gauge slice and the tangent vector ¢ (the velocity) along the orbit

become orthogonal.

corrected a factor 2 from the sum over )y in (2.14) we suppressed so far. In fact, every
orbit (but the origin) intersects the line x(\) = y = 0 twice (see Figure 2.1). To avoid
this, one can supplement this equation by the inequality x > 0. Then the analogy to the
variable r is perfect. We stress that both conditions, y = 0 and z > 0, can be summed

up in demanding the function F(\) = —x = —rcos A to be minimal.

2.2.2. Gauge Bundle, Space of Connections and Gauge Group

Given a principal bundle P(M,G) the space of all smooth connections is called pre-
configuration space 2. 1t has the nice properties of being affine and contractible and can
be interpreted as a real infinite-dimensional vector space with values in the Lie algebra
of the structure group G. However, it is a ‘bigger-than-real-life’ space [81] in the sense
that different connections are related by vertical automorphisms (cf. Subsection 2.1.1).
The group of vertical automorphisms is called gauge group &. A more intuitive picture is
provided by virtue of the gauge bundle Px G /G. This is an associated bundle to P(M, G)
where the structure group G acts on itself by conjugation. Now the elements of the gauge
group can be interpreted locally as sections in the gauge bundle, i.e. mappings from the
base space into the group, therefore the notion g(x) for elements of & is mostly used in
physics.

Any physical observable is by definition invariant under gauge transformations. Ac-
cordingly, the physical configuration space M is the orbit space obtained from the pre-
configuration space after dividing out the gauge group, 9t = 2(/&. (The total configura-
tion space is obtained by the union of all 9U’s with different instanton number.) It is this
quotient that makes the physical configuration space highly non-trivial. Its topological

features are of interest when dealing with non-perturbative effects: the non-perturbative
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wave functional spreads out (it is not localised around the vacuum A = 0) and becomes
sensitive to the non-trivial geometry of the configuration space [82, 83].

M is not a manifold, it rather contains singularities. The reason is that the action
of & on 2 is not free.The properties of 91 are condensed in the term stratified variety
[84]. Recall that the set of gauge fields can be classified according to their reducibility
(cf. Section 2.1.3). Therefore, 9 is the disjoint union of countably many strata, which
are the orbits with identical stabilisers”. Each stratum itself is a manifold®. The stratum
of orbits of irreducible connections is called the main stratum 8. The structure of 9
is such that every stratum is open and dense in the set of all strata having the same
or a bigger stabiliser. That is, the main stratum is dense in 91. One might think of
‘cones over cones’: the generic stratum forms a cone, the tip of which are the Abelian
connections, and the latter themselves form another cone, the tip of which are the flat
connections [73]. This structure is reflected in lower-dimensional toy models [85], among
them 9 = Ry of the Christ-Lee model.

2.2.3. Gauge Condition, Faddeev-Popov Method and Gribov Problem

In practice, the physical configuration space 91 is to be modelled as a subspace of the pre-
configuration space 2l modulo boundary identifications, called the fundamental modular
domain A [73]. Put differently, this space should intersect every orbit once and only
once. The procedure of finding A is called gauge fizing. Usually, the first step is to write

down a gauge condition,
X(A)=0. (2.18)

We will use a condensed notation, y, for a set of equations, their number being the
dimension of the structure group. The subspace spanned by the solution of this equation
is the gauge slice T'. x must be a gauge variant function of A. For instance, the conditions
for the axial and Lorenz gauge® read x(A4) = A and x(A4) = 9,4, = *d* A, respectively.
For the latter it was found that the gauge condition (2.18) is not a complete gauge fixing
[86]: there exist Gribov copies, for example of A = 0, a problem which is referred to
as the Gribov problem. Gribov copies are configurations which at the same time fulfil
the gauge condition and belong to the same orbit. It was proven by Singer that it is

impossible to fix the gauge by any continuous gauge condition [87]. The reason is that

Tup to conjugation
8and the main stratum related to a subbundle of P
Yalso called Landau gauge or covariant gauge
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the principal bundle consisting of the main stratum 9B as total space, & = &/Z(G) as
gauge group and a base manifold 91 which is open and dense in the physical configuration
space I is not a trivial bundle, hence admits no global section. In fact, the proof was
given for space-times S® and S*, but is believed to persist for any compact space-time
88].

The gauge condition (2.18) is implemented in the path integral by the Faddeev-Popov
trick [89] (like in the Christ-Lee model, cf. (2.15)):

I= /DA exp(—Sym(A) 0(x(A)) det FP(A), (2.19)
where the Faddeev-Popov (FP) operator

_0x
FP(A) 6\ = 1 D46, (2.20)

acts on gauge parameters A (in the adjoint representation) and has to be evaluated at
the gauge slice x(A) = 0. It can be visualised as the scalar product of the normal vector
N = 0x/0A at the gauge slice T and the velocity D4\ of a fictituous motion along the
orbit (see Figure 2.1).

Zero modes of the FP operator detect infinitesimal Gribov copies: The gauge fields A
and A+ dA, 0A = D4 dA are both on the gauge slice T" if and only if

X(A+35A4) = FP(4) 61 =0. (2.21)

From (2.20) one infers that there are two generic reasons for this to happen. First 0\ can
be a zero mode already of D 4; the velocity vanishes and the action of the gauge group has
a fixed point. This is just one notion of reducibility (cf. (2.10)). The second possibility
for det FP to vanish is when the normal vector and the velocity are orthogonal. From
Figure 2.1 one expects finite Gribov copies on neighbouring orbits. This is what usually
happens for background type gauges like the Lorenz gauge.

We go on to describe the identification of the fundamental domain A in the Lorenz
gauge [73, 83], since this gauge is similar to the Maximally Abelian gauge. Like for the
Christ-Lee model the second gauge fixing step uses a Morse functional F[A] along the
orbit. It must be gauge variant such that its extremum condition (‘equation of motion’)

gives the gauge condition x(A). For the Lorenz gauge we have,

Frovens[A] = / fr AN %A = / (A0)2 AV . (2.22)
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The subspace spanned by the minima of F' is the Gribov region 2. It can be described
by a positive FP operator'’, since the latter is the Hessian (‘fluctuation operator’) of
F. The Gribov region €2 is convex and bounded, and every orbit intersects it at least
once. The boundary of the Gribov region is the Gribov horizon 62, where the lowest
eigenvalue of the FP operator vanishes. We have described this situation above. The
intuition behind the Gribov horizon is a bifurcation of minima [83, 90].

In a third step, one further restricts to a subspace of 2, the set A’ of absolute minima
of the functional F'. This space A’ is again convex and bounded. Its interior is void of
Gribov copies. On its boundary, configurations which are associated with degeneracies
of absolute minima of F' are to be identified. Eventually, one arrives at the fundamental
modular domain A after dividing out the structure group'' G, A = A’/G. Tt is the
boundary identifications in A’ that restore the non-trivial topology of A = /®.

On the lattice, the detection of Gribov copies has been reported for the first time in
[91]. It turns out that some of these copies are lattice artifacts while others survive in
the continuum limit [92]. In a sense, therefore, the Gribov problem becomes even more
pronounced upon gauge fixing on the lattice (for a recent review see [93]). In order to
extract physical results one clearly has to control the influence of Gribov copies. This is

of particular relevance for the lattice studies of confinement.

2.3. Solitonic Objects in Gauge Theories

In this chapter we will consider some of the solitonic configurations playing a role in gauge
theories, namely monopoles and instantons. We will mainly concentrate on kinematical

aspects like topology and symmetry.

2.3.1. Dirac Monopole

The Maxwell equations with sources, df = 0, f = %j, are not invariant under ex-
changing ‘electric’ and ‘magnetic’ (we use small letters for Abelian fields). In order
to establish such a duality, Dirac has considered the magnetic monopole [94, 95]. The
Bianchi identity becomes df = *k, and the introduction of a vector potential, f = da,

is only possible outside the monopole. The original Dirac monopole is static. Excluding

10To be precise: this statement is fully correct for background gauges with irreducible background.
The Lorenz gauge is a background gauge with vanishing, i.e. extremely reducible background, and

therefore FP has always zero modes.
"For other backgrounds than the trivial one, the stabiliser has to be divided out.
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the monopole position one arrives at the space R*\{0}, which is of the same homotopy
type as the two-sphere S2.

Not surprisingly, the Dirac monopole can be described by a non-trivial principal bundle
(67,96, 97, 98] over S?. The fibre and the total space are U(1) = S' and S?, respectively.
The latter differs from S? x S! globally'?. The projection 7 : S3 — S? is chosen to be
the standard Hopf map ny discussed in Section 4.1.1. Using polar angles (6, 12, ¢34)
on the total space S® and (1J, p) on the base manifold S? (see A.1), it reads,

T=ny:8 =52, V=20, ¢ =po— p3. (2.23)
Local sections around the north and south pole are given by
SN,S 5% — 57, 0=0/2, @in—pau=¢, Yuot+eu=TFp-—m, (2.24)

respectively, chosen such that they are well-defined in their domains.

A particular choice for the connection one-form and curvature two-form on S? is,

a = g(—d(@lg + (,034) - COS(29)C1(9012 — (,034)) s f == —2g sm(20)d0 A d((plg - (,034) ,(225)

where the constant g denotes the strength/charge of the monopole. Pulling @ down onto

the base space one arrives at the Wu-Yang vector potentials [99],
ay = g(1 — cos)de, as = g(—1—cosd)dyp (2.26)
They differ by a U(1) gauge transformation h
ay = ag + 2gdy, h = exp(2igyp) , (2.27)
which is well-defined only if the Dirac quantisation condition,
g=n/2, (2.28)

holds'3. Of course, both gauge fields give the same field strength, a magnetic field of
Coulomb type,

—

f=gsinddd Adp = —g eimiidi; Adig,  B= g:—3. (2.29)

An electric field is not present a priori, but can easily be added by introducing a non-

vanishing Ag resulting in a dyon [100].

1235 is obvious from the differing homotopy groups m; and
I3Reintroducing the electric charge e the Dirac condition reads eg = n/2; all electric charges would be

quantised by just one magnetic monopole in the universe.
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The monopole bundle is characterised by the transition function h from (2.27). It is a
mapping from the vicinity of the equator, which is homotopic to S*, to the gauge group

U(1) = S', and 2g = n is just its winding number (degree),

1
deg(h) = Py /51 hidh =2g € 7, (S") 2 7. (2.30)

™

The first Chern number is fully equivalent,

n= /52ch1(f) - % /S2dV(S2) = 2. (2.31)

From the discussion on the triviality of principal bundles (Section 2.1.1) it is clear
that a single section s is not sufficient. The local sections (2.24) become singular when
irregularly extended to the opposite pole. The same is true for the transition function
(2.27) and the gauge fields (2.26). The latter develop the well-known Dirac strings along

the z-axis,
dans = f+ fXs, [fag=4mg 0(F2)0@ (x,y) dz A dy, (2.32)
due to the important relation (cf. [101]),
d%p = 276@ (z,y) dz A dy , (2.33)

which can be understood via Stokes’ theorem or the Green’s function of the Laplacian
in two dimensions. In physical terms, the Dirac strings provide the flux spread out by
the Coulombic field,

d;, = / g =—4mg, Qo = [ f=4dmg. (2.34)
S2 ’ §2
The latter equality also holds in its local form,
divB = df = 47g6® (2, y,2)dz Ady Adz = xk = —dfys- (2.35)

The picture of magnetic monopoles as endpoints of Dirac strings is useful for practical

purposes.

4e.g. the Dirac quantisation can be derived by an Aharonov-Bohm gedanken experiment around the
Dirac string (see e.g. [FB3])
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2.3.2. 't Hooft-Polyakov Monopole

Another kind of monopole occurs in non-Abelian gauge theories with Higgs fields!®, for

instance in the Georgi-Glashow model [102],
L=trDoA+Do— V(Ig]) + Lym(A),  Lym(A) = —tr F A +F. (2.36)

It contains a triplet of scalar fields ¢ coupled to an SU(2) gauge field A, i.e. the Higgs
field belongs to the adjoint representation. The YM part is the one from (1.1). The
potential V' is of Mexican-hat shape with a minimum of value zero at say |¢| = v.

The 't Hooft-Polyakov monopole is a static solution with finite energy and no electric
field. Via the Bogomol'nyi trick [103] one can derive a lower bound for the energy,

namely,

E:/R3(tr (f)¢)2+tr§2+V(¢>)) :/

R3

(tr (Do + B)? T 2tr Do B + V(¢)) (2.37)

where we used the three-dimensional notions D¢ = ¢ — Z[A‘, ¢] and B =V x A The
energy splits into a positive bulk term Ey,;, a sum of squares, and a boundary term

FEhoundary, @ total derivative,

Eboundary =+ 2/

R3

tr Do BB = :F/ (6, F), (2.39)

S

&
respectively. We have introduced the Killing form, a scalar product in isospace (see
B.1), (X,Y) =2tr XY = X,Y,. The result is £ > |Epoundary|, Where the bound can be
saturated for vanishing potential.

In addition, Eyoundary has a topological meaning. Notice that for finite energy the

asymptotic value of |¢| must be v. Therefore, we identify it with a normalised Higgs
field n,

Z| s oc: |pl=v, d=wvn. (2.39)

n is a mapping from S% to the coset S? = SU(2)/U(1), where the U(1) is the group of
rotations around n not affected by symmetry breaking. The integrand of the boundary
term is part of 't Hooft’s field strength tensor [104],

G = (F,n)+ (iDnADn,n). (2.40)

156 g. for spontaneously broken gauge theories
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Each term in this expresssion is gauge invariant in itself. There is also a formula for G

as a sum of gauge variant terms,
G =d(A,n) + (idn Adn,n). (2.41)

Now it is obvious that the flux of GG is a topological quantity,
q= / G = / (idn A dn,n) = 4w deg(n) , deg(n) € m(S?) = Z (2.42)
8% 8%

namely the winding number of n: S? — S?, also called Brouwer degree [105]. It counts
how many times the image sphere is covered by the preimage sphere. Being an integer it
is conserved during time evolution. But it does not generate a Noether symmetry (the
equations of motion are not involved in its derivation).

The explicit expressions for the 't Hooft-Polyakov monopole in the so-called radial
gauge read [104, 106],

A= A(\f|)qjaxidxj7'a s ¢ = ¢(‘f|)(5mxﬂ'a s (243)
with the following asymptotic behaviour of the profile functions,
7| = oo A = /|7, o(|7]) = v/17]. (2.44)

n = x,7,/|Z| is simply the identity S* — S? - the hedgehog — with deg(n) = 1, ¢ = 4r.
The mixing between coordinate space and colour space is expressed by the mixed indices
of e and 0 in (2.43). We stress that for a winding in n, ¢ is required to vanish somewhere
and n becomes singular there. Within the ansatz (2.43), ¢ vanishes at the spatial origin;
in the BPS limit of vanishing potential it grows linearly with |Z|.

The 't Hooft-Polyakov monopole turns into the Dirac monopole upon diagonalising
¢ with a gauge transformation ¢ such that 9n = 73. This so-called unitary gauge is
used to extract the physical degrees of freedom after spontaneous symmetry breaking'S.
But the diagonalisation of ¢ is only possible with a singular gauge transformation. This
point can easily be understood by visualising ¢g as the rotation from n onto the positive
three-axis in colour space: it is not continuous when n is on the negative third axis.
Therefore g transforms A into the gauge field Ay of the Dirac monopole (with the Dirac
string along the negative z-axis, cf. (2.26) with g = 1). Interestingly, the contribution
to G in (2.41) has changed from the second term to the first term, and ¢ is now the flux
of an Abelian magnetic field of Coulomb type (®,,; = 47 from (2.34)).

16Tn fact, g is proportional to the mass of the W boson.

24



2.3.3. Instantons

By virtue of the Bianchi identity DF = 0, the classical YM equations D x F' = ( are
fulfilled for (anti-)selfdual fields, *F = +F (E = +B). These first order differential
equations are easier to solve than the original second order ones. Their non-trivial
solutions are called instantons ([107, 108], for a review see [109]). They are minima of
the action since the inequality tr (F + *F)? > 0 yields,

Sym(A) > 872w (A)] (2.45)
where the instanton number v is nothing but the second Chern number

1
Z/(A)EW trF/\F:/chg(F)EZ. (2.46)
T
The equality in (2.45) holds exactly for (anti-)selfdual fields.
Most of the known results about instantons refer to the four-sphere S*. It enters the
game via one-point compactification: demanding finite action the gauge field has to

approach a pure gauge at infinity,
A —igldg forr — oo, (2.47)

This is exactly the situation allowing for the application of the compactifiability theorem
by Uhlenbeck [110]: such a gauge field can be extended to R* U {oo} = S*. Of course
the above gauge field is smooth only on one chart'” of S* and has to be supplied by
another local gauge field.

By virtue of the associated Chern-Simons form (2.5), the instanton number can be

related to the winding number of the gauge transformation g,

v(A) = /R4 chy(F) = /s cs3(A) = 2417r2 /S tr (gdgﬁ)3 = deg(g) € m3(S?) 2 Z, (2.48)

% %
where ¢ is a mapping from the boundary of space-time S2. to the gauge group SU(2) =
S3. Gauge transformations with non-vanishing degree (which cannot be obtained by a
deformation from the identity) are called ‘large gauge transformations’. In the language
of principal bundles one needs two charts for the sphere S* and g is just the transition
function living on the overlap which is homotopic to S®.

The number of parameters/the dimension of the moduli space of (anti-)selfdual solu-

tions with instanton number v(A) = k is known (cf. [69] and references therein). For

"namely on the one around the pole which is mapped to the origin by stereographic projection
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SU(2) it is 8k — 3 where 8k = 4k + k + 3k refers to the position, size and colour orienta-
tion of k single instantons, respectively, and a number three from overall global colour
rotations has to be subtracted. The general solution is realised by the algebraic ADHM
construction [111].

Much less is known about torus-type manifolds T* xR*~",n = 1,2, 3,4. An ADHM-like
formalism has been exploited yielding the so-called calorons, instantons over S' x R3
with instanton number one [112, 113, 114]. Constructions of instantons become very
complicated for higher n [115]. On T* the existence of instanton with k¥ > 2 was
established by Taubes [116]. Although there are configurations with k£ = 1, instantons as
solutions of the equations of motion are ruled out [117, 118] by the Nahm transformation
[119]. The latter connects U(N) instantons with charge k to U(k) instantons with charge
N on the dual torus.

Abelian Instantons on the Torus

For particular values of the periods L, there exist Abelian instantons on the torus [120,
121],

A=Adn(K'&dey + K"E A&y T3, £, =x,/L, (nosum), (2.49)

with constant field strength

F = 47T(:I€,d§3 A d§4 + k”dfl A dfg)Tg s (250)
and even instanton number k = 2k’'k”. They have the following Abelian transition
functions

to =1ty =19 s t = exp(47rik"§27'3) s ty = exp(47rik'§473) s (251)

but are solutions only if k" /LLy = k'/L4L3 (then F' = const niydxu Adz, 73 is selfdual).
They represent singular points of the moduli space.
The Single Instanton

The following ansatz for SU(2)-instantons is often used [122, 123, 124, 125], although it

is general only for k =1,
A= —n,0,Inlldr,,. (2.52)

The n-tensor [126] relates Lorentz and colour indices like € and ¢ for the 't Hooft-Polyakov
monopole (cf. (2.43)). Now the self-duality problem has reduced to a Laplace equation
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OIT/TT = 0 solved by Coulomb-type Green’s functions which are squares of the inverse
distances,
k

() :1+Z(x_”7"xi)2, v(A) = k. (2.53)

The occurence of only 5k parameters (p;, x;) reflects the fact that all constituent instan-
tons of this ansatz are equally oriented in colour space.
We specialise immediately to the case k =1 (p; = p, 1 = 0), which yields the single

instanton in singular gauge,
dz, 7, . (2.54)

The singularity at the origin is a gauge artefact. Indeed, one should better use A%

around infinity and the gauge-related single instanton in regular gauge [107],

2
ATE = dz,7a (2.55)

around the origin. For brevity we will refer to these configurations as singular and
regular instanton, respectively. In the bundle approach, these are two local gauge fields
in the quaternionic Hopf bundle with total space S7, base space S*, fibre S? = SU(2)
and another Hopf fibering as the projection 7w : ST — S3, respectively. The transition
function is the identity mapping from S® to S = SU(2),

§ = it,olt) = d41y + idyoy, Aree = 9458 (2.56)
which clearly has deg(g) = 1. Like for the Dirac monopole this gauge transformation
must be singular and so it is, namely at the origin and infinity. Certainly it also relates
the field strengths, while the instanton density is gauge invariant,

1 6 pt
—trFANFF = ——————
gr2 72 (r2 4 p?)*

dV (R"). (2.57)
It correctly yields unity when integrated over R* and approaches the four-dimensional
d-distribution for vanishing size, p — 0.

Up to now we have only considered the topological four-sphere R*U{oc} = S*. To really
move to the geometrical four-sphere S* with non-flat metric, we benefit from the fact
that classical YM theories are conformally invariant. If we use conformal coordinates'®
x, the metric is conformally flat,
4R*

2 ag(r ar(r) _
ds* = e 08y, dryday, e = s

(2.58)

!8which are simply the Cartesian coordinates of the point stereographically projected onto R*
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Field configurations minimising the YM action on R? are also minimising configurations
on the sphere, if the Cartesian coordinates are substituted by conformal coordinates.
Thus, we can simply use the expressions (2.54) and (2.55) for the single instanton on
the sphere, too.

For actual computations, symmetries of the configurations involved are very important
(see [127] and references therein). Since gauge fields are gauge dependent, the symmetry
concept is slightly enlarged: Under a symmetry a gauge field A has to come back to itself
up to a gauge transformation, for instance under rotations R, 94 = RA(R™'x).

The single instanton is highly symmetric: On R* it is invariant under SO(4) rotations

and a combination of translations and special conformal transformations,
52, = W’ + 202 3,/p— cula® + 2)/p. (2.59)

up to a compensating (infinitesimal) gauge transformation, 0 A = DA, with

1

A= (5 WMy = 2 €My Tw)Ta s (reg. gauge) . (2.60)

Altogether, these transformations form (a non-linear representation of) the group SO(5).
This symmetry is preserved on S* when the radius R of S* embedded in R® coincides
with the instanton size p. To illustrate this point, we note that the gauge invariant
instanton density,
4 (.2 214
tr FAF % % : (sg. and reg. gauge). (2.61)
is constant on S* (and thus SO(5)-invariant) only if R = p. For R # p the explicit
appearance of r, which is only SO(4)-invariant, breaks SO(5) down to SO(4). The single
instanton is the only gauge field within the ansatz (2.52) and (2.53) with such a high
symmetry. The occurence of at least two different positions of single instantons for
higher £ certainly breaks the full rotational symmetry.
We conclude this section by noting that the gauge transformation ¢ is invariant under
SO(4) rotations, provided selfdual rotations are compensated by right multiplication

and anti-selfdual rotations are compensated by left multiplication, respectively,

1 1
6?]:@2)\, A= EWWJT]ZV’Ta, 6?]:2)\@) A\ = 5(4)”,,772”7',1. (262)
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3. Abelian Projections

In the introductory chapters we have discussed both the rich structure of pure YM theo-
ries due to the non-Abelian nature of the structure group and the fundamental property
of confinement, which, as a non-perturbative phenomenon, is difficult to derive from first
principles. The Abelian projections invented by 't Hooft [33] were a breakthrough in that
they isolate the non-Abelian part of the theory which very probably is responsible for
confinement.

In order to trace out this part, one first makes use of an Abelian gauge. This is a
partial gauge fixing which leaves the maximal Abelian subgroup untouched. For SU(2)
the latter is U(1), realised, for instance, in terms of diagonal matrices. In this way
one naively expects to obtain a version of electrodynamics. Indeed, under the residual
Abelian gauge freedom the diagonal part and the off-diagonal part of the gauge fields
transform as photons and matter (in the adjoint representation), respectively.

The off-diagonal gauge field is just another matter field like the quarks; no symmetry
prevents it from becoming massive in the quantum theory. Therefore, it is assumed
not to induce confinement and is neglected in a first approximation, known as Abelian
projection.

So far one would arrive at a rather trivial theory — an Abelian gauge theory, which is
not confining — if there were no remnants from the coset part of the gauge group. These
effects go under the name of defects. As we will show, the gauge transformations that
transform into the Abelian gauge cannot be smooth for all gauge fields. The associated
singularities can be characterised by topological quantities representing obstructions
against the diagonalisation of non-trivial mappings.

Furthermore, for generic gauge fields, the defects are localised. Since the Abelian gauge
is part of a complete gauge fixing, the defects might be viewed as local realisations of
the Gribov problem. Generic defects in four dimensions are worldlines of magnetic
monopoles carrying unit magnetic charge. By the duality argument of Section 1.4, the
condensation of these defects is supposed to lead to confinement!. Strong support of
this picture is provided by lattice simulations.

In the forthcoming sections we discuss the mechanism of Abelian projections in more

"We will not, concern ourselves with perturbative and renormalisability issues [128, 90, 129, 130].
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detail. We will restrict ourselves to SU(2) for simplicity and summarise the main modi-
fications due to SU(N) in a separate section. In the main part, we survey the definitions
of the three most popular Abelian gauges and analyse their properties including the Gri-
bov problem. Afterwards, the relations of Abelian gauges to the Faddeev-Niemi model

and fermionic zero modes are given.

3.1. Definition of Abelian Gauges

This section summarises the technicalities involved in Abelian projections.

3.1.1. Cartan Decomposition

The Cartan subalgebra H of a Lie algebra G is the maximal subset which consists
of mutually commuting elements/matrices. We choose? H to consist of the diagonal
matrices in G. For SU(2) the Cartan subalgebra H = u(1) is generated just by the third

Pauli matrix,
H = {A13]A € R}. (3.1)

Any element of the Lie algebra can be decomposed into its diagonal (Cartan, ‘parallel’)

and off-diagonal (‘perpendicular’) part, respectively,
Xeg: x=xl+x*  Xxlen, Xxtenu'. (3.2)
We define the associated projectors,
XI=PI(X)=(X, 7)1, X'=PYX)=(X,n)n+ (X, 1n)m = [r, [ X]]. (3.3)
The projections have the following properties,
xvyh =0, [xXILyll=o0, XLy [x+Hvlient, XLy eH. (3.4)

We stress that the last property does not hold for higher structure groups. The maximal
Abelian subgroup?® H is the subgroup of G' generated by the Cartan subalgebra H,

A A
U(l) = H = exp(iH) = {exp(iA13) = cos 5]12 + isin §Tg|)\ € (0,2m)}, (3.5)

which again consists of mutually commuting, i.e. diagonal matrices.

For later use we note that,

heH: (X! py*tah = mixlh vt =Xyt =o. (3.6)

2The Cartan subalgebra is defined only up to conjugations.
3also called mazimal torus
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3.1.2. Gauge Condition, Functional, and Higgs Field

As already mentioned, an Abelian gauge is a partial gauge fixing leaving the maximal
Abelian subgroup H unfixed. That is, if h is an element of H, together with A also the

gauge transformed A lies on the gauge fixing hypersurface?,
x(A) =0= x("4) =0. (3.7)

On the Gribov region, we minimise a functional F'[A], which under h must be invariant,
F[A] = F["A].

It turns out that such a functional can be found by a slight modification of the one
corresponding to the Lorenz gauge (2.22). It contains some projector P, to be specified
later [FB5],

F[A] = /tr PAAxPA = /(IP’AZ)Q dV = (PA,PA). (3.8)
For brevity we have introduced a scalar product,
<X,Y>E/tI‘X/\*Y, (3.9)

w.r.t. to which P is assumed self-adjoint.
In order to derive the gauge condition we have to vary F[A] along the orbit, i.e. under

the action of a gauge transformation g = exp(il),
F(94) = F(A+ D A+ 0(\?) = F(A) + FD(A;0) + 0(\?). (3.10)
We further rewrite the term of first order in A
FUW(A;N) = 2(PA, PD4A) = 2(PPA, D)) = 2(PA, D)) = —2(x Dy « PA, ). (3.11)
This term vanishes for all A(z) if and only if
X(A) =D xPA=0=D, PA,. (3.12)
As in Section 2.2.3 we calculate the FP operator as the variation of y;,
X(9A) = x(A + DA+ O(\?) = x(A) + * Dy * PD4A — i adp,» * PA + O()\?),(3.13)
implying,

FP:*(iad]pA-l-DAP)*DA: (iadPAu+DAMP)DAM- (314)

4We slightly abuse the notions defined in Section 2.2.3, although we are not aiming to fix the gauge
completely. It can be done by some Abelian gauge fixing.
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It agrees with the general form (2.20) discussed in Section 2.2.3. Equivalently, one can
vary the functional F up to second order, and F?)(A; \) = —(\, FP)).

A gauge fixing which is more adapted to Abelian gauges uses an ‘auxiliary Higgs field’.
One can think of an Abelian gauge (AG) as assigning to each gauge field A a field ¢

transforming in the adjoint representation of the gauge group,
AG: A—¢ (A= % =gog'). (3.15)

In the spirit of Section 2.1.1, we demand ¢ to be a section in an associated bundle. An
obvious and early used choice is a component of the field strength, say ¢ = Fy; [33],
having the disadvantage of not being Lorentz invariant.

By definition, the gauge transformation g that brings A into the Abelian gauge is the
one which diagonalises ¢. For most applications ¢ is Lie algebra valued, and we can

write,
YA =0=x(p)=¢t=0=0¢=0¢ e . (3.16)

For SU(2) the Higgs field simply points into the third colour direction, ¢l = |¢|m3 ~
(0,0,|¢))". The residual gauge freedom clearly consists of diagonal matrices H which
commute with ¢ and hence do not change it. By virtue of the property (3.6), one has

(in analogy with (3.7)),
¢t =0= ("¢)r =ho'h' =0. (3.17)

For SU(2) the gauge transformation h acts as a rotation® around the third axis in colour
space and (3.17) means that it cannot create a component perpendicular to it.

It is obvious that the length of the Higgs field does not matter for the definition of the
gauge transformation, i.e. one can use a normalised Higgs field n = ¢/|¢| as well.

For completeness we note that the residual gauge freedom includes the Weyl group as
well. This group permutes the diagonal entries (eigenvalues) of ¢/l and can easily fixed
by an ordering prescription [33].

In the Higgs field language not only the gauge condition x but also the Faddeev-Popov

operator is purely algebraic,

X(98) = x(¢ —i[p, A + O(N?)) = x(¢) — i PTadyA + O(N?). (3.18)
On the gauge slice I' one has ¢ = ¢ll, so that
0 —2 0
FP = —iP'ady = —i[¢|P'ad,,, ad,=| i 0 0 (3.19)
0 0 0

%since the adjoint representation of SU(2) is the group SO(3)
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The zero entries in the third row and column are typical for Abelian gauges; the asso-
ciated zero modes A = |A|73 ~ (0,0, |A])T reflect the residual Abelian gauge freedom
h € H (cf. (3.7) and (3.17)) on the infinitesimal level. The remaining two by two matrix
09 in the perpendicular block of ad,, can easily be diagonalised and yields eigenvalues
+1

Multiplying by —i|#| we conclude that FP acts as a multiplicative operator. It leads
to d-like eigenfunctions®. Therefore, we change to a lattice regularisation of space-time

for the moment. Then the spectrum of FP is +i|¢|(x) and the FP determinant becomes
det FP = [ [ Ig*(x). (3.20)

A multiplication over space-time points being left over in the FP determinant, is known
from the Coulomb gauge which is ‘ultralocal’ (involves no derivatives) in time [131, 132].
It can be exponentiated, but an UV-divergent factor 1/a* (the volume of momentum

space) is needed in order to make the exponent dimensionless,

det FP = exp (Z 1n|¢|2($)) s exp <%/1n|¢|2(x)dv> | (3.21)

This term enters the one-loop effective potential [133, 134].

Unfortunately, the problem of evaluating the FP determinant for Abelian gauges is
not really solved by turning to the Higgs field language: For the path integral (2.19),
both the gauge condition and the Faddeev-Popov operator must be functions of the
gauge fields to integrate over. In principle this is true also in the Higgs field language.
The function ¢(A) (the assignment (3.15)), however, can be very implicit and so is
any involved Jacobian which has to be calculated when one tries to evaluate the path

integral.

3.1.3. Abelian Projections: Space Fixed Frame and Body Fixed Frame

A given gauge field A has to be transformed by a gauge transformation ¢ to yield the
associated gauge field in the Abelian gauge. For definiteness we will denote Axg = 94
in this section (it is Axg that fulfils x(Aag) = 0). This gauge field is to be decomposed

into its diagonal and off-diagonal part,

Ang = Al + AL, (3.22)

6like a pure potential in a Schrédinger equation
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Under the residual gauge freedom h = exp(iA73) € H the diagonal part transforms as a

‘photon’,
Al = Al +drm. (3.23)
The off-diagonal part transforms as a matter field in the adjoint representation,
Axg — hAGh (3.24)

where we used (3.6) to show that the r.h.s. has no parallel part. This proves the claims
about transformation properties made in the beginning of this chapter.

In the Abelian projection (AP) the perpendicular part is simply neglected”,
AP: Axg — Al (3.25)

The remaining gauge field is Abelian which is just a special case of being reducible ! One
can easily check all the properties described in Section 2.1.3: the holonomy group is U(1)
(diagonal), the centraliser of which is again U(1) (diagonal); A',LG is left invariant by a
U(1) subgroup (diagonal and constant); the field strength F(ALLG) commutes with 73 (is
diagonal, too); finally 73 is covariantly constant w.r.t. A',LG, since [ALLG, 73] = 0 = drs.
Following [135] we refer to (3.22) as the decomposition in the space fized frame. Under
certain circumstances, e.g. for the Faddeev-Niemi action of Section 1.5, it is helpful to
perform an analogous decomposition without transforming the gauge field A. This is
called decomposition in the body fized frame. The normalised Higgs field n is a natural

candidate to provide the decomposition of A without transforming it,
A= Aln 4 gin, (3.26)

However, the naive generalisation of (3.3), A" = (A, n)n, fails, if we demand A" to
transform as a gauge field under the full group SU(2) (c.f. Figure 3.1), and in particular
under the residual group U(1). The correction coming from the inhomogeneous term

can be obtained most easily from transforming back A‘[LG,
Allr = 9f(AUXG) as a gauge field. (3.27)
We use the ad-invariance of the Killing form to rewrite,

Al = (gAg" +igdg', m3)g'sg + ig'dg = (A, n)n —i(g'dg, n)n + ig'dg
PI"(A) + P (igtdg) . (3.28)

"in the observables, not in the path integral measure, cf. Section 4.1.3
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A 9A = Apg
AJ_n
g C=(An)r----
n 73 [
Alln :
gauge field A
Al Aje |
AJJ’L g AJ_ :
AG '
matter field i{n. dn]

Fig.3.1.: Left: The gauge transformation g relates the two frames described in the text. Right:
In the body fixed frame the gauge field Al” inherits a part perpendicular to n from

the inhomogeneous transformation.

where we define the associated projectors as (cf. (3.3)),

PI"(X)=(X,n)n,  P"(X)=X—(X,n)n=[n,[nX]]. (3.29)
By virtue of dn = —i[n,ig'dg] (see B.3) we arrive at the final formula
Allm = PlIn(A) +i[n,dn] = Cn +i[n,dn],  C = (A,n). (3.30)

This is the general form of an U(1)-reducible connection discussed in Section 2.1.3. The
properties of Al" are essentially the same as for All, if 75 is replaced by n. In particular,

the residual Abelian gauge freedom is,
h(z) = exp(iA(z)n(x)) : Ao Alr L dxn (n—n, C = C+d)). (3.31)

The stabiliser subgroup of All” arises as a special case of this formula, namely for constant
gauge parameter A (cf. (2.8) and (2.9)).

Accordingly, the field A" transforms as a matter field in the adjoint representation,
Atn = gf(AﬁG) homogeneously . (3.32)

Consistently with (3.26) and (3.28) we obtain,
AT =P(A) — P (igldg) = A — (A, n)n — i[n,dn] = —i[n,Dan]. (3.33)

Notice that this field is really perpendicular to n. The decomposition in the body fixed
frame is visualised in Figure 3.1.
For later use we also calculate the field strength in both frames. In the space fixed

frame it is simply,

F(Al,) = a4}, (3.34)
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since the commutator term is absent. In the body fixed frame one has to employ the

full non-Abelian expression, and a lengthy but straightforward computation gives,
F(AM = Gn, G = dC +i(n,dn A dn), C = (A,n) (3.35)

The field strength has only a component parallel to n, in accordance with the Ambrose-
Singer theorem (cf. Section 2.1.3). The coefficient is the 't Hooft tensor G from Section
2.3.2.

3.1.4. Remarks on Higher Gauge Groups

The idea of Abelian projections undergoes some modifications when the structure group
is taken to be SU(N). The Cartan subalgebra becomes (N — 1)-dimensional and the
maximal Abelian subgroup is U(1)V~!. After the Abelian projection one expects N — 1
copies of electrodynamics plus the defects which are again ambiguities in the diagonal-
ising gauge transformation. Basic defects occur when two eigenvalues of the Higgs field
coincide [33]. In other words, these are just SU(2)-defects embedded into SU(N), and
the residual symmetry is locally enlarged to the non-Abelian group SU(2) x U(1)N 2.
There exist N types of basic defects. Observe that the Higgs field itself need not vanish
(a group valued field need not be proportional to the identity), but its scalar product
with some simple root does. Non-basic defects arise when more than two eigenvalues
coincide. The residual symmetry is SU(3) x U(1)N =3 (for three coinciding eigenvalues)
or SU(2) x SU(2) x U(1)N=3 (for two pairs of coinciding eigenvalues) or even larger;
and the scalar products with two or more roots vanish. In root space, defects are char-
acterised by the boundary faces of the fundamental domain on which they are located
[136].

Generic defects in four dimensions again form closed loops and turn into magnetic
monopoles upon diagonalising. There are N — 1 separately quantised magnetic charges
[137] characterising mo(SU(N)/U(1)N 1) =2 ZN -1,

For the projection of the gauge field we use the Weyl basis with [Hy, E,| = o, E, [138].
With proper normalisations the projectors (3.3) in the space fixed frame become,

PI(X) =Y (X, H)Hy,  PHX)=> (X,Fia)Fia. (3.36)
k a
Notice that one Higgs field n defines a whole set {n;} of mutually commuting normalised
Higgs fields which generate the rotated Cartan subalgebra [135]. Therefore the projectors
in the body fixed frame are,

PH(X) = Z(X; ng)ng, Mg = 9'Hig, PL(X) =X - P”(X) 3 (3.37)
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with Hj being normalised, too.
However, the decomposition A" as well as the Cho connection A used in the FN de-

composition (see (2.12), (3.3) and the previous chapter) rely on the double commutator.
The SU(N)-analogue is,

Z[Hka [Hka XL]] = Z(Xa E:I:Ot) Z[Hka [Hka E:I:Ot]] = Z(X’ E:I:a)O_ZQE:l:a ) (338)
k o k o

which is proportional to X+ because all roots & are of the same length®. The inhomo-

geneous term in the decomposition becomes i), [ny, dng]. Actually, it acquires a group

theoretical factor N, so in the large N limit this topological term dominates [139].

3.2. Maximally Abelian Gauge

The Mazimally Abelian gauge (MAG) was introduced by 't Hooft in his seminal work
[33]. The gauge condition is,

xwac(A) = #Dax AT =0=Dy, A, =D A, =04, —ilA], A,]. (3.39)
For SU(2) it can be formulated as,
Xumac(A) = (0, £iAN) AL =0. (3.40)

These expressions look like a background gauge, but the ‘background’ Al is not indepen-
dent of the gauge field A under consideration. Accordingly, the MAG-condition is not
linear but quadratic in the gauge field A. Notice that y as an isovector has no parallel
component leaving a U(1)-freedom. The latter can be shown very easily by virtue of
(3.23) and (3.24): Like D4 and AL, x is just conjugated by h, x("4) = hx(A)h!, which
reflects the residual Abelian freedom, cf. (3.7).

Comparing xymac with the general form (3.12) one can immediately read off the MAG-
projector, Pyag = P, Indeed, the MAG-functional is [33],

FusclA] = (A% ALY = /(Ag)? av, (3.41)

where a runs over the non-Cartan generators (a = 1,2 for SU(2)). This formula offers
some physical intuition behind the Mazimally Abelian gauge: the off-diagonal part of
the gauge field is minimised along the orbit, in order to have a good approximation when

finally neglecting this part in the Abelian projection; it is a ‘smooth gauge’ [140].

8 This remains true for the D-groups SO(2N) and the exceptional groups g, E; and Fg.
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Performing a gauge transformation 73 — n, the MAG can be formulated in the body

fixed frame as well:

xmac(A;n) = xDyx A = [n,*Dy* Dyn] = [n, Di#n] : (3.42)
Fuac[A;n] = (A", AT = (iln, Dan], i[n, Dn))
= <DATL, DAn> = \/(]:)AMTL)2 dV s (343)
where we used that D n = —iad 1.0 is perpendicular to n. Equation (3.42) provides

the Higgs field formulation of the MAG: Keeping A fixed one seeks a normalised Higgs
field such that yyac(A4;n) vanishes,

n, Diun] =0= Diun |n= Diun = E(z)n, (3.44)

with some proportionality factor E(x). Again, Fyjag[A; n] has to be minimal [140], while
(3.43) means that n should be ‘as reducible as possible’.
The FP operator follows from (3.14),

FPyac = #(iadsr + DaPY) « Dy = (iadyy + Da,PH)Dy, . (3.45)

It inherits its non-linearity in A from the gauge condition (3.39). Evaluated on the gauge
slice x(A) = 0, it acts in the perpendicular sector only, leading to the expected trivial
zero modes from the residual Abelian freedom (see C.1). For explicit calculations the
following formula is better to handle [FB1],

FPuac = IP’l(Di“ +ad%. —iad  PPDy )P, (3.46)
n Z K

which simplifies considerably for SU(2), where the third term simply vanishes ([129],
see C.1).

Let us also look for explicit configurations in the MAG. As a matter of fact, the single
instanton both in regular and singular gauge fulfils the MAG-condition (3.39); due to
the particular Lorentz and colour structure of the n-tensor, the terms 8#Ai and [A',L, Alﬂ

vanish separately. However, the MAG-functional for these configurations [141],

. * drript
Fyvacl[A®] = 2 7T2/g r2(r2 4 p2)2 - 47r2p2 ) (3.47)
< drr?
FuaclA™®] = 272 ———— — 3.48
MaclA™ ﬂ/o (R (3.48)

‘prefers’® A%, Nevertheless, to prove that A% is in the fundamental modular domain,
one still has to check that there is no other gauge field on the same orbit with an even

lower value of the MAG-functional.
9

meaning that the functional for A% is lower than the one for A"8
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Other configurations in the MAG are the Abelian instantons (2.49) and the Yung
ansatz for an instanton-antiinstanton pair [142]. The MAG-functional of the latter di-
verges (it is in regular gauge), but the application of the standard gauge transformation
g (2.56) maps it to a configuration (in singular gauge) with a finite value of the MAG-
functional [143].

The lattice formulation of the MAG goes back to Kronfeld et al. [144, 145]. The
MAG-functional is formulated in group valued variables, the fundamental objects on
the lattice,

FyaclU] = 4a® Y tr 53U, (2) 73U (2) - (3.49)

By virtue of the correspondence (1.6), Fyac[U] approaches — Fyag|A] in the continuum

limit. Therefore, it has to be mazimised on the lattice. In the body fixed frame,

FuaclUsn] = 46> Y trn(z)Uy(x)n(z + fa)Uj(z) (3.50)
.
defines the Higgs field n on the lattice [146].

Unfortunately, investigating the critical points of (3.49) is similar to a spin glass prob-
lem due to the high number of local maxima: Finding the absolute maximum is a
numerical problem of non-polynomial complexity [147]. Tterative minimalisation proce-
dures often get stuck in a local maximum. Gribov copies have been detected numerically,
for the first time in [148] and with refined techniques in [149, 150]. One should keep in
mind, though, that some (if not all) of these copies can be lattice artifacts which do not

survive the continuum limit.

3.2.1. A Toy Model

In order to have an illustration of the somewhat abstract notions of the preceding section,
we now analyse an example with a finite number of degrees of freedom (and structure
group SU(2)) [FB1]. To this end we employ a Hamiltonian formulation in 2 + 1 di-
mensions and consider only gauge potentials A which are spatially constant. Renaming
Al =2, 1=1,2, a=1,2,3, the Lagrangian becomes,

L= 1(ngx'.’)Q =

5 b (20 — e ASab)? . (3.51)

One way of arriving at this Lagrangian is by gauging a free particle Lagrangian £, =

%1% /2 via minimal substitution, i.e. by replacing the ordinary time derivative d; with
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Fig.3.2.: Left: An isospace (gauge) rotation by an angle 6 in the toy model, keeping the
lengths of the vectors and the angle « inbetween them are invariant. Right: The
MAG condition in the toy model. The areas A and a have to be the same. We have
arbitrarily chosen & and X to lie in the yz-plane. The residual U(1) gauge freedom

corrresponds to rotations around the z-axis.

the covariant derivative Dy. To keep things as simple as possible, we have not introduced
any (YM type) interaction; here we are anyhow only interested in the kinematics of the
problem.
Defining the canonical momenta p¢ = Dg’z?, the Lagrangian (3.51) can be recast in
first order form,
L= plid — otk + ARG (3.52)

where we have introduced the operator G* leading to Gauss’s law,
G* = e alpt = Dpl = 0. (3.53)

Obviously, G* is the total angular momentum of two point particles in R* (= colour
isospace) with position vectors &, and x,. Gauge transformations are thus SO(3) ro-
tations of these vectors which do not change their relative orientation (i.e. the angle «
inbetween them). This is illustrated in Figure 3.2. To some extend, this model is similar
to the Christ-Lee model of Section 2.2.1.

As usual we will work in the Weyl gauge, Ag = 0, so that Gauss’s law has to be imposed
‘by hand’, and, after quantisation, holds upon acting on physical states. Once the Weyl
gauge has been chosen, there still is the freedom of performing time independent gauge

transformations. This will be (partially) fixed using the MAG,

x(7) = Dpay =0 = —z[:r',l,xj] . (3.54)
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To avoid writing too many indices we denote ¢; = ¢ = (z,y,2), zs = X = (X,Y, 7),

where z and Z stand for the Cartan parts :1:!,1 Then the two components of x(z) read,
x'=—2y—-2Y =0, =2+ 72X =0. (3.55)

This can easily be visualised. The projections &, and X | have to be collinear, their
magnitudes being related through |z|z;, = |Z| X,. The MAG is thus obtained by
rotating the configuration (z, X) in such a way that both vectors are as close to the
z-axis as possible. This is achieved as shown in Figure 3.2. £ and X are the diagonals
of two rectangles with sides |z|, z, and |Z|, X, respectively. If the areas a and A of the
rectangles coincide, a = A, the configuration is in the MAG. Algebraically, the notion

of being ‘close to the z—axis’ is measured by the function,
F(x,X) =22 +X?. (3.56)

One can easily show that the conditions (3.54) or (3.55) minimise F' and thus make the
‘off-diagonal’ components of & and X as small as possible. We mention in passing that
the trivial solution of (3.55) given by z = Z = 0 corrresponds to a maximum of F’ so that
we can always assume z # 0 or Z # 0 (except for the zero-configuration representing
the origin).

It is obvious from Figure 3.2 that rotations around the z—axis leave both F' and the
MAG condition invariant and thus correspond to a residual U(1) gauge freedom. As

expected, this situation is reflected in the FP operator,

ab __ a b
FP™ = {X 7G }‘XZO ) (357)
which, in matrix notation, can be written as ,
224 72—y - Y? ry + XY 0
FP = ry + XY P2+7P—-22—-X%2 0 | . (3.58)
0 0 0

The zero entries in the third row and column correspond to the action of the P*-

projection in (3.46). The eigenvalues of FP are found to be
E,=2+27", E_ =2+4+7"-27-X] (E3=0). (3.59)

Let us concentrate on the eigenvalues F; which are not related to the residual Abelian
gauge freedom. Configurations where one of these vanishes are located on the Gribov

horizon and reflect some non-trivial residual gauge freedom different from the U(1)
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Fig. 3.3.: Behaviour of the eigenvalues of FP as a function of the magnitude a:i -I—XJQ_ of the ‘off-
diagonal’ components in the toy model (left) and as a function of the ‘low parameter’
p in the full MAG (right). The configurations with vanishing lowest eigenvalue are
on the Gribov horizon. Copied from [FB1], where u is denoted by A.

above. A particular (in some sense trivial) class of horizon configurations consists in
the reducible configurations as discussed in Section 2.2.3. They are fixed points under
the action of (a subgroup of) the gauge group. Technically, they show up by inducing
zero modes of the Laplacian A% = D#D¢ [FB1]. Within our example, the reducible
configurations are readily identified [85, 151] by simple symmetry considerations. The
origin is invariant under the whole action of SO(3), while configurations with « and
X collinear are invariant under rotations around their common direction which clearly
corresponds to a U(1). This is nicely reflected in the spectrum of FP. At the origin, both
E. vanish, while a collinear configuration can always be rotated in the z-axis so that
its stabiliser coincides with the standard residual U(1) corresponding to E5 = 0. This
U(1) stabiliser is thus ‘hidden’ in the residual U(1). Fixing the latter by demanding e.g.
xr = X = 0, does, however, not affect configurations collinear along the z-axis so that
these will induce zero modes of FP even after residual gauge fixing [85].

There is a remaining possibility for a vanishing eigenvalue. While E. is always positive,
E_ vanishes if 22 + Z? = 2 + X?. This happens for configurations where & and X are
of the same length and orthogonal to each other. Elementary trigonometry implies that
in this case the two areas a and A are always the same, irrespective of the location of
the configuration relative to the z-axis. Thus, there is an additional residual U(1) gauge
freedom for such exceptional configurations. This can be nicely illustrated in terms of a

‘spectral flow” as a function of z2 + X? (see Figure 3.3).
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3.2.2. Gribov Problem

The MAG plays a major role in lattice simulations of Abelian projections. However, the
Gribov problem on the lattice is rather non-transparent. Therefore, the FP operator of
the MAG in the continuum has been analysed in [FB1].

A very general argument shows that generically there have to be Gribov copies within
the MAG if the off-diagonal components A* of the gauge fields become sufficiently large:
More explicitly, the FP operator (3.46) for SU(2),

FPyac = —IP’L(DZLL +ad’. )P+, (3.60)

is the difference of two positive semidefinite operators which we abbreviate for the time
being as X and Y,

FP=X-Y, X,Y>0. (3.61)

Being the negative of a covariant Laplacian, —D? is obviously nonnegative; the proof
All«

that ad®. is nonnegative, too, is given in the Appendix, C.1. The identity (3.61) already
suggests that if YV is ‘sufficiently large’, FP will develop a vanishing eigenvalue. Let us
make this statement slightly more rigorous. To this end we modify an argument used in
(152, 153] for background type gauges.

First of all we note that together with the configuration A = Al + A also the ‘scaled’
configuration A’ = Al + A, with p some (positive real) parameter, will be in the
MAG (cf. (3.39)). The associated FP operator is,

FP(u) = X — %Y. (3.62)

Let us denote the lowest eigenvalue and the associated eigenfunction of FP(u) by Ey(p)
and Ag(u), respectively. From (3.61) one must have Ey(0) > 0. If we turn on p, a

straightforward application of the Hellmann-Feynman theorem leads to,

0

3y Foli) = =2 Qo). Y Do) <0, (3.63)

whence the function Eg(u) has negative slope. In addition, it has to be concave [154]'°
so that, for y sufficiently large, there will be a zero-mode at some value, say pu,. Notice
the similarity with the ‘spectral flow” of F_ in the toy model (Figure 3.3). In a way we
have thus determined a path within the MAG fixing hypersurface that leads us from the

10Tt is exactly for this reason that the second order perturbation theory correction to any groundstate

is always negative.

43



interior of the Gribov region (= 0) to its boundary (p = pup).

The second result concerns the Faddeev-Popov operator in the background of the sin-
gular instanton [FB1]: The fact that the MAG-functional for the single instanton in
the two gauges is finite and infinite, respectively, (cf. (3.47)), is corroborated by the
work of Brower et al. [141] which, when translated into our language, amounts to the
following: One numerically constructs a path v(R) in the gauge slice I' connecting A%
with A™&. Along this path!! beginning at the singular instanton the MAG-functional
is monotonically rising. The configurations A(R) along the path are determined by ap-
plying a (singular) gauge transformation g which takes the singular instanton to A(R),
i.e. A(R) = 9A4%. Hence, v(R) is a path both within I and the single instanton orbit.
Accordingly, there must be an infinitesimal gauge transformation of the singular instan-
ton that does not leave I' and thus must be a zero mode of FP in this background. In
what follows we will explicitly determine this zero mode.

The first step of this program consists in the calculation of the FP operator in the

background of a singular instanton. Plugging (2.54) into (3.60) one obtains the result,

op ( —O ~2ia(r)(Liy — L)
21 (L(T)(ng - L34) —0O

where we have discarded the vanishing third row and column and introduced the instan-

a(r):QM:2<i— ! ) (3.65)

7"2 +p2 7"2 7"2 _|_p2

) = —01y +4da(r)Mz oy, (3.64)

ton profile function,

We also use the generators of so(4), the symmetry group in Euclidean four-space, de-
scribed in the Appendix, A.2. Using the splitting of the four-dimensional Laplacian
(A.20) and the fact that we can diagonalise the operators {M? = N2, Ms, 05} simulta-

neously, we arrive at,

2m(m + 1)

3
FP = -0 — " O, + ;> +4masa(r), (3.66)

with s = +1 denoting the eigenvalues of oy. As described in the Appendix, A.2, m
and m3 € {—m,—m + 1,...,m} are half-integers corresponding to the total angular
momentum and its third component. By virtue of the angles introduced in the Appendix,
A.1, the eigenfunction A(z) can be written as follows (cf. (A.16)),

)‘m,ms,ns,sw) = fmms (T) Gm,ms,ns(e) g!(ms +ns)er2 g —ilms —ns)pss Xs (3-67)

UTn [141] the parameter R is the radius of a monopole loop associated with the configuration A(R)
located on v somewhere inbetween A% = A(R = 0) and A™ = A(R = ).
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The y; are the eigenspinors of oy,

1 1
=5 <il> . (3.68)
Introducing the dimensionless variable 7 = r/p and defining a function ¢(7) via,
f(7) = g(r) /72, (3.69)
(we omit the subscripts of f) the radial equation for the zero mode reads,

o Am(m+1)+3/4 8mys A =
< O ¥ 72 f2(1+f2)> (r)=0.

(3.70)

We are looking for a normalisable zero mode, or, in other words, a bound state with
vanishing energy. For this we need an attractive potential. We thus must have mss < 0,
and we choose s = —1, m3 > 0 in what follows. The bound state equation (3.71) thus

finally becomes,

(_a§+4m(m+1)—8m3+3/4+ 8ms )g(f):(].

(3.71)

72 1472

This equation has already been obtained by Brower et al. [141] in the stability analysis
of their monopole solutions. These authors, however, have overlooked the fact that m is
half-integer which is crucial for obtaining the correct solution (see below). In addition
they approximated the profile function a(r) by 1/r% in the limit of small monopole
loops. We will instead solve (3.71) exactly. The latter is an effective one-dimensional

Schrodinger equation with a Hamiltonian,
H = -0+ Vi(7) + V(7). (3.72)

The second potential term, V5, is always positive (for mg > 0). Ounly the first term, V;
has a chance of becoming negative leading to attraction. As ms is bounded by m, the
Casimir term m(m + 1) in (3.71) will always win for large m. We thus should make m
as small and m3 as large as possible, implying mz = m. From (3.71), there is exactly
one solution for m which makes V; negative, namely m = 1/2 = m3. We have explicitly
checked that for m > 1/2 there is no bound state solution'?. The associated potential
Vi + V4 is plotted in Figure 3.4. For m = 1/2, there is a normalisable solution of (3.71),

g(F) =F <1 —(1+7%)In (1 + %)) : (3.73)

12The claim in [141], that attraction occurs for m3z = 1 with the ground state having m = 1, thus

3

cannot be substantiated.
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Fig. 3.4.: The bound-state potential Vi + V5 (left) and the radial wave function — f of the zero
mode (right) as a function of 7 = r/p for the attractive case (quantum numbers
m = ms = 1/2). Copied from [FB1], where 7 is denoted by R.

Close to the origin, f(7) = g(F)/7*? behaves as

L2 — 71— 2In7) + O(), (3.74)

fr) = =
while asymptotically it drops as 1/73 (Figure 3.4). Both types of behaviour are sufficient
to make f (and A\) normalisable. f has no nodes and therefore corresponds to the ground
state in the sector with m = 1/2 (cf. the analogous reasoning in [155]). Accordingly, the
singular instanton is on the Gribov horizon of the Mazimally Abelian Gauge.

The degeneracy of the solution is found as follows. FP does not depend on N3, therefore
ns can arbitrarily be chosen as an half-integer from {—1/2,1/2}. Furthermore, FP is
invariant under (ms, s) — (—ms, —s), so that, altogether, there is a four-fold degeneracy.
In terms of abstract states |m, ms, n3, s), the zero modes are linear combinations of the
four degenerate basis states [1/2,1/2,4+1/2,—1) and [1/2,—1/2, +£1/2, +1).

To explicitly determine the zero mode, we have to give the functions ©,, ;, n,(f) in

(3.67). In the extremal case mz = £m at hand they have a simple form (cf. (A.19)),

@1/2,—1/2,—1/2(9) =cosf) = @1/2,+1/2,+1/2(9) ) (3-75)
O1/2,-1/2.41/2(0) = sin0 = O19 112, -1/2(0) - (3.76)

Hence the four degenerate zero modes are the following,

Ajz1y2-1j241(2) = cf(r)cosfe™" 2y (3.77)
AMyj2,—1/2,41/2,41(T) = cf(r)sinf e x, (3.78)
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Mj2t1/2,41/2,-1(2) = cf(r)cosf e 2y _, (3.79)
)\1/2’_1_1/2’_1/2’_1(.%) = Cf(T') sinﬁe*i‘”"‘x,, (380)

where ¢ denotes a normalisation constant. To find its value we use the measure (A.4)

and calculate the integral (A denoting any of the basic zero modes),

7T2

/dV(R4) M) - Az) = 2ot %2 (1 + E) Ly (3.81)

This determines the normalisation ¢. Any normalisable zero mode A of FP must be a
linear combination of the four basis modes (3.80). It can be shown further that a general

linear combination assumes the form,

_ 2 _ _
M(z) = %nu\ﬂz = Ny, T F (1), ac€ 1,2}, (3.82)

where n,, is a constant four vector, and F'(r) = f(r)/r.

At this point it is due time to ask for the physics associated with these zero modes
A. According to the argument on FP zero modes given in the Section 2.1.3, it is clear
that with the singular instanton A%"® also its infinitesimal neighbour, A5"8 + D jsing,
is in the MAG. However, applying the finite gauge transformation g = exp(iA®7;) to
the singular instanton leads to a configuration that is no longer in the MAG. This is
at variance with the solution gp found by Brower et al. [141] which yields a monopole
configuration within the MAG.

One might speculate that the zero mode (3.82) is induced by some space-time sym-
metry of the instanton. We have discussed this issue already in Section 2.3.3. It should
be noted that a symmetry of a configuration does not necessarily imply a symmetry of
the MAG functional as the latter is not gauge invariant. If, on the other hand, there is
such a symmetry, then, by Goldstone’s argument, zero modes of the Hessian must be
present. In covariant background gauges, for instance, there indeed appears a whole S*
of gauge equivalent configurations induced by an SO(5) symmetry transformation of the
instanton [156]. Let us, therefore, have a closer look at this possibility in the context of
the MAG. A subclass of the SO(5) symmetry is given by the combination of conformal
transformations and translations. The associated compensating gauge transformation
dA =D\ is [127],

A= =205, %, T, - (3.83)

This is nothing but Equation (2.60) for the instanton in singular gauge, setting w =

0, ¢, = n,. If we extend our zero mode (3.82) by adding the appropriate colour 3-
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Fig.3.5.: Lines of constant modulus of the zero modes as a function of |Z| and z4. Left:
Normalisable zero mode with profile function F'(r); right: non-normalisable zero mode
with profile function G(r). The modulus increases in half-integer steps from 0.5 to 3.
Full lines correspond to integer values. The ‘conformal mode’ (3.83) would be given

by straight vertical lines.

component, @ — a, (which is always possible as FP is blind against this component), we
note that it is a ‘deformation’ of (3.83): the constant prefactor —2 gets replaced by the
profile function F(r). The space-time dependence of the zero mode (3.82) is thus much
more complicated than that of the compensating algebra element (3.83). Interestingly,
there is also a non-normalisable zero mode of FP that ‘interpolates’ between the two. It

is given by changing the profile function F(r) to,

G(r) = , (3.84)

which goes to a constant at large r. Asymptotically, this zero mode thus approaches the
‘conformal mode’ (3.83) (up to a factor —2). For small 7, the two zero modes coincide,
as both F and G go like 1/r%. The situation is depicted in Figure 3.5.

We thus conclude that our zero mode (3.82) is not generated by any of the space-
time symmetries of the instanton. It is maybe not too surprising that this result differs
from the one obtained in [156]. After all, the MAG represents a non-linear gauge fixing
implying a curved gauge fixing hypersurface. Background type gauges, on the other
hand, are linear in the gauge potential A. They thus lead to gauge fixing hyperplanes
with constant normals. The residual gauge symmetries in both cases will thus in general
be distinct. Nevertheless, a common feature of both gauges is the fact that the singular
instanton is located on the associated Gribov horizons. For the MAG, this has been

unambiguously shown by the explicit construction of the zero mode (3.82).
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3.3. Polyakov Gauge

The Polyakov gauge (PG) emerged when it was noticed that the Weyl gauge, Ay = 0,
is in general incompatible with finite temperature and periodic boundary conditions in
(Euclidean) time [133]. A priori, the time-like component of the gauge field can always
be forced to vanish by employing the Polyakov line'3,

Py, &) = P expli /0 " Ao(r. ) dr), (3.85)

Here, P is nothing but time ordering. Therefore, the Polyakov line solves the differential

equation (we suppress the spatial arguments),
OoP (o) = iAo (0)P(20), (3.86)
and its action on the gauge field yields,
Ag(zo) = P10A (2) = P (o) (Ao (o) + i00)P(20) = 0, (3.87)

But the transition function in the time-like direction, ¢;, will change'* under the non-

periodic gauge transformation P(z,) according to [7],
to(wo) =1 = P (wo)to(20) P20 + ) = P(B) # 1. (3.88)
All one can achieve is to make Aq static and diagonal [133],
Xpaa(A) = 8Ag =0,  xpca(d)= Ay =0. (3.89)

The Euclidean symmetry is obviously broken by these conditions. Together with A
all Polyakov lines P(z,) become diagonal, which explains the name of this gauge.
The Polyakov gauge is peculiar in that the residual gauge freedom consists of time-

independent Abelian gauge transformations, since,
h = eXp(Z)\”) . XPG,I( hA) = XPG,I(A) + 83)\” (XPG’Q( hA) = XPG’Q(A)) . (390)
Periodicity of Al then requires 9,\=0, and the residual freedom is

h = exp(i\(%)). (3.91)

13We will use the index 0 and denote the length in this direction by the inverse temperature, Lo = 3.
Myisible in the change of A; in time
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The gauge transformation ¢ achieving (3.89) is known explicitly [157]: after applying
(3.87) one has to correct for periodicity (reintroduce the Polyakov loop), and, in a third
step, diagonalise the Polyakov loop applying a gauge transformation W,

g(x0) = WPH(B) /PP (), (3.92)
where the rightmost transformation is applied first. The gauge fixed configurations are,

2 . _ . 7 —27i
Apgp = % diag(p, —p) . WP(B)W b= Pra(B) = d1ag(62” e ? 7). (3.93)

The fractional power in (3.92) is defined via diagonalisation. W only depends on the
space variables 7 (which we did not make explicit) and contains the residual gauge
freedom (3.91).

The FP operator of the Polyakov gauge evaluated on the gauge slice reads [158, 159],

FP —(DAH ) 3.04
PG = Q2 | (3.94)

0
In the parallel sector, 92 has the trivial (field independent) zero modes Al (&) from (3.91).
The operator DA‘O‘ =0y — iadA\O\ in the perpendicular sector is an ordinary differential
operator and consists of two simple operators which due to xpg,1 (3.89) commute. The
determinant can be evaluated by means of the product formula for the sin-function [158].
The result is the reduced Haar measure [160] evaluated at the Polyakov loop,

det FPpq ~ [ [ dpun (Pra(B. 7)) . (3.95)

T
On the gauge slice the Polyakov loop belongs to the maximal Abelian subgroup according

to (3.93); the reduced Haar measure is then a function of the eigenvalues +p,
dps(Ppa(B)) = dp sin?(27p) . (3.96)

It has been shown that the reduced Haar measure occurs in the partition function
due to expectation values between physical (gauge invariant) states [133, 158]. In two
dimensions, the FP determinant cancels exactly against the non-Abelian part in the
action (‘Abelianisation’) [7].

The Higgs field of the Polyakov gauge is the Polyakov loop P(f, #). While it is group
valued, one can locally pass to an algebra valued field by ‘taking the logarithm’ [136],

P(B, %) = £e@ around P = +1,. (3.97)

Then it is easy to see that the FP determinant (3.95) takes the general form (3.20).
Examples for configurations in the Polyakov gauge are the reducible instantons of
Section 2.3.3.
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3.3.1. The Gauge Fixing Functional

A functional which almost implies the Polyakov gauge is [FB5],
FealA] = (), al) = [ (4p2av, (3.98)

where 7 runs over the Cartan generators (i = 3 for SU(2)). The associated projector is

Ppe = PIIPy. From (3.12) the gauge condition is,
XrG(A) = DaAy = Dyudy =0, (3.99)
which, decomposed into Cartan and non-Cartan part, gives,
)NCPG,I(A) = 3014'(1 =0, )NCPG,2(A) = [AolaA‘o‘] =0. (3.100)

Comparing this with (3.89) one immediately sees that the gauge fixing conditions differ
in the second requirement. Ypg2 is weaker than xpgo: one can have a non-vanishing
perpendicular component Ag whenever the Killing form of the parallel component A'A
with some root vanishes (A'A has degenerate eigenvalues/a non-Abelian stabiliser) [FB5],
for SU(2) whenever A3 = 0. This seems to imply additional defects. However, functions
Ag with such a small support (generically two-dimensional hypersurfaces in three-space)
are very peculiar. Accordingly, the gauge slice T is (‘slightly’) bigger than T.

This is reflected in the residual gauge freedom — on I it is enlarged to a (non-Abelian)

projection from T to T followed by Abelian transformations within T — and the FP

operator,
_ I ; —
FNPPG _ adAOLIP’ adAOL + ZadA\O\DA\O\ zadAOLag , (3.101)
_iagadAé_ 83
Its determinant can be rewritten as (cf. [79]),
det FPpg = det(8]) - det(ad yr (—P + 8595 *0p)ad 41 +iad ;D ), (3.102)
0 0

which again comes close to the one of the PG (3.94). One expects additional zero modes
induced by the additional defects.
Similar things happen in the Palumbo gauge [161]. The latter is a complete gauge

fixing on the d-dimensional torus, given by

xo(A) =AY =0, xi() =4 =0, ... xea(4)=4"=0, (3103
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where
X® = /dgg...dgy_lx — /dgo...dg,,X. (3.104)
It can almost be derived from the functional [FB5],
FIA] = (AP, 4Oy 4 (AW AWy 4 aYD Al )y (3.105)

in that the gauge fixing condition obtained from this functional again differs only slightly

from the explicit one (3.103), by some ‘defects’. For instance,

Ya-1(A) =D, A% Y =0, ay | = /dgo cdEg Ay, (3.106)

which only in the generic case implies x4_1.

We finish the discussion of the PG-functional by a no-go conjecture. According to the
general results (3.10) — (3.12), any y obtained from a functional — which might be of a
more general form than (3.8) — always contains derivatives and commutators of the gauge
field A. Therefore it is evident that neither the Polyakov gauge nor the Palumbo gauge
as axial-type gauges can exactly be derived from a gauge fixing functional. It would be
interesting to see whether there is some physics behind this discrepancy. Therefore, we
propose to study these gauges on the lattice by extremising (in the spirit of the MAG)

the functional
Fpg[U] = 2a? Z (Z tr 7,Up (2)7,Ud () — 2 tr TgUg(x)TgUg(x)> : (3.107)

and comparing this gauge to the direct implementation of the PG.

3.4. Laplacian Abelian Gauge

The Laplacian Abelian gauge (LAG) was invented by van der Sijs in order to circumvent
the spin glass problem of the MAG [146, 140]. It is based on an idea of Vink and Wiese in
the context of a complete gauge fixing on the lattice [147, 162]: by modifying the gauge
fixing functional, the Landau gauge turns into the eigenvalue problem of the covariant
Laplacian in the fundamental representation. This gauge is called Laplacian gauge (LG).
For the Laplacian Abelian gauge one simply relaxes the length-one constraint of the Higgs
field n of the MAG, such that the gauge fixing functional is maximised by the lowest

eigenfunction of the covariant Laplacian in the adjoint representation (see below).
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In the continuum, this condition is endowed with normalisability of the Higgs field ¢
in order to render the eigenvalue problem well-defined. With the help of a Lagrange

multiplier, the ‘kinetic energy’ F, the functional reads,
Funclidi 6] = (D6 Dad) + E((6.6) ~ 1) = [(D, ")V — B([(6)2aV = 1). (3.108

As already mentioned, ¢ is in the adjoint representation, D¢ = d¢ —i[A, ¢], leaving rota-
tions around it as the Abelian gauge freedom. Minimising Fi aq[A; ¢] represents a varia-
tional problem of Rayleigh-Ritz type and is solved by the lowest eigenfunction /eigenvalue

of (minus) the gauge covariant Laplacian in the background A,
xiac(4;0) = =« DaxDa¢p— Eyp=0=—-D% ¢ — Ey 6. (3.109)

In physical terms, Fiaq is the quadratic action for a Yang-Mills-Higgs system!®, while
XLAG 1S its equation of motion. Since the latter represents a four-dimensional (time-
independent) Schrodinger problem with a potential essentially given by A2, we call ¢ and
Eq the ground state wave function and the ground state energy, respectively. Equation
(3.109) should be compared with (3.44): In the MAG, the ‘Lagrange multiplier’ E(x) is
a function demanding the Higgs field n to be normalised pointwise. For the LAG, the
ground state energy Ej is a constant, so that the condition on the Higgs field is relaxed
to only square integrability over the whole space-time. Writing ¢ = |¢| - n, we make use
of our knowledge from the MAG (3.43) to rewrite the functional [146, 140],

FraclA; o] = (d]gl, d|g]) + (|64, [6|A™") + Eo((lg], [6]) — 1) (3.110)

Variations with respect to the fields |¢| and n yield three equations [146], the analogues
of (3.109),

;) Da, (6[°4,") =0, (3.111)

XraGa (A
xrac2(4;9) = —0[o[+ (4,")?[¢] — Eolg| = 0. (3.112)

Not surprisingly, the gauge conditions for the LAG are very similar to the ones for the
LG [90]. Moreover, the ‘coset equation’ xrag, turns into the MAG-condition (3.42)
upon setting |¢| = 1 (i.e. replacing ¢ by n), while xraq2 is an equation for the ‘addi-
tional degree of freedom’ |¢|. We remind the reader that |¢| is a gauge invariant object

(‘depends on the orbit as a whole only’ [90, 146]) and so is the entire equation x1aq -

5Remember that the background A is kept fixed, otherwise the action is gauge invariant and would

be useless for our purposes.
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Gauge variations of xrag,1 give the FP operator of the LAG which, as expected, is very
similar to the one of the MAG (3.46),

FPrac = |6]°FPyac + P2(6]0, (6| DAEIP’L : (3.113)

Obviously, this operator vanishes on parallel gauge parameters Al as it should.
So far we have been working in the body fixed frame, looking for the Higgs field. The
gauge invariant modulus |@| will persist to show up in the space fixed frame. We simply

translate n into 73 (and Ln into L),

Fracl4;lol] = (d|gl d|el) + (lg]A, |9|A5) + Eo({| o], o) = 1), (3.114)
Xrac,i(A;]6]) = Da,(|¢]*A;) =0, (3.115)
xraca(4;10)) = —D|g|+ (A;)?¢] — Eolg| = 0. (3.116)

This clearly indicates that — unlike for other Abelian gauges — there is no simple condition
xrac(A) without Higgs field. One always has to solve an eigenvalue problem like (3.116)
for |¢|. Accordingly, given a configuration A one cannot immediately decide whether this
configuration is in the LAG or not. One can understand this fact as follows: In the LAG
one is directly led to the set A" (cf. Section 2.2.3) of absolute minima of the functional
(3.108). Thus, solving the LAG of course requires more efforts than just checking a
gauge condition (a differential equation), but hopefully not as many as for the MAG.

Another subtlety of the LAG is the definition of a normalisable ground state on a
space-time with infinite volume. Since —D? is a non-negative operator we have E > 0.
Moreover, whenever the gauge field A tends to zero at infinity, the eigenfunctions with
E > 0 are non-normalisable scattering states. A normalisable zero mode, D¢ = 0,
only exists for reducible backgrounds (cf. (2.10)). Thus, for a generic background, the
covariant Laplacian —D? does not have a normalisable ground state, and the LAG is not
straightforwardly defined. The situation is quite analogous to the quantum mechanics of
the ordinary Laplacian 92 on the real line: this operator has a spectrum E > ( consisting
of scattering states, but one can avoid this ‘problem’ by considering the system in a box
with periodic boundary conditions, i.e. on a circle, which leads to a purely discrete
spectrum. For the LAG we will proceed analogously by conformally transforming the
gauge fields onto the four-sphere S* (cf. Section 2.3.3), which yields a discrete spectrum
of the associated gauge covariant Laplacian.

Apart from these more technical problems, the LAG has two sources of ambiguities
(like the LG [162]). First, if the ground state is degenerate. The diagonalisation of any
of the ground states by definition gives a configuration in the LAG. Since these configu-

rations are on the same orbit, they are Gribov copies of each other. Due to the matrix
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structure of the Laplacian this is already true for the vacuum A = 0: —D? reduces to —O
and the eigenfunctions are constants (hence normalisable on the sphere) with a threefold
degeneracy given by the canonical dreibein é, in isospace. Second, the (expected) defects

6

occur, if the ground state ¢ has zeros'S. Having a well-known Schrodinger problem at

hand, one can potentially use node and uniqueness theorems to analyse these issues [163].

On the lattice, the Laplacian Abelian gauge shares many features with the Laplacian
gauge. Both of them can be achieved by the Lanczos algorithm [147, 140], which is
computationally cheaper than the minimisation algorithms of the Maximally Abelian
gauge/Landau gauge. The first type of ambiguity occurs when the two lowest-lying
eigenstates of the lattice Laplacian agree within numerical precision. Such configurations
are exceptional (‘of measure zero’) and do not appear in practice, as explicitly shown in
[162]. Therefore, LAG and LG are unambiguous on the lattice, i.e. free of Gribov copies.
The second type of ambiguity, the defects, will be discussed later.

3.4.1. Solitonic Backgrounds

Until recently the only known property of the LAG (for continuum configurations) was
a qualitative argument concerning the dyon (and the ‘t Hooft-Polyakov monopole in
the BPS limit) [146, 140]: At the dyon position, the electric field (i.e. the Higgs field)
vanishes linearly with the spatial distance |¢| ~ |Z| (cf. Section 2.3.2), while the gauge
field A1 diverges at the origin (in unitary gauge). The latter contributes ‘in the wrong
way’ to the functionals of the LAG (3.114) and MAG (3.41), since these have to be
minimised. The Higgs field is the only difference between them, hence in the LAG the
vanishing modulus of the Higgs field can compensate the large contribution from the
gauge field. Therefore, one concludes that the dyon is not suppressed in an unnaturally
strong fashion in the LAG [140]. One should keep in mind, however, that the values of

FaclA] have to be compared along one orbit within one Abelian gauge.

The LAG-Higgs field in the background of the single instanton was studied in depth
in [FB2]. An analytical treatment is possible because of the high symmetry of this
background (see Section 2.3.3). To be on safe grounds, the system is studied on a

geometrical four-sphere of radius R embedded in five-space. The metric in conformal

16Nodes are a consequence of degeneracy only for scalar wave functions.
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coordinates is (cf. (2.58)),

ar(r ar(r 4R4 2ag(r
guw(z) =€ & )6uu; er(r) = m, Vg=e r(r) (3.117)
Accordingly, the LAG-functional becomes,
Fusclidid) = [ (D,o"Dugtg"  Fad'of) Vi d'a. (3.118)
S

The LAG-condition is now given in terms of the gauge covariant Laplace-Beltrami op-

erator,

1
Xrac(A4; ¢) = BV D,\/99"'D,¢ — Fyp = 0. (3.119)

Although this equation is understood in the adjoint representation of SU(2), we keep

the isospin T arbitrary and write,
T > t(t+1), t=1. (3.120)

Furthermore we treat singular gauge and regular gauge separately and come back to
the bundle picture afterwards. We know right from the beginning that, since the back-

grounds are related by the gauge transformation § (2.56), so are the solutions,

e = 4% = ggg'. (3.121)

Similar to what happens in Section 3.2.2, Equation (3.119) becomes a radial one,

3 AM?  4p2(J? — M?)  4T2p? 410
—ag(r) _82 - 29 B r 8 — B 4% (3.122
3 AN?  4(J? — N?) AT? p? Ard)
—ag(r) —62 — =0 _ r reg _ [ Areg (31923
e ( T - O + r2 + (TQ + pg) (T2 i p2)2 + 2 R2)¢ 0P ( )

These equations differ from those in Euclidean space by a metric factor, e~®#("), and
a dilatation term, r0,. The operator 4,0, is proportional to T-Mand T - N for the
two gauges, respectively (for the generators M and N of the Lie algebra so(4), see
A.2). Therefore we have introduced the total angular momentum J (‘spin from isospin’,
(164, 165, 166]),

J=L+T, J*—=j(G+1), je{l-1,11+1}, (3.124)

where L denotes M or Z\7, respectively. The eigenvalues j are integer or half-integer,

like [. Replacing angular momenta by their eigenvalues and exchanging j — n, m — 7,
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equation (3.122) turns into (3.123). This amounts exactly to the action of the gauge
transformations ¢ from (3.121).

The symmetry considerations above suggest the following form of the ground state,

$(z) = Y (£)ep(r), (3.125)

where the Y’s denote the isovector spherical harmonics on S?® [167]. Note that there
are two competing angular momentum terms in (3.122) and (3.123), so that it is not
obvious in which angular momentum sector the groundstate will be. By simply looking
at the radial potentials in the different sectors, we can only state the following bound

on the energy in an arbitrary sector,
Ejy > min{E 1), Eq2,1/2), Eq,0}- (3.126)

The quantum numbers of the ground state candidates on the r.h.s. correspond to the
representations (0,1), (1/2, 1/2) and (1,0) of su(2); ® su(2); and thus have degeneracies
3, 4 and 3, respectively. Note that the singlet (0,0) is excluded by the selection rules
(3.124), whenever ¢ # 0. Accordingly, for any of the possible choices in (3.126), the
groundstate will be degenerate. The spherical harmonics for the three cases are listed
in the Appendix, A.3.

At this point two further remarks are in order: First, the radial part ¢ shows power

law behaviour in r, both for small and large r, independently of R and p,

©8(r — 0) = r¥, ©8(r — 00) — 1™, (3.127)

©E(r — 0) — r*", ©E(r — o) =1 X, (3.128)

Second, upon substituting ¢ = (r* + R?) - x and A = ER? + 2, one can absorb the

dilatation term,

3. AM? 4p2(J2 — M?)  AT?p? ANR?
(=07 = =0 + — s T e e pme)X =0, (3.129)
r r r2(r2 + p?) (r2+p?)2  (r2+ R?)
3. AN?  4(J2—N?)  4T?p? ANR?
—0? — =0, - — 8 —=(. (3.130
I I ) R N DRy e (3.130)

Setting R = p, the differential equation (3.129) coincides with the one considered
by 't Hooft in his analysis of the quantum fluctuations around an instanton [126]. The
eigenvalues are \y = (k+j+1+1—1)(k+j+1+t+2). The lowest energy corresponds to
k =0and j+1 =1, consistent with the three possible groundstates of (3.126). Together
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(0,1)
o (1/2,1/2)
(1,0)

| R

Fig.3.6.: Energy of the lowest-lying states in the relevant angular momentum sectors as func-
tions of the compactification radius R (singular gauge). At the point R = p the
two triplets and the quadruplet meet, while for R — oo the triplet (1,0) has lowest
energy. For symmetry reasons we expect the dashed line to stay inbetween the other
two for R # p.

they form the 10-dimensional adjoint representation!'” of SO(5) [138]. The value of the
ground state energy is £ = 2/R?. The radial eigenfunctions are rational,
(r/R)* (r/R)*~*

QOSg(T) =R m s gOreg(T) =R W s (3131)

and obey the asymptotics (3.127) and (3.128), respectively.

For the cases R > p and R < p we cannot solve the radial equation analytically.
However, we are able to prove the following statements: For the singular gauge and
R > p, the triplet (1,0) has lower energy than the triplet (0,1). For R < p, the
situation is reversed and the triplet (0,1) has lower energy (see Fig. 3.6). Analogous
statements hold for the regular gauge. These results are a straightforward consequence of
the Feynman-Hellmann theorem (see C.2). For the quadruplet (1/2, 1/2), the situation
is somewhat more complicated. Using perturbation theory in § = p?> — R? (see C.2),
one finds that these states have energy inbetween the two disjoint triplet states. For
symmetry reasons we do not expect the spectral flow E(; /91 /2) (R) to intersect the others
for some R # p (see Figure 3.6).

In the above one encounters the following subtlety: Near the origin, the (0,1) wave
functions in the singular gauge are bilinear in #, and thus discontinuous there. They

inherit this singularity from the instanton field, which results in the asymptotics ¢(r) ~

'"Using the conventions of [138], this representation is labelled by the integers {ni,ns} = {0,2} which
are the coefficients of the highest weight when expanded in terms of the fundamental weights.
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7%, see (3.127). Nevertheless, the wave functions are square integrable on S* due to
the measure factor r3. The same, of course, is true for the regular gauge states near
infinity. At this point it is appropriate to use the bundle picture. The Higgs field is a
section in an associated fibre bundle: on each of the two charts there is a Higgs field
(and a gauge field). The regular gauge is valid around the origin (southern hemisphere),
while the singular gauge is valid around infinity (northern hemisphere). Extending
them over the whole sphere will lead to the above singularities. The results obtained
so far can immediately be carried over to the bundle picture since, for every solution
in one gauge, there is a corresponding ‘mirror’ solution in the other gauge with the
same energy, obtained by the action of g. Moreover, the latter cannot change the zeros
of the wave function (the modulus of ¢ is gauge invariant), and the angular momenta
are interchanged, j — n, m — j, in such a way that the radial wave functions ¢(r)
(e.g. (3.131)) are smoothly defined on the whole of S*. Hence the complete eigenfunctions
¢ are continuous in their respective charts but ‘jump’ in their isospin direction in the
transition region.

Coming back to the physical region, R > p, which includes the infinite-volume limit,
R — oo, we know that around the origin (regular gauge) and around infinity (singular
gauge) we have to take (j,n) = (0,1) and (j,m) = (1,0), respectively, since these
multiplets contain the lowest-lying states. Hence the LAG-Higgs field is of the following

form,

(3.132)

o(2) Yio5) (&) ¢(r) around the origin,
x —_— )
Y(igjo) o(r) around infinity,

where according to (3.128) ¢ vanishes quadratically at the origin. The remaining task is
to diagonalise this ground state Higgs field. Around infinity the spherical harmonics Y(Slg’o)
are constants (see (A.21)). If we choose the third of them, ¢ is already diagonal (points
in the third colour direction). On this chart there is nothing left to be done. No gauge
transformation is needed and the gauge field remains in the singular gauge. On the other
hand, around the origin, the spherical harmonics Y/}, (#) are Hopf maps (see (A.25)).
We still have to diagonalise them. For the third of these maps, this is achieved by the
gauge transformation ¢, which transforms the gauge field A from regular to singular
gauge. No matter where we choose the transition region, the LAG-fixed configuration
on the orbit of the single instanton is in singular gauge (for R > p). Observe that the
MAG on the sphere also ‘prefers’ the instanton in singular gauge for R > p since the
ratio of the MAG-functional is Fyiac[A™8]/ Fyuac[A%] = R?/p? [FB2] (giving back (3.47)
for R — 00).
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(1,0) (1/2,1/2)

(0,1)

origin singularity

Fig. 3.7.: Submanifolds of S* on which the ground state wave function vanishes so that the
normalised Higgs field n becomes singular. The generic sectors (0,1) and (1,0) lead to
pointlike singularities with Hopf index as topological invariant (left), while the sector

(1/2,1/2) gives rise to monopole loops C' (right).

Moreover, we have found a whole S® of gauge equivalent configurations obtained by
global SU(2) rotations of A% (similar to what has been observed in [156]) located on
the gauge fixing hypersurface. These are Gribov copies of each other, generated by both
finite and infinitesimal gauge transformations. The latter give rise to three flat directions
in the configuration space along which the gauge fixing functional does not change. Only
one of the flat directions is covered by the residual U(1) freedom. The other two are
related to zero modes of the (coset part of the) Faddeev-Popov operator. Accordingly,
the single instanton lies on the Gribov horizon of the Laplacian Abelian gauge.

Finally, we summarise the most relevant features of the Higgs field for the investiga-
tion of defects: The node theorem for the one-dimensional radial equations (3.129) and
(3.130) guarantees that ¢(r) has no zeros apart from r = 0 and r = oo; in accordance
with the asymptotics (3.127) and (3.128). These properties can be checked explicitly for
the known solution (3.131) at R = p. Moreover, in the Appendix, A.3, we show that
the spherical harmonics for the triplets have no zeros, while the ones for the quadruplet
vanish at two points on the three-sphere. We conclude that for R # p the Higgs field ¢
may vanish at the origin — the south pole of the sphere — or at infinity — the north pole.
For R = p it generically vanishes on loops: the zeros of Y(1/21/2) extend via r to great
circles over the whole sphere. When adding a triplet state to it (in the sense of a linear
combination of degenerate eigenstates) the loop becomes tilted. As an example, take a
combination of the sectors (1,0) and (1/2, 1/2),

1

1
reg __ _— e — e = (21 p2)
= (915 = Ot = V2(r? + R?)

This Higgs field vanishes for z,, = (0,0, R, x4), a set of zeros which is still a great circle

(z1, 29, R — x3)" . (3.133)

but does no longer include the poles.
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The formalism is easily adapted to the Laplacian gauge [FB2|, simply by choosing the
fundamental representation, ¢ = 1/2, in terms of the Pauli matrices T, = o0,/2. For
R = p one again has to minimise j + [, whence (j,1) = (0,1/2) or (j,1) = (1/2,0). As
before, these states form an irreducible representation'® of SO(5). For R > p and the
singular gauge, the state (1/2,0) has lowest energy (by the same Feynman-Hellmann
argument) so that the singular gauge instanton again satisfies the gauge condition. The
relevant spherical harmonics are nonzero throughout S* (see (A.27) and (A.28)). Due
to the asymptotic behaviour (3.128) of the radial part, the Higgs field vanishes linearly
at the origin. Thus, in the LAG as well as in the LG the modulus of the Higgs field
vanishes at the origin where the topological charge of the instanton is concentrated. This
perfectly agrees with lattice results: The correlation between the modulus of the Higgs
field and the instanton density was clearly demonstrated in Ref. [168]" including the
linear and quadratic dependence on the four-dimensional distance r for the LG and the
LAG [169].

In the same manner, the Higgs field of the meron was studied in [170]. A meron is a
topological object in YM theories that has a tunnelling intepretation like an instanton,
but half-integer instanton number [171]. The single meron can be obtained from a

variant of the ansatz (2.52),
A= —n,, 0,Inlldz,7,, I(z) = —. (3.134)

It can be viewed as half an instanton of vanishing radius (in regular gauge),

inst

1 1 1
Ameron = 5 ARt ‘p:U; V(A) = / 5 5(4) (:r)dV = 5 ) (3135)

but its action is infinite. Nevertheless, merons possess fermionic zero modes [172] and
there are speculations that merons may describe confinement [173, 174].

From (3.135) and (3.129) it is not difficult to infer that the ground states in the meron
background form a quadruplet, j = n = 1/2 [170]. Accordingly, also the meron lies on

the Gribov horizon and has defects on loops.

All configurations considered so far are highly symmetric. In technical terms, the

partial differential equation of the LAG (3.109) thus turns into an ordinary differential

8the four-dimensional spinor representation labelled by {ni,n»} = {0,1} in [138].
9Those authors even proposed to use this fact for studying instanton excitations without cooling.

61



equation in the radius. For more generic configurations, the symmetry will be reduced.
Hence one cannot expect to solve the eigenvalue problem of the covariant Laplacian in
full analytic glory.

One method to handle configurations near the single instanton is perturbation theory a
la Schrodinger®® [FB4]. We start with the regular instanton with its Higgs field vanishing
at the instanton core and its colour structure being the Hopf map ny (for R > p, see
(3.132)). The new configuration is a field on a different gauge orbit?', obtained by
A = A% + AJA, with perturbation parameter A. The usual Schrédinger perturbation
theory for the change of the groundstate, ¢ = ¢;,t +Ad ¢, requires access to all eigenvalues
and eigenfunctions of —Diinst. Unfortunately, neither the full spectrum nor the radial
dependence of the wave functions are known analytically (for R > p, cf. the discussion
after (3.131)). Nevertheless, if perturbation theory is valid, the size of the defect manifold
is small. Therefore, we can restrict ourselves to the vicinity of the origin. There we can
Taylor expand d¢; for our purposes even the lowest order approximation is sufficient.
Thus, the Higgs field of a generic configuration A close to the single instanton (in orbit

space) and near the origin (in coordinate space) is,
¢ = Pinst + A0 = 1> nyy + R? const (3.136)

where we have introduced a new length parameter?? R, since the Higgs field in our
convention is of dimension length squared. Without loss of generality we specialise to a

perturbation pointing in the third colour direction,
¢ =r’ny — R*0,0,1)", (3.137)

all other cases can be obtained by rotations. A straightforward calculation shows that
the zeros of ¢ are then on the circle C: z7 + 23 = R?, x3 = x4 = 0. Tts size scales with
the perturbation parameter R = v/A. The perturbation has enlarged the defect manifold
from a point to a loop, thereby breaking the spherical symmetry. The associated defect,
a magnetic monopole, will be analysed in detail in Sections 4.1.2 and 4.3.

How could a background inducing a monopole loop look like? In the next chapter
we will elaborate more on the correlation between the position of the monopole and
the maximum of the topological density. In view of that, the answer should be a non-
trivial configuration with instanton density localised on a circle. This is the case for the

k = 2 instanton when the parameters are tuned appropriately [175]. Another approach

20not to be confused with perturbation theory in the YM coupling
2Land not a solution of the YM equations anymore
22not to be confused with the radius of the four-sphere when embedded into five-space
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is based on an observation by Rossi [176]: The static 't Hooft-Polyakov monopole (as
well the Harrington-Shepard instanton) can be obtained by placing an infinite array of
instantons (in singular gauge) along the time axis. One can do the same on a finite
circle in four dimensions. As the number N of instantons becomes infinite, their size p
should tend to zero keeping Np? fixed. Indeed, the instanton density is localised on the
circle. However, in order to exhibit the monopole content it might be necessary to allow
for varying orientations of the constituent instantons. Accordingly, one has to use the
ADHM construction [177].

3.5. Faddeev-Niemi Decomposition

In this section we demonstrate how the Faddeev-Niemi on-shell parametrisation (1.12),
A = Cn+i[n,dn] + pdn + io[n,dn], (3.138)

can be extended off-shell with the help of Abelian gauges. The general ansatz,
A=Cn+i[n,dn]+ W, (3.139)

goes under the name ‘Cho-Faddeev-Niemi-Shabanov decomposition’. It expresses a gen-
eral connection as the sum of the Cho connection A = Cn + i[n,dn] — which was
shown to be the general form of a U(1) reducible connection (cf. Section 2.1.3) —
and a rest W. Counting of degrees of freedom shows a severe mismatch since 12 <
4 4 2 + 12. Therefore, one generally proceeds by assuming that W is perpendicular to
n [139, 178, 179, 64, 66, 180] which in turn means that C' is the n-projection of A,

(W,n)=0=C=(A,n). (3.140)
This is just the decomposition in the body fized frame (3.26) upon identifying,
A=Allm g gtn Al =4 Alr =W, (3.141)

The condition (3.140) has reduced the number of degrees of freedom in W from 12 to 8.
Still, we are overcounting by two: the dependent fields C' = (A, n) and W = —i[n, D on]
can be obtained from A and n. Therefore, firing the redundant variables is in one-to-
one correspondence with an Abelian gauge. The latter makes n a dependent variable
(see (3.15)), but can also be read as providing two further restrictions on W. Since the

restrictions fix the coset, they are perpendicular to n,

x(C,n; W) =0, (x,n) =0. (3.142)
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Indeed, the MAG-condition xmac(C,n; W) =D (cmWu =0 (cf. (3.42)) was originally
proposed by Shabanov [139]. Faddeev and Niemi, on the other hand, proposed an
explicit parametrisation of W in terms of six variables [178], inspired by the use of

Darboux variables in an Abelian gauge theory [181]. It can be written as follows [66],
W = pidn +ioi[n, dn] + g'~ (pedn’ — ioy[n’, dn])g’, (3.143)

where ®; = p; + i0y is the complex scalar from the on-shell parametrisation, while
Dy = py +i0y and n' = ¢’ 'ng’ denote a second scalar and Higgs field, respectively. In
the space fixed frame this parametrisation fulfils a cubic gauge condition introduced by
Kashaev (as quoted in [178]),

X(A) =% (dA" A AT A AY). (3.144)

The properties AL A A+ € H and (A1) = 0 imply that this is another Abelian gauge.

3.6. Outlook 1: Fermionic Zero Modes

Fermionic zero modes in gauge theories obey the Atiyah-Singer index theorem [182]:
the difference of left-handed and right-handed zero modes is the instanton number, the
second Chern number. One can try to use this knowledge to define another Abelian
gauge. In the spirit of the LAG??, one looks for the ground state 1 of the Dirac oper-
ator in some background A, (iP)4)?1 = Egtp. Since (iD4)? is a non-negative operator,
zero modes, if present, are ground states. (However, one cannot expect zero modes for
generic backgrounds in the perturbative sector having v(A) = 0.) The Higgs field of
this Dirac Abelian gauge should be a Lorentz scalar and isovector built out of . Ex-
plicit expressions for 1) are known in instanton backgrounds fulfilling the ansatz (2.52)
[183] (and for the caloron [184]). Typically, the zero modes are localised at the instan-
ton core (the constituent monopole), a fact which is of great interest when studying
the defects. This Abelian gauge has not yet been investigated, partly because there are

difficulties in defining chiral fermions on the lattice (see e.g. [185] and references therein).

On the other hand, the Banks-Casher relation states that the density of quasi zero
modes is proportional to the chiral condensate [186], a clue towards explaining chiral
symmetry breaking (see e.g. [109] and references therein). These quasi zero modes

are expected to emerge from exact zero modes of instantons, when the latter form an

231n fact, for (anti-)selfdual fields (iD.4)? reduces to —D? on the left (right) handed subspace.
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ensemble. Furthermore, confinement and chiral symmetry breaking are claimed to have
the same critical temperature [187]. Therefore, it is physically reasonable to search
for fermionic zero modes in Abelian projections. The best candidates are of course
Abelian projected instantons. For symmetry reasons, we investigate the single instanton
in regular gauge. The projected field reads,

27721,37,,

a = (A"); = — + p?

dz, 7. (3.145)
r

It has a different topological density then the full instanton field A™¢ (cf. (2.57)),

2 p*

A VR, (3.146)

é tr fAf=
but still instanton number one. This fact is not a coincidence and will become clearer
upon discussing the Chern-Simons form in Section 4.3.3. On the other hand, self-duality
is lost and the action becomes infinite?*. This is to be expected, else the Uhlenbeck
argument would lift the configuration a to a reducible instanton on S*, which does not
exist (see Section 4.2). The situation is the one of the LAG with R < p (n = 3,
cf. Section (3.4.1)) with a defect at infinity.

Still the symmetry is sufficiently high to solve the zero mode equation exactly, the
expression for (iD,)? has a structure similar to (3.130). As a preliminary result we quote,
that there are no zero modes in the fundamental, but in higher representations. The
latter come in the same chiral sector as the ones from the original instanton background.

One might further ask whether the index theorem survives the Abelian projection. In
order to answer this question we have to consider the index theorem for manifolds with
boundaries [188]. In this case, a correction from the boundary, the n-invariant, has to be
added to the instanton number to yield the index. The n-invariant has been computed
for a very similar gauge field in [189] and its contribution points into the same direction

as the explicit solutions. This is work in progress with A. Kirchberg and A. Wipf.

24Put differently, the instanton number of this configuration exhibits Abelian dominance, while the

self-duality relation and the action do not.
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4. Defects

In the last chapter we have investigated various Abelian gauges in detail, but only
sketched the appearance of defects. Recall that defects are positions = in space-time,
where the gauge transformation achieving the Abelian gauge becomes ill-defined. Put
differently, at the defect manifold the residual gauge freedom is locally enhanced.

In this chapter we will perform a general analysis of the topological properties of
defects by means of Higgs fields. We have already made use of two kinds of Higgs fields,
an unconstrained one called ¢ (in the LAG) and a normalised one called n (in the MAG).
Hence, the defects appear as zeros of ¢ and singularities of n, respectively. From the FP
determinant (3.20) it follows immediately that defects are located at the Gribov horizon
[15], with the qualifications discussed in that section.

The outline of this chapter is the following: We first quote the well-known arguments,
why generic defects are magnetic monopoles characterised by their magnetic charge. Be-
ing measured near the defect manifold, we refer to this property as ‘local’. Globally, the
defects should account for a Hopf invariant which is related to the instanton number of
the background gauge field. When relating local and global properties, we will find that
non-trivial configurations enforce the existence of defects. It turns out that additional
topological quantities, like twists, have to be present. We shall demonstrate this for an

example. An outlook concerning center vortices is given at the end.

4.1. Local Properties

4.1.1. Generic Defects as Magnetic Monopoles

Generic defects in four dimensions are closed wordlines of magnetic monopoles carrying
unit magnetic charge [33]. There are several reasons supporting this statement: First,
there are three equations ¢*(Z,) = 0 defining the defect locations on a four-dimensional
manifold. Therefore, the defect manifold is generically a set of lines (it has co-dimension
three). Second, we can expand the Higgs field around its zeros,

_ 09"

N oz,

¢(x) = M (2)(w — 2),7a + O((x — 2)°),  M*(z) (7). (4.1)

66



The gradient M is a three-by-four matrix, which generically (i.e. if there are no further
restrictions) has rank three. Hence, by a coordinate transformation one can bring M to
a form where all entries of one column vanish. The Higgs field is independent of that
direction, it stays zero along the above mentioned line.

At this stage we simplify the analysis by assuming that the Higgs field is static and
that the defect lies at the spatial origin,

Z=(0,74) = ¢(x) = M®xy7, . (4.2)

Consider the plane x4 = 0 such that M is just a constant matrix. In that plane, we

define the normalised Higgs field n on a two-sphere surrounding the origin,
( ) 5’24 =0, |#|=const. - SQ' (43)

The generalisation to an arbitrary defect line is straightforward: one has to go to the
two-sphere in the three-dimensional hyperplane perpendicular to the defect line. At this
stage it is obvious why magnetic monopoles are not genuine parts of pure YM theories:
the mappings S? — SU(N) are trivial and cannot give rise to topological objects.
Third, if M were the identity matrix, the Higgs field n would be just the hedgehog
field discussed in Section 2.3.2. One can show that M is plus or minus the identity up
to topological deformations ([33] and references therein). That is, n covers the image
sphere in colour space exactly once and has winding number +£1. The conservation of
this integer forces the defect lines to be either closed loops or to extend to infinity.
Though we did not specify the gauge field A, the situation is exactly that of the
't Hooft-Polyakov monopole (in the BPS limit). The only difference is that in that model
the Higgs field is part of the field content, while in Abelian projections it is artificially
introduced via gauge fixing. In terms of the Abelian projection, radial and unitary
gauge amount to the decomposition in the body and space fixed frame, respectively.

The (n-projected) flux in the body fixed frame is the winding number of n (cf. (3.35)),

/52( F(Alm), /S /SQ(n, idn A dn) = deg(n) = +1. (4.4)

n cannot be diagonalised smoothly due to a topological obstruction: Its winding number
is conserved under smooth gauge transformations. Hence, the gauge transformation to
the trivial mapping n = 73 cannot be smooth. From the discussion of the 't Hooft-
Polyakov monopole we know what happens in the space fixed frame: after diagonalising
n, the defect becomes a Dirac monopole with Dirac string. The set of all Dirac strings

forms a two-dimensional Dirac sheet bounded by the worldline of the monopole. Since
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the sheet can be moved around by singular Abelian gauge transformations, its position
is ambiguous. But its presence is unavoidable, unless one uses the bundle approach.
Then one has to excise the monopole worldlines from the base manifold (space-time) for
each configuration.

To illustrate these points, we analyse an example obtained from the LAG in a non-
trivial background (Section 3.4.1) in more detail. It is helpful to introduce polar angles

in colour space,

sin 3 cos a
n=| sinfsina |, a€ (0,2r), B € (0,m). (4.5)

cos (3

The topological density is given by (n,idn A dn) = sin 8df A da, and the diagonalising

gauge transformation becomes,
g = 61773 61’,87'2 62’(17'3 , (46)
with the residual Abelian gauge freedom inherent in +.

4.1.2. Example: A Small Monopole Loop

The defect manifold for a perturbed instanton in the LAG is the circle C' : ri9 = R, 134 =
0. From the perturbation (3.137) of the Higgs field ¢ we read off the angles of n,
7“2 sm(29) 2T127“34

= arctan —————5 . 4.7
r? cos(20) — R? arctan r2, —r3, — R? (4.7)

Q= P12 — P34, f = arctan
It turns out that this Higgs field coincides with the one considered in [141, 190],
B=0,+0_, tanfy =13, /(r2 £ R). (4.8)

Lines of constant /3 are depicted in Figure 4.1. From this figure and (4.7) one infers that,
right at the loop, both angles a and ( are singular, while in a vicinity perpendicular to
the loop (at fixed worldline coordinate ¢19) they take on all possible values exactly once.
Hence, n has unit winding number. For an explicit check the form (4.8) is best suited:
Close to the worldline we can set 6 to zero, while the two-sphere perpendicular to the

circle is parametrised by 6, € (0,7) and ¢34 € (0,27). Then,

1 1 m 27
deg(n) = yym /5 sin fdf A da = yy / sin 9+d9+/ dgss = 1. (4.9)
2 0 0
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Fig.4.1.: Left: Lines of constant 8 for a monopole loop at r19 = R, r34 = 0 (cf. (4.7), same
as in [141, 190]). Right: With our choice (4.10), the Dirac sheet is the disc D in the

z1xo-plane.

This is the generic situation; after diagonalisation there is a unit charge magnetic

monopole, its worldline being the circle C. With the choice,

Y= Q12 + Y34, (4.10)

the Dirac sheet is the disc D : 15 < R, r34 = 0 (see Figure 4.1).
At this point we are ready to discuss a sample of lattice results that support the

mechanism of Abelian projections.

4.1.3. Monopoles on the Lattice

The idea of Abelian projections has been successfully tested on the lattice. The main
achievements go under the names of Abelian dominance [191] and monopole dominance
[192]. In analogy with the Cartan decomposition in the continuum, the group valued
link variables U are written as products of an off-diagonal coset part and a diagonal
Abelian part u = exp(ifiT3). Abelian dominance means that about 92% of the string
tension! in the heavy quark potential (1.3) is reproduced upon replacing the full field
by the Abelian field. It confirms the validity of Abelian projections a posteriori.
Furthermore, the Abelian field strength? f = df on each plaquette can be decomposed

into a fractional part f and an integer part m, respectively,

f=Ff+2mm, fe(-n7), me{-2,-1,01,2}. (4.11)

! Abelian dominance does not hold for the self-energy and the Coulomb part [149].
2For the definition of forms on the lattice see e.g. [193].
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The latter measures the magnetic flux through the plaquette, i.e. the presence of Dirac
strings. Like in the continuum, endpoints of Dirac strings are magnetic monopoles, and
the monopole current on the lattice is £ = * dm. The magnetic charge is conserved (and
bounded), thus, monopole worldlines are closed (on the dual lattice). This operational
definition of magnetic monopoles, called the elementary cube procedure, is due to De-
Grand and Toussaint [26]. Monopole dominance means that 95% of the Abelian string
tension is reproduced by keeping only the monopoles, i.e. the singular fields. It has also
been checked that the photons, i.e. the regular fields, do not confine.

Monopole condensation in the YM vacuum has been shown considering percolation
properties of monopole currents [194, 195, 196, 197], and the thermal partition function
in a monopole background® [198]. In the language of statistical physics, condensation
is intimately connected to an order parameter, the vacuum expectation value of some
operator. A monopole creation operator for compact electrodynamics has been given
by Frohlich and Marchetti [199]. For YM theories, several versions of such an opera-
tor have been suggested [200, 201, 202, 203]. Numerical simulations show that their
vacuum expectation values indeed serve as order parameters for monopole condensation
and hence dual superconductivity: They have a non-vanishing value in the confining
(broken) phase and vanish above the deconfinement phase transition. A constraint ef-
fective potential behaves accordingly [204]. The dual superconductor is claimed to be
of second kind [205]. Effective actions for monopole currents have been derived on the
lattice as well [197].

However, the weakness of these findings is at least four-fold: First, the underlying
ensemble has been generated with the Monte Carlo method using the full SU(2) Haar
measure. In a path integral language this means that the replacement of the full fields by
the Abelian/monopole fields takes place only in the observables, but not in the measure.
Second, the Gribov problem affects the value of the string tension by about 10%. The
better the MAG is fixed, i.e. the bigger the MAG-functional, the less monopoles and
the smaller the string tension [149, 150, 148]. We will come back to this point (in the
continuum) in the next section. Third, the mechanism of Abelian projections has con-
ceptual problems with sources in the adjoint representation [206, 149, 207, 208|. Fourth,
the monopoles from the elementary cube procedure are not necessarily the defects of
the MAG. In fact, one cannot really find the latter, since the notion of singularities in
n (or g) makes no sense on the discretised lattice. A way out is provided by the LAG:
the position of the monopoles in MAG and LAG are correlated [8]. For the LAG one

31f monopoles are condensed it will cost no free energy to add another one.
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can define defects as regions of low modulus |¢|, which are indeed correlated with the
elementary cube monopoles [140, 209]. Still, very small defects will fall through the
lattice.

Since numerical results cannot replace physical insights, we will continue by analysing

the role of defects in the continuum.

4.1.4. Defects in Different Abelian Gauges: A Synopsis

In the continuum, the defects of the Polyakov gauge are best understood. They occur
whenever the group-valued Polyakov loop P(f, &) becomes +1, [133]. Notice that this
is a gauge invariant statement, hence one can predict the position of the defects without
actually transforming to the PG. Equivalently, the algebra-valued Higgs field ¢ from
(3.97) vanishes. Since these fields do not depend on x4, the defects of the Polyakov
gauge are static. This is of course a remnant of the particular gauge condition (3.89).
Again, generic defects are unit charge magnetic monopoles?. The hedgehog behaviour
can be easily checked [210] for the Harrington-Shepard instanton [211] and has been
elaborated in detail for the constituent monopoles of the caloron [212]. On a space-
time of finite volume like the four-torus, the magnetic charges obey an overall charge
neutrality, and the Dirac strings form a network between the monopoles [136]. The
monopoles are located on the Gribov horizon, because the FP determinant (3.95), being
the reduced Haar measure, vanishes exactly where the Polyakov loop has degenerate
eigenvalues.

The few analytical results about defects in the LAG are collected in Section 3.4.1. For
the MAG the situation is even worse. The small monopole loop from above as well as a
static monopole were put in by hand into the singular instanton background [141, 213].
Against the hope of the authors, however, the MAG suppresses these monopole loops; the
MAG-functional is larger than for the singular instanton®, or it even diverges. It seems
to prefer singularites with large supports: After all, the small monopole loop provides
a transition from the singular gauge (n ~ 73) at large distances to the regular gauge
(n ~ ny) inside the loop [214]. As we allow for singularities anyhow, let us define the

following (naively patched, or ‘bundle’) configuration,

reg —
4 { A8 (n=m3) forr<p, (4.12)

A8 (n=mny) forr>p.

“The Abelian instantons (2.49) are non-generic as the Polyakov loop equals 15 on higher-dimensional

defect manifolds (two-dimensional walls, x3 =, const. or even everywhere in space).
®One might speculate whether a perturbation of the single instanton could stabilise the monopole loop.
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which jumps by a gauge transformation on a whole three-sphere Sf:p. Nevertheless,
it leads to a value of the MAG-functional which is even lower than the one for the
singular instanton®. The reason is that the density of the MAG-functional in the two
gauges differs by a factor 72/p* and is lower for A™ (A®%) in the region r < p (r > p)
[141]. Squeezing the singularity from the three-sphere into the monopole loop, the MAG-
functional blows up again, exceeding the value for the singular instanton.

Nonetheless, a monopole loop clearly shows up in the LAG (on an orbit close to the
single instanton orbit) which supports the remark made in the beginning of Section 3.4.1.

We have seen that defects depend on the chosen Abelian gauge. This is also a problem
on the lattice. As expected, there are always slightly more monopoles in the LAG than
in the MAG [146, 8]. Nevertheless, these two gauges are very similar w.r.t. properties
like Abelian dominance, total monopole length and space-time asymmetry [215]. For
the Polyakov gauge, Abelian dominance is trivial when extracted from Polyakov line
correlators, but absent for Wilson loops [216]; monopole dominance holds [217]. The
total monopole loop length and space-time asymmetry in this gauge do not change at
the deconfinement phase transition, so that the monopoles in this gauge ‘apparently lack
a dynamical relevance for confinement’ [8]. There are also negative results about the
Abelian gauge diagonalising a field strength component [200, 201] and an anisotropic
version of the MAG [207], confronted with encouraging results about an interpolation
between the MAG and no gauge fixing [218]. Altogether, the gauge dependence of the
Abelian projections remains controversial in the lattice community, and it seems that
every author is drawing his or her own conclusions.

An argument in favour of Abelian projected monopoles as physical objects is the
correlation with gauge invariant quantitites. Monopoles contribute significantly to the
instanton number [219]. The probability of finding monopoles increases locally with
the value of the topological charge and action density [220, 221, 222, 223|. Put differ-
ently, monopoles come with an excess of topological charge and action, which decreases
in the deconfinement phase [209]. Together with the observation that strong gauge
fields are nearly (anti)-selfdual [215], monopoles are rather dyons [224]. In order to
better understand the correlation between instantons (lumps of topological charge) and
monopoles, equilibrium configurations were cooled down to semi-classical ones. The
surviving monopole loops are clearly correlated to the positions of the instantons, both
in the MAG [225, 224, 226] and in the LAG [227]7. The formation of monopole loops

has also been investigated from the other extreme: Single instantons (and merons [228])

6To obtain the lowest value of the functional, even the transition region is determined to be at r = p.
Ton top of center vortices
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contain single small planar monopole loops (cf. the perturbed instanton in the LAG).
Monopole loops of (anti-)instanton pairs are liberated to form one large loop enclosing
the instanton centers. This process was found to go on for three and more instantons
with a specific group orientation [225].

A similar effect has been observed for an instanton-antiinstanton pair in the continuum.
This configuration has a common monopole loop surrounding the two cores as shown
numerically for the MAG [141] and the LAG [170].

The implication of this correlation for the dynamics of the theory could be that instan-
tons induce confinement indirectly via the creation of large monopole loops®. However,
most of the lattice simulations within the dilute instanton gas [229] and the instanton
liquid [230] show, that instantons are not the most relevant configurations for confine-
ment ([231, 232, 233, 234, 235, 236, 237, 238], see e.g. [239, 240]). One should keep in
mind, though, that instantons, i.e. lumps of action/topological charge, become indistin-
guishable from perturbative fluctuations, if coming close to each other [241, 242, 243].

We will come back to the intimate relation between monopoles and instantons in
Section 4.3; before that, however, we have to discuss the analogue of the instanton

number (i.e. the global properties) for the Higgs field.

4.2. Global Properties

In order to discuss global properties it is appropriate to use the language of fibre bundles.
Both kinds of Higgs fields describing Abelian gauges live on bundles associated with the
principal bundle. The demand for the same transition functions ensures that on the
overlap of two charts, the gauge fields A, and A, will lead to the same gauge fixed
configuration Ayg = 9A; = 9%A;, up to the residual Abelian gauge freedom g — hg.

The fibre of the ¢-bundle is the full Lie algebra G = su(2) = R*. As always, such
a vector bundle is characterised by its transition functions, but not by the existence of
sections: any vector bundle admits a global section, the null section. Although the use
of ¢ is advantageous in practical computations (smoothness, LAG vs. MAG), for the
topological description one better passes to the normalised field n = ¢/|#|. The fibre of
the n-bundle is the coset G/H = SU(2)/U(1), represented by normalised elements of
the Lie algebra S? C su(2); a null section does not exist.

We start the investigations by stating a related fact, namely that on the four-sphere

the instanton number of every reducible connection vanishes [87, 73]. In other words,

8which is equivalent to monopole condensation in the QCD vacuum.

73



there are no reducible instantons. In order to verify this statement, one has to check
whether non-trivial transition functions can take their values only in U(1) (or even Z,
for extremely reducible connections). On the four-sphere, there is just one transition
function ¢, being a mapping from S? into the group SU(2) = S3 (cf. Section 2.3.3).
Transition functions whose images are reduced to a subgroup of SU(2) cannot cover
the whole S anymore. Thus, they cannot have a winding number 73(S%) = Z, so that
they have vanishing instanton number. To be explicit, the topological density tr (tdt)?
in (2.48) vanishes for an Abelian function, say ¢ = exp(iA73), due to both the colour
structure, tr (73)® = 0, and the wedge product, d\ A d\ = 0. In other words, the trivial
mappings S? — U(1) induce trivial reduced bundles.

Accordingly, there is no smooth section n (cf. Section 2.1.3). This is the first correlation
between instantons and defects we have encountered: For non-trivial backgrounds on the
four-sphere, there have to be defects in any Abelian gauge. Following the considerations
above we can even conclude that there have to be defects for every irreducible background.

We stress that similarly strong statements cannot hold for the torus. Indeed, the
Abelian instantons of Section 2.3.3 have a reduced holonomy group — the maximal
Abelian subgroup — and obey Abelian transition functions. Accordingly, the simple
choice n = 73 is a proper? Higgs field without any defects. In fact, 75 serves both as the
MAG-Higgs field (since the configuration is already in the MAG) and the LAG-Higgs
field (since, due to the reducibility relation, Ds7m3 = 0, 73 is the ground state). The
topology of the transition functions can be understood as follows: Without loss of gen-
erality, two of the four transition functions of the torus can be chosen as the identity.
The instanton number receives contributions from integrals of the remaining transition
functions over three- and two-subtori, respectively [244, 136]. Two Abelian transition
functions, say t; = exp(i\;73) and 5 = exp(iAy73), can contribute to the instanton

number!?

since tr (13)? # 0, and there is a non-vanishing two-form dA; A d\y # 0 to
be integrated over. This fact is quite plausible since there are non-trivial mappings
T" — U(1) = S! which can prevent the reduced bundle from being trivial.

Back on the sphere, the Higgs fields on the overlap are mappings from S? to S? which
are characterised by the integer Hopf invariant. This invariant provides some insight
about what happens in the transition region as will be explained in the following section.

Since this invariant may not be of common knowledge, we begin with a brief introduction.

with the same transition functions
0Note, however, that Abelian transition functions automatically lead to even instanton numbers [136].
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4.2.1. The Hopf Invariant

The Hopf invariant H(n) € m3(S5?) 2 Z characterises mappings n from the three-sphere
to the two-sphere. Its definition via cohomology is fairly abstract. It starts with the

pullback!! of the volume form on S?,
N2y = n.(dV(5?)) = (n,idn Adn). (4.13)

Integrating this two-form over M gives the degree of n, if n is a mapping from a two-
dimensional manifold M into the two-sphere (cf. the Brouwer degree in the monopole
case, Section 2.3.2). For the Hopf invariant, however, one needs a three-from to be
integrated over. A one-form 7 with dngy = 1) exists because the volume form on
5?2 is obviously closed, and so is its pullback ne2); and the second cohomology group of
the three-sphere is trivial'?. Now 1y A 1) is the desired three-form defining the Hopf

invariant,

1
Hn) = 155 /5 nwy Ay, dnay = ) - (4.14)

A more geometrical picture is based on regular points on the image sphere, the preim-
ages of which are loops [245]. Accordingly, the preimages of two regular points on S?
under n are two loops on S? which do not intersect. The Hopf invariant is the linking
number of these two loops, irrespective of the chosen points on S?. The linking number
can be understood from Biot-Savart’s and Ampere’s laws of electrodynamics [101].

An exact sequence 0 — 73(S?) — 73(5?) — 0 relates the Hopf invariant to an ordinary
winding number (cf. [245]). Not surprisingly, the latter is the winding number of the

gauge transformation g that diagonalises n,
n=g'ng,  H(n)=deg(g). (4.15)

As before, ¢ is a mapping from S? to SU(2), defined up to rotations around 73.

Notice that the Hopf invariant is not independent of gauge transformations and can
be transformed away smoothly. This is at variance with the monopole charge, which is
gauge invariant and can be transformed away only at the expense of introducing Dirac
strings. The difference is plausible: in the monopole case, g cannot carry the topology
of n, since the mappings S? — SU(2) are trivial.

In the next section we analyse the implications of the Hopf invariant for the defects.

1 This is the only place where we explicitly write the pullback, in principle it is also present for all

winding numbers.
12at variance with the torus, where H2(T?) = R? due to non-contractible circles.
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4.3. Relating Local and Global Properties

With the help of the Hopf invariant we will first show the inevitability of defects in
non-trivial backgrounds. From its connection (4.15) to a winding number, the Hopf
invariant inherits the following property: If n is smooth inside a topologically trivial
four-volume V4, it has no Hopf invariant at the boundary 9V* = S3. (Contracting the
latter to a point, one immediately sees that g approaches a constant and hence is trivial.)
Furthermore, if the two Higgs fields ny and ng are connected by the transition function

t, the degree of t is the difference of their Hopf invariants'?
ng = 'ng, H(ny) — H(ng) = deg(t) . (4.16)

As a consequence, at least one of the Higgs fields has to have a Hopf invariant, hence a
defect in its chart, if deg(t) = v(A) # 0. (In a similar way, the Higgs field of the 't Hooft-
Polyakov monopole has to vanish somewhere in order to develop a magnetic charge.)
Thus, the Hopf invariant proves that defects are unavoidable in non-trivial backgrounds.

For the same reason, the Hopf invariant has a residue property: the total Hopf invariant
is the sum of Hopf invariants measured on little three-spheres around each defect [190].
In principle, we can discriminate between a number of necessary defects (to generate
the instanton number) and additional defects (the Hopf invariants of which cancel in
the sum); the latter are to be expected also in the perturbative sector. This property
suggests a ‘localisation of the topology’, meaning the instanton number of the background
should be determined by the local properties of an ensemble of defects.

A similar localisation was observed in the Polyakov gauge by a number of authors
before [246, 247, 248, 136, 210, 76, 159]. In this gauge, the instanton number is related

to the magnetic charges of the static monopoles,

A = Y degle = Y dmaele- (417

P(B,T)=—12 P(B,T)=—12

However, we cannot expect such a simple relation to hold for other Abelian gauges, and
especially not on the four-sphere S*.

The rest of this section is devoted to the relation between global and local properties
of defects — Hopf invariant vs. magnetic charge — for arbitrary Abelian gauges. To gain

more intuition we first study pointlike defects.

13Thus, in (4.15), we could have chosen any constant instead of 73; we continue with diagonal matrices.
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4.3.1. Pointlike Defects and the Standard Hopf Map

For pointlike defects the first order Taylor expansion (4.1) is not sufficient'*. Accordingly,
viewing the normalised field n as a mapping from a two-sphere like in (4.3) does not make

5

sense'®. Instead, n has to be defined on a three-sphere in the four-dimensional space-

time, n: S3__ . — S% It follows that pointlike defects are characterised by the Hopf
invariant ‘already locally’. If there is no second defect present, the Hopf invariant will
naturally ‘evolve’ from the little three-sphere around the origin to the large three-sphere,
where the transition takes place.

Pointlike defects, being non-generic, are related to highly symmetric backgrounds. We
have explicitly shown the occurence of a pointlike defect in the LAG in the single instan-
ton background'®, see Section 3.4.1. In fact, the field ¢ in (3.132) vanishes quadratically

at the origin, and the normalised Higgs field n is just the standard Hopf map [249],

2(T1T3 — Toky)
nH(.f”) = 2(@‘1@‘4 + S%Qi‘g) s .f” = I'M/T . (418)

~

2 ~.2 ~2 ~2

With the help of the polar coordinates of Section 4.1.1, this standard mapping is simply

given by,
2119734
aH = P12 — P34, Pu = 20 = arctan — 5 (4.19)
Tio — T34

The lines of constant § are displayed in Figure 4.2. Recalling that the standard Hopf
map is diagonalised by the gauge transformation g (cf. Section 3.4.1 and A.3), the third

angle v reads,

Y = P12 + L34 . (420)

It is interesting to see how the standard Hopf map fits into the different definitions
of the Hopf invariant. We start by noting that all image points are regular. Thus, ny
solves the problem of filling the (compactified) three-space with non-intersecting loops,
such that any two loops link just once. The pre-image of the north pole, Sz = 0, and
the south pole, Sy = 7, are the loops (r34 = 0, 113 = const.) and (ryy = 0, r34, = const.),

respectively. When S? is decompactified to R along the fourth direction, the former is

4gince it would just give zeros on lines like for monopoles.
5gince any two-sphere in four dimensions can be contracted to a point using the fourth dimension.
16 A1l investigations of this background in the MAG suggest the same to happen there: the singular

instanton, if really being the gauge fixed configuration, has a pointlike singularity at the origin.
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Fig.4.2.: Left: Lines of constant § for the pointlike defect, being the standard Hopf map
(cf. (4.19)). Right: A vector plot of the standard Hopf map on R? as decompactified
S3, together with the preimages of the north pole (circle) and the south pole (line).

a circle in the z;z9-plane, while the latter turns into the x3-axis. They are obviously
linked once (Figure 4.2). For other preimages the visualisation of the linking is a bit
more complicated.

The ground state soliton of the Faddeev-Niemi model is of this form, with ‘north’ and
‘south’ interchanged [50]. By definition, the position of the soliton is the pre-image of
the south pole, since asymptotically n points towards the north pole and the FN energy
measures the gradient of ‘spins’ n. The H = 1 soliton maps a planar circle to the south
pole, therefore it is called torus shaped un-knot soliton.

In this context, let us investigate the symmetry of the standard Hopf map. It is
inherited from the symmetry of g, but partially broken by referring to 73 in the relation
ngy = ¢3¢'. (From the point of view of a solution of the covariant Laplacian: the
standard Hopf map inherits the symmetry of the background A;.,, but we choose a
particular mapping from the multiplet (A.25)). Plugging the SO(4) symmetry (2.62) of
¢ into this relation, the anti-selfdual (infinitesimal) rotations lead to the correct change

of ny given by the commutator,
dng = [iA, nul, A= 2wW,T, for wy, = wa 7, - (4.21)

The symmetry group is an SO(3) subgroup of SO(4). The selfdual rotations cannot be

compensated unless A commutes with T3, in which case,
ong =0 for wy, = wnf’w . (4.22)

This leaves only an SO(2) symmetry group. Upon projecting the space-time S* stere-
ographically onto R?® along the fourth direction, all symmetries containing x4 (the ‘Eu-

clidean boosts’) are lost. They correspond to the difference of selfdual and anti-selfdual
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rotations. Still, the sum of them is unbroken, but only as an axial symmetry due to the
considerations above. This visualises the fact that non-trivial Hopf maps are at most
axially symmetric.

For the standard Hopf map, the two-form 7y (4.13) from the definition of the Hopf

invariant becomes
N2y = sin BdB A da = 2sin(20)d0 A d(p12 — @34) - (4.23)

Notice that the polar angles, which suffer from singularities, combine to an entirely

smooth form. This effect also restricts the one-form 7 to bel?

) = — cos(20)d (12 — @sa) — d(p12 + @34) - (4.24)

The resulting three-form is simply the volume form on the preimage three-sphere,

H(ng) = /53 2sin(20)d0 A d(p12 + @s4) A d(@12 — p34) = /33 dV(S?) =1. (4.25)

The winding number of the diagonalising gauge transformation ¢ is obviously one.
In accordance with our general considerations on gauge invariance in Section 4.2.1, the
gauge transformation ¢ is singular only at the origin and does not induce further ‘Dirac
strings’. By fictitiously switching the perturbation of Section 3.4.1 off or on, one can
view pointlike defects as monopole loops shrunk to points'® or as seeds for monopole
loops.

This picture will become important in the next section.

4.3.2. Small Monopole Loops: Twist

The relation between local and global properties for the small monopole loop is easy
to explain. The loop emerges upon perturbing the pointlike defect (the standard Hopf
map). Such a local perturbation does not change the global properties. In more technical
terms, the two angles a and [ describing these Higgs fields coincide exactly or at least
asymptotically (cf. (4.7) and Figure 4.1 vs. (4.19) and Figure 4.2). As discussed in
Section 4.1.2, the monopole charge (the hedgehog shape) of the Higgs field comes from
the dependence of n on ¢34 and f, being coordinates perpendicular to the loop. For
the integrand of the Hopf invariant, however, one needs a three-form. That is, the

dependence of n on the monopole worldline coordinate must be used. Indeed, from the

Tup to an exact form which does not contribute to the Hopf invariant.
18The Dirac sheets shrink to points as well.
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relation to the pointlike defect we have a@ = a(¢12). This dependence induces a twist
[250]: The hedgehog rotates around the third colour axis while moving along the loop.
In our case, it performes (uniformly) just one full rotation, @ ~ 5. The associated
relation [239],

v(A) = H(n) = magnetic charge x twist, 1=1x1, (4.26)

is just the simplest realisation of a formula given by Jahn [190]. Notice that on our
choice of the Dirac sheet the Higgs field is constant (on the south pole, 5 = =, cf. Figure
4.1). Tt has been shown explicitly that, for the same monopole loop but a different choice
of the Dirac sheet, a second term becomes relevant for the instanton number [190].
The physical meaning of the twist is most obvious for static monopoles, where the
worldline coordinate is time [251]. A twisted gauge field is time-dependent and hence

carries electric charge which is necessary to generate an instanton number, v ~ [ EBdV.

4.3.3. Localisation via an Abelian Gauge Field

An important link between global and local properties of defects in terms of physical

quantities is provided by an auziliary Abelian gauge field,
a = (igdgh)s = (igdg', 7). (4.27)

This field is the inhomogeneous part of the diagonal gauge field in the space fixed frame'?,
A‘[LG = gAg' + a73. Thus, under the residual Abelian gauge freedom h = exp(i\73), it

transforms according to (3.23),
g — hg, a—a+d\. (4.28)
This gauge field is not pure gauge, its field strength being
da = f + [, f=(idgndgh)s = (—igdg' A gdgh)s, %8 = (igd®g")s, (4.29)

where we have taken a singular part into account for later use. In terms of the angles
(o, B,7) from (4.6) these fields read,

a = dy + cos fda, f=—sinfdfAda, f& =d*y 4+ cos fd%a.  (4.30)

We mention in passing that this so-called ‘Clebsch form’ is the most general form of an

Abelian gauge field in three dimensions [252].

YAs a = (—igtdg, n), this field also appears in the body fixed frame, A" = Cn +igtdg + an.
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For the global properties we assume that the defects?® do not extend into the transition
region. Then the diagonalising gauge transfromations gy s of the local Higgs fields ny s
are smooth there, and the instanton number is given by the difference of Hopf invariants
or winding numbers on the transition three-sphere. To avoid writing these differences
we assume one of the charts to be free of defects and restrict ourselves to the other chart
in the following (i.e. we suppress chart indices N and S). For the same reason, we also
assume that the full gauge field approaches a pure gauge at the three-sphere, A — igdg’.

The crucial observation is now that the instanton number of the full field A can be
recovered from the Abelian field a. We first stay on the three-sphere and consider the
Chern-Simons numbers. For a it is defined via its embedding into the full group,

1 1
CS(a) =CS(ar3) = — /53 tr (a3 Adars) = 672 /53 anf (4.31)
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The cubic term does not contribute due to the Abelian nature of a, while f% is absent
by our assumptions. Using the relation [252, 190],
1

f =3 €anlgdgh)a A (99", (4.32)
we find,
— L T f Y, — 1 / 3
CS(a) 3272 /. can3(9dg')s A (9dg')a A (9d9")s = 57— Sgtr (9dg")
= deg(g) =CS(A). (4.33)

To show that the Chern-Simons number of a non-Abelian pure gauge can be recovered
from projecting this field to one of its components, involves a tricky combination of

the quadratic and cubic term?!

. It explains why the instanton number of the regular
instanton survives projecting this field onto its third component (see Section 3.6) and
was found in the context of magnetic helicity, too [252].

The Chern-Simons number of a is related to the Hopf invariant of n by
f=—(n.idn Adn) = —np, (4.34)

and a = —n) [190], hence C'S(a) = H(n).
Now we consider the ‘bulk’, i.e. the chart bounded by the three-sphere, where, by

virtue of Stokes’ theorem,

V(4) = OS(4) = OS(a) = = /S anf= g /V dlanf), ovi=s*. (435)

20and possible Dirac sheets
21The quadratic term gives a contribution —1 for each component, while the cubic term contributes

+4 for the full field only.
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We know right from the beginning that ¢ and hence a cannot be smooth inside the bulk
V4, else the winding number of g and the instanton number of A would vanish. In fact,
one might be tempted to conclude that the integrand is the usual instanton density f A f

for an Abelian field. But, in our case, this vanishes,
fANf=0, (4.36)

since f together with g is a function of three angles («, 3, ) only and cannot constitute
a four-form. Since the regular part in (4.35) vanishes, the contribution to the instanton
number of the background field reduces to the singularities of the gauge transformation
g associated with the Abelian gauge, i.e. to the defects/monopole worldlines plus Dirac
sheets. For instance, the pointlike defects have aA f ~ dV(S?) and d(aA f) ~ 6™ (z), so
that, the integrand is localised at the origin, the defect position. We stress that it is not
the instanton density of the non-Abelian background field A that is localised, but the
instanton density of an auxiliary Abelian field a representing the defects in an Abelian
gauge??.

Taking singularities into account, the instanton number splits into the sum of two

terms,

1
1672

V(A) /?U%Af—aAdﬂ, (4.37)

1%
where we already made use of (4.36). Both terms are absent in regions of space-time
where ¢ is regular since they are proportional to the operator d?. In Section 2.3.1 we
have shown that a non-trivial action of this operator gives rise to the Dirac sheet and
the monopole current. The same happens here, as magnetic monopoles are the generic
defects: f* and df = xk are d-distributions on the Dirac sheets and the monopole
loops, respectively. Accordingly, in (4.37), the contributions to the instanton number
reduce to integrals of f over the Dirac sheets and to integrals of a over the monopole
loops, respectively.

At this point, a few words on singular forms are in order. ¢-distributions of an n-
dimensional hypersurface ¥ in a d-dimensional manifold M are distribution-valued (d —
n)-forms such that [203],

Aanm:Lw, Sc M, (4.38)

22Tn order to detect monopoles, the gauge field a was introduced in [145, 136]. We will use it for both

global and local properties.
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for every n-form w. Stokes’ theorem turns into dd(X) = §(9%), which in our case is
nothing but df* = — x k. We locally split the coordinates (zi,...,z4) into (y1,...,yn)
along the hypersurface ¥ and (2,41, ..., 2z¢) normal to it, the latter chosen to vanish on
3. Then, the relevant part of the form w is proportional to dy; A ... A dy,, while the

distribution ¢ has the form?3,
5(8) = fly) 09 ™ (2) dzpyr AL Adzy. (4.39)

Concerning the monopole term, the one-form a must depend on (the one-form gen-
erated by) the monopole worldline coordinate. Since a is intimately related to ¢ and
n, this dependence is nothing but the twist encountered in the previous section. The
other contribution to the instanton number is proportional to the winding number of n
on the Dirac sheet, because f is the relevant topological density (cf. (4.34)). However,
subleties can arise from the fact that we are dealing with singular objects. This will
become clearer below.

Another formula for the instanton number can be obtained by adding a zero to (4.35),

v(A)

== /Ssa/\ (f + £%%). (4.40)

We recall that f% is assumed to vanish on the three-sphere. Stokes’ theorem yields,

V(A) - 16171'2 /\/4 dan (f + ng) - 1617'(2 /‘/4(2ng A+ FEN ng) ‘ (4'41)

Compared to (4.37), the monopole loop term a Adf has gone since the currents of f and
f°& compensate each other (cf. (2.35)). Instead, the other term, f% A f, appears twice,
and a new term, f% A % shows up. From the forms involved in f* one concludes that
the support of this term reduces to self-intersection points of the Dirac sheet (see also

Section 4.4). It will be absent for simple choices of the sheet (see below).

With this formalism at hand, we are in a position to reconsider the small monopole
loops: One simply has to plug in the explicit expressions (4.7) and (4.10) into the formula
for the instanton number (4.37) and take care of the singularities. The monopole loop
coordinate is y = 13, while the normal coordinates are z = {ryy — R, 23,24} which

vanish at the loop C. The monopole current is,

sk =df =sinfdp A d%a. (4.42)

23The prefactor f(y) can be obtained by integrating the full §-distribution over ¥ [101].
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By virtue of
o = 27(6% (21, 29)day A dazy — 0P (23, 24)dzs A dzy) (4.43)

the current is localised on two planes on which the prefactor sin 8 formally vanishes
(see Figure 4.1). But § has a jump exactly at the loop C, i.e. the other ‘prefactor’ d

becomes infinite. Therefore, we write,
sin fdg = —d(cos ), d(cos B)|ps=zs=0 = 206(r12 — R) dryy. (4.44)
Altogether, the monopole current,
sk =06(C) = 4w (r1y — R, x5, 24) d(r12 — R) A das A day, (4.45)

is of the desired form (4.39). According to the discussion of the twist, there is a compo-

nent of the Abelian gauge field a tangential to the loop,
alc = (1 + cos B)deps . (4.46)

However, it inherits a multivaluedness from (. Its contribution to the instanton number

is correctly evaluated by carefully collecting all S-terms,

—1 1
672 /‘/4 aNdf = 16m2 /R4(1 + cos B)dp1a A d(cos 5) A 26 (23, z4)dz3 A dzy
1
= — d(plg A (]_ + cos /B)d(COS /8)
87T R%NQ
1 1 remee 1
= 1 (COSB +3 cos’ B) . =1 (240) = 3" (4.47)

For the Dirac sheet D the coordinates split as y = {ris, 12} and z = {3, 24}, and
the singular field strength is of the expected form,

ng = 6(D) =4n Q(R - 7“12) 6(2) (553, 1‘4) dl‘g N de4 . (448)

The winding of n on this sheet is very peculiar: on the interior of D, n is constant
(points to the south pole), while on the boundary, i.e. on the monopole loop C, it is
singular and takes on all possible values once. Thus, one expects a winding number, but

concentrated on the loop. Indeed, the topological density becomes localised,

f|D == d(COS 5) A d(plg =2 6(T12 - R)d’l“lg A dg012 s (449)
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which, however, will not be the case for any other Dirac sheet D' of this loop. Combining
(4.48) and (4.49) we again encounter an ambiguity, this time 6(0). Again, by collecting

the S-terms more carefully one obtains,

1 1
62 /4 fenf = o7 /4 271 (1 — cos 3)0 (x5, 24) dg A dazy A d(cos B) A dpys
v R
1 1
= (2-0) = 5 (4.50)

in analogy to (4.47). This is consistent with formula (4.41), as the instanton number is
simply twice this contribution.

Altogether, the Abelian field a contains information about both the global properties
of the background (via the Chern-Simons form at the boundary) and the local properties
of the defects (via its singularities in the bulk). Writing the instanton number of the
background as a four-dimensional integral involving a, the integrand shows that there
must be defects (see (4.36)). Moreover, it is localised at these singularities, their contri-
butions being proportional to the twist along the monopole loop and the winding number
of n on the Dirac sheet (plus the self-intersection of the latter, see (4.37), (4.41)).

Monopole loops which are not localised within a single chart are called large. They
unavoidably intersect the transition region, so that the arguments presented above do

not hold for these loops. The required modifications are our next topic.

4.3.4. Large Monopole Loops: Flux

The great circles induced by the instanton in the LAG (for the particular case R = p)
are large monopole loops, see Section 3.4.1 and in particular Figure 3.7. They illustrate
the relation between instanton number and monopole charge proposed by Tsurumaru,
Tsutsui and Fujii [253]. These authors claim that if the Higgs field n is singular on the
transition three-sphere at two points, it is invariant under the transition function. As

the latter does not rotate n, it must be of the form,
t(z) = exp (in(x)f(z)) . (4.51)

The transition function is an entirely smooth function. Therefore, the singularities of n
at the two points p; and py have to be ‘cured’ by 6, hence 6 is a multiple of 27 there.

Writing S2_ .« \{P1,p2} as the product of a two-sphere S% and an interval I, and

pip2>
assuming that 6 only depends on the interval variable, the authors conclude that

V(4 = deg(t) = degn() 1 where 1(0) = [0 = 0(3) — 0(p) € 262 (452
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® is the flux of an Abelian field which is quantised due to the special behaviour of 0 at
the endpoints.

These results can easily be checked for the LAG solutions. For simplicity we choose
the last field entries in the quadruplet (A.22) and (A.23). They vanish at the loop
C' = (0,4), and the normalised field n is just the static hegdehog field n = z,7,/|q].
It is singular on any sphere S2_ . at the points p;o = (6, zry = +r). Indeed, the
normalised field n is the same for both charts (for singular and regular gauge), i.e. it is
not rotated by the transition function g. Accordingly, the latter can be written in yet

another form,

G = exp (z TaTa 9) , 6 = 2 arccos - , (4.53)
r

with 0 € {0,27} at the two points p; o.

The interval I, ,, is parametrised by x4 € (—r,r). Indeed, # is only a function of
x4 (r is a constant), and the flux is ®;(f) = 27. The two-spheres S? are spatial ones
with fixed radius |#| = /7% — 3. From the hedgehog behaviour it is obvious that the
winding number (magnetic charge) of n on these spheres is one. Altogether, we have

the following formula for the instanton number,
v(A) = deg(t) = magnetic charge x flux, 1=1x1. (4.54)

It is the analogue of (4.26), and is valid for large monopole loops. The difference between
(4.26) and (4.54) is that the twist represents the change of the hedgehog along the
worldline, while the flux is measured on a slice perpendicular to it. In both cases,
an additional topological quantity is required, since the magnetic charge is of lower

dimension compared to the instanton number.

4.4. OQutlook 2: Center Vortices

An alternative mechanism to explain colour confinement are center vortices [254, 255].
They emerge upon fixing the gauge group up to its center, and the relevant topology is
encoded in m (SU(2)/Z,) = Z,. These vortices should give the area law for the Wilson
loop — again via condensation in the QCD vacuum. There are many analogies between
Abelian and center projections. For instance, the Mazimal center gauge is defined by
maximising a functional on the lattice [256]. The center projection replaces the gauge
fixed configuration by its nearest center element at every point. Center dominance has

been observed on the lattice [257], but it is suffering from a severe Gribov problem [258].
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Fig.4.3.: Vortex sheets for different values ¢ of the relative perturbation strength in (4.55)
together with the monopole loops for ¢q (filled circles, the small monopole loops from
Section 4.1.2) and ¢; (filled boxes, always on the dotted line § = 7/4).

The Laplacian center gauge (LCG) [227] is reached by first going to the Laplacian
Abelian gauge and then fixing the residual Abelian freedom by rotating the first excited
state into a particular plane in colour space. Defects occur where these two Higgs
fields become collinear, including the positions where one or both vanish. They form
two-dimensional wvortex sheets (have codimension two). By definition, the magnetic
monopoles of the LAG lie on these surfaces, namely where the relative orientations
of the Higgs fields changes from parallel to anti-parallel [259]. A vortex sheet can be
understood as half a Dirac sheet (see e.g. [170]).

The results presented in the body of this work can be used for center vortices in two
ways: Repeating Schrédinger perturbation theory for two of the ground states in (A.25),
one arrives at small vortex sheets in the LCG?*. A selection of these defects, coming

from
b0 = Po,inst + (0,0, R?cos )T, ¢1 = G1nst + (0,0, R?sin &) ", (4.55)

is depicted in Figure 4.3. To the best of my knowledge, these are the first explicitly
constructed vortex sheets in non-trivial backgrounds. At the origin they show an inter-
esting behaviour: Two branches of the vortex sheet ‘cross each other perpendicularly’,
meaning that the two tangent spaces of the intersecting branches span the whole four-
dimensional tangent space. This phenomenon is called self-intersection (see e.g. [245])
and has been proposed to generate the instanton number [260]. In fact, one can define
a Higgs field ¢ = [dg, ¢1] and n = ¢/|d|, the defects of which exactly reflect the vortex
sheets. Following the ‘localisation of topology’ in Section 4.3.3, the self-intersection term
%8 A f%8 now contributes to the instanton number (see (4.41)). This is work in progress
with P. de Forcrand and M. Pepe.

24The vortex sheet of the unperturbed instanton in the LCG degenerates to a point.
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5. Summary

This thesis has been dealing with aspects of one of the most fascinating phenomena
in modern quantum field theory, the confinement of colour. An attractive scenario to
explain this non-perturbative effect is the dual superconductor. In this model, magnetic
monopoles — as dual Cooper pairs — condense in the QCD vacuum. As there are no
monopoles in pure Yang-Mills theory, 't Hooft has proposed the Abelian projections to
obtain them as defects in a partial gauge fixing. Although many lattice results support
this mechanism, the results on Abelian projections in the continuum are rather limited.
We have tried to fill this gap, concentrating on effects induced by instantons.

The Maximally Abelian gauge is defined by minimising the off-diagonal parts of the
gauge field. We have illustrated the MAG in terms of a toy model, in which two vectors in
three-dimensional space are rotated ‘close to some axis’. The eigenvalues of the Faddeev-
Popov operator have been calculated exactly. As expected, zero modes of this operator
occur for reducible configurations. By looking at the eigenvalues of the FP operator, we
have found additional configurations located on the Gribov horizon. Their Gribov copies
can easily be visualised.

The Gribov problem of the ‘real’ MAG has been analysed by deriving the explicit
expression for its FP operator. It is the difference of two positive semidefinite operators.
By the same spectral flow argument as in the toy model, we conclude that the Gribov
horizon is reached by scaling up the off-diagonal components of the gauge field. Moreover,
the single instanton is a horizon configuration of this gauge. We have explicitly calculated
the associated zero modes by solving a radial Schrodinger equation. These zero modes
can be derived neither from reducibility nor from space-time symmetries. Being the
first continuum result in this context, this statement can be read as a hint towards a
relation between the Gribov problem and confinement. It is also interesting for lattice
simulations, where the gauge fixing procedure is a highly degenerate spin glass problem.

The Polyakov gauge is special in that its defects are static. We have argued that it can-
not exactly be derived from a gauge fizing functional. We have constructed a functional,
which, however, generically yields the PG. A closer inspection, though, reveals that these
gauges differ by additional defects, visible in their FP operators. At the moment, it is

still unclear, whether there is some physics behind this formal discrepancy.
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The Laplacian Abelian gauge is defined by the diagonalisation of the ground state of
the covariant Laplacian (in the adjoint representation). The Higgs field of this gauge
has been calculated for the first time in an instanton background. The high symmetry
of this background yields a pointlike defect localised at the position of the instanton.
The normalised Higgs field is just the standard Hopf map. Since the ground state is
degenerate, the single instanton is again on the Gribov horizon.

Information about non-generic backgrounds can usually be obtained only by numerical
means (which complicates topological investigations). We have used perturbation theory
to show that defects on orbits close to the instanton are small circles. These generic
defects are the worldlines of magnetic monopoles carrying unit magnetic charge. Viewing
Hopf defects as ‘seeds’ for monopole loops allows for a clear topological interpretation.
The twist, the rotation of the hedgehog field along the worldline, naturally appears from
this relation.

Global properties of Higgs fields are described by the theory of fibre bundles. The
instanton number of the background is translated (via the winding number of the tran-
sition function) into the Hopf invariant of the Higgs field. It follows that, in non-trivial
backgrounds, defects must be present. Just like in residue calculus, the Hopf invariant is
the sum of contributions of small spheres around each defect. Hence, the instanton num-
ber of the background is determined by the local properties of the defects, a phenomenon
we have called ‘localisation of the global topology’. This localisation is particularly sim-
ple for the pointlike defect, since there is only one defect and the standard Hopf map
has Hopf invariant one.

In order to quantify the contributions of different kinds of defects, we have introduced
an auxiliary Abelian gauge field. It contains information about both the global properties
of the background and — via its singularities — the local properties of the defects. Again,
there have to be defects to generate an instanton number. The contributions to the
instanton number are proportional to the twist along the monopole loop and the winding
number of the Higgs field on the Dirac sheet. We have computed these contributions
explicitly for the small monopole loop. In addition, we have indicated that the self-
intersection of the Dirac sheet may also contribute, namely for center vortices.

Large monopole loops, which we have shown to appear in the LAG under certain
circumstances, generate the instanton number via a modified mechanism.

The method of Abelian projection always has to face the objection, whether magnetic
monopoles obtained via gauge fixing can be physical. In other words, is there really a

‘gauge which is most favourable for our purposes’ [222]?7 Indeed, the actual monopole
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worldlines may be similar for MAG and LAG; the PG is certainly different, since it
produces static monopoles. Concerning approximate results (like Abelian dominance),
Abelian projections can behave differently, but after all, physical effects should be in-
dependent of any chosen gauge. The unified description of Abelian gauges in terms of
functionals and the inevitability of defects in non-trivial backgrounds point in this di-
rection. The latter phenomenon is quite analogous to the Gribov problem: there must
be Gribov copies due to general arguments, but their particular appearance is gauge
dependent. It might be that the monopoles of Abelian projections just give different
emphasis to the relevant configurations [15].

The local correlation of monopoles with the gauge invariant position of instantons,
i.e. with the topological density, is an even stronger argument for their physical relevance.
Together with the fact that individual monopole loops can fuse to fewer large loops in
instanton ensembles, this leads to a conjecture about the dynamics: instantons may
indirectly induce confinement via the creation of large monopole loops in the QCD
vacuum. Admittedly, this approach has not been proven so far, presumably because
details of instanton interactions are not yet fully understood.

Instantons also provide the link to the physics of chiral symmetry breaking. Therefore,
it is reasonable to look for zero modes in Abelian projections. We have given some first
results concerning the single instanton background. In addition, it would be interesting
to relate these zero modes to the ones of an Abelian Dirac operator in three dimensions
which are characterised by the Hopf invariant, too [261].

We have also shown how the Abelian gauges are related to the Faddeev-Niemi action
which has recently been suggested as a model for glueballs. Its derivation from the
underlying Yang-Mills theory and its relation to the dual Abelian Higgs model [262] or
to string theory [263] are under investigation. The influence of defects and Gribov copies
in this context has to be clarified.

The presented results allow for a better understanding of non-perturbative issues in
QCD. However, ‘there is still a lot of work to do to unveil the mysteries of confinement’
[264].
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A. Conventions and Angular Momentum in Four

Dimensions

We shall work in Fuclidean four-space R*. This is natural for field theories when consid-
ering thermal effects or tunneling. In addition the path integral is a priori ‘well-defined’
only in Euclidean space; following most textbooks we take for granted that one can Wick
rotate back to Minkowski space.

The coordinates are denoted by x, = (%, z4), sometimes also by (zg, ).

A.1. Polar Angles

We rewrite the cartesian coordinates in four dimensions by virtue of the radius and the
following angles,

Ly

— =1, = (cos 0 cos @9, cos sin 19, Sin 6 cos 4, sin sin ps4) , (A1)
r
where
To Ty
¢12 = arctan — € (0, 27), ¢34 = arctan — € (0, 27), (A.2)
T I3

are azimuthal angles and

f = arctan >+ ¢ (0,7/2), (A.3)
T12

is a polar angle. The two radii are 7y = (22 + 22)'/2, 734 = (22 + 22)"/2. Accordingly,

the measures of the unit three-sphere and the four-space are,
dV(S*) =sinfcosfdfdppdpsy,  dV(RY) = r3drdV(S?), (A.4)

and Vol(S?) = 1 - 27 - 21 = 272,

On the three-dimensional subspace 7 = (z,y, z) € R® we use,

9 = arctan ——— ¢ 0,7), ¢ = arctan e (0,27), (A.5)
T

which leads to the following measure of the unit two-sphere,

dV(S?) = sind d9 de . (A.6)
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A.2. The Lie Algebra so(4)

The Lie group SO(4) is the symmetry group of the four-dimensional Euclidean space. It
also appears in the quantum theory of the hydrogen atom, where the spatial symmetry
SO(3) is dynamically enhanced to SO(4) (cf. [265]). Furthermore, SO(4) is ‘only a sign
flip and its consequences’ away from the group SO(1, 3) part of which are the well-known
Lorentz transformations. It is known that SO(4) is isomorphic to SU(2) x SU(2)/Z,.
We only need the representation of the Lie algebra so(4) as angular momenta acting
on functions. The latter enters the four-dimensional Laplacian when splitted into radial
and angular part just like in three dimensions.

The generators of four-dimensional rotations are,
L, =-i(x,0, —x,0,) prv=1...,4, pn#v. (A7)

It is straightforward to check that the L,, indeed satisfy the commutator relations of
so(4). In analogy with the Lorentz group (field strength) one introduces the angular

momenta (magnetic generators) and ‘boosts’ (electric generators),

Li = Ei]‘ijk, Kz = Li4- (AS)

DN | =

For later use we denote that their components have a very simple form in the coordinates

0 0

Ly = —4 , Ky = —i .
’ dp12 ’ 0P34

(A.9)

The splitting into two independent Lie algebras su(2) is provided by the anti-selfdual

and selfdual parts of L,,, if duality is understood as the exchange of L and I?,

U

(Lo + Ko) = == 1%, 2,0, . (A.10)

7: =a J—
(La_Ka) :——nuul‘uay, Na: 2

M, =
2

DN | =
N | —

As announced these operators have the commutation relations and Casimir operators of
su(2),

[Ma; Mb] - Z.Gabc]\/[ca [Naa Nb] - Z.Gachca [Maa Nb] - 0; (All)
M? = m(m+1), N? 5 n(n+1). (A.12)

It is well known in three dimensions that only the integer representations occur as angular

momenta. In four dimensions the situation is slightly different. Due to the factor 1/2
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in (A.10) the total momenta m and n can still be half-integer in our representation,

m,n € {0,1/2,1,...}, but they have to coincide, m = n, since,
72 72 1 A
M — N* = 5 €pvpeLp0yT,0, = 0. (A.13)

A complete set of compatible observables is provided by {m(= n), ms, n3}, the latter

being the eigenvalues of the third components,

M, eima(p12—¢a1) _ _f ( 0 _ 0 ) eima(p12—ga1) _ ms eima(p12—¢s4) , (A.14)
2 \0p1a  Opz
N, eina(pi2+psa) v < 0 + 0 ) eina(pi2t+psa) ns eina(pr2+¢aa) , (A.15)
2 \0p1a  Opss
and mg € {—m,—m+1,...,m}, ng € {—n,—n+1,...,n}. The spherical harmonics in

four dimensions are of the form,

Ym,mg,ng (0; P12; 9034) = em,mg,ng (0) 62'M3(@127@34)6’in3(np12+np34)

Oy (B) T i(mamn (4 1)

One might worry that the exponentials (A.14) and (A.15) are non-continuous functions
for half-integer ms or ng. But due to m = n also the third components are either both
integer or both half-integer, and (A.16) shows that the product of these functions is
indeed smooth.

The function ©(#) satisfies the differential equation

1 0 . 0 (ma +n3)? (M3 — ny)?
—sin20— + 4 1) — — Ommans (@) =0.(A.17
<sin 200095 " m(m +1) cos? 0 sin? mana (6) (A-17)
For the extremal states in a multiplet, m3 = 4+m, one can use the usual annihila-

tion/creation argument, in terms of abstract states,
Mi|m,+tm,n3) =0. (A.18)

The associated differential equation is much simpler than (A.17) and straightforwardly

solved in terms of the functions,
Om.—mng(0) = cos ™" 0 sin 330 O, 00, (0) = sin™ "0 cos™ "3 0. (A.19)

Finally the four-dimensional Laplacian reads,

2(M? + N?)
r2 '

3
O0=02+ 0, + (A.20)
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A.3. Spherical Harmonics

In the following we list the eigenfunctions of J2 = (L + T)? and L? for the three cases
of interest in Section 3.4.1 (¢ = 1). We suppress the two ‘magnetic’ quantum numbers
labelling the vectors in each multiplet.

(i) For (j,1) = (1,0) the spherical harmonics are given by the canonical dreibein é* of

constant unit vectors,

1 0 0
v ==l o | 1] o]} (A1)
0 1

(ii) For (j,1) = (1/2,1/2) there are four eigenfunctions, all linear in z,,

‘/i‘4 _«/il?) _fi‘2 .]Aﬂ'l
sg _ N R R R
Yo = 3 |- T4 ) xq D ; (A.22)
il? _ill _«%4 .fg
_‘/il4 _«/il?) _:EQ fi'l
reg _ N ~ A A
Y(1/2,1/2) = T3 ) —Z4 |, 1 ; Lo . (A.23)
«fi‘2 _«%1 ZIAZ'4 {i‘3

The following remarks are in order. Obviously, Y** is obtained from Y*® upon exchang-

ing #, — —24. This is achieved via conjugation with g, Y(ig:l/Q,m:Um ~ gt Y(;e:gl/Q,n:1/2) q.
Note that the ‘intertwining’ gauge transformation ¢ is only defined up to rotations around
the direction of the Higgs field ¢ in isospace. It is convenient to combine the members
of each (1/2, 1/2) quadruplet into a ‘four-vector’ Y. Introducing the basis matrices
o, = (i0®, 1), one finds the relation Y;* = o,Y* aL for any p = 1,...,4. Any com-
ponent Y, (%) vanishes, if 2, = +¢é,, the é, denoting the canonical basis of R*. This
means that the zeros of the quadruplet eigenfunctions are given by two points located
on a three-sphere with fixed radius r (see Figure 3.7).

(iii) For the case (j,{) = (0,1) one has three basic eigenfunctions, now bilinear in ,,,

32 — 32 — 32 + 32 2(%1 89 — 2374) 2(2143 + To74)
Yoy = 2(%189 + 2374) || —22+22 22 +22 ], ity — 217)  [(A.24)
2(21 25 — $oy) 2(ZoZg + T174) —it — 32+ 25+ 23
32— 32 — 32 4+ 32 2(Z109 + 2374) 2(2135 — Boty)
Yoo = 2T Do — 237y) || -2+ 22— 224322 |, 2(Zody + 41704) 25)
2(2123 + To74) 2(dod3 — 2144) —3? — 72 4+ 22+ 73
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Again, the two sets of eigenfunctions are related via 2, — —24 and can most easily be

obtained from case (i) by conjugation with g,

YE

(j=0,m=1)

which, in particular, implies that they never vanish. The pointlike defects stem from

the radial part of the wave function.

The relevant spherical harmonics for the fundamental representation ¢ = 1/2 needed

for the Laplacian gauge are

1 0
yE = , , A.27
re ~ 1 «%4 + Zi‘?, 0 QATQ + Zi‘l
YY(O’%/Q) - 9 = N N ) = R . . (A28)
0 —T9 123 1 Ty — 123

Na ¥
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B. Gauge Theory

B.1. The Lie Algebra su(2)

For a basis of the Lie algbera su(2) we take half the Pauli matrices,

X € su(2): X =Xu7g, To = 04/2. (B.1)
Due to
da i
TaTo — Ib 1, + 5 €abcTe s (BQ)

we have the following commutator (vector product) and Killing form (scalar product),
(X, V] = deane XoYome = iX XY, (X,Y)=2tr XY = X,Y,, (B.3)
and combinations thereof,

(X, [Y.Z]) = (Z[X.)Y]) = (Y.[Z, X]) = ieae X Y5 2, (B.4)
X,[V,Z] = (X,Y)Z—(X,2)Y. (B.5)

For a normalised field n,

1
(n,n) =ngn, =1, n? = 1 1o, (B.6)

the double commutator is equivalent to the orthogonal projector,
[, X=X —(X,n)n=P"(X)=X — (X,n)n, P"X)=(X,n)n. (B.7)

An element g of the Lie group SU(2) can be written as

RY Xl X

g =exp(iX,7s) 2008712+isin7|7a|aa, X = V(X,X). (B.8)

B.2. Gauge Transformations

The (hermitean) gauge field A transforms under a gauge transformation g as,

A— A =gAg' +igdg. (B.9)
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Its field strength F,
F=dA—iANA=(dA. + % €aveAa N Ap)Te
transforms homogeneously,
F—9F=gFg',  ¢—%=gog"

The infinitesimal transformations under g = exp(i)) are

A A+ 0A, 5A =Da = d\ — i[A, ],
F — F+6F, SF = —i[F, )\,

B.3. Parametrisation, Diagonalisation and Abelian Gauge

(B.10)

(B.11)

(B.12)
(B.13)
(B.14)

Field

We parametrise the normalised Higgs field n with two polar angles in internal space,

sin 3 cos a
n=| sinfsina |, a€ (0,2r), B € (0,m). (B.15)
cos (3
The topological density is
AV (S?%) = (n,idn Adn) = sin BdB A do. (B.16)
The diagonalising gauge transformation reads,
g = eDmefreian In=gng' =5, (B.17)
with the residual Abelian gauge freedom expressed in 7. Another form is
g = cos g(cos a ;— 712 +isin > 703) + isin g(cos - 702 — isin — 701) .(B.18)
The differential dn is related to the Maurer-Cartan form gfdg as,
dn = [n, ¢g'dg] [n,dn] = P1"(g'dg) . (B.19)
The Abelian gauge field of Section 4.3.3 is defined by
a = (igdg',m3) = dvy + cos fda. (B.20)
The field strength may contain a singular part,
da = f+ [, (B.21)
f = (—z’gdgT A gdgf, m3) = —sin fdS A da = =19y, (B.22)
& = (igd®g', 3) = d*y + cos fd’a. (B.23)
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C. Explicit Calculations

C.1. Faddeev-Popov Operator of the MAG

The Faddeev-Popov operator of the Maximally Abelian gauge follows from the general

considerations about projectors as in (3.45),
FPuac = (iady) + D4, PH)Day, . (C.1)
We first show that it vanishes when acting on parallel components All,
FPyacA! = iady Da, A 4+ Da, (Dy, AN (C.2)
We use (3.4) to show that
(Da, At = —iady Al (C.3)

All what is left is to show that the operators adAi and D4, commute on the gauge slice.

Indeed the Leibniz rule gives
[Da,,adss] =adp, a1 =0. onT (C.4)

FPuyag vanishes for the parallel gauge parameters Al which reflects the residual Abelian
gauge freedom.

In the perpendicular sector we write
D, A" =D A" —iad AT, (C.5)
m
where for SU(2) only the first term is perpendicular. Therefore,
iad Dy A = dady (D) —iads )\, (C.6)
Da, (D, A" = Dy,D A =(D% —iadyD j)At. (C.7)
M " " u Au m A#

The sum of these two terms gives (3.46) without the last term (the FP operator not
only acts on the perpendicular space H' but also gives an element of this space). We

finally notice that there is even another form for FPyaq,

FPyac = ad,, (D% + (4;)?)ad,, . (C.8)
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It involves ‘more natural’ operators but does not allow for a nice scaling argument like
(3.61).
For the proof that Ptad’.P' is a nonnegative operator, we define the hermitean

matrix-valued one-form X via,
(AL, ¢t =X, (C.9)
and calculate,

<¢aPladiiPL¢> = <¢l: adAJ-adAJ-¢J_> = _<adAL¢L; adAlﬁﬁl) (C.10)
= —@(X,iX)=(X,X)>0. (C.11)

C.2. Feynman-Hellmann Theorem Applied to the LAG

In order to obtain information about the Laplacian of Section 3.4.1 when R # p, we
keep R fixed and vary p. We restrict ourselves to the singular gauge. The p-dependent

part of (3.122) contains two terms,

- . (C.12)

The p2-dependence of the ground state energy is determined by the Feynman-Hellmann

theorem,

0

9 AP
0p?

) oH, .
B =55 (0H|8) = (0l 5 516) = (415 519) (C.13)

For the three angular momentum sectors of interest (¢ = 1) we have,

OV, %o.1)(r) _ (PR 4 “0
8/)2 R4 (7"2 _|_p2)3 ’
OVolaan(r) (12 4+ RY)?2(p% — 1Y) 14
a—pQ - R (TQ + p2)3 ’ ( : )
Vo) _ (RBP4
8/)2 R4 (7"2 _|_p2)3 .

According to (C.13), these functions have to be integrated with the positive factor
\d)\2\/§. Therefore, the ground state energies in the first and the third sector are mono-

tonic in p?, their slopes satisfying

0 E® . <0,

0 s
3,7 Fon) B, >0. (C.15)

92 0
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As the energies meet at R = p (‘level crossing’) we conclude,

E(Sg’l) < E(sio) for R < p, E(Sg’l) > E(Slg’o) for R > p. (C.16)

This explains the behaviour of the full lines in Figure 3.6.

For the sector (1/2,1/2) there is no such simple argument. Still, we can compute
the slope of E(p?) at the point p = R by simply inserting the known function ¢. This
amounts to ordinary perturbation theory in § = p? — R2,

OH

H(pQ) :H(6:0)+6a—p2 +O(62) :HO+Hpert- (017)
0=0

In this way we find a vanishing slope for the sector (1/2,1/2),

a 00 (1 _ TQ)
sg 5 _
ap2 E(1/2’1/2) o ~ /U (r2 n 1)7 T d’l" = 0 . (018)

The lowest-lying state of this sector is thus pinched between the other two, at least for
R =~ p (cf. Figure 3.6).
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Aspekten des ”Colour Confinement” (Farbein-
schluss) von Quarks in der starken Wechselwirkung. Dabei handelt es sich um eines
der wichtigsten und faszinierendsten Infrarot-Phanomene der Quantenchromodynamik
(QCD). Zu seiner Losung wurde das Modell des dualen Supraleiters vorgeschlagen.
Demzufolge sind die chromoelektrischen Feldlinien im QCD-Vakuum zu Flussschlduchen
konzentriert. Die dazu notwendigen (kondensierten) magnetischen Monopole entstehen
als Defekte von abelschen Projektionen, bei denen die Eichgruppe bis auf die maxi-
mal abelsche Untergruppe fixiert wird. Das Hauptaugenmerk der Arbeit liegt auf dem
Zusammenhang von Instantonen und Monopolen.

Die Arbeit beginnt mit einer Einfiihrung in die Problemstellung und der Vorstel-
lung der Gitter-Eichtheorie sowie zweier relevanter effektiver Theorien der QCD: Duales
Abelsches Higgs-Modell und Faddeev-Niemi-Wirkung. Danach werden grundlegende
Konzepte von Eichtheorien bereitgestellt, namlich Faserbiindel, Eichfixierung inklusive
Gribov-Problem und solitonische Objekte wie magnetische Monopole und Instantonen.

Das folgende Kapitel befasst sich eingehend mit der Methode der abelschen Projek-
tion. Abelsche Eichungen werden explizit bzw. mit Hilfe von Funktionalen und Higgs-
Feldern definiert. Abelsche Projektionen sind eng mit dem Begriff der Reduzibilitat
verkniipft. Die drei popularsten abelschen Eichungen, die Maximal Abelsche Eichung
(MAG), die Polyakov-Eichung (PG) und die Laplacesche Abelsche Eichung (LAG) wer-
den ausfiithrlich untersucht. Der Zusammenhang abelscher Eichungen mit dem Faddeev-
Niemi-Modell wird erlautert.

Die auftretenden Defekte werden in einem gesonderten Kapitel besprochen. Der
Tatsache, dass generische Defekte lokal magnetische Monopole sind, steht die Hopf-
Invariante als globale Eigenschaft gegeniiber. Der Zusammenhang von Instantonen und
Defekten wird generell und anhand von Beispielen dargestellt. Alle Rechnungen wer-
den mit analytischen Methoden durchgefiihrt; Gitter-Resultate werden als Vergleich
herangezogen.

Als wichtigste Ergebnisse werden prisentiert:

e Die Wirkungsweise der MAG, insbesondere ihr Gribov-Problem, kann mit Hilfe

eines nieder-dimensionalen Modells visualisiert werden.
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e Das singulidre Insanton liegt auf dem Gribov-Horizont der MAG; die Null-Moden
des Faddeev-Popov-Operators werden explizit berechnet. Die Existenz eines Gri-

bov-Horizonts wird aus einer allgemeinen Uberlegung hergeleitet.

e Fiir die PG gibt es ein Eichfixierungsfunktional, dass aber nur bis auf Defekte mit

der expliziten Eichbedingung tibereinstimmt.

e In der LAG liegt das Instanton wiederum auf dem Gribov-Horizont. Aufgrund
seiner hohen Symmetrie induziert es punktformige Defekte, die durch Standard-
Hopf-Abbildungen beschrieben werden. Durch eine Stérung entstehen kleine kreis-

formige Weltlinien von magnetischen Monopolen mit " Twist”.

e Ein abelsches Hilfsfeld reflektiert gleichzeitig die globalen Eigenschaften des Hin-
tergrund-Feldes und die lokalen Eigenschaften der Defekte. Es beweist die Notwen-
digkeit von Defekten fiir Instantonen und quantifiziert die Beitrage zur Instanton-
Zahl: fiir Monopole muss der Twist, fiir Dirac-Blatter eine Windungszahl des

Higgs-Feldes auftreten.

e Die unter bestimmten Umstinden ebenfalls in der LAG induzierten groflen Mono-

pol-Weltlinien generieren die Instanton-Zahl iiber einen anderen Mechanismus.

Ausblicke auf fermionische Null-Moden und Zentrums-Vortices werden gegeben.

Die gewonnenen Resultate, insbesondere die Korrelation zwischen Instantonen und
Defekten (Monopolen), sind ein starkes Indiz fiir die physikalische Relevanz der Defekte
abelscher Projektionen, und zwar unabhangig von der gewéahlten abelschen Eichung.
Eine mogliche Konsequenz fiir die Dynamik der QCD ist, dass Instantonen indirekt

iiber die Bildung einer langen Monopol-Weltlinie zum Confinement beitragen konnen.
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